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Abstract

In this thesis we investigate unusual and non-trivial interplays between gravity and
field theory. We concentrate on two examples, one related to holography and the
other to the physics of false vacuum decay. In the first chapter we overview basic
concepts and techniques from both these examples.

In chapter 2 we construct solutions describing flows between AdS and Lifshitz
spacetimes in IIB supergravity. We find that flows from AdSs can approach either
AdS; or Lifshitzs in the IR depending on the values of the deformation from AdSs.
Surprisingly, the choice between AdS and Lifshitz in the IR depends only on the value
of the deformation, not on its character; the breaking of the Lorentz symmetry in the
flows with a Lifshitz IR is spontaneous. We find that the values of the deformation
which lead to flows to Lifshitz make the UV field theory dual to the AdSs; geometry
unstable, so that these flows do not offer an approach to defining the field theory
dual to the Lifshitz spacetime.

In chapter 3 we consider the possibility that small black holes can act as nu-
cleation seeds for the decay of a metastable vacuum. Using a thin-wall bubble
approximation for the nucleation process, we show that black holes can stimulate
vacuum decay.

In chapter 4 we apply this technique to the particular example of the Higgs
potential with generic quantum gravity corrections. We show how small black holes
can act as seeds for vacuum decay, spontaneously nucleating a new Higgs phase
centred on the black hole with a lifetime measured in millions of Planck times rather

than billions of years. The constraints on the parameter space of corrections to the



iii

Higgs potential are outlined. We demonstrate that for suitable parameter ranges,
the vacuum decay process dominates over the Hawking evaporation process. We
also comment on the application of these results to vacuum decay seeded by black
holes produced in particle collisions. By relaxing the conditions for the thin-wall
approximation and proceeding to the numerical calculations an expansion of the

range of the parameter space is proposed.
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Chapter 1

Introduction

This year we celebrate the centenary of the General Theory of Relativity discovered
by Einstein in 1915 [1]. It is now extremely well verified, at least locally in our solar
system, and has found a practical application in GPS [2|; thus any fundamental
description of Nature should include General Relativity, at least in some limit.

There are several ways that the fundamental theory of gravity could manifest
itself in Nature. For example, the very successful Standard Cosmological Model
requires an initial state. Other examples are the information loss puzzle of black
holes [3] and the question of understanding their entropy [4]. In this latter problem
string theory may have provided some genuine insight [5]. Although there are several
approaches to Quantum Gravity that have been proposed: String Theory [6], Loop
Quantum Gravity [7], Casual Sets [8], Casual Dynamical Triangulations [9]; it is
probably fair to say that String Theory is a much better developed theory. String
Theory uses the same logic as quantum field theory (QFT), applying the same basic
rules to extended objects, namely strings. Low energy effective actions of String
Theory are very well understood, and therefore provide us with a beautiful example
of the appearance of gravity in a fundamental theory.

In the present thesis we will consider two examples of non-trivial interplay be-
tween gravity and field theory. In one of them, gravity (in this case, supergravity
theory) provides a useful tool for investigating a strong coupling regime of particular
quantum field theories. In the other, gravity combines with the field theory to give

new insight into non-perturbative quantum processes.

1



1.1. Overview of Holography 2

In the first example, the tool is usually called holography and was triggered
by the first example of a correspondence between the classical limit of Type IIB
superstring theory on an Anti de Sitter (AdS) background and N = 4 Super Yang-
Mills (SYM) theory in Minkowski spacetime in the strong coupling regime [10]. We
will review this correspondence along with some directions for generalizations in the
next section. In this basic example only the case of superconformal relativistic field
theory was considered, but from the perspective of exploring real physical systems
by means of a bulk gravitational theory, it is important to figure out how far we
can push this correspondence. In particular, what amount of symmetry could we
break or modify? We will concentrate on the breaking of relativistic invariance
and investigate the possibility of exploring non-relativistic theories with Lifshitz
scaling [11] through holography in Chapter

Our second example concerns the non-trivial inclusion of gravity into the physics
of false vacuum decay. The canonical description of this process was set out by Cole-
man in 1976 [12,|13] and originally did not include gravity. Subsequently, with de
Luccia, gravity was included [14] but only in the context of homogeneous solutions.
We will review the basics of such phase transitions below. However, in order to truly
appreciate the role of gravity in such cosmological phase transitions it is important
to consider non-homogeneous seeds which can possibly trigger vacuum decay. Such
inhomogeneities in gravitational theories are most naturally realised by black holes,
therefore we will consider mutual effects of black holes on the probabilities of vacuum
decay in Chapter [3] Moreover, due to the fact that the Standard Model Electroweak
Higgs vacuum could became unstable if we take into account higher energy correc-
tions [15,[16,/18,85], we will discuss the effect of the presence of black holes in this

very important cosmological example in Chapter

1.1 Overview of Holography

In this section we introduce a very powerful tool for studying strongly coupled
regimes and various non-perturbative aspects of particular field theories. This tool

originates from string theory and is usually called the AdS/CFT correspondence,



1.1. Overview of Holography 3

holography or, more generally, gauge/gravity duality [19]. Basically, this is a corre-
spondence between string theory on specific curved backgrounds and some quantum
field theories in flat spacetime. Below we will briefly review open/closed string dual-
ity, which lies at the core of this proposed tool, along with a basic textbook example

of AdS/CFT correspondence.

1.1.1 Open/Closed String Duality and D-branes

Any process in string theory can be seen from both the open and closed string
perspective. This suggests the existence of two equivalent descriptions of any object
in string theory, known as an open/closed string duality.

D-branes will serve us as the main example of the power and usefulness of such
dual pictures because it is exactly the comparison of two equivalent low-energy
descriptions of stacks of D-branes that led Maldacena to the idea of the AdS/CFT
correspondence |10]. Initially D-branes were introduced in string theory as extended
hypersurfaces on which open strings could end [20,[21]. The ‘D’ in the name stands
for the Dirichlet, as is is usually assumed that the endpoints of the strings have
Dirichlet boundary conditions in the directions transverse to the brane. It was then
realized that D-branes are another type of fundamental object in string theory in
addition to strings, with their own dynamics described by the DBI action [22] in the
low energy limit. The DBI action properly takes into account the gauge degrees of
freedom associated with the open strings and in a weak field strength limit reduces
to the gauge field theory action. On the other hand, by virtue of an open/closed
string duality the worldsheet of an open string moving along a closed trajectory on a
brane could be seen as a worldsheet of a closed string emitted by the brane. Hence,
D-branes could be viewed also as a source of closed strings which have a graviton
(massless spin-2 field) in their spectrum. This suggests an existence of gravitational
description of D-branes. Such a description was found by Polchinski 23|, when he
showed that in the low energy limit, D-branes could be alternatively described as
extremal black p-brane solutions first found by Horowitz and Strominger [24]. We
will now examine both these pictures for a particular example of a stack of N parallel

coincident D3-branes embedded in a 10-dimensional spacetime of Type IIB string



1.1. Overview of Holography 4

theory and will see how the correspondence emerges.

Before we proceed to the detailed analysis it is worth describing the low energy
limit which we will use in the derivation. In the context of string theory, low energies
means that we will consider energies much smaller than the energy scale associated
with the string length I, F < [;'. A convenient way to apply this limit is to keep
all energies bounded and take the I, — 0 limit. Since I, ~ v/, this is equivalent to
the o/ — 0 limit, which is exactly what is usually implied as the low energy limit in
string theory. Due to the fact that masses of string excitations are proportional to
1/+/a/, all the massive modes decouple at low energies. Further simplifying limits

will be discussed below.

Open string picture

From the point of view of an open string at low energies one can naturally decompose

an effective action for the brane into three parts [25]
Sopen = SDBI + Sbulk + Sint (111>

where Sppr corresponds to the worldvolume action of massless excitations sitting on
a brane. The second term Sj,;; describes bulk degrees of freedom living far from the
brane, i.e. strings in flat 10-dimensional spacetime, that are closed even in the open
string picture, because far from the brane there is no surface on which strings could
end. Moreover, in the low energy limit, closed strings reduce to free supergravity
theory living on a flat 10-dimensional spacetime [25|. The last term S;,,; describes an
interaction between bulk and brane degrees of freedom, and because the strength of
the interactions is proportional to the positive powers of o/ bulk and brane degrees
of freedom decouple from each other. Therefore, the only non-trivial part is the low
energy limit of the DBI action for the stack of D3-branes. In order to deal with this
limit properly, we will first consider an example of a single D-brane, then comment
on the system with multiple branes.

From the basic requirements of Lorentz and reparametrization invariance, one
can realize that the action for a single Dp-brane should be some sort of higher

dimensional generalization of the Nambu-Goto action |22]. An action which properly
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takes into account all massless degrees of freedom living on a brane is

SDp = —Tp/derlC e*(b\/det [”YAB + FAB} (1.1.2)

here {¢#, A=0...p} are the intrinsic coordinates on the brane worldvolume, T, is
the tension of the brane, and v4p is the pullback of the metric to the worldvolume

of the brane
oXH*oX¥
= ————0u 1.1.3
The exponential factor in (1.1.2]) contains the dilaton field ®. It is convenient to
extract a constant part of the dilaton ®y, which determines the asymptotic value

of the string coupling constant, g, = e®°

, responsible for the strength of string
interactions and loop quantum corrections. Fap = Buap + 2ma’Fap is a proper
gauge invariant combination of the pullback of 2-form field B,, and an abelian
worldvolume gauge field Fsp.

All the embedding coordinates X*((4) in ((1.1.3]) naively represent new dynamical

fields, however by using reparametrization invariance and choosing a static gauge
XA=¢4 A=0,....p (1.1.4)

we can remove all the longitudinal fluctuations of the brane and the pullback of the
metric will depend only on the transverse fluctuations X!, which after rescaling we
will identify with scalar fields ¢! = X7/2wa’ living on a brane. Taking this into
account we can simplify the lagrangian in in the low energy limit for a flat
background with the B-field switched off

\/det [YaB + Fap| = 4| det

Nag + (2ma’)? Z 0a0i0pd; + 2w’ Fap

(1.1.5)
14 %(m’)? <FABFAB +> w"asd)i) + (@), o =0

One can see that we get the lagrangian for an abelian gauge field theory with 6
additional scalar fields. If we expand the number of D-branes and consider a stack
of N coincident branes, then open strings in the picture will have an opportunity
to end on different branes, hence all the fields in (1.1.5) will get additional indices

identifying branes between which the string is stretched. Overall for each field there
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are N2 options, hence this component can naturally be packed into N x N matrix.
All this gives us a hint that the U(1) gauge theory for a single brane will be promoted
to the U(N) = U(1) x SU(N) gauge theoryl| The detailed derivation of the low
energy action for the stack of N D3-branes is technically involved, so we present
here only the final result (a potential term for the scalar fields, which now transform

in the adjoint of SU(N) has appeared after an action of T-duality)

9y M 4

1 1 1 - 1
Sppr=——— [ d"*'¢ Tr (ZFABFAB +3 > Da¢'Dpei — = Y (6, ¢j]2>
i i#]

(1.1.6)
This is the bosonic part of an action for N' = 4 Super Yang-Mills theory with SU(N)
gauge group in 4 dimensions. Hence, the overall low energy action in an open
string picture is reduced to the sum of an action for NV = 4 Super Yang-Mills theory

in 4 dimensions and free supergravity theory in 10 dimensions.

Closed string picture

In the closed string picture, as we described above, it is natural to present D-branes
as a source of closed strings, hence in the low-energy limit far from the brane we
again will have free supergravity theory in flat spacetime but now in the near brane
region we use the gravitational description, which was put forward by Polchinski.
As was shown by Horowitz and Strominger |24], a stack of N coincident D3-
branes of Type IIB string theory has an equivalent gravitational description in terms

of an extremal 3-brane solution of the corresponding supergravity theory
ds? = H(r)"7 (di* — d7®) — H(r)? (dr® + r2dQ?) (1.1.7)

where the warp factor H(r) = 1+ L*/r* with L* = 47g,NI. In the region near the
brane r < L, and H(r) — L*/r* and the metric (1.1.7) reduces to an AdSs x S°
spacetime with radius of curvature L. The spacetime is curved near the branes,

hence even in the low energy limit modes with arbitrary energy are allowed in this

LAn overall U(1) factor in the U(N) case corresponds to a “centre of mass” degree of freedom,

hence it can be ignored.
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region, because their energy, measured at infinity, will be red-shifted. In other words,

we will have full Type IIB string theory in AdSs x S° spacetime.

1.1.2 AdS/CFT correspondence

We have described a system of N coincident D3-branes from both the open and
closed string perspective and each time, in the low energy limit the effective action
reduces to the decoupled sum of a free supergravity theory in 10 dimensional flat
spacetime and some non-trivial theory in the near brane region. In one case this
non-trivial theory is an SU(N) N = 4 SYM theory in 4 dimensional Minkowski
spacetime and in the other case Type IIB string theory in AdSs x S® spacetime.
Since we have described the same system twice and the trivial part in both cases
was the same, these theories should be equivalent! This is the so-called strong
version of Maldacena’s conjecture. In order to put this correspondence to practical
use, it will be helpful to take some further limits in order to make at least one side
of the correspondence simple.

On the gauge theory side one can consider the 't Hooft limit, when N — oo while
the combination A = NgZ,, is kept fixed. Only planar diagrams survive in this limit
and due to the fact that gi,, = 4mg, all the quantum gravity corrections on the
string theory side will be suppressed as well. If we further take the limit of large A
(keeping gy s small) we can reduce the string theory side to classical supergravity
on AdSs, since the curvature length scale will be much bigger than the string length

scale

I 4
(l—) =dng,N = g3y N = ) (1.1.8)

After these limits we arrive to the most famous and well-understood form of the
correspondence, namely, the conjectured equivalence of the strongly coupled regime
of planar N' =4 SU(N) SYM theory in a 4 dimensional Minkowski spacetime and
the classical Type IIB supergravity theory in a 5 dimensional AdS spacetime, which
we will refer as the AdS/CFT correspondence.
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Modern point of view

We have presented a sketch of the original ‘derivation’ of the AdS/CFT correspon-
dence, following mostly Maldacena’s logic. It is already almost twenty years since
this was proposed and people have studied and tested this correspondence in various
ways, each time confirming that it holds. All this, along with a very unexpected
form of the correspondence (higher dimensional gravitation theory equivalent to a
lower-dimensional non-gravitational quantum field theory) pushed people to think
more generally about the nature of gauge/gravity duality. Below we will present
a more recent point of view on the gauge/gravity duality, which does not rely on
string theory per se. We will mostly follow the logic of recent reviews ( [26},27]).
According to the proposed duality, a specific gauge theory should contain infor-
mation about a gravitational theory within itself. If we look at this from the matter
content perspective, the spin-2 graviton should somehow arise from gauge theory
degrees of freedom. An immediate proposal, that the emergent graviton could be
composed from the two spin-1 gauge bosons has an obvious obstacle in terms of
Weinberg-Witten theorem [28], but this obstruction can be avoided if the graviton
lives in a different spacetime. This is exactly what happens in holography, when
gravity lives in a spacetime with one additional dimension. The next question is
how this extra dimension can occur from a gauge theory point of view. In other
words, we need to find some quantity in quantum field theory which is changing, and
more importantly the physics should behave locally with respect to this quantity. A
good candidate would be the energy scale, because the RG equation, describing the
flow of the coupling constants in the theory with respect to the energy scale, is a
local differential equation. Additionally, because it is obvious that only the strongly
coupled regime of gauge theory could reproduce quantum gravity, it is important
that we would have a long range of energies where the coupling remains strong. Ide-
ally, this range should be infinite in order to allow an infinite bulk direction. This
is the case in a conformal field theory where the couplings do not run with energy.
In order to justify that the gauge theory can also describe additional excitations
of various energies propagating as well in the bulk direction, the number of degrees

of freedom in a theory should be big enough. An easy way to organize this is to
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consider the 't Hooft limit of the gauge theory, i.e. take N — oo in the rank of gauge
group SU(N), while keeping the coupling A = ¢g&,,N finite, but large as well.

Coming back to properties of conformal field theory, let us recall that the theory
formulated on Minkowski spacetime is invariant under the rescaling z# — ax*, if
we simultaneously rescale the energy £ — F/a. Hence, if we identify the inverse
energy scale with a coordinate along an extra dimension z ~ 1/E, we will naturally
arrive to an AdS metric

2
ds® = = (Nuwdatdz” + dz?) (1.1.9)

Finally, it is very convenient to promote both sides of the correspondence to
supersymmetric configurations, because on the gauge theory side, supersymmetry
helps hold strongly coupled field theory under control by excluding most of the
possible instabilities, and on the gravity side supersymmetry dictates an extension
to the full supergravity, which is formulated in 10 dimensions and has an AdSs x S°
solution. All these speculations have been intensively explored and clarified in past
years, so now we are in the position that it would be much more peculiar were the
AdS/CFT correspondence not true.

Despite the fact that this modern ‘derivation’ of AdS/CFT is not very technical,
it clearly shows the importance of different concepts like relativistic invariance, con-
formal invariance and supersymmetry for the correspondence to exist, and indicates
the difficulties which one may encounter trying to generalize the correspondence to

theories without these symmetries.

1.1.3 Exploring AdS/CFT

In this section we present evidence of validity of the correspondence and some ex-
amples of concrete calculations within AdS/CFT.

The first and immediate check of the proposed equivalence between two different
theories is the relation between the symmetries of the theories. On one side we have
an N =4 SYM in 4 dimensions which is a conformal theory with supersymmetry,
hence the global symmetries of the theory are a product of conformal group in four

dimensions SO(4,2) and R-symmetry group SU(4)g ~ SO(6)g. On the other side
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we have Type IIB SUGRA in AdS5 x S5, hence an isometry group of the spacetime
is a product of isometry group of 5 dimensional AdS spacetime SO(4,2) and the
group of symmetries of a 5-sphere SO(6). Hence the global bosonic symmetries on
the field theory side are identical to the group of isometries of the spacetime on the
gravity side.

