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The range of motion of a particle with certain energy E confined in a potential is determined
from the energy conservation law in classical mechanics. The counterpart of this question
in quantum mechanics can be regarded as what is the possible range of expectation values
of the position operator 〈x〉 of a particle that satisfies E = 〈H〉. This range depends on
the state of the particle, but the universal upper and lower bounds, which are independent
of the state, must exist. In this study, we show that these bounds can be derived by using
the bootstrap method. We also point out that the bootstrap method can be regarded as
a generalization of the uncertainty relations, meaning that the bounds are determined by
the uncertainty relations in a broad sense. Furthermore, the bounds on possible expecta-
tion values of various quantities other than position can be determined in the same way.
However, in the case of multiple identical particles (bosons and fermions), we find some
difficulty in the bootstrap method. Because of this issue, the predictive power of the boot-
strap method in multi-particle systems is limited in the derivation of observables including
energy eigenstates. In addition, we argue an application of the bootstrap method to thermal
equilibrium states. We find serious issues that temperature and entropy cannot be handled.
Although we have these issues, we can derive some quantities in micro-canonical ensembles
of integrable systems governed by generalized Gibbs ensembles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
In classical mechanics, it is a simple problem to find the range of motion of a particle confined
in a potential. For simplicity, we consider a 1D non-relativistic particle with the mass 1 in a
potential V(x). If the particle has energy E, the turning points x1 and x2 (x1 < x2) that satisfy
E = V(xi) (i = 1, 2) would be determined through the energy conservation law

E = 1
2

p2 + V (x), (1)

and the range is given by x1 ≤ x ≤ x2.
What is the answer to this question in quantum mechanics? One answer is that, since the

particle can pass through the potential in quantum mechanics, the possible range of the position
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x of the particle is −∞ ≤ x ≤ ∞. However, this answer is not practical because the probability
of taking such a large range would be exponentially small. So, the counterpart of this problem
in quantum mechanics would be “If a particle satisfies E = 〈H〉, what is the possible range
of the expectation value of the particle’s position operator x?” This range would depend not
only on the energy but also on the state of the particle. However, there must be some universal
upper and lower bounds that are independent of the state. In this paper, we study these bounds.
Similar questions can be asked for the expectation values of various observables. If the system
has a certain energy, how are the maximum and minimum bounds of these expectation values
determined?

The flavor of this problem may be similar to that of the uncertainty relations [1,2]. The uncer-
tainty relations state that there are some universal restrictions between observables (especially
variances). In the case of the above problem, we seek the universal restrictions of observables
under the additional constraint that the system has energy E. Thus, the uncertainty relation
might play some role.

Actually, we can easily show that the problem in harmonic oscillators can be solved by using
the uncertainty relation. However, this method cannot be applied to more general potential
cases. There, we may need some generalization of the uncertainty relations [1,2] involving a
higher moment operator xn. (See Refs. [3–6] for related generalizations of the uncertainty rela-
tions.) In this paper, we point out that the bootstrap method studied by Han et al. [7], which was
originally proposed as a new method to derive the spectrum of the energy eigenstates in quan-
tum mechanics, can be regarded as such a generalization of the uncertainty relations. Then, by
using the bootstrap method, we numerically find the bounds in general potential cases. There-
fore, the problem is indeed closely related to the uncertainty relations. (This means that the
original bootstrap method [7] may also be interpreted as a derivation of the spectrum of the
energy eigenstates by applying the generalized uncertainty relations.)

This problem can be relevant to multi-particle systems too. However, we find that the boot-
strap method has difficulty in handling the statistical nature of identical particles (bosons and
fermions) and it provides only a limited answer. Related to this issue, the predictive power of
the numerical bootstrap method for the energy eigenstates is also limited, if identical particles
are involved.

Then a natural question is whether our method works in quantum many-body systems. In
particular, the constraint E = 〈H〉 is similar to the condition for the micro-canonical ensemble
in statistical mechanics, and it is valuable to apply the bootstrap method to thermal equilib-
rium states. In fact, it was shown in Ref. [8] that the numerical bootstrap method works in a
quantum mechanics with a sign problem, and hence the method has the potential to play a
complementary role to the Monte Carlo method in quantum many-body systems in thermal
equilibrium.

However, we find a serious issue that the bootstrap method cannot handle temperature and
entropy. In addition, due to the issue with identical particles, the convergence of the bootstrap
method will not be good. Therefore, the bootstrap method for thermal equilibrium systems may
not be as good as the Monte Carlo method. On the other hand, as an exception, we show that,
when the system is integrable, the convergence in micro-canonical ensembles is good. Therefore,
the bootstrap method may not be useless for thermal equilibrium states in quantum many-body
systems.
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The organization of this paper is as follows. In Sect. 2, we study the problem of finding the
bounds on the expectation values of observables under the constraint E = 〈H〉 in 1D quantum
mechanics. We show that this problem can be solved by using the uncertainty relation in har-
monic oscillators. For general potential cases, we can use the numerical bootstrap method to
solve the problem. We also show that the bootstrap method can be regarded as a generalization
of the uncertainty relations. In Sect. 3, two-particle systems are considered. There, we argue
that the bootstrap method has an issue with identical particles (bosons and fermions), and its
predictive power is limited. In Sect. 4, we show our attempt to apply the bootstrap method to
thermal equilibrium states in multi-particle systems. We see that the bootstrap method has a
serious issue that temperature and entropy cannot be handled. We also show that the bootstrap
method in integrable systems can predict quantities except temperature and entropy. Section 5
contains conclusions and discussions.

2. Bootstrapping 1D particles
2.1. Bounds on expectation values in quantum mechanics
We study how the upper and lower bounds on the expectation value 〈Q〉 of an operator Q
are determined in quantum mechanics when the system satisfies E = 〈H〉. We start from a 1D
quantum mechanics:

H = 1
2

p2 + V (x). (2)

Here we assume V(x) → +∞ (x → ±∞). Our goal is to find the maximum (minimum) value of
〈Q〉 among all possible mixed states that satisfy the constraint E = 〈H〉. Even if all the energy
eigenstates of this system are known, this is a non-trivial question.1

The flavor of this problem is similar to that of the uncertainty relations, and it is natural to
employ them to find the bounds on 〈Q〉. In fact, this attempt works for harmonic oscillators.
Let us consider the following model:

H = 1
2

p2 + 1
2

x2. (3)

First, we take Q = x and investigate its bounds. Through the constraint E = 〈H〉, we obtain

E = 1
2
〈p2〉 + 1

2
〈x2〉 = 1

2

(〈�p2〉 + 〈p〉2) + 1
2

(〈�x2〉 + 〈x〉2)

=⇒ 〈x〉2 + 〈p〉2 = 2E − (〈�x2〉 + 〈�p2〉) ≥ 2E − 2
√

〈�x2〉〈�p2〉 ≥ 2E − �. (4)

Here, 〈�O2〉 := 〈O2〉 − 〈O〉2 denotes the deviation of O. We used the arithmetic and geomet-
ric means in the first inequality and the uncertainty relation 〈�x2〉〈�p2〉 ≥ �2/4 in the second
inequality. From this equation, the bounds are derived:

−x∗(E ) ≤ 〈x〉 ≤ x∗(E ), x∗(E ) :=
√

2(E − �/2). (5)

We compare this result with classical mechanics. In classical mechanics, the possible range of x
is given by |x| ≤ √

2E . Thus, if we replace E → E − �/2 in this relation, the quantum bounds (5)
are reproduced. Since �/2 is the zero-point energy of the harmonic oscillator, this result implies
that the range of 〈x〉 in quantum mechanics is narrowed by the zero-point energy. As E in-
creases, the difference between quantum mechanics and classical mechanics becomes relatively

1Even if we restrict the state to pure states, this problem is still non-trivial. In this case, a pure state is
given by

∑
bn|n〉, where |n〉 is the energy eigenstate and bn is a complex number. Then, our task is finding

a set of parameters {bn} such that 〈Q〉 is maximized (minimized) under the constraint 〈H〉 = E. This is
a non-linear optimization problem with respect to {bn}, which is difficult to solve in general.
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Fig. 1. The bounds on 〈x〉 and 〈x2〉 in the harmonic oscillator (3) through the uncertainty relation. The
regions enclosed by the dashed lines are the predictions from classical mechanics, and those enclosed
by the solid lines are those from quantum mechanics derived in Eqs. (5) and (6). The red circles are the
energy eigenstates. The regions in quantum mechanics are narrower than those in classical mechanics
because of the restriction through the uncertainty relation. In these plots, we have taken � = 1.

small, and this explains why |x| ≤ √
2E works in the classical limit. These cases are illustrated

in Fig. 1.
Similarly, we can derive the bounds on Q = x2 through the uncertainty relation:

2E = 2〈H〉 = 〈p2〉 + 〈x2〉 ≥ �2

4〈x2〉 + 〈x2〉

=⇒ E −
√

E2 − �2/4 ≤ 〈x2〉 ≤ E +
√

E2 − �2/4. (6)

In classical mechanics, the range of possible values of 〈x2〉 = 〈x〉2 = x2 is given by 0 ≤ x2 ≤ 2E.
Thus, the result in quantum mechanics (6) is again narrower than the classical one. This can
be regarded as a consequence of the uncertainty relation, which restricts the range of physical
quantities more than classical mechanics.

