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The problem of diaqonalising the hamtltonian for quantum

integrable modelw {n tha contaxt o‘f the ca-ordinate (11 or

alqabraic €2) Betha ansatx is reduced to solving the system

of t.r.m Datha-~ansatx equations.

For the simplest case of the

XXX Haisenberg antiferromagnet and its inteqrable qenerali-

sation (3] to arbitrary spin s

N
[)ﬂ-]__ rrfx—).kﬂ
X s kmi NN

the equations have tha form

1., M. 5y

Here, N is tha number of sites of the spin rinq, and the

number M of complex parameters Xj

may be @,..sN. The ener-

qQles E - eigenvalues of the hamiltonian
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momenta P, and spins 6 of the states are expressed through‘

the solutions 0, to system (

in n
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According to the "string” hypothesis £1,4,51, as N¥co, all
the parameters )\ should assemble 1ntu'n-ltr‘1nq1
A wm x + il(n+1)/2 -m), m™i...Nn. o 3

whera a positive integer n specifies the lenqth of the

Itrinq. and a real x its centre panltton. The antlfarromaq-

naetic vacuum cnmprlsn- a sea of M=sN 2-—Itr1nq- ESJ. Thl
string hypothesis givas a rather accurate qanaral qualitn-
tiva classification of states, their total number being in

aqgrasment (4] with the assumption of complateness. Hawaver,

I’ R /

the assertion about an exponential (in N) accuracy af

strings proves wrong in a number of cases. Even for s=1/2,

on the backqround of the sea of

real roots (1-strings), non-

string confiqurations - quartets and wide pairs - have been

predicted [71. For s>1/2, quartets are changed to multiplets

and narrow pairs may appear [8].

Deformations of the sea

strings become also possible. The numerical computations {91

have shown that the minimal devi

>

ations fram formula (3) for

the vacuum and two-hole states behave as O(1/N) while the

makimum is Q(1): however, these

tions weakly affect the energy.

letter is to find out multiplet-

congiderable string deforma-
The object of the present

tupe solutions explicitly

and to ztudy finite-size corrections for them.

At large N, one can describe

the sea of 2s-strings with a

density function. The Bethe~ansatz equations for the sea areé

rewritten as an integral equation for the density. which may

be solved by the Fourier transformation. The study of the

equations tor complex-root confi

qurations on the sea back-

qground shows that there are only three possibilities [(Bl:

free narrow pairs |Im M\l<s8-1/2,
multiplets

A= x * i(y+ts-m), m=0...2%8,

wide pairs [Im MN|>s+1/2, and

0<y<1/2. 4,

Real parameters x and y determine the positions of all the

pairs of the multiplet,

onesg ||Im MN-s|<1/2, A8 well as in strings,

root of a multiplet X

diate pairs)

there is a successor X\’

2s-1 narrow and two intermediate

for each complex
(except lower .members of its interme-

lying an imaqinary unit

balow it. The deviations Ax+if&Ny = A-)'—~i should be exponen—

tially small
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bcosh(wx)+coe(wa )

2 4
axTrogT= exp (SKNY, K= N o —cos (my)

The sea contributions to the equationa for the allowed
configurations can be evaluated. Thereafter, the equations
are reduced to the higher—-level Bethe—ansatz form, where the

N factors of eguations (1) are cancelled. Contributions of

i

the complex roots to the energy and momentum are exactly o
compensated by the backflow reactiqn of the sea. Thus, the
energy and momentum are completely determined by phusical
excitations, holes in the sea. In the limit of an infinite
slze of the ring their positions may be arbitrary. However,
at finite N they are discrete and correspond to half-integer
values of the integral of the densfty for 2s-stringes toge-
ther with holes. This cam also be written [9] as hiqher¥
-level Bethe—ansatz equations.

