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Abstract

The Argonne Tandem Linear Accelerator System (AT-
LAS) at Argonne National Laboratory is a superconducting
ion linac capable of delivering beams ranging over all pos-
sible elements, from hydrogen to uranium, and at a wide
range of beam currents and energies. The ATLAS scientific
program is focused primarily on basic nuclear physics. In
this contribution, we present the capabilities of ATLAS for
high-rate radiation-damage studies for a variety of applica-
tions below the threshold of producing radioactivity. To
date ATLAS has been used for such studies relevant to ad-
vanced nuclear reactors. These include studies of radiation
damage in structural materials and damage induced by fis-
sion products in advanced fuel candidates. Such studies can
be expanded to include in-situ measurements of response
to radiation damage in other materials used at high power
densities such as for targets at spallation neutron sources
and neutrino factories. ATLAS is in the process of a multi-
user upgrade which adds the capability of simultaneously
accelerating two ion beams and delivering them to differ-
ent target stations. This enables ATLAS to deliver beams
for nuclear physics research simultaneously with materials
irradiation studies.

INTRODUCTION
ATLAS Capabilities

ATLAS can provide beams ranging across the periodic
table, from hydrogen to uranium [1]. Figure 1 demonstrates
the versatility of ATLAS, showing 38 unique ion beam spe-
cies delivered in 2018. Three acceleration stages provide
energies ranging from a few hundred keV per nucleon up
to 20 MeV per nucleon, depending on the specific ion and
beamline [2]. The intensities of these beams range from as
low as a few particles per second up to 10 microamps.

Previous irradiation damage studies in nuclear reactor
fuel and structural materials at ATLAS have demonstrated
the ability to utilize the facility for this type of studies [3].
Those studies paved the way for the recent developments;
ATLAS recently collaborated with Argonne’s Nuclear Sci-
ence and Engineering and Chemical and Fuel Cycle Tech-
nologies divisions to commission the ATLAS Material Ir-
radiation Station (AMIS) [4,5]. AMIS is a new beamline
and experimental station located downstream of the first
stage of acceleration and 100 degrees off-axis from the
zero-degree beamline (Fig. 2). This new beamline is dedi-
cated solely to ion beam irradiation studies of materials. In
the next section of this paper, we will discuss nuclear fuel
and structural materials studies currently being performed

* This material is based upon work supported by the U.S. Department of
Energy, Oftfice of Science, Office of Nuclear Physics, under contract
number DE-AC02-06CH11357.
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Figure 1: 2018 ATLAS beam species.
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Figure 2: The new AMIS beamline and ATLAS zero-
degree line.

at AMIS by Argonne’s Nuclear Science and Engineering
and Chemical and Fuel Cycle Technologies division.

In addition to AMIS, ATLAS has available beamlines af-
ter the second and third stages of acceleration which could
be used for a wide range of ion beam irradiation applica-
tions. We will also discuss in the next section the feasibility
of using available ATLAS ion species and energies to per-
form radiation damage studies on candidate materials for
applications in high-power targets.

RADIATION DAMAGE STUDIES

Nuclear Fuel and Structural Materials

Nuclear fuel experiences a uniquely harsh environment
during its life in a reactor. Maintaining its structure under
transmutation as well as lattice damage from neutrons and
fission fragments, is key to fuel lifetime for many reactor
types. However, determining the fuel's response to the
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many different mechanisms is typically only done by in-
reactor testing. While this type of test is ultimately neces-
sary to confirm fuel performance, in-reactor testing is
lengthy, expensive, and involves many testing conditions
and combined effects. Heavy ion irradiation of nuclear fuel
can be used as a screening experiment to better utilize in-
reactor tests, as well as a method to isolate and understand
specific phenomena, the results of which can be fed into
fuel performance modelling. The AMIS beamline is used
to examine fission gas bubble evolution, growth of interac-
tion layers between fuel and cladding or surrounding ma-
trix materials (in dispersion fuel), and ballistic collisions
cascade damage in structural materials. A simplified repre-
sentation of these phenomena is shown in Figure 3.
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Figure 3: A simplified diagram of some of the modifica-
tions to fuel and nearby structural material due to fission
events that are isolated and studied by ATLAS irradiations.
Mixing of interfaces, the formation of interstitial and va-
cancy defects, as well as the accumulation of gaseous fis-
sion products into bubbles are represented.

In the bulk of the fuel, a gas atom produced by fission
travels a short distance and then stays trapped in the lattice.
As the density of gas in the fuel increases, it tends to form
bubbles at various lattice sites. The geometric swelling and
decrease in thermal conductivity of the fuel from fission
gas bubble growth is detrimental to fuel lifetime. There-
fore, it is necessary to understand their temperature, mor-
phology, and gas density dependence. Historically, the sim-
ulation of fission gas bubble growth through the implanta-
tion of 84MeV Xe has been studied [6-9] at ATLAS. Ex-
periments are planned to coordinate reactor and ion irradi-
ations of metallic and ceramic fuels to directly compare fis-
sion gas bubble growth, enabling the much higher gas den-
sities that AMIS can achieve to be used to guide reactor
irradiations.

