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Abstract

In this work, we formalize the concept of naturalness in supersymmetric effective
field theories, as well as introduce novel methods for performing statistical analyses
in the string landscape. We revisit the various measures of practical naturalness
for models of weak-scale supersymmetry (SUSY) including: 1. electroweak (EW)
naturalness; 2. naturalness via sensitivity to high-scale (HS) parameters [Ellis-
Enquist-Nanopoulos-Zwirner /Barbieri-Giudice (EENZ/BG)]; 3. sensitivity of
Higgs soft terms due to high-scale radiative corrections; and 4. stringy naturalness
(SN) from the landscape. We debut a new numerical routine for calculating these
measures from any SUSY Les Houches Accord file. A vast array of (metastable)
vacuum solutions arise from string compactifications, each leading to different
4-d laws of physics. The space of these solutions, known as the string landscape,
allows for an environmental solution to the cosmological constant problem. We
argue that the landscape favors natural softly broken supersymmetric (SSB)
models over particle physics models containing quadratic divergences, such as the
Standard Model or unnatural SSB models by presenting a computable measure.
An anthropic selection of the weak scale to within a factor of a few of our measured
value — in order to produce complex nuclei as we know them (atomic principle)
— provides statistical predictions for Higgs and sparticle masses in accord with
LHC measurements. The predicted Higgs and superparticle spectra might be
testable at HL-LHC or ILC via higgsino pair production but is certainly testable

at higher energy hadron colliders with /s ~ 30-100 TeV.
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Chapter 1

Particle physics and the string landscape

Modern physics can be mainly classified into two classes of theories. On one
side, we are able to describe phenomena occurring at a small scale to an extreme
precision — this is the essence of quantum field theory (QFT). On the other side, we
can accurately describe phenomena occurring at large scales via Einstein’s general
relativity (GR). As physicists, we simultaneously seek a method to unify these
concepts in addition to expanding our current understanding of these individual
fields of research, as our current knowledge of each possesses certain gaps that
must be remedied. At its core, physical processes can be described via specific
interactions between matter and energy, mediated by the four fundamental forces
at work within the universe. From weakest to strongest, these interaction forces
are gravity (governing paths of motion through curved space and time), the weak
force (governing radioactive beta decay of matter), the electromagnetic force
(governing interactions of electrically charged particles), and the strong force
(binding quarks together and stabilizing nuclei of atoms).

In this introduction, we conduct a brief literature reeview and briefly outline
the details and issues underlying the Standard Model of particle physics, extensions
to this Standard Model in supersymmetry to rectify these issues, and how gravity
is incorporated into the mix with superstring theory on the string landscape.
Then, with this background in place, we discuss concepts of naturalness as a

guiding principle to new, undiscovered physics at the Large Hadron Collider



(LHC) and beyond. We will address how naturalness measures have typically
played a role in the literature along with our new developments towards producing
reliable numerical software to evaluate these measures, along with a new proposed

measure for stringy naturalness and some preliminary results.

1.1 The Standard Model

The most experimentally verified quantum field theory is known as the Standard
Model (SM) of particle physics, which incorporates three of these four forces
— electromagnetism, the weak force, and the strong force. Algebraically, the
SM is a non-Abelian Yang-Mills gauge theory and is described by the group
SU(3) x SU(2) x U(1), leading to the important particle physics lesson that
dynamics of particles and interactions are described by symmetries [3]. Each of
these forces has a corresponding “quantized” form in the SM, corresponding to a
gauge boson, or integer-spin particle, that effectively communicates these forces
between messengers and recipients of that interaction “message”. The Standard
Model also describes three generations of the fundamental matter fermions, or
half-integer-spin particles, that constitutes the matter that then forms structure
within the universe. Lastly, the SM also describes the spin-0 scalar boson, the
Higgs boson, that plays a vital role in generating the fermion masses.

This mass generation is achieved by the spontaneous breakdown of the
SU(2) x U(1) subgroup to the electromagnetic gauge group U(1)ey, — this break-

down is termed spontaneous electroweak symmetry breaking (EWSB). Briefly, this



breakdown is achieved by the spin-0 doublet ¢, containing the Higgs of the SM,
obtaining a non-zero vacuum expectation value (VEV). This VEV is then invari-
ant under specific combinations of the generators for the SU(2) and U(1) gauge
groups, generating a distinct U(1)ey, gauge group. Without this special breakdown,
the matter fermions would fail to obtain masses due to gauge invariance under
the electroweak SU(2) x U(1) group, but with this breakdown, masses for these
fermions are generated through Yukawa-type interactions between quarks and the
¢ field’s VEV.

Despite the tremendous success of this model, there are still features of our
universe that fail to be satisfactorily explained by the SM alone. Some of the

biggest issues herein are:

e A quantum description of the fourth fundamental force, gravity, is not

present.

e In addition to failing to incorporate gravity, the Standard Model fails to
describe the relative strengths of the fundamental forces, leading to the
gauge hierarchy problem (GHP) [4, 5]. In particular, with the SM alone, the
Higgs mass is expected to be significantly more massive than its measured
value of my, ~ 125 GeV. This value seems to only be attainable within the
SM given an extreme degree of finetuning of parameters due to quadratically
divergent contributions to the Higgs mass from scalar boson, gauge vector
boson, and fermion loops, when these interactions are described via Feynman

diagrams.



e A SM dark matter and dark energy candidate is missing from the SM, which
is crucial, as dark matter and energy is predicted to constitute ~ 85% of the
matter and energy content of the universe in order to describe its observed

expanding nature.

Supersymmetry (SUSY) offers an elegant solution to many of these issues.
Many supersymmetric constructions exist in the literature, with varying degrees
of complexity, but the simplest and potentially most phenomenologically viable
version of SUSY is present in the Minimal Supersymmetric Standard Model

(MSSM) [3].

1.2 Supersymmetry

1.2.1 A brief introduction to SUSY

SUSY is an extension of the Standard Model that posits a symmetry between
fermions (spin-half-integer particles) and bosons (spin-integer particles), the two
fundamental classes of particles. In the Standard Model, fermions (e.g., quarks
and leptons), are the constituents of matter, while bosons are the carriers of
fundamental forces, as mentioned before. SUSY suggests that for every fermion,
there is a bosonic superpartner, and for every boson, a corresponding fermionic
superpartner.

In unbroken supersymmetry, it is predicted that these supersymmetric particles
(sparticles) will have similar masses to their “twin” non-supersymmetric coun-

terpart. However, we have not yet observed these superpartners experimentally,



suggesting the idea that if supersymmetry exists, it must be broken at some high
scale, leading to a mechanism that generates masses at a scale much larger than
the Standard Model slew of particles. The concept of a “broken” symmetry is fine,
as we understand that the breaking of the electroweak symmetry SU(2) x U(1)
down to the electromagnetic gauge group serves a vital role in generating fermion
masses. So, even with this requirement of broken supersymmetry (which will
be expanded upon shortly), SUSY offers a compelling framework for addressing
several theoretical challenges faced by the Standard Model, some of which are

given in the preceding section.

1.2.2 Motivation for SUSY

One of the primary motivations behind SUSY is the gauge hierarchy problem as
mentioned in the previous section, concerning the stability of the Higgs boson
mass against large, quadratically divergent radiative corrections. In the Standard
Model, we saw that these corrections “should” drive the Higgs mass to extremely
large values, unless an extreme degree of fine-tuning is present in the theory to
maintain the observed value. Supersymmetry helps mitigate this issue through
the introduction of superpartners that offer terms in the loop-corrected theory
that cancel against these large corrections, stabilizing the Higgs mass. Once
these quadratic divergences cancel, the only remaining divergences are merely
logarithmic.