This matching of global symmetries is just the first step in a series of tests of
the correspondence that has been performed over the years. We will now proceed
to the discussion of some more practical consequences of the correspondence along
with a recipe on how to apply it.

An important feature of AdS/CFT, from a practical point of view, is a corre-
spondence between the observables of both theories, hence between supergravity
fields in AdS and local gauge invariant operators of N' =4 SYM. A general strategy
was proposed by Witten in [29]. The central relation is an equality of the partition
function of Type IIB string theory on an AdS background with specific boundary
conditions for a particular field, and a generating functional for correlators of the

corresponding operator in a dual quantum field theory, sourced by these boundary

Ztring [P0] = <exp (—1 / d'x ¢0(9> >QFT (1.1.10)

An operator O of the gauge theory has to lie in the same representation of the

conditions

symmetry group as the field ¢.

This expression, conjectured to hold in the general case, could be put to a practi-
cal use for the weak form of the correspondence, because at strong coupling together
with the large N limit, the string theory side reduces to the classical supergravity

theory and we can use a saddle point approximation for the partition function on

the left

Zstring [¢0] — ZSUGRA [¢0] =~ €SCZ[¢O] (1111)

At the same time, on the right hand side we have a deep quantum limit of field
theory with large coupling, where it is very hard to perform any direct calculation.
Hence, the relation provides us with a concrete realization of the practical
application of the correspondence, when on-shell gravitational calculations are used

in order to obtain results in an off-shell strongly coupled gauge theory. In particular,
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because from the field theory side we have a generating function for the correlators

of operator O, all of them could be obtained from the classical supergravity solutions

1o
01..0)= 7 1.1.12
< 1 > ZSUGRA 6¢0 SUGRA [¢O] b0 ( )

We now proceed to a basic example of such a calculation. We will consider the
simplest case of a scalar field in AdS and will comment on the 1-point correlation
function, or the vacuum expectation value (the VEV), of the corresponding operator.
This exercise will help us to clarify the relation between properties of the bulk fields
and operators of the field theory on the boundary, which we will use a lot in the
following sections.

Consider a massless scalar field in AdS; x S5 spacetime. Performing a Kaluza-

Klein reduction we can expand it in spherical harmonics on S°

o, y) =Y dulx)Yily) (1.1.13)

Substituting this expansion into the equation of motion [yg¢ = 0, we get a system
of massive scalar fields in a 5-dimensional AdS spacetime with the masses inherited
from the corresponding spherical harmonics. Hence, it is sufficient to consider an

example of a single scalar field with unspecified mass

(Os+m*) ¢ =0 (1.1.14)
Choosing coordinates on AdSs
r? B L?
ds* = Iz (dt* — dz®) — ﬁdr2 (1.1.15)

and assuming a power law fall-off of the field near the boundary,

b — 124y, as r— (1.1.16)
we arrive to the following equation at leading order in the r» — oo limit

(A% —4A = m’L?) ¢ = 0 (1.1.17)

Hence we have two solutions Ay = 24 /4 + L2m?2, which are both real for m?L? >

—4; this is known as the Breitenlohner-Freedman bound of stability for scalar fields
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in AdSs |30]. Denoting the bigger solution A, as A without the subscript, we get
the following form of the near boundary behaviour of the field ¢

¢~ 12y +r 2y (1.1.18)

Naively, ¢y and ¢, are related to the two linearly independent solutions of the second
order equation and could be chosen arbitrarily. However, the condition of
regularity of the fields at » = 0 provides a relation between these coefficients, so
eventually only a single boundary condition at » — oo is needed. Usually, the mode
related to ¢q is non-normalizable and the coefficient ¢ is precisely what we have used
as the boundary condition for the field in AdS and the coupling of a corresponding
operator in ([1.1.10]).

Now we will show that the scaling dimension of an operator O corresponding to
the scalar field in consideration is equal to A. The metric ([1.1.15)) is invariant under

the following rescaling
{t,Z,r} = {t', @ "} = {\, \Z, X" 'r} (1.1.19)

Then from the fact that scalar field is also invariant under these transformations

¢ (r',7') = ¢ (r,Z) we derive how its boundary value should scale
Fo = A2 (1.1.20)

Hence, taking into account the definition of the dimension of an operator, O =

A[91O, and the invariance of the coupling term in the conformal theory on a bound-
ary

/d4:v’ o0 = /d4x $oO (1.1.21)

we can derive that in order to preserve conformal invariance we should have [O] = A.

As we have discussed above, due to regularity conditions, the mode ¢; in

is not an independent solution, mathematically it is a functional of the boundary

value ¢g. The physical meaning of ¢, could be revealed from calculating the VEV

of the corresponding operator through the general procedure . After some

simplifications we get
0S¢

B (5¢0 ¢0=0 - ¢1|¢0:0

(0) (1.1.22)
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So if a non-normalizable mode in the expansion is a source of an operator in
a dual field theory, the normalizable mode corresponds to the VEV of this operator.
Note, that in order to preserve conformal symmetry the 1-point function of an opera-
tor with non-zero dimension should vanish, in other words ¢; should be proportional
to ¢p. However, this is not the case if we study non-conformal deformations of the
original conformal theory through AdS/CFT.

The ability of an operator to drive the flow from the original conformal fixed
point to some new one (maybe without conformal symmetry) in the UV or IR
depends on the way the coupling of an operator is changing with energy scale. If the
coupling is increasing under the RG flow from UV to IR, then the operator is called
relevant and it could drive an the flow to the new fixed point in IR; if the coupling is
decreasing under the lowering of energy scale then the operator is called irrelevant
and it can not drive the flow to a lower energies; if the coupling does not change
then the operator is called marginal. From the scaling transformation (1.1.19)) we
see that the new length-scale 2’ = A~z will be bigger for a transformation with
A < 1, hence such transformation will lower the energy scale. From we
can deduce that for A < 4 the coupling will be bigger at the lower energies, so
the operator is relevant; for A > 4 the coupling will decrease and in this case an
operator will be irrelevant; and for A = 4 an operator will be marginal. We will use

these observations a lot in the following sections.

1.2 Introduction to false vacuum decay

In this section we will discuss a non-perturbative process in quantum theory related
to the tunnelling from one local minimum of the potential to another. In quantum
field theory it is usually called false vacuum decay. We will start from the basic
setup of the problem in quantum mechanics, which we will address as generally as
possible and hence will be able to introduce all the useful technical notations and
concepts. After that, we will proceed to the field theory example, where aspects of
infinite amount of degrees of freedom will have to be taken into account, and finally

we will add gravity to the mixture and examine the influence of spacetime curvature
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on the probability of false vacuum decay.

1.2.1 Quantum mechanical invitation

There are two equivalent formulations of quantum theory. One in terms of states and
operators and the other one in terms of paths (trajectories) via the path integral.
As it was in the example with an open/closed string duality, having two equivalent
descriptions sometimes helps to find an alternative approach to the hard problem
via the dual description; a difficult question on one side is sometimes related to a
straightforward calculation on the other side. This is the case for the example of the
ground state in quantum theory, especially when there are non-trivial configurations
of the minima.

Let us start with the general expression for the transition amplitude in quantum
theory between the state |z;) at t = —t(/2 and (z¢| at t = t¢/2, written in two

equivalent formulations
(my e 0] 2;) = /Dx Sl (1.2.23)

here H is a Hamiltonian of the system, S [z(t)] is an action, evaluated on a trajectory
between points (z;, —to/2) and (xf,ty/2), Dz is a proper measure for the integration
over paths together with a normalization factor. Performing an expansion over the

energy eigenstates, for the left hand side we get
(xyle 0] 2;) = Z e Entony (24) Yl () (1.2.24)

From this sum it is obvious that if we want to study the ground state of the theory, it
is convenient to perform a Wick rotation, i.e. transform to an imaginary time 7 = it.
Then, the oscillating exponent in every term of the sum becomes an exponentially
decreasing one, and in the large (imaginary) time limit 7 — oo, only the term with

the lowest energy Ej hence the wave function of the ground state will survive

D e Entoy (wp) g () ———— e (24) U5 () (1.2.25)

T0 (:ito) —00

Now let us examine what happens with the right hand side of (1.2.23)) in this limit.

First of all, after the transition to the imaginary time every path now will be weighted
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with the exponent of an Euclidean action

S = /Wz [1532 - V(x)} dt — iSp = 1/70/2 [li“? + V(m)} dr (1.2.26)

—t0/2 2 T=it —710/2

Substituting this into the exponent in the path integral we get a decreasing exponen-
tial weight for every trajectory, hence, according to the method of steepest descent,
the major contribution to the integral will come from the path that is a solution of

Euclidean equations of motion.

/ Dz 00 [ Dy =90 ~ g Splza] (1.2.27)

T=it
here z,(7) is a solution of §Sg = 0, which is equivalent to the equation of motion

& = V'(x) for a particle in a inverted potential “—V (x)".

It is important to note
that the expression for the energy, which is a constant of the motion, due to the

inversion of the potential will look like this:

1
E = 59’52 — V(z) = const (1.2.28)

If the potential has only one single minimum at some point xg, then the only
solution of the Euclidean equation of motion with a finite action is z(7) = z¢ =
const. Then by considering Gaussian fluctuations around the classical solution one
can fix the value of the pre-factor of the exponential in (1.2.27)), and treat even a
simple U-shaped potential accurately.

The situation becomes much more interesting if we consider the double-well
potential

V(z) =X\ (2 - 772)2 (1.2.29)
In this case the ground state becomes non-trivial, because we have two minima at
x = £n, and one could in principle consider the situation of a system initially in the
state x = —n but eventually finding itself at the state x = 7. Note that classically,
such a process is forbidden, but for the inverted potential we can find a solution
where the particle starts almost at rest from x = —n, travels through the valley and
then climbs back up and reach x = 7 state when 7 — oo.
Using the fact that the energy is equal to zero throughout all the motion

one can simplify the expression for the action

/00 (%x?l +V (:Ucl)) dr = /Z idr = /: idr = /_: V2V(z)dz  (1.2.30)

—00 —
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and get the following answer for the amplitude of the process
3

n
lim (g e H7 |—n) ~ e~ Slal = exp {—/ \/2de] = exp {—f;—)\} (1.2.31)
T—00 —n

where w is a characteristic of the potential around each minimum, w? = V" (+n) =
812,

It is worth discussing each part of this relation. In the first, the approximate
equality provides us with a strategy of addressing the question of vacuum decay:
one solves the Euclidean equations of motion together with proper boundary con-
ditions and substitutes this solution to the Euclidean action. The second equality
relates this transition to the under-barrier tunnelling in quantum mechanics (recall
the general expression for the transmission coefficient in a WKB-approximation,
T = exp [—2 2(V — E)] ). Finally, the answer and its dependence on the coupling

constant A indicates that such a vacuum transition is a non-perturbative process.

1.2.2 Tunnelling in quantum field theory via bubbles

The next step in understanding the fate of a ground state is to proceed to the system
with many, or infinite, numbers of degrees of freedom, namely quantum field theory.
For the sake of brevity and simplicity we will consider only the example of a real
scalar field theory ¢ and will start by specifying the form of the potential, which
will serve as the main example for the problem under consideration. We consider a
double well potential with an extra term which breaks the symmetry between the
two minima rendering only one of them an absolute energy minimum. Let us assume
that this absolute minimum (which we will call the true vacuum) is at ¢ = ¢, while
the other minimum with bigger value of the potential energy (which we will call the
false vacuum) is at ¢ = ¢p.

Initially the system is in the false vacuum state, i.e. ¢ = ¢, everywhere in
space. Classically, such an initial state would be absolutely stable because there is
a potential barrier between the false and the true vacuum, however in a quantum
theory, as we reviewed in a previous section, the question about the ground state
in a multiple minima potential is not so trivial due to the under-barrier penetration

phenomenon. However, the case of quantum field theory is special, because this is a
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quantum mechanical system with an infinite number of degrees of freedom. In order
to tunnel to the new vacuum state one might think each degree of freedom should
tunnel and the probability for all them to tunnel simultaneously is obviously equal
to zero. Therefore, naively, under-barrier penetration is not possible in a quantum
field theory and the initial false vacuum state should be stable. This is of course not
the case and tunnelling in quantum field theory is possible, and below we discuss
the way to deal with an an issue of infinite number of degrees of freedom. Let us
assume that at some moment of time the degrees of freedom associated with some
finite spherical region of space simultaneously tunnel through the potential barrier
to the true vacuum state, the probability of such process is not zero because only
a finite amount of degrees of freedom are involved. There is an energy difference
between the true and false vacuum states, hence we gained some energy during this
transition. There is also a border of the region where the transition occurred and
the field performs a rapid uplift from the true to the false value on this border and
this costs some energy. The balance of energy will determine what will then happen
with this bubble of the true vacuum. The gain in energy is proportional to the
volume of a sphere and scales like R with the radius of the true vacuum bubble.
The cost is related to the surface area of the bubble and scales like R?. Therefore
there always exists a critical size of the bubble R., such that if the bubble with
critical or bigger radius is formed it will start to grow boundlessly and eventually
will cover all the space, and the entire system will transit to the true vacuum state.
This is very schematic description of a tunnelling process in quantum field theory,
below we will show how this picture emerges from a technical derivation based on
approach which we derived in a previous section.

According to the results of the previous section the probability of a vacuum tran-
sition is proportional to the exponent of an Euclidean action evaluated on a solution
of the equations of motion with proper boundary conditions. An important and
very natural assumption we would like to make is that a dominant contribution to
such a phase transition is coming from the solution with four dimensional Euclidean
rotational invariance. Below we will demonstrate that for the shape of the potential

specified above there is always such an O(4)-invariant solution, hence we can limit
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ourselves to the case, when the field ¢ is a function of a four-dimensional euclidean
distance p = (7% + :Z"Q)l/ ? only. In this limit an expression for the Euclidean action

18

1 (do\>
=21 [ dpp® |5 | — 1.2.32
se=2 [dpy [2<dp) FV () (1232
and the equations of motion simplifies to
d? d d
o  3do _dV (1.2.33)

i pdp  do
In order to avoid issues with background subtraction, it is easier to assume that
the energy of a false vacuum, in which the system was initially, is equal to zero,
V (¢r) = 0. If gravity is not included such shifts of energy will not change the
physics. However, when gravity is taken into account one will need to be more
careful because the value of the potential energy at the minimum will determine
a spacetime geometry. We will discuss the impact of gravity in detail in the next
section.
First, the boundary conditions for equation follow partially from the
assumption that initially the system was in the false vacuum state:

lim ¢ (7,%) = ¢p (1.2.34)

T=—00

and also from the fact that the field ¢ should relax to the false vacuum value at
large distances

lim ¢ (7,7) = ¢r (1.2.35)

|Z| =00
in order to guarantee finiteness of the action. Recalling time reflection symmetry
of the theory both these conditions could be translated to the following boundary

condition in terms of the four-dimensional distance

lim ¢ (p) = ¢r (1.2.36)

p—00

Using time translation symmetry of the problem, we can assume that the bubble

of the true vacuum emerges at rest at 7 = 0, hence

0

5 (1, 2) =0 (1.2.37)

7=0
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this gives the second boundary condition for the equation (|1.2.33)):

o) _ (1.2.38)

dp

which is also necessary in order to avoid a singularity at p = 0.

p=0

In order to demonstrate that the equation (|1.2.33]) with the boundary conditions
, always has a solution we will use a mechanical analogy. This system
describes a classical particle, which is moving in a potential ‘—V’ and experiences
a friction force proportional to the ‘velocity’ d¢/dp and inversely proportional to
the ‘time’ p. From the boundary conditions it follows that initially the particle
was at rest in the vicinity of the top of the potential, ¢ ~ ¢, then rolls down
towards the second maximum of the potential at ¢ = ¢, which it should reach at
an infinite future p = co. Due to the friction, if the particle were initially too far
from the ¢r-maximum then it would not have enough energy in order to even reach
the ¢p-maximum. However, if the particle were initially very close to the ¢r-top
of the potential, it will stay there for too long, and because the friction force is
inversely proportional to time this force will become too small and the particle will
pass through the false vacuum hill in a finite amount of time and after that will run
away to infinity. From this picture it is obvious that there is always a critical initial
position of the particle, for which it will approach the false vacuum in the infinite
future. The time that particle stays near the true vacuum in the beginning is equal
to the radius of the bubble.

The mechanical analogy we have used above suggests a limit in which the problem
simplifies and we can get an answer for the probability of the false vacuum decay
in a closed form. If the energy difference between the false and true vacuum e =
V (¢r) — V (¢r) is small, then the friction force should also be very small during
the motion. In other words, the particle should spend quite a long time at rest
near the point ¢ = ¢r; when the friction force becomes small enough the particle
quickly rolls down almost to the point ¢ = ¢r and will stay there forever. This
is called a thin-wall limit, because transition from one vacuum to another happens
very quickly, or in other words happens at almost constant p.

The calculation of the Euclidean action simplifies in this limit, because we can

naturally divide the integration in (1.2.32) into three parts. When p is less than
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some critical radius p, (radius of the bubble), the field ¢, or our ‘particle’; stays

very close to the true vacuum and we can ignore any derivative terms in this region

Pb 1
Sy = 27r2/ dp p°V (¢7) = —§7r2p;§e (1.2.39)
0
The next region is where the transition from one vacuum to another happens. As we
discussed, in a thin-wall limit, the transition to the false vacuum occurs almost at
a constant value of p = pp, and it is convenient to introduce a notion of the bubble
wall: a 3-dimensional surface with a tension that divides regions with different vacua.

