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Abstract: We report the distribution of time-bin entangled photon pairs 
over 300 km of optical fiber. We realized this by using a high-speed and 
high signal-to-noise ratio entanglement generation/evaluation setup that 
consists of periodically poled lithium niobate waveguides and 
superconducting single photon detectors. The observed two-photon 
interference fringes exhibited a visibility of 84%. We confirmed the 
violation of Bell’s inequality by 2.9 standard deviations. 
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1. Introduction 

The distribution of quantum information over long distances is important if we are to realize 
large-scale quantum communication networks [1]. Several record-setting quantum 
communication experiments have already been reported, including quantum key distribution 
(QKD) over 260 km of fiber [2], entanglement distribution over 144 km in free space [3] and 
over 200 km of fiber [4], and quantum teleportation over 97 km [5] and 144 km [6] in free 
space. Long-distance entanglement distribution is particularly important for quantum 
communications and quantum repeater systems [7–11]. Numerous experiments have been 
reported on entanglement distribution in the 1.5-μm wavelength band (telecom band) over 
optical fiber [4, 12–18]. Although a standard single mode fiber has a reasonable loss of a 0.2 
dB/km, the coincidence count between distributed entangled photon pairs decreases 
exponentially as the transmission distance increases. The distribution distance limitation 
depends on the signal-to-noise ratio of the systems, and so a low-noise experimental setup is 
required for a long-distance entanglement distribution. 

In this paper, we demonstrate the distribution of time-bin entangled photon pairs over 300 
km of optical fiber. We realize this demonstration by using a high-speed and high signal-to-
noise ratio entanglement generation/evaluation setup. We can generate entangled photon pairs 
with low background noise in the 1.5-μm wavelength band by using the spontaneous 
parametric down conversion (SPDC) process in periodically poled lithium niobate (PPLN) 
[19, 20] waveguides with a high-speed pulsed pump source. The superconducting single 
photon detectors (SSPDs) [21] contribute to the highly efficient detection of entangled photon 
pairs with low-noise. After separating the signal and idler photons by 300 km of fiber, we 
observed high-visibility two-photon interference fringes without subtracting accidental 
coincidences. Furthermore, we confirmed the violation of Bell’s inequality in accordance 
with the Clauser, Horne, Shimony, and Holt (CHSH) inequality [22]. 
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2. Time-bin entanglement generation and measurement 

Quantum information encoded in different temporal modes of photon, which is called a time-
bin qubit, is generally used in practical quantum communications over optical fiber [23]. In 
contrast to the polarization state, the relative phase between the temporal modes in a time-bin 
qubit is stable against refractive index and birefringence fluctuations in the optical fiber. 
Time-bin entanglement is generated through the SPDC process in a non-linear crystal pumped 
by temporally separated coherent pulses. To increase the operation frequency so that we can 
use the time domain more efficiently, we generate high-dimensional time-bin entangled 
photon pairs [24] by employing the SPDC process in a PPLN waveguide pumped by 
sequential pulses. For a very low mean photon pair number, the whole state wave function of 
a photon pair can be written approximately as: 
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where |k>z denotes a state in which a single photon is found at the kth time slot in the mode z ( 
= s: signal, i: idler). N is the number of pulses in which the phase coherence of the pump 
pulses is preserved. After spectral separation, the signal and idler photons are launched into 
two different long-distance fibers. We evaluate the degree of entanglement between the signal 
and idler photon pairs by observing two-photon interference in a Franson-type experiment 
[25, 26]. The distributed photons in each channel are measured with an n-bit (1≤ n ≤ N) 
delayed Mach–Zehnder interferometer (MZI) followed by an SSPD. The n-bit delayed MZI 
transforms the |k>z state into the |k>z + exp(iθz)|k + n>z state (unnormalized), where θz is the 
relative phase between the two divided paths in the MZI. Then, Eq. (1) is converted to the 
following equation. 
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where only the terms that contribute to the coincidence counts are extracted without 
normalization for simplicity. Under the condition of N >> n, the coincidence count rate 
between the signal and idler photons is approximately proportional to 1 + Vcos(θs + θi), where 
V is the visibility of the two-photon interference. Consequently, the coincidence count rate 
changes depending on the phases of the MZIs placed in distant locations. 

