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Abstract

In this note, we report the results of the technical combination exercises con-
ducted by the group during Winter-Spring 2011 and summarize the decisions taken
in preparation for the statistical combination of the Standard Model Higgs boson
searches at the LHC. The procedure to be used for the combination in Summer 2011
is explicitly detailed to avoid potential biases from decisions taken after the data
have been collected.
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1 Introduction1

The discovery of the mechanism for electroweak symmetry breaking is one of the keystones2

of the Large Hadron Collider (LHC) physics program. By summer of 2011, ATLAS [1]3

and CMS [2] will have results with over 1 fb−1 of data that should allow LHC to make very4

strong statements on the Standard Model (SM) Higgs boson in a wide mass range [3, 4].5

In December of 2010, the LHC Higgs Combination Group (LHC-HCG) was formed6

with the aim of preparing for a combination of ATLAS and CMS SM Higgs search results.7

This report summarises the efforts of the LHC-HCG over the last few months towards8

this goal. The outline of the report is as follows:9

• Sections 2 and 3 define the procedures for characterising exclusion of a signal or an10

observation of excesses to be used for the combination in summer 2011.11

• Section 4 defines Higgs mass points for which the ATLAS+CMS combination is12

expected to be performed.13

• Then, in Section 5, we summarise which systematic errors will be correlated between14

ATLAS and CMS and how the errors will be modelled in general.15

• In Section 6, we outline the expected format of presenting the final results.16

• In Section 7, we document the results of the technical exercises with toy analysis17

models (synchronisation and validation).18

• After giving a summary, we make a few closing remarks on the overall experience19

of the last six months and an outlook for the future.20

2 Limit setting procedure for the summer 201121

In this section, we summarise the arrived-at procedure for computing exclusion limits,22

which is based on the modified frequentist method, often referred to as CLs [5–10]. To23

fully define the method, we specify the choice of the test statistic and how we treat24

nuisance parameters in the construction of the test statistic and in generating pseudo-25

data. To put the method in a broader context, a brief overview of statistical methods26

used in high energy physics is given in Appendix A.27

In this section, the expected SM Higgs boson event yields will be generically denoted28

as s, backgrounds—as b. These will stand for event counts in one or multiple bins or for29

unbinned probability density functions, whichever approach is used in an analysis. It has30

become customary to express null results of the SM-like Higgs searches as a limit on a31

signal strength modifier µ (also referred to as R) that is taken to change the SM Higgs32

boson cross sections of all production mechanisms by exactly the same scale µ. Note that33

the decay branching ratios are assumed to be unchanged.34

Predictions for both signal and background yields, prior to the scrutiny of the observed35

data entering the statistical analysis, are subject to multiple uncertainties that are handled36

by introducing nuisance parameters θ, so that signal and background expectations become37

functions of the nuisance parameters: s(θ) and b(θ).38
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All sources of uncertainties are taken to be either 100%-correlated (positively or nega-39

tively) or uncorrelated (independent). Partially correlated errors are either broken down40

to sub-components that can be said to be either 100% correlated or uncorrelated, or41

declared to be 100% / 0% correlated, whichever is believed to be appropriate or more42

conservative. This allows us to include all constraints in the likelihood functions in a43

clean factorised form.44

The systematic error pdfs ρ(θ|θ̃), where θ̃ is the default value of the nuisance param-45

eter, reflect our degree of belief on what the true value of θ might be. Both the form of46

these pdfs to be used in the combination and the question of which errors are to be taken47

as correlated between ATLAS and CMS are discussed in detail in Section 5.48

Next, we take a conceptual step to re-interpret systematic error pdfs ρ(θ|θ̃) as posteri-49

ors arising from some real or imaginary measurements θ̃, as given by the Bayes’ theorem:50

51

ρ(θ|θ̃) ∼ p(θ̃ | θ) · πθ(θ), (1)

where πθ(θ) functions are hyper-priors for those “measurements”. As will be shown later,52

the pdfs we chose to work with (normal, log-normal, gamma distribution) can be easily53

re-formulated in such a context, while keeping πθ(θ) flat.54

Such a shift in the point of view allows one to represent all systematic errors in a55

frequentist context. By writing a systematic error pdf as the posterior ρ(θ|θ̃) constructed56

from a fictional auxiliary “measurement”, the pdf p(θ̃ | θ) for that auxiliary measurement57

can be used to constrain the likelihood of the main measurement in a frequentist calcu-58

lation. Furthermore, the auxiliary “measurement” pdf p(θ̃ | θ) can be used to construct59

sampling distributions of the test statistic following the pure frequentist language (in con-60

trast to the Bayesian-frequentist hybrid used at LEP and Tevatron—see Appendix A for61

details).62

The following enumerated list specifies explicitly the entire procedure.63

2.1 Observed limits64

1. Construct the likelihood function L(data|µ, θ)65

L(data |µ, θ) = Poisson ( data |µ · s(θ) + b(θ) ) · p(θ̃|θ) . (2)

Here “data” represents either the actual experimental observation or pseudo-data66

used to construct sampling distributions to be discussed further below. The pa-67

rameter µ is the signal strength modifier and θ represents the full suite of nuisance68

parameters.69

Poisson ( data |µs+ b ) stands either for a product of Poisson probabilities to observe70

ni events in bins i:71 ∏
i

(µsi + bi)
ni

ni!
e−µsi−bi , (3)

or for an unbinned likelihood over k events in the data sample:72

k−1
∏
i

(µSfs(xi) +Bfb(xi)) · e−(µS+B) . (4)
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In the latter equation, fs(x) and fb(x) are pdfs of signal and background of some73

observable(s) x, while S and B are total event rates expected for signal and back-74

grounds.75

2. To compare the compatibility of the data with the background-only and signal+background76

hypotheses, where the signal is allowed to be scaled by some factor µ, we construct77

the test statistic q̃µ [11] based on the profile likelihood ratio:78

q̃µ = −2 ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
, with a constraint 0 ≤ µ̂ ≤ µ (5)

where θ̂µ refers to the conditional maximum likelihood estimators of θ, given the79

signal strength parameter µ and “data” that, as before, may refer to the actual80

experimental observation or pseudo-data (toys). The pair of parameter estimators81

µ̂ and θ̂ correspond to the global maximum of the likelihood.82

The lower constraint 0 ≤ µ̂ is dictated by physics (signal rate is positive), while83

the upper constraint µ̂ ≤ µ is imposed by hand in order to guarantee a one-sided84

(not detached from zero) confidence interval. Physics-wise, this means that upward85

fluctuations of the data such that µ̂ > µ are not considered as evidence against the86

signal hypothesis, namely a signal with strength µ.87

Note that this definition of the test statistic differs from what has been used at88

LEP (where “profiling” of systematic errors was not used) and at Tevatron (where89

systematic errors were profiled, but µ in the denominator was fixed at zero). See90

Appendix A for details.91

3. Find the observed value of the test statistic q̃obsµ for the given signal strength modifier92

µ under test.93

4. Find values of the nuisance parameters θ̂obs0 and θ̂obsµ best describing the experi-94

mentally observed data (i.e. maximising the likelihood as given in Eq. 2), for the95

background-only and signal+background hypotheses, respectively.96

5. Generate toy Monte Carlo pseudo-data to construct pdf s f(q̃µ|µ, θ̂obsµ ) and f(q̃µ|0, θ̂obs0 )97

assuming a signal with strength µ in the signal+background hypothesis and for the98

background-only hypothesis (µ = 0). These distributions are shown in Fig. 1. Note,99

that for the purposes of generating a pseudo-dataset, the nuisance parameters are100

fixed to the values θ̂obsµ or θ̂obs0 obtained by fitting the observed data, but are allowed101

to float in fits needed to evaluate the test statistic. This way, in which the nuisance102

parameters are fixed to their maximum likelihood estimates, has good coverage103

properties [12].104

6. Having constructed f(q̃µ|µ, θ̂obsµ ) and f(q̃µ|0, θ̂obs0 ) distributions, we define two p-105

values to be associated with the actual observation for the signal+background and106

background-only hypotheses, pµ and pb:107

pµ = P ( q̃µ ≥ q̃obsµ | signal+background) =

∫ ∞
q̃obsµ

f(q̃µ|µ, θ̂obsµ ) dq̃µ , (6)

5



~

~
~

Figure 1: Test statistic distributions for ensembles of pseudo-data generated for sig-
nal+background and background-only hypotheses. See the text for definitions of the test
statistic and methodology of generating pseudo-data.

108

1− pb = P ( q̃µ ≥ q̃obsµ | background-only) =

∫ ∞
qobs0

f(q̃µ|0, θ̂obs0 ) dq̃µ , (7)

and calculate CLs(µ) as a ratio of these two probabilities 1
109

CLs(µ) =
pµ

1− pb
(8)

7. If, for µ = 1, CLs ≤ α, we would state that the SM Higgs boson is excluded110

with (1 − α) CLs confidence level (C.L.). It is known that the CLs method gives111

conservative limits, i.e. the actual confidence level is higher than (1 − α). See112

Appendix A for more details.113

8. To quote the 95% Confidence Level upper limit on µ, to be further denoted as114

µ95%CL, we adjust µ until we reach CLs = 0.05.115

2.2 Expected limits116

The most straightforward way for defining the expected median upper-limit and ±1σ and117

±2σ bands for the background-only hypothesis is to generate a large set of background-118

1Note that we define pb as pb = P ( q̃µ < q̃obsµ |background-only), excluding the point q̃µ = q̃obsµ . With
these definitions one can identify pµ with CLs+b and pb with 1− CLb.
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only pseudo-data and calculate CLs and µ95%CL for each of them, as if they were real data119

(Fig. 2 (left)). Then, one can build a cumulative probability distribution of results by120

starting integration from the side corresponding to low event yields (Fig. 2 (right)). The121

point at which the cumulative probability distribution crosses the quantile of 50% is the122

median expected value. The ±1σ (68%) band is defined by the crossings of the 16% and123

84% quantiles. Crossings at 2.5% and 97.5% define the ±2σ (95%) band.124

Despite being logically very straightforward, this prescription is not too practical from125

the computational point of view due to the high CPU demand. If N is the number of126

“toys” being generated in the internal loop of calculations of the desired quantity and127

M is a number of pseudo-data sets for which such computation is performed, then the128

number of times the likelihoods would have to be evaluated in such a linear procedure is129

N ·M .130

To save on the CPU consumption, we use the fact that the distributions of the test131

statistic for a given µ do not depend on the pseudo-data, so they can be computed only132

once. The computation of the p-values for each pseudo-data then requires the test statistic133

to be evaluated only once for each trial value of µ, and the total number of evaluations is134

proportional to N +M instead of N ·M .135
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Figure 2: (Left) An example of differential distribution of possible limits on µ for the
background-only hypothesis (s = 1, b = 1, no systematic errors). (Right) Cumulative
probability distribution of the plot on the left with 2.5%, 16%, 50%, 84%, and 97.5%
quantiles (horizontal lines) defining the median expected limit as well as the ±1σ (68%)
and ±2σ (95%) bands for the expected value of µ for the background-only hypothesis.