Using an obvious field theory analogue of ((1.2.31)), for the region corresponding to
the bubble wall we get

Pp+90 1 d¢ 2
Sw:27r2/ dp p* —(—) + V(e
e [2 i (9)

where we have introduced the surface tension of the wall, o. After the wall, the field

oF
—2nt} [ AVl = 24t o

' (1.2.40)

¢ has relaxed to the false vacuum value and is not changing, the action is equal to

zero in this third region. Overall, for the action we get
L 54 2 3
Sg =5+ Sy = —5m Pr€ + 2m°py O (1.2.41)

An actual value of the bubble radius corresponds to the solution of the equations of
motion in the thin-wall limit, hence it delivers an extremum to the action. Therefore,

by differentiation of the expression above with respect to the p, we can find its proper

value:
a@% 0 = = 3?“ (1.2.42)
Substituting it back we find the final answer for the Euclidean action in a thin-wall
limit
§p = 2T (1.2.43)
2€3

After the bubble of a true vacuum emerges it starts to expand very rapidly and
eats up all the space, one could see this by returning to the Minkowskian time ¢ in
which constant four dimensional Euclidean distance corresponds to the expanding

in time three dimensional surface

pPr=rrr = (1.2.44)
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where the wall is a hyperboloid in spacetime, expanding ever more rapidly and

asymptoting to a lightcone.

1.2.3 Tunnelling in quantum field theory with gravity

As we advertised in the introduction, a description of any fundamental process in
nature should include gravity. The decay of the false vacuum in a field theory is no
exception. In the present section we overview an initial attempt to take into account
the effects of gravitation on false vacuum decay due to Coleman and de Luccia [14].

From a general perspective, if we want to take into account gravitation we use

the following action

S = / N (%amaﬂqs +V(¢) — iR) (1.2.45)

Immediately, the problem about the ground state becomes much harder, as we in
principle get ten additional unknown functions (independent components of the
metric). However, if we limit ourself to the most obvious and simple appearance
of gravity, namely the vacuum solutions, them it is again very natural to assume
that gravity will not break spherical symmetry, at least to leading order, i.e. for the
semi-classical consideration in which we are interested in. The assumption of O(4)
symmetry immediately reduces the amount of new unknowns to a single function in
the ansatz for the metric

ds® = d&* + p (€)% dQ2 (1.2.46)
where dQ2 is a line element on a unit three-sphere, representing the orbits of the
O(4) symmetry, p is the radius of these spheres, and ¢ is a radial coordinate which
is orthogonal to all the angular coordinates on the spheres, hence it moves us from
one orbit to another.

The only non-trivial Einstein equation for such a metric is reduced to

1 1
PP =1+ gn;ﬂ (§¢’2 — V) (1.2.47)

here and throughout this section the primes denote differentiation with respect to

.
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The equation of motion for the scalar field, where we assume that field ¢ depends

only on &, is

W, dv
p d¢
The metric (1.2.46]) is invariant under a constant shift of ¢ and we can use this
symmetry to choose p(0) = 0, hence from the second term in ((1.2.47) it follows that

¢'(0) = 0 as well. Finally, ¢(c0) = ¢p, because the field ¢ should relax to the false

¢" + (1.2.48)

vacuum value outside of the bubble?

The equation differs from its analogue for the field theory without grav-
ity, (1.2.33)), only by the coefficient in front of the ¢’ term. However, as we discussed
above, we neglect this term in a thin-wall approximation, therefore we can solve
the equation for ¢ in an analogous way. Having the solution for ¢(£) in hand, one
can integrate the equation straightforwardly. Hence the whole system of
equations of motions can be solved in a thin-wall approximation.

The next question is a computation of the action in this limit. It is important
to note that in this case one has to be careful with shifting the energy of a false
vacuum state because when gravity is included, energy gravitates, and the value of
the potential at each minimum will have a physical meaning since it will curve the
spacetime in one way or another. Therefore, in order to have a finite decay rate,
we need to perform a background subtraction, and the answer for the probability
of false vacuum decay will be determined by the difference between the Euclidean

action for the bubble solution and the FEuclidean action for the false vacuum

B = Sg[¢] — Se[ér]. (1.2.49)

The expression for the Euclidean action itself is also will be different due to the

Einstein-Hilbert term. The Ricci curvature of the metric (1.2.46) is

6

R:pz

(1—pp" —p?). (1.2.50)

Substituting this into ((1.2.45)), we integrate by parts in order to get rid of the second

2If there is some & = £.pq > 0 at which p(£.,4) = 0, then the last boundary condition is replaced
by ¢'(£ena) = 0 and spacetime will have the topology of a four-sphere
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derivative term, and use (|1.2.47) to get rid of p/, and finally we get:

Sp = 47r2/d5 (p3V — %) (1.2.51)

As before in the thin-wall limit we can divide the integration into three parts. Out-

side the bubble, » = ¢r and due to background subtraction we get
Boutside = 0. (1252)

in the transition region, i.e. at the wall of the bubble, p is constant and equal to the

radius of the bubble, hence using (|1.2.51)) we get

Buaw = S ¢, po] — Sk [9F. po] = 4W2P§’/d§ [V(¢) = V(¢r)] = 2n°pjo. (1.2.53)

For the region inside the bubble ¢ = ¢, hence from ((1.2.47) we can derive

de = __dp (1.2.54)

W1 — %/@pQV
Substituting this in (1.2.51)) and integrating gives

2 3/2
SBinside [9T] = % ({1 — %mp%V(w)] - 1) (1.2.55)

Now we must subtract the background contribution from the false vacuum, which

finally yields
Bz’nside = SEinside [¢T] - SEinside [¢F] (1256)

We can derive the general expression for B in a thin-wall approximation with gravity
in terms of the energies of the true and false vacuum states, however, in order to
appreciate the influence of gravity on the probability of false vacuum decay, it is
better to consider two illustrative examples that show how important the inclusion
of gravity could be.

The first example is when we have positive false vacuum energy V(¢r) =€ > 0,
and a zero true vacuum energy V(¢r) = 0, hence the tunnelling is from de Sitter
to Minkowski spacetime. Substituting this in after some simplifications we

get

672 , 127 IR
B = Bwall + Binside = 272p20 - %pg - TZ ([1 - _Kp§€:| -1 (1257)
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By differentiation it is easy to find an actual radius of the bubble for which B will

be stationary

12
A (1.2.58)

T de+3ko? 1+ (po/20)*

here py is the bubble radius without gravity given by , and ¢ = \/% is the
radius of de Sitter spacetime, which is outside of the bubble. Substituting
back into we get an expression for the tunnelling exponent

Po

B= Bo (1.2.59)

[1+ (po/20)"]

here By is the action without gravity, given by ({1.2.43). As one can see, in this case

gravity enhances the decay rate by reducing the action.

The second example is tunnelling from flat Minkowski spacetime to an Anti de
Sitter spacetime with negative vacuum energy, hence V(¢r) = 0 and V(¢r) = —€ <
0. Performing an analogous calculation for the tunnelling exponent in this case we
get

B
B= 0 (1.2.60)

(1= (po/20)?]°

Note the sign difference in the denominator, therefore for the second example gravity

will make the probability of decay smaller and, in principle, could even completely

stabilize the false Minkowski vacuum.



Chapter 2

Lifshitz holography

2.1 Introduction

In this chapter, based on [31], we will describe a particular top-down approach to
the extension of holography to non-relativistic field theories. This is interesting both
for the potential application of these theories in condensed matter physics and for
its potential to enlarge our understanding of holographic dualities (for reviews see
e.g. [32-34]). Such theories have a symmetry under the generalized scaling t — A\*¢,
¥ — \¥. Comparing this to the scaling symmetry of AdS spacetime ([1.1.19)), which
is dual to relativistic field theories, it was realized in [11] that a holographic dual
to the Lifshitz field theory could be constructed by considering spacetimes with a
metric

ds® = r¥#dt* — r?di® — — (2.1.1)
r

which have an isometry under ¢ — N°t, ¥ — AZ, r — A ~'r. In [11,35] simple
“bottom-up” models admitting such solutions were proposed. They have since been
realized as solutions in “top-down” models obtained from string theory: the case
z = 2 proves to be the simplest to realize [36-39], but a construction allowing for
general values of z was given in [40]. Some other particular values of z were also
realized in [41}-43].

An interesting goal in such top-down constructions is to get a better under-
standing of the non-relativistic field theories dual to such Lifshitz solutions. It is

particularly interesting to understand these holographic theories, as no examples of
25
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interacting theories with Lifshitz symmetries are known. In [44], holographic RG
flows relating the Lifshitz and AdS solutions in the context of the massive ITA setup
in [40] were constructed, and it was noted that the RG flows offered a potential
approach to understanding the field theory dual to Lifshitz, as one could consider
the flow from an AdS solution with a known dual to Lifshitz. Related work on such
flows and their applications includes [45-53]. A dynamical interpolation was studied
in [54]. A different approach to relating AdS to Lifshitz is [55],56].

In this chapter, we extend the work of [44] by considering flows involving the type
[IB Lifshitz solutions in [40]. We start with five-dimensional gauged supergravity
obtained by compactifying IIB on an S°, and consider further compactifying two
spatial directions on a compact hyperbolic space, with certain gauge fluxes turned
on on this space. There are asymptotically AdSs solutions, where the proper size of
the compact hyperbolic space grows near the boundary, and AdS3 and 3-dimensional
Lifshitz (denoted Lis) solutions where it has constant size. As in [44], we consider
flows relating all these solutions. We focus particularly on the flows from AdSs, and
analyze these in detail, identifying the deformation of AdSs which sources the flow
and discussing its dual field theory description.

Working in the IIB context has two advantages: the field theory dual to the
asymptotically AdSs solution is the familiar ' = 4 SYM, and the deformation we
are interested in includes as a special case a supersymmetric twist which has been
previously studied in [57]. In the supersymmetric flow, [57] showed that the twist
involves not only turning on a flux ) but also adding a source X for a scalar operator
transforming in the 20 of the SU(4) R-symmetry. We will see that the flows to non-
supersymmetric AdS; and Lifshitz geometries involve changing the values of () and
A in a coordinated way: the flow reaches an IR fixed point on one-dimensional
subspaces in the space of {@, \} deformations.

Surprisingly, we do not need to turn on a source which breaks Lorentz symmetry
explicitly in the UV to realize flows to Lifshitz: this Lorentz symmetry breaking will
emerge spontaneously for appropriate values of {@, A}.

In [57], the deformation by {Q, A} was related to a change in the scalar La-
grangian in the A/ = 4 SYM theory, and it was shown to lead to flat directions for
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certain scalars in the supersymmetric case. We analyze this field theory Lagrangian
deformation for our non-supersymmetric cases and find that there is a finite range
of non-supersymmetric flows to AdS3; where the flat directions get lifted and the
field theory scalars in the deformed field theory will be stable in the UV. Disap-
pointingly, for the flows to Liz, the field theory deformation always leads to some
runaway directions in the scalar space. These runaways correspond to brane nu-
cleation instabilities in the bulk geometry (discussed for example in [58,59]), as we
show explicitly by a probe brane calculation. Thus, for the flows to Lifshitz, the UV
field theory is unstable, and this flow does not offer us a way to define the IR theory
dual to the Lifshitz geometry. As in [44], we also find that for some values of z the
Lifshitz geometries have linearized modes which appear to violate the generalization
of the Breitenlohner-Freedman bound [30]. These two types of instabilities do not
appear to be related.

In section [2.2] we review the Romans 5D gauged SUGRA model [60] and review
the Lifshitz solutions in this model [40], as well as discussing the families of AdSs
solutions. We then discuss the flows in section first performing a linearized
analysis about each of the solutions to determine the qualitative character of the
flows and then numerically constructing the various flows. In section[2.4] we analyze

the deformation away from AdSs in the UV and discuss the dual field theory.

2.2 Lifshitz and AdS solutions in 5-dimensional gauged
supergravity

We consider a consistent truncation of the N = 4 five-dimensional gauged super-
gravity theory obtained by reduction of the ten-dimensional type IIB supergravity
on S° where we keep an SU(2) x U(1) subgroup of the SU(4) gauge group, and a
single scalar ¢ [60]. This theory is a consistent truncation of the full higher dimen-
sional theory, in the sense that any solutions in the 5D theory can be uplifted to
Type IIB supergravity solutions in ten dimensions (see [61] for explicit detail).
The field content of the theory consists of the metric g,,, 5D dilaton field ¢,
SU(2) gauge field A,(f), U(1) gauge field A, and two antisymmetric tensor fields
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B, The bosonic part of the Lagrangian is

R 1 1
L==7+50u00"¢— 2 FuF" = 52 (FQ P + BB,
1o (1 5 _ po) (2.2.2)
+7 4 e (EGD‘BBMVDPBU)\ w/ FpO'A ) (¢)>

where £ = e\/g‘ﬁ, the scalar field potential is

g _
P(¢) = gz (925 R 2\/§glf> : (2.2.3)
and field strengths are

Fiw = Ouls = Ol (2.2.4)

F{) = 9,A%) — 9,AD + goc* AD AP
The U(1) gauge coupling g; and SU(2) gauge coupling g» are two independent pa-
rameters of the theory. It was shown in [60] that these parameters can be eliminated
by field redefinitions so that there are only three physically different theories, the
N = 47 theory, when g;g, > 0, the N' = 4° theory, when g, = 0, and the N/ = 4~
theory, when g;go < 0. We will consider here only the N/ = 4* theory, i.e. we assume
9192 > 0. We also set By, = 0 identically for all solutions and flows considered here.

The equations of motion for the rest of the fields are then

1
_g,uzzfpafpg)

4
Ry, = 20,00,¢6 + gguvp((b) - 574 (2]:/4’]:5 3

]‘ 7 o (1
§ (QF()FP() _gg#VFp(O')Fp ())7

\/75 4]:/11/‘7'“” \/75 F( )F(z)po' (225)

(5 4?"’“) _ 4€uupJTF F(z

oT)
1

D, (£2Fw(z’)) _ §EWPUTFV(?]:“T'

2.2.1 Ansatz for solutions and flows

To construct flows, we only need to consider radial dependence of the bulk fields; we
assume the holographic RG flow geometries we consider will preserve the transla-

tional invariance in the t and z directions, and will have the topological flux through
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the compact hyperbolic space. The most general ansatz we will need to consider is

thus

dr? dy? + dy?
ds? — e2F0) 42 _ 12052 — ezd(r)TL2 _ p2h(r) y1;‘2 y2’ (2.2.6)
2

the 5D dilaton ¢ is also only a function of r, and we assume the gauge fields have at
most nonzero r — t or r — x components. It is convenient to parametrize the fields

in such a way as to eliminate geometric factors:

F(t3) _ A(T) €F+D F(3) _ B(T) €D Fy(3; — %
r ) TT ’ 1Y2 ’
A§(7">§2 ‘ e (22.7)
r ~
‘Frt = —eFJrD ) ‘FTIE = B(T)£2€D )
T

where we have also introduced shifted and rescaled variables in order to eliminate

g1 and go from all expressions:

D(r)=d(r) + %ln (gng) ,
H(r)=h(r)+ % In (glgg) , (2.2.8)

o(r) =& (r) g ",

Substituting all this into the equations ([2.2.5)) and introducing the new variable

p=1Inr we get

Rt
2té :6—2D [F/_F/D/+F/2+F//+2H/F/]
91 93
1 _2 1 4 2 2 2 52 2 2 2 2 —4H
R
gxé :e—QD[FI_D/+1_|_2H/]
91 93
1 2 SN 4= 9
L) - () 4 () B
R’l"
2Té 2672D |:F//+F/2—F/D/—D/+1—2H/D/+2H/2+2H//]
91 93
_90/2 1 _2 3 1 4 2 72 2 2 2 2 9 b
:W‘i‘é(@ 3+22Q03>+§(A +A - B —B>+§903Q€
R
2y1é 2672H+672D [H//+2H/2+H/F/+H/—H/D/]

91 95
= % (gp*% +2\/§90%> _ g <A2 +1[12) + g <B2+B2> _ %1@5@26411
(2.2.9)
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for the Einstein equations, where a prime now denotes d,, and

Olne =—e??0Inp —e P9, Inp(1+ F — D' +2H’)

% <_90*§ + \/590%) 14 <§2 —AQ) —9 <B2 _AQ) _2¢§Q2€—4H

(2.2.10)
0, (gﬁ_%TA€2H> = 2<p_%TBQeD : 0, (g&éBeF”H) = 2@%AQGF+D : )
2.2.11

on <QO%TA62H> = QQO%TBQGD : 0, (ap_%BeF“H) = 2¢_%AQ6F+D
AB+ AB =0 (2.2.12)

for the 5D dilaton and gauge equations.

This system appears to involve eight unknown functions, but we see that in the
Lifshitz solutions, one of the two sets of fluxes must be zero to satisfy , and
therefore at most we turn on either the tilded or the untilded fluxes but never both.
Thus, in a given flow we will have six unknown functions. These will be subject to

seven equations: ([2.2.9} 2.2.10), and two equations from (2.2.11]). As usual, one of
the equations in (2.2.9) is redundant because of the Bianchi identity.

2.2.2 AdS; asymptotic solution

In the ansatz , we have sliced our five dimensional space-time with two dimen-
sional hyperbolic slices and 2+ 1 dimensional planar slices. As such therefore, there
is no solution for F, D, and H which is globally AdSs, however, there are solutions
which asymptote to AdS5 at large r, where the curvature of the hyperbolic space is

effectively suppressed. These solutions will have

as p — 0o, and will have a constant 5D dilaton, ¢ ~ g, and vanishing gauge fluxes,

A~ B~ A~ B~ 0 to leading order. Substituting this in (2.2.9] [2.2.10} [2.2.11)),

the leading order equations fix

(2.2.14)
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which can easily be solved to find

1 4

These asymptotically AdS; solutions exist for any values of Hy and the topological
charge Q.

