

,, , , , , , , , , , , , , , , , and

Measurement of γ rays from the giant resonances in ^{12}C and ^{16}O excited by the (p, p') reaction.

M. S. Reen^{1,10,*}, T. Sudo², I. Ou¹, M. Sakuda¹, D. Fukuda¹, A. Ali¹, Y. Koshio¹, M. Yosoi¹, A. Tamii², N. Aoi², E. Ideguchi², T. Suzuki², T. Yamamoto², C. Iwamoto³, T. Kawabata⁴, S. Adachi⁵, M. Tsumura⁵, M. Murata⁵, T. Furuno⁵, H. Akimune⁶, T. Yano⁷, T. Suzuki⁸, and R. Dhir⁹

¹Physics Department, Okayama University, 700-8530 Okayama, Japan

²Research Center for Nuclear Physics (RCNP), 567-0047 Osaka, Japan

³Faculty of Arts and Science, Kyushu University, 819-0395 Fukuoka, Japan

³Center for Nuclear Study, University Of Tokyo (CNS) RIKEN campus, 351-0198 Saitama, Japan

⁴Department of Physics, Osaka University, 567-0043 Osaka, Japan

⁵Department of Physics, Kyoto University, 606-8502 Kyoto, Japan

⁶Department of Physics, Konan University, 658-8501 Hyogo, Japan

⁷Department of Physics, Kobe University, 657-8501 Hyogo, Japan

⁸Department of Physics, Nihon University, 156-8550 Tokyo, Japan

⁹Department of Physics, SRM University, 603203 Kattankulathur, India and

¹⁰Department of Physics, Akal University, 151302 Punjab, India

Introduction

Oxygen and carbon are the third and fourth most abundant element by mass in the solar system, respectively [1] after hydrogen and helium, and ^{16}O and ^{12}C are their most abundant isotopes. Thus, they have been used as the target materials in the form of water and organic liquid scintillators in many large-scale neutrino experiments designed to detect low-energy neutrinos ($E_\nu < 100$ MeV) [2–4]. These detectors must be massive to compensate for the extremely small neutrino cross section ($\approx 10^{-42}$ cm 2). One of the most interesting applications is the detection of neutrinos from supernova explosion in our Galaxy [5]. The main reaction for neutrino detection is the charged-current (CC) anti-neutrino reaction with a proton ($\bar{\nu}_e + p \rightarrow e^+ + n$), also known as the inverse β -decay reaction (IBD). Of special interest is the neutral-current (NC) neutrino or anti-neutrino inelastic scattering with ^{16}O and ^{12}C , followed by the emission of γ rays that can be observed with the de-

tector [6]. This process is of a special interest because the cross section is significant enough to be detected and is independent of neutrino oscillations.

The first observation of $^{12}\text{C}(\nu, \nu')^{12}\text{C}^*(15.11 \text{ MeV}, 1^+, T = 1)$ reaction with 15.11-MeV γ ray came from the KARMEN experiment [3] with a neutrino beam. The observation was based on the detection of the electromagnetic decay of ^{12}C excited by neutral current interactions. The γ -ray emission probability (Γ_γ/Γ) of excited states of ^{12}C below the proton separation energy ($S_p = 16.0$ MeV) has been well measured [7]. However, the giant resonances appear above the separation energy and they decay mainly hadronically via particle emission (p , n , d and α) to the daughter nuclei. Although they decay mainly to the ground state of the daughter nuclei (^{11}B , ^{11}C , etc.), some of these decays are to excited states. If these excited states are below the particle emission threshold in ^{11}B ($S_{p'} = 11.2$ MeV) or ^{11}C ($S_{p'} = 8.7$ MeV), they decay by γ -ray emissions. Kolbe *et al.* and Langanke *et al.* [8, 9] proposed the above decay mechanism of giant resonances and estimated the NC

*Electronic address: mandeep_phy@auts.ac.in

neutrino and anti-neutrino reaction cross sections for ^{12}C and ^{16}O .

They stressed the importance of measuring NC events, since they are more sensitive to ν_μ and ν_τ neutrinos than to ν_e neutrinos. However, there are no experimental measurements of γ rays from the giant resonances of these nuclei. In this paper, we report the first measurement of γ rays from the excited states of ^{12}C and ^{16}O , including giant resonances in the energy region $E_x = 16\text{--}32$ MeV.