3 Quantifying an excess of events for summer 2011136

3.1 Fixed Higgs boson mass mH137

The presence of the signal is quantified by the background-only p-value, i.e. the probability138

for the background to fluctuate and give an excess of events as large or larger than the139

observed one. As before, this requires defining a test statistic and the construction of its140

sampling distribution. For a given Higgs boson mass hypothesis mH , the test statistic141
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used is q0:142

q0 = −2 ln
L(data|0, θ̂0)
L(data|µ̂, θ̂)

and µ̂ ≥ 0. (9)

The constraint µ̂ ≥ 0 gives an accumulation of the test statistic at zero for events143

with downward fluctuations, since we are not interested in interpreting a deficit of events144

with respect to the expected background on an equal footing with an excess. Following145

the frequentist convention for treatment of nuisance parameters as discussed in Section 2,146

we build the distribution f(q0|0, θ̂obs0 ) by generating pseudo-data for nuisance parameters147

around θ̂obs0 and event counts following Poisson probabilities under the assumption of the148

background-only hypotheses. An example of such a q0 distribution is shown in Fig. 3. From149

such a distribution, one can evaluate the p-value corresponding to a given experimental150

observation qobs0 as follows:151

p0 = P (q0 ≥ qobs0 ) =

∫ ∞
qobs0

f(q0|0, θ̂obs0 ) dq0. (10)

To convert the p-value into a significance Z, we adopt the convention of a “one-sided152

Gaussian tail”:153

p =

∫ ∞
Z

1√
2π

exp(−x2/2) dx =
1

2
Pχ2

1
(Z2), (11)

where, Pχ2
1

stands for survival function of χ2 for one degree of freedom.154

The 5σ significance (Z = 5) would correspond in this case to pb = 2.8 × 10−7.155

Evaluation of such low probabilities may become impractical in terms of the CPU demand.156

The solid line in Fig. 3 is the χ2 distribution for one degree of freedom. One can see that,157

by simply relying on the asymptotic behaviour of the likelihood ratio test statistic q0,158

a fair estimate of p-values (and corresponding significances) can be obtained from the159

observed value qobs0 itself, without having to generate pseudo-data 2:160

pestimate =
1

2

[
1− erf

(√
qobs0 /2

)]
. (12)

The p-value discussed above is evaluated at a fixed mH and can be referred to as a161

local p-value. Since we test the background-only hypothesis many times as we scan mH ,162

we must take into account this dilution effect associated with the multiple testing, also163

known as a trial factor or look-elsewhere effect.164

165

3.2 Estimating the look-elsewhere effect166

In the Higgs boson search, the Higgs boson mass parameter mH is undefined for the167

background-only hypothesis, and therefore the standard regularity conditions of Wilks’168

2In practice, it is known that such an asymptotic behaviour works very well even for cases with very
few expected events.
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theorem [13] do not apply. That is one cannot construct a unique test statistic en-169

compassing all possible signals and having asymptotic χ2-behaviour. Hence, specialised170

methods are required for quantifying the compatibility of a given observation with the171

background-only hypothesis.172

The global test statistic to be associated with the search in some broad mass range173

can be written as follows:174

q0(m̂H) = max
mH

q0(mH). (13)

In the asymptotic regime and for very small p-values, a procedure exists and is well175

described in reference [14] that is largely based on Davies’ result [15]. Following these176

references, the p-value of the global test statistic can be written as follows:177

pglobalb = P (q0(m̂H) > u) ≤ 〈Nu〉+
1

2
Pχ2

1
(u) (14)

where 〈Nu〉 is the average number of up-crossings of the likelihood ratio scan q0(mH) at178

a level u. The definition of up-crossings is illustrated in Fig. 4. The ratio of global and179

local p-values is often referred to as the trial factor.180

The average number of up-crossings at two levels u and u0 are related via the following181

formula182

〈Nu〉 = 〈Nuo〉 e−(u−uo)/2, (15)

which allows one evaluate the term 〈Nu〉 at the high level u from measuring the average183

number of up-crossings 〈Nuo〉 at some lower reference level u0.184

When one has a well defined background model, then the number of low-threshold185

up-crossings 〈Nuo〉 can be measured by generating a relatively small set of pseudo-data.186

In many analyses, such a background model indeed can be constructed. However, the use187

of cuts or multivariate analysis (MVA) selections optimised independently for different188

Higgs boson masses does not allow one to construct a background model that would be189

guaranteed to account for all correlations between nearby test mass points.190

The foreseen way around this is to count the number of up-crossings with the data191

themselves. Indeed, when the look-elsewhere effect is large (and this is the only case when192

we really care to evaluate it), the number of up-crossings at low thresholds will be large193

and reasonably well measured3. This procedure should give us a fair estimate of the trial194

factor by which we need to “de-rate” the local p-value derived from the maximal value195

q0(m̂H) observed in the scan. It should be noted that there is no direct relation between196

the number of mass points and the trial factor since the latter is determined by the mass197

resolutions of the search channels.198

For example, let us assume that by performing a scan over Higgs boson masses mH , we199

find that the maximum value q0(m̂H) is 9, which, according to Eq. 12, gives an estimated200

local p-value of 0.13% and local significance of 3σ (Eq. 11). Next, let us assume that the201

measured number of up-crossings at level uo = 1 (local 1σ-significance) is measured to be202

8. Then, the global p-value corresponding to the observed excess (with the local p-value203

of 0.13% or 3σ-significance) can be derived from the Eq. 14 and is about 15%. Therefore,204

the trial factor for a local 3σ excess in this example is about 100.205

3In the presence of a signal, this number might be biased by one unit.
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4 Higgs mass points206

The choice of mass points for the combination is driven by the H → 2γ and H → ZZ → 4`207

analyses that look for a narrow peak over the continuum background. Figure 5 shows the208

expected δmγγ and δm4µ resolutions as well as the Higgs half-width ΓH/2. The test masses209

in the SM Higgs search should not be much farther apart than the observable width of the210

Higgs peak. A simple model with a Gaussian-shaped signal and flat background shows211

that if we choose to step in 1σm increments, the loss of sensitivity for a Higgs boson with212

a mass right in the middle between the chosen test masses is less than 5%. With 2σm213

increments, the loss of sensitivity can be as high as 20%. The increments in the mass214

steps are therefore chosen to be close to 1σm, as shown in Fig. 5. Table 1 summarizes215

the chosen mass points. Initially, we will not use less than 1 GeV binning until we have216

tuned the H → γγ response.217
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Figure 5: Expected detector resolutions for reconstructing two photons δmγγ (blue dotted)
and four muons δm4µ (blue dashed) as well as the intrinsic Higgs half-width ΓH/2 (red)
as a function of the Higgs mass mH . The chosen size of mass steps for the Higgs search
analyses is shown in green.
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Table 1: The chosen Higgs mass points for which all analyses going into the overall Higgs
search combination should provide their results (within the range of their sensitivity).

Mass range Step size Number Step size is driven by
(GeV/c2) (GeV/c2) of points

110-140 0.5 61 δmγγ for the best category of photons
140-160 1 20 δm4µ

160-290 2 65 δm4µ and Γ/2
290-350 5 12 Γ/2
350-400 10 5 Γ/2
400-600 20 10 Γ/2 at the beginning of the range

TOTAL 173
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5 Systematic Uncertainties218

5.1 Systematic uncertainty probability density functions219

Systematic uncertainties on observables are handled by introducing nuisance parameters θ220

with a probability density function, pdf, ρ(θ) with some θ̃ associated with the best estimate221

of the nuisance (e.g., mean, median, peak) and some other parameter characterising the222

overall shape of the pdf, and in particular its width. Different choices of pdf are described223

as follow:224

• Nuisance parameters, unconstrained by any a priori considerations and/or measure-225

ments not involving the data going into the statistical analysis, are assigned flat226

priors.227

• The Gaussian pdf is a frequent choice for systematic uncertainties. It is well-suited228

for describing uncertainties on parameters that can be both positive and negative:229

ρ(θ) =
1√
2πσ

exp

(
−(θ − θ̃)2

2σ2

)
(16)

Technically, an observable A with best estimate Ã and the ascribed Gaussian relative230

uncertainties σA can be simulated by generating random values of θ from the normal231

distribution with θ̃ = 0 and σ = 1 and by writing A = Ã·(1+σA·θ). Two observables232

A and B with 100% positively correlated uncertainties—of not necessarily the same233

scale—can be generated by using A = Ã · (1 + σA · θ) and B = B̃ · (1 + σB · θ). The234

100% negative correlations are constructed by using σA > 0 and σB < 0.235

However, the Gaussian pdf is not suitable for positively defined observables like236

cross sections, cut efficiencies, luminosity, etc. The common (and arguably not237

particularly elegant) solution is to truncate the Gaussian at or just above zero.238

• An alternative option is to use the log-normal pdf that allows one to avoid all239

pathologies/difficulties of the truncated Gaussian;240

ρ(θ) =
1√

2π ln(κ)
exp

(
−(ln(θ/θ̃))2

2(lnκ)2

)
1

θ
. (17)

