

ATL-PHYS-PUB-2011-11

CMS NOTE-2011/005

Procedure for the LHC Higgs boson search combination in Summer 2011

The ATLAS Collaboration

The CMS Collaboration

The LHC Higgs Combination Group

August 18, 2011

Abstract

In this note, we report the results of the technical combination exercises conducted by the group during Winter-Spring 2011 and summarize the decisions taken in preparation for the statistical combination of the Standard Model Higgs boson searches at the LHC. The procedure to be used for the combination in Summer 2011 is explicitly detailed to avoid potential biases from decisions taken after the data have been collected.

Contents

1	Introduction	3
2	Limit setting procedure for the summer 2011	3
2.1	Observed limits	4
2.2	Expected limits	6
3	Quantifying an excess of events for summer 2011	7
3.1	Fixed Higgs boson mass m_H	7
3.2	Estimating the look-elsewhere effect	8
4	Higgs mass points	11
5	Systematic Uncertainties	13
5.1	Systematic uncertainty probability density functions	13
5.2	Uncertainties correlated between experiments	16
5.2.1	Naming convention	16
5.2.2	Total cross sections	16
5.2.3	Acceptance uncertainties	17
5.2.4	Cross section times acceptance uncertainties for $gg \rightarrow H + 0/1/2\text{-jets}$	18
5.2.5	Uncertainties in modelling underlying event and parton showering .	18
5.2.6	Instrumental uncertainties	18
6	Format of presenting results	20
7	Technical combination exercises (validation and synchronisation)	24
7.1	$H \rightarrow WW \rightarrow \ell\ell\nu\nu + 0\text{jets}$	26
7.2	$H \rightarrow WW \rightarrow \ell\ell\nu\nu + 0/1/2 - jets$	29
7.3	$(H \rightarrow WW) + (H \rightarrow \gamma\gamma) + (H \rightarrow ZZ \rightarrow 4\ell)$	31
8	Summary	33
A	Brief overview of statistical methods	34
A.1	Limits	34
A.1.1	Bayesian approach	35
A.1.2	Frequentist approach and its modifications	35
A.1.3	Profile Likelihood Asymptotic Approximation	38
A.2	Quantifying an excess of events	40
B	Correlations of PDF-associated uncertainties	41
C	Systematic errors in exclusive 0/1/2-jet bins for $gg \rightarrow H$ process	44
D	Technical tools	48

1 Introduction

2 The discovery of the mechanism for electroweak symmetry breaking is one of the keystones
3 of the Large Hadron Collider (LHC) physics program. By summer of 2011, ATLAS [1]
4 and CMS [2] will have results with over 1 fb^{-1} of data that should allow LHC to make very
5 strong statements on the Standard Model (SM) Higgs boson in a wide mass range [3, 4].

6 In December of 2010, the LHC Higgs Combination Group (LHC-HCG) was formed
7 with the aim of preparing for a combination of ATLAS and CMS SM Higgs search results.
8 This report summarises the efforts of the LHC-HCG over the last few months towards
9 this goal. The outline of the report is as follows:

- 10 • Sections 2 and 3 define the procedures for characterising exclusion of a signal or an
11 observation of excesses to be used for the combination in summer 2011.
- 12 • Section 4 defines Higgs mass points for which the ATLAS+CMS combination is
13 expected to be performed.
- 14 • Then, in Section 5, we summarise which systematic errors will be correlated between
15 ATLAS and CMS and how the errors will be modelled in general.
- 16 • In Section 6, we outline the expected format of presenting the final results.
- 17 • In Section 7, we document the results of the technical exercises with toy analysis
18 models (synchronisation and validation).
- 19 • After giving a summary, we make a few closing remarks on the overall experience
20 of the last six months and an outlook for the future.

21 2 Limit setting procedure for the summer 2011

22 In this section, we summarise the arrived-at procedure for computing exclusion limits,
23 which is based on the modified frequentist method, often referred to as CL_s [5–10]. To
24 fully define the method, we specify the choice of the test statistic and how we treat
25 nuisance parameters in the construction of the test statistic and in generating pseudo-
26 data. To put the method in a broader context, a brief overview of statistical methods
27 used in high energy physics is given in Appendix A.

28 In this section, the expected SM Higgs boson event yields will be generically denoted
29 as s , backgrounds—as b . These will stand for event counts in one or multiple bins or for
30 unbinned probability density functions, whichever approach is used in an analysis. It has
31 become customary to express null results of the SM-like Higgs searches as a limit on a
32 *signal strength modifier* μ (also referred to as R) that is taken to change the SM Higgs
33 boson cross sections of all production mechanisms by exactly the same scale μ . Note that
34 the decay branching ratios are assumed to be unchanged.

35 Predictions for both signal and background yields, prior to the scrutiny of the *observed*
36 *data entering the statistical analysis*, are subject to multiple uncertainties that are handled
37 by introducing nuisance parameters θ , so that signal and background expectations become
38 functions of the nuisance parameters: $s(\theta)$ and $b(\theta)$.

39 All sources of uncertainties are taken to be either 100%-correlated (positively or nega-
 40 tively) or uncorrelated (independent). Partially correlated errors are either broken down
 41 to sub-components that can be said to be either 100% correlated or uncorrelated, or
 42 declared to be 100% / 0% correlated, whichever is believed to be appropriate or more
 43 conservative. This allows us to include all constraints in the likelihood functions in a
 44 clean factorised form.

45 The systematic error *pdfs* $\rho(\theta|\tilde{\theta})$, where $\tilde{\theta}$ is the default value of the nuisance par-
 46 ameter, reflect our degree of belief on what the true value of θ might be. Both the form of
 47 these *pdfs* to be used in the combination and the question of which errors are to be taken
 48 as correlated between ATLAS and CMS are discussed in detail in Section 5.

49 Next, we take a conceptual step to re-interpret systematic error *pdfs* $\rho(\theta|\tilde{\theta})$ as posteri-
 50 ors arising from some real or imaginary measurements $\tilde{\theta}$, as given by the Bayes' theorem:

51

$$\rho(\theta|\tilde{\theta}) \sim p(\tilde{\theta}|\theta) \cdot \pi_\theta(\theta), \quad (1)$$

52 where $\pi_\theta(\theta)$ functions are hyper-priors for those “measurements”. As will be shown later,
 53 the *pdfs* we chose to work with (normal, log-normal, gamma distribution) can be easily
 54 re-formulated in such a context, while keeping $\pi_\theta(\theta)$ flat.

55 Such a shift in the point of view allows one to represent all systematic errors in a
 56 frequentist context. By writing a systematic error *pdf* as the posterior $\rho(\theta|\tilde{\theta})$ constructed
 57 from a fictional auxiliary “measurement”, the *pdf* $p(\tilde{\theta}|\theta)$ for that auxiliary measurement
 58 can be used to constrain the likelihood of the main measurement in a frequentist calcu-
 59 lation. Furthermore, the auxiliary “measurement” *pdf* $p(\tilde{\theta}|\theta)$ can be used to construct
 60 sampling distributions of the test statistic following the pure frequentist language (in con-
 61 trast to the Bayesian-frequentist hybrid used at LEP and Tevatron—see Appendix A for
 62 details).

63 The following enumerated list specifies explicitly the entire procedure.

64 2.1 Observed limits

65 1. Construct the likelihood function $\mathcal{L}(\text{data}|\mu, \theta)$

$$\mathcal{L}(\text{data}|\mu, \theta) = \text{Poisson}(\text{data}|\mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta}|\theta). \quad (2)$$

66 Here “data” represents either the actual experimental *observation* or *pseudo-data*
 67 used to construct sampling distributions to be discussed further below. The pa-
 68 rameter μ is the signal strength modifier and θ represents the full suite of nuisance
 69 parameters.

70 $\text{Poisson}(\text{data}|\mu s + b)$ stands either for a product of Poisson probabilities to observe
 71 n_i events in bins i :

$$\prod_i \frac{(\mu s_i + b_i)^{n_i}}{n_i!} e^{-\mu s_i - b_i}, \quad (3)$$

72 or for an unbinned likelihood over k events in the data sample:

$$k^{-1} \prod_i (\mu S f_s(x_i) + B f_b(x_i)) \cdot e^{-(\mu S + B)}. \quad (4)$$

In the latter equation, $f_s(x)$ and $f_b(x)$ are *pdfs* of signal and background of some observable(s) x , while S and B are total event rates expected for signal and backgrounds.

2. To compare the compatibility of the *data* with the *background-only* and *signal+background* hypotheses, where the signal is allowed to be scaled by some factor μ , we construct the test statistic \tilde{q}_μ [11] based on the profile likelihood ratio:

$$\tilde{q}_\mu = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})}, \quad \text{with a constraint } 0 \leq \hat{\mu} \leq \mu \quad (5)$$

where $\hat{\theta}_\mu$ refers to the conditional maximum likelihood estimators of θ , given the signal strength parameter μ and “data” that, as before, may refer to the actual experimental observation or pseudo-data (toys). The pair of parameter estimators $\hat{\mu}$ and $\hat{\theta}$ correspond to the global maximum of the likelihood.

The lower constraint $0 \leq \hat{\mu}$ is dictated by physics (signal rate is positive), while the upper constraint $\hat{\mu} \leq \mu$ is imposed by hand in order to guarantee a one-sided (not detached from zero) confidence interval. Physics-wise, this means that upward fluctuations of the data such that $\hat{\mu} > \mu$ are not considered as evidence against the signal hypothesis, namely a signal with strength μ .

Note that this definition of the test statistic differs from what has been used at LEP (where “profiling” of systematic errors was not used) and at Tevatron (where systematic errors were profiled, but μ in the denominator was fixed at zero). See Appendix A for details.

3. Find the *observed* value of the test statistic $\tilde{q}_\mu^{\text{obs}}$ for the given signal strength modifier μ under test.
4. Find values of the nuisance parameters $\hat{\theta}_0^{\text{obs}}$ and $\hat{\theta}_\mu^{\text{obs}}$ best describing the experimentally *observed* data (i.e. maximising the likelihood as given in Eq. 2), for the *background-only* and *signal+background* hypotheses, respectively.
5. Generate toy Monte Carlo pseudo-data to construct *pdfs* $f(\tilde{q}_\mu|\mu, \hat{\theta}_\mu^{\text{obs}})$ and $f(\tilde{q}_\mu|0, \hat{\theta}_0^{\text{obs}})$ assuming a signal with strength μ in the *signal+background* hypothesis and for the *background-only* hypothesis ($\mu = 0$). These distributions are shown in Fig. 1. Note, that for the purposes of generating a *pseudo-dataset*, the nuisance parameters are fixed to the values $\hat{\theta}_\mu^{\text{obs}}$ or $\hat{\theta}_0^{\text{obs}}$ obtained by fitting the observed data, but are allowed to float in fits needed to evaluate the test statistic. This way, in which the nuisance parameters are fixed to their maximum likelihood estimates, has good coverage properties [12].
6. Having constructed $f(\tilde{q}_\mu|\mu, \hat{\theta}_\mu^{\text{obs}})$ and $f(\tilde{q}_\mu|0, \hat{\theta}_0^{\text{obs}})$ distributions, we define two *p*-values to be associated with the actual observation for the *signal+background* and *background-only* hypotheses, p_μ and p_b :

$$p_\mu = P(\tilde{q}_\mu \geq \tilde{q}_\mu^{\text{obs}} \mid \text{signal+background}) = \int_{\tilde{q}_\mu^{\text{obs}}}^{\infty} f(\tilde{q}_\mu|\mu, \hat{\theta}_\mu^{\text{obs}}) d\tilde{q}_\mu, \quad (6)$$

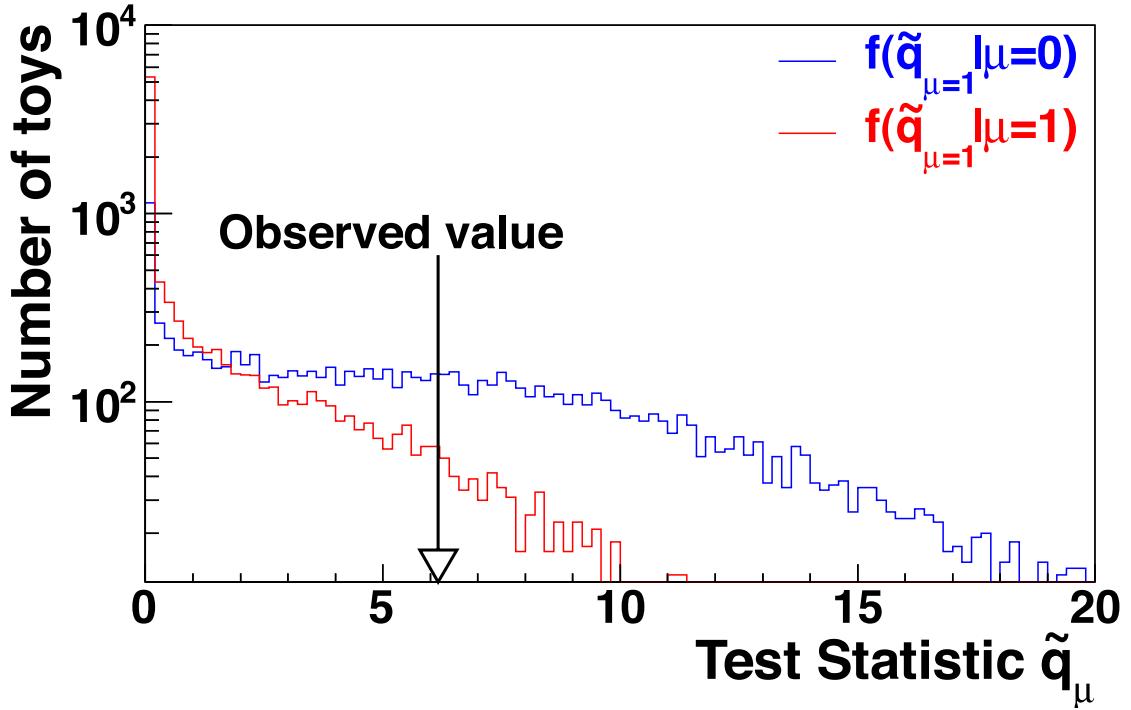


Figure 1: Test statistic distributions for ensembles of pseudo-data generated for *signal+background* and *background-only* hypotheses. See the text for definitions of the test statistic and methodology of generating pseudo-data.

108

$$1 - p_b = P(\tilde{q}_\mu \geq \tilde{q}_\mu^{\text{obs}} \mid \text{background-only}) = \int_{q_0^{\text{obs}}}^{\infty} f(\tilde{q}_\mu | 0, \hat{\theta}_0^{\text{obs}}) d\tilde{q}_\mu, \quad (7)$$

109 and calculate $CL_s(\mu)$ as a ratio of these two probabilities ¹

$$CL_s(\mu) = \frac{p_\mu}{1 - p_b} \quad (8)$$

110 7. If, for $\mu = 1$, $CL_s \leq \alpha$, we would state that the SM Higgs boson is excluded
 111 with $(1 - \alpha)$ CL_s confidence level (C.L.). It is known that the CL_s method gives
 112 conservative limits, i.e. the actual confidence level is higher than $(1 - \alpha)$. See
 113 Appendix A for more details.

114 8. To quote the 95% Confidence Level upper limit on μ , to be further denoted as
 115 $\mu^{95\%CL}$, we adjust μ until we reach $CL_s = 0.05$.

116 **2.2 Expected limits**

117 The most straightforward way for defining the expected median upper-limit and $\pm 1\sigma$ and
 118 $\pm 2\sigma$ bands for the *background-only* hypothesis is to generate a large set of background-

¹Note that we define p_b as $p_b = P(\tilde{q}_\mu < \tilde{q}_\mu^{\text{obs}} \mid \text{background-only})$, excluding the point $\tilde{q}_\mu = \tilde{q}_\mu^{\text{obs}}$. With these definitions one can identify p_μ with CL_{s+b} and p_b with $1 - CL_b$.

119 only pseudo-data and calculate CL_s and $\mu^{95\%CL}$ for each of them, as if they were real data
 120 (Fig. 2 (left)). Then, one can build a cumulative probability distribution of results by
 121 starting integration from the side corresponding to low event yields (Fig. 2 (right)). The
 122 point at which the cumulative probability distribution crosses the quantile of 50% is the
 123 median expected value. The $\pm 1\sigma$ (68%) band is defined by the crossings of the 16% and
 124 84% quantiles. Crossings at 2.5% and 97.5% define the $\pm 2\sigma$ (95%) band.

125 Despite being logically very straightforward, this prescription is not too practical from
 126 the computational point of view due to the high CPU demand. If N is the number of
 127 “toys” being generated in the internal loop of calculations of the desired quantity and
 128 M is a number of pseudo-data sets for which such computation is performed, then the
 129 number of times the likelihoods would have to be evaluated in such a linear procedure is
 130 $N \cdot M$.