In the present letter the simplest multiplet-type solu-
tions are considered, with one gquartet (s=1/2) or sextet
(sa=1) at even N and the minimal number of hales, four, the
total spin being S=@. For this case the higher-level Bethe-
~ansatz squations [B8] are reduced to tﬁe form

4 x—x‘+t(u+1/2) o _2y+t %l
"—"i“ (y-1/2) 2y-1 *

i=1
x-xJ X=X
"QJ- N [w/4-atan exp(—nxJ)J +atan 172+y +atan T72-q
ood 4
+ I.—E Z sinl tx —xk)p] . ) (7)
2P u=t b ] .

2expl (5~1/2)pl-expl=(s-1/2)pI-axpl=(s+1/2)p] = ;_, 4
2cosh(p/2) 2sinh(sp) - . ceel,

where Qj are (half-)inteqer numbers - according to Qmax

1

aN/4+1/2-(2%) = ,— which specify the hole positions; IQilgp .

max

Equation (&) for the parameters of the multiplet can be
19

sol ved exactig. After.eliminating the denominator and taking

4

the imaginary part, one gets q(4g2—1)(k1+x2+k3+x4—4x>=2

It follows.then that for the multiplet solution (4)

® = (x1+x R JYEN I (8)

27374
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The real part, atter formula (8) is substituted, ‘gives a bi-

quadratic equation for y. Its solutien can be represented as

1.1 2 1/2..1/2 3 '
Y = (G035 -2A 2 (1+4Ar28A5-12a ) P 12 g -% Zx 00 (e

4 n j=1 3
Equations (7) have to be solved numerically. One iterates
the hole co-ardinates, using formulae (8) and (9) at every
step. The result allows one to compute the leading approxi-

mation in N+w for the enerqy and ‘wmomentum of the state

s
4 . 2:1(2n-1)-1, 8 * integery’
E = X sw/cosh(mwx ) - n=
o 22 P N w-1/2 _, (e
In 2 + £ (2n)", s = half-integer]
. n=1
2w 4
P == weN -2 T atan exp(-uwx ,). (1)
i=1 )

The difference between the primary values (2) derived from
the solutions to equations (1), on the one hand, and the
higher-level approximation (5)—-(11}, on the other, is due to
finite-size corrections. As a consequence of equations (&)
and (7), formula (11) for the momentum proves to be exact
because its values are multiples of 2n/N. Numerical data
presented below demonstrate that the energy correction E—gm
behaves as D(1/N), that is in the same way as for the vacuum
and simplest excitations [9,10,1113.

The numerical computatinns are performed by the Newton
method for the logarithms of equations (1) [91, Since multf{-
plets should have exponentially msmall deviations from fornu-

la (4), quantities of essentially different scales may be
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present in the problem. And because the computer precision to equations {1). The quantity J=(E—EM)N controls the accu~

is limited, one has to store for each complex root, besides racy of the approximation (1@)j the~€v values correspond to

its absolute position, the value of ax+idy. Furthermore, to i the vacuum solutions.

improve the linear system solved at every step of the itera- LY For s=1 the information about the sea-string deformaticns

tions, the equations are modified as follows. To each equa- i

is presented in additioni Amax s the maximum and

and A
- mean

tion for a member of a string~like chain the equations for v

average &y over all the string-like chains. It should be

all its successors are added. This eli@lnaten wingularities noted that at the points xj the sign of the deformations

in internal deformations of the chains from the equations alters, like in two-hole states [?]. This is reflected on

for thair higher members.

Jable i, Quartet-type solutions (s=1/2,6=@)1 N dependence.

-n2/12=~, 822467033424

the average and maximum values.

Table 2, Sextet-type solutions (s=1,5<B): N dependence.