To confirm the violation of Bell’s inequality, we measure the S value for the CHSH 
inequality [22, 27, 28], |S| ≤ 2 for any local realistic theory, where 

 ( , ) ( , ) ( , ) ( , ).s i s i s i s iS E d d E d d E d d E d d′ ′ ′ ′= + + −  (3) 

dz, d’z (z = s, i) denote arbitrary values of phases θz in interferometers, and E(θs,θi) is defined 
as: 
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Here R(θs, θi) is the coincidence count rate of a two-photon interference measurement when 
we set the phases of the interferometer for the signal and idler photon at θs and θi, 
respectively. The measured value of |S| > 2 indicates the violation of Bell’s inequality. A 
maximum value of |S| = 2√2 is predicted by quantum mechanics. 

3. Experimental setup 

Figure 1 shows the experimental setup. A continuous wave light (1551 nm) from an external-
cavity diode laser was modulated into a sequence of 72-ps pulses at a temporal interval of 500 
ps. The pulses were amplified by an erbium-doped fiber amplifier (EDFA) and filtered by a 
fiber Bragg grating (FBG) to suppress the amplified spontaneous emission noise from the 
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EDFA. The pulses were polarization-controlled and then launched into the first PPLN 
waveguide, where a sequence of pulses was generated at a wavelength of 775.5 nm by the 
second harmonic generation process. The output light from the first PPLN waveguide was 
input into filters that transmitted the 775.5 nm light while eliminating the remaining 1551 nm 
light. The generated pulses (775.5 nm) acted as the pump light for the SPDC in the second 
PPLN waveguide, and high-dimensional time-bin entangled photon pairs were generated 
whose states are shown by Eq. (1). N of the high-dimensional time-bin entangled state was 
estimated from the coherence time and the temporal interval of the pump pulses. The 
coherence time of the laser was approximately 10 μs, and the temporal interval of the pump 
pulses was 500 ps. Thus we estimated N ≈20,000. According to the energy conservation law, 
the frequencies of the pump fp, signal fs, and idler fi had a relationship of fp = fs + fi. The loss in 
the PPLN waveguide for the SPDC process was estimated to be about 3 dB, which includes 
the propagation loss of the waveguide and the coupling loss at the output with single mode 
fiber. The output from the second PPLN waveguide was input into filters that transmitted the 
1.5 μm light while eliminating the remaining 775.5 nm light. The excess loss of this filter was 
0.19 dB for 1551 nm photons. The generated photon pairs were separated into signal (1547 
nm) and idler (1555 nm) photons by a wavelength selective filter. The spectral width of this 
filter was 100 GHz, and its excess loss was 0.69 dB at 1547 nm and 0.61 dB at 1555 nm. 
Then, each photon was transmitted over a 150 km dispersion shifted fiber (DSF). The total 
distance traveled by the separated signal and idler photons was 300 km, and the total loss for 
the entire transmission exceeded 64 dB. Note that the total loss included only the loss of the 
quantum channel (i.e. the DSFs and fiber connections), and did not include the losses of other 
optics components, such as filters and interferometers. The distributed signal and idler 
photons were launched into MZIs fabricated based on planar lightwave circuit (PLC) 
technology. The propagation time difference between the two paths of the MZI was 1 ns, and 
thus it worked as a 2-bit delay for 2 GHz repetition pulses. The temperature and phase of the 
MZI have a simple linear relationship. The phase of the MZI, θz, was tuned by 2π by 
changing the MZI temperature by 0.74 °C. An output port of each MZI was connected to an 
SSPD (SCONTEL) through a polarization controller (PC). The detection efficiencies for the 
signal and idler photons were 15 and 20%, and dark count rates were 10 and 15 Hz, 
respectively. As a single photon detection system that consists of the SSPD and 
discriminators, the jitter and dead time were 50 ps and 50 ns, respectively. Output signals 
from the SSPDs were input into a time interval analyzer (TIA) as the start and stop signals for 
coincidence detection. The time resolution of the TIA was 9.8 ps, and the coincidence counts 
were collected in a 300 ps time window. 
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Fig. 1. Experimental setup for distribution of time-bin entangled photon pairs over 300 km of 
optical fiber. EDFA: Erbium doped fiber amplifier, FBG filter: fiber Bragg grating to suppress 
amplified spontaneous emission from the EDFA, PC: polarization controller, PPLN: 
periodically poled lithium niobate waveguide, PLC MZI: Mach–Zehnder interferometer 
fabricated based on a planar lightwave circuit. 