131 To save on the CPU consumption, we use the fact that the distributions of the test
 132 statistic for a given μ do not depend on the pseudo-data, so they can be computed only
 133 once. The computation of the p-values for each pseudo-data then requires the test statistic
 134 to be evaluated only once for each trial value of μ , and the total number of evaluations is
 135 proportional to $N + M$ instead of $N \cdot M$.

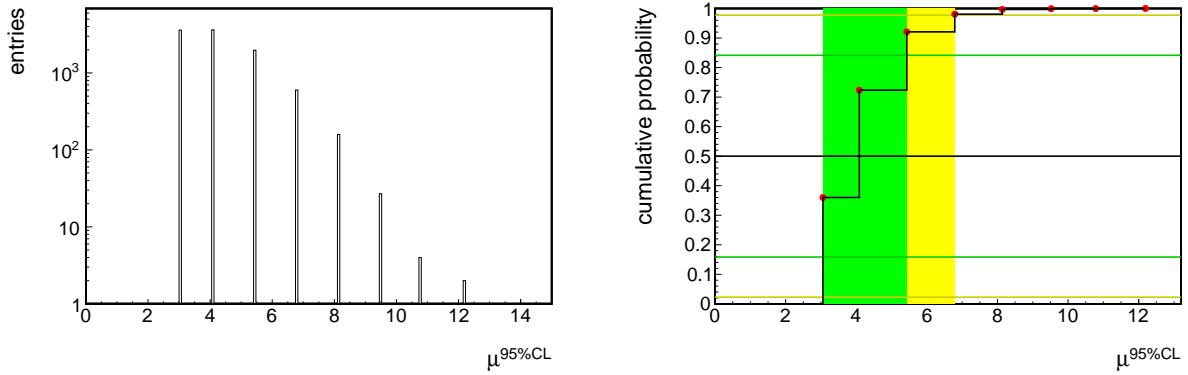


Figure 2: (Left) An example of differential distribution of possible limits on μ for the *background-only* hypothesis ($s = 1$, $b = 1$, no systematic errors). (Right) Cumulative probability distribution of the plot on the left with 2.5%, 16%, 50%, 84%, and 97.5% quantiles (horizontal lines) defining the median expected limit as well as the $\pm 1\sigma$ (68%) and $\pm 2\sigma$ (95%) bands for the expected value of μ for the *background-only* hypothesis.

136 3 Quantifying an excess of events for summer 2011

137 3.1 Fixed Higgs boson mass m_H

138 The presence of the signal is quantified by the *background-only* p-value, i.e. the probability
 139 for the background to fluctuate and give an excess of events as large or larger than the
 140 observed one. As before, this requires defining a test statistic and the construction of its
 141 sampling distribution. For a given Higgs boson mass hypothesis m_H , the test statistic

142 used is q_0 :

$$q_0 = -2 \ln \frac{\mathcal{L}(\text{data}|0, \hat{\theta}_0)}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})} \quad \text{and } \hat{\mu} \geq 0. \quad (9)$$

143 The constraint $\hat{\mu} \geq 0$ gives an accumulation of the test statistic at zero for events
 144 with downward fluctuations, since we are not interested in interpreting a deficit of events
 145 with respect to the expected background on an equal footing with an excess. Following
 146 the frequentist convention for treatment of nuisance parameters as discussed in Section 2,
 147 we build the distribution $f(q_0|0, \hat{\theta}_0^{\text{obs}})$ by generating pseudo-data for nuisance parameters
 148 around $\hat{\theta}_0^{\text{obs}}$ and event counts following Poisson probabilities under the assumption of the
 149 *background-only* hypotheses. An example of such a q_0 distribution is shown in Fig. 3. From
 150 such a distribution, one can evaluate the p -value corresponding to a given experimental
 151 observation q_0^{obs} as follows:

$$p_0 = P(q_0 \geq q_0^{\text{obs}}) = \int_{q_0^{\text{obs}}}^{\infty} f(q_0|0, \hat{\theta}_0^{\text{obs}}) dq_0. \quad (10)$$

152 To convert the p -value into a significance Z , we adopt the convention of a “one-sided
 153 Gaussian tail”:

$$p = \int_Z^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx = \frac{1}{2} P_{\chi_1^2}(Z^2), \quad (11)$$

154 where, $P_{\chi_1^2}$ stands for survival function of χ^2 for one degree of freedom.

155 The 5σ significance ($Z = 5$) would correspond in this case to $p_b = 2.8 \times 10^{-7}$.
 156 Evaluation of such low probabilities may become impractical in terms of the CPU demand.
 157 The solid line in Fig. 3 is the χ^2 distribution for one degree of freedom. One can see that,
 158 by simply relying on the asymptotic behaviour of the likelihood ratio test statistic q_0 ,
 159 a fair *estimate* of p -values (and corresponding significances) can be obtained from the
 160 observed value q_0^{obs} itself, without having to generate pseudo-data ²:

$$p^{\text{estimate}} = \frac{1}{2} \left[1 - \text{erf} \left(\sqrt{q_0^{\text{obs}}/2} \right) \right]. \quad (12)$$

161 The p -value discussed above is evaluated at a fixed m_H and can be referred to as a
 162 *local* p -value. Since we test the *background-only* hypothesis many times as we scan m_H ,
 163 we must take into account this dilution effect associated with the multiple testing, also
 164 known as a trial factor or look-elsewhere effect.

165

166 3.2 Estimating the look-elsewhere effect

167 In the Higgs boson search, the Higgs boson mass parameter m_H is undefined for the
 168 *background-only* hypothesis, and therefore the standard regularity conditions of Wilks’

²In practice, it is known that such an asymptotic behaviour works very well even for cases with very few expected events.

169 theorem [13] do not apply. That is one cannot construct a unique test statistic en-
 170 compassing all possible signals and having asymptotic χ^2 -behaviour. Hence, specialised
 171 methods are required for quantifying the compatibility of a given observation with the
 172 *background-only* hypothesis.

173 The *global* test statistic to be associated with the search in some broad mass range
 174 can be written as follows:

$$q_0(\hat{m}_H) = \max_{m_H} q_0(m_H). \quad (13)$$

175 In the asymptotic regime and for very small *p*-values, a procedure exists and is well
 176 described in reference [14] that is largely based on Davies' result [15]. Following these
 177 references, the *p*-value of the global test statistic can be written as follows:

$$p_b^{global} = P(q_0(\hat{m}_H) > u) \leq \langle N_u \rangle + \frac{1}{2} P_{\chi^2_1}(u) \quad (14)$$

178 where $\langle N_u \rangle$ is the average number of up-crossings of the likelihood ratio scan $q_0(m_H)$ at
 179 a level u . The definition of up-crossings is illustrated in Fig. 4. The ratio of *global* and
 180 *local* *p*-values is often referred to as the *trial factor*.

181 The average number of up-crossings at two levels u and u_0 are related via the following
 182 formula

$$\langle N_u \rangle = \langle N_{u_0} \rangle e^{-(u-u_0)/2}, \quad (15)$$

183 which allows one evaluate the term $\langle N_u \rangle$ at the high level u from measuring the average
 184 number of up-crossings $\langle N_{u_0} \rangle$ at some lower reference level u_0 .

185 When one has a well defined background model, then the number of low-threshold
 186 up-crossings $\langle N_{u_0} \rangle$ can be measured by generating a relatively small set of pseudo-data.
 187 In many analyses, such a background model indeed can be constructed. However, the use
 188 of cuts or multivariate analysis (MVA) selections optimised independently for different
 189 Higgs boson masses does not allow one to construct a background model that would be
 190 guaranteed to account for all correlations between nearby test mass points.

191 The foreseen way around this is to count the number of up-crossings with the data
 192 themselves. Indeed, when the look-elsewhere effect is large (and this is the only case when
 193 we really care to evaluate it), the number of up-crossings at low thresholds will be large
 194 and reasonably well measured³. This procedure should give us a fair estimate of the trial
 195 factor by which we need to "de-rate" the *local* *p*-value derived from the maximal value
 196 $q_0(\hat{m}_H)$ observed in the scan. It should be noted that there is no direct relation between
 197 the number of mass points and the trial factor since the latter is determined by the mass
 198 resolutions of the search channels.

199 For example, let us assume that by performing a scan over Higgs boson masses m_H , we
 200 find that the maximum value $q_0(\hat{m}_H)$ is 9, which, according to Eq. 12, gives an estimated
 201 *local* *p*-value of 0.13% and *local* significance of 3σ (Eq. 11). Next, let us assume that the
 202 measured number of up-crossings at level $u_0 = 1$ (*local* 1σ -significance) is measured to be
 203 8. Then, the *global* *p*-value corresponding to the observed excess (with the *local* *p*-value
 204 of 0.13% or 3σ -significance) can be derived from the Eq. 14 and is about 15%. Therefore,
 205 the trial factor for a *local* 3σ excess in this example is about 100.

³In the presence of a signal, this number might be biased by one unit.

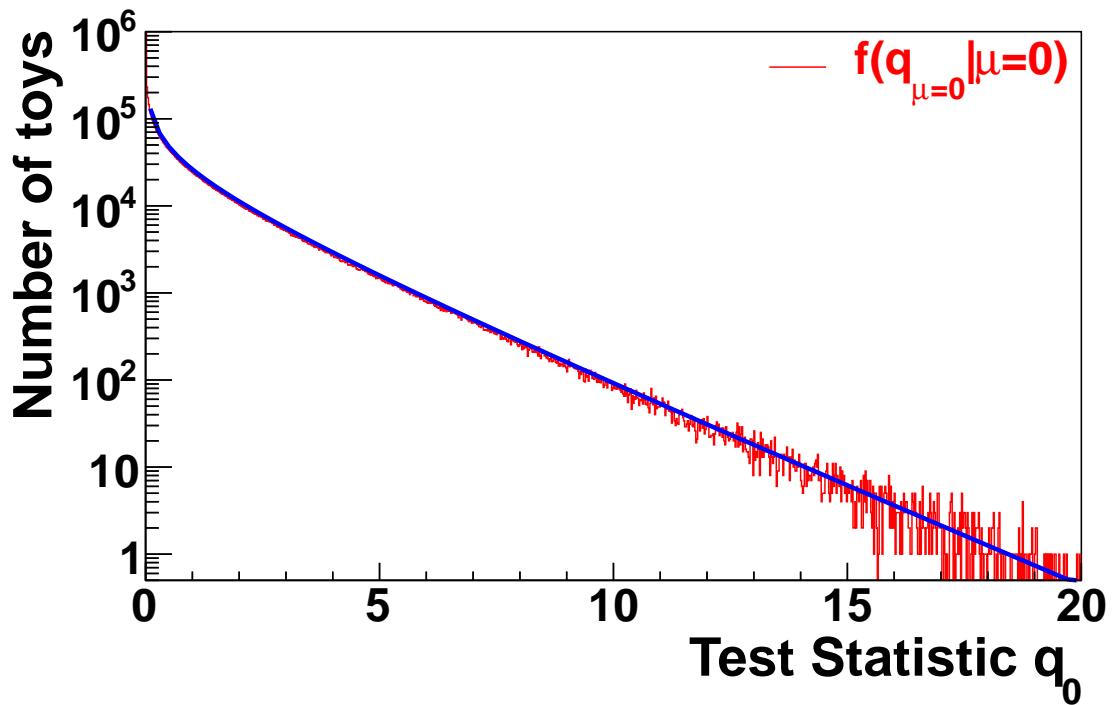


Figure 3: Distribution $f(q_0 | 0, \hat{\theta}_0^{\text{obs}})$ of the test statistic q_0 as obtained by generating pseudo-data (toys) for the *background-only* hypotheses.

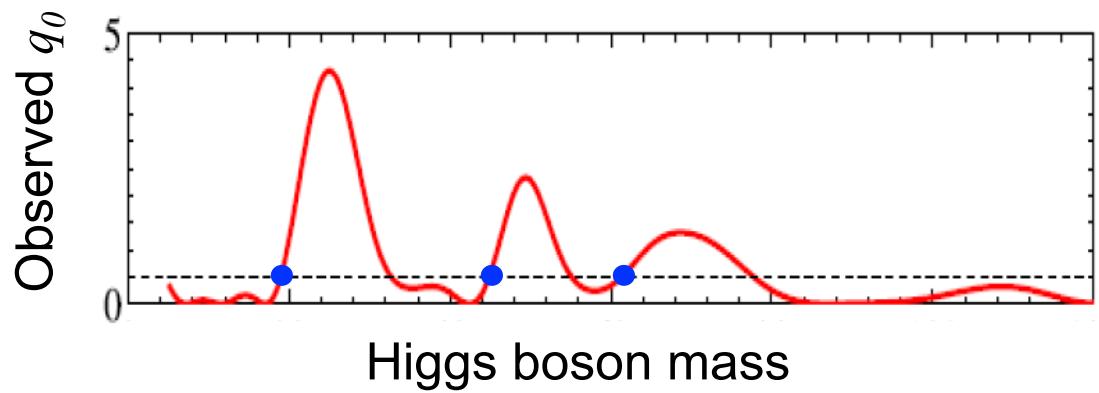


Figure 4: An illustration of a hypothetical scan of the test statistic q_0 vs m_H for some data. Up-crossings for a given threshold value u are shown with blue points.

206 4 Higgs mass points

207 The choice of mass points for the combination is driven by the $H \rightarrow 2\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$
 208 analyses that look for a narrow peak over the continuum background. Figure 5 shows the
 209 expected $\delta m_{\gamma\gamma}$ and $\delta m_{4\mu}$ resolutions as well as the Higgs half-width $\Gamma_H/2$. The test masses
 210 in the SM Higgs search should not be much farther apart than the observable width of the
 211 Higgs peak. A simple model with a Gaussian-shaped signal and flat background shows
 212 that if we choose to step in $1\sigma_m$ increments, the loss of sensitivity for a Higgs boson with
 213 a mass right in the middle between the chosen test masses is less than 5%. With $2\sigma_m$
 214 increments, the loss of sensitivity can be as high as 20%. The increments in the mass
 215 steps are therefore chosen to be close to $1\sigma_m$, as shown in Fig. 5. Table 1 summarizes
 216 the chosen mass points. Initially, we will not use less than 1 GeV binning until we have
 217 tuned the $H \rightarrow \gamma\gamma$ response.

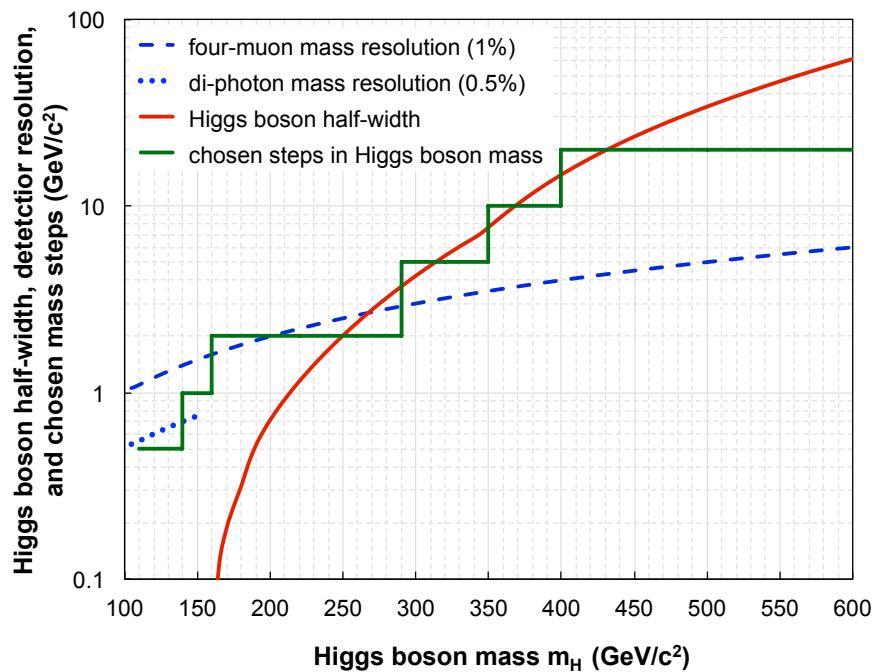


Figure 5: Expected detector resolutions for reconstructing two photons $\delta m_{\gamma\gamma}$ (blue dotted) and four muons $\delta m_{4\mu}$ (blue dashed) as well as the intrinsic Higgs half-width $\Gamma_H/2$ (red) as a function of the Higgs mass m_H . The chosen size of mass steps for the Higgs search analyses is shown in green.

Table 1: The chosen Higgs mass points for which all analyses going into the overall Higgs search combination should provide their results (within the range of their sensitivity).