So far, we have investigated the upper and lower bounds on 〈x〉 and 〈x2〉. Similarly, we can
also obtain the bounds on 〈p〉 and 〈p2〉. However, we have not shown whether states saturating
these inequalities really exist or not. If not, stronger bounds must exist. In fact, from a simple
consideration shown in Appendices A1 and A2, we can show that coherent states saturate the
bounds on 〈x〉 and 〈p〉 and that certain Gaussian wave packets saturate the bounds on 〈x2〉 and
〈p2〉. Hence, Eqs. (5) and (6) are the genuine bounds. In addition, from similar considerations,
we can derive the upper and lower bounds on 〈p〉 in general potentials V(x) in Eq. (2). The
details are discussed in Appendix A3.

In this subsection, we have studied the bounds on the operators x, x2, p, and p2 in the har-
monic oscillator (3). These bounds are restricted by the uncertainty relation. This is in contrast
to classical mechanics, where the range of physical quantities is determined only through the
energy conservation law. However, if we consider more complicated operators such as Q = x4

or general potential V(x) in Eq. (2), it seems to be difficult to obtain the bounds on 〈Q〉 from
simple uncertainty relations.

2.2. Bootstrap analysis
To find the bounds in more general situations, we apply the numerical bootstrap method pro-
posed by Han et al. [7]. As we discuss shortly, this method can be regarded as a generalization
of the uncertainty relations.
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For this purpose, we follow Han et al. and introduce a bootstrap matrix. We assume that
any (non-singular) operators O in the system satisfy the following positivity condition for any
(non-singular) mixed states:

〈O†O〉ρ := Tr
(
ρ̂O†O

) ≥ 0. (7)

Here ρ̂ is defined by

ρ̂ :=
∑

α

cα|α〉〈α|, (8)

where |α〉 are pure states that are normalized as 〈α|α〉 = 1, and cα are real constants that specify
the mixed state and satisfy 0 ≤ cα ≤ 1 and

∑
αcα = 1. We also assume that O satisfies

〈O†〉ρ = 〈O〉∗ρ. (9)

Then, we prepare a set of some K operators {On} and K auxiliary constants {bn} (n = 1,…,
K), and define an operator Õ:

Õ :=
K∑

n=1

bnOn. (10)

Now, because of the positivity condition (7),

〈Õ†Õ〉ρ =
K∑

m,n=1

b∗
mbn

〈
O†

mOn
〉
ρ

≥ 0 (11)

is satisfied for arbitrary constants {bn}. Hence, the following K × K Hermite matrix M has to
be positive-semidefinite [7]:

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈
O†

1O1

〉
ρ

〈
O†

1O2

〉
ρ

· · ·
〈
O†

1OK

〉
ρ〈

O†
2O1

〉
ρ

〈
O†

2O2

〉
ρ

· · ·
〈
O†

2OK

〉
ρ

...
...

. . .
...〈

O†
KO1

〉
ρ

〈
O†

KO2

〉
ρ

· · ·
〈
O†

KOK

〉
ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

� 0, (12)

where � is the mathematical symbol for a positive-semidefinite matrix. We call M a bootstrap
matrix and Õ its seed operator. We later see that K may be regarded as a cut-off parameter for
numerical bootstrap analysis.

The discussion up to this point is not limited to 1D quantum mechanics and it can be applied
to general systems. From now on, we focus on 1D quantum mechanics with the Hamiltonian
(2). Here we take the seed operator

Õ =
Kx∑

m=0

Kp∑
n=0

bmnxm pn, (13)

and construct the bootstrap matrix from it:

M =

⎛
⎜⎜⎜⎜⎝

1 〈x〉ρ 〈p〉ρ · · ·
〈x〉ρ

〈
x2

〉
ρ

〈xp〉ρ · · ·
〈p〉ρ 〈px〉ρ

〈
p2

〉
ρ

· · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠. (14)

The components of this matrix take the forms 〈phxkpl〉ρ , and they can be described by the
ordered forms 〈xmpn〉ρ through the relation that can be derived from the commutator relation
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[x, p] = i�:

pnxm =
min(m,n)∑

k=0

(−i�)k n!m!
k!(n − k)!(m − k)!

xm−k pn−k. (15)

In addition, these components 〈xmpn〉ρ are restricted from the condition (9). For example,
〈px〉ρ = 〈xp〉∗ρ = 〈xp〉ρ − i�, which implies that Im(〈xp〉ρ) = �/2.

2.2.1. Bootstrap analysis and the uncertainty relations. The condition M � 0 strongly
constrains the possible values of the quantities 〈xmpn〉ρ . Actually, the uncertainty relation
〈�x2〉〈�p2〉 ≥ �2/4 is one of the consequences of this condition. Thus, the condition M � 0
may be regarded as a generalized version of the uncertainty relations.

To see the derivation of the uncertainty relation from M � 0, we take Kx = Kp = 1 in Eq.
(10):2

Õ = b001 + b10x + b01 p. (16)

Then the bootstrap matrix becomes

M =

⎛
⎜⎝

1 〈x〉 〈p〉
〈x〉 〈

x2
〉 〈xp〉

〈p〉 〈px〉 〈
p2

〉
⎞
⎟⎠. (17)

Here we have omitted the symbol ρ. This matrix should be positive-semidefinite, and the deter-
minant is non-negative. Thus, we obtain [10]

(
〈
x2〉 − 〈x〉2)(

〈
p2〉 − 〈p〉2) ≥ | 〈xp〉 − 〈x〉 〈p〉 |2 = 1

4
| 〈[x, p]〉 + 〈{x, p}〉 − 2 〈x〉 〈p〉 |2

= 1
4
| 〈[x, p]〉 |2 + 1

4
| 〈{x, p}〉 − 2 〈x〉 〈p〉 |2 ≥ 1

4
| 〈[x, p]〉 |2. (18)

Here, we have used that {x, p} is Hermitian and [x, p] is anti-Hermitian in the third equality.
Then, by using [x, p] = i�, we obtain the uncertainty relation

〈�x2〉〈�p2〉 ≥ 1
4

�2. (19)

Therefore, the condition M � 0 for a general bootstrap matrix (12) may be regarded as an
extended version of the uncertainty relations.3 (Actually, this condition for Kx ≥ 1 and Kp ≥ 1
is stronger than the original uncertainty relation, since the uncertainty relation can be obtained
from Eq. (11) by tuning bmn = 0 except b00, b01, and b10.)

2.3. Bootstrapping 1D models with E = 〈H〉
Han et al. [7] used the condition M � 0 to obtain the spectrum of the energy eigenstates, which
will be reviewed in Sect. 2.5. Here, we apply this condition to solve our problem of finding the
upper and lower bounds on the expectation values of an operator Q when the system with the
Hamiltonian (2) satisfies E = 〈H〉. In mathematics, this optimization problem is represented by

2See Refs. [3,9] for a related derivation of the uncertainty relation.
3Various generalizations of the uncertainty relations involving higher moment operators have been

proposed; see, e.g., Refs. [3–6]. Closely related inequalities can be obtained through the cumulant expan-
sion [11] and Jensen’s inequality, too. One advantage of the constraint M � 0 in our analysis is that it
can be solvable through linear programming as we demonstrate.
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Fig. 2. The ranges of the possible expectation values of 〈x〉 and 〈x2〉 in the anharmonic oscillator (21)
through the bootstrap method. The expectation values can be taken in the region enclosed by the colored
solid curves in the figures (the colors represent different (Kx, Kp)). The dashed lines are for classical
mechanics, and the red circles are the quantities of the energy eigenstates. As (Kx, Kp) increase, the range
becomes smaller, and provides a stronger bound. As in the case of the harmonic oscillator, the ranges in
quantum mechanics are narrower than those in classical mechanics. It can also be seen that the smallest
possible value of E coincides with the ground state.

the following symbols:

max{〈Q〉ρ | M � 0 ∧ E = 〈H〉ρ = 1
2
〈p2〉ρ + 〈V (x)〉ρ},

min{〈Q〉ρ | M � 0 ∧ E = 〈H〉ρ = 1
2
〈p2〉ρ + 〈V (x)〉ρ}. (20)

These represent linear programming with respect to the quantities {〈xmpn〉ρ}, and are solvable.