Another very compelling motivation is the concept of gauge unification, or

unification of (three of) the fundamental forces. Such a unification would indicate



a high-energy origin of these forces as a singular concept, instead of requiring
three separate constructions. In particular, the coupling constants of the strong,
weak, and electromagnetic forces do not naturally unify at high energies within the
Standard Model. However, when we incorporate SUSY and perform a Quantum
Field Theory technique called renormalization to reparameterize the theory in
such a way that naively divergent integrals can be shown to not diverge, we
introduce a new parameter called the renormalization scale that carries the
information of this reparameterization through the theory. In doing so, other
parameters of the theory (such as gauge couplings) vary with the renormalization
scale, producing a set of differential equations called the renormalization group
equations (RGEs), stemming from the concept that physical observables should
not depend on this mathematical artifact of the renormalization scale. These
RGEs evolve the coupling constants, for example, with energy in a way that
suggests they could converge or unify at a common high-energy scale (typically of
the order Mg ~ 2 x 10'® GeV), hinting at a grand unified theory (GUT).
Furthermore, SUSY provides us a natural candidate for dark matter through
the lightest supersymmetric particle (LSP). This is often assumed to be the SUSY
particle termed the neutralino, which is generally stable under certain conditions
and could constitute the dark matter we expect to make up a significant portion
of the universe’s mass-energy content. If R-parity is conserved, then this LSP is

stable and could account for the dark matter observed.



1.2.3 The supersymmetry algebra

Mathematically, early constructions with the Wess-Zumino model[3] demonstrated
the possibility of constructing a relativistic quantum field theory that is invariant
under supersymmetric transformations. At its core, supersymmetry contains
the SUSY algebra, which extends the standard Poincaré algebra known through
relativity to be required for spacetime symmetries. This new SUSY algebra
introduces spinorial generators (charges) @, Q that serve to transform fermions
into bosons and vice versa. These generators must satisfy certain anti-commutation
relations|[3]:

{Qa, Qo} = 2(7") 0 Pus
{Qaa Qb} - _2(7uc)abp,u7
{Qaa Qb} = Q(C_lvu)abp;m

where P, is the standard 4-vector momentum. Through these relations, the SUSY
generators close on the Poincaré algebra, such that supersymmetry is effectively a

spacetime symmetry.

1.2.4 SUSY QFT and superfield formalism

In constructing a relativistic quantum field theory (QFT) that is invariant under
SUSY transformations, we must extend the field content of the Standard Model to
include superfields. Superfields are representations of the SUSY algebra combining

both fermionic and bosonic degrees of freedom. As a simple example, consider the



chiral superfield ® expressed in terms of a fermionic component field v, a scalar
field ¢, and an auxiliary field F' (introduced to balance the degrees of freedom and
ensure off-shell SUSY invariance). These fields transform into each other under
some SUSY transformation. To combine these into a superfield, we introduce a
Majorana spinor 6 with four components who are Grassmann numbers, satisfying

the relation

{6,605} = 0.

A general superfield is then expressed as (generally complex)

O(x,0) =¢ — ivV20y51) — % (6v50) M + %(0_6’)N + %(9_75%0)1/“ "
, 1.1
+ i (650) [é <)\ + %ﬁwﬂ — i (6+56)° lD - %ng] :

This expansion is in terms of the sixteen component fields M, N, V# X\, and D.

The action S for a SUSY theory is then constructed to be invariant under
SUSY transformations, requiring careful consideration of the interactions between
component fields within the superfields. In the Minimal Supersymmetric Standard
Model (MSSM) to be introduced shortly, the Lagrangian contains terms such
as kinetic terms, Yukawa interactions, and potential terms. The key is that the
entire action S respects the supersymmetry, while the Lagrangian transforms

under this symmetry as a total derivative.



1.2.5 Soft SUSY breaking

While SUSY does elegantly address several theoretical issues, since we have not
observed superpartner masses with the same masses as their SM counterparts,
we must be consistent with this experimental evidence of the observed particle
spectrum and realize that SUSY is a broken symmetry. However, we do not want
to break SUSY in such a way that the cancellations of quadratic divergences
mentioned earlier are lost (termed hard SUSY breaking). Soft SUSY breaking
introduces explicit SUSY-breaking terms into the Lagrangian, which then ensures
that SUSY breaking occurs at a “low” energy scale without reintroducing the
GHP.

Soft SUSY-breaking terms typically include mass terms for the superpartners
(to generate their experimentally-expected large masses, relative to their SM
counterparts), trilinear scalar couplings, and bilinear scalar couplings [6]. These
terms will break SUSY while maintaining the desirable features of SUSY, such as

the stabilization of the Higgs mass and the unification of gauge coupling constants.

1.2.6 The Minimal Supersymmetric Standard Model (MSSM)

Among the various possible SUSY theories, the MSSM stands out due to its
parsimony and its potential for phenomenological viability. The MSSM extends
the SM by introducing the minimal set of new particles required to implement
supersymmetry. This includes superpartners for each Standard Model Particle,
as well as additional Higgs bosons to accommodate anomaly cancellation. The

MSSM is built on the assumption of N' = 1 SUSY, meaning there is a single



SUSY generator. This is the simplest form of supersymmetry and implies there is
one superpartner for each SM particle.

In N =1 SUSY, the SUSY algebra includes a single set of SUSY generators
Q and Q, as mentioned above, serving to transform fermions into bosons and
vice versa. Higher A/ SUSY does not allow chiral matter as required in the
Standard Model. The presence of a single SUSY charge simplifies our theoretical
framework, while still addressing the key issues underlying the SM we want
to resolve. This minimal approach also makes the MSSM more accessible and
testable in phenomenological studies and collider experiments. Additionally, the
MSSM predicts the lightest Higgs boson (which coincides with the experimentally
found Higgs boson) mass to lie within a narrow range that explicitly contains the
measured value of 125 GeV.

The MSSM extends the SM by introducing superpartners for each of the

existing particles, as suggested. Specifically:

e Quarks and leptons: Each quark and lepton has a scalar superpartner

known as a squark and a slepton, respectively.

e Gauge bosons: Each gauge boson has a fermionic superpartner known
as a gaugino. For example, the gluon’s superpartner is the gluino, the W
and B bosons’ superpartners are the winos and bino, and the photon’s

superpartner is the photino.

e Higgs bosons: The Higgs sector is expanded to include two Higgs doublets,

introducing five physical Higgs bosons. Out of these five, two are CP-
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even, one is CP-odd, and two are electrically charged Higgs bosons. Their

fermionic superpartners are then called higgsinos.

The MSSM'’s action is constructed to be invariant under N = 1 SUSY trans-

formations. The terms in the Lagrangian include:

e Kinetic terms: This ensures proper dynamics for all fields and generates

gauge interactions.

e Superpotential: This is a function of the chiral superfields that dictates
the interactions between the fields. It includes Yukawa interactions similar to
those in the Standard Model, but extended to include interactions between

Higgs fields and their superpartners.

e Soft SUSY breaking terms: These terms explicitly break SUSY at low
energies without reintroducing the hierarchy problem. Included here are
mass terms for the scalar and gaugino sparticles, trilinear scalar couplings

(also called A-terms), and bilinear scalar couplings (also called B-terms).

Despite its theoretical appeal, the MSSM’s predictions must be tested experi-
mentally. The search for superpartners is a major focus of experiments at particle
colliders such as the Large Hadron Collider (LHC), a proton-proton collider at
CERN which operates at /s = 13.6 TeV. To date, no direct experimental evidence
of superpartners has been found, leading to constraints on the parameter space
of the MSSM. However, some experiments have shown a few-o deviations from

the expectations of the SM, indicating that SUSY or some other extension of the
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SM may be required. These ongoing searches are crucial for either validating the
MSSM or guiding physicists towards alternative theories. In the following chapters,
we will delve deeper into the structure, particle content, and phenomenological
implications of the MSSM, highlighting its role as a cornerstone in the quest for a
more comprehensive understanding of fundamental physics. Next, we will intro-
duce some specific, common realizations of the MSSM in the literature through
the CMSSM and NUHM: models, where ¢ = 1, 2, 3,4, along with the concept of
the string landscape to implement gravity into the theory, and how some universes
within a broader “multiverse”, or landscape of universes, could support the idea
of the MSSM emerging from this landscape. In later chapters, we will present
our new results that compare finetuning measures within these models and more,
both within the context of our universe and within multiple possible universes in a
broader “landscape” of universes that may lead to large-scale structure formation,
the capability of chemistry to exist, and the possibility of observers within these
universes. Many of our results for traditional naturalness measures are presented
as a numerical refinement of older calculations that used assumptions leading to
inaccuracies in the results. Some of the most common MSSM models used in the

literature for phenomenological analyses are introduced briefly now.