The width of the log-normal pdf is characterised by κ (e.g. κ = 1.10 implies that the241

observable can be larger or smaller by a factor 1.10, both deviation having a chance242

of 16%). For small uncertainties, the Gaussian with a relative uncertainties ε and243

the log-normal with κ = 1+ε (or κ = eε) are asymptotically identical, while the log-244

normal pdf is certainly a more appropriate choice for very large uncertainties (e.g. “a245

factor of two uncertainty” maps nicely onto log-normal with κ = 2). Figure 6 (left)246

shows log-normal distributions with different κ values. The log-normal distribution247

has a longer tail with respect to the Gaussian and goes to zero at θ = 0. It is the248

log-normal pdf that is chosen for all uncertainties that are deemed to be correlated249

between ATLAS and CMS (see next section).250
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Technically, an observable A with best estimate Ã and the ascribed log-normal un-251

certainties κA can be simulated by generating random values of θ from the normal252

distribution (Eq. 16) with θ̃ = 0 and σ = 1 and by writing A = Ã · κθA. Two ob-253

servables A and B with 100% positively correlated uncertainties—of not necessarily254

the same scale—can be generated by using A = Ã · κθA and B = B̃ · κθB. The 100%255

negative correlations are constructed by using κA > 1 and κB < 1.256

• The gamma distribution is adopted for describing statistical uncertainties associated257

with a number of Monte Carlo events in simulation (after applying all cuts) or a258

number of observed events in a data control sample. In both cases, the event rate259

n in the signal search region can be related to the number of events N in MC or260

data via a simple relationship n = α ·N . Ignoring uncertainties on α that are to be261

dealt with separately, the uncertainties on the predicted rate n associated with the262

observation of N events is described by the gamma distribution as given by Eq. 18:263

ρ(n) =
1

α

(n/α)N

N !
exp(−n/α). (18)

This form can be easily derived using the Bayesian methodology and assuming that264

the prior π(n) is flat. The most probable value for n is αN , the mean value is265

α(N +1), and the dispersion is α
√
N2 + 1. Note that N = 0 is a perfectly allowable266

situation, resulting in the exponential pdf for n, with the maximum at n = 0,267

mean = α, and dispersion = α. Gamma distributions with different numbers of268

events observed in control samples are shown in Fig. 6 (right).269

Uncertainties modelled by gamma distributions can be found in both ATLAS and270

CMS analyses, but they are never correlated between ATLAS and CMS, nor would271

they be unless both experiments would decided to rely on the very same observa-272

tions.273

The mapping between Bayesian posterior pdfs ρ(θ|θ̃) and corresponding frequentist274

auxiliary measurement pdf ’s p(θ̃ | θ) as discussed in Section 2 and represented by275

Eq. 1 for the uncertainties discussed in this section is shown in Table 2.276
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Figure 6: (Left) Log-normal distributions with κ = 1.10, 1.20, 1.33 and 1.50. (Right)
Gamma distribution with the number of events in a control sample B = 100, 25, 9 and 4.

Table 2: Mapping between Bayesian posterior pdfs ρ(θ|θ̃) and corresponding frequentist
auxiliary measurement pdf ’s p(θ̃ | θ) and “primordial” prior πθ(θ) as discussed in Section 2
and represented by Eq. 1 for the uncertainties discussed in this section.

Type of uncertainties Bayesian posterior ρ(θ|θ̃) Frequentist p(θ̃ | θ) Prior πθ(θ)

Unconstrained flat flat flat

Gaussian/Log-normal ρ(θ | θ̃) = 1√
2π

exp
(
− (θ−θ̃)2

2

)
p(θ̃ | θ) = 1√

2π
exp

(
− (θ̃−θ)2

2

)
flat

Statistical uncertainties ρ(θ |N) = θN

N ! exp(−θ) p(N | θ) = θN

N ! exp(−θ) flat
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5.2 Uncertainties correlated between experiments277

Currently, we identify four main groups of such correlated uncertainties that we associate278

with:279

• PDF+αs uncertainties280

• theoretical renormalisation/factorisation scale uncertainties281

• uncertainties in modelling underlying event and parton showering282

• experimental uncertainties on luminosities283

Theoretical uncertainties can be looked at from three different points of view:284

• Uncertainties on the total cross sections σtot. These are an important starting point.285

However, they are not necessarily applicable to actual physics analyses where various286

experimental cuts restrict the final phase space.287

• Uncertainties on the acceptance A. These are very important for analyses aiming at288

setting limits on overall cross sections from measurements performed in a restricted289

phase space.290

• Uncertainties on the cross section within the limited acceptance, i.e. A ·σtot. These291

uncertainties are needed when one attempts to set limits by combining analyses of292

varying sensitivity for different Higgs production mechanisms. A priori, the level of293

correlations between uncertainties on A and σtot is not known.294

5.2.1 Naming convention295

Nuisance parameters with the same name appearing in different analyses (within one or296

both experiments) are taken to be 100% correlated. Different names imply no correla-297

tions. Any two sources of uncertainties that are believed to be only partially correlated298

are either broken further down to the independent sub-contributions or declared to be299

correlated/uncorrelated, whichever is believed to be more appropriate or more conserva-300

tive.301

To avoid accidental correlations in the combination of two experiments, uncertainties302

specific to each experiment will have a prefix ATLAS or CMS. Uncertainties without such303

prefixes are assumed to be 100% correlated between the two experiments.304

5.2.2 Total cross sections305

Breaking up systematic uncertainties associated with PDF+αs uncertainties into truly306

independent sources would imply painstaking work with nearly no impact on the final307

results. Also, this option does not really work in the context of taking envelopes of308

multiple PDF sets as prescribed by the LHC Higgs Cross Section group. The other309

possible extreme is to have all processes bluntly 100% correlated. This appears to be too310

simplistic. As a compromise, we adopt the following approximation.311
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First, we group all processes in three categories based on the prevailing production312

source. Then, we assume that PDF+αs systematic uncertainties between all processes313

in one group are 100% positively correlated and not correlated between processes from314

different groups. This results in three nuisance parameters as shown in Table 3. The315

detailed matrix of PDF uncertainty correlations, as calculated by the CTEQ collabora-316

tion [16], can be found in Appendix B. It shows that the chosen scheme for correlating317

PDF uncertainties between different processes is fair. In those cases where we see sizable318

deviations, the adopted scheme generally implies more conservative results.319

We assume that all physics processes have uncorrelated QCD scale uncertainties, ex-320

cept for a few very closely related processes (W/Z, WW/WZ/ZZ) that we treat as 100%321

correlated. The list of independent nuisance parameters characterising theoretical uncer-322

tainties in cross section calculations is given in Table 3.323

The cross section uncertainties for the Higgs boson production are taken from the LHC324

Higgs Cross Section Group report [17]. The PDF+αs and the renormalisation/factorisation325

scale uncertainties are treated separately. The prescription recommended by the LHC326

Higgs Cross Section Group [17] will be considered in the future.327

5.2.3 Acceptance uncertainties328

For setting limits on a total cross section times branching ratio of a particular production329

mechanism and decay mode of a signal, one is interested in the uncertainties on the accep-330

tance A, which is the ratio of (cross section with cuts) / (full cross section). Depending331

on the cuts, some uncertainties may cancel out in this ratio, while others may remain332

independent.333

Uncertainties of a similar type arise when one uses a data-driven technique for evalu-334

ating some particular background event rate n in a signal region by extrapolating from an335

observation of N events in a control region. The two can be related via a so-called extrap-336

olation factor α: n = α · N . When the extrapolation factor is derived from theory/MC,337

α = (cross section with cut set A) / (cross section with cut set B).338

Given that the cuts are ever evolving entities, calculations of the acceptance and339

extrapolation factor uncertainties are to be performed within the ATLAS and CMS Higgs340

physics groups.341

We currently assume that the acceptance and extrapolation factor uncertainties are342

independent from the total cross section uncertainties, except for the acceptance associ-343

ated with jet counting in the gg → H → WW + 0/1/2-jets analyses. This exception is344

discussed in the next section.345

The naming convention for such uncertainties is aaa bbb accept or aaa bbb extrap,346

where aaa identifies the original source of uncertainty (pdf, QCDscale, UEPS), while bbb347

gives an indication of what process or method the uncertainty is associated with with.348

Should ATLAS and CMS use similar cuts and techniques, the uncertainties will be349

assumed to be 100% correlated between the two collaborations. This will have to be350

decided on a case-by-case basis. At this stage, in the context of extrapolation factors, we351

identify two very similar data-driven techniques used by ATLAS and CMS for predicting352

WW and tt̄ background contributions in the H → WW → 2`2ν + 0-jets signal regions.353

The uncertainties, listed in Table 3, are dominated by QCD scale uncertainties.354

17



5.2.4 Cross section times acceptance uncertainties for gg → H + 0/1/2-jets355

As discussed in the previous section, uncertainties on acceptance of all cuts except for jet356

counting are treated as independent from the total cross section. Most of the time, being357

so much smaller than the total cross section uncertainties, such sub-leading acceptance358

uncertainties can actually be neglected.359

However, the uncertainties associated with jet counting in the gg → H + 0/1/2-jets360

sub-processes, i.e., the fractions of events falling into the 0-, 1-, and 2-jet bins, are very361

sensitive to the choice of QCD scales. In fact, the exclusive 0/1/2 jet bin cross sections362

uncertainties are larger than the total cross section uncertainty and have both negative363

and positive correlations. The LHC Higgs Cross Section Group recommends that it is the364

inclusive cross sections for gg → H+ ≥ 0-jets, gg → H+ ≥ 1-jets, gg → H+ ≥ 2-jets that365

have independent theoretical uncertainties. Hence, one can find the three corresponding366

nuisance parameters in Table 3. The procedure of propagating inclusive cross section367

uncertainties into exclusive 0, 1, and 2-jet bins is described in Appendix C.368

5.2.5 Uncertainties in modelling underlying event and parton showering369

Besides already discussed PDFs and QCD scales, uncertainties in modeling the underly-370

ing event (UE) activity and parton showering (PS) are yet another potential source of371

uncertainties in evaluation of acceptance and extrapolation factors. The current prescrip-372

tion for their evaluation is to compare results obtained with UE/PS modeling available in373

different generators (e.g. Pythia, Herwig, Sherpa). Note that the primary interaction ME374

generator does not have to be the same as a UE/PS generator (e.g., it could be Powheg).375

The log-normal parameter κ is defined as follows:376

κ =
Yield[ME + UE/PS(generator B)]

Yield[ME + UE/PS(generator A)]
. (19)

5.2.6 Instrumental uncertainties377

For now, luminosity uncertainties are the only instrumental uncertainties that we take as378

100%-correlated between ATLAS and CMS. In time, the luminosity uncertainties may be379

split into correlated and uncorrelated components.380
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Table 3: List of nuisance parameters for systematic uncertainties assumed to be 100%
correlated between ATLAS and CMS.

