
 SLAC-PUB-8906
 July, 2001

Presented at the 2001 Particle Accelerator Conference (PAC 2001)
Chicago, Illinois, June 18-22, 2001

INTERACTIVE ORBIT CONTROL IN MATLAB 1

J. Corbett and A. Terebilo, Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA

1
Work supported by Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

Abstract
Recent advances in steering algorithms have made it
possible to accurately control electron beam position in
storage rings, implement fast and slow feedback systems,
and in some cases detect hardware errors. In practice,
however, the program operator would like to reduce the
overhead of selecting variables and constraints and to
easily view the data. To simplify the process, we
constructed an interactive orbit control program in
MATLAB [1]. The program modules are easily adapted to
new algorithms or beam lines. This paper describes the
program functionality and architecture.

1 INTRODUCTION
SSRL will soon replace the SPEAR 2 storage ring with

a new version, SPEAR 3 [2]. The move invalidates most
of the on-line accelerator application programs at SSRL,
including a FORTRAN orbit control program using SVD
[3]. Rather than adapt the old software to the new
machine, we decided to rewrite the orbit control program
in MATLAB to take advantage of easy-to-use
mathematical and graphics routines [1]. Overall, the pure-
MATLAB re-write reduced programming effort,
streamlined program modules and increased operational
functionality. The new program is EPICS compatible,
interfaces to an Accelerator Toolbox simulation package
[4,5] and can be adapted to different machines. The
program structure is modular, provides easy access to data
structures (but not object-oriented!) and allows pieces of
the code to be used in future applications. The result is a
flexible orbit control program with a graphical interface
that is extensible to new control applications.

2 GRAPHICAL INTERFACE

The graphical interface is designed to provide easy
manipulation of the electrion beam orbit. The main
operator actions (selection of BPM, corrector and
eigenvectors) are performed graphically. To make orbit
’bumps’ for instance, the operator simply ’drags’ target
BPMs to the desired position in the graphical interface,
visually inspects the solution and applies correctors when
ready. Command line control is optional.

2.1 General Layout
Modeled in part after the SPEAR 2 program ORBIT

[6], the orbit control interface for SPEAR 3 displays the

electron beam trajectory and corrector currents in a single
graphics window (Fig. 1). For convenience, the spectrum
of singular values from the daigonalized response matrix
is also displayed. Action commands (file i/o, corrector
reset, display mode, etc) are carried out through simple
push button sequences.

2.2 Orbit Display

The orbit display (Fig. 1, top graph) shows a) reference
(red), b) measured (blue), c) desired (red-dash) and d)
predicted (green) electron beam trajectories. Color-coded
circles indicate individual BPMs. BPMs can be toggled
on/off graphically to control which BPMs serve as fitting
constraints. Coefficients can also be entered for weighted-
SVD control. Each time a BPM icon is selected, orbit
information is displayed to the screen. A complete listing
of all BPM related parameters is available via the BPM
’Show State’ button. Columns of the response matrix and
individual orbit-eigenvectors can be displayed on request.
Control of plotting scales is achieved through the top-
level menu bar. By graphically moving BPM icons in the
’drag’ mode, the operator can manipulate the desired orbit
to a new orbit position. Subsequent fitting calculations
steer the beam toward the desired position.

2.3 Corrector Display
The corrector display (Fig. 1, middle graph) shows a)

measured (green) and b) predicted (red) magnet values in
bar plot form. Corrector icons can be graphically toggled
on/off to control which magnets act as variables in the
fitting algorithm. Individual magnet weighting also
influences the fit. When a corrector icon is selected,
magnet information is displayed to the screen. Activating
the ’Show Response’ button displays the BPM response to
the individual corrector. A complete listing of all corrector
related variables is available via the ’Show State’ button.
’Save’, ’Restore’ and ’Assign Knob’ pushbuttons control
corrector magnet patterns. With ’Assign Knob’, the
operator activates a variable-amplitude slider which can
be used for closed-bump manipulation. Control of plot
scales is available through the top-level menu bar.