1.2.7 Minimal supergravity model (mSUGRA) and the Constrained
MSSM (CMSSM)
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is a specific

version of the Minimal Supersymmetric Standard Model (MSSM), characterized
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by its simplicity and predictive power. It assumes:

1. Universality of SSB parameters: At the Grand Unification Theory
(GUT) scale ~ 2-10'® GeV where the SU(2) and U(1) gauge couplings unify
under renormalization group evolution, the soft SUSY-breaking parameters

are taken to be universal, meaning [7]:

e A common scalar mass (my);
e A common gaugino mass (m12);

e A common trilinear coupling A,.

2. Radiative electroweak symmetry breaking: The Higgs sector parame-
ters are fixed by the requirement of electroweak symmetry breaking driven
by radiative corrections. In the CMSSM, this may come at the expense of
extreme finetuning amongst parameters, as we will delve into later in this
work. For example, the p parameter of the MSSM, or the Higgsino mass
parameter, may be tuned such that the experimentally-observed value of
the Z-boson mass, m% = 91.2% GeV? is obtained from Higgs scalar potential
minimization conditions. This scenario may be obtained within the frame-
work of gravity-mediated SUSY breaking through a “minimal” choice of the
Kéhler potential [3]. In the CMSSM, the By parameter can be swapped for

a specification of the value of the ratio of the Higgs VEVs, tan(8) = v, /va.

Generally, these assumptions significantly reduce the number of free parameters
within the MSSM, making the CMSSM a highly constrained and testable frame-

work for SUSY phenomenology. The CMSSM is often linked with the concept of
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minimal supergravity (mSUGRA) GUTs, a theoretical framework that provides
a mechanism for breaking supersymmetry in a hidden sector and transmitting

this breaking to the observable sector via gravitational interactions [8, 9]. Key

features of mSUGRA include:

1. Supersymmetry is broken in a hidden sector [10].

2. The breaking is communicated to the observable sector through gravitational

interactions [11].

3. At the GUT scale, the soft SUSY-breaking terms are universal, leading to

the CMSSM parameter structure.

mSUGRA provides a strong theoretical foundation for the universality assumptions

of the CMSSM.

1.2.8 Non-universal Higgs models (NUHM:)

Non-universal Higgs models (NUHM) extend the CMSSM by relaxing the univer-
sality condition(s) for the Higgs sector and scalar mass parameters. This allows
for more flexibility in the Higgs, squark, and slepton sectors (for higher values of 7)
while keeping the universality for other gaugino and trilinear coupling parameters
[12]. There are four “flavors” of NUHM models, which are characterized below
and expanded upon later in this work. The extra non-universality granted by
these models may allow for a better fit to experimental data [13, 14]. The extra
degrees of freedom afforded also permit much lower levels of finetuning, compared

to the CMSSM, for example. Explicit comparisons on the grounds of finetuning
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and naturalness will be made in later chapters, but we present a review of the

four main types of NUHM models below.

NUHM1

This model is characterized by having one additional parameter to those set forth
in the CMSSM, allowing the Higgs masses m%, and my, to still be unified with
each other at the GUT scale, but perhaps at a value separate from the other

scalar masses, which are set at mg [15]. The parameter set for this model is then:

m%’u,w Mg, My /2, Ao, tan(3).

NUHM2

This model introduces two additional parameters to the CMSSM parameter set
by allowing both Higgs mass parameters to be non-universal. This causes the

parameter space for this model to consist of:

2 2
My, M, Mo, M1/2, A07 tan(ﬁ)

In practice for phenomenology, it is common for the GUT-scale values of quu , to
be swapped for the weak-scale values of ;1 and m 4, the pseudoscalar mass, to be

specified.
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NUHM3

This model introduces three additional parameters to the CMSSM parameter set
by allowing both Higgs mass parameters to be non-universal, as well as allowing
the third generation squark and slepton masses to unify at a value separate from
the first two generations [14]. This causes the parameter space for this model to
consist of:

m%—]ua milda m0(3>7 m()(]-a 2)7 mi/2, A07 tan(ﬁ)

Here, my(i) denotes the unified scalar mass at the GUT scale for the squarks and

sleptons of the i’th generation.

NUHM4

Finally, this model has the most non-universality of the NUHM models by in-
troducing four additional parameters to the CMSSM parameter set. The Higgs
masses are allowed to be non-universal, and the first, second, and third generations
of squarks and sleptons are each allowed to unify at distinct values from other

generations [15, 16]. This causes the parameter space for this model to consist of:

my;,,miy,, mo(3),mo(2), mo(1)my s, Ao, tan(B).

1.3 The string landscape

String theory is a theoretical framework that attempts to reconcile quantum

mechanics and general relativity by positing that the fundamental building blocks
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of the universe are not point-like particles but rather one-dimensional objects
known as strings. These strings can vibrate at different frequencies, with each
vibration mode corresponding to a different particle. One of the remarkable
aspects of string theory is that it naturally incorporates gravity, making it a
strong candidate for a theory of everything.

However, string theory is not a single theory but a framework that encompasses
a multitude of possible solutions. These solutions are characterized by different
ways of compactifying the extra dimensions required by string theory. In most
string theories, our familiar four-dimensional spacetime is supplemented by six
or seven additional spatial dimensions which are compactified into a Calabi-
Yau space. The manner in which these extra dimensions are compactified leads
to different low-energy physical laws, effectively creating a vast “landscape” of

possible universes[17].

1.3.1 The landscape of vacua

The concept of the string landscape refers to the multitude of possible vacuum
states or solutions in string theory. Each vacuum state corresponds to a different
set of 4-d physical laws, particle spectra, and constants of nature. It is estimated
that the number of possible vacua in the string landscape is on the order of 10°%
or even larger[17]. This vast number of solutions implies a rich diversity of possible
universes, each with its own distinct physical properties. However, a key note is

that only a subset of these may be able to support observers, due to factors such

as the cosmological constant[18] and the predicted value of the weak scale and its
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correlation with chemistry, or the “atomic principle”[19].

In the context of the string landscape, our universe is just one of many possible
“pocket universes” (PU) that exist within a broader multiverse [20]. Each pocket
universe corresponds to a different point in the string landscape, characterized by a
specific vacuum state with its own unique physical laws and parameters. The idea
of a multiverse composed of pocket universes raises many profound questions about
the nature of physical reality and the origin of the specific properties observed
in our universe. One intriguing possibility is that the properties of our universe,
such as the values of fundamental constants and the presence of the SM, are the
result of a selection process within the multiverse. This selection process may
be influenced by anthropic considerations, where only universes with properties
conducive to the development of large-scale structure and life are observed.

The MSSM may be seen as one possible low-energy effective field theory
(EFT) emerging from the string landscape. In some pocket universes, the vacuum
state of string theory may break supersymmetry in such a way that the low-
energy physics resembles the MSSM, at least within some “neighborhood” of
the landscape[19, 21, 22]. This provides a natural context for the MSSM and its
phenomenological viability within the broader framework of string theory. Some

relevant key notes from the theory are summarized below:

1. Compactification and SUSY breaking: Different ways of compactifying
the extra dimensions in string theory can lead to different mechanisms of

SUSY breaking. In some compactifications, SUSY may be broken at a low
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scale Fy ~ (10" GeV)? < m%, resulting in the MSSM with TeV-scale soft

terms as the EFT at lower energies.

. Vacuum selection and anthropic principle: The string landscape
allows for the possibility that the MSSM is realized in a universe (such as
ours) due to anthropic selection. Universes with the MSSM might be more
conducive to the formation of complex- and large-scale structures, as well
as observers, leading to their preferential observation. As an example of
vacuum selection and anthropic principles, the immense number of vacuum
states that are viable within the string landscape framework provided a
setting for Weinberg’s anthropic solution to the cosmological constant (CC)
problem by realizing that pocket universes with too high of a CC will expand
too rapidly and result in a universe devoid of large-scale structure such as

galaxies [18].