PDF+αs uncertainties

nuisance groups of physics processes

pdf gg gg → H, tt̄H, V QQ, tt̄, tW , tb (s-channel), gg → V V
pdf qqbar VBF H, V H, V , V V , γγ
pdf qg tbq (t-channel), γ+jets

QCD scale uncertainties

nuisance groups of physics processes

QCDscale ggH total inclusive gg → H
QCDscale ggH1in inclusive gg/qg → H+ ≥ 1 jets
QCDscale ggH2in inclusive gg/qg → H+ ≥ 2 jets
QCDscale qqH VBF H
QCDscale VH associate V H
QCDscale ttH tt̄H
QCDscale V W and Z
QCDscale VV WW, WZ, and ZZ up to NLO
QCDscale ggVV gg →WW and gg → ZZ
QCDscale ZQQ Z with heavy flavor qq̄-pair
QCDscale WQQ W with heavy flavor qq̄-pair
QCDscale ttbar tt̄, single top productions are lumped here for simplicity

Phenomenological uncertainties

nuisance groups of physics processes

UEPS all processes sensitive to modeling of UE and PS

Acceptance uncertainties

nuisance comments

QCDscale WW EXTRAP extrap. factor α for deriving WW bkgd in HWW analysis
QCDscale ttbar EXTRAP extrap. factor α for deriving tt̄ bkgd in HWW analysis

Instrumental uncertainties

nuisance comments

lumi uncertainties in luminosities
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6 Format of presenting results381

The results of the ATLAS + CMS Higgs search combination will be presented in the382

following forms383

• A scan of local p-values, i.e. probabilities P (q0 ≥ qobs0 |mH), vs test Higgs boson mass384

mH will characterise how significant upward departures in the observed values of qobs0385

approximately are. We refer to these as local (and use “approximately” in the above386

sentence), since these p-values do not include the overall trial factor associated with387

the look-elsewhere effect. Figure 7 gives an example of such a scan. We will show388

approximate p-values as derived from the asymptotic χ2-like distribution expected389

for q0 as given by Eq. 12. When practical, the local p-values will be calculated by390

using toys according to Eq. 10.391

• The look-elsewhere effect will be quantified following the procedure described in392

Sec. 3.2.393

• The CLs scan vs test Higgs boson mass, similar to the one shown in Figure 8 [18]394

(this plot is borrowed from the Spring 2011 Tevatron Higgs search combination), will395

quantify the confidence levels at which the Standard Model Higgs boson is excluded396

for different mH hypotheses. The median expected CLs values together with ±1σ397

and ±2σ bands will be also presented. Higgs boson masses for which CLs < α will398

be said to be excluded at the (1− α) confidence level.399

• 95% C.L. limits µ95%CL on the Higgs boson production cross section strength modi-400

fier µ vs test mass mH , similar to the one shown in Figure 9, will be also presented,401

together with the median expected and ±1σ and ±2σ bands. This plot shows by402

what factor the SM Higgs boson cross section must be modified to be excluded at403

95% C.L.404

The numerical summary of the obtained results will be presented in the following form:405

Table 4: Numerical results of the ATLAS+CMS Higgs search combination. Observed
values are shown in bold font, expected—in plain font.

mH local p-value CLs(µ = 1) µ95%CL

(GeV/c2) from toys approx. obs (exp) obs −2σ −1σ median +1σ +2σ

110 xxx xxx xxx (xxx) xxx xxx xxx xxx xxx xxx

600 xxx xxx xxx (xxx) xxx xxx xxx xxx xxx xxx

What is presented here is the minimum of information. The experiments may agree406

to show additional information to illustrate and support the interpretation of the results.407
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Figure 7: local p-value scan vs mH . This plot does not correspond to any MC or data
analysis. To help guide the eye, the n-sigma significance levels are highlighted with colour
bands.
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Figure 8: CLs scan vs mH . The solid line shows the observed values of (1 − CLs). The
green/yellow bands indicate ±1σ and ±2σ intervals for the expected values under the
background-only hypothesis. The median expectation is shown with the dashed line.
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Figure 9: 95% C.L. limits µ95%CL on the Higgs boson production cross section strength
modifier µ (σ = µσNNLOSM ) vs Higgs boson mass mH . This plot does not correspond to
any MC or data analysis. The solid line shows the observed limit. The green/yellow
bands indicate ±1σ and ±2σ intervals for the expected limits under the background-only
hypothesis. The median expectation is shown with the dashed line.
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7 Technical combination exercises (validation and syn-408

chronisation)409

This section describes the Higgs combinations of ATLAS and CMS toy data that were410

performed to exercise the combination tools and framework. Both ATLAS and CMS411

have chosen to work in the common framework of RooStats [19]. It provides a common412

platform for exchanging so-called Workspaces that contain all the information needed for413

the statistical analyses and simplifies the logistic of data exchange between collaborations.414

Moreover, RooStats offers a diverse set of statistical methods that one can exercise starting415

from the very same workspace. Having all these benefits, the package is still under416

development, to which we have contributed by providing quick feedback based on the417

results of our exercises. More technical details on RooStats can be found in Appendix D418

In order to validate and synchronise calculations of the desired quantities, the combi-419

nation exercise proceeded as follows. ATLAS and CMS prepared their own Workspaces420

for a given analysis or combination of analyses. All analysis models were based on toy421

pseudo-data. No real data were involved in these exercises. Then, each collaboration422

would perform statistical analysis on its own workspace, on the workspace of the other423

collaboration, and then would build its own ATLAS+CMS combined workspace and per-424

form statistical analysis on it. The three results (ATLAS-only, CMS-only, ATLAS+CMS)425

obtained by each collaboration were required to match within the quoted statistical pre-426

cision of the calculations.427

The statistical methods used were as follows:428

• Exclusion limits obtained by using the Profile Likelihood approximation (see Ap-429

pendix A.1.3) are the very first step of synchronisation. Although this method does430

not give accurate exclusion limits, it is very fast computationally, which allowed us431

to validate that joint likelihoods independently built by ATLAS and CMS from the432

single-experiment inputs are indeed identical. It is these joint likelihoods that are433

at the heart of the final statistical methods adopted for the Summer 2011 combi-434

nation. For synchronisation purposes, we use “limits” on µ as given by Eq. 33 in435

Appendix A.436

• Exclusion limits obtained with the LEP-type CLs prescription (see Appendix A)437

are the next step toward the final version of the CLs construction. Since the LEP438

approach does not involve profiling of nuisance parameters, these calculations are439

relatively fast as well.440

• Exclusion limits obtained with the LHC-type CLs prescription (see Sec. 2) that441

have been agreed on for the Summer 2011 combination were the final step of syn-442

chronisation. This approach now involves profiling of systematic errors and requires443

substantial CPU power. In calculations of limits on the signal strength modifier444

µ, one goes via steps of assessing values of the test statistic q, p-values for sig-445

nal+background and background-only and their ratio CLs, which makes the full446

suite of quantities that would be needed for presenting the statistical interpretation447

of the Higgs boson search combination.448
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Since both ATLAS and CMS used the same underlying RooFit and RooStats code,449

the scope of crosschecks across the two collaborations may be thought to be somewhat450

limited. However, this procedure has proved to be very useful and allowed us to validate451

and debug the way the combined models are constructed starting from the ATLAS and452

CMS models and how the basic RooStats and RooFit libraries are used.453

As a separate crosscheck, all CMS-only results have been validated using the indepen-454

dent code L&S [20] that does not rely on RooStats and uses RooFit in a very limited455

capacity for functional pdf s.456

Whenever disagreements of results were observed, we were able to track them down457

to either plain bugs or more subtle misinterpretations of the input information provided458

by the collaborations. In other words, the technical synchronisation exercise proved to459

be extremely valuable and prepared us for the forthcoming combinations with the 2011460

data.461
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7.1 H → WW → ``νν + 0jets462

The first combination exercise undertaken used toy analyses for the simplest H → WW463

channel in the di-leptonic final state with no hadronic jets. The goal of this exercise was464

to perform a first exchange of inputs and produce a combined exclusion limit in which465

some systematic uncertainties were treated as correlated across the experiments.466

Model details467

For this exercise, the measurements in both experiments were treated as multichannel468

counting experiments. The likelihood function is therefore written as the product of469

Poisson terms for each channel times the product of all the constraint terms for the470

nuisance parameters θ associated to the systematic uncertainties.471

L =
∏
i∈obs.