N Qj %1 o xm'gmlxmax Keo? PEF v By 8y 8, N Gj;, i o ' Km'gw'xmax K&'K P_g » B, &, av Ahax'Amsan
50)] -12 |-1.2528320 . 4869619} .223|-3 IB|-7.9 |-1.2662 - 4428 120113 —-. 0528279
10 .65310112 <43107466].303 ]| -33. 9652960767 5.9 .38747 - 43935 |.296|-29.2420778022|-.8124799
i1 .86233372(.413359343 -.890181 6.5 87213 .461383788 - 273
12 1.3652448 |.929@75272 -. 8248774653969 7.5 1.57761 1.45389221 —1.24359395024
80]|-19.35|—1.48391672 .4828662].305|37 50|-12.51-1.4273916 «5274114.189123 1-.@557867
17.3] .803337612 -3823154|.342|~55.8177338735 12.5 « 7308006 «4174591.236[-49.5404404411 | -. 81294662
18.5]1.012484691 | . 491795306 -. 895606 11.5] 1.2358171 |.548039400 -.21263
19.5[1.519532278| . 878948890 —.824136374052 12.5]| 1.7504168 |1.42389289 ~1, 24008319475
128(-31.31-1.3539310 .4663726(.364(59 80| -20 |-1.581445 .555043}.183|37 ]--0571100
28.93 . 82630748 . 3651375 .3688{—-88.2980643647 17 . 740698 -413279].198|-79.5904903074 | -. 00991790
29.5 . 95286674 .473087495 -.893067 19 1.176765 . 578650910 -.18748
31.35] 1.64224731|.861554593 ~. 823697869135 20 1.884152 1.42377551 -1.23B829584077
200(-48.5]-1.23332167 .43508747|.300]92 128] -31 [-1.1257839 .468014].234}59 i @769850
44.3] .805860239 . 39478861.313|-138. 110673053 28 . 7739528 .414146)].253{-127.435220911 | -.8012470%
446.5] .963748648).456742522 -.863510- 30 1.0066041 |.478827934 -. 24932
48.3] 1.2692116%|.894007428 ~. 823428050508 31 1.2172837 |1.41526422 -1.23718650132
J00[-72.5[-1. 18403224 «4631337(.289{139 150 -36.5{~-1.17644748 « 472369 .233]| 69 1.2771949
&7.5 . B2859734 . 39489131 .296]~2@7. 433923708 32.5 «74751712 .413384(.246{-149.4528183181-.00126993
78.5| 1.0023@524|.468814566 -.B539531 35.5] 1.05462039|.483363361 -.237879
72.5]| 1.20566462].894719545 —. B23254238795 36.5| 1.26380619|1.41500005 1—-1.2346904687880

-HZJB--1.23370055E14

The results of computing multiplet-type states with dif- Another projection, different multiplet-type states at

ferent N but about the same hole positions are presented in the same N, is presented in tables I and 4. One can cbserve

tables 1 and 2. The index w relates to the higher-level how the parameters of the multiplets vary with shifting the

Bethe—ansatz approximation (5)-(1@). Dn the other hand, the holes.
real and imaginary parts of the highest multiplet member The following general conclusion can be made from the
xmaxllm ~ qus). the coefficient K-—ln(Ax2+Ag2)max/N charac- computations: As well as strings, multiplets are perfectly

terising its deviation fraom the successor, the momentum and S K reliable configurations for sufficiently large N. They may

energy of the state (2) are computed through the solutions degenerate into strings only when y approaches 1/2 or 0.
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Jable 3, OQuartet-type soluti

ons (s=1/2,N=300,5=0): Q dependence.

e *i w " 00® Yool )max Km‘ Kl P Es v E. &
~-73.3]-1.36482157 . 5879376 ,3808| 145
71.5] 1.09433226 . 2906191 |.3799|-207.4696353473
72.51 1.21614273} .595746011 -.B84834
73.5] 1.40609720( .789259871
~73.5]|-1.36364014 . 17230061 .54446])118
62.5 « 65594717 . 4011303} .5862]|-206.817631923
63.5 . 68345220 .168892334 -.85231
b4.5 71344236 .B896267176
~73.5]-1.36381005 ~-.06477469|.3519]| 64
44.5 . 35668617 < 4431054 ] .3905 | -205. 206089162
45.5 . 368119281 -.@714645209 -.83273
456.5 . 37989702 .938997428
-73.3]-1.36480477 ~.2441374].1673|-17
17.8 . 12222059 <4651560(.1973(-203, 5546189286
18.5 . 12939748 -.252869538 -.807341
19.5 . 13663494 . 9619@QA751
-73.5]|-1.369625086| -—.5362784|.0286[121
~36.5]| -.26748B256 .4873218|.@558(-204. 409235838
~35.5| -.25843997|-.54726538% —~.787844
-34.5| —.2495661%| .985490R@76

Table 4, Sextet-type solutions (s=1,N=15@,5=@):

@ dependence.