. Predictive power and experimental tests: While the string land-
scape presents a challenge for making precise predictions, it also provides a
framework for understanding the diversity of possible low-energy theories.
Experimental tests at particle colliders and observations of cosmological
phenomena can provide indirect evidence for or against specific compactifi-
cations and the presence of supersymmetry. However, it may yet be possible
to offer statistical predictions of the theory from the large set of possible
vacua. This is what is addressed in Chapters 4 and 5, where we offer a novel

way of analyzing the density of vacua resulting from some supersymmetric
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EFT in the string landscape as a means of statistically comparing different

vacuum possibilities on the landscape.

To finalize our introduction, the string landscape offers a rich tapestry of possible
universes, each with its own unique physical laws and particle content. Within
this landscape, the MSSM emerges as a compelling candidate for the low-energy
effective theory in some pocket universes. This connection between the MSSM
and the string landscape provides a broader context for understanding the origins
and implications of supersymmetry and offers intriguing possibilities for future
theoretical and experimental exploration.

In the following chapters, we will explore specific models and mechanisms
within the string landscape that lead to the MSSM, examine the implications
of these models for our understanding of fundamental physics, and discuss how
ongoing and future experiments might provide insights into the structure of
the multiverse and the nature of our universe. To begin, we will address the
concepts of finetuning and naturalness, in regards to resolving the Little Hierarchy
Problem that has arisen in the research field, since we have not yet experimentally
observed superpartners. In doing so, we will present how traditional finetuning
measures overestimate the degree of electroweak finetuning via a newly developed
software that operates on the existing architecture for presenting supersymmetric
particle spectra for phenomenological studies [23, 24]. Then we will present new
analyses of the string landscape incorporating new probability measures for a
vacuum supporting observers to emerge from the string landscape, along with

their implementation into publicly available software.
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Chapter 2

Practical naturalness as a guide to new physics

2.1 Naturalness

As mentioned in the Introduction, WSS provides us with a solution to the gauge
hierarchy problem by stabilizing the Higgs boson mass under quantum corrections,
while introducing a variety of new states of matter, the superpartners of the SM.
Phenomenologically, SUSY theory is supported by the data from the following

virtual effects.

1. The three gauge couplings unify at a high scale Mgyt to a remarkable
precision due to the radiative effects of renormalization group running

25, 26, 27, 28].

2. The Higgs boson mass my, ~ 125 GeV lies directly within the narrow window
of possible values predicted in the Minimal Supersymmetric Standard Model

(MSSM) [29].

3. The top quark was predicted to be heavy — ~ 100 — 200 GeV — by SUSY
to facilitate radiative electroweak symmetry breaking (EWSB) prior to its

experimental discovery [30, 31].

4. Electroweak precision corrections to observables favor heavy SUSY over the

SM in the m; vs. my plane [32].
Additionally, superstring theory provides the most promising avenue for unify-
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ing the SM with gravity. This comes at the price of requiring 6 or 7 extra spatial
dimensions[33, 34, 35, 36, 37]. The low energy limit of string theory, characterized
by E < mp, where mp is the reduced Planck mass, is expected to be 10 — d
supergravity (SUGRA), after integrating out Kaluza-Klein modes. The 10 — d
SUGRA theory must then be compactified down to an extremely small 6 — d
space K tensored with our usual 4 — d (approximately) Minkowski spacetime My:
Mg = M, x K. Originally, K was taken to be a 6 — d compact Ricci-flat Kahler
manifold with special holonomy|38]. This type of Calabi-Yau manifold admits a
conserved Killing spinor, which in effect leads to a remnant N =1 SUSY on Mj.

The cosmological constant (CC) problem remained a thorny issue until the
early 2000s when it was realized that string flux compactifications could lead to
an enormous number of vacuum states each with different 4 — d laws of physics,
and in particular, different Age values[39]. Such large numbers of vacuum states
(Nyae ~ 10°% is an oft-quoted number[40]) provided a setting for Weinberg’s
anthropic solution to the CC problem[18]. But if the landscape[41] of string vacua
provides a solution to the CC problem, might it also enter into other naturalness
problems, such as the myeqr/mp (or related, mgysy /mp) hierarchy problems
(where mp ~ 2.4 x 10" GeV)? We will return to this subject in later chapters.
First, we must clarify the underlying concept of “naturalness” that continues to
guide our expectations of new physics and the scales at which those new physics
occur.

In spite of this impressive litany of successes, it is common nowadays to dismiss

weak scale supersymmetry (WSS)[3] as a viable beyond-the-Standard Model (BSM)
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theory due to the apparent lack of new physics signals at the CERN LHC[42].
The data from LHC, which is by-and-large in accord with SM expectations[43],
is in contrast to early theoretical expectations for WSS based upon naturalness
arguments that superpartners would emerge with mass values not far from the
weak scale Muyear =~ mw,zn ~ 100 GeV[44, 45, 46, 47, 48, 49, 50, 51, 52]. At
present, such arguments are being used to set policy and guide future facilities for
the High Energy Physics (HEP) frontier[53, 54]. Given the stakes involved, it is
essential to go back and review the naturalness-based arguments to assess when

and where and if they present a reliable guide to the search for new physics.

2.1.1 The Little Hierarchy Problem and Practical Naturalness

Supersymmetry offers a 't Hooft technically natural solution[55] to the hierarchy
of scales problem in that, as the hidden sector SUSY breaking scale mp;qgen (which
determines the magnitude of the soft terms via mgop ~ M32 ~ M40,/ Mp
in gravity-mediation and hence of the weak scale via the scalar potential mini-
mization conditions in Appendix A) is taken to zero, the model becomes more
(super)symmetric. The SUSY solution to this big hierarchy problem (BHP) —
stabilizing the weak scale so that it doesn’t blow up to the Planck or GUT scale —
is not the naturalness issue which concerns many contemporary SUSY theorists.
Indeed, 't Hooft naturalness remains a valid solution to the BHP even for very
large gaps Mot > Mayeak- Instead, it is the so-called little hierarchy problem

(LHP) which is of concern[56, 57]:
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how can it be that myear ~ mw zn ~ 100 GeV is so much smaller
than the soft SUSY breaking terms, which, according to LHC data,
are Mo 2, 1 TeV (owing to LHC bounds mg 2 2.2 TeV, m; 2 1.1

TeV, ---)[58]?

In addressing the LHP, what is of concern is what we call the notion of

practical naturalness (PN)[59]":

An observable O = 01+ - -+ 0, is practically natural if all independent

contributions o; to O are comparable to or less than O.

(Here, comparable to means within a factor of several from the measured value.)
Practical naturalness embodies the notion of naturalness that is most often used
in successful applications of naturalness. For instance, by requiring the charm

quark mass contribution

Gr « ff(mK 9 9 m?2
~ cos” O sin® o —= 2.1
V2 67 sin? Oy ¢ “m2, (2.1)

Amg(c)

to be comparable to or less than the measured K; — Kg mass difference Amyg ~
3.5-1071 MeV, Gaillard and Lee[62] were able to predict m. ~ 1.5 GeV several
months before the charm quark was discovered?.

Weak scale naturalness plays a key role in determining the viability of Beyond

the Standard Model theories such as SUSY. For the case of the SM, where the

!This is in accord with Veltman’s notion of naturalness as presented in Ref. [60]. See also
Susskind[61].

2Tt is still a breathtaking exercise to plug in the numbers and see the charm quark mass
emerge.
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Higgs potential is given by

V= —p5yo'd + Ao'9)%, (2.2)

a vacuum expectation value v = \/p%,,/\ develops and the tree-level Higgs boson
mass is given by mi = 2u%,,. The loop-corrected Higgs mass is quadratically

divergent up to some cutoff scale Agy; where
mi = 2u%y, + om; (2.3)

where at one loop

2

3 g g
2 2 2
6mh_@ <_Z)\i+z+86082ew+)\> Asar (2:4)

where the \; are Yukawa couplings for the ith fermion, g is the SU(2), gauge
coupling and \ is the Higgs quartic coupling[63]. Requiring practical naturalness
then leads to Agys < 1 TeV whilst finetuning is required for much higher values
of Agpy > 1 TeV.