1. Experiment and Results

The experiment (E398) to measure the γ rays emitted from giant resonances in ^{12}C and ^{16}O was carried out at the Research Center for Nuclear Physics (RCNP), Osaka University. An unpolarized proton beam at 392 MeV bombarded a natural carbon (^{nat}C) and cellulose ($\text{C}_6\text{H}_{10}\text{O}_5$) target. The scattered protons were measured around 0° and were analyzed by the high-resolution magnetic spectrometer Grand Raiden (GR) [10–12]. The γ rays were measured in coincidence with the scattered protons using a γ -ray detector made from an array of 5×5 NaI(Tl) counters. The details of the experimental setup are described in Ref. [13].

We measured the double differential cross section ($d^2\sigma/dE_x d\Omega$) for both $^{12}\text{C}(p,p')$ and $^{16}\text{O}(p,p')$ inelastic reaction at 392 MeV and 0° for the energy range $E_x = 7\text{--}32$ MeV.

For the measurements of γ rays from the giant resonances, the absolute values of the γ -ray emission probability $R_\gamma(E_x)$ and the response functions were verified using in-situ γ rays (15.1 and 6.9 MeV) with an accuracy of $\pm 5\%$ during the experiment [13]. This calibration made it possible to measure $R_\gamma(E_x)$ reliably as a function of the excitation energy of ^{12}C and ^{16}O in the energy range $E_x = 16\text{--}32$ MeV. We found that the measured value of $R_\gamma(E_x)$ starts from zero at $E_x = 16$ MeV and increases to $53.3 \pm 0.4 \pm 3.9\%$ at $E_x = 27$ MeV and begins to decrease with further increase in E_x . For ^{16}O , the measured value of $R_\gamma(E_x)$ starts from $21.1 \pm 0.6 \pm 2.0\%$ at $E_x = 16$ MeV and increases to $59.8 \pm 0.9 \pm 5.9\%$ at $E_x = 25$ MeV, then decreases. We compared the mea-

surements of γ -ray emission probability with a statistical model calculation based on Hauser-Feshbach formalism [14, 15] and observed a 30–40% lower γ -ray emission probability in the energy region $E_x = 20\text{--}24$ MeV than that predicted by the calculation.

The present results are very important for understanding the γ -ray emission probability of the giant resonances of the typical light nuclei (^{12}C and ^{16}O) and for the neutrino detection in liquid scintillator and water based detectors through neutral-current interactions.

References

- [1] E. Anders and N. Grevesse, Geochim. Cosmochim. Acta **53**, 197 (1988).
- [2] A. Suzuki, Nucl. Phys. B (Proc. Suppl.) **77**, 171 (1999).
- [3] B. Bodmann *et al.*, Phys. Lett. B **267**, 321 (1991).
- [4] K. Hirata *et al.*, (Kamiokande Collab.), Phys. Rev. Lett. **58**, 1490 (1987).
- [5] H. A. Bethe, Rev. Mod. Phys. **62**, 801 (1990).
- [6] J. S. O'Connell, T. W. Donnelly, and J. D. Walecka, Phys. Rev. C **6**, 719 (1972).
- [7] Table of Isotopes, 1999 Update with CD-ROM, edited by R. B. Firestone, C. M. Baglin, and S. Y. F. Chu (Wiley, New York, 1999), 8th ed.
- [8] E. Kolbe, K. Langanke, S. Krewald, and F. K. Thielemann, Nucl. Phys. **A540**, 599 (1992).
- [9] K. Langanke, P. Vogel, and E. Kolbe, Phys. Rev. Lett. **76**, 2629 (1996).
- [10] M. Fujiwara *et al.*, Nucl. Instrum. Meth. A **422**, 484 (1999).
- [11] P. von Neumann-Cosel and A. Tamii, Eur. Phys. J. A **55**, 110 (2019).
- [12] A. Tamii *et al.*, Nucl. Instrum. Meth. A **605**, 326 (2009).
- [13] M. S. Reen *et al.*, Phys. Rev. C **100**, 024615 (2019).
- [14] T. Rauscher, F. K. Thielemann, and K. L. Kratz *et al.*, Phys. Rev. C **56**, 1613 (1997).
- [15] F. Puhlhofer, Nucl. Phys. **A280**, 267 (1977).