4. Signal-to-noise evaluation 

In our experimental setup, low-noise entangled photon pairs were generated by the SPDC 
process in the PPLN waveguide, which made it possible to isolate the generated photon pairs 
(1547 and 1555 nm) from the pump light (775.5 nm) efficiently with wavelength filters. The 
low dark count probability of the SSPD of about 1 × 10−9 within the 100 ps time window 
contributed to the low-noise detection of the entangled photon pairs. To evaluate the signal-
to-noise ratio RSN of our entanglement generation/evaluation system, we removed the DSFs 
and PLC-MZIs from the setup and measured the coincidence-to-accidental ratio, which is 
defined by Rc / Racc, where Rc and Racc are coincidence and accidental count rates, 
respectively. The signal-to-noise ratio can be calculated by the following equation. 

 
( )( )
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( )( )

c s i s s i i
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R d d
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R d d

μα α μα μα
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where μ, αz, and dz are the average number of generated photon pairs per pulse, the 
transmittance and the dark count rate for the mode z ( = s: signal, i: idler), respectively. Figure 
2 shows the obtained RSN as a function of μ. The dashed blue line shows the theoretical RSN 
calculated on the assumption of no dark counts. The solid red line shows the RSN calculated by 
Eq. (5) with the experimental parameters. The black squares are the experimental results. We 
used 1 GHz repetition pump pulses, and collected the coincidence counts within a time-
window of 600 ps. The large error bar in the RSN measurement result was because there were 
too few accidental coincidences, thanks to the extremely small dark count rate of the SSPDs. 
For example, at a mean photon number μ = 3 × 10−7, we observed 4608 coincidences at the 
matched time slot in 1.5 hours, while we observed only 21 accidental coincidences in the 
4000 unmatched time slots in the same measurement time. We obtained the maximum RSN 
over 800,000 at μ = 3 × 10−7, which is the highest coincidence-to-accidental ratio yet reported. 
Thus, we confirmed that our setup has a very high signal-to-noise ratio. 
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Fig. 2. Signal-to-noise ratio of experimental setup. The signal-to-noise ratio RSN of our 
entanglement generation/evaluation system was obtained from the coincidence and accidental 
count rates. The error bars were calculated by using the square root of the coincidence and 
accident counts. 