Poisson (ni | νi(µ, θ)) ·
∏

j∈nui.s

Constraint(θj, θ̃j) (20)

For convenience, the θi are normalised so that the constraint is always a normal distri-472

bution with zero mean and unit variance, and all non-universal terms enter only in the473

relationship between parameters and expected yield in the signal regions νi(µ,θ). For474

uncertainties related to the statistical uncertainty in the control regions or in the simu-475

lation, the associated nuisance parameter is the expected yield in that region, and the476

constraint term is a Poisson likelihood for θ̃j observed events and θj expected ones; this477

is mathematically equivalent to a Gamma distribution over θj with most probable value478

θ̃j.479

The correlation of the uncertainties across the experiments is implemented by using480

the same nuisance parameter θi to describe the same uncertainty in the two models4. The481

combined likelihood is constructed by multiplying together the two likelihoods removing482

the duplicated constraint terms from correlated uncertainties.483

In this first exercise, only two sources of systematic uncertainties were treated as484

correlated: the normalisation of the luminosity, driven by machine-dependent uncertain-485

ties, and the inclusive Higgs production cross section through the gluon fusion process,486

driven by theoretical uncertainties (the contribution from other production modes to the487

H → WW + 0j final state is negligible).488

The ATLAS model has 3 signal channels and 3 main control regions that enter the489

likelihood directly as observables, plus other sidebands that are modelled as constraints.490

It contains 17 ATLAS-specific nuisance parameters, plus the two associated with the491

luminosity and Higgs production cross section. The CMS model has 4 signal channels492

corresponding to the leptonic final states; measurements from sidebands enter the likeli-493

hood only through constraint terms for the nuisance parameters. In total it contains 35494

CMS-specific nuisance parameters plus the two correlated ones.495

4Only multiplicative corrections are considered to be eligible for correlations: we assume that sidebands
or simulated samples are private to each collaboration and therefore the associated uncertainties are
uncorrelated.
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Obtained Results496

At the time of the exercise, no decision had yet been taken on the preferred statistical497

method for computing the exclusion limit at LHC. To make the exercise possible, we498

therefore decided to use two simple and well established methods, for which statistical code499

was available in the two collaborations: the profile likelihood asymptotic approximation,500

and the LEP-like hybrid method. The two methods are described in detail in Appendix A.501

Three combination “handshakes” have been performed:502

• Observed limits for each experiment separately and for the combination for a range503

of mass values, using the profile likelihood asymptotic approximation. The results504

computed by the two collaborations are in perfect agreement (Table 5).505

• CLs values for SM Higgs (µ = 1) hypotheses, computed with the LEP-type CLs506

method. The results were found to be in agreement within the computational ac-507

curacy given by the number of toy experiments used, 104 (Table 6).508

• Observed limit for the combined model at mH = 140 GeV/c2 computed with LEP-509

type CLs method to better than 1% computational accuracy. The result computed510

by the two collaborations are in a good agreement: 0.766±0.006 from CMS, 0.7673±511

0.0014 from ATLAS.512
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Table 5: H → WW + 0j combination exercise: computed exclusion limits on µ = σ/σSM
with the profile likelihood asymptotic approximation. The agreement is better than one
per mil.

m(H) ATLAS computation CMS computation
GeV/c2 Comb. ATLAS CMS Comb. ATLAS CMS

120 3.968 3.734 6.709 3.968 3.734 6.709
130 1.601 1.652 2.493 1.601 1.652 2.493
140 0.828 1.041 1.186 0.828 1.041 1.186
150 0.451 0.784 0.551 0.451 0.784 0.551
160 0.314 0.555 0.369 0.314 0.555 0.369
170 0.290 0.653 0.314 0.290 0.653 0.314
180 0.327 0.811 0.357 0.327 0.811 0.357
190 0.623 1.211 0.742 0.623 1.211 0.742
200 0.861 1.661 1.017 0.861 1.661 1.017

Table 6: H → WW + 0j combination exercise: computed CLs values for the SM Higgs
(µ = 1) hypotheses with LEP-type CLs method. The agreement is within the quoted
computational precision. The ”-” indicates that the information is not available. The 0
corresponds to < 10−4.

m(H) ATLAS computation CMS computation
GeV/c2 Comb. ATLAS CMS Comb. ATLAS CMS

120 0.597± 0.008 0.578± 0.010 0.812± 0.006 0.586 - 0.806
130 0.154± 0.004 0.240± 0.007 0.389± 0.006 0.166 0.237 0.392
140 0.014± 0.002 0.087± 0.004 0.052± 0.003 0.015 0.088 0.056
150 0.0004± 0.0003 0.033± 0.003 0.0013± 0.0005 0.000 0.031 0.001
160 0 0.005± 0.001 0 0.000 0.005 0.000
170 0 0.012± 0.002 0 0.000 - 0.000
180 0 0.037± 0.003 0 0.000 0.038 0.000
190 0.005± 0.001 0.148± 0.005 0.011± 0.002 0.005 0.135 0.011
200 0.027± 0.002 0.242± 0.007 0.048± 0.003 0.025 0.234 0.050
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7.2 H → WW → ``νν + 0/1/2− jets513

The second technical combination exercise was again used the H → WW analysis in the514

di-leptonic final state, but now also considered those categories of events with one and two515

jets. The goal of this second exercise was to have a better treatment of all the systematic516

uncertainties of theoretical origin, and to increase the complexity of the model.517

Model Details518

The two analyses were still modelled as multi-channel counting experiments, so the like-519

lihood function had the same structure as in the previous exercise.520

The systematic uncertainties considered for correlations across the experiments were:521

• the scale of the luminosity measurement;522

• the effect of PDF uncertainties on the production cross sections, handled separately523

for the processes dominated by the three partonic initial states gg, qq, qq̄, and gq,524

• the uncertainties on the cross sections coming from higher orders, estimated varying525

the renormalisation and factorisation scales. These uncertainties were accounted526

for separately for gg → H, VBF H, associated H + W/Z production and for the527

backgrounds qq̄ → V (V = W/Z), qq → V V , gg → V V and tt̄.528

For simplicity, the backgrounds from single top and the associated t+W production were529

treated as part of the larger tt̄ background. For the ATLAS model, the scale uncertainties530

for WW and tt̄ were further separated into the uncertainty on the inclusive cross section531

and the uncertainty on the extrapolation between signal region and sideband, and the two532

terms were treated as uncorrelated. When combining the two likelihoods in this exercise,533

the uncertainties on the inclusive WW , tt̄ cross sections from the ATLAS model have534

been taken as correlated with the uncertainty on the accepted cross section for the same535

processes in the CMS model.536

The ATLAS model included 9 signal channels and 12 control channels treated as537

observables. There are 24 ATLAS-specific nuisance parameters plus 13 theoretical uncer-538

tainties eligible for correlation with CMS.539

The CMS model included 9 signal channels, and control regions were included only540

through constraints terms. There are 32 CMS-specific parameters plus 11 theoretical541

uncertainties eligible for correlation with ATLAS.542

Eventually the combined model contains 70 nuisance parameters of which 10 are cor-543

related across the two experiments. Four parameters are eligible for correlation but were544

not correlated for lack of a counterpart in the other model because it was considered545

negligible (PDF uncertainty for gq processes, scale uncertainty on the H +W/Z process)546

or because the uncertainties were factorised differently (WW and tt̄ as described earlier).547

Obtained Results548

For this exercise, one Higgs mass point was considered, namely 140 GeV/c2. The same549

three handshakes as for the previous exercise were done:550
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• Exclusion limits on µ = σ/σSM from the profile likelihood approximation (Table 7).551

The agreement is better than one per mil.552

• CLs values for SM Higgs hypothesis in the hybrid LEP-like approach (Table 8). The553

agreement is within the quoted computational precision.554

• Exclusion limit for the combined models at m(H) = 140 GeV/c2 computed with555

LEP-type CLs method to better than 1% computational accuracy. The agreement556

between the result computed by ATLAS, 0.519±0.003, and by CMS, 0.508±0.003,557

was considered satisfactory5.558

Table 7: H → WW + 0/1/2j combination exercise: computed exclusion limits on µ =
σ/σSM at m(H) = 140 GeV/c2 with the profile likelihood asymptotic approximation.

Model ATLAS computation CMS computation

ATLAS 0.802547 0.802548
CMS 0.426186 0.426186
Combined 0.355680 0.355681

Table 8: H → WW + 0j combination exercise: computed CLS values for the SM Higgs
(µ = 1) hypotheses with LEP-type CLs method.

Model CMS computation ATLAS computation

ATLAS 0.1036± 0.0018 0.1075± 0.0050
CMS 0.0009± 0.0003 0.0016± 0.0011
Combined 0.0014± 0.0003 0.0032± 0.0011

5The discrepancy would be 2.5 standard deviations. However, the values of µ are determined from an
interpolation from a grid of tested µ values, and the reported uncertainties include only the statistical
uncertainties on the CLS values for each grid point and not a systematic uncertainty from the choice of
interpolation model.
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7.3 (H → WW ) + (H → γγ) + (H → ZZ → 4`)559

The third combination exercise used a significantly more complex model, in which also560

the H → γγ and H → ZZ → 4` channels have been considered. The goals of these561

exercises were to test models in which the distribution of a continuous variable like the562

di-photon mass is used in the computation of the limit.563

Model Details564

For the two latter channels, the analyses are modelled as a search for an excess in the γγ565

and 4` invariant mass distributions. In each channel i, the data are modelled as a sum566

of signal and background components j with the expected normalisations νi,j(µ,θ) and567

shapes fi,j(m|θ):568

fi(m|µ,θ) =
∑
j

νi,j(µ,θ)

νi(µ,θ)
· fi,j(m|ν,θ) νtoti =

∑
j

νi,j(µ,θ). (21)

The negative logarithm of the likelihood function for a single channel can be summed over569

the observed events as570

− logLi =

ni∑
e=1

[− log fi(me|µ,θ)] + ni log(νtoti )− νtoti , (22)

up to terms depending only on ni which would cancel out when taking the ratio of two571

likelihood functions for the same data but different values of µ and θ.572

The overall likelihood is then built as the product of the individual likelihoods and of573

the constraint terms just like in the counting experiment case.574

It is technically convenient to treat all channels entering the combination in an uni-575

form way. Therefore the H → WW counting experiment has been re-written introducing576

a dummy variable x with range [0, 1] and taking all fi,j(x) to be equal to the uniform577

distribution; this new expression is completely equivalent to the one using Poisson likeli-578

hoods.579

The models included in this combination were: the ATLAS and CMS H(→ WW →580

``νν) + 0/1/2j models of the previous exercises, the ATLAS and CMS H → γγ models,581

and a CMS H → ZZ → 4` model 6. The combined model contains about 5800 unbinned582

events separated in 37 exclusive categories. There are in total 98 nuisance parameters, 10583

of which are correlated across the experiments like in the previous combination exercise).584

Obtained Results585

Just like in the previous exercise, only a single Higgs mass point was considered, mH =586

140 GeV/c2. Similar handshakes to those of the previous exercise were done: exclusion587

limits on µ = σ/σSM from the profile likelihood approximation for all the channels sepa-588

rately and for the combination, and the exclusion limit for the combined model using the589

6There was an initial technical issue with the implementation of the ATLAS H → ZZ → 4` model at
the time, so it was left out at the beginning to allow the exercise to proceed.
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LEP-type CLs Bayesian-frequentist method. The results for the profile likelihood approx-590

imation are in excellent agreement (Table 9), and the hybrid Bayesian-frequentist ones591

agree within their computational accuracies (0.636 ± 0.005 from ATLAS, 0.626 ± 0.004592

from CMS).593

After the ATLAS H → ZZ → 4` toy model became available, we exercised limit594

calculations of the ultimate LHC-type CLs method as defined in Section 2. Results of595

calculations agree within the computational precision and are shown in Table 10.596

Table 9: (H → WW ) + (H → γγ) + (H → ZZ → 4`) combination exercise: exclusion
limits on µ = σ/σSM at m(H) = 140 GeV/c2 with the profile likelihood asymptotic
approximation.