2.3.1. Examples: Anharmonic oscillator and double-well potential. As examples, we investi-
gate this problem in an anharmonic oscillator and a double-well potential:

H = 1
2

p2 + 1
2

x2 + 1
4

x4, (21)

H = 1
2

p2 − 5x2 + 1
4

x4. (22)

We take Q = x and Q = x2, and compute the maximum and minimum values of the expectation
values of these operators by solving the linear programming (20).4 The results are shown in
Figs. 2 and 3. We find that the numerical results converge as we take larger values of Kx and
Kp defined in Eq. (13). The convergence is very quick for 〈x〉, and is good enough even at Kx

= Kp = 2. It also seems to converge reasonably quickly for 〈x2〉. These results indicate that
the numerical bootstrap method is quite effective in our problem. Here, one remark is that,
similar to the uncertainty relation in the harmonic oscillator, the bootstrap method cannot tell
us whether the states saturating the bounds exist or not. Since such states are found in the
harmonic oscillator, it is likely that such states exist in the current models too.

In the case of the anharmonic oscillator, the obtained results are qualitatively similar to the
harmonic oscillator case shown in Fig. 1. In the case of the double-well potential, 〈x〉 can take

4For these analyses, we used the Mathematica package “SemidefiniteOptimization”. We use versions
13.0 and 13.1. Note that the numerical results strongly depend on the “Method” option of this package.
The results presented in Figs. 2 and 3 are obtained using Method → “DSDP”. In the numerical analysis
throughout this paper, � = 1 is taken.
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Fig. 3. The range of the possible expectation values of 〈x〉 and 〈x2〉 in the double-well potential (22)
through the bootstrap method. The expectation values can be taken in the region enclosed by the colored
solid curves in the figures. The dashed lines are for classical mechanics, and the red circles are for the
quantities of the energy eigenstates. Similar to the anharmonic oscillator case shown in Fig. 2, the result
converges as (Kx, Kp) increase. It can be seen that, in quantum mechanics, the range of the possible
expectation values of 〈x〉 also appears in the region not allowed in classical mechanics.

a value in the forbidden region in classical mechanics.5 This is expected in quantum mechanics,
and our result reproduces this property.

In these numerical results, the lowest-energy points coincide with the ground states.6 This is
because the ground state is realized as the lowest-energy state among all possible states. If one
simply wants to find the energy of the ground state, one can obtain it by numerically solving the
linear programming: min{〈H〉 |M � 0} [14]. This implies that the ground state is the optimized
state that minimizes energy under the generalized uncertainty relation M � 0, and it might give
us a new picture of the ground state in quantum mechanics.

We have seen that the numerical bootstrap method works effectively in our problem. In prin-
ciple, we can apply our analysis to arbitrary operators Q. However, the problem of finding
the bounds on the possible values of the product of expectation values 〈Q1〉〈Q2〉 would be a
non-linear optimization problem, and it would be numerically much harder.

2.4. Bootstrapping stationary states with E = 〈H〉
We have seen that, when the system has energy E, the upper and lower bounds on the expec-
tation value 〈Q〉 can be obtained by using the bootstrap method. There, we have imposed no
restrictions other than energy E = 〈H〉 on the states. From now on, we consider the possible
range of the expectation value 〈Q〉 under an additional condition that the states are stationary.
This will be a hint when we apply the bootstrap method to thermal equilibrium states, which we
discuss in Sect. 4. The general stationary state in quantum mechanics is given by the following
mixed state ρ̂st:

ρ̂st =
∞∑

n=0

cn|n〉〈n|, (23)

5Even in classical mechanics, if we allow probabilistic states of a particle, 〈x〉 can take a value in the
forbidden region [12]. We do not consider such states here. A related study of the bootstrap method for
classical particles was done in Refs. [12,13].

6We compute the eigenstates by numerically solving the Schrödinger equations. We use the Mathemat-
ica package “NDEigensystem” throughout this paper.
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Fig. 4. The range of possible values of 〈x2〉ρst of the anharmonic oscillator (21) for stationary states (23).
The results of the bootstrap method (25) plotted by the colored solid lines converge to the theoretical
predictions (the dashed lines) as Kx and Kp increase. However, the calculation of the lower bound on
〈x2〉ρst is numerically difficult and does not give reliable answers. (The lower bound at (Kx, Kp) = (7, 7)
is not shown in the figure, because we could not obtain reliable results.) On the other hand, the upper
bound in E < 10 converges well, and the results are almost identical to the theoretical prediction.

where |n〉 (n = 0, 1,…) is the energy eigenstate with the eigenenergy En, and cn is a constant
satisfying 0 ≤ cn ≤ 1 and

∑
ncn = 1. Then, this state satisfies7

〈[H, O]〉ρst = 0 (24)

for any operators O. Thus, in order to obtain the bounds on 〈Q〉ρst for the stationary states with
energy E = 〈H〉, we should add this condition to the constraints (20), and solve the optimization
problem of finding the maximum and minimum values of 〈Q〉ρst :

M � 0, E = 〈H〉ρst = 1
2
〈p2〉ρst + 〈V (x)〉ρst, 〈[H, O]〉ρst = 0, (O ∈ {xm pn}). (25)

This is again a linear program with respect to {〈xm pn〉ρst}, and we can compute it numerically.
Note that, unlike the problem (20) discussed in Sect. 2.2, we can solve this problem if we know

all the energy eigenstates of the Hamiltonian. For example, if all {cn} except c0 and c1 in Eq.
(23) are zero, the range of the possible values of 〈Q〉ρst is limited to the straight line connecting
the point (E, 〈Q〉) at |0〉 and |1〉, since c0 + c1 = 1. Extending it to non-zero {cn}, we will obtain
the region enclosed by the polygonal line connecting the eigenstates, and 〈Q〉ρst can take a value
only in this region.

2.4.1. Example: Anharmonic oscillator. As an example, we seek the bounds on Q = x2 in
the anharmonic oscillator (21). (Note that 〈x〉ρst = 0 in the anharmonic oscillator.) We derive
the energy eigenstates by numerically solving the Schrödinger equation. The energy and 〈x2〉
for each eigenstate is plotted by the red circles in Fig. 4. Then, the range of possible values of
〈x2〉ρst for the stationary states (23) is given by the polygonal region connecting them, which is
illustrated by the dashed lines in Fig. 4. Since the constraints (25) are stronger than Eq. (20),
the range of possible values of 〈x2〉 is narrower than the range shown in Fig. 2.

7It was pointed out in Ref. [13] that we need to take special care with this condition when the system is
on a half line such as a radial coordinate r ∈ [0, +∞].
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We solve the same problem by computing Eq. (25) via the numerical bootstrap method.8 The
results are shown in Fig. 4.9 We see that the predictions of the bootstrap method asymptotically
approach the theoretical prediction (the dashed lines) as Kx and Kp increase. In particular, the
upper bound on 〈x2〉ρst at (Kx, Kp) = (7, 7) is apparently almost identical to the dashed lines.

However, there are some regions where the numerical bootstrap method does not work well.
As energy increases, the upper bound on 〈x2〉ρst becomes more and more difficult to obtain.
Actually, in the original bootstrap method [7], the eigenstates are obtained from lower-energy
eigenstates [15]. Hence, the bootstrap method may work better at lower energy in general. In
addition, the lower bound on 〈x2〉ρst is also difficult to obtain when the size of the bootstrap
matrix size is large. Note that the lower bound in Fig. 4 is the straight line connecting the ground
state and the state at E = ∞. Since handling high-energy states may be difficult in the bootstrap
method, this might explain why the bootstrap method does not work well for deriving the lower
bound.

One interesting feature of this result is that 〈x2〉 at the energy eigenstates are reproduced as the
vertexes of the polygonal region in Fig. 4. Thus, the constraints (25) are enough to obtain the
energy eigenstates in the bootstrap method. However, this is because (E, 〈x2〉) for the eigenstates
in the anharmonic oscillator lie on a convex curve, and it does not generally occur. If we change
the Hamiltonian and (E, 〈x2〉) distribute more complicatedly, some of the eigenstates appear
inside the polygon and they cannot be observed (see, e.g., (E, 〈x2〉) in the double-well potential
shown in Fig. 3). In order to find the full eigenstates through the bootstrap method, we need
to add further constraints to Eq. (25), as we see in the next section.