In SUSY models with the MSSM as the LE-EFT, then the weak scale is
actually predicted in terms of the weak scale soft SUSY breaking terms and
superpotential p parameter. Minimization of the Higgs potential in the MSSM
leads to Eq. 2.9, which will be described briefly.

An essential element of practical naturalness is that the contributions o; should

be independent of one another in the sense that if one of the o; is varied, then
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the others don’t necessarily vary. For instance, Dirac was bothered by various
divergent contributions to perturbative QED observables. However, these were
dependent contributions in that if the regulator was varied, the different divergent
terms would also vary. One should always first combine dependent terms before
evaluating naturalness. Once dependent terms are combined, then a measure of
naturalness emerges:

A = max|o;|/|O]. (2.5)

Using PN, we see that QED perturbation theory is practically natural in that the
leading terms are comparable to the measured observables whilst higher order
terms (once dependent terms are combined) are typically much smaller.

One must properly address the evaluation of electroweak finetuning in an
attempt to address the LHP. In the next section, we revisit several proposed
naturalness measures which have been applied to various supersymmetric models.
As opposed to 't Hooft naturalness, these measures determine the degree of
practical naturalness. Historically, the first of these is the EENZ/BG[44, 45]
measure (labeled here as Apg) which determines the sensitivity of the measured
value of the weak scale to variation in model parameters p; (i labels the various
parameters under consideration). Typically the p; have been taken to be the
various soft SUSY breaking terms starting at a high effective field theory (EFT)

cutoff scale A = megyr ~ 2 x 10'% GeV:

01 2 ; Om?
ABszaX|ﬂ|:maxi|p Tz

¢ Ologpi

m op, |. (2.6)
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For small Agg < 30, then sparticle masses are expected below the several hundred
GeV range although in some special regions of model parameter space, such
as the focus point region[64, 65] of the minimal supergravity[66] (mSUGRA) or
constrained MSSM[7] (CMSSM) model, multi-TeV scale top squarks can be allowed.
Despite its popularity, this measure has been argued to overestimate finetuning
in SUSY models by large factors and to give ambiguous answers depending on
exactly which parameters are chosen to be the fundamental p;[67, 68].

A second measure, which we label here as Agg (for high scale sensitivity of the
up-Higgs soft mass m3, ), starts with the approximate SUSY Higgs mass relation

mj, ~ p? +my (weak) where m¥; (weak) = m3; (A) + dm3; . One then requires

Ang = dmj; /m; (2.7)

to be small. (It is the large top-quark Yukawa coupling f; which radiatively drives
mfgu from its large SUGRA value at the high scale to small, usually negative
values at the weak scale so that EW symmetry is spontaneously broken.) This
measure, which is inconsistent with Agg in that it doesn’t allow for multi-TeV
top squarks even in the FP region, has lead to intense scrutiny of LHC top squark
searches since it is expected that om3, ~ %mf log %[69, 70, 71, 72, 73, 74, 75)].
Aps was found to lead to violations of the finetuning rule[67]: that it is not allowed
to claim finetuning amongst dependent terms which contribute to some observable

O. In this case, dm3; and m3; (A) are dependent due to renormalization group

running, leading to overestimates in finetuning. To see this, we see that the
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one-loop renormalization group equation (RGE) for the m%{u parameter is given

below. The more complete two-loop expression is presented in Appendix B, Eqgs.

(B.14, B.37).

3 ~
B = 6Tr | (m3, + M%+ M2)VE + aQU} - 2ot (sz - s) —62M2 (2.8)

Hy,

Here, M, 5 represent the U(1) and SU(2) gaugino masses, g1 o their respective
gauge group couplings, S is a function of quu and the other scalar masses
(presented in Eq. (B.13)), M; are squark mass squared matrices in generation
space, ay is the up-type soft trilinear coupling matrix in generation space, and )y
is the up-type Yukawa coupling matrix in generation space. Clearly, the evolution
of quu directly depends on its own value.

A third measure is the electroweak measure Agw[76, 77] which is touted to be
more conservative and model independent than the others, and also unavoidable
(within the context of the MSSM). It is based on the SUSY Higgs potential
minimization condition

my, + X4 — (my;, + XY) tan® 3

2
mz/2 = tan? 3 — 1

—p = —myy, — = Ei(hs)  (29)

where all right-hand-side (RHS) entries are taken as their weak scale values in

the renormalization group running and

Agw = mZaX\C,|/(m2Z/2) (2.10)
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C; are the independent entries on the RHS of Eq. 2.9. As an aside, the approxima-
tion on the far RHS of Eq. 2.9 tends to hold for moderate to large values of tan(5),
but neglects some potentially important terms arising from the higher-order X
contributions, or from large m%,d values, especially in certain cases of non-universal
Higgs masses at the GUT scale. For these reasons, the approximation here should
be used cautiously, depending on the application — the full expressions, presented
in Appendix A, lead to more numerically stable and complete analyses. This
measure was preceded by Chan et al.[78] who suggested that the magnitude of
the SUSY conserving p parameter could serve as a finetuning measure all by itself.
This measure is sometimes criticized in that it apparently lacks sensitivity to high
scale parameters (more on this later).

A fourth entry has been formerly known to not be a quantifiable measure,

but known nonetheless as stringy naturalness (SN), which arises from Douglas

consideration of the string landscape picture[79]:

Stringy naturalness: An observable O is more (stringy) natural
than observable Oy if more phenomenologically viable string vacua

lead to O; than to Os.

In this work, we present a method by which stringy naturalness may be quantified
within regions of the string landscape. To quantify stringy naturalness, at least
two ingredients are needed: 1. the expected distribution of some quantity within
the landscape of vacua possibilities and 2. an anthropic selection ansatz for which

many choices would lead to universes that are unable to support observers. For the
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case of SUSY models, the first of these is usually how soft terms are distributed in
the landscape while the second of these is the magnitude of the weak scale itself:
if the predicted value of myeqr Within each pocket universe is too far displaced
from its measured value in our universe, then nuclear physics goes astray, and
atoms as we know them fail to appear— leading to no complex chemistry as seems
to be needed for life as we know it (atomic principle)[80]. An attempt to compute
and display stringy naturalness via density of dots in model parameter space has
been made in Ref. [81].

In the present work, we reexamine these several measures of naturalness, filling
in some of the many gaps of understanding that exist in the literature. Part of
our work is based on a new computation of Agg naturalness based on evaluating
numerically the derivatives in Eq. 2.6. This new computation is embedded in the
publicly available code DEW4SLHA[77] so that the updated code can provide
values of each of the measures Agg, Aps and Agw given an input SUSY Les
Houches Accord (SLHA) file[82].3 We also compute ratios of naturalness measures
to determine the extent of which some measures can overestimate finetuning in
SUSY models. For instance, in the SUSY theory review contained in the Particle
Data Book[83], it is suggested that the overestimates may range up to a factor 10;

in contrast, we find overestimates ranging up to factors of over 1000.

3The code DEW4SLHA, written by D. Martinez, is available at https://www.dew4slha.com.
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2.2 On the evaluation of electroweak finetuning

2.2.1 Sensitivity to high scale parameters: EENZ/BG naturalness

Historically, the first measure of SUSY model naturalness was proposed by Ellis
et al. in Ref. [44] and subsequently used by Barbieri and Giudice[45] to compute
sparticle mass upper bounds in the mSUGRA/CMSSM model: Eq. 2.6. The
measure purports to compute sensitivity of the measured value of the weak
scale to variation in high scale parameters p;. The Apg measure is actually
a measure of practical naturalness of the weak scale in the case where m% =
aipy + -+ + a,p,. Let’s suppose the jth contribution to m% is largest. Then
Apg = max; |(pi/m%)0m%,/0p;| = |a;p;/m%| in accord with Eq. 2.5. The various
la;p; /m%| = c¢; terms are labeled sensitivity coefficients[84]. The rub here is what
choice to take as to the free parameters p;.