Model CMS computation ATLAS computation difference (%)

ATLAS WW 0.7073 0.7073 -
ATLAS γγ 5.7725 5.7721 -

CMS WW 0.4248 0.4248 -
CMS γγ 4.2997 4.3000 -
CMS ZZ 1.1679 1.1679 -

ATLAS combined 0.7100 0.7100 -
CMS combined 0.3444 0.3444 -

All combined 0.2724 0.2724 -

Table 10: (H → WW ) + (H → γγ) + (H → ZZ → 4`) combination exercise: exclusion
limits on µ = σ/σSM at m(H) = 140 GeV/c2 with the LHC-type CLs method.

Model CMS computation ATLAS computation difference (%)

ATLAS WW 0.76± 0.01 0.76± 0.02 0%
ATLAS γγ 5.76± 0.02 5.80± 0.03 +1%
ATLAS ZZ 4.32± 0.05 4.25± 0.02 -2%

CMS WW 0.517± 0.003 0.526± 0.006 +2%
CMS γγ 3.96± 0.01 4.00± 0.04 +1%
CMS ZZ 1.691± 0.004 1.660± 0.040 -2%

ATLAS combined 0.667± 0.009 0.674± 0.022 +1%
CMS combined 0.426± 0.005 0.439± 0.005 +3%

All combined 0.410± 0.005 0.408± 0.014 -0.5%
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8 Summary597

The LHC Higgs Combination Group was formed in December 2010 to prepare ATLAS and598

CMS Collaborations for the forthcoming Higgs search combinations with the 2011 data.599

Over the time period of six months, the group achieved the following goals as documented600

in this report:601

• established the common methods for reporting exclusion limits and quantifying602

excesses,603

• agreed on the initial set of common systematic errors between ATLAS and CMS,604

on their modelling and correlations,605

• formulated the format of presenting Higgs search results,606

• exercised statistical methods and software tools with toy models of Higgs searches607

in order to validate and synchronise the overall combination procedure.608

The group is ready to combine Higgs search results from ATLAS and CMS.609

Outlook610

At the time of writing, no major issues remain unresolved. Many hurdles have been611

overcome to pave the way toward combined ATLAS and CMS Higgs results in 2011. It612

is our belief that, should any new issues arise, they will be addressed in the same spirit613

in which the current work has been conducted: discussions and agreement. The report614

presented here is by no means the final word on combining ATLAS and CMS Higgs615

search results. We fully expect that the techniques presented here will evolve and be616

refined further.617
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A Brief overview of statistical methods629

This Appendix briefly accounts for the different statistical approaches aiming to charac-630

terise a non-observation of a signal or establish a significant excess of events. We refrain631

from judgemental statements on the pros and cons of different methods and simply ac-632

count for what has been used in the past. For a more comprehensive overview one can633

refer, for example, to Refs. [21, 22]. The methods chosen for the combination in Summer634

2011 are discussed in more detail in Sections 2 and 3.635

In the following subsections, the expected Standard Model Higgs event yields will be636

generically denoted as s, backgrounds as b. These will stand for event counts in one or637

multiple bins or for unbinned probability density functions, whichever approach is used in638

an analysis. Predictions for both signal and background yields, prior to the scrutiny of the639

data entering the statistical analysis, are subject to multiple uncertainties that are handled640

by introducing nuisance parameters θ, so that signal and background expectations become641

functions of the nuisances: s(θ) and b(θ). The actual observed events will be denoted as642

data or observation.643

A.1 Limits644

The Bayesian and the classical frequentist, with a number of modifications, are two sta-645

tistical approaches commonly used in high energy physics for characterising the absence646

of a signal.647

Both methods allow one to quantify the level of incompatibility of data with a signal648

hypothesis, which is expressed as a confidence level (C.L.). It is common to require649

a 95% C.L. for “excluding” a signal, this is however a convention. The probabilistic650

interpretation of C.L. as the chance of being right or wrong when stating the non-existence651

of a signal is not straightforward and the subject of a vast body of literature.652

In addition, in an analysis targeting a specific signal production mechanism and a653

particular decay mode, one can also set approximately model-independent limits on signal654

cross section times branching ratio (σ × BR) or somewhat better defined limits on cross655

section times branching ratio times experimental acceptance (σ × BR × A). The latter656

are less useful for testing various theories unless a model of the experimental acceptance657

A is also provided.658

In a combination of multiple analyses sensitive to different signal production mech-659

anisms and different decay modes, presenting results in a form of limits on σ × BR or660

σ×BR×A is impossible. The customary alternative for SM Higgs searches is to set limits661

on a common signal strength modifier µ that is taken to change the cross sections of all662

production mechanisms by exactly the same scale. Decay branching ratios are assumed to663

be those given by the Standard Model. The Standard Model Higgs is said to be excluded664

at, say, 95%C.L., when the 95% C.L. limit on µ drops to one, i.e. µ95%CL = 1. In the665

next sub-sections, we will follow this convention and discuss limits on the common signal666

strength modifier µ.667
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A.1.1 Bayesian approach668

In the Bayesian approach, the Bayes theorem is invoked to assign a degree of belief to the669

Higgs hypothesis by calculating the posterior “probability density function” L(µ) on the670

signal strength µ:671

L(µ) =
1

C

∫
θ

p(data|µs+ b) ρθ(θ) πµ(µ) dθ. (23)

The functions ρθ(θ) are pdfs describing our prior belief in the scale and description672

of the uncertainties on signal and background event yields. The choice of these pdfs is673

discussed in Section 5. The function πµ(µ) is the prior on the signal strength, which is674

commonly taken to be flat for µ ≥ 0 and zero otherwise. Other priors are possible, but675

have hardly ever been used in high energy physics. The constant C is set to make the676

overall posterior function L(µ) normalised to unity. Integration over nuisance parameters677

in the above equation is known as marginalisation.678

The Bayesian one-sided 95% C.L. limits on µ are extracted from the following equation:679 ∫ µ95%CL

0

L(µ) dµ = 0.95. (24)

By definition, the Bayesian methodology obeys the likelihood principle since the in-680

ference is based on the data alone. The Bayesian approach is among the three methods681

described in the PDG.682

A.1.2 Frequentist approach and its modifications683

Classical frequentist684

685

The classical frequentist approach is formulated for the case of no systematic uncer-686

tainties and begins from defining a test statistic qµ designed to discriminate signal-like687

from background-like events. The test statistic compresses all signal-vs-background dis-688

criminating information into one number. By the Neyman-Pearson lemma, the ratio of689

likelihoods Q is the most powerful discriminator. For a number of reasons, the actual690

quantity used is a logarithm of the ratio, or more accurately, −2lnQ:691

qµ = −2 ln
L(data|µs+ b)

L(data|b)
, (25)

where L(data|rate) is simply a product of Poisson probabilities for number of either692

observed or simulated events in each sub-channel, given the expected signal and back-693

ground rates. One can see that events with qµ > 0 are more likely to appear under the694

background-only hypothesis than the background+signal assumption.695

It is to be noted that this test statistic was used by LEP and the Tevatron, but not696

at the LHC, where the profile-likelihood test statistic q̃µ is used (see table 11) due to its697

known asymptotic properties (see A.1.3).698

Having defined the test statistic, next one constructs pdfs of the chosen test statistic qµ699

under the signal+background hypothesis by means of “tossing” toy pseudo-observations700

according to the very same Poisson probabilities. Using these pdfs, one can then evaluate701
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the probability P (qµ ≥ qdataµ |µs+b) for the observed value qdataµ to be as or less compatible702

with the background+signal hypothesis. Such a probability is denoted as CLs+b. In the703

classical frequentist approach, one says that the signal is excluded at, say, 95% C.L., if704

CLs+b = 0.05.705

However, such a definition has a pitfall: by taking the signal strength equal to zero,706

one expects, by construction, that CLs+b ≤ 0.05 with a 5% chance—hence, 5% of all707

searches will end up excluding a signal of zero strength. In this case, one must appre-708

ciate the actual statistical meaning of what has been observed in such cases: that is, a709

downward fluctuation of the background. To prevent, at least partially, our inference of710

a signal from such downward fluctuations, a number of solutions have been suggested.711

712

Modifications of the classical frequentist method713

• Feldman and Cousins [23] introduced a method of constructing unified (i.e. one/two-714

sided) confidence intervals based on the likelihood-ratio test statistic:715

qµ = −2 ln
L(data|µs+ b)

L(data|µ̂s+ b)
, with a constraint: 0 ≤ µ̂ (26)

where µ̂ maximises the likelihood L(data|µs+ b). Such construction automatically716

protects the limits on signal strength from the undesired effects of downward fluctu-717

ations of background, preserves the proper frequentist coverage, and does not suffer718

from under-coverage due to having to make flip-flop decisions between reporting719

one-sided upper limits (no excess) and two-sided intervals when a significant excess720

of events is observed. One can force the FC method to report one-sided limits no721

matter what—the price is over-coverage for the cases when one observes an excess722

of events. The Feldman-Cousins approach is among the three methods described in723

the PDG.724

• At the time of LEP, the so-called modified frequentist approach was introduced725

with the same goal to “protect” our judgement on a very weak signal strength when726

downward fluctuations occur [5–7]. In this method, in addition to CLs+b = P (qµ ≥727

qdataµ |µs+ b), one also calculates CLb = P (qµ ≥ qdataµ | b), by “tossing” pseudo-data728

for background-only event rate, and, then calculates the quantity CLs as the ratio729

of these two probabilities:730

CLs =
CLs+b
CLb

. (27)