2.4 Singular Value Display
The orbit control algorithm for SPEAR 3 will be based

on weighted Singular Value Decomposition of the
response matrix [7]. The spectrum of singular values is
plotted in the program interface to simplify choice

Figure 1: Orbit control interface in MATLAB..

of cut-off value. By graphically selecting the number of
eigenvectors, the operator immediately sees the predicted
orbit correction and predicted corrector values in their
respective plots. Orbit perturbations associated with
individual eigenvectors can be viewed by activating the
’Show Eigenvector’ pushbutton. When parameters in the
fitting matrix are changed (BPM or corrector selection,
weights, etc) the program automatically re-inverts the
matrix, backsubstitutes, and displays the result. When the
’RF’ button is selected, the dispersion component of the
orbit is removed prior to backsubstitution.

 2.5 Graphical Action Control Elements
Graphical action control elements include push button

with callbacks to refresh orbit, refresh correctors, switch
planes, view orbit in absolute/relative mode, apply
correctors, scale bumps, etc. A top-level menu bar also
allows the operator to scale axes, read and write files and
measure response matrices. The menu bar is easily
expanded to perform auxiliary computations or launch
new application programs.

3 PROGRAM STRUCTURE
The structure of the orbit program is arranged to

accomplish several objectives:

1. Separate mathematical, graphical, data i/o and
 file i/o routines

2. Separate BPM, Corrector and SVD graphic routines

3. Provide compact data structures for use outside of
 the graphics environment

The first two objectives address basic programming

discipline: the MATLAB code is arranged in folders with
software modules that control graphics, respond to BPM
and corrector manipulations and carry out SVD
operations, respectively. To reduce interface complexity,
graphical elements can be removed or callbacks disabled
when the graphics window is initialized. Orbit correction
can also be run in the background with no graphics, or
program modules normally activated by GUI callbacks
can be activated from the command prompt.

The third objective (compact data structures) is
accomplished by defining several global data structures:

BPM, COR, MAG, RSP, SYS

The BPM, COR and MAG structures contain fields for

element names, on/off for fitting, reference value, etc. The
BPM structure has about 30 fields with BPM(1) and
BPM(2) containing horizontal and vertical data,
respectively. RSP contains response matrix data. The list
of fields in each structure is easily extended. From the

MATLAB command prompt, for instance, the operator
could create a ’.beta’ field to plot betafunctions at each
BPM. The data structures can also be used to develop new
orbit control algorithms that utilize the MATLAB
Accelerator Toolbox [4,5], utilize the graphical display
options and/or connect to the on-line machine. The SYS
structure contains high level control parameters for the
orbit control system.

File handling is controlled through top-level menu bars.
Read/write options are available for the BPMs, correctors,
response matrices and to save the system state for recall at
a future time. At present, we utilize file formats from the
SPEAR 2 orbit feedback program for system
compatibility and testing.

4 DEVICE CONTROL
Access to the accelerator hardware is handled through

machine-specific routines to acquire and control database
parameters (BPMs, correctors, main magnets, rf
frequency, etc). Depending on whether the program is in
the simulate or on-line mode, the ’GET’ and ’SET’
commands communicate with the MATLAB Accelerator
Toolbox (simulation) or with actual hardware via EPICS
Channel Access (CA) (on-line). Details of the Accelerator
Toolbox are described in [4,5]. For the online mode,
MATLAB compatible CA routines have been compiled
into a Channel Access toolbox (MCA) [8]. In this case,
the MATLAB application acts as a CA client and
communicates with a CA server on the central control
computer. The server maps the SPEAR parameter
database to EPICS process variables [9].