Mass range (GeV/ c^2)	Step size (GeV/ c^2)	Number of points	Step size is driven by
110-140	0.5	61	$\delta m_{\gamma\gamma}$ for the best category of photons
140-160	1	20	$\delta m_{4\mu}$
160-290	2	65	$\delta m_{4\mu}$ and $\Gamma/2$
290-350	5	12	$\Gamma/2$
350-400	10	5	$\Gamma/2$
400-600	20	10	$\Gamma/2$ at the beginning of the range
TOTAL		173	

218 **5 Systematic Uncertainties**

219 **5.1 Systematic uncertainty probability density functions**

220 Systematic uncertainties on observables are handled by introducing nuisance parameters θ
 221 with a probability density function, *pdf*, $\rho(\theta)$ with some $\tilde{\theta}$ associated with the best estimate
 222 of the nuisance (e.g., mean, median, peak) and some other parameter characterising the
 223 overall shape of the *pdf*, and in particular its width. Different choices of *pdf* are described
 224 as follow:

- 225 • Nuisance parameters, unconstrained by any a priori considerations and/or measure-
 226 ments not involving the data going into the statistical analysis, are assigned flat
 227 *priors*.
- 228 • The Gaussian *pdf* is a frequent choice for systematic uncertainties. It is well-suited
 229 for describing uncertainties on parameters that can be both positive and negative:

$$\rho(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\theta - \tilde{\theta})^2}{2\sigma^2}\right) \quad (16)$$

230 Technically, an observable A with best estimate \tilde{A} and the ascribed Gaussian relative
 231 uncertainties σ_A can be simulated by generating random values of θ from the *normal*
 232 distribution with $\tilde{\theta} = 0$ and $\sigma = 1$ and by writing $A = \tilde{A} \cdot (1 + \sigma_A \cdot \theta)$. Two observables
 233 A and B with 100% positively correlated uncertainties—of not necessarily the same
 234 scale—can be generated by using $A = \tilde{A} \cdot (1 + \sigma_A \cdot \theta)$ and $B = \tilde{B} \cdot (1 + \sigma_B \cdot \theta)$. The
 235 100% negative correlations are constructed by using $\sigma_A > 0$ and $\sigma_B < 0$.

236 However, the Gaussian *pdf* is not suitable for positively defined observables like
 237 cross sections, cut efficiencies, luminosity, etc. The common (and arguably not
 238 particularly elegant) solution is to truncate the Gaussian at or just above zero.

- 239 • An alternative option is to use the log-normal *pdf* that allows one to avoid all
 240 pathologies/difficulties of the truncated Gaussian;

$$\rho(\theta) = \frac{1}{\sqrt{2\pi} \ln(\kappa)} \exp\left(-\frac{(\ln(\theta/\tilde{\theta}))^2}{2(\ln \kappa)^2}\right) \frac{1}{\theta} \quad (17)$$

241 The width of the log-normal *pdf* is characterised by κ (e.g. $\kappa = 1.10$ implies that the
 242 observable can be larger or smaller by a factor 1.10, both deviation having a chance
 243 of 16%). For small uncertainties, the Gaussian with a relative uncertainties ϵ and
 244 the log-normal with $\kappa = 1 + \epsilon$ (or $\kappa = e^\epsilon$) are asymptotically identical, while the log-
 245 normal *pdf* is certainly a more appropriate choice for very large uncertainties (e.g. “a
 246 factor of two uncertainty” maps nicely onto log-normal with $\kappa = 2$). Figure 6 (left)
 247 shows log-normal distributions with different κ values. The log-normal distribution
 248 has a longer tail with respect to the Gaussian and goes to zero at $\theta = 0$. It is the
 249 log-normal *pdf* that is chosen for all uncertainties that are deemed to be correlated
 250 between ATLAS and CMS (see next section).

Technically, an observable A with best estimate \tilde{A} and the ascribed log-normal uncertainties κ_A can be simulated by generating random values of θ from the *normal* distribution (Eq. 16) with $\tilde{\theta} = 0$ and $\sigma = 1$ and by writing $A = \tilde{A} \cdot \kappa_A^\theta$. Two observables A and B with 100% positively correlated uncertainties—of not necessarily the same scale—can be generated by using $A = \tilde{A} \cdot \kappa_A^\theta$ and $B = \tilde{B} \cdot \kappa_B^\theta$. The 100% negative correlations are constructed by using $\kappa_A > 1$ and $\kappa_B < 1$.

- The gamma distribution is adopted for describing statistical uncertainties associated with a number of Monte Carlo events in simulation (after applying all cuts) or a number of observed events in a data control sample. In both cases, the event rate n in the signal search region can be related to the number of events N in MC or data via a simple relationship $n = \alpha \cdot N$. Ignoring uncertainties on α that are to be dealt with separately, the uncertainties on the predicted rate n associated with the observation of N events is described by the gamma distribution as given by Eq. 18:

$$\rho(n) = \frac{1}{\alpha} \frac{(n/\alpha)^N}{N!} \exp(-n/\alpha). \quad (18)$$

This form can be easily derived using the Bayesian methodology and assuming that the prior $\pi(n)$ is flat. The most probable value for n is αN , the mean value is $\alpha(N + 1)$, and the dispersion is $\alpha\sqrt{N^2 + 1}$. Note that $N = 0$ is a perfectly allowable situation, resulting in the exponential *pdf* for n , with the maximum at $n = 0$, mean = α , and dispersion = α . Gamma distributions with different numbers of events observed in control samples are shown in Fig. 6 (right).

Uncertainties modelled by gamma distributions can be found in both ATLAS and CMS analyses, but they are never correlated between ATLAS and CMS, nor would they be unless both experiments would decided to rely on the very same observations.

The mapping between Bayesian posterior *pdfs* $\rho(\theta|\tilde{\theta})$ and corresponding frequentist auxiliary measurement *pdf*'s $p(\tilde{\theta}|\theta)$ as discussed in Section 2 and represented by Eq. 1 for the uncertainties discussed in this section is shown in Table 2.

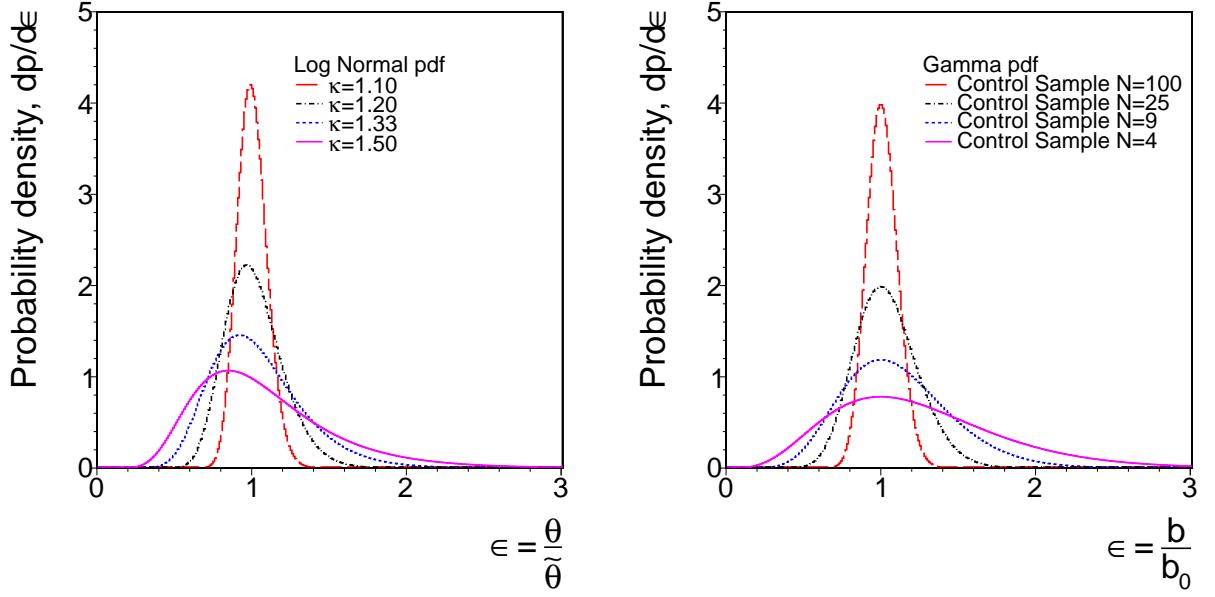


Figure 6: (Left) Log-normal distributions with $\kappa = 1.10, 1.20, 1.33$ and 1.50 . (Right) Gamma distribution with the number of events in a control sample $B = 100, 25, 9$ and 4 .

Table 2: Mapping between Bayesian posterior $pdfs \rho(\theta|\tilde{\theta})$ and corresponding frequentist auxiliary measurement $pdf's p(\tilde{\theta}|\theta)$ and ‘‘primordial’’ prior $\pi_\theta(\theta)$ as discussed in Section 2 and represented by Eq. 1 for the uncertainties discussed in this section.

Type of uncertainties	Bayesian posterior $\rho(\theta \tilde{\theta})$	Frequentist $p(\tilde{\theta} \theta)$	Prior $\pi_\theta(\theta)$
Unconstrained	flat	flat	flat
Gaussian/Log-normal	$\rho(\theta \tilde{\theta}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\theta-\tilde{\theta})^2}{2}\right)$	$p(\tilde{\theta} \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\tilde{\theta}-\theta)^2}{2}\right)$	flat
Statistical uncertainties	$\rho(\theta N) = \frac{\theta^N}{N!} \exp(-\theta)$	$p(N \theta) = \frac{\theta^N}{N!} \exp(-\theta)$	flat

277 **5.2 Uncertainties correlated between experiments**

278 Currently, we identify four main groups of such correlated uncertainties that we associate
279 with:

280 • PDF+ α_s uncertainties
281 • theoretical renormalisation/factorisation scale uncertainties
282 • uncertainties in modelling underlying event and parton showering
283 • experimental uncertainties on luminosities

284 Theoretical uncertainties can be looked at from three different points of view:

285 • Uncertainties on the total cross sections σ_{tot} . These are an important starting point.
286 However, they are not necessarily applicable to actual physics analyses where various
287 experimental cuts restrict the final phase space.

288 • Uncertainties on the acceptance \mathcal{A} . These are very important for analyses aiming at
289 setting limits on overall cross sections from measurements performed in a restricted
290 phase space.

291 • Uncertainties on the cross section within the limited acceptance, i.e. $\mathcal{A} \cdot \sigma_{tot}$. These
292 uncertainties are needed when one attempts to set limits by combining analyses of
293 varying sensitivity for different Higgs production mechanisms. A priori, the level of
294 correlations between uncertainties on \mathcal{A} and σ_{tot} is not known.

295 **5.2.1 Naming convention**

296 Nuisance parameters with the same name appearing in different analyses (within one or
297 both experiments) are taken to be 100% correlated. Different names imply no correlations.
298 Any two sources of uncertainties that are believed to be only partially correlated
299 are either broken further down to the independent sub-contributions or declared to be
300 correlated/uncorrelated, whichever is believed to be more appropriate or more conservative.

302 To avoid accidental correlations in the combination of two experiments, uncertainties
303 specific to each experiment will have a prefix ATLAS or CMS. Uncertainties without such
304 prefixes are assumed to be 100% correlated between the two experiments.

305 **5.2.2 Total cross sections**

306 Breaking up systematic uncertainties associated with PDF+ α_s uncertainties into truly
307 independent sources would imply painstaking work with nearly no impact on the final
308 results. Also, this option does not really work in the context of taking envelopes of
309 multiple PDF sets as prescribed by the LHC Higgs Cross Section group. The other
310 possible extreme is to have all processes bluntly 100% correlated. This appears to be too
311 simplistic. As a compromise, we adopt the following approximation.

312 First, we group all processes in three categories based on the prevailing production
313 source. Then, we assume that $\text{PDF} + \alpha_s$ systematic uncertainties between all processes
314 in one group are 100% positively correlated and not correlated between processes from
315 different groups. This results in three nuisance parameters as shown in Table 3. The
316 detailed matrix of PDF uncertainty correlations, as calculated by the CTEQ collabora-
317 tion [16], can be found in Appendix B. It shows that the chosen scheme for correlating
318 PDF uncertainties between different processes is fair. In those cases where we see sizable
319 deviations, the adopted scheme generally implies more conservative results.

320 We assume that all physics processes have uncorrelated QCD scale uncertainties, ex-
321 cept for a few very closely related processes (W/Z , $WW/WZ/ZZ$) that we treat as 100%
322 correlated. The list of independent nuisance parameters characterising theoretical uncer-
323 tainties in cross section calculations is given in Table 3.

324 The cross section uncertainties for the Higgs boson production are taken from the LHC
325 Higgs Cross Section Group report [17]. The $\text{PDF} + \alpha_s$ and the renormalisation/factorisation
326 scale uncertainties are treated separately. The prescription recommended by the LHC
327 Higgs Cross Section Group [17] will be considered in the future.

328 5.2.3 Acceptance uncertainties

329 For setting limits on a total cross section times branching ratio of a particular production
330 mechanism and decay mode of a signal, one is interested in the uncertainties on the accep-
331 tance \mathcal{A} , which is the ratio of (cross section with cuts) / (full cross section). Depending
332 on the cuts, some uncertainties may cancel out in this ratio, while others may remain
333 independent.

334 Uncertainties of a similar type arise when one uses a data-driven technique for eval-
335 uating some particular background event rate n in a signal region by extrapolating from an
336 observation of N events in a control region. The two can be related via a so-called extrap-
337 olation factor α : $n = \alpha \cdot N$. When the extrapolation factor is derived from theory/MC,
338 $\alpha = (\text{cross section with cut set A}) / (\text{cross section with cut set B})$.

339 Given that the cuts are ever evolving entities, calculations of the acceptance and
340 extrapolation factor uncertainties are to be performed within the ATLAS and CMS Higgs
341 physics groups.

342 We currently assume that the acceptance and extrapolation factor uncertainties are
343 independent from the total cross section uncertainties, except for the acceptance associ-
344 ated with jet counting in the $gg \rightarrow H \rightarrow WW + 0/1/2\text{-jets}$ analyses. This exception is
345 discussed in the next section.

346 The naming convention for such uncertainties is AAA_BBB_ACCEPT or AAA_BBB_EXTRAP,
347 where AAA identifies the original source of uncertainty (pdf, QCDscale, UEPS), while BBB
348 gives an indication of what process or method the uncertainty is associated with with.

349 Should ATLAS and CMS use similar cuts and techniques, the uncertainties will be
350 assumed to be 100% correlated between the two collaborations. This will have to be
351 decided on a case-by-case basis. At this stage, in the context of extrapolation factors, we
352 identify two very similar data-driven techniques used by ATLAS and CMS for predicting
353 WW and $t\bar{t}$ background contributions in the $H \rightarrow WW \rightarrow 2\ell 2\nu + 0\text{-jets}$ signal regions.
354 The uncertainties, listed in Table 3, are dominated by QCD scale uncertainties.

355 **5.2.4 Cross section times acceptance uncertainties for $gg \rightarrow H + 0/1/2\text{-jets}$**

356 As discussed in the previous section, uncertainties on acceptance of all cuts except for jet
357 counting are treated as independent from the total cross section. Most of the time, being
358 so much smaller than the total cross section uncertainties, such sub-leading acceptance
359 uncertainties can actually be neglected.

360 However, the uncertainties associated with jet counting in the $gg \rightarrow H + 0/1/2\text{-jets}$
361 sub-processes, i.e., the fractions of events falling into the 0-, 1-, and 2-jet bins, are very
362 sensitive to the choice of QCD scales. In fact, the *exclusive* 0/1/2 jet bin cross sections
363 uncertainties are larger than the total cross section uncertainty and have both negative
364 and positive correlations. The LHC Higgs Cross Section Group recommends that it is the
365 inclusive cross sections for $gg \rightarrow H + \geq 0\text{-jets}$, $gg \rightarrow H + \geq 1\text{-jets}$, $gg \rightarrow H + \geq 2\text{-jets}$ that
366 have independent theoretical uncertainties. Hence, one can find the three corresponding
367 nuisance parameters in Table 3. The procedure of propagating *inclusive* cross section
368 uncertainties into *exclusive* 0, 1, and 2-jet bins is described in Appendix C.