. N
mj e - xm'umf.kmax Kar K| F v * Ef ¢ Amax' qhean
-37.3] -1.784453 . 705753 . 325|173 ~. 05847350
35.9 1.10a561 .231061 .295|~149.846264281 | -.00895129
6.5 1.387729 .729061176 -. 13287
37.5 2.119174 |1.248480914
-37.5{~1.77081893 .3728061(1.006]|70 . 0708430
4.5 . 9243322 1932501 (1.117]-149. 648263432 ~, 08595921
35.3| 1.0610943 . 368102324 -.14313
246.5] 1.2759871 11.154708082
=-37.5[-1.7465B81546 .1721583{1.247 |64 . 2840352
2.3 . 73894290 . 280394211.4741-149.236159171 |-. 00412634
33.5 .811852492] .140400989 -.1667%
34.5 903180469 (1.250735093 . .
~37.3|-1.762330877 -.0067414]1.020 |52 . 0909902
28.3 . 338434698 . 3441881 |1.203 | -148, 498623758 | -. 00257904
29.3 .57687237|~.023845271 -.207@9 ’
30.5 . 62005585 |1.320130172
-37.5(—1.7619364%9 -.1492694] .4669|34 0941040
22.5 - 364444698 .3832854| .784|-147.427735359|-.00145736
23.5 .38779368{-.170197903 -.27493
24.5 - 41263609 |1.362607767
-37.5|-1.76478369 -.3183200 .330(-2 . 2958628
10.5 . 148992474 .41880846| .399|-145.842065398| . 000275035
11.5 . 1463725581 ~.3433023324 -.45789
12.5 . 17885336 1.401552230
~37.5|-1.77047569 ~.4448982| .177]-38 - B963235
-1.5| -.81623679 4391816 .231[-145.283023731 | .000500191
-.3| ~.00303483|~.472627654 -.68493
3 Q10184657 (1.424216927

Moreover, the deviations from the multiplet structure (4)

are in fact exponentially small: K behaves like 0O(1) and

agrees reasonably with the predicted values (5). At the same
time, deformations of the séa strings (at $=I) are more con-
sfderable. They may probably be dlﬁlnished, in the average,
only owing to changes of their siqgrRs ;t the hole positions.
The higher-level Bethe ansatz (6)-(11) provides a rather
qood approximagion. One sees from tables | and 2 that the
quantity & at larqge N approaches a constant (fluctuations
are due to some drift of the holes). Hence. the finite-size
energy correction is 0(1/N). The leading asymptotics coeffi-
ctent for the vacuum (previous numerical results:sli1@],e=1/2j
[11),8=13 [97,8 up to 9/2) well agrees with the value of the

central charge in thée conformal field theory [(12]

- <L nzc,

ﬁ:& 13 c=3e/ (a+l). €12)

av?(E—Emng
For the excited states, & differs from formula (12) and de-
pends on the hole positions (tables 3 and 4). The comparison
with the anomalous dimensions of the scaling operators [13]
is, however, difficult because the considered states are too
high-excited. The loﬁ-luing two-hole excitations [?] would
be more appropriate, but there are problems for them either,
due to the presence of logarithmic corrections [8,9,141 be-
sides D(1/N). These corrections may furthermore depend on

the sea-string deformations, to describe which there are

still no efficient exact methods.
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For the integrable XXX antiferromagnetic ring of N
spins s=1 or s=1/2, the numerical solutions to the Bethe-
ansatz equations are found, which involve non-string con-

figurations, multiplets. The results up to sN=150 are com
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