The starting point is to express m% in terms of weak scale SUSY parameters

as in Eq. 2.9:

my ~ —2m3; —2u° (2.11)

where the partial equality is obtained for moderate-to-large tan(/3) values and
where we assume for now that the radiative corrections are small. To evaluate
Apga, one needs to know the explicit dependence of quu and p? on the fundamen-

tal parameters. Semi-analytic solutions to the one-loop renormalization group

1Giudice remarks in Ref. [63]: “It may well be that, in some cases, Eq. 2.6 overestimates
the amount of tuning. Indeed, Eq. 2.6 measures the sensitivity of the prediction of mz as we
vary parameters in theory space. However, we have no idea how this theory space looks like, and
the procedure of independently varying all parameters may be too simple-minded” . See also
discussion in Ref. [50].
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equations for m3; and p? can be found for instance in Refs. [85, 86]. For the case

of tan § = 10, then[52, 87, 84]

my ~ —2.18u% 4 3.84MF + 0.32M5 M, + 0.047M; M
—0.42M3 + 0.011M,M; — 0.012M7 — 0.65M3 A,
—0.15MyA; — 0.025M, Ay + 0.22A7 + 0.004M3 A,
—1.27m3;, — 0.053m7;,
+0.73m3), + 0.57mg, + 0.049m7,, — 0.052m7, + 0.053m3,
+0.051mg), — 0.11mg,, + 0.051m3,, — 0.052m7, + 0.053m3,

+0.051mg, — 0.11mg, + 0.051m3, — 0.052m7 + 0.053m3, ,(2.12)

where all terms on the right-hand-side are understood to be GUT scale parameters.
As an example, if we adopt mQQS as a fundamental parameter, then the sensitivity
coefficient ¢,z = 0.73mg, /m% and for mgq, = 3 TeV, then one finds Cm, = 800
so that Agg > 800 and the model is certainly finetuned. If instead we declare all
scalar masses unified to mg, then there are large cancellations and instead one
finds ¢,z = 0.013m3/m?% ~ 14.2: a reduction in finetuning by over a factor 50!

Clearly, whether or not soft terms are correlated or not makes a big difference in

the evaluation of Apg!

Numerical routine to compute Agg

The evaluation of Agg can be done by approximating the partial derivatives

with the method of finite difference quotients (particularly, central differences
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here). That is, for finding the partial derivative with respect to a parameter p; of
m%(p1, P2, - - -, Pn), Where p; are the fundamental parameters of the model chosen

for evaluating Apg, then

Omy (p1,pa, - Pn) _ my(p1+ha,pay . pn) = mG(p1 — ha,pa, ... pn)
~ . (2.13)
op1 2hy

hy is the size of the variation of the differentiation parameter p;, which is then
used to determine the resulting change in m?%. Since this is a partial derivative, all
other input parameters are left fixed at their original values prior to differentiation.

To compute this derivative, m% must be evaluated in the right-hand side of
Eq. 2.13 as an output of the m% Higgs minimization condition, Eq. 2.9, at the
weak renormalization scale Qsusy = Vg, my, to minimize radiative corrections
in the Higgs minimization condition. For the partial derivative of m% with respect
to p;, the GUT-scale parameter p; defined at the renormalization scale Qgur
is varied to p; + h;, with h; < p;. Then the new set of GUT-scale parameters
{p1,p2, .- 0i + hiy...,pn_1,pn} are evolved from Qgur down to Qsusy using the
full two-loop MSSM renormalization group equations (RGEs). Lastly, the varied
value m%(p1, P2, - - Di + Niy- .o, Pn_1,Pn) is computed from the tree-level Higgs
minimization condition for m%, giving a value slightly deviated from 91.22. This
value is then used in Eq. 2.13 and the process is repeated for the other direction

of variation.

In this numerical derivative approach, two sources of error can enter and skew
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the results: truncation error and roundoff error. Below are some descriptions of

these errors and how we minimize them.

e Truncation error is the error of approximating the true, analytical derivative
of m%, a tangent line to the m% curve, with our numerical two-point method,
producing a secant line to the m% curve. For a given derivative variation
size of h, the truncation error for this two-point method is suppressed by a
term of O(h?). This error remains relatively small so long as the step size

h < 1 and the higher-order derivatives of m% are reasonably bounded.

e Roundoff error comes from representing the values py,ps,...,pn, and hy
in Eq. 2.13 as floating point numbers, where the computer must “round
oft” most decimal values after a certain number of digits due to storage
limitations in binary. Because of this, there is a non-zero spacing between
two consecutive floating point numbers x and y, and this spacing is called the
unit of least precision (denoted ULP(z)). Careful error analysis reveals that
the roundoff error is proportional to the step size used in the evaluation. This
roundoff error is then minimized when, for a two-point central difference,
the step size h; for the derivative with respect to some p; is chosen as
h; /= [ULP (p;)]*. In order for h; < 1 to occur, the ULP(p;) must then also

be less than unity.

Numerical error may also enter through the numerical solution of the RGEs,
though similar numerical considerations can help control these errors as well.

With these sources of error in mind, the error in evaluating this derivative will
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remain small, i.e., O(< 1), so long as |p;| < 10'° in magnitude for all 7. This
leads to h; < 1 for double-precision floating point numbers. DEW4SLHA offers
the option of performing this calculation with even higher accuracy derivative
approximations, such as a four-point or eight-point central difference quotient to
further minimize truncation error.

The numerical evaluation of Agg has several advantages over the semi-analytic

formulae using expansions such as Eq. 2.12.

e The numeric routine uses full two-loop RGEs including all third generation
Yukawa couplings[88] and one- and partial two-loop radiative corrections,
while semi-analytic expansions use one-loop RGEs without loop-corrected

weak-scale contributions.

e The semi-analytic expansions were formulated to compute the Higgs potential
at a scale () ~ myz whilst the numeric routine uses an optimized scale choice
Q* = mj mz, which matches the higher scales for MSSM/SM decoupling

that are expected from LHC data.

e Usually the semi-analytic expansions are computed for a particular tan 3

value while the numeric evaluation is valid for all tan j.

To illustrate the comparison between the two methods, in Fig. 2.1a) we com-
pute the ratio Apg(numerical) /Apg(semianalytic) in the mg vs. mq /o plane of the
mSUGRA /CMSSM plane for Ay = 0 and tan § = 10 with g > 0. The blue region

corresponds to a ratio ~ 0.5 while for small mg we find A pg(numerical) / Apg(semianalytic) <
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1 and for large mg then we find Apg(numerical)/Apg(semianalytic) 2 1 with the
ratio reaching as high as ~ 2 near the lower focus point region.

In Fig. 2.1b) we again compute the ratio Apg(numerical)/Agg(semianalytic)
in the mg vs my9 plane of the mSUGRA/CMSSM, but now for Ay = —2my
and tan S = 10 with g > 0. The large value of Ay here permits the Higgs
mass to be within the allowed range of 125 + 2 GeV. The broad orange and red
regions throughout the RHS of the plane correspond to where Apg(numerical) ~
Apg(semianalytic). The largest discrepancy between the evaluation methods
occurs on the LHS of the plane near the stau LSP region, where Apg(numerical) ~
0.6Apg(semianalytic). Fig. 2.1¢) instead shows the ratio comparing the numerical
method to the semianalytic method in the mg vs my /o plane of the NUHM2 model
with g =200 GeV, my =2 TeV and Ay = —1.6mg. Again, the broad orange and
red region on the RHS of this plane shows very good agreement between the two
methods: Apg(numerical) ~ Apg(semianalytic). On the LHS above the CCB
minima region, where my/, > my, then the semianalytic method result becomes
somewhat larger than the numerical method result, leading to a minimal ratio

Apg(numerical) ~ 0.57Apg(semianalytic).