2.5. Bootstrapping energy eigenstates
We have investigated the range of possible values of 〈Q〉 in the stationary state, and now we im-
pose further constraints to obtain the energy eigenstates. (This is the original bootstrap method
proposed by Han et al. [7].) The energy eigenstate |E〉 satisfies not only the stationary condition
(24) but also the following equation:

〈E |HO|E〉 = E〈E |O|E〉 (26)

for any well defined operators O. Hence, we may obtain the spectrum of the energy eigenstates
by evaluating the possible values of 〈Q〉 under the constraints

M � 0, 〈E |HO|E〉 = E〈E |O|E〉, 〈E |[H, O]|E〉 = 0, (O ∈ {xm pn}). (27)

Here the constraint E = 〈E|H|E〉 in Eq. (25) is involved in Eq. (26) with O = 1. The constraints
(24) and (26) are quite strong, and they reduce to the following recurrence relation [15–18]:

n(n − 1)(n − 2)〈xn−3〉 − 8n〈xn−1V (x)〉 + 8nE〈xn−1〉 − 4〈xnV ′(x)〉 = 0. (28)

8In this numerical problem, one question is what operator xmpn should be taken in the constraint
〈[H, O]〉ρst = 0 in Eq. (25). If more operators of O = xmpn are taken, the constraints become stronger,
but they require greater computational resources. Here, we simply take the operators appearing in the
bootstrap matrix M. (Note that new operators O′, which do not exist in the bootstrap matrix M, will
appear from the equation 〈[H, O]〉ρst = 0, and we can derive new constraints 〈[H, O′]〉ρst = 0 with respect
to these new operators, but we do not do it.) Similar questions arise in other bootstrap problems too and
we take the same prescription throughout this paper. An exception is the energy eigenstate problem in
1D quantum mechanics discussed in Sect. 2.5. There, we can explicitly solve the constraints 〈[H, O]〉 =
0 and 〈HO〉 = E〈O〉 [15].

9We used the Mathematica package “SemidefiniteOptimization” and take “CSDP” or “MOSEK” as
the “Method” option.

10/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023A01/6979834 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023A01 T. Morita

Fig. 5. The possible ranges of 〈x2〉 for the energy eigenstates in the anharmonic oscillator (21) near
the ground state. The numerical bootstrap problem with the constraints (27) is solved. The red circle
is the result of numerically solving the Schrödinger equation, and the results of the bootstrap method
asymptotically approach it. Similar results can be obtained for other energy eigenstates too, but it works
better for lower energies [15].

Here we have omitted |E〉. When V(x) is a polynomial, this recurrence relation can be solved
and 〈xn〉 for any integers n are expressed by a finite number of operators {〈xm〉} and E. Simi-
larly, 〈xkpl〉 for any integers k and l is also described by these quantities [15]. Previous studies
have shown that these conditions are strong enough to reproduce the observables in the energy
eigenstates [7,8,13,15–17,19–24].

2.5.1. Example: Anharmonic oscillator. We demonstrate the derivation of the energy eigen-
states in the anharmonic oscillator (21). In this case, by solving the recurrence relation (28), the
operator 〈xkpl〉 is expressed by 〈x〉, 〈x2〉, and E. Then, the bootstrap matrix (14) becomes

M =

⎛
⎜⎜⎜⎜⎝

1 〈x〉 0 · · ·
〈x〉 〈

x2
〉 i

2 · · ·
0 − i

2
1
3

(
4E − 〈

x2
〉) · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠. (29)

The constraint M � 0 for this matrix is quite strong and the allowed regions are point-like. See
Fig. 5.10,11

2.6. Summary of the 1D problem
Let us summarize the discussions in this section. The bootstrap method allows us to obtain the
range of the possible values of observables by applying various constraints to the expectation
values. In particular, the constraints used in this section have the following meanings:

10Our analysis is the same as that of Han et al. [7], with two differences. One is that Han et al. took
Kp = 0 in Eq. (13) but we did not. Actually, Kp �= 0 might improve the numerical analysis [15]. Another
difference is that Han et al. imposed 〈x〉 = 0 by hand, but we did not, although 〈x〉 = 0 reduces the
computational resources. This is because we want to emphasize that the constraint (27) is sufficient to
obtain the eigenstates. Note that our obtained states satisfy 〈x〉 � 0.

11The bootstrap matrix linearly depends on 〈x〉 and 〈x2〉 and non-linearly depends on E. Thus, if we fix
E, the optimization problem (27) can be solved by using linear programming. We solve this problem by
using the Mathematica package “SemidefiniteOptimization” and take “DSDP” as the “Method” option.
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� M � 0: A generalization of the uncertainty relations.
� E = 〈H〉: The state has energy E.
� 〈[H, O]〉 = 0: The state is stationary.
� 〈[H, O]〉 = 0 and 〈HO〉 = E〈O〉: The state is the energy eigenstate with energy eigenvalue E.

The first constraint M � 0 should always be satisfied, and the rest of the constraints specify
the states that we want to investigate.

3. Bootstrapping two-particle systems
3.1. Problems in identical particles
Since the bootstrap method works efficiently in single-particle models in one dimension, it is
natural to apply it to multi-particle systems. However, we will show that some problems arise
when the bootstrap method is applied to (indistinguishable) identical particle systems. In order
to clarify this issue, we study the following 1D two-particle system:

H = p2
1

2
+ p2

2

2
+ V (x1, x2). (30)

Here xi and pi are the position and momentum of the ith particle (i = 1, 2). We impose a condi-
tion V(x1, x2) = V(x2, x1) on the potential. Then, the energy eigenstate is always symmetric or
anti-symmetric under the exchange of the two particles x1, p1↔x2, p2. It is also possible that
the symmetric and anti-symmetric states degenerate at the same energy level. Related to this
property, this model has three different situations, depending on the statistics of the particles:

� Two identical Bose particles ⇒ States are symmetric under the two-particle exchange.
� Two identical Fermi particles ⇒ States are anti-symmetric under the two-particle exchange.
� Two distinct particles ⇒ State are symmetric or anti-symmetric under the two-particle ex-

change.

Note that we do not consider spins. The distinct particle case can be regarded as a system
with a flavor symmetry.

Here, we argue whether the bootstrap method correctly derives the physical quantities in
each of these three situations. As we have seen in the previous section, in order to specify the
desired physical situation in the bootstrap method, we need to impose appropriate constraints
on expectation values. In the case of the identical particles, physical quantities are invariant
under the exchange of the two particles x1, p1↔x2, p2, while they need not be invariant in the
case of the distinct particles. Hence, we impose the constraint

〈O(x1, x2, p1, p2)〉 = 〈O(x2, x1, p2, p1)〉 (31)

in the identical particle case, and we do not impose it in the distinct particle case.
In the case of the identical particles, we need to further distinguish the bosons and fermions.

However, the bootstrap method cannot do it. This is because the quantities considered in the
bootstrap method are only expectation values, which are always invariant under the exchange
of the particles as in Eq. (31). If the bootstrap method could handle amplitudes or wave func-
tions, it would be possible to distinguish the bosons and fermions, since their signs are flipped
under the particle exchange in the case of the fermions. However, there is currently no known
way to treat these quantities in the bootstrap method. Therefore, the bootstrap method can-
not distinguish the bosons and fermions. Hence, the bootstrap method may be applicable to
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the identical particles but the predictions would be limited. On the other hand, the bootstrap
method may work properly in the distinct particle case.

3.1.1. Example 1: Non-interacting harmonic oscillators. To see the problem of two-particle
systems in the bootstrap method concretely, we investigate non-interacting two-harmonic os-
cillators:

H =
2∑

i=1

(
1
2

p2
i + 1

2
x2

i

)
. (32)

We derive the bounds on 〈x1〉 under the constraint E = 〈H〉. Before studying the deriva-
tion through the bootstrap method, we show the correct bounds obtained through a different
method:

Two distinct particles: 〈x1〉2 ≤ 2(E − �), (33)

Two identical Bose particles: 〈x1〉2 ≤ E − �, (34)

Two identical Fermi particles: 〈x1〉2 ≤ E − 2�. (35)

The derivation of this result is shown in Appendix A4. In this computation, we used the prop-
erty that the harmonic oscillators are quadratic. However, since this derivation is limited to
quadratic systems, it is desirable to reproduce these results employing the uncertainty relation.
(If the uncertainty relation works, we expect that the bootstrap method, which generalizes the
uncertainty relation, may work for more general systems.)