One requirement for robust control applications like the
orbit feedback program is to perform sequences of
operations in the background. A sequencer waits for a
specified period of time or until new data is available
before acting on the data. Two examples of sequenced
operations are response matrix measurement and orbit
correction feedback. At the same time, the program must
respond to the asynchronous actions from the user such as
aborting feedback. In a non-real-time, single-threaded
environment such as MATLAB, it is not straightforward
to satisfy this requirement. We resolved this problem by
using (Windows) system timer calls within MATLAB.2

5 SIMULATION MODE
The simulation mode utilizes the Accelerator Toolbox

(AT) for the machine model. AT provides a wide range of
simulation options ranging from 6-D symplectic tracking
to closed orbit calculations and coupled optics. The
computationally intensive components of the AT software
are written in native c-code compiled into a dynamic link
library to execute quickly [4,5]. By issuing GET/SET
commands in the simulation mode, the program reads
BPM values (closed orbits), adjusts corrector values and

2
This functionality is a part of the MCA Toolbox [9]. It extends the

capabilities of MATLAB to create a pseudo-multitasking, pseudo-real-
time environment in which multiple MATLAB applications can run and
exchange data through the MATLAB workspace

re-computes the closed orbit in the AT model. Main
magnet control is also possible (dipoles, quadrupoles,
etc). By running background software to perturb element
values in the accelerator model, realistic orbit feedback
control can be simulated without utilizing beam time.

6 SUMMARY & FUTURE WORK
A graphical orbit control program has been written in
MATLAB for SPEAR 3 applications. The program
structure is modular to permit rapid development of new
algorithms or expansion of code functionality. Orbit
control, for instance, can be accomplished either through
the graphical interface or through external commands.
The main data structures can be accessed as global
variables to use at the command prompt or in other
application programs. The basic orbit control functions
have been tested on-line with SPEAR 2. The program
will be adapted to SPEAR 3 in the simulation mode with
the MATLAB Accelerator Toolbox prior to on-line
deployment in 2003. Adaptation to new machines requires
new element definitions in the model, redefining file i/o
formats and linking to the new database protocol. Future
work includes adding dispersion correction, extending the
orbit correction to include x-ray BPMs, adding pre-
defined closed bump features, corrector ironing and
developing ’smart’ orbit correction algorithms.

ACKNOWLEDGEMENTS
The authors would like to thank Posin Chen, Damian
Hamilton and Harvey Rarback for help with this work. A
good example of an accelerator simulaor which uses
Windows GUI programming and features a multi-task
interface display is TRACY-V [10].

7 REFERENCES
[1] MatLab, The MathWorks, Natick, MA
[2] J. Corbett, et al, "SPEAR 3 Upgrade Project: A Status

Report", these proceedings, or "SPEAR 3 Design Report",
SLAC Pubs, 1999

[3] W.J. Corbett and D. Keeley, "Orbit control on SPEAR: A
Progress Report", AIP Conference Proceedings 315, Upton,
NY 1993

[4] A. Terebilo, "Accelerator Toolbox for MATLAB", SLAC-
PUB-8732, February, 2001. www-ssrl.slac.stanford.edu/AT/

[5] A. Terebilo, "Accelerator Modeling with MATLAB
Accelerator Toolbox", these proceedings

[6] M. Donald, et al, "Some Schemes for Online Correction of
the Closed Orbit, Dispersion and Beta Functions in PEP",
1981 IEEE PAC, Wash. D.C., SLAC-PUB-2666

[7] A. Friedmann and E. Bozoki, "Eigenvector Method for
Optimized Orbit Correction", AIP Conference Proceedings
315, Upton, NY 1993

[8] A. Terebilo, "Channel Access Toolbox for MATLAB" to be
presented at ICALEPCS 2001, San Jose, CA.

[9] R. Rarback, "Old Wine in New Bottles – The SPEAR
Control System Upgrade", 1999 ICALEPCS, Trieste, Italy

[10] H.Nishimura, "Accelerator Modeling and Control Using
Delphi on Windows NT", IWCSMSA96, KEK Proceedings
97-19, 174