2.2.3 AdS; x H, solution

In [57], a supersymmetric AdSz x H? solution was considered. Here we regard this
as part of a one-parameter family of AdS; x H? solutions in the ansatz (2.2.6). In
principle, it is possible to consider a more general two-parameter family of AdSs
solutions by turning on two fluxes.

We will get an AdS3 x H, spacetime from the metric by taking constant
values for H = Hy and Dy, and setting F'(p) = p. It is easy to check that the system

has such a solution for constant 5D dilaton field ¢y and vanishing bulk gauge fluxes

A=A=B=B=0if

1
3
6_2D0 = 90—0 , €_2H0 = 12 s Q2 = 900\/5 — 1. (2216)
2v2 205

Therefore, we have a family of AdS; solutions, parametrized by the value of 5D

dilaton field ¢g, which should be in the range ¢y € [\/Li’ o0). These solutions are
illustrated by a grey line in figure 2.1]

2.2.4 Lig X Hs solution

We now review the Lifshitz solutions obtained in [40]. As noted above, such solutions
are obtained by taking either the tilded or untilded fluxes to vanish. The solutions
are obtained from our ansatz by setting F'(p) = zp, and taking constant functions

H = Hy and D = Dy as in the AdS3 solutions.
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Tilded Lifshitz solution z > 1

If we turn on a tilded pair of gauge fluxes A= ﬁo, B = B, for some constant values

Ay and By, (A= B =0) then (2.2.9, 2.2.10} [2.2.11)) are satisfied if

2o — V2(z+ 1) 12 z(z — 1)6—2D0
07 2243, -2 0 2 ’
e = [2(z +1)*(22° + 32 — 2)]_% , B’= 22;162D0, (2.2.17)
2
672H0 — §Z€72DO’ Q2 — w
2 9z

This family of solutions is parametrized by the value of the dynamical exponent z,
which in this case should be greater than one, and is shown in figure as a blue

line.

Untilded Lifshitz solution 1 < z <2

If we turn on the other pair of fluxes, i.e. untilded gauge fluxes A = Ay, B = By

for some constant values Ay and By, (A = B = 0) then (2.2.9] [2.2.10} [2.2.11) are

satisfied if

V2z(z 4+ 1) £ 2(z—1) _yp,
= ) I — )
—222 43242 2
_1 -1
e 0 = [22%(2+1)*(—22"+32+2)] *, Bj= ZTe*QDO, (2.2.18)
3 —222 + 32+ 2
—2Hy _ =z —2Dg 2 = .
e 2ze , Q 9%

This second family of solutions is again parametrized by z, but this must now lie in

the range 1 < z < 2 which gives positive Q%. These solutions are shown as a red

line in the (Q?, o) plane in Figure .

2.3 RG flow solutions

We now turn to the construction of flows interpolating between the solutions re-
viewed in the previous section. Such interpolating solutions correspond to RG flows
in the dual field theory, with the solution at small r corresponding to the IR limit
of the RG flow, and the solution at large r corresponding the the UV limit of the
RG flow. The study of such holographic flows was initiated in [62}/63|.
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Figure 2.1: The values of ), ¢, for the AdSs, [/J\zlg, and Lis solutions. The AdS3 family
is parametrized by g, which determines Q? = v/2¢y — 1. The Lifshitz families are
parametrized by z, which determines ) and ¢y. Also shown are flows between the
solutions, which must occur at constant (), with an arrow depicting the direction of

the flow.

Analogous flows were previously constructed for the Type ITA theory in [44].
As in that case, the charge ) will be conserved along the flows; flows will move
horizontally in figure 2.1] Therefore the solutions that can be related by flows are
the Liz and AdS; for large enough values of ), and AdS; and Lis for smaller values of
Q. There is also the possibility of having flows which start from the asymptotically
AdSs5 solution in the UV, which exists for any value of the charge @), and approach
any of these AdSs or Lifshitz solutions in the IR.

2.3.1 Linearized analysis

Before we proceed to the construction of the actual flows, we will perform a linearized
perturbation analysis around each of the fixed-point solutions, to determine which
direction we would expect the flows to go in (that is, which solution should be in

the IR and which in the UV). This corresponds to computing the dimensions of the
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deforming operators in the dual field theories. We then construct the interpolating

solutions numerically.

Linearisation around AdS;

The expansion around the asymptotically AdSs solution is a little more conceptually
involved than the others, because AdSs is not an exact solution of the equations of
motion, but only an asymptotic solution. We can avoid these subtleties by imagining
that we take the radius of curvature of the compact hyperbolic space to zero by
taking hg — oo, and neglecting terms in the equations of motion involving e=2.
This will give us the linearized form of the equations of motion around the pure
AdS;5 solution which will allow us to read off the scaling of the linearized solutions.
These scalings will remain valid for the linearized modes in the asymptotically AdSs
solution with finite hg to leading order at large r, as the physical volume of the

compact hyperbolic space diverges as r — co.

We write the solution as

0, F =14+ yo(p), D = Dy + y1(p), A =ys(p),
H :p+HO+y2(p)7 8PH: 1+y4(p), B :yQ(p)a (2319)
v = o+ ys(p), o = 0+ ys5(p),

and linearize in the y;, taking Hy — oo. At linear order we will not see the constraint

(2.2.12)), but we recall that we will only consider solutions with either (yq,y7) or

(ys,Yo), but not all four at the same time. The other equations in ([2.2.9 [2.2.10]
2.2.11]) then give us a system of first-order equations,

Yo = —4Yo, U1 = Yo — 8Y1 + 2ya, Y2 = Ya,
Uz = ys, Y4 = —4yu, ys = —4dysz — 4ys, (2.3.20)
Us = —3Ys, yr = —3yr, Us = —3Ys, Yo = —3Yo,

and a constraint equation,
_ Y+ 2y4

. (2.3.21)

n

We can easily verify that this constraint is consistent with the first-order system.

Imposing the constraint, and keeping one of the two pairs of gauge fluxes, we will
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have a seven-dimensional space of linearized solutions. For example, for the case

where we keep (ys, o), the linearized solutions are

aPF =1+ 006_4p7 ¥ = $o + )\pe—Qp + 776_2p7
1
D = Dy + Z(Co +20,)e %, A= Cge™™, (2.3.22)

1
H= P+ H() + Cg - 1046_4p, B= 096_3p.

These solutions correspond to infinitesimal VEVs and sources for corresponding
operators. The constants Cy, Cy are the energy density and an anisotropic pressure;
the corresponding sources are deformations of the boundary metric. These are C
and a constant Fj in F', which we can freely add since the equations of motion
only involve 0,F. Both C; and Fj are pure gauge degrees of freedom; the former
corresponds to shifting the background Hy, and the latter is a pure diffeomorphism.
The parameters Cg and Cy are charge densities for the gauge fields; the corresponding
sources are constant components of the vector potentials, which are pure gauge, and
are also absent from our ansatz since we wrote it in terms of the field strengths.
Finally A and n are the source and VEV for the operator corresponding to the 5D
dilaton. This operator is particularly interesting to us as we will see that the flows
from AdSs to the AdS; and Lifshitz solutions will involve turning on this source.
As this is a relevant deformation, we would expect flows from AdSs in the UV,
approaching the other solutions in the IR.

Since they do not enter into the equations of motion in our ansatz, the constant
part of F' and the constant part of the gauge potentials will not play any role in the
flows we consider. This is a remarkable fact; it implies that in the flows from AdSs
to Lifshitz, the only physical source we can find turned on at the AdS; end of the
flow is A\. This does not break the Lorentz invariance. Thus, when we have a flow

to Lifshitz, the breaking of the Lorentz invariance along the flow is spontaneous.

Linearisation around AdS; solutions

We expect to have flows relating AdS3 to both Eig and Liz spacetimes, therefore it

is interesting to consider perturbations for both tilded and untilded fluxes in this
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case. Hence, we have the following linear perturbation from the AdSs3 solution
X =Xy+Yy, (2.3.23)

where X, — (F',D,H, o, H' o A B, A, B) — (1, Do, Ho, ¢0,0,0,0,0,0,0) is the
fixed point solution corresponding to the AdS; x Hs spacetime and y(p) is a vector
of perturbations. Linearising the equations of motion around the fixed point gives

us a linear system

y = AAng Y, (2324)

together with a constraint equation analogous to . The matrix Agqgg, is a
10 x 10 matrix dependent on the background field values, however, as with the
AdS; case, we may only switch on either the tilded or untilded fluxes, which both
have exactly the same form of perturbation equations. In addition, the Bianchi
identity implies a zero mode, thus our effective perturbations are reduced to a seven-

dimensional system

Yred = Ared “Yieds (2325)

where y,.q = (0F',6H,8¢,0H', 54, 0A(6A), 6B(0B)), and writing ¢ = v/2/q:

—2 0 0 0 0 0 0
0 0 0 10 0 0
0 0 0 0 1 0 0
Area = | 0 B2e (e—-2) =2 0 0 0 (2.3.26)
0 2(c-2) 0 2 0 0
0 0 0 0 0 -1 VA-2
0 0 0 0 0 Vvi-2c -1 |

In this format we see the perturbation of the flux decouples from the geometry, and

the equation for § F” also decouples. This matrix has a set of eigenvalues {A,},

Ay =—-2; —1:|:\/4—c:|:\/9—20~|—02; —1+£v4—-12c, (2.3.27)

with corresponding eigenvectors {v;}, thus the solution of the linear system ([2.3.25|)
is

Yied = D Vie™". (2.3.28)
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Figure 2.2: Plots of real and imaginary parts of the eigenvalues of the linear per-
turbations from the AdS3 solution as functions of the background value of the 5D

dilaton field ¢y.

The eigenvalues are plotted in figure , and we see that as in [44], some of the
eigenvalues are complex for some values of ¢, signalling a potential instability of
these solutions. We will return to this issue at the end of our analysis.

Clearly, the A = —2 eigenvalue corresponds to a pure geometry fluctuation, and

actually corresponds to the fluctuation from a mass. The final pair of eigenvalues

Ay = —14+,/4— %5 switch on flux, hence corresponding operators on the field

theory side are relevant when A, < 0, i.e. for \/Li < g < %ﬁ

Note that ¢y = %ﬁ corresponds exactly to the point where all AdSs, Eig, and

2v2
3

Liz solutions coincide. Hence, for \/Li <y <

we will have a relevant operator
near AdSs. If we excite the untilded fluxes, we can then expect a flow from the
AdS; solution in the UV to the Lis solution in the IR. For ¢y > %ﬁ we will have
an irrelevant operator near AdSz. So if we excite the tilded fluxes, we can expect
to have flows from the fig spacetime in the UV to the AdS; spacetime in IR. These
expected flows are presented in Figure 2.1 We will construct these flows numerically
below.

In addition to the flux deformations, we see from figure [2.2]that there is one defor-

mation which is always irrelevant. This should correspond to the flow approaching

AdS; from the asymptotically AdSs solution.
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Figure 2.3: Plots of the real and imaginary parts of the eigenvalues of the linear
perturbations from the ﬂi3 solutions, divided by z+1, as functions of the background

values of the dynamical exponent z.

Linearisation around Li; solutions

In this case we must set the untilded fluxes to zero identically to satisfy ([2.2.12]).
We write the variables as

X =X+, (2.3.29)

where X = (F’,D,H, gp,H’,gp’,Av, §> = (z,DO,HO,gpo,O,O,EO,E()) are the back-

ground values and y are the linear perturbations. This gives a linear system
y = AE?, -y (2.3.30)

together with a constraint equation analogous to . The entries of the matrix
Ag;, are parametrized by the value of dynamical exponent z, and although the corre-
sponding eigenvalues can be found analytically (in terms of square roots of solutions
to a cubic) their form is not particularly illuminating thus we present them only
graphically in figure 2.3] The eigenvalues occur in pairs with the sum of each pair
equal to —(z+1). We see that we have complex eigenvalues for all values of z along
this family. We also note that there is a single irrelevant mode, corresponding to

the expected flow approaching this solution from the asymptotically AdSs solution.
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Figure 2.4: Plots of the real and imaginary parts of the eigenvalues of linear per-
turbations from the Liz solutions, divided by z + 1, as functions of the background

values of the dynamical exponent z, in this case 1 < z < 2.

Linearisation around Li; solutions

This is similar to the previous case, although now it is the tilded fluxes which must
be set equal to zero. We again have an 8-dimensional system of linear perturbations,
with background values Xo = (F', D, H, o, H', ¢', A, B) = (2, Do, Hy, ©0, 0,0, Ag, By),
and a linear system with a matrix Ay;, and a constraint. We will again have seven
linearly independent modes, with eigenvalues coming in pairs, with the sum of the
eigenvalues in each pair equal to —(z + 1). The resulting eigenvalues are presented
in figure 2.4, Here we see complex eigenvalues for a range of values of z near 1,
but there is a range near 2 where all the eigenvalues are real and the solutions
may be stable. We also note that there are two irrelevant modes, corresponding to
the expected flows approaching this solution from asymptotically AdS; and AdSs

solutions.

2.3.2 Numerical Flows

Here we present the result of numerical solutions of the full non-linear system of
equations of motion for the interpolating solutions between different fixed points in

UV (r — o0) and IR (r — 0). We discuss first the flows between AdS; and Lis
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Figure 2.5: Solution interpolating between Liz with 2 = 3/2 and AdS3, with Q* = 2%.

spacetimes and then consider the flows from the asymptotically AdSs solution in

the UV.

Flows between AdS; and Li; spacetimes

From the linearized analysis, we expect flows from AdSs; in the UV to Liz in the
IR and flows from fig in the UV to AdS; in the IR, as depicted in figure . We
constructed examples of these flows numerically, using a shooting method. The
shooting is carried out starting from the IR fixed point at small r, integrating nu-
merically to larger r. Shooting is required to obtain the flows between AdS3 and Lis
because the IR fixed point always has two positive eigenvalues, and the generic flow
will go to the asymptotically AdS5 solution. Hence possible directions of shooting
lie in the plane spanned by the two corresponding unstable directions and can be
parametrized by the single angle variable, say, (. We find the value of ( giving the

desired flow by bisection of an initial interval of values of (.
o Q*€[0,3]: Flows from AdS; to Lis

We present an example of such a solution in figure 2.5} this case interpolates
between the untilded Lifshitz solution with z = 3/2 for small r (IR) and the AdSs
solution for large r (UV) . The plot of F”’ shows that it starts from the value 3/2
and goes to 1, the other plots show how fluxes of the gauge fields go to zero at large

T.
o (7> %: Flows from Eg to AdSs

We present an example of such a solution in figure 2.6} this case interpolates
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between AdSs for small 7 (IR) and the Liz solution with z = 2 for large r (UV) .
The plot of §,F shows that it starts from 1 and goes to the value 2, the other plots

show how fluxes of the gauge fields grow, approaching constant values at large r.
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Figure 2.6: Solution interpolating between AdSs; and fig with z = 2, with Q? = %

Flows from AdS;

The flows which approach the asymptotically AdSs solution in the UV and end at
AdS; or Liz in IR are easy to construct numerically, integrating outward from the
IR. We find that the endpoint of the flow from AdS; is uniquely determined by
the pair {Q, A}, where X is the coefficient in front of the slow fall-off mode in the
expansion of the 5D dilaton field near the AdS; solution,

1 A
@:E+ﬁlnr+:—2+.... (2.3.31)

On the field theory side, A corresponds to the source of an operator O, as dis-
cussed in Maldacena and Nunez [57], however, for future reference we note that the

deformation parameter used there, ), is related to our \ via

- 2
A= ée%u (2.3.32)

This operator (together with the curvature of the Hy and the flux @) induces the
RG flow on the field theory side. As noted previously, the fact that these flows
only involve turning on a source for this operator implies that the flows to Lifshitz
spacetimes break the Lorentz invariance spontaneously.

The values of A for which we flow to the different solutions are presented schemat-
ically in Figure 2.7 If we move along the AdS; (grey) line in the direction of in-

creasing of @, then the corresponding value of ) is also increasing. For Q = 0 A = 0,
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3

1 Q=1, 1=1/6 SUSY flow

Figure 2.7: Plots of AdSs, [TZ; and Lis solutions, indicating the corresponding value
of X in the asymptotically AdS; UV region in the flow solutions. The arrows indicate

the direction of increasing \.

while for Q =1 X = %; this latter value corresponds to the supersymmetric flow
of [57]. If we move along the Lis (blue) line up (in the direction of increasing ) and
also increasing z), then the corresponding value of \ is decreasing, in such a way
that for Q = \/g (z=2) A= O. Above this point A < 0. If we move along the
Liz (red) line down (in the direction of decreasing (), but increasing z), then the
corresponding value of \ is increasing. Numerically, A — % as z — 2 (Q — 0). We
will discuss the field theoretic implications of the values of ) in the next section, but

first comment on stability of the supergravity solutions.

2.3.3 Stability to condensation of supergravity fields

In the analysis of the linearized perturbations, we encountered some complex eigen-
values for some values of parameters, as in the analysis of the IIA case in [44]. For

a decoupled scalar, such complex eigenvalues appear when the scalar violates the

! This is a numerical result, but it seems very reasonable, because in Lifshitz theories, a theory

with z = 2 always was a special case.
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Breitenlohner-Freedman bound, and there is then an instability to condensation of
the scalar. We would expect that there will be a similar instability to condensation
of the modes with complex eigenvalues in our case, although we will not attempt to
carry out a time-dependent analysis to demonstrate this instability explicitly. Cer-
tainly the appearance of the complex eigenvalues obstructs the usual interpretation
of the eigenvalue as the dimension of the corresponding operator in the field theory.

Also, it was noted in [64] that purely from a bulk spacetime perspective, when
such complex eigenvalues appear for a scalar field there is no boundary condition
which preserves the inner product which is invariant under the Lifshitz scaling isom-
etry. Thus, we expect that in the cases with complex eigenvalues, we simply cannot
choose boundary conditions such that our bulk solution is dual to an anisotropic
scaling invariant field theory with a conserved inner product.

