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Deep Underground Neutrino Experiment

6/4/20243

1,300 km/800 m

1.5 km to surface

4  17-kton LArTPC
       modules

1 module
• 150 Anode Plane Assemblies
• 2560 wires/APA
• 384,000 channels total

• 14-bit ADC @2MHz
• > 1TB/sec !
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• Baseline trigger provides no pointing 
information, which is needed for 
optical follow-ups

• Idea is to send data back to FNAL 
for more processing

• 100 Gbps links from underground 
caverns to surface & back to FNAL

• Best case scenario: 120 TB/module 
would take ~3 hrs to transfer

• Could be worse: DUNE requirement 
is to copy data back within 24 h

DUNE SNB Trigger – baseline requirements
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SURFing the cosmic wave
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SURFing the cosmic wave
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Shock propagation time
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Matthew D. Kistler et al 2013 ApJ 778 81

SN 1987A ~3 hrs

• Delay between arrival of neutrinos 
and optical light: ~shock propagation 
time

• Range: ~1 min to several days
• Unless progenitor is red supergiant, 

network transfer time back to FNAL 
alone already exceeds available 
window of opportunity

https://iopscience.iop.org/article/10.1088/0004-637X/778/1/81


SSDComputational
      Storage

• A solution: Near-data computing
– Instead of moving data to processors, 

move processing to the data
• One example is Computational 

Storage Technology
– COTS products available now

Computing paradigm shift
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• Two step approach:
– Data reduction: perform in situ on data, using FPGAs or GPUs to reduce buffered SNB 

data to a point where it can be transported quickly over conventional network to 
destination server

– Pointing determination: execute optimized “offline-like” pointing analysis on the reduced 
data set on the server

• Use AI/ML methods for the in situ data reduction step:
– Run ML models on accelerators like FPGAs, GPUs, etc.
– Fast inference times for low latencies
– Apply ML methods on both:

• Raw 2D LArTPC wire plane images
• Raw 1D LArTPC wire waveforms

Strategy for fast pointing determination
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Strategy for fast pointing determination: hardware
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Strategy for fast pointing determination: algorithms
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Radiological background rejection with 2D-CNN
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ROI finding with 1D-CNN and denoising with 1D-AE
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• Data rate from 1 far detector module (horizontal drift):
– 150 APAs×2560 ch/APA×14 bits/sample×2 Msamples/sec ~ 1.2 TB/s

• Buffered supernova data per detector module:
– 100 seconds: 120 TB
– For pointing determination, focus on first 10 seconds: 12 TB

• Estimated size of data per SN neutrino candidate from ML-based reduction 
pipeline:
– CC: 47,306 bytes
– ES: 29,680 bytes

• Assuming 2DCNN rejects 100% radiologicals, assume we retain all CC + ES 
neutrinos interactions:
– 3,300 CC×47,306 bytes + 326 ES×29,680 bytes ~ 158 MB for all 4 modules
– 48 TB → 0.000151 TB ~ over 5 orders of magnitude reduction !

ML-based data size reduction estimates
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• Track reconstruction pipeline:

• Use of 1D denoising AutoEncoder to clean up electronics noise of raw waveforms 
in ROIs from 1DCNN allows us to use “legacy” 1D FFT deconvolution in the 
“Dataprep” stage to speed up things.

• Assume we reject all radiologicals with 2DCNN and retain all CC+ES events:
– 3300×.061 + 326×.026 ~ 210 seconds = 3.5 min
– for full DUNE detector executed using one CPU core !

Execution time for track reconstruction on reduced sample
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• How long would it take to process the SN data using the reco pipeline in the 
previous slide on a full 10 second raw dataset

• It takes ~9.5 seconds to process 1 APA worth of data in a 6000 time tick
(500 ns/tick) readout window using one CPU core:
– Assuming we dedicated one CPU core to 1 APA on each DAQ readout computer:

• 100 seconds of SN data would take 88 hrs to complete
• 1st 10 seconds of SN data would take ~9 hrs to complete

• For simplicity assume all 4 detector modules identical to first horizontal drift 
module, i.e. 150 APAs per module:
– 9 hrs using 4×150 = 600 CPU cores versus 3.5 min using 1 CPU core !

Compare with no reduction case
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• ML-based data reduction algorithm is meant to run on FPGAs that access buffered 
SN data on SSDs directly.  FPGA’s main advantage over GPU is lower power 
consumption – important because of limited power budget in SURF underground 
caverns.