Numerical results for Agg

In Fig. 2.2, we compute contours and color-coded regions of Agg in the mSUG-
RA/CMSSM model using a numerical routine to evaluate the sensitivity co-
efficients. This routine is embedded in the publicly available computer code

DEW4SLHA which computes the three measures of naturalness Agqg, Ans and
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Figure 2.1: Plot of Apg(numerical)/Apg(semianalytic) in the mg vs.
my /9 plane of a) the CMSSM/mSUGRA model with Ag = 0, tan = 10
and p > 0, b) the CMSSM/mSUGRA model with Ag = —2mg and ¢)
the NUHM2 model with ¢ = 200 GeV and Ag = —1.6mg with m4 = 2
TeV. We use the code DEW4SLHA to compute Apg(numerical) using
a numerical algorithm for the sensitivity coefficients and SoftSUSY
v4.1.17 for the spectrum.
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Agw for any model based on its Les Houches Accord spectrum generator output
file. The results in Fig. 2.2 agree well with those presented by Allanach et al. in
Ref. [89].
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r347.9

DQV

myy [TeV]

r261.1

174.2

0.6

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 2.2: Plot of naturalness contours Apg in the mg vs. my/;
plane of the CMSSM/mSUGRA model with 49 = 0, tan = 10
and g > 0. We use the code DEW4SLHA to compute Apg using a
numerical algorithm for the sensitivity coefficients and SoftSUSY for
the spectrum.

In truth, the various supposedly independent high scale soft terms are in-
troduced by hand in the mSUGRA /CMSSM model as a parametrization of our
tgnorance as to the SUSY breaking mechanism. Indeed, in the case of gravity-
mediation, if we specify a specific SUSY breaking mechanism, then all soft terms

are calculable in terms of the gravitino mass m3/;. An example is the famous
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dilaton-dominated SUSY breaking model[90]: in this case

my = M3/2 with mi/2 = _AO = \/§m3/2. (214)

In such a case, then it doesn’t make sense that the soft terms are independent:
invoking PN, we should combine dependent terms in Eq. 2.12. Then m?% ~
—2.18p% + 14.494m; Jo- Adopting my/, = 3 TeV as in the previous example, then
we find p = 7735 GeV and Apg = Cm2 , = 15683.

The SUSY p parameter evolves very little from the GUT scale to the weak
scale, due to the supersymmetric non-renormalization theorems|[6]. The ratio of
1(Myeak )/ 1(maur) is shown in Fig. 2.3 for the tan 8 vs. p(myeax) plane in the
mSUGRA /CMSSM model. The deviation between pi(myeax)/p(maur) is typically
a few percent, climbing to ~ 10% at very large tan (.

Now, in the case where all soft terms are determined in terms of mg/, (such
as gravity-mediation, anomaly-mediation and mirage-mediation), then we expect
roughly that

m% ~ —2u* 4 a - m§/2 (2.15)

and since p hardly evolves, then a -mj3,, ~ —2m¥, (weak). In this case — with
all correlated soft terms (which we may dub as the SUGRA1 model) — then
Apa ~ 2, = amy ,/m7 =~ max[2p*, 2my; (weak)]/m%. This latter case we will
find is nearly the same as Agw aside from the inclusion of the radiative corrections
to the weak scale scalar potential.

In Fig. 2.4, we plot naturalness contours in the same parameter plane as in
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Figure 2.3: Ratio of u/uo in the tan 8 vs. p(weak) plane, where p is
the GUT-scale value of the y parameter.

Fig. 2.2, but now assuming instead the one-soft-parameter SUGRA1 model. For

SUGRAT1, we have

my = —2.18us +a-mi (SUGRA1) (2.16)

where the constant a can be determined via a = (m% + 2.18u3)/mZ. In this case,
the naturalness contours roughly follow the contours of constant p value. (The
1 term all by itself has been advocated as a measure of naturalness by Chan et
al.[78].) For the case of SUGRA1, the naturalness contours are very different from

the case of independent high scale soft terms assumed in the mSUGRA /CMSSM

model.
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Figure 2.4: Plot of naturalness contours Apg in the mg vs. m, 5 plane
of the one-soft-parameter SUGRA1 model with Ay = 0, tan 8 = 10
and p > 0. We use SoftSUSY to generate the spectra.

One may also define a SUGRA2 model. Here, we assume that since gaugino
masses arise from the gauge kinetic function, this soft term is independent of
the others which are determined instead by the Kéhler function, but where Ag is

determined in terms of my (such as Ay = —2my) so that

my = —2.18u3 + 3.786m7 ;, — 0.427mg + 1.642my jomo  (SUGRA2).  (2.17)

Finally, SUGRAS3 allows that A, is somehow independent from mg (or mg/s) so
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that

my = —2.18u + 3.786m7 5 + 0.013mg + 1.642my jymg + 0.2245  (SUGRA3).
(2.18)
For the three cases, we find that the Agg values are very different in the SUGRAT1,
SUGRA2 or SUGRA3 models just depending on which parameters are assumed
to be truly independent.

In Fig. 2.5, we show color coded regions of Agg as computed in the mq vs.
my 2 plane of the NUHM2 model where tan 3 = 10, Ay = —1.6m with p = 200
GeV and my =2 TeV. In frame a), we assume all soft terms are correlated as in
Eq. 2.16. In this case, since u is fixed, there is a constant value of Agg = 21.2
throughout the plane.

In frame b), we instead assume two independent soft parameters mg and my s
(but with Ay fixed in terms of mg) so that we are in the SUGRA2 model, Eq. 2.17.
Here, the value of Apg is vastly different from frame a), reaching up to values of
~ 3900 in the upper-right corner: a factor of ~ 180 times greater than the frame a)
value. Here, the Apg finetuning is dominated by the m; /5 value but not so much
by mg. In frame c¢), instead we show values of Apg assuming three independent
soft parameters as in Eq. 2.18. In this case, with Aq fixed as Ay = —1.6mg but
nonetheless declared as independent, we see a greater dependence on myg, so Apg
increases as mg increases, mainly because Ag increases with increasing mg. Here,
Apg reaches maximal values of ~ 14500 in the upper-right corner, a factor ~ 680

larger than the frame a) value!
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Figure 2.5: Plot of Apg values in the mg vs. my/, plane for the
NUHM?2 model for Ag = —1.6my, tan § = 10 with g = 200 GeV and
ma =2 TeV. In a), we plot Apg assuming a single independent soft
parameter mg o while in b) we plot Apg for assumed two independent
soft parameters mg and m; /o while in ¢) we plot assuming all three of
mo, my o and Ap are independent. The spectrum is calculated using
SoftSUSY and the naturalness measures with DEWA4SLHA.

43



In summary, from the discussion of this Section, we see that the measure
Agg could be a legitimate finetuning measure if there could be consensus on
what constitutes independent parameters of the model. The plots also illustrate
the extreme model-dependence of Agg, where Agg can obtain values differing
by several orders of magnitude depending on which parameters p; are assumed

fundamental or independent.

2.2.2 High scale finetuning

An alternative to EENZ/BG naturalness which we label as high scale finetuning
(HS) emerged early on in the 21st century. It may have been intended originally
as a figurative bullet point indicator to argue for sparticle masses near the weak
scale[69], but later was taken more seriously[70, 73, 74, 75]. This measure seeks

to apply PN to the Higgs boson mass relation (see e.g. Eq. 10 of [91])

my ~ p* +mj; (weak) + EW + mixing (2.19)

where the EW corrections and mixings are already < m?. The idea then is to
break m3; (weak) into m¥; (mgur) + om7, and require dm3; < mj. The full
one-loop expression for m7; may be obtained by integrating its one-loop RGE

from mgut t0 Myeak:

dm%{u B 2
dt 1672

3 3
SIRMESEME L RS 1ARX) (220
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where ¢ = logQ, S = mj}, —mj, + Tr [m} —mj — 2m? + m}, +m}]| and
Xy = mp, +mp, +my, + A7 In the literature[73, 74, 75], to gain a simple
expression, the terms with gauge couplings are ignored and X; is approximated
as X; ~ mg, +mp, + A7, where mg),,m3, , and A7 here are GUT-scale values.

Then a single step integration leads to
2 3 o 9 2 2
Omiy, ~ =55 It (md, +miy, + A7) log (A/Muear) (2.21)

where the high scale A is usually assumed ~ mgyr. The Ags measure famously
promoted three light third generation squarks below the 500 GeV scale[74], and
motivated intensive searches by the LHC collaborations to root out light top-squark
signals.