A nice field theory dual description of the fixed points with complex eigenvalues
is thus unlikely to exist. This leaves as potentially interesting cases a range of the
AdS; fixed points and a range of the untilded Lis fixed points with z near 2. This
is an interesting range of Lifshitz solutions, and an improvement of the ITA case,

where the Lifshitz solutions with no complex eigenvalues were at larger values of z.

2.4 The UV field theory

Our interest in studying flows, particularly those from asymptotically AdS; space-
times, is mainly that they might help us to understand the field theories dual to
these spacetimes. In this section, we consider some stability issues that can obstruct
our ability to learn about the field theory from these flows. For field theory on a flat
space, the scalars in the adjoint of SU(INV) have flat directions corresponding to the
Coulomb branch. However in our class of spacetimes, we are compactifying two of
the directions on which the field theory lives on a space of negative curvature. One
might therefore expect the curvature coupling of the field theory scalars to produce a
runaway instability for the diagonal components of these scalar matrices. From the
bulk spacetime point of view, the diagonal components of the scalars are positions

of branes, so this runaway would be a brane nucleation instability.
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The story is of course more complicated, because in addition to the negative
curvature space, we are introducing a flux Fy(f’g)ﬁ = q/y3 on these directions, and also
adding a source for the operator dual to the 5D dilaton ¢. In the supersymmetric
case analysed in [57], the effects of these deformations combine to preserve a twisted
supersymmetry. The whole RG flow is supersymmetric, so on the field theory side
the deformation of N' = 4 SYM is preserving some supersymmetry. One would
then not expect the field theory to have a scalar instability, and indeed the terms
combine to leave us with flat directions for some of the field theory scalars [57].
Similarly, from the bulk perspective, the addition of the flux and deformation of the
S® (encoded in the 5D dilaton) will modify both the DBI and WZ components of a
probe brane action, which could stabilise the brane.

We now present analyses from both points of view — using the Maldacena-Nunez

approach to contruct the field theory, then confirming our results by a direct probe

brane calculation.

2.4.1 UV field theory analysis

Let us analyze the field theory deformation for our general family of flows. The
field theory includes six real scalars, transforming in the vector representation of
the SO(6) R-symmetry group and the adjoint of SU(N). The consistent truncation
we work with preserves an SU(2) x U(1) subgroup of SO(6), so it is convenient to
organize the scalars into three complex scalar fields W, W, and W3, where W; and
W, transform under the SU(2) and Wj; transforms under the U(1). The bulk 5D
dilaton ¢ corresponds to an operator O, which is a symmetric traceless combination

of the scalars transforming in the 20 of SO(6) [57],
_ 2 2 1 2 2
Oy =Tr 3 Ws|* — 3 (W)™ + W) ¢ (2.4.33)

The deformation we consider has a negative curvature in the y;, ys directions and a
flux of the 73 component of the SU(2) gauge field through those directions, and a

source for O, with a coefficient A. This corresponds to a deformation of the scalar
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part of the field theory Lagrangian to
1 1 1 R 3
S= [ d'z{ | D[+ = DWW + < |0, Vs)° — — i + SARO
/ x{2| NW1|+2’ ,U«WQ‘ +2’;U«W3 12Z‘W‘ +4 2 )
(2.4.34)
where D,, = 0,+1A,, is the gauge-covariant derivative with respect to the component
of the SU(2) gauge field we turn on, and R is the Ricci scalar of the two dimensional

hyperbolic spacetime (note R = — |R| < 0). Substituting in A,, = ¢/y», we have

1 A 1
s- [ d4w{52 W - 1Rl (5 - )

— |R] {%2 — (% +%)] (Wl + !W212)}’

where the normalization of the Q2 term and the coefficient of A have been fixed by

(2.4.35)

reference to the supersymmetric case, which corresponds to A = % and @ = 1.

2.4.2 Probe brane calculation

We now want to explore this field theory from the bulk perspective. Holographi-
cally, R-symmetry scalar fields correspond to inserting a brane with its four infinite
dimensions parallel to an r =const. section of the 5D space, and at a given position
on the (possibly distorted) S°. The effective action of such a probe brane is given

by the sum of a geometric DBI term, and a topological WZ term:

S = —Tyg,* / e~ ®y/—det[yap + Fap|d*¢ + T3 / Cy (2.4.36)

where (4 are the intrinsic coordinates on the brane worldvolume; y45 the induced
metric; Fap = Bap + 2ma/ Fap, the pullback of the 2-form field to the brane (zero in
this background) and worldvolume gauge field (which we also set to zero); finally,
C} is the pullback of the 4-form gauge potential onto the brane.

In order to compute this action, we first need the background geometry. The
twisting introduced previously corresponds to a distortion of the S® in the reduction

of the IIB SUGRA as described in [61JP] Lifting the 5D solutions of (2.2.6]2.2.7) to

“Note that there are some factors of two between the variables used here and those of |61]:
((b)LPT = ¢/2, (gi)LPT = gl/2, and ALPT = 214, where A stands for either the U(l) or 80(3)
gauge field.
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10DP], and writing

S =siny A =¢85 ¢1o?
(2.4.37)
C' = cosx U=¢S?+¢72C%+¢

givedT] [40]:

ds? — A3 <62th2 24t _ €2dd_72 _ thdy% + dy%)

2 2
r Y5

— AT | AdyE 4 €712 (dn — 2A4) + %5202 > (n®)?

1

] (2.4.38)

2
Fs=2Ues +3SC & xs dE Ady + 2%{2 w5 S A oW A o
2.4.
SC (3) 3) —4 ( 39)

the other form fields, the string dilaton and axion vanish. Here, h() are the left

invariant forms on S% (¢() modified by the SO(3) gauge fields:
h0) =g — 2240 (2.4.40)
For constant &, we may reparametrize the squashed S° as

P
Wi = E&cosy cos 5 e 2

0 .-
Wy = §COSX sin 5 el% (2441)
Wi =& 2siny e
which, together with the obvious definitions of the gauge covariant differentiation
for W; o and Wjs give the metric of the additional dimensions as

dss = =€ A2 [ [DW ] + | DWa ] + [DW; [ ] (2.4.42)

As £ changes from unity, we can see how the S° becomes distorted while main-
taining an SO(3) x U(1) symmetry. Our 5D dilaton is thus a shape modulus for
the S5. Since ¢ = 1 for AdSs, it is now transparent how to deal with the degrees
of freedom of the probe brane: we simply replace the ‘¢’ in (2.4.41)) with a radial

3Indeed, the uplift of the AdS flows can be generalised in the context of solutions in D = 10,11

dual to N' =2 SCFT’s, as studied in [67,68]. (We thank Jerome Gauntlett for pointing this out.)
4We have set g1 = go/V/2 = 2 to match the conventions of [57]
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variable 7((), and allow the remaining angular degrees of freedom of the brane to
also depend on the brane coordinates (4. We will then expand the action for a
slowly moving brane at large r in the asymptotic AdSs5 solution.

We start with the DBI part of the action

SDBI X — /d4C\/ —det YAB (2443)

where
0X*oXx?
VYAB = _aCA _aCB Gab

with X# = [t,z,7((), y1, Y2, X({), n((),0(C), #(¢), ¥ (C)] being the brane’s spacetime

coordinates in terms of the intrinsic coordinates (, for which we choose the gauge

CA = (t7x7y17y2>' Thus

(2.4.44)

1 - - .

YAB = "}/213 — T_2 [DAW1D3W1 + DWoDgWs + DaWsDgWs } (2.4.45)

where 745 = A3 diag (62F, —r2, —%, —ﬁ), the 1/r? factor arising because we
Ya Ys

have replaced ¢ with r in (2.4.41]). Hence,

1 -
/—det yap =~ 1/~ det 79, (1 - ﬁvoABDAWZ-DBWi) (2.4.46)

(where we understand the covariant derivative in the sum to be the one relevant to
the particular W;). Since we are only interested in the leading order behaviour as

we change W;, we only require 7°4Z to leading order in W;, i.e. at the AdSs limit:

1 B B
V7 sy = 73 - diag (1, =1, —yge 0, —y5e ") (2.4.47)
hence
4 TA pion 1 9
Spar o — /d ¢ 2 (1 — 5 Z |D,Wi| ) (2.4.48)

For the WZ term, note that although the 4-form potential is rather involved for
a general flow, we only require the leading order part parallel to the probe brane
worldvolume, which can be found by integrating the U function in . Putting
this together, we see that

Seff ~ /d4C{—A(f7X) cpelteh (1 — % zz: |DuVVz‘|2> + 2/€F+d+2hU(§aX)d7’}

(2.4.49)
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We now expand this action in the asymptotic AdSs5 region, but with one difference
to the procedure followed in §2.3.1} we need to consider a linear expansion in the
case of finite volume of the 2D hyperbolic space, i.e. finite hy. The full asymptotic

solution together with corrected expansion up to =2 order reads

6_2h0
F=Inr, d:—62 ,
r
2.4.50
hmtnr byt o eo1a Y2 AT V2R o
THTT R T T N 3 r? 3 r2’

Substituting these expressions into (2.4.49)), and performing the integral for U,

we see that all terms proportional to p and \Inr cancel leaving

1 A 1
Se ~ /d‘*g {56%0 Z | D, W;|* - ﬁe2"0 (257 = C*)r* + 672} (2.4.51)

It is easy to see that we can identify

(25° = C*)1? =30y, r*=> Wi (2.4.52)

)

and noting the relation between our A and A, (2.3.32)), as well as the curvature of
the 2D hyperbolic space, R = —2e~2" we get

1 3+ 1
4 2h 2 : 2 2 : 2
Sef-f X /d Ce 0 {5 : ‘Duwz‘ - Z)\ROQ + ER i ‘Wl‘ } (2453)

which coincides with the expression for the field theory effective action (2.4.34])

precisely.

2.4.3 Stability and Lifshitz dual field theories

Having obtained the field theory action, (2.4.35)), we now analyse the scalar stability.
In order to have stable potential for the Wjs field, we should have

_ 1 _
A——>0=)\>

2.4.54
12 — ( )

DN | —
| =

While for the twisted fields W; and W, we should have

Q? [1- 1
= _(=x+=)>0. 2.4.55
8 TRRETY ( )
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For the supersymmetric case, both these bounds are automatically saturated (by our
choice of normalization in matching operator sources to bulk modes), reproducing
the flat directions of [57].

For AdS; solutions we know that in the AdSs region Q? = ¢v/2 — 1, and, by
numerical analysis we determine \ as a function of the value of ¢ in the AdSs
region. The stability criterion for the Ws field, A > 1/6, which corresponds to
© > /2. Meanwhile, provides an upper bound on ¢, as \ increases more
rapidly than Q? along the family of AdSs flows. Numerically, we find that the AdSs
solutions with

o€ V2~ 3.26] (2.4.56)

result from an RG flow from a field theory in the UV where the field theory defor-
mation is not introducing a field theory scalar instability. The corresponding region

for the charge @ is
Q* € [1,~3.61] . (2.4.57)

Disappointingly, for the Lifshitz solutions we found numerically that none of the
solutions involve flows with A > 1/6. The flows on the untilded branch do approach
A — 1/6 when z — 2, but Q — 0 in this limit, so even if we are nearly satisfying
the stability condition for Ws in the limit, the condition for W, and W, is badly
violated. Thus, none of our Lifshitz solutions is obtained as an RG flow from a
stable UV field theory, and we cannot use these RG flows to define the field theory
dual to the IR fixed points.

This UV instability does not necessarily imply that the IR fixed points are ill-
defined, just that this approach to constructing them has failed. There are solutions
on the Lisz branch for which we did not have evidence of a supergravity instability
which are still candidates for having a dual field theory; but we will have to look

elsewhere for a top-down definition of this field theory.



Chapter 3

Vacuum metastability with black

holes

In this chapter, based on |70|, we will describe tunnelling in quantum field theory
with gravity beyond its homogeneous approximation, described in the introduction.
In recent work [87] Gregory with collaborators looked at the effect of gravitational
inhomogeneities acting as seeds of cosmological phase transitions in de Sitter space
(see also earlier works by Hiscock and Berezin [88,[89]). They found that the decay
rates were considerably enhanced by the presence of black holes. Following their
work, Sasaki and Yeom [90] have investigated the unitarity implications of bubble
nucleation in Schwarzschild-Anti de Sitter spacetimes (see also [91] for a discussion
of vacuum stability in the early universe). In this chapter we extend the previous
results of [87], to cover all possible gravitational nucleation processes.

We follow the approach of Coleman and de Luccia [14], and assume that the

nucleation probability for a bubble of the new phase is given schematically by

[ =Ae?, (3.0.1)

where B is the action of an imaginary-time solution to the Einstein and scalar field
equations, or instanton, which approaches the false vacuum at large distances. How-
ever, unlike Coleman and de Luccia, we consider a spherically symmetric bubble on
a black hole background. The nucleation process typically requires an instanton that
has a conical singularity at the black hole horizon. Analogous instantons were con-

50
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sidered before in [92,93| and fall within the generalised type introduced by Hawking
and Turok [94,95]. We show that the nucleation probability is well-defined. An
alternative interpretation of and the instanton has been given in [96).

The vacuum decay process is based on a static black hole, in which a bubble
nucleates outside the black hole and either completely replaces the black hole with
a bubble of true vacuum expanding outwards, or nucleates a static bubble leaving
a remnant black hole surrounded by true vacuum. This latter solution is not sta-
ble, and small fluctuations will lead it to either expand as with the first situation
completing the phase transition, or to collapse back inwards leaving the initial state
unchanged. Of course, this description does not explicitly account for any time
dependence of the black hole due to Hawking evaporation, however, we can apply
the same argument as that employed for black hole particle production, namely, we
consider only vacuum decay precesses which have timescales short compared to the
evaporation rate. In other words, we have some confidence in our results when the
vacuum decay rate exceeds the mass decay rate of the black hole. (The effects of
Hawking radiation on tunnelling rates have been investigated in [97,98]).

The outline of the chapter is as follows. We first review then extend the thin wall
instanton method in directly calculating the instanton action in the thin wall
limit as a function of wall trajectory and black holes masses. In we describe the
solutions for the instantons and discuss the preferred decay process for a general seed
mass black hole (including charge). Finally, in we discuss possible extensions
to higher dimensions and collider black holes. Note we use units in which A =c¢ =1,

and use the reduced Planck mass M = 1/(87G).

3.1 Thin-wall bubbles

In this section, we describe how to construct a thin wall instanton, along the lines
of Coleman et al. [12-14], but with the difference that we suppose that an inhomo-
geneity is present. We apply Israel’s thin wall techniques [108] to the bubble wall,
and describe the inhomogeneity by a black hole.
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3.1.1 Constructing the instanton

The physical process of vacuum decay with an inhomogeneity can be represented
gravitationally by a Fuclidean solution with two ‘Schwarzschild’ bulks which have
different cosmological constants separated by a thin wall with constant tension (for
a general proof of this result in the context of braneworlds, see [109,110]). On each

side of the wall the geometry has the form
2G' M. + AiT‘ 2

dr? 2 102 _
[GR + r2d€s, fe(r) =1 T3 (3.1.2)

where 74 are the different time coordinates on each side of the wall, and the wall, or

ds® = f(r)+dri +

boundary of each bulk, is parametrised by some trajectory r = R()\) (the angular 6
and ¢ coordinates are the same on each side). The Israel junction conditions |108]
relate the solution inside the bubble with mass M_ and cosmological constant A_,
to the solution outside the bubble with mass M, and cosmological constant A, .
Since the bubble exterior is in the false vacuum, we have A, > A_. (A, < A_
was discussed by Aguirre and Johnson [111},[112], and the case M_ = 0 has been
discussed by Sasaki and Yeom [90]). In general, the bubble will follow a time-
dependent trajectory representing a reflection, or bounce, which could be described

by local coordinates on each side of the wall:
X§ = (te(A),r:(N),0,9) (3.1.3)

we choose to parametrize the wall trajectory by the proper time of a comoving

observer, i.e. A is chosen so that

52

R
feti+— =1, (3.1.4)
fx
here dots denote derivatives with respect to A and r, = r_ = R()) along the wall.

We will use normal forms that point towards increasing r:
ni:%idri—f"dq (315)

and also take 7. > 0 for orientability (see also [90]). By choosing the intrinsic
coordinates on the wall {4 = (X, 6, ¢), we can introduce the induced metric hgp,

which the wall inherits from the spacetime

ds® = —dX\? + R*()) [d6? + sin® 0d¢”] (3.1.6)
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Using (3.1.5)) we can construct the extrinsic curvature of each side of the wall:
Koap=X! X" gVan,y. (3.1.7)

Israel junction conditions [108] then provide us the relation between the surface
stress tensor of the wall S,;, and the geometry of its embedding measured via a jump

in the extrinsic curvature across the wall:

AKab — AK]’Lab == —87TGSab (318)

here AKy, = K, oy — K_q and analogously for the trace K = Kqh®. By taking the

trace one can rewrite ((3.1.8)):
1
AKab = —8rG (Sab — §hab5) (319)

and introducing the tension of the wall o, we have S, = ohyp, and this equation

reduces to

fe[ROW)]ty — f- [RO\)]t. = —47GoR. (3.1.10)

The combination of surface tension and Newton’s constant recurs so frequently that

for clarity we define

o = 2nGo. (3.1.11)

To find solutions to the equations of motion, first note that the junction condition

(3.1.10)) implies
. .\ 1/2 f_ _ f -
_ _ 2 _ +
feTe = (fi R ) R FoR. (3.1.12)

It is convenient to rewrite this as an equation for R using the explicit forms for fy

. L, A (AAY °G (- AMAA\ (GAM)?
2 _1_ (7242 2_2 (M — 1.1
R (0 T3 14402>R R ( MDYEE > me o G

where AM = M, — M_ and M = (M, + M_)/2 with similar expressions for A.
Although this seems to be a more complex system than that considered in [87], in
fact it is possible to rescale the variables so that the analysis is very nearly identical

to that in [87]. To begin with, define

3 4502 A_~?
62 = — = — 2 — 1
T T T @ Tty

(3.1.14)
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and rescale the coordinates to R = aR/v, 7 = at/7, A= aA/v. Then writing

~ 2aGM_ N (1 —a)aGAM

_ *GAM
g 772 '

kl ) k? -

257 (3.1.15)

gives a Friedman-like equation for R()):

dr\’ B\ K )
(K) :1—(R+E) -2 =-UR) (3.1.16)

together with equations for 7. These equations with o = 1 are precisely the system
explored in [87].