In the modified frequentist approach, it is this value, CLs, that is required to be less731

than or equal to 0.05 in order to declare the 95% C.L. exclusion. By construction,732

the CLs-based limits are one-sided. The price of the protection from background733

downward fluctuations is a gradual increase in the over-coverage as one observes734

fewer and fewer events. For an observation right on the top of the background-735

only expectation (CLb ∼ 0.5), CLs is about twice as large as CLs+b. The modified736

frequentist approach is among the three methods described in the PDG.737

• Recently, another approach of Power-Constrained Limits (PCL) was proposed [24].738

It prescribes using results from the classical frequentist method (CLs+b = 0.05),739
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unless the observed limit is below the 50%-quantile of the expected background-only740

results (the experimental sensitivity) . This means that the power of the test with741

respect to the alternative background only hypothesis is not allowed to go below742

50%. In this case when a large downward fluctuation is observed, the reported limit743

is the one corresponding to the experimental sensitivity. By construction, the limit744

is one-sided. The price of protection from downward fluctuations by imposing the745

“power constraint” is an over-coverage when one observes downward fluctuations746

below the experimental sensitivity.747

Introducing systematic uncertainties748

749

Systematic uncertainties on signal and background rates, s(θ) and b(θ), are introduced750

via modifications to the test statistic itself and/or the way pseudo-data are generated. In751

the following, the prior pdf for the nuisance θ will be written as ρ(θ|θ̃), where θ̃ is the752

“nominal” value of the nuisance parameter.753

• One can choose to keep the test statistic given by Eq. 25 or Eq. 26 unchanged and754

evaluate them using the nominal values of the signal and background rates, i.e. at755

s(θ̃) and b(θ̃). The effect of systematic uncertainties is then introduced via modifying756

s(θ) and b(θ) before each pseudo-data set is generated by drawing random numbers757

from the ρ(θ|θ̃) distributions. This method was first introduced to the field by758

Cousins and Highland [25] and is now known as hybrid Bayesian-frequentist, since759

the treatment of nuisance parameters in this case is explicitly Bayesian. This is how760

nuisance parameters were handled at LEP.761

• At Tevatron, the hybrid Bayesian-frequentist approach to “tossing” pseudo-data762

remained the same, but the test statistic was redefined. The Poisson-like likelihoods763

can be extended to include the nuisance parameter pdfs ρ(θ|θ̃)764

L(data|µ, θ) = Poisson ( data |µ · s(θ) + b(θ) ) · ρ(θ|θ̃) (28)

Before taking the ratio, both the numerator and denominator likelihoods can be765

maximised with respect to nuisance parameters. The test statistic then would take766

the following form:767

qµ = −2 ln
L(data|µ, θ̂µ)

L(data|0, θ̂0)
(29)

where θ̂µ and θ̂0 are maximum likelihood estimators for the signal+background hy-768

pothesis (with the signal strength factor µ) and for the background-only hypothesis769

(µ = 0). This is the test statistic used at Tevatron.770

• A one-sided test statistics which does not allow the signal to become negative is the771

profile likelihood test statistic [11]772

q̃µ = −2 ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
, 0 ≤ µ̂ ≤ µ (30)
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The pair of parameters µ̂ and θ̂ gives the global maximum of the likelihood. The773

additional constraint µ̂ ≤ µ ensures that the obtained limits are one-sided. The774

advantage of this test statistic is that its pdf distribution can be approximated by775

asymptotic formulae based on Wilks and Wald theorems, as derived in Ref. [11] (see776

Appendix A.1.3).777

• Yet another way to treat nuisance parameters is to re-interpret the systematic un-778

certainty pdfs ρ(θ|θ̃) as posteriors of some real or imaginary measurements. Such re-779

interpretation allows one to build sampling distributions without explicit Bayesian780

marginalisation. It is this approach to constructing sampling distributions of the test781

statistic that is chosen for the ATLAS+CMS Higgs search combination in Summer782

2011. It is described in detail in Section 2.783

From the overview presented in this section, the CLs procedure chosen for the summer784

2011 combination actually differs in details from the ones used at LEP and Tevatron785

(which were also different). For comparison purposes, all the differences are summarised786

in Table 11 below. The LEP prescription does not allow one to take full advantage of787

the constraints imposed on the nuisance parameters by the data used in the statistical788

analysis. The Tevatron and LHC versions of CLs, though constructed differently, in789

practice—as we find—give nearly identical results. The benefit of the LHC-type CLs is790

that it uses a test statistic with the desired asymptotic properties. Also, the sampling791

distributions of the test statistic can be built following the pure frequentist language.792

Table 11: Comparison of CLs definitions as used at LEP, Tevatron, and adopted for the
summer 2011 Higgs combination at LHC.

Test statistic Profiled? Test statistic sampling

LEP qµ = −2 ln L(data|µ,θ̃)L(data|0,θ̃) no Bayesian-frequentist hybrid

Tevatron qµ = −2 ln
L(data|µ,θ̂µ)
L(data|0,θ̂0)

yes Bayesian-frequentist hybrid

LHC q̃µ = −2 ln
L(data|µ,θ̂µ)
L(data|µ̂,θ̂)

yes frequentist

(0 ≤ µ̂ ≤ µ)

A.1.3 Profile Likelihood Asymptotic Approximation793

If we remove the physical requirement µ̂ > 0 from the test statistic q̃µ based on the profile794

likelihood ratio (Equation 30) then we find795

qµ = −2 ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
, µ̂ ≤ µ (31)
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Following Wilks theorem, in the asymptotic regime, qµ is expected to have half a χ2
796

distribution for one degree of freedom (under signal+background experiments). The value797

of µ that makes798

1

2
qµ = 1.35 (32)

would correspond to a one-sided CLs+b = 0.05 probability. Another popular choice is799

1

2
qµ = 1.92, (33)

which is an ad hoc adjustment: it corresponds to CLs+b = 0.025 and, hence, would match800

CLs = 0.05, when an observation is right on top of the background-only expectations and,801

hence, CLb = 0.5.802

However, with the physical requirement µ̂ > 0, the asymptotic behaviour of f(q̃µ|signal+803

background) (where q̃µ is the test statistic used in this combination) does not follow half804

a χ2 anymore, yet, it follows a well defined formula [11]805

f(q̃µ|µ) =
1

2
δ(q̃µ) +


1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2/σ2 ,

1√
2π(2µ/σ)

exp
[
−1

2

(q̃µ+µ2/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2 .

(34)

where806

σ2 =
µ2

qµ,A
(35)

qµ,A is the test statistics evaluated with the Asimov data set, i.e. the expected background807

and the nominal nuisance parameters (setting all fluctuations to be zero).808

In the same reference one can also find asymptotic formulae for f(q̃µ|background) from809

which one can easily derive the median expected limits and their bands, using the Asimov810

representative data set, without performing any toy Monte Carlo experiment. It is also811

shown there that in the asymptotic limit, the two test statistics, q̃µ and qµ (Equations 30812

and 31) are equivalent, leading to the same p-values. Which means that in the asymptotic813

limit, it is sometimes more convenient to use the simpler asymptotic formulae of qµ. Using814

these formulae one can easily derive asymptotic relations which easily solve for the upper815

limit with the CLs method.816

CLs = 0.05 =
1− Φ(

√
qµ)

Φ(
√
qµ,A −

√
qµ)

(36)

Φ−1 is the quantile (inverse of the cumulative distribution) of the standard Gaussian. The817

median and expected error bands are given by818

µup+N = σ(Φ−1(1− αΦ(N)) +N) (37)

with α = 0.05 (µ can be taken as µmedup in the calculation of σ). Note that for N = 0 we819

find the median expected CLS limit820

µmedup = σΦ−1(1− 0.5α) = σΦ−1(0.975) (38)

For situations with small numbers of events, the asymptotic result is not guaranteed821

and is in fact known to give very biased (over-optimistic) results.822
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A.2 Quantifying an excess of events823

In the case of observing an excess of events, characterisation of it begins with evaluating824

the p-value of the upward fluctuation of the background-only hypothesis. This can be825

done by “tossing” background-only pseudo-data and building up the corresponding pdf826

for the test statistic of choice.827

The four test statistics as given in Equations 25, 29, 26, 30 can be used. The first two828

would probably use µ = 1, while the profile likelihood ratio is constructed for µ = 0 and829

µ̂ either unconstrained or constrained to be positive, which makes no difference on the830

tail of the distribution. For the first two test statistics, observations with a large excess of831

events would form a left-hand tail, while the profile likelihood test statistic would stretch832

to the right.833

The p-value, i.e. the probability of getting an observation as or less compatible as834

seen in data for the background-only hypothesis, is then defined as P (q1 ≤ qdata1 ) for the835

test statistics given by Equations 25, 29 and P (q0 ≥ qdata0 ) for the profile likelihood test836

statistic given by Equations 26 and 30.837

The p-value can be converted into significance Z via either of the two conventions838

(one-sided or two-sided normal distribution tail probability):839

p =

∫ ∞
Z

1√
2π

exp(−x2/2) dx (39)

p = 2

∫ ∞
Z

1√
2π

exp(−x2/2) dx (40)

In the asymptotic regime the profile likelihood test statistic (Eq. 9) has the very840

attractive property of being distributed as a half χ2 for one degree of freedom, which841

allows one to approximately estimate the significance, Z, as defined by Equation 39 from842

the following simple formula:843

Z =
√
qdata0 . (41)

The asymptotic approximation gives very satisfactory results for significance estima-844

tions even when one is far from the asymptotic regime.845
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B Correlations of PDF-associated uncertainties846

The following tables show the level of correlations between different backgrounds and847

Standard Model Higgs production modes. Fig. 10 gives correlations between different848

backgrounds. Fig. 11 show correlations between different Standard Model Higgs produc-849

tion mechanisms as well as between Higgs production modes and different backgrounds.850