• However, since we were not able to get results in time, we benchmarked the 
algorithm on a typical GPU to get an idea of what is achievable

• Using half of an Nvidia A100 GPU*:
– Since each front end DAQ computer serves 2 APAs
– 15 minutes to perform the ML-based data reduction for 1 APA
* A100 is a datacenter GPU and not the ideal for this application due to power consumption.  Only used here to get an idea 
of inference times possible.  There are other GPUs targeted at low latency inference combined with low power consumption

• Total of ~20 minutes to do ML-based data reduction + track reconstruction
– Still considerably less time than it takes just to transfer the SN data back to Fermilab:

• 10 seconds of SN data for all 4 modules: 48 TB takes ~1 hr to transfer over 100 Gbps 
ethernet

Execution time for ML-based data reduction pipeline
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Hardware implementation 1
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J. Clair, G. Karagiorgi, G. Ge, A. Malige
(DUNE-doc-27333-v1)

Hardware implementation 2
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• Fast execution times are useless unless we retain a significant amount of the SN 
neutrino interactions.  Here we compare signal efficiencies after the GausHit finder 
stage between a standard full dataset reconstruction and our ML-based reduced 
dataset reconstruction:

• Able to achieve same signal efficiencies but with tremendous reduction in execution 
time !

Signal efficiencies when using ML-based data reduction
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Reconstruction 
chain

Sig eff for primary trk hits Sig eff for daughter trk hits 
U V Z U V Z

ML-reduced
(1D deconvolution)

0.69 0.71 0.66 0.16 0.18 0.073

Standard full dataset
(2D deconvolution)

0.68 0.67 0.62 0.14 0.17 0.062

GausHit finder hit efficiencies for fully simulated nuES events



• Here we compare the reconstructed energy of the scattered electron in the SN ES 
interactions between the standard full-dataset reconstruction and the ML-based 
reduced dataset reconstruction:

• Basically, the ML-based reconstruction pipeline produces identical results as a 
standard offline reconstruction

Energy distributions
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• For more details on DUNE’s supernova pointing capabilities, please refer to:
– Abi, B., Acciarri, R., Acero, M.A. et al. Supernova neutrino burst detection with the Deep Underground 

Neutrino Experiment. Eur. Phys. J. C 81, 423 (2021).
– Updated version to be published:

Abed Abud, A., Abi, B., Acciarri, R. et al. Supernova pointing capabilities of DUNE.
(DUNE-doc-27538-v13, primary authors: Shen, J., Roeth, A. J., Hakenmueller, J., Queen, J., Pershey, 
D., Scholberg, K. )

• For more details on ML models used in this work:
– Clair, J. Real-Time Detection of Low-Energy Events for the DUNE Data Selection System. DUNE-doc-

27333-v1. (2DCNN)
– Uboldi, L., Ruth, D., Andrews M., Wang, M.H.L.S. et al. Extracting low energy signals from raw LArTPC 

waveforms using deep learning techniques — A proof of concept. Nucl. Instrum. Methods Phys. Res. A 1028 
166371 (2022). (1DCNN)

– Mitrevski, J. Low Energy LArTPC Signal Detection using Anomaly Detection. Fast Machine Learning for 
Science, Imperial College London, 25-28 Sept 2023. (1D denoising autoencoder)

More info on DUNE SN pointing capability & ML models used
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https://doi.org/10.1016/j.nima.2022.166371
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• Common assumption: DUNE SN processing requires significant computing 
resources: processing, network, and storage
– SN data needs to be transferred back to FNAL for more processing to determine direction
– HPC sites were also being considered for this purpose

• What we have demonstrated: applying ML-based data reduction as early as 
possible can reduce data to such a degree that makes it possible to perform offline-
like analysis on-site with minimal computing resources – i.e. on a single server:
– total processing times less than network transfer time back to FNAL appear achievable
– no loss in quality of results wrt full reconstruction/analysis

• This has positive implications for previous assumptions about DUNE’s computing 
requirements, perhaps warranting a re-examination of these assumptions

Conclusions
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• While results look promising, this is a work in progress, and more work needs to be 
done:
– Single largest contribution to the total processing time is the 2DCNN-based radiological 

background rejection:
• Focusing on reducing 2DCNN inference time will reap the largest benefits

– Continue exploring  hardware accelerator options:
• Continue with FPGA implementation and optimization
• Benchmark GPUs geared towards low-latency inference applications & low power
• Explore dedicated AI inference chips

– Include algorithms for discriminating ES vs CC and optimize these algorithms
– Implement end-to-end demonstrator within dune-daq framework

Conclusions (continued)
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Thank you!



How a LArTPC works
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