Similar to the derivation (4) in the single-particle problem, the condition E = 〈H〉 and the
uncertainty relation lead to the inequality

〈x1〉2 + 〈x2〉2 ≤ 2(E − �). (36)

If the two particles are distinguishable, 〈x1〉 and 〈x2〉 are independent, and we obtain the bound

〈x1〉2 ≤ 2(E − �). (37)

This reproduces Eq. (33), and thus the uncertainty relation (and the bootstrap method) may
work for distinct particles.

If the two particles are identical and not distinguishable, the relation 〈x1〉 = 〈x2〉 is satisfied
through Eq. (31), and the inequality (36) becomes

〈x1〉2 ≤ E − �. (38)

No further restrictions can be imposed from the uncertainty relation. This result is consistent
with the boson (34), but not with the fermion (35). Clearly, the bound (38) is weaker than the de-
sired bound (35) for the fermions. This means that the condition obtained from the uncertainty
relation is not strong enough. This is due to the fact that, as mentioned earlier, the uncertainty
relation handles only expectation values, which do not distinguish bosons and fermions.

Similar problems must appear in more general models in the bootstrap methods too. Related
issues would also arise in the derivation of the energy eigenstates. We will consider this problem
in the next example.
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3.1.2. Example 2: Yang–Mills quantum mechanics. As the second example, we study so-called
“Yang–Mills quantum mechanics” (YMQM), which is not free and is known to show chaos
[25–27]:

H = p2
1

2
+ p2

2

2
+ x2

1x2
2. (39)

Numerical computation of the Schrödinger equation yields symmetric and anti-symmetric
eigenfunctions. There are also cases where both degenerate. In order to compute the observables
such as 〈x2

1〉, we need to select the eigenfunctions depending on the three situations: distinct par-
ticles, identical bosonic particles and identical fermionic particles. The spectra (E, 〈x2

1〉) in these
cases are plotted in Fig. 6 for the distinct particles and Fig. 7 for the identical particles. Note
that, in the case of distinct particles, when two eigenstates degenerate, superpositions of these
two are allowed, and the expectation values of 〈x2

1〉 at this energy level take various values within
a certain range. The black vertical dashed lines in Fig. 6 indicate this range. On the other hand,
in the case of identical particles, we need to exclude the anti-symmetric states or the symmetric
states according to whether the particles are bosons or fermions, and the degeneracy does not
occur.

Fig. 6. Energy eigenstates for two distinct particles in YMQM (39). “×” denotes the eigenstates ob-
tained by solving the Schrödinger equation numerically. The lower left and lower right panels are the
neighborhood of the first and second eigenstates in the upper left panel, respectively. The eigenstates are
symmetric or anti-symmetric with respect to the exchanges of the particles. In particular, when these two
states degenerate, 〈x2

1〉 can take various values within a certain range due to their superpositions. This
range is indicated by the vertical dashed lines in the figures. It can be seen that the bootstrap method
reproduces these eigenstates including the superpositions as Kx and Kp increase. In particular, the first
eigenstate at (Kx, Kp) = (3, 2) (the red “dot”) is almost point-like. However, the bootstrap method cannot
indicate whether these eigenstates are symmetric or anti-symmetric.
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Fig. 7. Energy eigenstates for two identical particles in YMQM (39) through the numerical bootstrap
method. “×” denotes the eigenstates obtained by solving the Schrödinger equation numerically. The
lower left and lower right panels are the neighborhood of the first and second eigenstates in the up-
per left panel, respectively. The eigenstates are symmetric or anti-symmetric with respect to the particle
exchanges, and we take either of them depending on whether the particles are bosons or fermions. At
the degenerate states, the bosons and fermions have the same values 〈x2

1〉. Unlike the distinct particle
case, their superposition is not allowed, since we take only one state. It can be seen that the bootstrap
method reproduces these states as Kx and Kp increase. The first eigenstate at (Kx, Kp) = (3, 2) is again
almost point-like. However, the bootstrap method cannot indicate whether the states are symmetric or
anti-symmetric.

Now, let us see if the bootstrap method can reproduce these eigenstates. We take the seed
operator

Õ =
Kx∑

k,l=0

Kp∑
m,n=0

bklmnxk
1xl

2 pm
1 pn

2, (40)

and construct the bootstrap matrix from it. Then, we solve the optimization problem (27),
which is linear if we fix E. We also impose the constraints (31) for the particle exchanges in
the identical particle case. The numerical results are illustrated in Fig. 6 (distinct particles) and
Fig. 7 (identical particles).12 They show that, for both identical and distinct particles, the range
of the possible values of 〈x2

1〉 tends to approach the eigenstates as Kx and Kp increase. In the
distinct particle case, the numerical bootstrap method also reproduces the range of 〈x2

1〉 due to
the degeneracy.

12We solve this problem by using the Mathematica package “SemidefiniteOptimization” with the
“Mosek” and “CSDP” options. In our numerical analysis, sometimes unnatural line-like regions were
observed. In these regions, the bootstrap matrices have much larger negative eigenvalues, which means
that the condition M � 0 is not satisfied and the data would be not reliable. In our figures, we have
removed these regions.
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Fig. 8. The possible ranges of 〈x1〉 in YMQM for general mixed states with E = 〈H〉. The left panel is
for the distinct particles and the right panel is for the identical particles in which the constraint (31) is
imposed. Thus, the region in the right panel is smaller.

Fig. 9. The possible ranges of 〈x2
1〉 in YMQM for general mixed states with E = 〈H〉. The left panel is for

the distinct particles and the right panel is for the identical particles. It seems that the bootstrap results
have not converged yet at (Kx, Kp) = (6, 1). We also plot 〈x1〉2 at (Kx, Kp) = (5, 1), which is obtained from
the data in Fig. 8. We see that 〈x2

1〉 > 〈x1〉2 is not satisfied for larger E in the distinct particle case. This is
evidence that the analysis for 〈x1〉 has not converged yet. Taking larger Kx and Kp might improve it.

However, as we have discussed, it is not possible to determine whether the obtained eigenstates
are for the bosons or for the fermions through the bootstrap method. (We can only say that
there are states corresponding to the bosons and the fermions at the degenerate states from the
results for the distinct particles.) Therefore, the bootstrap method has only limited predictive
power for the identical particle case.

Note that the number of independent variables in the bootstrap matrix M in YMQM in-
creases as Kx and Kp increases, and it is more than 400 at (Kx, Kp) = (3, 2) even after we impose
the constraints in Eq. (27). In contrast, in the case of the 1D anharmonic oscillator discussed
in Sect. 2.5.1, there are only two independent variables: 〈x〉 and 〈x2〉, and this does not change
with (Kx, Kp) because of the strong constraint (28). Thus, the numerical bootstrap analysis in
the YMQM case is qualitatively different from the anharmonic oscillator case, and our results
show that the method works even in such a situation.

3.1.3. Bootstrapping other states with E = 〈H〉 in YMQM. As we have studied in the 1D
quantum mechanics, the bounds on the possible values of observables for general mixed states
with energy E = 〈H〉ρ in YMQM will be derived through the bootstrap method. We solve
the optimization problem (20) with the Hamiltonian (39) by using the bootstrap matrix con-
structed from the operator (40). The results for 〈x1〉 and 〈x2

1〉 are illustrated in Figs. 8 and 9,

16/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023A01/6979834 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023A01 T. Morita

Fig. 10. The possible ranges of 〈x2
1〉 in YMQM for stationary states with E = 〈H〉.

respectively.13 It seems that 〈x2
1〉 have not converged yet. 〈x1〉 in the distinct particle case have

also not converged yet, since they do not satisfy 〈x1〉2 < 〈x2
1〉 for larger E as shown in Fig. 9.

(Another possibility is that the obtained 〈x2
1〉 in this region is numerically wrong.) They might

have converged for smaller E. 〈x1〉 in the identical particle case might have converged too. In
order to obtain the convergent results, we need to perform numerical analysis for larger Kx and
Kp, but, due to our limited computational resources, we leave this for future work.

We also investigate stationary states with energy E = 〈H〉ρst by solving the constraint (25).
The results for 〈x2

1〉ρst are shown in Fig. 10.14

In all of the bootstrap results in this subsection, the regions in the identical particle case
are always smaller than those in the distinct particle case because of the additional constraint
(31). In the identical particle case, the actual allowed regions must be smaller than the obtained
regions in our analysis, similar to the harmonic oscillator case discussed in Sect. 3.1.1. In partic-
ular, the region for the fermions should start from the ground state, but the bootstrap method
cannot show this at all.