The allowed parameter ranges for k; and ko are limited by requiring existence of
a solution to ]%2 + U(R) = 0, where U is defined in (3-1.16), requiring positivity of

the black hole masses, and positivity of the arrows of time on each side of the wall:

df. ks R _
f+ Y R2+q( a7) (3.1.17)
d7*. ks R
f S mta ( )
where
k. 2k 32
fo=1-t 2 oy o a2 (1 209)7]
]f g‘]f 2 « (3.1.19)
S [ T G Z(1—a?).
f R+QR( oz)+a2( a’)

The first requirement is algebraically identical to the constraint discussed in |87] (al-
though the expression given there in the appendix was not correct). Simultaneously
requiring U = U’ = 0 and eliminating R, gives an upper limit k < ki, the correct

expression for which is:

2 27ky)* 27k 1/3
ki =5 |1+ 81K - (—1 5(2Thy)? + 22) e O (27k2)2)3/2)
1/2
2Tky)* 27k 1/3
+ (1 + 5(27ky)? — ( 22) +5 2 (44 (27k2)2)3/2> — 2k

(3.1.20)
To get lower limits for k; we have to consider positivity of the black hole masses
and the arrows of time on each side of the wall. These now depend on the sign and

magnitude of the cosmological constants and are different to [87]. First, note the
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relation between the physical quantities and the parameters:

GM_ =L (k1 U ;O‘)kg)

B 2c
ki k
GM+=%+LZ(04—1+2(W)
@ 1‘)‘ (3.1.21)
A =32
gl
—2 o 3 2 — _\2
A=A —126°+12— = = (o — (1 —207)?)
v
thus "
GM_>0 = k>20-a)2
@ " (3.1.22)
GM, >0 =  k>2(1—a+27)=
«

Secondly, the requirement of positivity of 7, of which the constraint on 7L'+ is the

stronger:

ks R B
E+E(1_2‘”) >0 (3.1.23)

saturated by Ri = aky/(207y — 1). Clearly, if 26y > 1, we must have k; > 0, and
U must be positive with positive gradient at R.. A brief manipulation of U’ > 0

yields

a? ki + 2k a
—_—— — 2 — > .1.24
(207 —1)2 2ky (207 —1) — 0 8 )

From this, we see that Ay > 0, 267 < 1 + a/2, and k; is bounded below by
k" =2(1 — a)ke/a from (3.1.22)).
Now consider 267y < 1/2, for which ky < 0 is allowed. A similar argument to [87]
gives
1/3 ky  (a—1+257)>
(1 —207) o
for ko < 0, and once again, k" = 2(1 — a)ky/a for ko > 0. Note that neither of

Oék'Q

k’lzk’gn:

e 3.1.25
207 —1 ( )
these bounds requires a particular sign for A_.

Where the sign of A_ does make a difference is in the range of allowed k5. The

upper limit on k5 is determined by M_ = 0 for the static bounce, i.e.
and a lower bound on ks is determined when the range of k; for ks < 0 closes off at
negative ky, which occurs when U(R,) = U'(R,) = 0:

2/{32
T2 _p, =0 (3.1.27)

RY 3RS +3k3 =R — ——2
+ ++ 2 + (1_25.7)
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0.7;

Figure 3.1: The allowed ranges for the parameters k; and ko with A, = 0. The
upper bound on k; corresponds to stationary wall solutions. The lower bound on
ki1 when ky > 0 is presented for a different values of 6¢ = 0.1, 0.2, 0.3, 0.4 and
corresponds to vanishing remnant mass M_ = 0. The two limits intersect at a point
(k1c, kac), which depends on the ¢ and approaches (0,4/27) as ¢ — 0. The strip

of allowed k; continues to the left as |ko|'/3,

which is clearly inconsistent for A, < 0. For A, > 0, the range closes off at

P a?(25y — 1) _ a?(26y — 1) (3.1.28)
BB (2P AT

Note that for A, < 0, the range of ki, while initially narrowing as ks becomes
negative, eventually opens out, as the linear term in becomes dominant.
Thus large AdS black holes can tunnel to an even larger AdS black hole with a more
negative cosmological constant.

An important special case, especially for the application to the Higgs vacuum,
is an example with A, = 0, for which « = 1 — 267y, and many of the expressions
above simplify:

(ko) ky <0
k= (3.1.29)

%kg ko >0
and the range of &y is plotted in figure Note that unlike the figure in [87], where
the lower limit for k; was dependent on & for negative but not positive ks, in this

case it is the lower limits for positive ks and not negative that depend on &.
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3.1.2 Computing the action

To compute the action of the bounce, we need to compute the Euclidean action of

the thin wall instanton:

167rG/ VIR = 204) - 16G/ VIR —21-)
b \/_K+——G \/EK_+/W0\/E

8rG oM 8 OM_

Ip =—

(3.1.30)

and subtract the action of the background. In this expression, M refers to the
boundary induced by the wall — there may also be additional boundary or bulk terms
required for renormalisation of the action (see below). Note that we have reversed
the sign of the 9 M _ normal in the Gibbons-Hawking boundary term so that it agrees
with the outward pointing normal of the Israel prescription. On each side of the wall
in the bulk we have R, = 4A4, and the Israel equations give K, — K_ = —12nGo.
There are three parts to the computation of the action, M_, M., and W.
o M_

w_»

Integrating the bulk term for the side of the wall has two contributions,
one from the cosmological constant in the bulk volume, and a contribution from
any conical deficit at the black hole event horizon, should one exist. A description
of how to deal with conical deficits was given in an appendix of [87], essentially
the deficit gives a contribution proportional to the horizon area times the deficit
angle. Supposing that the periodicity of the Euclidean time coordinate, 3, set by

the wall solution, may not be the same as the natural horizon periodicity, f_ =

47y, /(1 — A_r?), this gives a contribution to the action from M_

B —BA 1 [2A
I./\/l_ :—TE—E T(RB—T}BL)CZT,
LA 2 [A

TR Tel I

Inserting the value of _, and taking into account the value of 75, the term in square

(3.1.31)

_ 2GM} ANR2 S 7

4G

brackets is identically zero, and this contribution to the action does not explicitly

depend on the periodicity or indeed any conical deficit angle.
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o M,

The computation of the action of M, is a little more involved, as different
regularisation prescriptions are needed for the different asymptotics of (A)dS or flat
spacetime.

For Schwarzschild de Sitter, the radial coordinate in the static patch has a finite

range, and terminates at the cosmological horizon r., which has a natural periodicity

B, = —4nr?/(2GM, — 2\, r3/3).

ﬁc - 6 Ac 1 2A
Im, = —% BTE / T+(7“3 — R%)dr,
¢ (3.1.32)
o _Ac ﬁ ./4.6 2A+T _ L 2 1 -
+ l e 2GM+} G | DL

Once again, substituting the values of 8. and r. demonstrates that the bracketed
term vanishes. For future reference, we note the value of the background SDS action

at arbitrary periodicity derived in [87]:

A, Ay
Igsps = EYTeRTel

(3.1.33)

where A, is the horizon area of the black hole of mass M, . Note that this expression
is f—independent as discussed in [87].

For Schwarzschild (and Schwarzschild-AdS) the range of the radial coordinate is
now infinite, and we must perform a renormalization procedure. For Schwarzschild,
there is no contribution from the bulk integral, and instead we consider an artificial
boundary at large rg, with a subtracted Gibbons-Hawking term so that flat space

has zero action [113].

/ V(K — Ky) = BM+ = BM, — ! /d)\f+R27+ (3.1.34)

I
M = 30G 4G

Again for future reference, computing the background Euclidean Schwarzschild ac-
tion at arbitrary periodicity (with the same background subtraction prescription)
yields

A
Ipscn = —ﬁ + BM, (3.1.35)

inputting the value of Bscy = 8TGM, .
For AdS on the other hand, we must subtract off the divergent volume contri-

bution [29] by again introducing a fiducial boundary at rq, and subtracting a pure
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AdS integral, which must have an adjusted time-periodicity so that the boundary

manifolds at ry agree:

1/2
Bo=1 = ~ (1 + %) 8. (3.1.36)

(1 — Ay r2/3)1/2 raA
Thus 1 9A 1 9A
IMJr e —E dT%(T% — R3) E/dTOTJFTS
3.1.37
=AM, — — [ d\f.R* ( )
I Te e

i.e. an identical result to the Schwarzschild case (3.1.34). Computing the background

Euclidean Schwarzschild-AdS action at arbitrary periodicity we get

A
Ipsaps = —ﬁ + BM (3.1.38)

again, the same expression as for Schwarzschild, (3.1.35]).

o W
Finally, the contribution to the action from the wall has a particularly simple
form as the Gibbons-Hawking boundary terms from the wall come in the combina-

tion of the Israel junction conditions. We therefore obtain

1 o 1
Iy =+—— hK h=— [ =Vh=— [ d\ T — T
w e aMj[\/_ +/WO'\/_ /WZ\/_ QG/ R(fy7y — f-7)
(3.1.39)
having used f, 7, — f_7_ = —20R.
Putting all of these results together, we find that the action of the instanton

solution is

_ 1 BM, A, <0
=2 L nir—semyr — (R—scm s 440
4G 2G A
— Ay >0
(3.1.40)
Thus the bounce action, given by subtracting the background Schwarzschild /S(A)dS
action is:
./4-.!,- A_ 1 / . / .
B = E - E + E d)\ { (2Rf+ - R2f+) T+ — (2Rf, — Rfo) T,} (3141)

This expression is the central result of this section, and is independent of any choice
of periodicity of Euclidean time, and independent of the choices of cosmological
constant on each side of the wall. It is in fact even valid when the black hole is

charged, as we will consider in section [3.3.3
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3.2 Alternative bounce action calculation

In this section we present an alternative derivation of the general expression for the
bounce action using the Hamiltonian approach presented in [87], and extend the
result in some cases beyond the thin-wall limit. This approach allows more general
inhomogeneous configurations, as long as if they are static.

We will evaluate the Euclidean action for gravity plus a scalar field, with La-
grangian L,,, in an asymptotically AdS or flat spacetime. As in §3.1.2] we take the
action on a sequence M, of manifolds with boundary dM, at ry, and subtract the
action of a similar sequence M, of Euclidean AdS manifolds with the same boundary
oM,.

It is instructive to first consider the case where the Euclidean spacetime M is
perfectly regular, with no conical singularities, and has a Killing vector, 0,. We
perform a foliation of M, with a family of non-intersecting surfaces ¥, (assuming
the global topology permits), with 0 < 7 < . The canonical decomposition of
such foliations has been investigated by Hawking and Horowitz, [130]. In order to

decompose the action, we use their identity
R =R — K>+ K2, — 2V, (u*Vyu?) + 2V, (u*V 1), (3.2.42)

where the vector u* is normal to ¥, and >R is the Ricci-curvature of ¥,. The action

therefore splits into bulk and boundary parts,

1 B
Iy =— d SR—-K?+ K% +1
=g, 0, ORI K 4 10n62) Vo
1 b
— o7 ulVh. 3.2.43
+ 87C Jops npu®V u’Vh ( )

The bulk term expressed in terms of canonical momenta 7 and 7 becomes

1
167G

B
/ dr { / (0-yyy7 + 0o — NH — N'H;) Vh| (3.2.44)
0 T

where H and H; are the Hamiltonian and momentum constraints respectively. The
field equations imply that H = H; = 0, and furthermore the symmetry implies
0,¢ = 0-7;; = 0. Therefore only the boundary term in (3.2.43|) survives.
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To evaluate the boundary term, we use the fact that the metric is static and

asymptotically AdS, therefore at large r we have
ds® = f(r)dr?® + f(r)"tdr? + r*dQ? (3.2.45)

where f = 1—2GM /r—Ar?/3. For this metric nyu®V,ub = f~/2f'/2, and subtract-

ing the Euclidean AdS action from ([3.2.43|) we arrive at the following expression

2 f/ 2 g/
1= lim (ﬁin - BZGf°>, (3.2.46)

where 5y and f{ are the time-period and metric function of AdS space, and using

(3.1.36)) the Euclidean action ([3.2.46|) becomes,
I =pM. (3.2.47)

If there is a horizon at r = ry, then by properly treating the conical singularity as

in [87], we get an additional area term contribution to the action
I=pM ! A (3.2.48)

This result generalises a previous result of Hawking and Horowitz, who found the
same formula for the Euclidean action of static Einstein-matter solutions with A = 0
and no conical singularities [130]. The A — 0 case can also be obtained using the
Gibbons-Hawking subtraction procedure described in . The expression
is of course the same as , , but we have not assumed anywhere for the
static case that the bubble is in the thin-wall limit.

Solutions with a moving bubble wall (7()A), R(\)) break the time-translation
symmetry of the full space-time, but the canonical method can still be used if the
wall is thin and the geometries on both sides of the bubble wall, M, individually
possess the Killing vector, 0. Along with the contributions from M4 and the wall,
W, we will have an additional contribution from the conical singularity which can
be dealt with by the methods of [87]. The action splits into contributions from each
of these parts

A

Iy, =1_+1.+Ly—— 3.2.49
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where A_ is the area of the black hole horizon in the interior of the bubble. In the

thin wall limit [W = fW o, and

RVG— | Lumlg,9) g+—/ KoV, (3.2.50)

I =—
16 G My My

Hence, performing the same decomposition as in the static case we can cancel the

bulk contributions and are left only with the boundary terms

I = K o7 ul 2.51
87TG/ i\/_+87TG/aMinibu V. \/ﬁ, (3 5)

where M now includes the wall and the large distance boundary dM,. Using
Israel’s junction condition to relate the extrinsic curvatures on each side of the wall
to the tension, and inserting the normal to the wall (3.1.5), nyu®Vau® = 7 f /2 f/2,

we reach our final result

1 1 1 ;. ;.
I = BM_,_ - EA_ - 5 /VV h — m (f+T+ - f_T_) \/ﬁ, (3252)

The expression for the bounce action B which governs the decay rate is obtained

from I by subtracting the background action without the bubble, Ij:

1
Iy=0M, — —A,. 2.
0= BM = oA (3.2.53)
Therefore the tunnelling rate is determined by
A A- 1 1
=— - — —= h——— e — L) Vh .2.54
AG 4G 2/WU\/_ 167G W(f”* J77) Vi, (8.2:54)
which is identical to (3.1.41)), after using the relation f.7, — f_7_ = —20 R for the

wall integral.

3.3 Instanton solutions

In section we derived the equations of motion for a bubble wall separating a
region of true vacuum from the false vacuum, and derived the “master expression”
for the instanton action. In this section we discuss general properties of
these solutions, and demonstrate how the action varies as we change the seed black
hole mass and the wall tension. Rather than presenting absolute values of the bounce
action, it proves useful instead to present a comparator to the ‘Coleman de Luccia’
action, by which we mean the bounce solution in the absence of any black holes (but

with, for now, arbitrary cosmological constants).
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3.3.1 Coleman de Luccia

The ‘CDL’ bubble wall satisfies (3.1.16[)-(3.1.18)) with k; = ko = 0, which are solved

- o ~
t_ = ———arctanva? — 1sin A

Vol -1 (3.3.55)
- 2 — (1 —207)2 ~
t, = a arctan \/a ( — ) sin A
Vva?—(1—257)? (1—207)
and the action can be computed analytically as
1 , , 77 a3 Ar=0 Tl 16(50)*
B =—— [ R(7y — 7)== —
crr =5 | R = 1) = G o T e s 1= 209) G (1— 45202)?
(3.3.56)

Note that by analytic continuation, these expressions include arbitrary A4, for which
a < 1or1—267 are possible. In this special case the symmetry of the bubble solution
has been raised from O(3) to O(4), and the result for the tunnelling rate agrees with
explicitly O(4) symmetric methods discussed in the first chapter.

3.3.2 The general instanton

The general bubble wall will have a black hole mass term on each side, and a general
instanton will consist of a bubble trajectory between a minimum and maximum
value of R. For fixed seed mass, M, , there will be a range of allowed k; and ks (see
(3.1.21))), and a corresponding range of values for the bounce action. By exploring
the {k1, ko } parameter space numerically and plotting the ratio of the bounce action
to the CDL action, we can build up a qualitative understanding of the preferred
instanton for vacuum decay.

For example, if A, = 0, GM, = vk1/2a, and GM_ = GM, — vko(1 — ) /a?.
Referring to figure [3.1], we see there are two possibilities for the range of ko, which
is now a horizontal line in the k; plot: Either the maximal value of ko lies on the
k" branch with GM_ = 0, or on the static branch kf(k2). The picture is similar
for general A, but the constant GM, lines are now at an angle, and interpolate
between the k" curve at negative ko and either the k7" line at positive ky or the

ki (ko) curve. The crossover between the two possibilities occurs at M, = Mg, given
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by the algebraic solution to

K (k) = %’“2(1 —a) (3.3.57)

when we have a static bubble with GM_ = 0. In either case, as ko drops, GM_
increases until the lower limit of ko is reached at negative ko on the kJ"(ksy) curve.
By solving numerically for the wall trajectories we find that the action increases as
ko drops. The preferred instanton therefore is the one with the maximally allowed
value of ky consistent with the value of GM, .

