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Deep Underground Neutrino Experiment

1,300 km/800 m

4 17-kton LArTPC
modules

1.5 km to surface
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Deep Underground Neutrino Experiment

1,300 km/800 m

4'\‘17§kton LArTPC
‘\mo}iules

"1 module | SRR
150 Anode Plane Assemblies -
2560 wires/APA REY s
384,000 channels total

14-bit ADC @2MHz,
> 1TB/sec ! ‘
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DUNE DAQ and Trigger System
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17 kton LArTPC module
150 Anode Plane Asssemblies / module
2560 channels / APA

384,000 channels / module
10 x 10Gbps links / APA
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DUNE DAQ and Trigger System
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DUNE SNB Trigger
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DUNE SNB Trigger — baseline requirements
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Raw data from detector

]

CPU

DAQ Front End Computer (FEC)

RAM

NIC

6/4/2024

Baseline trigger provides no pointing
information, which is needed for
optical follow-ups

|dea is to send data back to FNAL
for more processing

100 Gbps links from underground
caverns to surface & back to FNAL

Best case scenario: 120 TB/module
would take ~3 hrs to transfer

Could be worse: DUNE requirement
IS to copy data back within 24 h
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SURFing the cosmic waée
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SURFing the cosmic waée
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Shock propagation time

Matthew D. Kistler et al 2013 ApJ 778 81 o Delay between arrival of neutrinos
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https://iopscience.iop.org/article/10.1088/0004-637X/778/1/81

Computing paradigm shift
* A solution: Near-data computing
— Instead of moving data to processors,

Raw data from detector

move processing to the data
. IT"C_| « One example is Computational
Storage Technology
— COTS products available now
CPU NIC — Samsung
SmartSSD
e Standard 2.5”

RAM CSD
: — form factor

BittWare 250-U2 CSP
ompucational
Storage

Xilinx Alveo card

DAQ Front End Computer (FEC)
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Strategy for fast pointing determination

» Two step approach:

— Data reduction: perform in situ on data, using FPGAs or GPUs to reduce buffered SNB
data to a point where it can be transported quickly over conventional network to
destination server

— Pointing determination: execute optimized “offline-like” pointing analysis on the reduced
data set on the server

« Use Al/ML methods for the in situ data reduction step:
— Run ML models on accelerators like FPGAs, GPUs, etc.
— Fast inference times for low latencies
— Apply ML methods on both:
« Raw 2D LArTPC wire plane images
 Raw 1D LArTPC wire waveforms

2% Fermilab
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Strategy for fast pointing determination: hardware

CPU CPU CPU CPU
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= = ~75 DAQ front end computers = =
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to reduce buffered SNB data
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Strategy for fast pointing determination: algorithms

ML-based in situ data reduction

Radiological Bkg Raw waveform LB raw
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“Offline-like” reconstruction and pointing analysis

Raw wire plane
data
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Radiological background rejection with 2D-CNN
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ML-based data size reduction estimates

« Data rate from 1 far detector module (horizontal drift):
— 150 APAs x 2560 ch/APA X 14 bits/sample X 2 Msamples/sec ~ 1.2 TB/s

» Buffered supernova data per detector module:
— 100 seconds: 120 TB
— For pointing determination, focus on first 10 seconds: 12 TB
» Estimated size of data per SN neutrino candidate from ML-based reduction
pipeline:
— CC: 47,306 bytes
— ES: 29,680 bytes
« Assuming 2DCNN rejects 100% radiologicals, assume we retain all CC + ES
neutrinos interactions:
— 3,300 CC x 47,306 bytes + 326 ES X 29,680 bytes ~ 158 MB for all 4 modules
— 48 TB — 0.000151 TB ~ over 5 orders of magnitude reduction !
2= Fermilab
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Execution time for track reconstruction on reduced sample

» Track reconstruction pipeline:

—{ Dataprep H Gaushit H SP Solver H DisAmbig HTrajCIusterH PmTrack ]—»

» Use of 1D denoising AutoEncoder to clean up electronics noise of raw waveforms
in ROIs from 1DCNN allows us to use “legacy” 1D FFT deconvolution in the
“Dataprep” stage to speed up things.