Note that YMQM (39) has flat directions along the lines x1 = 0 and x2 = 0. Thus, x1 or x2

can take arbitrary large values even at zero energy in classical mechanics. On the other hand, in
quantum mechanics, the probability of taking such a large value xi is expected to be small due
to the uncertainty relation [28]. Our results for 〈x1〉 and 〈x2

1〉 explicitly support this prediction.
In this section, we have discussed the application of the bootstrap method to two-particle sys-

tems in one dimension. In the case of identical particles, the bootstrap method has only limited
predictive power. On the other hand, it works properly when the two particles are distinct. In
this case, x1 and x2 can be interpreted as “the coordinates of one particle in two dimensions” in-
stead of “the coordinates of two particles in one dimension”. Therefore, the bootstrap method
works even in a 2D system. By increasing the number of degrees of freedom in this way, we
expect that it will also work for multi-particles in one or higher dimensions.

13In our analysis in this subsection, we use the Mathematica package “SemidefiniteOptimization” with
the “DSDP” option. Note that 〈x1〉 for the energy eigenstates are always zero even superposing the de-
generate states in the distinct particle case.

14To improve the numerical analysis for stationary states, we impose the parity condition 〈xk
1xl

2 pm
1 pn

2〉 =
0 if either k + m or l + n is odd. Note that, in the single-particle case, the bounds for the stationary states
are derived through the straight lines connecting the spectrum of the particle, as shown in Fig. 4. This
method does not work in YMQM, since the spectrum for large energy is not known. (In the single-
particle case, the spectrum for large energy can be obtained through the WKB approximation. However,
the WKB approximation does not work in YMQM.)
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4. Bootstrapping thermal equilibrium states
In the previous section, we have shown that the bootstrap method also works for multi-particle
systems, although the predictive power is limited in identical particle cases. An interesting ques-
tion is whether the bootstrap method can predict physical quantities in thermal equilibrium in
quantum many-body systems. In this section, we discuss this problem. To make the problem
concrete, we consider an N-particle system (N � 1) with Hamiltonian

H = 1
2

N∑
i=1

p2
i + U (x1, x2, . . . xN ), (41)

where xi is the position of the ith particle and pi is its conjugate momentum. U(x1, x2,…,xN)
is a potential and we assume that it is symmetric with respect to the particle exchanges. (The
large-N matrix models studied in Ref. [7] are examples of this model.)

Obviously, if we consider identical particles in the model (41), the issue of identical particles
would occur. In addition, we find other problems that, in principle, show that it is difficult to
handle temperature and entropy in the bootstrap method. In this section, we first introduce
the temperature problem in Sect. 4.1, and after that we discuss entropy and identical particle
problems in Sect. 4.2. However, if the system is integrable, the bootstrap method may avoid the
identical particle problem. We will discuss this in Sect. 4.3.

4.1. Difficulties in bootstrapping canonical ensembles
In this section, we try to apply the bootstrap method to the model (41) in thermal equilib-
rium with temperature T. Such a state is described by the stationary mixed state (23) with the
Boltzmann factor cn = exp ( − βEn)/Z, and the expectation value of an operator O is given by

〈O〉β := 1
Z

∑
n

e−βEn〈n|O|n〉, Z :=
∑

n

〈n|e−βH |n〉. (42)

Here β := 1/T and we have taken the Boltzmann constant 1. Typically, we take O as an averaged
macroscopic quantity, e.g.,

xm pn := 1
N

N∑
i=1

xm
i pn

i . (43)

In order to evaluate physical quantities in this thermal equilibrium state using the bootstrap
method, constraints that specify this state should be imposed on quantities 〈O〉β . Since the
thermal equilibrium state is a kind of stationary mixed state, the constraint (24) should be
imposed. Then, we need to find additional constraints such that we distinguish the thermal
equilibrium state from general stationary mixed states.

We notice that the thermal equilibrium state (42) satisfies the condition
∂

∂β
〈O〉β = 〈H〉β〈O〉β − 〈HO〉β. (44)

(We can also find similar equations for the higher-order derivative of β.) However, this con-
dition is a differential equation with respect to β, which is not useful at all in the bootstrap
method.15 On the other hand, this relation gives us indirectly useful information. That is, when

15Since the relation (44) is a differential equation, if we know the expectation value 〈O〉β at a certain
temperature, we may use it to evaluate the physical quantity at a slightly different temperature β + �β.
However, the bootstrap method is not so useful in combination with differential equations, because it is
a method to test whether the expectation value 〈O〉β is consistent with the given constraints.
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the system size is large, the expectation values of averaged quantities such as Eq. (43) should
be factorized:

〈O1O2〉β = 〈O1〉β〈O2〉β + O(1/N ). (45)

Since 〈O1〉 and 〈O2〉 would be O(1) quantities, we may ignore the second term on the right-
hand side. Thus, if this relation does not hold, the order of N does not match on the right- and
left-hand sides of Eq. (44). Therefore, such factorization must occur in the thermal equilibrium
state (42). (Conversely, factorization does not need to occur in general stationary mixed states.)
In fact, in statistical mechanics, such a relation is naturally expected from the central limit
theorem. In addition, in large-N gauge theories, such a relation is also expected as large-N
factorizations.16 So, the factorization (45) is one of the conditions that distinguish the thermal
equilibrium state from general stationary mixed states.

Note that, once we impose the factorization condition (45), the commutator relation (24)
seems trivial. However, it provides important relations at O(1/N), and we pick them up when
we use the bootstrap method. Similar things happen in the relation (44) too, although we will
not use Eq. (44) in our bootstrap analysis.

However, we could not find any other useful conditions, which characterize the thermal equi-
librium state. In particular, the factorization condition (45) has no information on temperature.
This implies that temperature cannot be handled in the bootstrap method. In other words, it
is difficult for the bootstrap method to predict the expectation values of observables at a given
temperature. (The only exception is the ground state corresponding to zero temperature.)

Related to the difficulty of handling temperature in the bootstrap method, chemical poten-
tials cannot be handled either. These results suggest that the bootstrap method has difficulty in
dealing with (grand) canonical ensembles specified by temperature and chemical potentials.

4.2. Bootstrapping micro-canonical ensembles
We have seen that it is difficult to investigate the temperature dependence in thermal equilibrium
using the bootstrap method. However, the bootstrap method allows us to specify energy as E
= 〈H〉. Therefore, there is a possibility of evaluating physical quantities in thermal equilibrium
as a micro-canonical ensemble. Specifically, we can impose the following constraints:

M � 0, E = 〈H〉, 〈[H, O]〉 = 0, 〈O1O2〉 = 〈O1〉〈O2〉, (46)

and investigate the range of possible values of 〈Q〉. If the obtained range is sufficiently narrow,
the value 〈Q〉 may correspond to that of the micro-canonical ensemble at the given energy E.

However, recall that the bootstrap method cannot distinguish the two bosons and two
fermions in a two-particle systems. For an N-particle system, there are many more possibili-
ties for the particle species, such as multiple species of bosons and fermions. Thus, it may be
difficult to obtain convergent results through the bootstrap method, which cannot distinguish
them.

In addition, even if we obtain some reliable and convergent results, the bootstrap method
cannot give us the entropy. This is because the bootstrap method only tells us whether the
value of a physical quantity is consistent with quantum mechanics or not, and it does not tell
us the degeneracy.

Note that, if we employ a quantum field for describing a single-species particle, the issue of
the convergence arising through the particle statistics may be avoided. Similarly, this issue may

16Large-N factorizations do not need to occur in arbitrary states in large-N gauge theories.
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not exist in lattice systems. It is valuable to investigate the bootstrap method in these models,
and we leave this challenge for future work.

4.3. Bootstrapping integrable systems in micro-canonical ensembles
So far, we have discussed the difficulties with the bootstrap method for thermal equilibrium
states. It can be applied to micro-canonical ensembles only, and, even in this case, the results
may not converge and entropy cannot be derived either. However, we argue that the issue of
convergence may be resolved in integrable systems.

In integrable systems, there are numerous conserved charges, and thermal equilibrium states
are specified by these charges or their conjugate chemical potentials. (The grand canonical en-
semble characterized by these numerous chemical potentials is called a “generalized Gibbs en-
semble” (GGE) [29] and is being actively studied. See the review articles [30,31].)

In the micro-canonical ensemble, the numerous conserved charges may fix the physical quan-
tities in the bootstrap method. In Appendix B, we study two integrable systems: non-interacting
N-harmonic oscillators and non-interacting N-anharmonic oscillators, and find that the correct
results are obtained in these models through the bootstrap method (see Fig. B2).