This qualitative picture remains true irrespective of the values of Ay: for seed
mass M, < Mg, the dominant tunnelling process leaves behind a true vacuum
region and removes the black hole. The tunnelling rate is always faster than the
vacuum tunnelling rate for these instantons. The bounce action reaches a minimum
at M, = M¢, where the bubble is static. For M, > M¢ the dominant tunnelling
process is a static bubble with a remnant black hole being left behind. As the
seed mass increases further, eventually the tunnelling rate becomes lower than the
vacuum tunnelling rate. Exploring the instantons for general A’s, we find that the
ratio of B/Becpr changes very little as the A’s vary. In figure , we show how this
dominant tunneling action varies as the values for the cosmological constants are
changed. Since the change in B/Bcpy, is minimal (and Beopy, itself is not varying
much), we now restrict our discussion to the A, = 0 set-up where a = 1 — 25, and
many of the formulae simplify.

Before discussing the general dominant tunneling process, we begin by consider-
ing the critical instanton where the static bubble tunnels and removes the seed black
hole altogether. Although in general is a complicated algebraic equation,
for small 6/ the various parameters can be expanded straightforwardly to give

64 4 GMc 128

kic ~ ﬁ((%)Q = § — 3k = ;= ?<5’€)3 (3358)
From (3.1.41)), the action of a static bounce in general is
. AN
B = :14_5 _ :l_G — 47GM? — =G <5> (ul? = uy2, (3.3.59)

where

/ 2 M_
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Figure 3.2: A plot of the minimum bounce action as M, is varied for 6¢ = 0.1, and
varying values of A, = 6/¢% 3/ 0,-3/¢*, A_ =3/¢?,0,—3/¢*> —6/¢? as indicated.
The ratio of the bounce action to the CDL value is plotted, but as Ay vary, this

value itself changes. For ¢ = 0.1, Bopy = 0.101,0.117,0.137,0.165 > /L2 as A,
drops from its maximal to minimal value considered here.

although it must be noted that, for the static bubble M_ is a complicated function
of M. For the critical bubble, GM_ = 0, hence the critical bounce action is

2 2 2
Be = 4nGME ~ mt ( 56) (50)"

G\ 27

~ (%)6 (60)*Bepr - (3.3.61)

Thus as ¢ — 0, the tunnelling action becomes small compared to the CDL action.
One problem with having a small critical mass is of course that the decay rate
due to tunnelling may be outstripped by the evaporation rate of the black hole, as
we will discuss later, however, what this expansion indicates is that the minimal
bounce action for a particular ¢ can be extremely small, so that even if we are
above the critical black hole mass, the decay rate can still be significant.

Having determined that the dominant tunneling process is either the static bub-
ble or the GM_ = 0 branch, we can now compute the dominant bounce action either
by numerically solving the time-dependent bubbles with GM_ = 0, or computing
the static bubble actions with k; = k7. We used a simple mathematica program to

calculate these exponents, and double checked by a totally numerical computation.

The results for some sample values of 6/ are presented in figure |3.3]
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Figure 3.3: The exponent B for the dominant tunnelling process divided by the

appropriate vacuum tunnelling value Bopy, for different masses M, of the nucleation

seed. The surface tension o and AdS radius ¢ enter in the combination /.

The general bubble solution for GM_ = 0 oscillates between two values }?M AX
and RM 7~v Where the potential U (R) vanishes. This periodic solution in \ can only
be single-valued in M if the manifolds on each side have the same time-periodicity
as the bubble wall solution. In general, this will not be the same as the natural
periodicity A1y = 87G M, of the Euclidean Schwarzschild solution, hence the need
to consider general periodicity in the computation of the action in section [3.1.2] For
the static solution of course, this is not an issue. The values of RMAX / RM[N are
well outside the black hole horizon radius, and move together as GM, is increased.
Eventually, at GM¢, the two roots of U meet, and the static branch begins.

The static branch is the preferred instanton with nonzero GM_, i.e. with a black
hole remnant, although non-static solutions exist with higher action and remnant
mass. Initially, the static bubble shrinks with increasing GM,, but remains well
outside the Schwarzschild radius, however, as we increase GM further, the bubble
becomes constrained by the expanding black hole horizon, and becomes stretched
just outside }?SCH. Meanwhile, the remnant black hole mass GM_ increases along
the static branch and eventually becomes larger than GM,, however, because of
the negative cosmological constant, the horizon radius, while increasing, does not
increase as rapidly as Rgcn. The static bubble action therefore increases as GM, in-
creases, eventually becoming larger than Bepy (see ﬁgure. Figure illustrates

the behaviour of these minimal/maximal and static values of R as Rgen = 2GM,
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varies, the remnant horizon radius is also shown.
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Figure 3.4: A plot of the variation of the bubble wall radius R as G M, is increased
for ¢ = 0.25 (chosen to highlight the qualitative features). As ¢ drops, the features
of the phase diagram remain the same, but ‘squash up’ towards smaller Rscp. The
unlabelled red line running from corner to corner represents Rscn, the seed black

hole horizon radius.

3.3.3 Charged black holes instantons

In this section we briefly comment on an obvious generalisation of our instantons to
Einstein-Yang-Mills-Higgs theory. The combination of Einstein gravity with Yang-
Mills and Higgs fields admits the possibility of charged black hole solutions [114,115].
Electrically charged black holes can discharge by the emission of charged particles
[116], but magnetically charged black holes may be the lightest magnetically charged
particles in the theory, in which case a large mass black hole evaporates towards the
extremal limit, and the Hawking radiation flux falls to zero.

Magnetically charged black holes may be produced in the early universe [92,93],
and form the seeds for vacuum decay of an unstable standard model Higgs field.

Uncharged black holes can easily evaporate before they seed a phase transition, but
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the charged black holes hang around for a longer time making them better candidates
for vacuum decay nucleation sites.

An SU(2)xU(1) Yang-Mills theory with Higgs field #H in the fundamental SU(2)
representation has no flat-space monopole solutions, but it does have Dirac and
Yang-Mills black-hole monopoles. The non-abelian monopoles can be constructed

from the SU(2) fields W using an ansatz

H = o(r )a;HO, (3.3.62)
wo— gl (090 — oy sinfdg), (3.3.63)

where o,, 0y and o, are Pauli matrices projected along the spherical polar co-
ordinate frame and H, is constant. (The magnetic charge has been scaled so that
an extreme black hole has P = M in the absence of a cosmological constant.)

For a potential which allows decay from flat space to AdS, there are thin-wall
bubble solutions with spherical symmetry and constant values of ¢ at the appropriate
minima of the potential. The metric coefficients are
2GM_  r?  G*P?
+ 2 r?
2G M, n G? P?

r r2

f- = 1-

: (3.3.64)

f+:1—

(3.3.65)

In this case, the bubble wall carries no magnetic charge. Generalised solutions may
also be possible in which the interior and exterior have different magnetic charges.

The action for the bubble solutions is given by the same formula, (3.1.41)), as in
the uncharged case, though with the appropriate expressions for fi.. The plot of the
dependence of the action on GM, /¢ is surprisingly similar to the uncharged case
at fixed ratio P/M,, with one small modification. The time-dependent tunneling
solutions prior to the switching on of the static bubbles now do not remove the black
hole altogether as this would leave a naked singularity. Instead, the bubbles leave

behind an extremal remnant, M_ = M, (P), where

GMewt(P) = % (2 12G2P2) \/,/ 12G2P2 (3.3.66)

The static branch meets this time-dependent branch at a critical mass Mqp, where

the static bubble now has an extremal black hole in its interior. On the static branch,
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the action is, as before, the difference of the areas of the seed and remnant black
holes, but as the extremal limit is approached, the horizon radius of the remnant
black hole shrinks only as the root of M, — M¢p, whereas the radius of the seed black
hole (which is not approaching an extremal limit) depends linearly on M, — M¢p,
thus, as we increase M, from M¢p, the action actually starts to drop briefly, before
the effect of the increasing horizon area kicks in causing the usual rising of the
bounce action. This small dip in the action near the critical point is very hard to
see at low P/M,, but for larger ratios becomes more visible. The dip is however

very minor, and the minimum action is well approximated by the value at M¢p.
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Figure 3.5: The exponent B for the dominant tunnelling process with black-hole

monopoles of mass M, acting as nucleation seeds.

From figure we see the dip is most visible at large ratio P/M, however,
perhaps surprisingly, it is also the case that at large P/M the catalytic effect of the
black hole is much reduced. We therefore expect that the addition of a monopole

charge will not particularly assist with vacuum decay.
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3.4 Conclusions

The main aim of this chapter was to demonstrate that black holes can massively
speed up the rate of decay of a metastable vacuum by acting as nucleation sites.
We have shown that is the case, subject to the limitations of the analysis, some of
which we shall address in the next chapter for the particular example of the Higgs
potential.

We have simplified the analysis by employing a thin-wall approximation. In this
limit, we have showed that when the seed mass is above some (calculable) critical
mass, then the seeded nucleation proceeds via a static bubble solution. This gives a
good starting point for an analysis of the thick wall bubble nucleation, which is far
simpler for static than for non-static field configurations and will be discussed for

the particular example of metastable Higgs potential in the next chapter.



Chapter 4

Gravity and the stability of the

Higgs vacuum

The recent discovery of the Higgs boson |71, 72| raises the possibility that, even
within the standard model of particle physics, the present vacuum state of the
universe may not be stable, but only metastable, with another lower energy state
at high expectation values of the Higgs field |18]|73H76]. In general, this would
not conflict with observation because the lifetime of the present vacuum would be
far longer than the age of the universe. Indeed, the possibility that we live in a
metastable state was mooted long before the discovery of the Higgs [77-85].

However, as we have demonstrated in the previous chapter, black holes can catal-
yse vacuum decay, it is therefore important to investigate whether the metastable
Higgs vacuum might be ruled out if the seeded nucleation rates for vacuum decay
are comparatively large. In this chapter, based on [69] and [70], we will address this
issue.

We start by summarizing some of the features of the Higgs potential relevant
to the calculation. As with the phenomenological explorations of the Higgs poten-
tial, we write the potential in terms of an overall magnitude of the Higgs, ¢, and
approximate the potential with an effective coupling A.g,

V(6) = (06" (10.1)

The exact form of A.g is determined by a renormalisation group computation with

71
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the parameters and masses measured at low-energy. Two-loop calculations of the
running coupling [18,/99-101], can be approximated by an expression of the form

gb 2
At & A\ + b (m ¢—) : (4.0.2)

where —0.01 <\, <0, 0.1M, < ¢ < M, and b ~ 107*. The uncertainty on these
parameter ranges is due mostly to experimental uncertainties in the Higgs mass and
the top quark mass, however the possibility of negative A\.g approaching the Planck
scale is quite real. The present-day broken symmetry vacuum may therefore be
a metastable state, but quantum tunnelling in the Higgs potential determined by
the usual Coleman de Luccia expressions is very slow, and the lifetime of the false

vacuum far exceeds the lifetime of the universe.
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Figure 4.1: The Higgs potential at large values of one of the Higgs field components
¢. The parameter values for the blue line are A\, = —0.001, ¢, = 0.5M,. The black
line shows the effect of adding a ¢° term with coefficient \g = 0.34.

The observation of negative A.g of course assumes no corrections from new

physics between the TeV scale and the Planck scale. We might expect quantum
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gravity, or other effects will have to be taken into account. On dimensional grounds,

we can write modifications to the potential of the following form [102-107,

V() = Sha(0)0 + L@’ + a4 DO
—4eff A bsm 66Mp2 SBM;}

(4.0.3)
where (0A)psm includes corrections from BSM physics, and the polynomial terms
represent unknown physics from the Planck scale. If these coefficients are similar in
magnitude, then the small size of Ao at the Planck scale has the consequence that
there is an intermediate range of ¢ where the potential is determined predominantly
by et and Ag.

Quantum tunnelling in a corrected potential has been explored by Branchina et
al. [104,105|. They considered potentials with A, ~ —0.1, where the potential barrier
occurs at ¢ < M,, and they further enhanced the tunnelling rate by taking \¢ =
—2. They claimed a greatly enhanced tunnelling rate, with a lifetime much shorter
than the age of the universe, however, their discussion did not include gravitational

Interactions.

4.1 Seeded tunnelling of the Higgs vacuum in a thin-
wall limit

In a previous chapter, the vacuum decay process has been described in gravitational

terms using the surface tension of the wall, ¢, and the AdS radius of the ‘true’

vacuum, £. In this section we will explore vacuum decay in the Higgs model with high

energy corrections as discussed in the introduction. The key features of the potential

relevant for quantum tunnelling are the barrier height, the separation between the

minima and the energy of the true vacuum (TV). These three parameters can be
encoded as follows,

g = ¢rv /My, e =—V(orv), (= sup V() (4.1.4)

0<¢<ory
Following our previous discussion we shall restrict attention to potentials which
allow thin-wall bubbles. Although we would expect ¢ > ¢ for a thin wall bubble,

numerical solutions show that the wall approximation is reasonably accurate even



4.1. Seeded tunnelling of the Higgs vacuum in a thin-wall limit 74

when ( ~ ¢, therefore we use this lower bound for (. The range of Higgs model
parameters \., ¢, and Ag which allow thin-wall bubbles is set by ( > € > 0, and by
the condition that the true vacuum lies at large ¢. Thin wall bubbles correspond to
rather large values of )¢, as illustrated in table[d.1 Roughly speaking, as A\, becomes
more negative, the values of \¢ required for thin-wall become larger, similarly as
¢, drops, Ag increases. In all cases the pure CDL tunneling action is extremely
large (10°~7), but the suppression of the critical tunneling action is also large, and

increases as A, becomes more negative.

Table 4.1: A selection of parameter values for the modified Higgs potential, including
the AdS radius /, the rescaled surface tension /¢ and the critical mass M for optimal
nucleation seeded by a black hole. These parameters lie along the bottom edge of
the parameter ranges for thin-wall bubbles. The vacuum tunnelling exponent Beopr,

is around 4e+06 in each of these examples.

s o/ M, A6 g (/L, ol M¢c/M,, Be/Bepr
-0.005 1 500 0.00146 3.17e+8  0.00045 3.9 1.2e-6
-0.005 0.5 2e+03  0.00073 1.27e+9 0.00023 1.8 2.9e-7
-0.007 2 1.98e+03  0.0008  9.33e+8 0.00024 1.5 3.2e-7
-0.007 1 7.93e+03 0.0004  3.79¢+9  0.00012 0.8 8.2e-8
-0.007  0.75  1.4le+04 0.0003 6.76e+9  9.1e-05 0.61 4.7e-8
-0.007 0.5 3.17e+04 0.0002 1.51le+10  6e-05 0.39 2e-8
-0.008 1 27e+03  0.00022 1.18e+10 6.9e-05 0.46 2.7e-8
-0.008 3 3e+03  0.00067 1.31e+9 0.00021 1.4 2.4e-7
-0.009 1 85e+03  0.00013 3.43e+10 4.1e-05 0.28 9.4e-9

-0.01 2 63e+03  0.00016 2.55e+10 5.4e-05 0.49 1.7e-8

Following Coleman and De Luccia, we can express the surface tension of the
bubble wall in terms of the potential. In order to extend the result to moderate

values of (/e, we compute the tension using the integral
1
o= / de (2V)Y? ~ kgM,, ¢/?, (4.1.5)
0

where the upper limit of the integral is at V(¢;) = 0. The constant x depends on
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the details of the potential, but since ¢, < gM, and V' < ¢, it is subject to the

constraint £ < v/2. The AdS radius ¢ is related to the vacuum energy density by
(= 3M,e 2 (4.1.6)

The back-reaction parameter g/ is therefore

1 V3 o\ V2
ol = ——ol = —kg <—) : (4.1.7)
o’ T e

Note that ¢ < 1/2 puts an upper bound on g. The CDL tunnelling exponent Bepy,

given in (3.3.560) is

271204 2TrAT2 (g*ME\ [\
Bepr = = Py (2) (1-45%%2 4.1.8
CDL = 963(1 — 452(2)? 2 ( ; ) (e> (1-45°C) (4.18)

The large size of Bgpy, in the parameter range covered by table guarantees a
tunnelling lifetime longer than the age of the universe (for unseeded nucleation).

When the vacuum decay is seeded by a black hole, the most rapid decay process
occurs for a seed mass M, = M¢ given in (3.3.58)),

/2 3/2
1280 16, (gMINT (¢
MC ~ 75(06) = gﬂ'ﬁl ( c E Mp. (419)

The corresponding exponent in the nucleation rate is Bo = 0.5(Mg/M,)?. Some
values for My are shown in table @ If Mc > M,, then the exponent B¢ is
large and the seeded decay rate becomes vanishingly small. On the other hand, if
Mc < M, then even if we have a seed mass M, > M¢, we can still get significant
suppression of the bounce action while remaining well above the Planck mass from
tunneling on the static branch, as we see from figure 3.3, Our strategy therefore
is to explore the decay seeded by a small mass black hole via the static instanton,
which (for convenience) we determine numerically.