369 **5.2.5 Uncertainties in modelling underlying event and parton showering**

370 Besides already discussed PDFs and QCD scales, uncertainties in modeling the underlying
371 event (UE) activity and parton showering (PS) are yet another potential source of
372 uncertainties in evaluation of acceptance and extrapolation factors. The current prescription
373 for their evaluation is to compare results obtained with UE/PS modeling available in
374 different generators (e.g. Pythia, Herwig, Sherpa). Note that the primary interaction ME
375 generator does not have to be the same as a UE/PS generator (e.g., it could be Powheg).
376 The log-normal parameter κ is defined as follows:

$$\kappa = \frac{\text{Yield[ME + UE/PS(generator B)]}}{\text{Yield[ME + UE/PS(generator A)]}}. \quad (19)$$

377 **5.2.6 Instrumental uncertainties**

378 For now, luminosity uncertainties are the only instrumental uncertainties that we take as
379 100%-correlated between ATLAS and CMS. In time, the luminosity uncertainties may be
380 split into correlated and uncorrelated components.

Table 3: List of nuisance parameters for systematic uncertainties assumed to be 100% correlated between ATLAS and CMS.

PDF+ α_s uncertainties

nuisance	groups of physics processes
pdf_gg	$gg \rightarrow H, t\bar{t}H, VQQ, t\bar{t}, tW, tb$ (<i>s</i> -channel), $gg \rightarrow VV$
pdf_qqbar	VBF $H, VH, V, VV, \gamma\gamma$
pdf_qg	tq (<i>t</i> -channel), $\gamma + \text{jets}$

QCD scale uncertainties

nuisance	groups of physics processes
QCDscale_ggH	total inclusive $gg \rightarrow H$
QCDscale_ggH1in	inclusive $gg/qg \rightarrow H + \geq 1$ jets
QCDscale_ggH2in	inclusive $gg/qg \rightarrow H + \geq 2$ jets
QCDscale_qqH	VBF H
QCDscale_VH	associate VH
QCDscale_ttH	$t\bar{t}H$
QCDscale_V	W and Z
QCDscale_VV	WW, WZ, and ZZ up to NLO
QCDscale_ggVV	$gg \rightarrow WW$ and $gg \rightarrow ZZ$
QCDscale_ZQQ	Z with heavy flavor $q\bar{q}$ -pair
QCDscale_WQQ	W with heavy flavor $q\bar{q}$ -pair
QCDscale_ttbar	$t\bar{t}$, single top productions are lumped here for simplicity

Phenomenological uncertainties

nuisance	groups of physics processes
UEPS	all processes sensitive to modeling of UE and PS

Acceptance uncertainties

nuisance	comments
QCDscale_WW_EXTRAP	extrap. factor α for deriving WW bkgd in HWW analysis
QCDscale_ttbar_EXTRAP	extrap. factor α for deriving $t\bar{t}$ bkgd in HWW analysis

Instrumental uncertainties

nuisance	comments
lumi	uncertainties in luminosities

381

6 Format of presenting results

382 The results of the ATLAS + CMS Higgs search combination will be presented in the
 383 following forms

- 384 • A scan of *local p*-values, i.e. probabilities $P(q_0 \geq q_0^{obs} | m_H)$, vs test Higgs boson mass
 385 m_H will characterise how significant upward departures in the observed values of q_0^{obs}
 386 approximately are. We refer to these as *local* (and use “approximately” in the above
 387 sentence), since these *p*-values do not include the overall trial factor associated with
 388 the look-elsewhere effect. Figure 7 gives an example of such a scan. We will show
 389 approximate *p*-values as derived from the asymptotic χ^2 -like distribution expected
 390 for q_0 as given by Eq. 12. When practical, the *local p*-values will be calculated by
 391 using toys according to Eq. 10.
- 392 • The look-elsewhere effect will be quantified following the procedure described in
 393 Sec. 3.2.
- 394 • The CL_s scan vs test Higgs boson mass, similar to the one shown in Figure 8 [18]
 395 (this plot is borrowed from the Spring 2011 Tevatron Higgs search combination), will
 396 quantify the confidence levels at which the Standard Model Higgs boson is excluded
 397 for different m_H hypotheses. The median expected CL_s values together with $\pm 1\sigma$
 398 and $\pm 2\sigma$ bands will be also presented. Higgs boson masses for which $CL_s < \alpha$ will
 399 be said to be excluded at the $(1 - \alpha)$ confidence level.
- 400 • 95% C.L. limits $\mu^{95\%CL}$ on the Higgs boson production cross section strength modi-
 401 fier μ vs test mass m_H , similar to the one shown in Figure 9, will be also presented,
 402 together with the median expected and $\pm 1\sigma$ and $\pm 2\sigma$ bands. This plot shows by
 403 what factor the SM Higgs boson cross section must be modified to be excluded at
 404 95% C.L.

405 The numerical summary of the obtained results will be presented in the following form:

Table 4: Numerical results of the ATLAS+CMS Higgs search combination. Observed values are shown in bold font, expected—in plain font.

m_H (GeV/ c^2)	<i>local p</i> -value		$CL_s(\mu = 1)$	$\mu^{95\%CL}$							
	from toys	approx.		obs	exp)	obs	-2σ	-1σ	median	$+1\sigma$	$+2\sigma$
	110	xxx		xxx (xxx)	xxx	xxx	xxx	xxx	xxx	xxx	
600	xxx	xxx	xxx (xxx)	xxx	xxx	xxx	xxx	xxx	xxx	xxx	

406 What is presented here is the minimum of information. The experiments may agree
 407 to show additional information to illustrate and support the interpretation of the results.

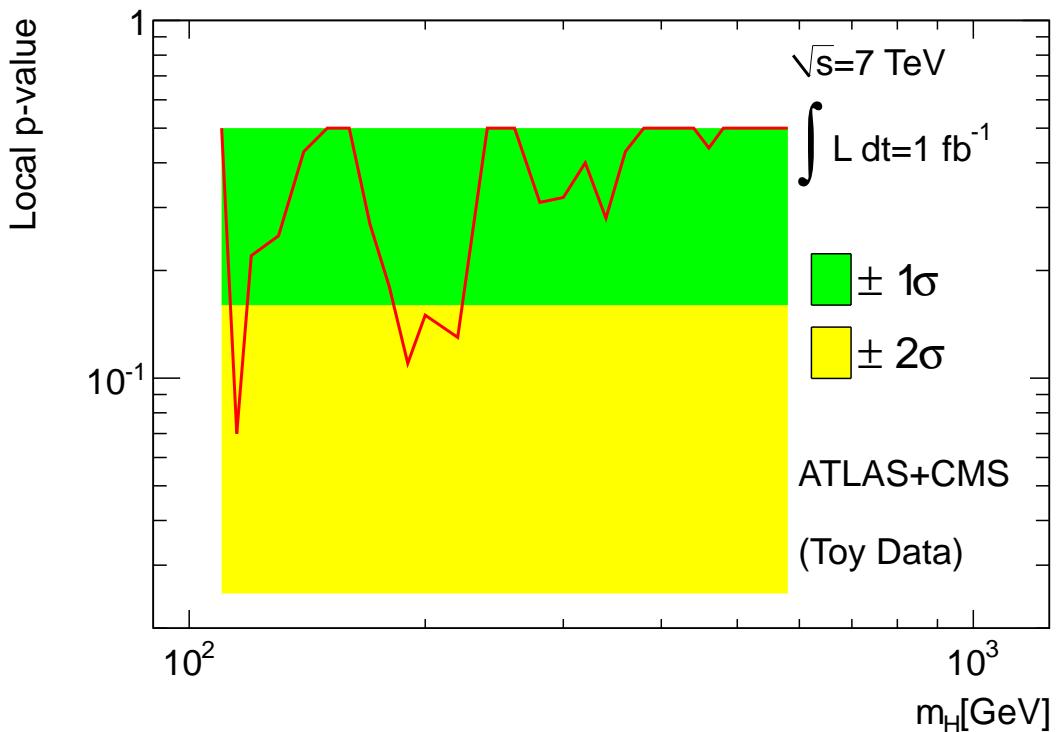


Figure 7: *local p*-value scan vs m_H . This plot does not correspond to any MC or data analysis. To help guide the eye, the n -sigma significance levels are highlighted with colour bands.

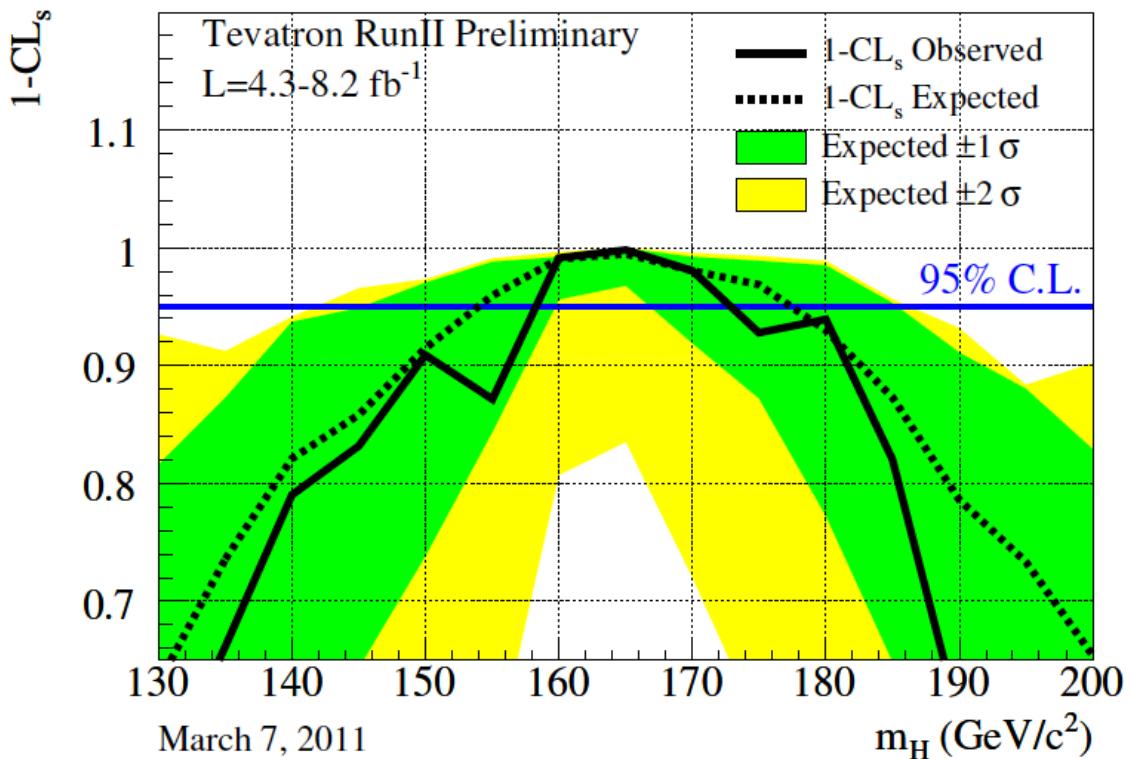


Figure 8: CL_s scan vs m_H . The solid line shows the observed values of $(1 - \text{CL}_s)$. The green/yellow bands indicate $\pm 1\sigma$ and $\pm 2\sigma$ intervals for the expected values under the *background-only* hypothesis. The median expectation is shown with the dashed line.

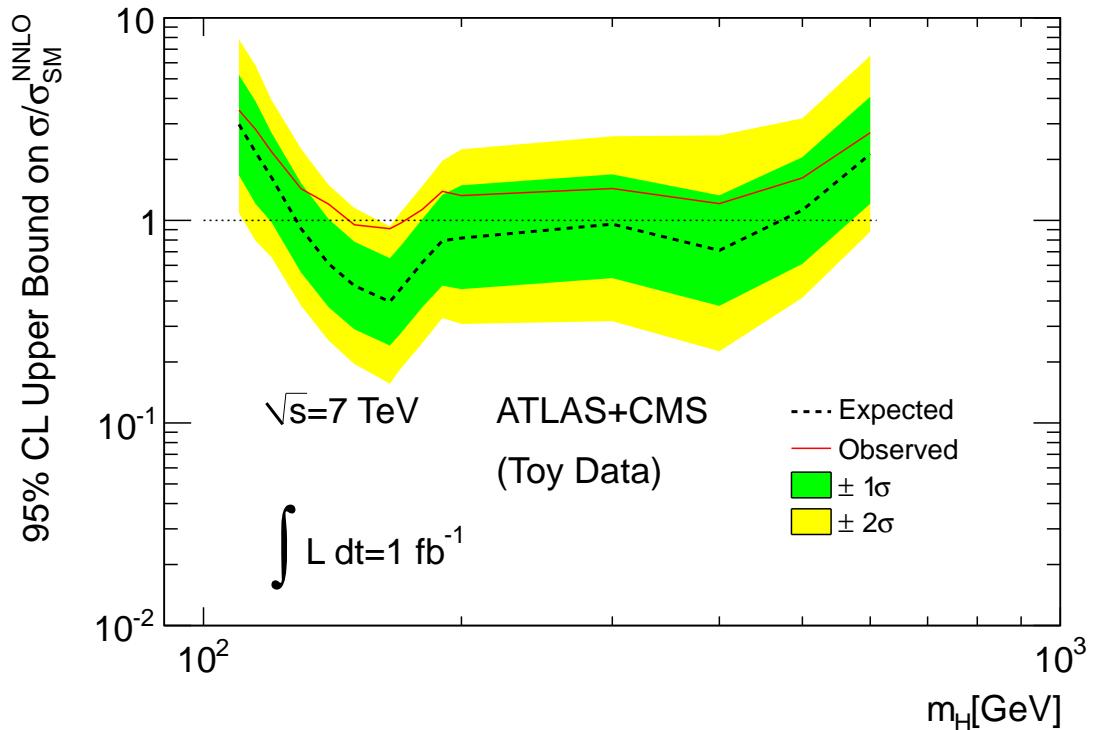


Figure 9: 95% C.L. limits $\mu^{95\%CL}$ on the Higgs boson production cross section strength modifier μ ($\sigma = \mu \sigma_{SM}^{NNLO}$) vs Higgs boson mass m_H . This plot does not correspond to any MC or data analysis. The solid line shows the observed limit. The green/yellow bands indicate $\pm 1\sigma$ and $\pm 2\sigma$ intervals for the expected limits under the *background-only* hypothesis. The median expectation is shown with the dashed line.

408 **7 Technical combination exercises (validation and syn-
409 chronisation)**

410 This section describes the Higgs combinations of ATLAS and CMS toy data that were
411 performed to exercise the combination tools and framework. Both ATLAS and CMS
412 have chosen to work in the common framework of RooStats [19]. It provides a common
413 platform for exchanging so-called *Workspaces* that contain all the information needed for
414 the statistical analyses and simplifies the logistic of data exchange between collaborations.
415 Moreover, RooStats offers a diverse set of statistical methods that one can exercise starting
416 from the very same workspace. Having all these benefits, the package is still under
417 development, to which we have contributed by providing quick feedback based on the
418 results of our exercises. More technical details on RooStats can be found in Appendix D

419 In order to validate and synchronise calculations of the desired quantities, the combi-
420 nation exercise proceeded as follows. ATLAS and CMS prepared their own Workspaces
421 for a given analysis or combination of analyses. All analysis models were based on toy
422 pseudo-data. No real data were involved in these exercises. Then, each collaboration
423 would perform statistical analysis on its own workspace, on the workspace of the other
424 collaboration, and then would build its own ATLAS+CMS combined workspace and per-
425 form statistical analysis on it. The three results (ATLAS-only, CMS-only, ATLAS+CMS)
426 obtained by each collaboration were required to match within the quoted statistical pre-
427 cision of the calculations.

428 The statistical methods used were as follows:

- 429 • Exclusion limits obtained by using the *Profile Likelihood approximation* (see Ap-
430 pendix A.1.3) are the very first step of synchronisation. Although this method does
431 not give accurate exclusion limits, it is very fast computationally, which allowed us
432 to validate that joint likelihoods independently built by ATLAS and CMS from the
433 single-experiment inputs are indeed identical. It is these joint likelihoods that are
434 at the heart of the final statistical methods adopted for the Summer 2011 combi-
435 nation. For synchronisation purposes, we use “limits” on μ as given by Eq. 33 in
436 Appendix A.
- 437 • Exclusion limits obtained with the *LEP-type CL_s prescription* (see Appendix A) are the next step toward the final version of the CL_s construction. Since the LEP
438 approach does not involve profiling of nuisance parameters, these calculations are
439 relatively fast as well.
- 440 • Exclusion limits obtained with the *LHC-type CL_s prescription* (see Sec. 2) that have been agreed on for the Summer 2011 combination were the final step of syn-
441 chronisation. This approach now involves profiling of systematic errors and requires
442 substantial CPU power. In calculations of limits on the signal strength modifier
443 μ , one goes via steps of assessing values of the test statistic q , p -values for *sig-
444 nal+background* and *background-only* and their ratio CL_s , which makes the full
445 suite of quantities that would be needed for presenting the statistical interpretation
446 of the Higgs boson search combination.