In the current mode of combination, cells of the same colour are taken to be 100%851

correlated, while cells with no fill color are assumed to have no correlations. We follow852

an intuitive rule of thumb that assuming positively 100% correlated errors is more con-853

servative than weak or negative correlations and that assuming no correlations is more854

conservative than negatively correlated errors. In general, this is true for signal-signal855

and signal-background correlations. For background-background correlations, this is also856

true, except for special cases of deriving (constraining) one background from measuring857

event rates associated with another one.858

There is not a simple solution that would cover all possible situations. The choice859

of congregating all signal and background processes in three major groups based on the860

prevailing LO initial states is simply a compromise. As one can see from the tables, the861

choice we made on grouping different processes is sensible and the differences usually862

imply that we stay on the conservative side.863
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Figure 10: Correlations of PDF-associated errors between different backgrounds.
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Figure 11: Correlations of PDF-associated errors between different SM Higgs production
mechanisms as well as between Higgs production modes and different backgrounds.
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C Systematic errors in exclusive 0/1/2-jet bins for864

gg → H process865

The consensus of theorists working in the context of the LHC Higgs Cross Section Group866

is that it is the inclusive cross sections σ≥0, σ≥1, σ≥2 that should be assumed to have867

independent theoretical errors. Hence, the three independent nuisance parameters are868

to be associated with uncertainties on these inclusive cross sections. These nuisance869

parameters are labelled as QCDscale ggH, QCDscale ggH1in, QCDscale ggH2in.870

However, the actual Higgs search analyses are often split into exclusive final states871

with 0, 1, and 2 jets. Such a choice is dictated by background considerations and—for872

purposes of the combination of analyses—the necessity to keep all observations mutually873

exclusive. This section defines the agreed-on procedure for assigning systematic errors on874

the exclusive final states and their cross-channel correlations.875

Note that the overall errors on the exclusive final states are larger than the error on876

the total cross section. Also, it is important to note that some κ’s are greater than one,877

while the others are smaller. This is a manifestation of negative correlations of errors878

between exclusive final states.879

44



Prescription summary880

Take the total gg → H cross section from the Higgs cross sec-
tion group Yellow Report (YR). Convert the relative QCD
scale uncertainties ε+ and ε− (both are positive numbers)
from YR to log-normal κ.

σY Rgg

κY R =
√

exp(ε+) · exp(ε−)

Acceptance of events into 0, 1, 2 jet bins is evaluated at the
level of the full detector simulation. The associated per-bin
effective cross sections to be used in the analysis are:

σY Rgg · Adet0

σY Rgg · Adet1

σY Rgg · Adet2

Using the parton level fixed-order program HNNLO and
parton-level cuts closely resembling lepton/jet/MET cuts in
the analysis, calculate exclusive cross sections for the de-
fault QCD scale (TBD) and their variation by changing the
scale by a factor of 2 up/down. From these numbers, con-
struct inclusive cross sections and derive their uncertainties.
Replace the total CS error with that from YR.

σ0, σ1, σ2
σ≥0 = σ0 + σ1 + σ2,
σ≥1 = σ1 + σ2,
σ≥2 = σ2

κ≥0, κ≥1, κ≥2
/κ≥0 → κY R≥0

Calculate exclusive theoretical 0, 1, 2 jet bin fractions: f0 = σ0/σ≥0
f1 = σ1/σ≥0
f2 = σ2/σ≥0

881

Nuisance parameter name 0-jet bin 1-jet bin 2-jet bin

QCDscale ggH κ =
(
κY R

) 1
f0 - -

QCDscale ggH1in κ = (κ≥1)
− f1+f2

f0 κ = (κ≥1)
− f1+f2

f1 -

QCDscale ggH2in - κ = (κ≥2)
− f2
f1 κ = κ≥2

882
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Numerical example883

The following tables give a numerical example for mH = 160 GeV/c2. HNNLO cuts: two884

leptons with pT > 20 GeV and |η| < 2.5; MET > 30 GeV (pT of the two-neutrino system);885

consider only those jets that have pT > 30 GeV and |η| < 3.0.886

Convert the relative QCD scale uncertainties
ε+ and ε− (both are positive numbers) from
YR to log-normal κ.

ε+ = 0.109 , ε− = 0.072

κY R =
√

exp(0.109) · exp(0.072) = 1.095

Using the parton level fixed-order program
HNNLO and parton-level cuts closely re-
sembling lepton/jet/MET cuts in the anal-
ysis, calculate exclusive cross sections for the
default QCD scale (TBD) and their varia-
tion by changing the scale by a factor of 2
up/down. From these numbers, construct in-
clusive cross sections and derive their uncer-
tainties. Replace the total CS error with that
from YR.

σ≥0 = [default Q]
[Q/2]
[2Q] = 41.1945.5537.11

σ≥1 = [default Q]
[Q/2]
[2Q] = 12.5915.4510.11

σ≥2 = [default Q]
[Q/2]
[2Q] = 2.393.951.51

κ≥0 =
√

45.55
41.19 ·

41.19
37.11 =

√
1.11 · 1.11 = 1.11

κ≥1 =
√

15.45
12.59 ·

12.59
10.11 =

√
1.25 · 1.23 = 1.24

κ≥2 =
√

3.95
2.39 ·

2.39
1.511 =

√
1.58 · 1.65 = 1.62

Replace κ≥0 = 1.11 with 1.095 from YR

Calculate exclusive theoretical 0, 1, 2 jet bin
fractions:

f0 = σ0/σ≥0 = 0.69
f1 = σ1/σ≥0 = 0.25
f2 = σ2/σ≥0 = 0.06

887

Nuisance name 0-jet bin 1-jet bin 2-jet bin

QCDscale ggH κ =
(
κY R

) 1
f0 = 1.14 - -

QCDscale ggH1in κ = (κ≥1)
− f1+f2

f0 = 0.91 κ = (κ≥1)
− f1+f2

f1 = 1.30 -

QCDscale ggH2in - κ = (κ≥2)
− f2
f1 = 0.89 κ = κ≥2 = 1.62

888
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Derivation889

We start out from assuming that errors are not too large and we can relate the log-normal and890

relative errors as follows: κ≥n = exp(ε≥n). Then, variations in cross sections σ≥0, σ≥1, σ≥2 are891

independent and can be written as892

893

σ̃≥0 = σ≥0 · (κ≥0)x = σ≥0 · exp(ε≥0 · x) = σ≥0 (1 + ε≥0 · x),894

895

σ̃≥1 = σ≥1 · (κ≥1)y = σ≥1 · exp(ε≥1 · y) = σ≥1 (1 + ε≥1 · y),896

897

σ̃≥2 = σ≥2 · (κ≥2)z = σ≥2 · exp(ε≥2 · z) = σ≥2 (1 + ε≥2 · z),898

899

where ε≥n are relative errors and x, y, z are independent nuisance parameters with normal900

distributions).901

902

σ̃0 = σ̃≥0 − σ̃≥1903

904

= σ≥0 (1 + ε≥0 · x)− σ≥1 (1 + ε≥1 · y)905

906

= (σ≥0 − σ≥1) + σ≥0ε≥0 · x− σ≥1ε≥1 · y907

908

= σ0 + σ0
1
f0
ε≥0 · x− σ0 f1+f2f0

ε≥1 · y909

910

= σ0 ·
(

1 + 1
f0
ε≥0 · x− f1+f2

f0
ε≥1 · y

)
911

912

= σ0 ·
(

1 + 1
f0
ε≥0 · x

)
·
(

1− f1+f2
f0

ε≥1 · y
)

913

914

= σ0 · e
1
f0
ε≥0·x · e−

f1+f2
f0

ε≥1·y
915

916

= σ0

[
(eε≥0)

1
f0

]x
·
[
(eε≥1)

− f1+f2
f0

]y
917

918

= σ0

[
(κ≥0)

1
f0

]x
·
[
(κ≥1)

− f1+f2
f0

]y
,919

920

from where one can see that the exclusive 0-jet bin cross section is subject to uncertainties921

driven by two independent nuisance parameters x and y and their effect can be written as922

log-normal with κ’s recalculated from the original errors κ≥n on inclusive cross sections and923

exclusive fractions fn.924

The effect of nuisance parameters on the exclusive cross section σ1 can be calculated in the925

exact same manner:926

927

σ̃1 = σ̃≥1 − σ̃≥2 = ... = σ1

[
(κ≥1)

f1+f2
f1

]y
·
[
(κ≥2)

− f2
f1

]z
.928

929
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D Technical tools930

Implementation of the statistical procedures described above requires a few ingredients: the931

data themselves, the ability to evaluate the likelihood function at arbitrary parameter points932

(µ, θ) given an arbitrary dataset, the ability to generate pseudo-data for an arbitrary parameter933

point, and a prior π(µ, θ) for Bayesian and hybrid methods. This implies that we must have934

the probability model L(datac|µ, θ) and not just the observed likelihood function. Providing the935

full probability model for a broad class of models that may describe binned or unbinned data936

parametrised in O(50) parameters is challenging and requires dedicated technology. The RooFit937

and RooStats projects have been developed to meet this challenge. RooFit, which originated938

in the BaBar experiment, provides the modelling language and the software interfaces and939

implementation for representing the data and the probability model, as well as the ability to940

generate pseudo data from the model and find the maximum likelihood estimates µ̂, θ̂, and
ˆ̂
θ(µ)941

via MINUIT [26]. RooStats provides higher-level statistical tools for various statistical methods,942

including the ones outlined above [19].943

The probability models for the individual channels (indexed by c) Lc(datac|µ, θ) have been944

implemented in software using the RooFit modelling language, often with the aid of dedicated945

scripting or factories that construct models of a specific form. A class called ModelConfig stores946

the meta-data necessary for the RooStats statistical tools to use the model in a generic way.947

The full structure is managed by a class called RooWorkspace, which can be saved into a ROOT948

file using the ROOT persistency and I/O technology.949

The individual probability models Lc(datac|µ, θ) are formed by individual analysis groups950

and stored in these workspace files. The combined model is formed using a RooSimultaneous951

object that associates the individual datasets and model terms and identifies the common pa-952

rameter of interest µ, the nuisance parameters for the experimental systematics common within953

an experiment, and the nuisance parameters for theoretical uncertainties that are common to954

ATLAS and CMS955

L(data|µ, θ) =
∏
c

Lc(datac|µ, θ) . (42)

The correct description of the correlated effect of a common source of uncertainty requires956

coordination of the parametrisation between the different channels. Some level of customisation957

is possible post-facto, though we prefer the original workspace to be parametrised appropriately.958
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