4.3.1. Thermometer?. We have discussed that the bootstrap method can reproduce physical
quantities at thermal equilibrium in the integrable systems. However, as discussed in the previ-
ous section, temperature and entropy cannot be evaluated through the bootstrap method.

One possibility to obtain temperature is to introduce a “thermometer”. We prepare a system
whose spectrum is well known, e.g., a harmonic oscillator, as a thermometer, and turn on weak
interactions between this thermometer system and the target system that we want to investigate.
Then, from the spectrum of the thermometer system, we might be able to read the temperature
of the entire system, and we might obtain the temperature dependence of the target system.
However, it is unclear whether the bootstrap method works in such a interacting system, and
we leave this as a future problem.

5. Discussions
We have shown that the bootstrap method can be used to obtain the bounds of possible expecta-
tion values of various physical quantities under the constraint E = 〈H〉. The bootstrap method
can be regarded as a generalization of the uncertainty relation, and the bounds of such physical
quantities are determined as a consequence of these uncertainty relations. We have also argued
that the bounds of the possible values are further restricted through the additional constraints
〈[H, O]〉 = 0 for the stationary states (25) and 〈[H, O]〉 = 0 and 〈HO〉 = E〈O〉 for the energy
eigenstates (27). In this way, the difference between these three states in quantum mechanics is
described by the difference of the constraints on expectation values in the bootstrap method.

These properties may reveal novel aspects of quantum mechanics. In particular, our results
indicate that the energy eigenstates may be determined through the uncertainty relations in a
broad sense. It may be valuable to pursue this question and understand these algebraic struc-
tures of quantum mechanics further.

On the other hand, we found that there are no suitable constraints that describe the difference
between identical bosons and fermions. It is also difficult to describe the thermal equilibrium
states in canonical ensembles because there are no useful constraints that specify the tempera-
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tures. These difficulties may be a sort of no-go theorem, and it may be valuable to investigate
these issues further. There might be some profound reasons why the bootstrap method does
not work in these situations.

Another interesting direction is applying the bootstrap problem to lattice models and quan-
tum field theories [14,32–36]. In particular, the issue of identical particles might be avoided in
these systems. We leave this as a future problem.
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Appendix A. Analytic results on the bounds
In this appendix, we explain the details of some analytical results on the problems of finding
the bounds on the expectation values.

A1. States saturating the bound (5)
We derive the states that saturate the inequality (5) in the harmonic oscillator (3). This inequal-
ity is saturated when all the inequalities in Eq. (4) are saturated. Therefore �x2 = �p2 = �/2
must be satisfied. This is the relation satisfied by coherent states. From this, we find the states
exp (∓ipx∗(E)/�)|0〉, where |0〉 is the ground state of the harmonic oscillator and x∗(E) is de-
fined in Eq. (5). (|0〉 is translated by ±x∗(E) in this state.) Actually, we can easily show that these
states satisfy E = 〈H〉 and saturate the bounds (5) as

〈0|eipx∗/�He−ipx∗/�|0〉 = 〈0|H |0〉 + 1
2

(x∗(E ))2 = E, 〈0|eipx∗/�xe−ipx∗/�|0〉 = x∗(E ). (A1)

Here we have used 〈0|x|0〉 = 0 and 〈0|H|0〉 = �/2.
Note that it is easy to show that any coherent states with energy E = 〈H〉 satisfy

〈p〉2 + 〈x〉2 = 2(E − �/2). (A2)

Since the Heisenberg equations for (〈x(t)〉, 〈p(t)〉) are equivalent to the classical equation of
motion in the harmonic oscillator, the coherent states always pass the points (〈x〉, 〈p〉) = ( ±
x∗(E), 0) through the time evolution. Therefore, the coherent states always saturate the bounds.

A2. States saturating the bound (6)
We derive the states that saturate the inequality (6) in the harmonic oscillator (3). This inequal-
ity is saturated when 〈x2〉〈p2〉 = �2/4 is satisfied, and we know that Gaussian wave packets with
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〈x〉 = 〈p〉 = 0 satisfy it. Indeed, if we take the deviation of the Gaussian wave packets as

〈x2〉 = E +
√

E2 − �2/4, (A3)

〈x2〉 saturates the upper bound of Eq. (6). Then this Gaussian wave packet satisfies 〈p2〉 = E −√
E2 − �2/4, and we obtain 〈H〉 = E. Similarly, if we take 〈x2〉 = E −

√
E2 − �2/4, it saturates

the lower bound.
The coherent states discussed in Appendix A1 and the Gaussian wave packets are funda-

mental states in quantum mechanics. It is an interesting conclusion that these states have the
properties of maximizing (minimizing) 〈x〉 and 〈x2〉 in the harmonic oscillator.

A3. Bounds on 〈p〉 in general V(x)
We derive the upper and lower bounds on 〈p〉 for general non-relativistic quantum mechanical
systems:

H = 1
2

p2 + V (x). (A4)

We will show that the answer is given as

−p∗ ≤ 〈p〉 ≤ p∗, p∗(E ) :=
√

2(E − E0), (A5)

where E0 is the energy of the ground state. We prove this by contradiction. Suppose that a state
|α〉 satisfies E = 〈α|H|α〉 and p̃ = 〈α|p|α〉, where p̃ > p∗(E ) and violates the bound (A5). Then
the state e−i p̃x/�|α〉 satisfies

〈α|eip̃x/�He−i p̃x/�|α〉 = 〈α|H |α〉 + 1
2

p̃2 − p̃〈α|p|α〉 = E − 1
2

p̃2 < E0. (A6)

Thus, the energy is lower than the ground state, and the state |α〉 is inconsistent. Hence, there
is no state that satisfies p̃ > p∗(E ) and the bound (A5) is proved.

In addition, we can easily show that the state e±ip∗x/�|0〉 saturates the inequalities in Eq. (A5),
where |0〉 is the ground state. The proof is similar to Eq. (A1) but we need to use 〈0|p|0〉 = 0,
which can be shown by using the relation (24) with O = x.

The result (A5) indicates that E − E0 yields the maximum value of |〈p〉|. This may be reason-
able, since |〈p〉| > 0 always causes an excitation from the ground state.

Note that p is quadratic in the Hamiltonian (A4), and it is crucial in the above derivation of
the bounds. Therefore, it seems difficult to apply this method to obtain the bounds on 〈x〉 in
the Hamiltonian (A4).

A4. Bounds on 〈x1〉 in non-interacting two-harmonic oscillators
We show the derivation of the bounds (33), (34), and (35) on 〈x1〉 in non-interacting two-
harmonic oscillators:

H =
2∑

i=1

1
2

p2
i + 1

2
x2

i . (A7)

Since x1 is quadratic in this Hamiltonian, we can apply the method used in Appendix A3.
The ground states and ground energies of this system are given by

Two distinct particles: |0〉2 := |0, 0〉, E0 = �, (A8)

Two identical Bose particles: |0〉B := |0, 0〉, E0 = �, (A9)
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Two identical Fermi particles: |0〉F := 1√
2

(|1, 0〉 − |0, 1〉) , E0 = 2�, (A10)

where |m, n〉 := (a†
1)m(a†

2)n|0, 0〉. Then, by translating these ground states by U (x∗) := e−ip1x∗ ,
we may obtain the states that provide the maximum value of |〈x1〉| as in Appendix A3. However,
this translation operator is not symmetric under the particle exchange. Hence, it cannot be used
for identical particles, and we modify it as e−i(p1+p2 )x∗ . Here x∗ should be determined to satisfy
E = 〈0|U(x∗)†HU(x∗)|0〉 for each ground state, and we obtain

Two distinct particles: E = 〈0|H |0〉2 + 1
2

x2
∗ ⇒ x2

∗ = 2(E − �), (A11)

Two identical Bose particles: E = 〈0|H |0〉B + x2
∗ ⇒ x2

∗ = E − �, (A12)

Two identical Fermi particles: E = 〈0|H |0〉F + x2
∗ ⇒ x2

∗ = E − 2�. (A13)

Similar to the proof in Appendix A3, we can show that, if |〈x1〉| exceeds x∗, it causes a contra-
diction and such a state is not allowed. Thus, x∗ provides the maximum bound.

Appendix B. Bootstrapping free particles in micro-canonical ensembles
In Sect. 4.3, we have argued that the numerical bootstrap method may determine observables in
integrable systems in thermal equilibrium. In this appendix, we demonstrate it in two models:
non-interacting N-harmonic oscillators and non-interacting N-anharmonic oscillators.