449 Since both ATLAS and CMS used the same underlying RooFit and RooStats code,
450 the scope of crosschecks across the two collaborations may be thought to be somewhat
451 limited. However, this procedure has proved to be very useful and allowed us to validate
452 and debug the way the combined models are constructed starting from the ATLAS and
453 CMS models and how the basic RooStats and RooFit libraries are used.

454 As a separate crosscheck, all CMS-only results have been validated using the indepen-
455 dent code L&S [20] that does not rely on RooStats and uses RooFit in a very limited
456 capacity for functional *pdfs*.

457 Whenever disagreements of results were observed, we were able to track them down
458 to either plain bugs or more subtle misinterpretations of the input information provided
459 by the collaborations. In other words, the technical synchronisation exercise proved to
460 be extremely valuable and prepared us for the forthcoming combinations with the 2011
461 data.

462 **7.1 $H \rightarrow WW \rightarrow \ell\ell\nu\nu + 0 jets$**

463 The first combination exercise undertaken used toy analyses for the simplest $H \rightarrow WW$
464 channel in the di-leptonic final state with no hadronic jets. The goal of this exercise was
465 to perform a first exchange of inputs and produce a combined exclusion limit in which
466 some systematic uncertainties were treated as correlated across the experiments.

467 **Model details**

468 For this exercise, the measurements in both experiments were treated as multichannel
469 counting experiments. The likelihood function is therefore written as the product of
470 Poisson terms for each channel times the product of all the constraint terms for the
471 nuisance parameters θ associated to the systematic uncertainties.

$$\mathcal{L} = \prod_{i \in \text{obs.}} \text{Poisson}(n_i | \nu_i(\mu, \theta)) \cdot \prod_{j \in \text{nui.s}} \text{Constraint}(\theta_j, \tilde{\theta}_j) \quad (20)$$

472 For convenience, the θ_i are normalised so that the constraint is always a normal distri-
473 bution with zero mean and unit variance, and all non-universal terms enter only in the
474 relationship between parameters and expected yield in the signal regions $\nu_i(\mu, \theta)$. For
475 uncertainties related to the statistical uncertainty in the control regions or in the simu-
476 lation, the associated nuisance parameter is the expected yield in that region, and the
477 constraint term is a Poisson likelihood for $\tilde{\theta}_j$ observed events and θ_j expected ones; this
478 is mathematically equivalent to a Gamma distribution over θ_j with most probable value
479 $\tilde{\theta}_j$.

480 The correlation of the uncertainties across the experiments is implemented by using
481 the same nuisance parameter θ_i to describe the same uncertainty in the two models⁴. The
482 combined likelihood is constructed by multiplying together the two likelihoods removing
483 the duplicated constraint terms from correlated uncertainties.

484 In this first exercise, only two sources of systematic uncertainties were treated as
485 correlated: the normalisation of the luminosity, driven by machine-dependent uncertain-
486 ties, and the inclusive Higgs production cross section through the gluon fusion process,
487 driven by theoretical uncertainties (the contribution from other production modes to the
488 $H \rightarrow WW + 0j$ final state is negligible).

489 The ATLAS model has 3 signal channels and 3 main control regions that enter the
490 likelihood directly as observables, plus other sidebands that are modelled as constraints.
491 It contains 17 ATLAS-specific nuisance parameters, plus the two associated with the
492 luminosity and Higgs production cross section. The CMS model has 4 signal channels
493 corresponding to the leptonic final states; measurements from sidebands enter the likeli-
494 hood only through constraint terms for the nuisance parameters. In total it contains 35
495 CMS-specific nuisance parameters plus the two correlated ones.

⁴Only multiplicative corrections are considered to be eligible for correlations: we assume that sidebands or simulated samples are private to each collaboration and therefore the associated uncertainties are uncorrelated.

496 **Obtained Results**

497 At the time of the exercise, no decision had yet been taken on the preferred statistical
498 method for computing the exclusion limit at LHC. To make the exercise possible, we
499 therefore decided to use two simple and well established methods, for which statistical code
500 was available in the two collaborations: the profile likelihood asymptotic approximation,
501 and the LEP-like hybrid method. The two methods are described in detail in Appendix A.

502 Three combination “handshakes” have been performed:

- 503 • Observed limits for each experiment separately and for the combination for a range
504 of mass values, using the profile likelihood asymptotic approximation. The results
505 computed by the two collaborations are in perfect agreement (Table 5).
- 506 • CL_s values for SM Higgs ($\mu = 1$) hypotheses, computed with the LEP-type CL_s
507 method. The results were found to be in agreement within the computational ac-
508 curacy given by the number of toy experiments used, 10^4 (Table 6).
- 509 • Observed limit for the combined model at $m_H = 140$ GeV/ c^2 computed with LEP-
510 type CL_s method to better than 1% computational accuracy. The result computed
511 by the two collaborations are in a good agreement: 0.766 ± 0.006 from CMS, $0.7673 \pm$
512 0.0014 from ATLAS.

Table 5: $H \rightarrow WW + 0j$ combination exercise: computed exclusion limits on $\mu = \sigma/\sigma_{SM}$ with the profile likelihood asymptotic approximation. The agreement is better than one per mil.

m(H) GeV/ c^2	ATLAS computation			CMS computation		
	Comb.	ATLAS	CMS	Comb.	ATLAS	CMS
120	3.968	3.734	6.709	3.968	3.734	6.709
130	1.601	1.652	2.493	1.601	1.652	2.493
140	0.828	1.041	1.186	0.828	1.041	1.186
150	0.451	0.784	0.551	0.451	0.784	0.551
160	0.314	0.555	0.369	0.314	0.555	0.369
170	0.290	0.653	0.314	0.290	0.653	0.314
180	0.327	0.811	0.357	0.327	0.811	0.357
190	0.623	1.211	0.742	0.623	1.211	0.742
200	0.861	1.661	1.017	0.861	1.661	1.017

Table 6: $H \rightarrow WW + 0j$ combination exercise: computed CL_s values for the SM Higgs ($\mu = 1$) hypotheses with LEP-type CL_s method. The agreement is within the quoted computational precision. The “-” indicates that the information is not available. The 0 corresponds to $< 10^{-4}$.

m(H) GeV/ c^2	ATLAS computation			CMS computation		
	Comb.	ATLAS	CMS	Comb.	ATLAS	CMS
120	0.597 ± 0.008	0.578 ± 0.010	0.812 ± 0.006	0.586	-	0.806
130	0.154 ± 0.004	0.240 ± 0.007	0.389 ± 0.006	0.166	0.237	0.392
140	0.014 ± 0.002	0.087 ± 0.004	0.052 ± 0.003	0.015	0.088	0.056
150	0.0004 ± 0.0003	0.033 ± 0.003	0.0013 ± 0.0005	0.000	0.031	0.001
160	0	0.005 ± 0.001	0	0.000	0.005	0.000
170	0	0.012 ± 0.002	0	0.000	-	0.000
180	0	0.037 ± 0.003	0	0.000	0.038	0.000
190	0.005 ± 0.001	0.148 ± 0.005	0.011 ± 0.002	0.005	0.135	0.011
200	0.027 ± 0.002	0.242 ± 0.007	0.048 ± 0.003	0.025	0.234	0.050

513 **7.2 $H \rightarrow WW \rightarrow \ell\ell\nu\nu + 0/1/2 - jets$**

514 The second technical combination exercise was again used the $H \rightarrow WW$ analysis in the
515 di-leptonic final state, but now also considered those categories of events with one and two
516 jets. The goal of this second exercise was to have a better treatment of all the systematic
517 uncertainties of theoretical origin, and to increase the complexity of the model.

518 **Model Details**

519 The two analyses were still modelled as multi-channel counting experiments, so the like-
520 lihood function had the same structure as in the previous exercise.

521 The systematic uncertainties considered for correlations across the experiments were:

522

- the scale of the luminosity measurement;
- the effect of PDF uncertainties on the production cross sections, handled separately
523 for the processes dominated by the three partonic initial states gg , qq , $q\bar{q}$, and gq ,
- the uncertainties on the cross sections coming from higher orders, estimated varying
524 the renormalisation and factorisation scales. These uncertainties were accounted
525 for separately for $gg \rightarrow H$, VBF H , associated $H + W/Z$ production and for the
526 backgrounds $q\bar{q} \rightarrow V$ ($V = W/Z$), $qq \rightarrow VV$, $gg \rightarrow VV$ and $t\bar{t}$.

527 For simplicity, the backgrounds from single top and the associated $t + W$ production were
528 treated as part of the larger $t\bar{t}$ background. For the ATLAS model, the scale uncertainties
529 for WW and $t\bar{t}$ were further separated into the uncertainty on the inclusive cross section
530 and the uncertainty on the extrapolation between signal region and sideband, and the two
531 terms were treated as uncorrelated. When combining the two likelihoods in this exercise,
532 the uncertainties on the inclusive WW , $t\bar{t}$ cross sections from the ATLAS model have
533 been taken as correlated with the uncertainty on the accepted cross section for the same
534 processes in the CMS model.

535 The ATLAS model included 9 signal channels and 12 control channels treated as
536 observables. There are 24 ATLAS-specific nuisance parameters plus 13 theoretical un-
537 certainties eligible for correlation with CMS.

538 The CMS model included 9 signal channels, and control regions were included only
539 through constraints terms. There are 32 CMS-specific parameters plus 11 theoretical
540 uncertainties eligible for correlation with ATLAS.

541 Eventually the combined model contains 70 nuisance parameters of which 10 are cor-
542 related across the two experiments. Four parameters are eligible for correlation but were
543 not correlated for lack of a counterpart in the other model because it was considered
544 negligible (PDF uncertainty for gq processes, scale uncertainty on the $H + W/Z$ process)
545 or because the uncertainties were factorised differently (WW and $t\bar{t}$ as described earlier).

546 **Obtained Results**

547 For this exercise, one Higgs mass point was considered, namely $140 \text{ GeV}/c^2$. The same
548 three handshakes as for the previous exercise were done:

551 • Exclusion limits on $\mu = \sigma/\sigma_{SM}$ from the profile likelihood approximation (Table 7).
 552 The agreement is better than one per mil.

553 • CL_s values for SM Higgs hypothesis in the hybrid LEP-like approach (Table 8). The
 554 agreement is within the quoted computational precision.

555 • Exclusion limit for the combined models at $m(H) = 140 \text{ GeV}/c^2$ computed with
 556 LEP-type CL_s method to better than 1% computational accuracy. The agreement
 557 between the result computed by ATLAS, 0.519 ± 0.003 , and by CMS, 0.508 ± 0.003 ,
 558 was considered satisfactory⁵.

Table 7: $H \rightarrow WW + 0/1/2j$ combination exercise: computed exclusion limits on $\mu = \sigma/\sigma_{SM}$ at $m(H) = 140 \text{ GeV}/c^2$ with the profile likelihood asymptotic approximation.

Model	ATLAS computation	CMS computation
ATLAS	0.802547	0.802548
CMS	0.426186	0.426186
Combined	0.355680	0.355681

Table 8: $H \rightarrow WW + 0j$ combination exercise: computed CL_s values for the SM Higgs ($\mu = 1$) hypotheses with LEP-type CL_s method.

Model	CMS computation	ATLAS computation
ATLAS	0.1036 ± 0.0018	0.1075 ± 0.0050
CMS	0.0009 ± 0.0003	0.0016 ± 0.0011
Combined	0.0014 ± 0.0003	0.0032 ± 0.0011

⁵The discrepancy would be 2.5 standard deviations. However, the values of μ are determined from an interpolation from a grid of tested μ values, and the reported uncertainties include only the statistical uncertainties on the CL_s values for each grid point and not a systematic uncertainty from the choice of interpolation model.

559 **7.3 $(H \rightarrow WW) + (H \rightarrow \gamma\gamma) + (H \rightarrow ZZ \rightarrow 4\ell)$**

560 The third combination exercise used a significantly more complex model, in which also
 561 the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels have been considered. The goals of these
 562 exercises were to test models in which the distribution of a continuous variable like the
 563 di-photon mass is used in the computation of the limit.

564 **Model Details**

565 For the two latter channels, the analyses are modelled as a search for an excess in the $\gamma\gamma$
 566 and 4ℓ invariant mass distributions. In each channel i , the data are modelled as a sum
 567 of signal and background components j with the expected normalisations $\nu_{i,j}(\mu, \theta)$ and
 568 shapes $f_{i,j}(m|\theta)$:

$$f_i(m|\mu, \theta) = \sum_j \frac{\nu_{i,j}(\mu, \theta)}{\nu_i^{\text{tot}}} \cdot f_{i,j}(m|\nu, \theta) \quad \nu_i^{\text{tot}} = \sum_j \nu_{i,j}(\mu, \theta). \quad (21)$$

569 The negative logarithm of the likelihood function for a single channel can be summed over
 570 the observed events as

$$-\log \mathcal{L}_i = \sum_{e=1}^{n_i} [-\log f_i(m_e|\mu, \theta)] + n_i \log(\nu_i^{\text{tot}}) - \nu_i^{\text{tot}}, \quad (22)$$

571 up to terms depending only on n_i which would cancel out when taking the ratio of two
 572 likelihood functions for the same data but different values of μ and θ .

573 The overall likelihood is then built as the product of the individual likelihoods and of
 574 the constraint terms just like in the counting experiment case.

575 It is technically convenient to treat all channels entering the combination in an uni-
 576 form way. Therefore the $H \rightarrow WW$ counting experiment has been re-written introducing
 577 a dummy variable x with range $[0, 1]$ and taking all $f_{i,j}(x)$ to be equal to the uniform
 578 distribution; this new expression is completely equivalent to the one using Poisson likeli-
 579 hoods.

580 The models included in this combination were: the ATLAS and CMS $H(\rightarrow WW \rightarrow$
 $\ell\ell\nu\nu) + 0/1/2j$ models of the previous exercises, the ATLAS and CMS $H \rightarrow \gamma\gamma$ models,
 582 and a CMS $H \rightarrow ZZ \rightarrow 4\ell$ model ⁶. The combined model contains about 5800 unbinned
 583 events separated in 37 exclusive categories. There are in total 98 nuisance parameters, 10
 584 of which are correlated across the experiments like in the previous combination exercise).

585 **Obtained Results**

586 Just like in the previous exercise, only a single Higgs mass point was considered, $m_H =$
 587 $140 \text{ GeV}/c^2$. Similar handshakes to those of the previous exercise were done: exclusion
 588 limits on $\mu = \sigma/\sigma_{SM}$ from the profile likelihood approximation for all the channels sepa-
 589 rately and for the combination, and the exclusion limit for the combined model using the

⁶There was an initial technical issue with the implementation of the ATLAS $H \rightarrow ZZ \rightarrow 4\ell$ model at the time, so it was left out at the beginning to allow the exercise to proceed.

590 LEP-type CL_s Bayesian-frequentist method. The results for the profile likelihood approx-
 591 imation are in excellent agreement (Table 9), and the hybrid Bayesian-frequentist ones
 592 agree within their computational accuracies (0.636 ± 0.005 from ATLAS, 0.626 ± 0.004
 593 from CMS).

594 After the ATLAS $H \rightarrow ZZ \rightarrow 4\ell$ toy model became available, we exercised limit
 595 calculations of the ultimate *LHC-type* CL_s method as defined in Section 2. Results of
 596 calculations agree within the computational precision and are shown in Table 10.

Table 9: $(H \rightarrow WW) + (H \rightarrow \gamma\gamma) + (H \rightarrow ZZ \rightarrow 4\ell)$ combination exercise: exclusion limits on $\mu = \sigma/\sigma_{SM}$ at $m(H) = 140$ GeV/ c^2 with the profile likelihood asymptotic approximation.

Model	CMS computation	ATLAS computation	difference (%)
ATLAS WW	0.7073	0.7073	-
ATLAS $\gamma\gamma$	5.7725	5.7721	-
CMS WW	0.4248	0.4248	-
CMS $\gamma\gamma$	4.2997	4.3000	-
CMS ZZ	1.1679	1.1679	-
ATLAS combined	0.7100	0.7100	-
CMS combined	0.3444	0.3444	-
All combined	0.2724	0.2724	-

Table 10: $(H \rightarrow WW) + (H \rightarrow \gamma\gamma) + (H \rightarrow ZZ \rightarrow 4\ell)$ combination exercise: exclusion limits on $\mu = \sigma/\sigma_{SM}$ at $m(H) = 140$ GeV/ c^2 with the LHC-type CL_s method.