5. Two-photon interference experiment 

We then distributed time-bin entangled photon pairs over 300 km of DSF and observed the 
two-photon interference. First, we fixed θs by setting the temperature of MZI-1 at 15.35 °C 
and swept the temperature of MZI-2 in 0.1 °C steps while measuring the coincidence counts. 
For this measurement, we set the pump power for the SPDC process at 250 μW to give μ = 
0.1. We collected one hour’s worth of data for each temperature setting. The corrected 
coincidence counts, which are raw data without the subtraction of accidental counts, are 
shown by the circles in Fig. 3. The visibility of the fitted curve was 86.1 ± 6.8%. We then 
changed θs with the temperature of MZI-1 at 15.54 °C and observed another fringe (squares), 
whose visibility was 83.7 ± 9.1%. The deviation of some data points, which were larger than 
the errors that take account of the statistical fluctuation, were caused by the fluctuations of the 
setup and the laboratory environment such as variations in room temperature, and the 
experimental fluctuation of various parameters including the pump power, and the detection 
efficiencies. Figure 4 shows the TIA histograms around the coincidence peaks, which 
correspond to the coincidence count data (circles) in Fig. 3 for each MZI temperature setting. 
We collected the coincidence counts were collected within a 300 ps time window over a 
period of one hour. The temporal positions of the coincidence peaks were shifted slowly 
because of the fluctuations in fiber length caused by the unstable room temperature. Thus, we 
had to trace the coincidence peaks by shifting the time window. If we use a lower μ, we need 
a longer measurement time to collect sufficient coincidence counts, and the fluctuation of the 
temporal positions of the coincidence peaks can be larger than 500 ps, which is the time 
interval of the photon pairs in our experiment. Thus we limit the measurement time to an hour 
and set μ at 0.1 so that we can achieve a coincidence count of about 100 counts / hour under 
maximized MZI phase conditions. 

We then performed an S value measurement for the CHSH inequality. First, we searched 
for a phase setting where the coincidence rate was maximized, and we defined these phases as 
θs0 and θi0. We used these phases to decide the measurement parameters in Eq. (3) as ds = θs0, 
d’s = θs0 + π / 2, di = θi0 + π / 4, and d’i = θi0 − π / 4. We obtained 16 values of R(θs, θi) for the 
calculation of the S value over 16 hours. To improve the accuracy of the obtained S value, we 
repeated the same experiments three times with the same measurement parameters. Table 1 
shows the total coincident count for each phase setup and the calculated values of E(θs, θi). 
There were two possible sources of the phase error: the MZI phase uncertainty caused by the 
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finite accuracy of the temperature controller, and the phase drift due to the fluctuation of the 
pump laser frequency. The accuracy of our temperature control was ± 0.01 °C, which resulted 
in an MZI phase error of ± 84 mrad. We also measured the stability of the pump laser 
frequency and obtained a frequency drift of < 570 kHz/hour. This means that the error due to 
the pump frequency drift was < 3.6 mrad/hour, which is much smaller than the MZI phase 
error. In addition, in the S value measurement, we calibrated the phases of θs0 and θi0 every 8 
hours so that we could avoid the accumulation of phase setting uncertainties from the 
frequency drift. Thus we consider that the MZI phase error was dominant in the phase 
measurement error. The estimated errors from the coincidence count statistics and the 
uncertainties of MZI phase settings for each set of measurement data are shown in Table 1. 
As a result, we found that S = 2.41 ± 0.14 leading to the violation of 2.9 standard deviations. 
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Fig. 3. Two-photon interference fringes obtained after 300-km distribution over fiber. Black 
circles and red squares: experimental data when the temperature of MZI-1 was set at 15.35 and 
15.54 °C, respectively. Statistical error bars are shown. The fitted curves were obtained 
without any statistical weighting of the experimental data. 
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Fig. 4. Fluctuations of temporal positions of coincidence peaks in TIA histograms. The 
temporal positions of the coincidence peaks were shifted during the measurement because of 
the fluctuations in fiber length caused by the unstable room temperature. The coincidence 
counts were collected within a 300 ps time window by tracing the coincidence peaks over a 
period of one hour. 
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Table 1. Coincidence counts for each phase setup 

 R(θs, θi) R(θs, θi + π) R(θs + π, θi) R(θs + π, θi + π) E(θs, θi) 