A brief consideration of the dependence of the bounce action on M, shows that
we are exploring seeded tunnelling for very light or primordial black holes [117],
with temperatures well above that of the CMB. We must therefore check that the
black hole can seed the false vacuum decay before it disappears through Hawking
radiation. The vacuum decay rate I'p, , contains not only the exponential

of the bounce action, but also a pre-factor, A. According to Callan and Coleman
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[13], this pre-factor is made up of a factor of (B/2m)'/? for each translational zero
mode of the instanton and a determinant factor. In our case, there will be a single
zero mode representing the time translation symmetry, and rather than evaluate

the determinant factor, we use the inverse horizon timescale as a rough estimate

(GM,)™", giving
/B e B
I'p~4/— . 4.1.1

The black hole emits Hawking radiation at a rate depending on fundamental particle

masses and spins. The total decay rate for a subset of the standard model was

evaluated by Page, [118]. If we set I'y = M /M, then
Iy ~3.6x1074G*M?)™! (4.1.11)

The branching ratio of the tunnelling rate to the evaporation rate for uncharged

black holes is therefore

I'p M—% 1/2 —
“Y 44t BB, 4.1.12
T, e e ( )

From this expression we can see roughly how the branching ratio will depend
on M,, even though B is, in principle, a complex function of M,. The static
bubble is the difference in areas of the seed and remnant black holes, which we can
deduce from figure to be roughly linear (there is actually a slightly stronger
dependence on M, however, what is important is that it is not quadratic), whereas
the prefactor is (again, roughly) Mi/ 2; we therefore expect the plot to be strongly
exponentially suppressed at large M, but rising as M, falls to a maximum around
M /M, = O(1), then dropping again below M,,. The actual value of the maximum
will depend on the details of how B depends on M, which requires a full calculation.

The branching ratio is plotted as a function of the seed mass M, for two in-
dicative sets of parameters taken from table in figure in order to illustrate
the dependence on the parameters in the Higgs potential (or correspondingly on &
and /). The branching ratio is shown at fixed ¢, with varying A, and vice versa.
The overall picture is that for lower ¢ and higher ¢ (or more negative A, / higher
¢.) the branching ratio is larger, and is consistently higher than unity over a larger

range. While Hawking evaporation always dominates at large M., the effect of
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Hawking radiation is that the black hole loses mass, hence driving it towards in-
creasing branching ratio. A black hole produced in the early universe, for example,
starts out with a mass well beyond the right-hand side of the plots, but at some
point after evaporation, the vacuum decay rate becomes larger than the Hawking
evaporation rate and the black hole seeds the transition to a new vacuum. This
can occur for seed masses well above the Planck mass, where we have some confi-
dence in the validity of the vacuum decay calculation. The timescales for Hawking
evaporation and vacuum decay will both be less than roughly a million Planck times.

Finally, for the case of a monopole charged black hole, we might expect the
branching ratio to be larger due to their reduced Hawking radiation rate: The
Hawking flux is proportional to A, T't, where A, is the event horizon, and T is the

Hawking temperature

1 4A

T, = 4.1.13
T 8rGM, (1+ A2 ( )
setting A? =1 — P?/M?2. The evaporation rate is now
64A%
Iy~ 3.6 x 10*‘*(@*21\4;3)*1m (4.1.14)

The branching ratio I'p/T'y can now be re-computed using this evaporation rate
and the vacuum decay rates from the previous section. The result is shown in figure

4.0l

4.2 Higher dimensional instantons

The seeded nucleation calculation presented here requires a black hole, and for large
tunneling enhancement, this is expected to be a primordial black hole which is
evaporating and nearing the end of its life. There is of course another situation
in which a small black hole might occur. A possible alternative solution to the
hierarchy problem has been to consider large extra dimensions, [119-122|. In these
models, our universe is presumed to be a “brane” living within higher dimensions
on which standard model physics is confined. The higher dimensional Planck scale
is not hierarchically large, but instead our 4D Planck scale, which is derived via an

integration over these extra dimensions, gains its leverage via the “large” internal
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volume. In such scenarios black holes can be created in particle collisions [123,/124],
leading to considerable interest in the possibility of black holes being produced at
the LHC (for a recent review see [125]). There are no known exact solutions for these
black hole plus brane systems, and instead the black hole is usually considered to
be approximately a higher dimensional Schwarzschild or Myers-Perry [126] solution
(see [127,/128| for reviews on the issues and properties of brane black holes). For the
Randall-Sundrum braneworld models, where the extra dimension is strongly warped,
one could also consider “brane only” solutions, such as the tidal black hole [129].

Calculating the vacuum decay rates for these systems would be challenging, to
say the least, not only because of the lack of a true higher dimensional black hole
solution, but also because an instanton presumably would have to have a different
vacuum only on the brane, and not in the bulk (although the braneworld equivalent
of the CDL instantons were constructed in |[110}/131]). However, some features of our
calculation should be present. The tidal black holes, for example, resemble black-
hole monopoles, but with negative square monopole charge P2. The bubble solutions
for tidal holes are simple generalisations of the ones we have already discussed .

In this section we briefly outline the simple higher dimensional instanton model.
We take a higher dimensional black hole solution with different masses and cos-
mological constant on each side of the wall, and compute how the branching ratio
changes with dimension.

The equations of motion have the same schematic form as

(Af)?

52 =2p2  F
B=0 i =1+ {652

(4.2.15)

but with 6 = 47Go /(D—2) [110,131], and f now the higher dimensional Schwarzschild

potential:

2A7? 167G p M
f=1- (D—-1)(D-2) B (D — 2)Ap_orP-3 (4.2.16)

where G is the higher dimensional Newton constant and Ap_y = 272/ INEEah

Defining ¢, v and « in a similar fashion:

. (D—1)(D-2) o 4607
2AA ’ 1+ 45202

. al=1+
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and Do
1 N AM
by — 67Gp (g) [M_—i—(l—a) .
(D—=2)Ap_> \v 207y
Do (4.2.18)
b — 167G p a AM
T (D-2)Ap2 \y 1o
Then setting R = aR/~, A= a\/v gives the equation of motion
N 2
- 2 2
Aty gkt sz __t (4.2.19)
d)\ RD—S RZ(D—Q)

which is of the same form as (3.1.16) albeit with different exponents of R. We
can use the same procedure as before to find the static solution and the dynamical
bubble which removes the black hole. The static action (which is what is needed for

the branching ratio) is, as before, the difference in horizon areas:

Ap-2 , p_ _
Bp =~ (r?2=rP7?) (4.2.20)

where r4 are determined numerically, and the corresponding tunneling rate is

Bp e Bp
Tp=4/=2¢ (4.2.21)
27 Ty

Meanwhile the Hawking temperature of the higher dimensional black hole is

[126,[127]

D -3
7y = P =3) (4.2.22)
47T7"+

To estimate the decay rate of the black hole, we will assume that the main channel

is due to emission of particles on the brane [132,|133], leading to

647TGD (D — 3)4

Ly ~36x107" 4.2.23
" Ay (D=2) 4223)
hence dimension dependent branching ratio is
r M 550v/Bpe~Br [16aGpMP-21" P~
D 550" /BpeBp = e "D+ (4.2.24)
'y (D —3)4 (D —3)* (D —2)Ap_»
Defining the higher dimensional reduced Planck mass asﬂ
1
Mp—2 = 4.2.25
D 87TGD ( )

!Note that in the literature, see e.g. [127], the non-reduced Planck mass is often used. Due
to the dimension dependence of the Planck mass this will introduce various dimension dependent
renormalisation factors between our expressions and those assumed there. Although these are of

order unity, they do have some impact.
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we can track the branching ratio as a function of M, /Mp and its dependence on
D. To illustrate this dimensional dependence, we chose test-case values of a¢ = 0.01
and ¢ = 0.1, and plotted I'p /Ty in figure [4.4]

The figure shows that as the number of extra dimensions increases, the branching
ratio decreases, however the exact normalisation of the plot will depend on the
confidence of translating modifications of the potential to the new Planck scale and
variables. Given the crudeness of this particular model, we leave this, and possible

refinements of the decay modelling to future work.

4.3 Seeded tunnelling of the Higgs vacuum via thick
bubbles

The main wrinkle in our previous calculations is that the condition for the thin wall
approximation requires that the energy at the potential minimum is smaller than
the potential barrier height, and scanning through parameter space of the corrected
Higgs potential we find that requiring a thin wall is very constraining: the
range of Ag for which this occurs is very small, and occurs for large values of the
parameter \g > 10% — 10°, depending on A,. On the other hand, computing the
branching ratio, , for these models shows that tunnelling does indeed domi-
nate. Thus, while our pseudo-analytic discussion is limited in the sense of parameter
space, it has provided a proof of principle that black holes could potentially seed
vacuum decay.

In order to decide whether this effect is restricted to a niche of parameter space,
or is potentially relevant, a full exploration of instantons outside of the thin wall
approximation is necessary [134].

We will again concentrate on the static branch for the tunnelling instantons, as
we expect that the static bounce solutions will dominate the vacuum decay rate
for M, > M. Moreover, as we already saw, in the static regime bounce action
calculation simplifies significantly and the general expression reduce to the
‘area difference’. Even if these solutions do not have the lowest action, this would

only mean the static instantons constructed would give an upper bound on the
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seeded nucleation rate, and our main point about enhancement of the decay rate is
made a fortiori.

To construct the instanton, we require an SO(3) invariant geometry with a
Schwarzschild-like mass term; our geometry and scalar field therefore depends on a
single radial coordinate r. It proves numerically convenient to take the area gauge,
and to parametrise the static, spherically symmetric Euclidean metric as:

2

dr”

ds® = f(r)e®dr? + o

+ 72(d6? + sin® Odp?), (4.3.26)

where we write f in the form

fo1o o) (4.3.27)

r

The equations of motion for the bounce solution are therefore

fo"+ f'¢' + %fgb’ + 8 f¢ —V, =0, (4.3.28)
W = 4mr? (%qu’? + V) , (4.3.29)
§ = 4rGr¢”. (4.3.30)

Note that by using (4.3.30) in (4.3.28)), we can decouple the equations for p and ¢,

solve, then infer ¢ by integration of (4.3.30)).
The black hole horizon is defined as usual by the condition f(r,) = 0. It will

be convenient to discuss the solutions in terms of a remnant mass parameter y_ =
w(ry), rather the actual remnant black hole mass, as the vicinity of the horizon we
will typically not be in the true AdS vacuum (our Higgs may not have fallen to its
minimum) nor will our horizon radius be expressible as a simple ratio of ;1. Instead,
rp, = 2Gu_ is now a simple ratio of p_, and the expressions in our calculations are
much clearer. The seed mass M, on the other hand is straightforwardly defined
as the mass at spatial infinity » — oo, where the field is in the false vacuum.
Finally, since we integrate out from the event horizon, it proves convenient to fix
the time co-ordinate gauge there, rather than at asymptotic infinity. This means the
t—coordinate is no longer the time for an asymptotic observer, however, the action

we compute is gauge invariant, hence this is irrelevant.
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The boundary conditions are therefore

w(r) = p_, d(rp) =0, at r =1y, (4.3.31)

w(r) — My, ¢(r) — 0, as r — 0. (4.3.32)

If we expand Eqs. (4.3.2814.3.30)) about the horizon, we obtain a relation between
¢'(r,) and ¢(ry,) which fixes an additional boundary condition,

) == 22‘22%(“» -

This is analogous to the condition ¢'(0) = 0 in the O(4) case. The boundary

value problem is overdetermined, which in practice means that the remnant mass
parameter p_ is fixed by the value of the seed mass M,. The solutions can be
obtained by a shooting method, integrating from the horizon and trying different
initial values of ¢(r,). The integration leads to the value of the seed mass M, for
a given remnant mass parameter. From this we can infer the remnant mass for a
given seed mass.

As we discussed above an expression for the tunnelling exponent B reduced to
the simple ‘area difference’ formula and also can be expressed in terms of the black
hole mass parameters

AL AL ME— 2

For a given scalar field potential V', the numerical relationship between M, and p_
implies that the vacuum decay rate depends on the seed mass M, and the potential.
The resulting values of the action for a selection of Higgs models is shown in figure
Note that the semi-classical bubble nucleation argument only applies when the
action B > 1.

Computing the branching ratio now with these “thick wall” solutions gives figure
Although black holes produced in the early universe start out with relatively
high masses, their temperature is nonetheless above that of the microwave back-
ground, and they evaporate down into the range plotted in figure [£.6] At this point,
the mass hits a range in which vacuum decay is more probable, i.e. the tunneling
half life becomes smaller than the (instantaneous) Hawking lifetime of the black
hole. Note that this range is well above the Planck mass, where we have some con-

fidence in the validity of the vacuum decay calculation. Given that this evaporation
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timescale is ~ 1072 for a 10° M, mass black hole, it is clear that once a primordial
black hole nears the end of its life cycle, it will seed vacuum decay in these models.
Hence with these Higgs potentials, the presence of any primordial black holes will
eventually trigger a catastrophic phase transition from our standard model vacuum

thus ruling out potentials with parameters in these ranges.

4.4 Conclusions

We have shown that the vacuum decay seeded by black holes greatly exceeds the
Hawking evaporation rate for particle physics scale bubbles. This clearly has rele-
vance for the Higgs potential which we consider here. A primordial black hole losing
mass by the Hawking process would decay down to a mass around 10-100 times
the Planck mass and then seed a vacuum transition. The fact that this has not
happened therefore means that either the Higgs parameters are not the the relevant
range or there are no primordial black holes in the observable universe.

An overall conclusion is that the lifetime of our universe in a metastable Higgs
phase is crucially dependent on the absence of any nucleation seeds, and a primordial
black hole could drastically reduce the time it takes to decay onto a different ‘stan-
dard model’. Instability of the standard model is therefore more problematic than
was hitherto supposed. Further exploration of the parameter space, using a wider
class of bubble nucleation scenarios, should give us the range of Higgs parameters

which lead to a long-lived standard model in the presence of black holes.
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Figure 4.2: The branching ratio of the false vacuum nucleation rate to the Hawking
evaporation rate as a function of the seed mass for a selection of Higgs models from
table The first plot shows the branching ratio for ¢, = M, with the labelled
values of \,, and the second for A, = —0.007 for the labelled values of ¢,. The black
hole starts out with a mass beyond the right-hand side of the plot and the mass

decreases by Hawking evaporation. At some point, the vacuum decay rate becomes

M. /M,

larger than the Hawking evaporation rate.
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Figure 4.3: The branching ratio of the false vacuum nucleation rate to the Hawking

evaporation rate for a monopole charged black hole with P = 5M,, shown as a

function of the seed mass for a selection of Higgs models from table [{.1] The

plot for the uncharged black hole (P = 0) is repeated for comparison. As before,

A = —0.007 for the labelled values of ¢..
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Figure 4.4: The dependence of the branching ratio on the dimensionality of space-
time, D. Here, the D—dimensional Planck mass is fixed, i.e. 87Gp always has the

same value.
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Figure 4.5: The action for a bounce solution. Each plot corresponds to a different
value of g in the Higgs potential (4.0.3)), with A\, = —0.01 and b = 1.0 x 10~*. The
largest value of \g is within the range of the thin wall approximation, and the thin

wall result is shown for comparison.
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Figure 4.6: The branching ratio of the false vacuum nucleation rate to the Hawking
evaporation rate as a function of the seed mass for a selection of Higgs models. Each

plot corresponds a different value of A\g in (4.0.3)), with A\, = —0.01.



Chapter 5

Comments and future directions

In the present thesis we have considered two quite distinctive examples of interplay
between gravity and field theory. We would like to conclude by several comments
on the relation between these examples and possible directions for future work.

The first example was from a modern branch of theoretical physics called holog-
raphy, for which gravitational calculations play an essential role. It is even probably
fair to say that holography is responsible for a rebirth of interest in the exploration of
different solutions of gravitational theories, especially in the context of supergravity
in (asymptotically) Anti de Sitter spacetime. Exploring the space of such solutions,
and relations between them, is especially important if we would like to address
questions about applications of holography to condensed matter, or more generally,
non-relativistic field theories. We have provided an example of a top-down approach
to this problem, and the results, while not entirely successful, look promising. The
spontaneous breaking of Lorentz symmetry we have found for the Type IIB system,
along with the fact that such supergravity systems contain non-relativistic solutions,
gives us hope that we might find a proper sector of supergravity theories where such
solutions and corresponding field theories will not suffer from instabilities.

For the second example, the physics of false vacuum decay, it was known for a
long time that gravity plays a central role, especially if cosmological implications
are discussed. However, by pushing an analogy with condensed matter theory phase
transitions we were able to appreciate the role of impurities, which in the gravita-

tional context are most naturally mimicked by black holes. We have performed a

87
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general analysis of the fate of a metastable vacuum in the presence of black holes
along with a discussion about the application of our calculations to the problem of
stability of the Higgs potential. The fact that we have an example of a metastable
potential within the Standard Model (and we are living in a false vacuum state)
makes this question especially interesting. Moreover, as we have shown, taking into
account impurities could in principle reduce the lifetime of such false vacua signif-
icantly, hence this problem surely deserves further investigation. It is important
to scan through the space of parameters of the effective Higgs potential more care-
fully [134], study the effects of possible new physics on the stability of the potential
and also explore other sources of impurities, for example, lumps of matter or stars.
Finally, as we have mentioned before, further investigation of the application of
tunnelling catalysed by black holes in higher dimensional braneworld-type models
is also very interesting.

There is also a direction of further investigation, which unifies these two examples
in some way. In the context of holography the main focus has recently moved towards
quantum information theory aspects of the correspondence, for example calculations
of entanglement entropy for different regions on the boundary through the Ryu-
Takayanagi prescription [135]. Such calculations could provide useful insights for
holographic RG flow solutions in the bulk [136], hence it will be interesting to
investigate our constructed solutions from the entanglement entropy perspective.
A holographic description of the decay of metastable vacuum has been addressed
before [137H139], however all these considerations are far from general and it would
be interesting to investigate this further. For example, black holes, play a very
important role in holography and, as we highlighted, were not previously included
in the false vacuum decay picture. Black holes typically change their mass during
the decay process, hence we have different temperatures inside and outside of the
bubble, and from a general perspective one could imagine that on the boundary, this
corresponds to some non-equilibrium process in a dual field theory. The holographic
description of such a process could be quite complicated, however we can address
this problem from an entanglement entropy on the boundary point of view and use

the holographic prescription for calculation of changes in entanglement entropy on
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a boundary due to the bubbles of true vacuum in the bulk.
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