Model	CMS computation	ATLAS computation	difference (%)
ATLAS WW	0.76 ± 0.01	0.76 ± 0.02	0%
ATLAS $\gamma\gamma$	5.76 ± 0.02	5.80 ± 0.03	+1%
ATLAS ZZ	4.32 ± 0.05	4.25 ± 0.02	-2%
CMS WW	0.517 ± 0.003	0.526 ± 0.006	+2%
CMS $\gamma\gamma$	3.96 ± 0.01	4.00 ± 0.04	+1%
CMS ZZ	1.691 ± 0.004	1.660 ± 0.040	-2%
ATLAS combined	0.667 ± 0.009	0.674 ± 0.022	+1%
CMS combined	0.426 ± 0.005	0.439 ± 0.005	+3%
All combined	0.410 ± 0.005	0.408 ± 0.014	-0.5%

597 **8 Summary**

598 The LHC Higgs Combination Group was formed in December 2010 to prepare ATLAS and
599 CMS Collaborations for the forthcoming Higgs search combinations with the 2011 data.
600 Over the time period of six months, the group achieved the following goals as documented
601 in this report:

602 • established the common methods for reporting exclusion limits and quantifying
603 excesses,
604 • agreed on the initial set of common systematic errors between ATLAS and CMS,
605 on their modelling and correlations,
606 • formulated the format of presenting Higgs search results,
607 • exercised statistical methods and software tools with toy models of Higgs searches
608 in order to validate and synchronise the overall combination procedure.

609 The group is ready to combine Higgs search results from ATLAS and CMS.

610 **Outlook**

611 At the time of writing, no major issues remain unresolved. Many hurdles have been
612 overcome to pave the way toward combined ATLAS and CMS Higgs results in 2011. It
613 is our belief that, should any new issues arise, they will be addressed in the same spirit
614 in which the current work has been conducted: discussions and agreement. The report
615 presented here is by no means the final word on combining ATLAS and CMS Higgs
616 search results. We fully expect that the techniques presented here will evolve and be
617 refined further.

618 **Acknowledgements**

619 We would like to thank the ATLAS statistics forum and CMS statistics committee for
620 their extremely valuable and continuous feedback and for the guiding suggestions and
621 corrections. We would like to acknowledge the role of the LHC Higgs Cross Section
622 group that helped settle a number of non-trivial questions on correlations of theoretical
623 errors for exclusive final states of Higgs boson production in association with jets. The
624 prompt response of the group on the request to produce SM Higgs boson production cross
625 sections and branching ratios for the fine grid of Higgs boson mass points needed for the
626 combination was simply spectacular. We would also like to thank the ATLAS and CMS
627 Higgs working groups for their close involvement in the overall effort and for preparing
628 analysis Workspaces for performing technical exercises as reported in this document.

629 A Brief overview of statistical methods

630 This Appendix briefly accounts for the different statistical approaches aiming to characterise a non-observation of a signal or establish a significant excess of events. We refrain
631 from judgemental statements on the pros and cons of different methods and simply account for what has been used in the past. For a more comprehensive overview one can
632 refer, for example, to Refs. [21, 22]. The methods chosen for the combination in Summer
633 2011 are discussed in more detail in Sections 2 and 3.

634 In the following subsections, the expected Standard Model Higgs event yields will be
635 generically denoted as s , backgrounds as b . These will stand for event counts in one or
636 multiple bins or for unbinned probability density functions, whichever approach is used in
637 an analysis. Predictions for both signal and background yields, prior to the scrutiny of the
638 data entering the statistical analysis, are subject to multiple uncertainties that are handled
639 by introducing nuisance parameters θ , so that signal and background expectations become
640 functions of the nuisances: $s(\theta)$ and $b(\theta)$. The actual observed events will be denoted as
641 *data* or *observation*.

644 A.1 Limits

645 The Bayesian and the classical frequentist, with a number of modifications, are two statistical
646 approaches commonly used in high energy physics for characterising the absence
647 of a signal.

648 Both methods allow one to quantify the level of incompatibility of data with a signal
649 hypothesis, which is expressed as a confidence level (C.L.). It is common to require
650 a 95% C.L. for “excluding” a signal, this is however a convention. The probabilistic
651 interpretation of C.L. as the chance of being right or wrong when stating the non-existence
652 of a signal is not straightforward and the subject of a vast body of literature.

653 In addition, in an analysis targeting a specific signal production mechanism and a
654 particular decay mode, one can also set *approximately* model-independent limits on signal
655 cross section times branching ratio ($\sigma \times \text{BR}$) or *somewhat better defined* limits on cross
656 section times branching ratio times experimental acceptance ($\sigma \times \text{BR} \times \mathcal{A}$). The latter
657 are less useful for testing various theories unless a model of the experimental acceptance
658 \mathcal{A} is also provided.

659 In a combination of multiple analyses sensitive to different signal production mechanisms and different decay modes, presenting results in a form of limits on $\sigma \times \text{BR}$ or
660 $\sigma \times \text{BR} \times \mathcal{A}$ is impossible. The customary alternative for SM Higgs searches is to set limits
661 on a common *signal strength modifier* μ that is taken to change the cross sections of all
662 production mechanisms by exactly the same scale. Decay branching ratios are assumed to
663 be those given by the Standard Model. The Standard Model Higgs is said to be excluded
664 at, say, 95% C.L., when the 95% C.L. limit on μ drops to one, i.e. $\mu_{95\%CL} = 1$. In the
665 next sub-sections, we will follow this convention and discuss limits on the common signal
666 strength modifier μ .

668 **A.1.1 Bayesian approach**

669 In the Bayesian approach, the Bayes theorem is invoked to assign a degree of belief to the
 670 Higgs hypothesis by calculating the posterior “probability density function” $L(\mu)$ on the
 671 signal strength μ :

$$L(\mu) = \frac{1}{C} \int_{\theta} p(\text{data}|\mu s + b) \rho_{\theta}(\theta) \pi_{\mu}(\mu) d\theta. \quad (23)$$

672 The functions $\rho_{\theta}(\theta)$ are *pdfs* describing our prior belief in the scale and description
 673 of the uncertainties on signal and background event yields. The choice of these *pdfs* is
 674 discussed in Section 5. The function $\pi_{\mu}(\mu)$ is the prior on the signal strength, which is
 675 commonly taken to be flat for $\mu \geq 0$ and zero otherwise. Other priors are possible, but
 676 have hardly ever been used in high energy physics. The constant C is set to make the
 677 overall posterior function $L(\mu)$ normalised to unity. Integration over nuisance parameters
 678 in the above equation is known as marginalisation.

679 The Bayesian one-sided 95% C.L. limits on μ are extracted from the following equation:

$$\int_0^{\mu_{95\%CL}} L(\mu) d\mu = 0.95. \quad (24)$$

680 By definition, the Bayesian methodology obeys the likelihood principle since the in-
 681 ference is based on the data alone. The Bayesian approach is among the three methods
 682 described in the PDG.

683 **A.1.2 Frequentist approach and its modifications**

684 *Classical frequentist*

685 The classical frequentist approach is formulated for the case of no systematic uncer-
 686 tainties and begins from defining a test statistic q_{μ} designed to discriminate signal-like
 687 from background-like events. The test statistic compresses all signal-vs-background dis-
 688 criminating information into one number. By the Neyman-Pearson lemma, the ratio of
 689 likelihoods Q is the most powerful discriminator. For a number of reasons, the actual
 690 quantity used is a logarithm of the ratio, or more accurately, $-2\ln Q$:

$$q_{\mu} = -2 \ln \frac{\mathcal{L}(\text{data}|\mu s + b)}{\mathcal{L}(\text{data}|b)}, \quad (25)$$

692 where $\mathcal{L}(\text{data}|rate)$ is simply a product of Poisson probabilities for number of either
 693 *observed* or *simulated* events in each sub-channel, given the expected signal and back-
 694 ground rates. One can see that events with $q_{\mu} > 0$ are more likely to appear under the
 695 *background-only* hypothesis than the *background+signal* assumption.

696 It is to be noted that this test statistic was used by LEP and the Tevatron, but not
 697 at the LHC, where the profile-likelihood test statistic \tilde{q}_{μ} is used (see table 11) due to its
 698 known asymptotic properties (see A.1.3).

699 Having defined the test statistic, next one constructs *pdfs* of the chosen test statistic q_{μ}
 700 under the *signal+background* hypothesis by means of “tossing” toy pseudo-observations
 701 according to the very same Poisson probabilities. Using these *pdfs*, one can then evaluate

702 the probability $P(q_\mu \geq q_\mu^{data} | \mu s + b)$ for the *observed* value q_μ^{data} to be as or less compatible
 703 with the *background+signal* hypothesis. Such a probability is denoted as CL_{s+b} . In the
 704 classical frequentist approach, one says that the signal is excluded at, say, 95% C.L., if
 705 $CL_{s+b} = 0.05$.

706 However, such a definition has a pitfall: by taking the signal strength equal to zero,
 707 one expects, by construction, that $CL_{s+b} \leq 0.05$ with a 5% chance—hence, 5% of all
 708 searches will end up excluding a signal of zero strength. In this case, one must appre-
 709 ciate the actual statistical meaning of what has been observed in such cases: that is, a
 710 downward fluctuation of the background. To prevent, at least partially, our inference of
 711 a signal from such downward fluctuations, a number of solutions have been suggested.

712
 713 *Modifications of the classical frequentist method*

714 • Feldman and Cousins [23] introduced a method of constructing unified (i.e. one/two-
 715 sided) confidence intervals based on the likelihood-ratio test statistic:

$$q_\mu = -2 \ln \frac{\mathcal{L}(data | \mu s + b)}{\mathcal{L}(data | \hat{\mu} s + b)}, \quad \text{with a constraint: } 0 \leq \hat{\mu} \quad (26)$$

716 where $\hat{\mu}$ maximises the likelihood $\mathcal{L}(data | \mu s + b)$. Such construction automatically
 717 protects the limits on signal strength from the undesired effects of downward fluctu-
 718 ations of background, preserves the proper frequentist coverage, and does not suffer
 719 from under-coverage due to having to make flip-flop decisions between reporting
 720 one-sided upper limits (no excess) and two-sided intervals when a significant excess
 721 of events is observed. One can force the FC method to report one-sided limits no
 722 matter what—the price is over-coverage for the cases when one observes an excess
 723 of events. The Feldman-Cousins approach is among the three methods described in
 724 the PDG.

725 • At the time of LEP, the so-called modified frequentist approach was introduced
 726 with the same goal to “protect” our judgement on a very weak signal strength when
 727 downward fluctuations occur [5–7]. In this method, in addition to $CL_{s+b} = P(q_\mu \geq q_\mu^{data} | \mu s + b)$, one also calculates $CL_b = P(q_\mu \geq q_\mu^{data} | b)$, by “tossing” pseudo-data
 728 for *background-only* event rate, and, then calculates the quantity CL_s as the ratio
 729 of these two probabilities:

$$CL_s = \frac{CL_{s+b}}{CL_b}. \quad (27)$$

731 In the modified frequentist approach, it is this value, CL_s , that is required to be less
 732 than or equal to 0.05 in order to declare the 95% C.L. exclusion. By construction,
 733 the CL_s -based limits are one-sided. The price of the protection from background
 734 downward fluctuations is a gradual increase in the over-coverage as one observes
 735 fewer and fewer events. For an observation right on the top of the *background-
 736 only* expectation ($CL_b \sim 0.5$), CL_s is about twice as large as CL_{s+b} . The modified
 737 frequentist approach is among the three methods described in the PDG.

738 • Recently, another approach of Power-Constrained Limits (PCL) was proposed [24].
 739 It prescribes using results from the classical frequentist method ($CL_{s+b} = 0.05$),

unless the observed limit is below the 50%-quantile of the expected *background-only* results (the experimental sensitivity) . This means that the power of the test with respect to the alternative background only hypothesis is not allowed to go below 50%. In this case when a large downward fluctuation is observed, the reported limit is the one corresponding to the experimental sensitivity. By construction, the limit is one-sided. The price of protection from downward fluctuations by imposing the “power constraint” is an over-coverage when one observes downward fluctuations below the experimental sensitivity.

748 *Introducing systematic uncertainties*

750 Systematic uncertainties on signal and background rates, $s(\theta)$ and $b(\theta)$, are introduced
 751 via modifications to the test statistic itself and/or the way pseudo-data are generated. In
 752 the following, the prior *pdf* for the nuisance θ will be written as $\rho(\theta|\tilde{\theta})$, where $\tilde{\theta}$ is the
 753 “nominal” value of the nuisance parameter.

- 754 • One can choose to keep the test statistic given by Eq. 25 or Eq. 26 unchanged and
 755 evaluate them using the *nominal* values of the signal and background rates, i.e. at
 756 $s(\tilde{\theta})$ and $b(\tilde{\theta})$. The effect of systematic uncertainties is then introduced via modifying
 757 $s(\theta)$ and $b(\theta)$ before each pseudo-data set is generated by drawing random numbers
 758 from the $\rho(\theta|\tilde{\theta})$ distributions. This method was first introduced to the field by
 759 Cousins and Highland [25] and is now known as hybrid Bayesian-frequentist, since
 760 the treatment of nuisance parameters in this case is explicitly Bayesian. This is how
 761 nuisance parameters were handled at LEP.
- 762 • At Tevatron, the hybrid Bayesian-frequentist approach to “tossing” pseudo-data
 763 remained the same, but the test statistic was redefined. The Poisson-like likelihoods
 764 can be extended to include the nuisance parameter *pdfs* $\rho(\theta|\tilde{\theta})$

$$\mathcal{L}(\text{data}|\mu, \theta) = \text{Poisson}(\text{data} | \mu \cdot s(\theta) + b(\theta)) \cdot \rho(\theta|\tilde{\theta}) \quad (28)$$

765 Before taking the ratio, both the numerator and denominator likelihoods can be
 766 maximised with respect to nuisance parameters. The test statistic then would take
 767 the following form:

$$q_\mu = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data}|0, \hat{\theta}_0)} \quad (29)$$

768 where $\hat{\theta}_\mu$ and $\hat{\theta}_0$ are maximum likelihood estimators for the *signal+background* hy-
 769 pothesis (with the signal strength factor μ) and for the *background-only* hypothesis
 770 ($\mu = 0$). This is the test statistic used at Tevatron.

- 771 • A one-sided test statistics which does not allow the signal to become negative is the
 772 profile likelihood test statistic [11]

$$\tilde{q}_\mu = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})}, \quad 0 \leq \hat{\mu} \leq \mu \quad (30)$$

773 The pair of parameters $\hat{\mu}$ and $\hat{\theta}$ gives the global maximum of the likelihood. The
 774 additional constraint $\hat{\mu} \leq \mu$ ensures that the obtained limits are one-sided. The
 775 advantage of this test statistic is that its pdf distribution can be approximated by
 776 asymptotic formulae based on Wilks and Wald theorems, as derived in Ref. [11] (see
 777 Appendix A.1.3).

778 • Yet another way to treat nuisance parameters is to re-interpret the systematic un-
 779 certainty *pdfs* $\rho(\theta|\tilde{\theta})$ as posteriors of some *real* or *imaginary* measurements. Such re-
 780 interpretation allows one to build sampling distributions without explicit Bayesian
 781 marginalisation. It is this approach to constructing sampling distributions of the test
 782 statistic that is chosen for the ATLAS+CMS Higgs search combination in Summer
 783 2011. It is described in detail in Section 2.

784 From the overview presented in this section, the CL_s procedure chosen for the summer
 785 2011 combination actually differs in details from the ones used at LEP and Tevatron
 786 (which were also different). For comparison purposes, all the differences are summarised
 787 in Table 11 below. The LEP prescription does not allow one to take full advantage of
 788 the constraints imposed on the nuisance parameters by the data used in the statistical
 789 analysis. The Tevatron and LHC versions of CL_s , though constructed differently, in
 790 practice—as we find—give nearly identical results. The benefit of the LHC-type CL_s is
 791 that it uses a test statistic with the desired asymptotic properties. Also, the sampling
 792 distributions of the test statistic can be built following the pure frequentist language.

Table 11: Comparison of CL_s definitions as used at LEP, Tevatron, and adopted for the summer 2011 Higgs combination at LHC.

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_\mu = -2 \ln \frac{\mathcal{L}(\text{data} \mu, \hat{\theta})}{\mathcal{L}(\text{data} 0, \hat{\theta})}$	no	Bayesian-frequentist hybrid
Tevatron	$q_\mu = -2 \ln \frac{\mathcal{L}(\text{data} \mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data} 0, \hat{\theta}_0)}$	yes	Bayesian-frequentist hybrid
LHC	$\tilde{q}_\mu = -2 \ln \frac{\mathcal{L}(\text{data} \mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data} \hat{\mu}, \hat{\theta})}$	yes ($0 \leq \hat{\mu} \leq \mu$)	frequentist

793 A.1.3 Profile Likelihood Asymptotic Approximation

794 If we remove the physical requirement $\hat{\mu} > 0$ from the test statistic \tilde{q}_μ based on the profile
 795 likelihood ratio (Equation 30) then we find

$$q_\mu = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})}, \quad \hat{\mu} \leq \mu \quad (31)$$

796 Following Wilks theorem, in the asymptotic regime, q_μ is expected to have half a χ^2
 797 distribution for one degree of freedom (under signal+background experiments). The value
 798 of μ that makes

$$\frac{1}{2}q_\mu = 1.35 \quad (32)$$

799 would correspond to a one-sided $CL_{s+b} = 0.05$ probability. Another popular choice is

$$\frac{1}{2}q_\mu = 1.92, \quad (33)$$

800 which is an ad hoc adjustment: it corresponds to $CL_{s+b} = 0.025$ and, hence, would match
 801 $CL_s = 0.05$, when an observation is right on top of the background-only expectations and,
 802 hence, $CL_b = 0.5$.