B1. Example 1: Non-interacting N-harmonic oscillators
We investigate the non-interacting N-harmonic oscillators in one dimension:

H = �
N∑

i=1

(
a†

i ai + 1
2

)
, ai = 1√

2�
(xi + ipi) . (B1)

This system has an infinite number of conserved charges:

Rm := 1
N

N∑
i=1

(
a†

i

)m
am

i , m = 2, 3, . . . . (B2)

Hence, thermal equilibrium states of this model in the micro-canonical ensemble are specified
by E = 〈H〉 and rm := 〈Rm〉.

We show that quantities such as 〈xm pn〉 defined by Eq. (43) in the thermal equilibrium states
can be determined by the bootstrap method. By regarding the conserved charges (B2), we mod-
ify the constraints (46) for the micro-canonical ensemble as

M � 0, E = 〈H〉, 〈[H, O]〉 = 0, rm = 〈Rm〉, 〈O1O2〉 = 〈O1〉〈O2〉. (B3)

What we should do is find the possible values of 〈xm pn〉 that are consistent with these con-
straints. Actually, we can solve this problem analytically. We define the operators Rmn :=
1
N

∑N
i=1

(
a†

i

)m
(ai)

n and substitute them for the constraint 〈[H, O]〉 = 0 in Eq. (B3), obtaining

0 = 〈[H, Rmn]〉 = (m − n)〈Rmn〉. (B4)

Hence, 〈Rmn〉 = 0 if m �= n. Since the quantities 〈xm pn〉 can be expressed by a sum of 〈Rkl〉, the
value of 〈xm pn〉 is determined by 〈R11〉 = E/N − �/2 and 〈Rkk〉 = 〈Rk〉 = rk. For example, it is
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trivial but 〈x2〉 becomes

〈x2〉 = 1
N

N∑
i=1

〈
x2

i

〉 = 1
N

N∑
i=1

�
(

〈a†
i ai〉 + 1

2

)
= E

N
. (B5)

Similarly, the quantities 〈xm pn〉 in this system in thermal equilibrium are completely fixed by
the conserved charges E and {rm}.

Note that we have used the constraint 〈[H, O]〉 = 0 and rm = 〈Rm〉 only. Here we comment
on the other constraints in Eq. (B3). It is easy to show that the constraint 〈O1O2〉 = 〈O1〉〈O2〉
is automatically satisfied in free particle systems, if we consider the averaged operators such as
Eq. (43) and take N large. (This implies that any stationary states of 1D free particles are always
thermal equilibrium states.) In addition, the constraint M � 0 is satisfied, if we take appropri-
ate conserved charge E and {rm}. Thus, this can be regarded as an “initial value problem”.17

One way to generate suitable conserved charges is using a Bose or Fermi distribution function,
which we employ in the next section.

B2. Example 2: Non-interacting N-anharmonic oscillator
Since the harmonic oscillator (B1) is so simple that we can solve it analytically, as a more non-
trivial example, we consider non-interacting N-anharmonic oscillators:

H =
N∑

i=1

hi, hi := 1
2

p2
i + 1

2
x2

i + 1
4

x4
i . (B6)

Then, the system has the conserved charges:

H (m) := 1
N

N∑
i=1

hm
i , m = 1, 2, 3, . . . . (B7)

Here H(1) is equivalent to the Hamiltonian (B6).
By using the numerical bootstrap method, we seek the possible range of the expectation value

of the operator

x2 := 1
N

N∑
i=1

x2
i (B8)

in this system at thermal equilibrium, as an example. Hence, we derive the upper and lower
bounds on 〈x2〉 under the constraints

M � 0, 〈[H, O]〉 = 0, E (m) := 〈H (m)〉, 〈O1O2〉 = 〈O1〉〈O2〉. (B9)

Here 〈O1O2〉 = 〈O1〉〈O2〉 is automatically satisfied at large N, as we mentioned in the previous
section.

We construct the bootstrap matrix M as follows. Since we are interested in the averaged
operator x2 (B8), it is useful to take the seed operator

Õi :=
Kx∑

m=0

Kp∑
n=0

bmnxm
i pn

i . (B10)

Then
∑N

i=1〈Õ†
i Õi〉 ≥ 0 is satisfied for any {bmn}, and we obtain the bootstrap matrix M (14)

where 〈xmpn〉 are replaced by 〈xm pn〉. In addition, H(m) can be expressed by xk pl too. Then, all
the variables in the constraints (B9) are expressed by the averaged operators xk pl , and we no

17The issue of the particle species also reduces to the initial value problem. Namely, we need to prepare
suitable charges, which are consistent with the given particle species.
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Fig. B1. Temperature dependence of E(1) = E/N and E(2) for the N Bose particles in the anharmonic
oscillator (B6). We take N = 100. Through the plots of T vs. E(1) and T vs. E(2), by eliminating T, we
obtain the plot of E(1) vs. E(2).

longer need to handle the operators for the individual particle, such as xi and pj. In this way,
the constraints (B9) become formally equivalent to the constraints (25) for the single anhar-
monic oscillator with the additional constraints E(m) = 〈H(m)〉 (m = 2, 3, 4,…) by identifying
xm pn and xmpn. This is a strong simplification, and is one advantage of the bootstrap analysis.
(Related simplifications in the bootstrap method in multi-particle systems are expected, and
several works on large-N gauge theories have been done [7,32–35].)

Before solving the bootstrap problem (B9), we need to prepare suitable conserved charges E
and {E(m)}. For this purpose, we assume that the N particles are all the same boson and they
obey the standard Bose distribution function with temperature T = 1/β and chemical potential
μ.18 Then the expectation value of the operator x2 in the thermal equilibrium state is given by

〈x2〉β,μ := 1
N(β, μ)

∞∑
n=0

1
eβ(en−μ) − 1

〈n|x2|n〉, (B11)

N(β, μ) :=
∞∑

n=0

1
eβ(en−μ) − 1

. (B12)

Here |n〉 is the energy eigenstate for the single particle and en is its energy eigenvalue. N(β, μ)
is the number of Bose particles. Then, through Eq. (B7), we obtain,

E (m)(β, μ) = 1
N(β, μ)

∞∑
n=0

(en)m

eβ(en−μ) − 1
, (m = 1, 2, . . .). (B13)

In order to obtain the observables in the micro-canonical ensemble at given E and N, we tune T
and μ such that E = E(β, μ) and N = N(β, μ) in the grand canonical ensemble. Then, by using
these tuned T and μ, we obtain E(m)(E, N) and 〈x2〉(E, N ). In particular, we will use E(m)(E, N)
as the input of the bootstrap analysis in Eq. (B9), and test whether 〈x2〉(E, N ) is reproduced.

In our numerical analysis, we take N = 100 and first fix μ(β, N) through Eq. (B12) for each β.
Then, we compute the temperature dependence of E and E(2) at N = 100 as shown in Fig. B1.
From these results, by eliminating temperature, we obtain E(2)(E, N) as shown in Fig. B1 (right).
Similarly, we plot 〈x2〉(E, N ) in Fig. B2.

18This system has an infinite number of chemical potentials corresponding to the conserved charges
(B7). If we take these chemical potentials as zero except those corresponding to E and N, we obtain
the standard Bose distribution function in Eq. (B12). Such a situation may be realized if the particles
interact with each other very weakly.
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Fig. B2. E vs. 〈x2〉 for the N Bose particles in the anharmonic oscillator (B6). We take N = 100. For each
E, we fix E(2) through the relation shown in Fig. B1 and use it as the input parameter in the bootstrap
analysis (B9). We observe that the bootstrap method reproduces the numerical prediction (the dashed
line) as (Kx, Kp) increase. In particular, at Kx = Kp = 7, the results of the bootstrap method are almost
coincident with the numerical ones. However, the bootstrap method does not work properly in the higher-
energy region E/N > 0.65.

We perform the numerical bootstrap analysis by using this E(m)(E, N) in the constraint (B9).
Actually, we find that just E(2) is sufficient to reproduce 〈x2〉(E, N ). The results are shown in
Fig. B2.19 We find that they are consistent with the thermal equilibrium state (B11).

However, the bootstrap method does not work properly in the higher-energy region E/N >

0.65. Since the ground energy is E/N = 0.6209, the region in which the bootstrap method works
is very low energy. We guess that this may be a technical issue, and improvements in numerical
analysis may resolve it. Note that, in principle, we can do a similar analysis for N fermions by
using the Fermi distribution function in Eq. (B12). However, the Fermi energy is high at large
N, and we need to handle higher energy, which would be difficult in our numerical bootstrap
analysis. Indeed, as much as we tried, we could not obtain reliable results.
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