CcC 0.061
ES 0.026

« Assume we reject all radiologicals with 2DCNN and retain all CC+ES events:
— 3300 x%.061 + 326 X .026 ~ 210 seconds = 3.5 min
— for full DUNE detector executed using one CPU core !

2% Fermilab
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Compare with no reduction case

« How long would it take to process the SN data using the reco pipeline in the
previous slide on a full 10 second raw dataset
|t takes ~9.5 seconds to process 1 APA worth of data in a 6000 time tick
(500 ns/tick) readout window using one CPU core:
— Assuming we dedicated one CPU core to 1 APA on each DAQ readout computer:
* 100 seconds of SN data would take 88 hrs to complete
* 15110 seconds of SN data would take ~9 hrs to complete
» For simplicity assume all 4 detector modules identical to first horizontal drift
module, i.e. 150 APAs per module:
— 9 hrs using 4 X 150 = 600 CPU cores versus 3.5 min using 1 CPU core !

2% Fermilab
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Execution time for ML-based data reduction pipeline

« ML-based data reduction algorithm is meant to run on FPGAs that access buffered
SN data on SSDs directly. FPGA's main advantage over GPU is lower power
consumption — important because of limited power budget in SURF underground
caverns.

 However, since we were not able to get results in time, we benchmarked the
algorithm on a typical GPU to get an idea of what is achievable

» Using half of an Nvidia A100 GPU™*:
— Since each front end DAQ computer serves 2 APAs
— 15 minutes to perform the ML-based data reduction for 1 APA

* A100 is a datacenter GPU and not the ideal for this application due to power consumption. Only used here to get an idea
of inference times possible. There are other GPUs targeted at low latency inference combined with low power consumption

e Total of ~20 minutes to do ML-based data reduction + track reconstruction

— Still considerably less time than it takes just to transfer the SN data back to Fermilab:

» 10 seconds of SN data for all 4 modules: 48 TB takes ~1 hr to transfer over 100 Gbps

ethernet .
2& Fermilab
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In-storage ML-based data reduction
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Hardware implementation 1

Perform inference

AvgPool 8
AvgPool 16 Elatten
AvgPool 16
AvgPool 8 /
Reorganize : i To
1
1
raw datg & | Subtract ! —_—
generate input pedestal ] 1dcnn
frames :
/ Dense
2dConv 8
Dropout
Dropout

. 2dConv 16 Dropout
Full-size frames sent to
2dcnn for inference 2dConv 8
2DCNN
induction 200 x 1,148(9) Inference time/frame ~3.2 ms
collection 200 x 480 Compared with ~0.5 ms for the GPU
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Hardware implementation 2

1.0 1 — muES_eff
—— RBKG_eff
v=» C_40: ES_eff: 99.32%, BR: 42.44%
084 C_S0: ES_eff: 98.42%_ BR: 68.32%
. ‘e C_60: ES_eff: 97.34%, BR: 85.84%
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raw da| o v
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0.0 4 Pl N—
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- More compdactis more mstdances can pe rmpiermentead 101 paralier execution
- Requires more testing with wider input frames and inclusion of all pre-processing steps
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Signal efficiencies when using ML-based data reduction

24

Fast execution times are useless unless we retain a significant amount of the SN
neutrino interactions. Here we compare signal efficiencies after the GausHit finder
stage between a standard full dataset reconstruction and our ML-based reduced
dataset reconstruction:

U Vv Z U Vv Z

ML-reduced 0.69 0.71 0.66 0.16 0.18 0.073
(1D deconvolution)

Standard full dataset ~ 0.68 0.67 0.62 0.14 0.17 0.062
(2D deconvolution)

GausHit finder hit efficiencies for fully simulated nuES events

Able to achieve same signal efficiencies but with tremendous reduction in execution
time !
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Energy distributions

* Here we compare the reconstructed energy of the scattered electron in the SN ES
interactions between the standard full-dataset reconstruction and the ML-based
reduced dataset reconstruction:

1x2x2 geometry

— standard reconstruction
— ML reconstruction

80
60
40

20

PN B N I Bl £ Lo
o 10 20 30 40 50 60 70 80

energy/MeV

« Basically, the ML-based reconstruction pipeline produces identical results as a
standard offline reconstruction
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More info on DUNE SN pointing capability & ML models used

* For more details on DUNE'’s supernova pointing capabilities, please refer to:

— Abi, B., Acciarri, R., Acero, M.A. et al. Supernova neutrino burst detection with the Deep Underground
Neutrino Experiment. Eur. Phys. J. C 81, 423 (2021).

— Updated version to be published:

Abed Abud, A., Abi, B., Acciarri, R. et al. Supernova pointing capabilities of DUNE.

(DUNE-doc-27538-v13, primary authors: Shen, J., Roeth, A. J., Hakenmueller, J., Queen, J., Pershey,
D., Scholberg, K. )

 For more details on ML models used in this work:

— Clair, J. Real-Time Detection of Low-Energy Events for the DUNE Data Selection System. DUNE-doc-
27333-v1. (2DCNN)

— Uboldi, L., Ruth, D., Andrews M., Wang, M.H.L.S. et al. Extracting low energy signals from raw LArTPC

waveforms using deep learning techniques — A proof of concept. Nucl. Instrum. Methods Phys. Res. A 1028
166371 (2022). (1DCNN)

— Mitrevski, J. Low Energy LArTPC Signal Detection using Anomaly Detection. Fast Machine Learning for
Science, Imperial College London, 25-28 Sept 2023. (1D denoising autoencoder)

2% Fermilab
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https://doi.org/10.1140/epjc/s10052-021-09166-w
https://doi.org/10.1016/j.nima.2022.166371
https://doi.org/10.1016/j.nima.2022.166371
https://indico.cern.ch/event/1283970/contributions/5550632/
https://indico.cern.ch/event/1283970/contributions/5550632/

Conclusions

« Common assumption: DUNE SN processing requires significant computing
resources: processing, network, and storage
— SN data needs to be transferred back to FNAL for more processing to determine direction
— HPC sites were also being considered for this purpose

 What we have demonstrated: applying ML-based data reduction as early as
possible can reduce data to such a degree that makes it possible to perform offline-
like analysis on-site with minimal computing resources — i.e. on a single server:
— total processing times less than network transfer time back to FNAL appear achievable
— no loss in quality of results wrt full reconstruction/analysis

« This has positive implications for previous assumptions about DUNE’s computing
requirements, perhaps warranting a re-examination of these assumptions

2% Fermilab
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Conclusions (continued)

* While results look promising, this is a work in progress, and more work needs to be
done:

— Single largest contribution to the total processing time is the 2DCNN-based radiological
background rejection:

» Focusing on reducing 2DCNN inference time will reap the largest benefits
— Continue exploring hardware accelerator options:
+ Continue with FPGA implementation and optimization
 Benchmark GPUs geared towards low-latency inference applications & low power
« Explore dedicated Al inference chips
— Include algorithms for discriminating ES vs CC and optimize these algorithms
— Implement end-to-end demonstrator within dune-daq framework

2% Fermilab

28 6/4/2024 Michael Wang | Intermediate level SN pointing trigger for DUNE



People directly involved in this effort

Fermilab
— Maira Khan, Jovan Mitrevski, Ben Hawks,
Tom Junk, Tingjun Yang, Jennifer Ngadiuba, Mike Wang,
Pengfei Ding (now at LBNL)
Duke University
— Kate Scholberg, Janina Hakenmueller, Van Tha Bik Lian
Columbia University
— Georgia Karagiorgi, Judicael Claire, Guanqun Ge, Akshay Malige
York University
— Tejin Cai (now at Synopsys Inc.)
lowa State University
— Amanda Weinstein, Avik Ghosh

29 6/4/2024 Michael Wang | Intermediate level SN pointing trigger for DUNE

2% Fermilab



Thank you!
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How a LArTPC works
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