803 However, with the physical requirement $\hat{\mu} > 0$, the asymptotic behaviour of $f(\tilde{q}_\mu | signal +$
 804 *background*) (where \tilde{q}_μ is the test statistic used in this combination) does not follow half
 805 a χ^2 anymore, yet, it follows a well defined formula [11]

$$f(\tilde{q}_\mu | \mu) = \frac{1}{2} \delta(\tilde{q}_\mu) + \begin{cases} \frac{1}{2} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\tilde{q}_\mu}} e^{-\tilde{q}_\mu/2} & 0 < \tilde{q}_\mu \leq \mu^2/\sigma^2, \\ \frac{1}{\sqrt{2\pi}(2\mu/\sigma)} \exp \left[-\frac{1}{2} \frac{(\tilde{q}_\mu + \mu^2/\sigma^2)^2}{(2\mu/\sigma)^2} \right] & \tilde{q}_\mu > \mu^2/\sigma^2. \end{cases} \quad (34)$$

806 where

$$\sigma^2 = \frac{\mu^2}{q_{\mu,A}} \quad (35)$$

807 $q_{\mu,A}$ is the test statistics evaluated with the Asimov data set, i.e. the expected background
 808 and the nominal nuisance parameters (setting all fluctuations to be zero).

809 In the same reference one can also find asymptotic formulae for $f(\tilde{q}_\mu | background)$ from
 810 which one can easily derive the median expected limits and their bands, using the Asimov
 811 representative data set, without performing any toy Monte Carlo experiment. It is also
 812 shown there that in the asymptotic limit, the two test statistics, \tilde{q}_μ and q_μ (Equations 30
 813 and 31) are equivalent, leading to the same p-values. Which means that in the asymptotic
 814 limit, it is sometimes more convenient to use the simpler asymptotic formulae of q_μ . Using
 815 these formulae one can easily derive asymptotic relations which easily solve for the upper
 816 limit with the CL_s method.

$$CL_s = 0.05 = \frac{1 - \Phi(\sqrt{q_\mu})}{\Phi(\sqrt{q_{\mu,A}}) - \sqrt{q_\mu}} \quad (36)$$

817 Φ^{-1} is the quantile (inverse of the cumulative distribution) of the standard Gaussian. The
 818 median and expected error bands are given by

$$\mu_{up+N} = \sigma(\Phi^{-1}(1 - \alpha\Phi(N)) + N) \quad (37)$$

819 with $\alpha = 0.05$ (μ can be taken as μ_{up}^{med} in the calculation of σ). Note that for $N = 0$ we
 820 find the median expected CL_s limit

$$\mu_{up}^{med} = \sigma\Phi^{-1}(1 - 0.5\alpha) = \sigma\Phi^{-1}(0.975) \quad (38)$$

821 For situations with small numbers of events, the asymptotic result is not guaranteed
 822 and is in fact known to give very biased (over-optimistic) results.

823 **A.2 Quantifying an excess of events**

824 In the case of observing an excess of events, characterisation of it begins with evaluating
 825 the p -value of the upward fluctuation of the background-only hypothesis. This can be
 826 done by “tossing” background-only pseudo-data and building up the corresponding *pdf*
 827 for the test statistic of choice.

828 The four test statistics as given in Equations 25, 29, 26, 30 can be used. The first two
 829 would probably use $\mu = 1$, while the profile likelihood ratio is constructed for $\mu = 0$ and
 830 $\hat{\mu}$ either unconstrained or constrained to be positive, which makes no difference on the
 831 tail of the distribution. For the first two test statistics, observations with a large excess of
 832 events would form a left-hand tail, while the profile likelihood test statistic would stretch
 833 to the right.

834 The p -value, i.e. the probability of getting an observation as or less compatible as
 835 seen in data for the background-only hypothesis, is then defined as $P(q_1 \leq q_1^{data})$ for the
 836 test statistics given by Equations 25, 29 and $P(q_0 \geq q_0^{data})$ for the profile likelihood test
 837 statistic given by Equations 26 and 30.

838 The p -value can be converted into significance Z via either of the two conventions
 839 (one-sided or two-sided normal distribution tail probability):

$$p = \int_Z^\infty \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx \quad (39)$$

$$p = 2 \int_Z^\infty \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx \quad (40)$$

840 In the asymptotic regime the profile likelihood test statistic (Eq. 9) has the very
 841 attractive property of being distributed as a half χ^2 for one degree of freedom, which
 842 allows one to approximately estimate the significance, Z , as defined by Equation 39 from
 843 the following simple formula:

$$Z = \sqrt{q_0^{data}}. \quad (41)$$

844 The asymptotic approximation gives very satisfactory results for significance estima-
 845 tions even when one is far from the asymptotic regime.

846 B Correlations of PDF-associated uncertainties

847 The following tables show the level of correlations between different backgrounds and
848 Standard Model Higgs production modes. Fig. 10 gives correlations between different
849 backgrounds. Fig. 11 show correlations between different Standard Model Higgs produc-
850 tion mechanisms as well as between Higgs production modes and different backgrounds.

851 In the current mode of combination, cells of the same colour are taken to be 100%
852 correlated, while cells with no fill color are assumed to have no correlations. We follow
853 an intuitive rule of thumb that assuming positively 100% correlated errors is more con-
854 servative than weak or negative correlations and that assuming no correlations is more
855 conservative than negatively correlated errors. In general, this is true for signal-signal
856 and signal-background correlations. For background-background correlations, this is also
857 true, except for special cases of deriving (constraining) one background from measuring
858 event rates associated with another one.

859 There is not a simple solution that would cover all possible situations. The choice
860 of congregating all signal and background processes in three major groups based on the
861 prevailing LO initial states is simply a compromise. As one can see from the tables, the
862 choice we made on grouping different processes is sensible and the differences usually
863 imply that we stay on the conservative side.

Backgrounds

	z	w	zz	ww	wz	wγ	wqq	zqq	ggww	ggzz	ttbar	tW	tb	tbq
z	1	0.95	0.67	0.70	0.95	0.9	0.43/0.53	0.08	-0.67	-0.75	-0.74	-0.81	0.59	-0.29
w	0.95	1	0.52/0.69	0.60/0.71	0.88/1.0	0.90/0.80	0.39/0.50	0.08	-0.67	-0.74	-0.73	-0.8	0.57	-0.29
zz	0.67	0.52/0.69	1	0.97	0.54/0.73	0.62	0.78/0.87	-0.09	-0.36	-0.34	-0.17	-0.81	0.9	-0.23
ww	0.70	0.60/0.71	0.97	1	0.63/0.75	0.69	0.80/0.86	-0.02	-0.34	-0.33	-0.20	-0.33	0.94	-0.08
wz	0.95	0.88/1.0	0.54/0.73	0.63/0.75	1	0.9	0.55	0.1	-0.64	-0.71	-0.71	-0.73	0.61	-0.34
wγ	0.9	0.90/0.80	0.62	0.69	0.9	1	0.63/0.53	0.32	-0.44	-0.54	-0.68	0.61	0.61	0
wqq	0.43/0.53	0.39/0.50	0.78/0.87	0.80/0.86	0.55	0.63/0.53	1	0.08	-0.12	-0.12	-0.05	-0.15	0.64	-0.32
zqq	0.08	0.08	-0.09	-0.02	0.1	0.32	0.08	1	0.54	0.36	-0.26	-0.05	-0.03	0.59
ggww	-0.67	-0.67	-0.36	-0.34	-0.64	-0.44	-0.12	0.54	1	0.98	0.65	0.81	-0.28	0.63
ggzz	-0.75	-0.74	-0.34	-0.33	-0.71	-0.54	-0.12	0.36	0.98	1	0.79	0.91	-0.27	0.55
ttbar	-0.74	-0.73	-0.17	-0.20	-0.71	-0.68	-0.05	-0.26	0.65	0.79	1	0.97	-0.12	0.17
tW	-0.81	-0.8	-0.81	-0.33	-0.73	0.61	-0.15	-0.05	0.65	0.91	0.97	1	-0.25	0.31
tb	0.59	0.57	0.9	0.94	0.61	0.61	0.64	-0.03	-0.28	-0.27	-0.12	-0.25	1	0.04
tbq	-0.29	-0.29	-0.23	-0.08	-0.34	0	-0.32	0.59	0.63	0.55	0.17	0.31	0.04	1

Figure 10: Correlations of PDF-associated errors between different backgrounds.

$m_H=120$

	ggH	VBF	WH	ZH	ttH	z	W+/W-	zz	WW	WZ	Wy	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.57	-0.23	-0.14	-0.6	0.01	0.03	0.02	-0.20	0.04	0.23	-0.14	0.95	0.47	0.28	-0.35	-0.12	-0.24	0.52
VBF	-0.57	1	0.63/0.73	0.76	0.09	0.43	0.26/0.41	0.79	0.72	0.28/0.43	0.28/0.37	0.52/0.71	-0.41	-0.47	-0.4	-0.10	-0.28	0.65	-0.25
WH	-0.23	0.63/0.73	1	0.93	0	0.62	0.52/0.64	0.92	0.93	0.65/0.58	0.65/0.56	0.79/0.95	-0.02	-0.29	-0.28	-0.15	-0.28	0.99/0.77	0.05/-0.30
ZH	-0.14	0.76	0.93	1	0.03	0.64	0.53/0.66	0.99	0.99	0.55/0.71	0.63	0.83	-0.07	-0.31	-0.3	-0.14	-0.28	0.93	-0.14
ttH	-0.6	0.09	0	0.03	1	-0.61	-0.6	0	-0.05	-0.58	-0.64	0.04	-0.5	0.03	0.56	0.94	0.84	0.02	-0.07

 $m_H=160$

	ggH	VBF	WH	ZH	ttH	z	W+/W-	zz	WW	WZ	Wy	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.61	-0.29	-0.35	-0.24	-0.32	-0.32	-0.35	-0.29	-0.29	-0.06	-0.12	0.9	0.82	0.68	0.1	0.33	-0.27	0.67
VBF	-0.61	1	0.62	0.74	0.2	0.35	0.19/0.34	0.75	0.66	0.20/0.36	0.19/0.28	0.46/0.70	-0.47	-0.46	-0.37	-0.03	-0.22	0.6	-0.29
WH	-0.29	0.62	1	0.93	0.1	0.55	0.52	0.9	0.93	0.56	0.56	0.93	-0.07	-0.26	-0.23	-0.07	-0.21	1	0.03
ZH	-0.35	0.74	0.93	1	0.16	0.54	0.43/0.58	0.98	0.97	0.45/0.63	0.52	0.93	-0.14	-0.29	-0.25	-0.04	-0.2	0.91	-0.16
ttH	-0.24	0.2	0.1	0.16	1	-0.59	-0.58	0.03	-0.03	-0.56	-0.62	-0.05	-0.54	0.33	0.51	0.92	0.8	0.04	-0.12

 $m_H=200$

	ggH	VBF	WH	ZH	ttH	z	W+/W-	zz	WW	WZ	Wy	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.5	-0.26	-0.3	0.13	-0.59	-0.59	-0.36	-0.32	-0.55	-0.33	-0.11	0.68	0.98	0.93	0.5	0.69	-0.27	0.67
VBF	-0.5	1	0.60/0.73	0.72	0.26	0.28	0.13/0.28	0.7	0.62	0.15/0.30	0.12/0.20	0.40/0.69	-0.52	-0.44	-0.34	0.02	-0.17	0.55	-0.32
WH	-0.26	0.60/0.73	1	0.92	0.2	0.44	0.44/0.38	0.89	0.86	0.48/0.41	0.47/0.36	0.78/0.74	-0.15	-0.24	-0.2	0	-0.15	0.98/0.69	0
ZH	-0.3	0.72	0.92	1	0.24	0.46	0.34/0.51	0.95	0.93	0.37/0.56	0.43	0.74/0.85	-0.19	-0.3	-0.22	0.02	-0.14	0.88	-0.2
ttH	0.13	0.26	0.2	0.24	1	-0.57	-0.57	0.03	-0.03	-0.55	-0.63	0.03	-0.56	0.29	0.48	0.9	0.78	0.03	-0.15

 $m_H=300$

	ggH	VBF	WH	ZH	ttH	z	W+/W-	zz	WW	WZ	Wy	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.16	-0.08	-0.09	0.66	-0.8	-0.79	-0.31	-0.31	-0.76	-0.64	-0.11	0.12	0.9	0.97	0.92	0.98	-0.23	0.43
VBF	-0.16	1	0.53/0.72	0.68	0.29	0.16	0.04/0.19	0.6	0.51	0.05/0.20	0.03	0.27/0.65	-0.57	-0.42	-0.31	0.09	-0.11	0.44	-0.39
WH	-0.08	0.53/0.72	1	0.92	0.23	0.32	0.20/0.36	0.82	0.80/0.71	0.34/0.37	0.30/0.20	0.68/0.64	-0.24	-0.22	-0.16	0.1	-0.06	0.89	-0.06
ZH	-0.09	0.68	0.92	1	0.27	0.32	0.20/0.38	0.87	0.82	0.21/0.44	0.26	0.61/0.81	-0.29	-0.25	-0.18	0.11	-0.07	0.79	-0.28
ttH	0.66	0.29	0.23	0.27	1	-0.6	-0.59	-0.05	-0.12	-0.58	-0.65	-0.04	-0.58	0.28	0.47	0.9	0.78	-0.04	-0.17

 $m_H=500$

	ggH	VBF	WH	ZH	ttH	z	W+/W-	zz	WW	WZ	Wy	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	0.09	0.05	0.05	0.91	-0.78	-0.76	-0.25	-0.28	-0.75	-0.73	-0.13	-0.3	0.63	0.78	0.99	0.97	-0.2	0.15
VBF	0.09	1	0.38/0.70	0.6	0.24	0.073	0.0/0.12	0.47	0.37	0/0.12	-0.08	0.11/0.59	-0.58	-0.4	-0.29	0.1	-0.08	0.29	-0.48
WH	0.05	0.38/0.70	1	0.9	0.16	0.19	0.09/0.26	0.69	0.64	0.20/0.20	0.14/0.09	0.55/0.53	-0.3	-0.21	-0.14	0.14	-0.02	0.73	-0.12
ZH	0.05	0.6	0.9	1	0.16	0.22	0.09/0.29	0.77	0.68	0.10/0.34	0.12	0.44/0.74	-0.35	-0.27	-0.19	0.13	-0.05	0.65	-0.37
ttH	0.91	0.24	0.16	0.16	1	-0.63	-0.61	-0.18	-0.23	-0.61	-0.69	-0.14	-0.57	0.3	0.48	0.89	0.79	-0.15	-0.14

Figure 11: Correlations of PDF-associated errors between different SM Higgs production mechanisms as well as between Higgs production modes and different backgrounds.

864 **C Systematic errors in exclusive 0/1/2-jet bins for**
865 **$gg \rightarrow H$ process**

866 The consensus of theorists working in the context of the LHC Higgs Cross Section Group
867 is that it is the *inclusive* cross sections $\sigma_{\geq 0}$, $\sigma_{\geq 1}$, $\sigma_{\geq 2}$ that should be assumed to have
868 independent theoretical errors. Hence, the three independent nuisance parameters are
869 to be associated with uncertainties on these *inclusive* cross sections. These nuisance
870 parameters are labelled as $QCDscale_{ggH}$, $QCDscale_{ggH1in}$, $QCDscale_{ggH2in}$.

871 However, the actual Higgs search analyses are often split into *exclusive* final states
872 with 0, 1, and 2 jets. Such a choice is dictated by background considerations and—for
873 purposes of the combination of analyses—the necessity to keep all observations mutually
874 exclusive. This section defines the agreed-on procedure for assigning systematic errors on
875 the *exclusive* final states and their cross-channel correlations.

876 Note that the overall errors on the exclusive final states are larger than the error on
877 the total cross section. Also, it is important to note that some κ 's are greater than one,
878 while the others are smaller. This is a manifestation of negative correlations of errors
879 between exclusive final states.