In dispersion fuel systems, interaction occurs between
the fuel particles and the surrounding matrix material,
which accelerates mixing from fission fragments. The for-
mation of an interaction layer in the fuel system, if exten-
sive, typically leads to adverse effects [10]. Fully decou-
pling the temperature and dose effects on interaction layer
growth is necessary for modeling but is difficult for in-re-
actor testing. Heavy ion irradiation studies have
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successfully probed this phenomenon [11] and are actively
planned for various fuel systems.

The range of heavy ions at these energies, which allow
for interaction layer studies, also provides an improved ge-
ometry for studying coatings and structural materials. The
response of structural materials to knock-on damage
caused by neutrons is similarly difficult due to the activa-
tion of the material by neutron irradiation on top of the
challenges of reactor irradiations. Lower energy ion irradi-
ations have been frequently used to better understand the
response of materials to damage cascades. However, their
range and, therefore, volume of material affected is small,
limiting the types of analysis [12]. AMIS can provide a
multi-micron deep irradiated region free from surface ef-
fects and implanted region in typical structural materials to
study the stability of thicker coatings and damage evolu-
tion in nuclear structural materials [13, 14].

High Power Targets

Targets capable of handling high-power beams are cru-
cial for many fields of study, including the production of
neutrinos and spallation neutrons. Over time changes to the
lattice of the target due to radiation damage will change its
material properties, eventually leading to its failure. The
target survivability and lifetime have been the limiting fac-
tors to the beam power that can be delivered on target ra-
ther than the accelerator itself [15]. R&D into novel high-
power targets is essential for existing and future multi-
megawatt facilities to achieve maximum beam power on
targets [15,16].

Displacement per atom (DPA) is the commonly used unit
to measure radiation damage to targets and beam intercept-
ing devices, as well as a measure to understand the effects
of this damage on a micro- and macroscopic scale [17].
Although high-power accelerator target facilities often use
intense and energetic beams of protons; similar radiation
damage as measured in DPA’s can be achieved at a lower
energy facility like ATLAS, using higher mass beams.
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Figure 4: Total target displacements from a 5 MeV/u W
beam on a 25 pum thick W foil from SRIM.

Tungsten (W) and W alloys are popular materials for
high-power targets because of their high density and melt-
ing point [15]. ATLAS can deliver a 5 MeV/u beam of W
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onto a thin W foil located after the third stage of accelera-
tion. Self-ion irradiation prevents the accumulation of im-
purities which can affect the properties of interest. The
Monte Carlo simulation code SRIM [18] predicts ~400000
displacements of W atoms per W ion stopping in 25 mi-
crons of W foil (Fig.4), from this one could then calculate
the number of DPA’s. In-situ measurements, such as elec-
trical conductivity vs. DPA’s could then be made on the W
foil while being irradiated.

MULTI-USER UPGRADE

ATLAS is the only DOE low-energy stable beam nuclear
physics user facility. As such, there is enormous competi-
tion for beamtime and an increasing demand for more ex-
tended experiments (>1 week). ATLAS is in the process of
being upgraded for multi-user operations to meet this de-
mand and broaden the potential user community.

The low-energy beam transport will be modified to sup-
port the simultaneous injection and acceleration of two
beams with very close mass-to-charge ratios: one stable
from an Electron Cyclotron Resonance (ECR) ion source
and one radioactive from CARIBU electron beam ion
source (EBIS) charge breeder CARIBU-EBIS. CARIBU
stands for “Californium Rare Isotope Beam Upgrade”. The
planned beam composition is 3% for the radioactive beam,
96% for the stable beam, and 1% required for switching
[4].

The stable beam will soon be able to be extracted at the
AMIS beamline via a Wein filter magnet (Fig 2) for pulsed
switching between CARIBU-EBIS and ECR beams. This
pulsed beam extraction after PII would allow for heavy-ion
beams of 1-1.5 MeV/u to be delivered to the AMIS beam
line for irradiation studies while CARIBU-EBIS beams are
simultaneously transported into the following stages of ac-
celeration and delivered to downstream end stations for nu-
clear structure studies.

A second switch yard is being designed to allow for
beam extraction after the second stage of acceleration, with
the stable portion of the beam being able to be delivered to
an irradiation station at 5-7 MeV/u and the radioactive por-
tion of the beam moving along the beamline to the third
stage of acceleration.

CONCLUSION

In conclusion, the ATLAS particle accelerator at Ar-
gonne National Laboratory provides an ideal platform for
radiation damage studies due to its wide range of capabili-
ties, including its ability to produce a variety of ion species
at different energies. A successful study of radiation dam-
age to nuclear fuels is ongoing at ATLAS. Additionally, the
heavy ion beams available at ATLAS could enable re-
searchers to simulate radiation damage that materials and
components would receive from highly energetic beams of
protons without producing radioactivity. Radiation damage
studies could take place now after each of three stages of
acceleration. In addition, once the multi-user upgrade is
completed, additional beam hours will be available and ra-
diation damage studies would make an excellent candidate
to conduct in parallel with the nuclear physics program.
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