θs = ds, θi = di 158 ± 14.5 44 ± 9.8 27 ± 8.9 163 ± 14.7 0.64 ± 0.074 

θs = ds, θi = d’i 164 ± 14.7 46 ± 9.9 36 ± 9.4 158 ± 14.5 0.59 ± 0.071 

θs = d’s, θi = di 140 ± 13.9 44 ± 9.8 44 ± 9.8 169 ± 14.9 0.56 ± 0.070 

θs = d’s, θi = d’i 37 ± 9.5 167 ± 14.8 168 ± 14.8 41 ± 9.7 -0.62 ± 0.071 

6. Discussion 

Here we discuss possibility of realizing a longer distance entanglement distribution in the 
future. The distribution distance is limited in principle by the signal-to-noise ratio. As long as 
the dark count rate of the SSPD is sufficiently low, it is possible to attempt a longer distance 
entanglement distribution. Actually, the present dark count rate in our experimental setup of 3 
× 10−9 Hz within the 300 ps time window can satisfy the entanglement distribution 
requirement for a distance of 480 km. However, the measurement time is increased 
exponentially as the distribution distance increases. For example, the coincidence count rate 
should be reduced to 1 count per hour in the 400 km distribution by using our experimental 
setup. This means that the CHSH inequality measurement would take more than 66 days. An 
improvement in the single photon detector will help us to overcome this difficult situation. 
The detection efficiency of SSPDs has increased surprisingly quickly in the last several years 
[29]. We believe that the development of SSPDs with a near-unit detection efficiency while 
maintaining a small dark count rate and high timing resolution could be achieved in the near 
future. An SSPD with a quantum efficiency of over 90%, for example, could reduce the time 
needed for a CHSH inequality measurement to 3 days, and the measurement time for each 
phase setting will be over 5 hours. On the other hand, long-term measurement requires a more 
stable experimental setup. In the present experiment, the fibers for both the signal and idler 
photons are placed in the same room (and are thus at the almost same temperature), and 
therefore most of the effects of fiber length fluctuations canceled each other out. 
Nevertheless, we observed fluctuations in the temporal positions of the coincidence peaks, 
which were approximately 250 ps/hour as shown in Fig. 4. With the 400 km distribution, the 
fluctuation of the temporal positions of the coincidence peaks can be larger than 500 ps, 
which is the time slot interval in our experiment. The situation becomes even worse in a field 
test: the fibers are implemented at different temperatures, and so the fluctuations in the 
temporal positions of the coincidence peaks become larger. Therefore, we need to implement 
a scheme to monitor the fiber length fluctuation with a short temporal interval. In short, the 
distribution distance is limited not only by the signal-to-noise ratio, but also by the 
measurement time and the stability of the experimental setup. 

We can apply our entanglement distribution technology to entanglement-based QKD. A 
realistic approach for long distance QKD based on entanglement has been reported [30]. Here 
we estimated the performance of a QKD system based on the Bennett-Brassard-Mermine 
1992 protocol [31] using our current setup based on a model described in [32]. The maximum 
distribution distance was calculated to be 520 km (260 km × 2) with a very low secure key 
rate of 1 × 10−7 bit s−1, which means that we need over 2700 hours to establish 1 key bit, and 
this is obviously useless in real communication. If we assume that we require a minimum 
secure key rate of 1 bit s−1, the maximum distribution distance should be 220 km (110 km × 
2). Thus, although QKD over 300 km in fiber is difficult to achieve with our present 
experimental setup, it will be possible with improved detectors and a more stable 
experimental setup for long measurement times. 
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7. Summary 

We demonstrated the long distance distribution of time-bin entangled photon pairs over 300 
km of optical fiber. For the low-noise generation of the entangled photon pairs, we employed 
the SPDC process in a PPLN waveguide with 2 GHz repetition pump pulses. The low dark 
count rate of the SSPD also helped to improve the signal-to-noise ratio of the system. We 
used a two-photon interference experiment after the long distance distribution to confirm that 
the correlation of the distributed photon pair was still preserved. We also confirmed the 
violation of Bell’s inequality by measuring the value of S = 2.41 ± 0.14 leading to the 
violation of 2.9 standard deviations with a mean photon number μ = 0.1. This experimental 
result for entanglement distribution over 300 km of optical fiber illustrates the potential for 
fiber experiments related to long-distance quantum communication. 
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