880 **Prescription summary**

	Take the total $gg \rightarrow H$ cross section from the Higgs cross section group Yellow Report (YR). Convert the relative QCD scale uncertainties ϵ_+ and ϵ_- (both are positive numbers) from YR to log-normal κ .	σ_{gg}^{YR} $\kappa^{YR} = \sqrt{\exp(\epsilon_+) \cdot \exp(\epsilon_-)}$
	Acceptance of events into 0, 1, 2 jet bins is evaluated at the level of the full detector simulation. The associated per-bin effective cross sections to be used in the analysis are:	$\sigma_{gg}^{YR} \cdot \mathcal{A}_0^{det}$ $\sigma_{gg}^{YR} \cdot \mathcal{A}_1^{det}$ $\sigma_{gg}^{YR} \cdot \mathcal{A}_2^{det}$
881	Using the parton level fixed-order program HNNLO and parton-level cuts closely resembling lepton/jet/MET cuts in the analysis, calculate <i>exclusive</i> cross sections for the default QCD scale (TBD) and their variation by changing the scale by a factor of 2 up/down. From these numbers, construct inclusive cross sections and derive their uncertainties. Replace the total CS error with that from YR.	$\sigma_0, \sigma_1, \sigma_2$ $\sigma_{\geq 0} = \sigma_0 + \sigma_1 + \sigma_2,$ $\sigma_{\geq 1} = \sigma_1 + \sigma_2,$ $\sigma_{\geq 2} = \sigma_2$ $\kappa_{\geq 0}, \kappa_{\geq 1}, \kappa_{\geq 2}$ $\kappa_{\geq 0} \rightarrow \kappa_{\geq 0}^{YR}$
	Calculate exclusive theoretical 0, 1, 2 jet bin fractions:	$f_0 = \sigma_0 / \sigma_{\geq 0}$ $f_1 = \sigma_1 / \sigma_{\geq 0}$ $f_2 = \sigma_2 / \sigma_{\geq 0}$

Nuisance parameter name	0-jet bin	1-jet bin	2-jet bin
QCDscale_ggH	$\kappa = (\kappa^{YR})^{\frac{1}{f_0}}$	-	-
882 QCDscale_ggH1in	$\kappa = (\kappa_{\geq 1})^{-\frac{f_1+f_2}{f_0}}$	$\kappa = (\kappa_{\geq 1})^{-\frac{f_1+f_2}{f_1}}$	-
QCDscale_ggH2in	-	$\kappa = (\kappa_{\geq 2})^{-\frac{f_2}{f_1}}$	$\kappa = \kappa_{\geq 2}$

883 Numerical example

884 The following tables give a numerical example for $m_H = 160 \text{ GeV}/c^2$. HNNLO cuts: two
 885 leptons with $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$; MET $> 30 \text{ GeV}$ (p_T of the two-neutrino system);
 886 consider only those jets that have $p_T > 30 \text{ GeV}$ and $|\eta| < 3.0$.

Convert the relative QCD scale uncertainties ϵ_+ and ϵ_- (both are positive numbers) from YR to log-normal κ .	$\epsilon_+ = 0.109, \epsilon_- = 0.072$ $\kappa^{YR} = \sqrt{\exp(0.109) \cdot \exp(0.072)} = 1.095$
Using the parton level fixed-order program HNNLO and parton-level cuts closely resembling lepton/jet/MET cuts in the analysis, calculate <i>exclusive</i> cross sections for the default QCD scale (TBD) and their variation by changing the scale by a factor of 2 up/down. From these numbers, construct inclusive cross sections and derive their uncertainties. Replace the total CS error with that from YR.	$\sigma_{\geq 0} = [\text{default Q}]_{[2Q]}^{[Q/2]} = 41.19_{37.11}^{45.55}$ $\sigma_{\geq 1} = [\text{default Q}]_{[2Q]}^{[Q/2]} = 12.59_{10.11}^{15.45}$ $\sigma_{\geq 2} = [\text{default Q}]_{[2Q]}^{[Q/2]} = 2.39_{1.51}^{3.95}$ $\kappa_{\geq 0} = \sqrt{\frac{45.55}{41.19} \cdot \frac{41.19}{37.11}} = \sqrt{1.11 \cdot 1.11} = 1.11$ $\kappa_{\geq 1} = \sqrt{\frac{15.45}{12.59} \cdot \frac{12.59}{10.11}} = \sqrt{1.25 \cdot 1.23} = 1.24$ $\kappa_{\geq 2} = \sqrt{\frac{3.95}{2.39} \cdot \frac{2.39}{1.51}} = \sqrt{1.58 \cdot 1.65} = 1.62$ Replace $\kappa_{\geq 0} = 1.11$ with 1.095 from YR
Calculate exclusive theoretical 0, 1, 2 jet bin fractions:	$f_0 = \sigma_0 / \sigma_{\geq 0} = 0.69$ $f_1 = \sigma_1 / \sigma_{\geq 0} = 0.25$ $f_2 = \sigma_2 / \sigma_{\geq 0} = 0.06$

Nuisance name	0-jet bin	1-jet bin	2-jet bin
QCDscale_ggH	$\kappa = (\kappa^{YR})^{\frac{1}{f_0}} = 1.14$	-	-
QCDscale_ggH1in	$\kappa = (\kappa_{\geq 1})^{-\frac{f_1+f_2}{f_0}} = 0.91$	$\kappa = (\kappa_{\geq 1})^{-\frac{f_1+f_2}{f_1}} = 1.30$	-
QCDscale_ggH2in	-	$\kappa = (\kappa_{\geq 2})^{-\frac{f_2}{f_1}} = 0.89$	$\kappa = \kappa_{\geq 2} = 1.62$

889 **Derivation**

890 We start out from assuming that errors are not too large and we can relate the log-normal and
 891 relative errors as follows: $\kappa_{\geq n} = \exp(\epsilon_{\geq n})$. Then, variations in cross sections $\sigma_{\geq 0}$, $\sigma_{\geq 1}$, $\sigma_{\geq 2}$ are
 892 independent and can be written as

893
$$\tilde{\sigma}_{\geq 0} = \sigma_{\geq 0} \cdot (\kappa_{\geq 0})^x = \sigma_{\geq 0} \cdot \exp(\epsilon_{\geq 0} \cdot x) = \sigma_{\geq 0} (1 + \epsilon_{\geq 0} \cdot x),$$

895
$$\tilde{\sigma}_{\geq 1} = \sigma_{\geq 1} \cdot (\kappa_{\geq 1})^y = \sigma_{\geq 1} \cdot \exp(\epsilon_{\geq 1} \cdot y) = \sigma_{\geq 1} (1 + \epsilon_{\geq 1} \cdot y),$$

898
$$\tilde{\sigma}_{\geq 2} = \sigma_{\geq 2} \cdot (\kappa_{\geq 2})^z = \sigma_{\geq 2} \cdot \exp(\epsilon_{\geq 2} \cdot z) = \sigma_{\geq 2} (1 + \epsilon_{\geq 2} \cdot z),$$

899 where $\epsilon_{\geq n}$ are relative errors and x, y, z are independent nuisance parameters with normal
 900 distributions).

902
$$\tilde{\sigma}_0 = \tilde{\sigma}_{\geq 0} - \tilde{\sigma}_{\geq 1}$$

904
$$= \sigma_{\geq 0} (1 + \epsilon_{\geq 0} \cdot x) - \sigma_{\geq 1} (1 + \epsilon_{\geq 1} \cdot y)$$

906
$$= (\sigma_{\geq 0} - \sigma_{\geq 1}) + \sigma_{\geq 0} \epsilon_{\geq 0} \cdot x - \sigma_{\geq 1} \epsilon_{\geq 1} \cdot y$$

908
$$= \sigma_0 + \sigma_0 \frac{1}{f_0} \epsilon_{\geq 0} \cdot x - \sigma_0 \frac{f_1 + f_2}{f_0} \epsilon_{\geq 1} \cdot y$$

910
$$= \sigma_0 \cdot \left(1 + \frac{1}{f_0} \epsilon_{\geq 0} \cdot x - \frac{f_1 + f_2}{f_0} \epsilon_{\geq 1} \cdot y\right)$$

912
$$= \sigma_0 \cdot \left(1 + \frac{1}{f_0} \epsilon_{\geq 0} \cdot x\right) \cdot \left(1 - \frac{f_1 + f_2}{f_0} \epsilon_{\geq 1} \cdot y\right)$$

914
$$= \sigma_0 \cdot e^{\frac{1}{f_0} \epsilon_{\geq 0} \cdot x} \cdot e^{-\frac{f_1 + f_2}{f_0} \epsilon_{\geq 1} \cdot y}$$

916
$$= \sigma_0 \left[(e^{\epsilon_{\geq 0}})^{\frac{1}{f_0}} \right]^x \cdot \left[(e^{\epsilon_{\geq 1}})^{-\frac{f_1 + f_2}{f_0}} \right]^y$$

918
$$= \sigma_0 \left[(\kappa_{\geq 0})^{\frac{1}{f_0}} \right]^x \cdot \left[(\kappa_{\geq 1})^{-\frac{f_1 + f_2}{f_0}} \right]^y,$$

919 from where one can see that the exclusive 0-jet bin cross section is subject to uncertainties
 920 driven by two independent nuisance parameters x and y and their effect can be written as
 921 log-normal with κ 's recalculated from the original errors $\kappa_{\geq n}$ on *inclusive* cross sections and
 922 *exclusive* fractions f_n .

923 The effect of nuisance parameters on the *exclusive* cross section σ_1 can be calculated in the
 924 exact same manner:

925
$$\tilde{\sigma}_1 = \tilde{\sigma}_{\geq 1} - \tilde{\sigma}_{\geq 2} = \dots = \sigma_1 \left[(\kappa_{\geq 1})^{\frac{f_1 + f_2}{f_1}} \right]^y \cdot \left[(\kappa_{\geq 2})^{-\frac{f_2}{f_1}} \right]^z.$$

930 **D Technical tools**

931 Implementation of the statistical procedures described above requires a few ingredients: the
 932 data themselves, the ability to evaluate the likelihood function at arbitrary parameter points
 933 (μ, θ) given an arbitrary dataset, the ability to generate pseudo-data for an arbitrary parameter
 934 point, and a prior $\pi(\mu, \theta)$ for Bayesian and hybrid methods. This implies that we must have
 935 the probability model $\mathcal{L}(\text{data}_c|\mu, \theta)$ and not just the observed likelihood function. Providing the
 936 full probability model for a broad class of models that may describe binned or unbinned data
 937 parametrised in $\mathcal{O}(50)$ parameters is challenging and requires dedicated technology. The RooFit
 938 and RooStats projects have been developed to meet this challenge. RooFit, which originated
 939 in the BaBar experiment, provides the modelling language and the software interfaces and
 940 implementation for representing the data and the probability model, as well as the ability to
 941 generate pseudo data from the model and find the maximum likelihood estimates $\hat{\mu}$, $\hat{\theta}$, and $\hat{\theta}(\mu)$
 942 via MINUIT [26]. RooStats provides higher-level statistical tools for various statistical methods,
 943 including the ones outlined above [19].

944 The probability models for the individual channels (indexed by c) $\mathcal{L}_c(\text{data}_c|\mu, \theta)$ have been
 945 implemented in software using the RooFit modelling language, often with the aid of dedicated
 946 scripting or factories that construct models of a specific form. A class called `ModelConfig` stores
 947 the meta-data necessary for the RooStats statistical tools to use the model in a generic way.
 948 The full structure is managed by a class called `RooWorkspace`, which can be saved into a ROOT
 949 file using the ROOT persistency and I/O technology.

950 The individual probability models $\mathcal{L}_c(\text{data}_c|\mu, \theta)$ are formed by individual analysis groups
 951 and stored in these workspace files. The combined model is formed using a `RooSimultaneous`
 952 object that associates the individual datasets and model terms and identifies the common pa-
 953 rameter of interest μ , the nuisance parameters for the experimental systematics common within
 954 an experiment, and the nuisance parameters for theoretical uncertainties that are common to
 955 ATLAS and CMS

$$\mathcal{L}(\text{data}|\mu, \theta) = \prod_c \mathcal{L}_c(\text{data}_c|\mu, \theta) . \quad (42)$$

956 The correct description of the correlated effect of a common source of uncertainty requires
 957 coordination of the parametrisation between the different channels. Some level of customisation
 958 is possible post-facto, though we prefer the original workspace to be parametrised appropriately.

959 References

- 960 [1] The ATLAS Experiment at the CERN Large Hadron Collider. *JINST*, 3:S08003, 2008.
- 961 [2] S. Chatrchyan et al. The cms experiment at the cern lhc. *JINST*, 3:S08004, 2008.
- 962 [3] Further investigations of ATLAS Sensitivity to Higgs Boson Production in different assumed
963 LHC scenarios. (ATL-PHYS-PUB-2011-001), 2011.
- 964 [4] The CMS physics reach for searches at 7 TeV. (CMS NOTE 2010/008), 2010.
- 965 [5] A. L. Read. Presentation of search results: the CLs technique. *J. Phys. G: Nucl. Part. Phys.*, 28, 2002.
- 967 [6] A. L. Read. Modified frequentist analysis of search results (the CLs method). *in Proceedings*
968 *of the First Workshop on Confidence Limits, CERN, Geneva, Switzerland*, 2000.
- 969 [7] Thomas Junk. Confidence level computation for combining searches with small statistics.
970 *Nucl.Instrum.Meth.*, A434:435–443, 1999.
- 971 [8] W. Fisher. Collie: A confidence level limit evaluator. D0 note 5595, June 2009.
- 972 [9] W. Fisher. Systematics and limit calculations. Report No. FERMILAB-TM-2386-E, 2006.
- 973 [10] Tom Junk. Sensitivity, Exclusion and Discovery with Small Signals, Large Backgrounds,
974 and Large Systematic Uncertainties. CDF/DOC/STATISTICS/PUBLIC/8128, October
975 2007.
- 976 [11] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for
977 likelihood-based tests of new physics. *Eur.Phys.J.*, C71:1554, 2011.
- 978 [12] K. Cranmer. Statistical challenges for searches for new physics at the lhc. *Proceedings of*
979 *Phystat05, Oxford University Press, Editors Louis Lyons,Muge Karagoz Unel*, pages pp.
980 112–124, 2005.
- 981 [13] S.S. Wilks. The large-sample distribution of the likelihood ratio for testing composite
982 hypotheses. *Ann. Math. Statist.*, 9:pp. 60–62, 1938.
- 983 [14] Eilam Gross and Ofer Vitells. Trial factors for the look elsewhere effect in high en-
984 ergy physics. *The European Physical Journal C - Particles and Fields*, 70:525–530, 2010.
985 10.1140/epjc/s10052-010-1470-8.
- 986 [15] R.B. Davies. Hypothesis testing when a nuisance parameter is present only under the
987 alternative. *Biometrika*, 74:pp. 33–43, 1987.
- 988 [16] CTEQ Collaboration. <http://cteq.org>.
- 989 [17] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, and
990 R. Tanaka (Eds.). Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables.
991 *CERN-2011-002*, CERN, Geneva, 2011.
- 992 [18] The TEVNPH Working Group (for CDF and D0 collaborations). Combined cdf and d0
993 upper limits on standard model higgs boson production with up to 8.2 fb^{-1} of data.
994 *FERMILAB-CONF-11-044-E, CDF Note 10441, D0 Note 6184*, March 15, 2011.

995 [19] Lorenzo Moneta, Kevin Belasco, Kyle Cranmer, Alfio Lazzaro, Danilo Piparo, et al. The
996 RooStats Project. *PoS*, ACAT2010:057, 2010. [arXiv:1009.1003].

997 [20] Chen, M. and Korytov, A. Limits and signifcance.
998 <https://mschen.web.cern.ch/mschen/LandS/>.

999 [21] G. Cowan. Statistical Data Analysis. *Clarendon Press, Oxford*, 1998.

1000 [22] K. Nakamura et al. Particle Data Group. *J. Phys. G*, 37:075021, 2010.

1001 [23] Robert D. Cousins Gary J. Feldman. Unified approach to the classical statistical analysis
1002 of small signals. *Phys. Rev. D*, 57(7):3873–3889, 1998.

1003 [24] G. Cowan, K. Cranmer, E. Gross, and O. Vitells. Power-Constrained Limits. 2011.
1004 [arXiv:1105.3166].

1005 [25] Robert D. Cousins and Virgil L. Highland. Incorporating systematic uncertainties into an
1006 upper limit. *Nucl.Instrum.Meth.*, A320:331–335, 1992. Revised version.

1007 [26] Wouter Verkerke. Statistical Software for the LHC. *PHYSTAT-LHC Workshop on Statis-
1008 tical Issues for LHC Physics*, 2008. oai:cds.cern.ch:1021125.
1009 <http://cdsweb.cern.ch/record/1099988>.