In order to compare Agg more appropriately with Agg and Agw, we slightly

redefine Ayg in terms of m%/2[92] where in this case we take

(m%,(A) + dmy;, + B9) — (mi;, (A) + 0m3;, + XY) tan® §

2 2 — . 2 A 6 2
m/ N (H2(A)+ 572
(2.22)
and A is some input high scale, perhaps mp or mgyr. Then
Apg = max [largest term on RHS of Eq. (2.22)]. (2.23)

In this way, the three measures become equal in certain limiting cases.

The Agg measure is problematic on several counts
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1. It violates the PN precept in that, in simplifying (5m%{u, all dependence
on my (A) is lost, which hides the fact that 0m3; is actually dependent
on m¥ (A). In fact, the bigger the assumed value for m7, (A), then the
bigger is the cancelling correction dm3; [93]. This is shown in Fig. 2.6
where we show the exact two-loop value of dm3; vs. m3; (GUT), where
the clear dependence of dm3;, on m} (GUT) is shown. The plot also
shows that the bigger mpy, (GUT) becomes, then the more EW-natural
the model becomes in that m3; (weak) becomes comparable to m%, on the
right-hand-side shortly before EWSB is no longer broken. The splitting up
of m¥ (weak) into m3; (A) 4 0m3; turns Agg into contradiction with Agg,
where m7; (weak) is expanded into high scale parameters in Eq. 2.12 but
not split into m%; (A) + dm3, . This splitting of m3; (weak) into dependent
parts destroys the cancellations needed for focus point SUSY[64, 65] which

is promoted as allowing for TeV-scale top-squarks.

2. Electroweak symmetry breaking in SUSY models is accomplished by driving
m%{u to negative values owing to the large top-quark Yukawa coupling f;.
Indeed, the REWSB mechanism is touted as one of the triumphs of WSS
since it required m; ~ 100 — 200 GeV[94] at a time when experiments
seemed to indicate m; ~ 40 GeV. By requiring 6m%{u to be small, then
often m3; (weak) will not be large-negative enough to cause EWSB. In the

context of vacua selection in the string landscape, such models without

EWSB would likely not lead to inhabitable universes and would be vetoed.
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This can be viewed as a selection mechanism to favor models with large
enough dm3; such that EW symmetry is properly broken (see e.g. Fig. 3

of Ref. [95].)

. There is also substantial ambiguity in evaluating Ags. In Fig. 2.7 we show
the value of dmp, = sign(dmy; ),/|0m3, | vs. mu, (mgur) for a NUHM2
benchmark point with mg = 4.5 TeV, my/, = 1 TeV, Ay = —7.2 TeV with
tan § = 10 and m 4 = 2 TeV. The approximate expression Eq. 2.21 is shown
as the flat red-dashed line which of course doesn’t depend on m¥ (maur).
The solid blue curve is the exact (numerical) two-loop RG expression for
dmpy, and is shown to deviate from the approximate result by well over a
factor of 2 at low mpy, (mgur) and only agrees with the approximation far
into the excluded region where the electroweak symmetry isn’t properly
broken. Alternatively, one may use the mj ~ p* +m3; + dm3; equation
for a particular set of input parameters including m7, (mgur) (e.g. in the
NUHM2 model) to compute the value of ém3, and then try to finetune
my (mgur) to enforce m; = 125 GeV. But as one tunes the value of
m3, (mgur), then the value of dm7; changes accordingly (as indicated by
the various dotted lines for different input p values), so that instead of
finetuning, one must adopt an iterative procedure to try and find a solution.

Sometimes the solution will migrate into the noEWSB region while other

times the iterations can find a viable solution.
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Figure 2.6: Plot of sign(ém3; ) - ,/\5m%u\ vs. mp,(GUT) for the
NUHM2 model with mo = 5 TeV, my/, = 1.2 TeV, Ag = —1.6my,
tan 8 = 10 and mpy, = 5 TeV.
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Figure 2.7: Plot of sign(ém3; ) - ,/\5m%u\ vs. mp,(GUT) for the
NUHM2 model with mo = 4.5 TeV, my/; =1 TeV, Ag = —7.2 TeV
and tan 5 = 10 with m 4 = 2 TeV. We show the approximate expression
Eq. 2.20 (red-dashed curve) along with exact 2-loop expression (blue
solid) along with the value gleaned from finetuning for various values
of u.
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2.2.3 Electroweak naturalness

As mentioned before, the electroweak naturalness measure Agw measures the
largest contribution on the right-hand-side of Eq. (2.9) and compares that to
m?% /2. This is the most conservative, unavoidable measure of naturalness since
it is independent of any high scale model. Even when high scale parameters are
correlated in some way, those correlations are typically lost under RG running
and subsequent computation of the physical sparticle mass eigenstates. The
interpretation of Agw is clear: if any one of the RHS contributions to Eq. (2.9)
is far larger than m?% /2, then it is highly implausible (but not impossible) that
some other contribution would accidentally be large, opposite-sign such that the
two conspire to give an my value of just 91.2 GeV. In this sense, natural models
correspond to plausible models; models with large Agw are logically possible, but
highly implausible. We’ll see later that this manifests itself as a probability, or
likelihood, to emerge from scans over the string landscape.

The tree-level contributions to Agw are instructive:

e the SUSY conserving i parameter, which sets the mass scale for the W,
Z, h and higgsinos enters the weak scale directly. We already know that
mw.zn ~ 100 GeV; the higgsinos should lie within a factor of several of the
measured value of the weak scale. In light of LHC constraints, the SUSY LSP
is likely a higgsino-like lightest neutralino, or at worst a gaugino-higgsino

admixture.

e The value of quu, where H, acts as the SM Higgs doublet, should be driven
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to small, usually negative values since it also sets the mass of the W, Z and

h bosons.

e The value of my, — which sets the mass scale for the heavier Higgs bosons
A, H and H* — can be much larger since its contribution to the weak scale

is suppressed by a factor of tan(f).

The loop-level contributions X% and %¢ are proportional to the individual
particle/sparticle masses but since the ¥4 terms are suppressed by tan 3, the X
terms are usually dominant. Of the $% terms, usually X%(#; ) are largest owing
to the large top-quark Yukawa coupling. Since these terms are all suppressed by
loop factors, the particle/sparticle masses which enter the X! terms can be at
the TeV or beyond scale before becoming comparable to the weak scale. Explicit
expressions for the ¥* and X2 are given in the Appendices to Ref’s [96] and [77].

The dominant terms are given by

3
@F(mig) [ﬁ:2 - 97T

1 2
ftQA% - 89%(1 - §IW)A1€
m2 — m?
to t1

Su(tig) =

(2.24)

where F(m?) = m? (log g‘—; — 1) and the optimized scale choice is taken as Q* =
mg,mg,. Also, Ay = (m? —m3 )/2+m7cos2B(; — Srw) with g7 = (¢° + ¢%)/8
and zy = sin? @y ; in the denominator of Eq. 2.24, the tree-level masses should
be used.

Some highlights of the X terms include the following.

e For Apw < 30, the top-squark contributions X%(#; 5) allow for top-squarks
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up to mz, S 3 TeV and my, $ 8 TeV. The explicit expressions contain large
cancellations for large A; both for ¥%(¢;) and ¥%(¢5). The large A, helps
to lift my, into the 125 GeV range since my, is maximal for z; ~ \/6m5[29].
This is in contrast to Agg and Apg which both prefer small trilinear soft
terms. In Fig. 2.8 we show color-coded regions of Agg in the m; /5 vs. A
plane of the mSUGRA/CMSSM model for mg = 5 TeV, tan § = 10 and
w > 0. We also show contours of Higgs mass my = 123 and 127 GeV, and
contours of Agw and Ays. The grey region around Ay ~ 0 is the focus point
region. From the plot, we see that Ayg is always large, Apgg 2 6000, due to
the large value of my. Meanwhile, Agg reaches as low as ~ 1000, also in
the FP region. Agw can reach as low as 62 in between the two Agw = 125
contours. As expected from the mSUGRA /CMSSM model, no points allow

for both low finetuning and m; ~ 125 GeV.

e Since first/second generation Yukawa couplings are tiny, then these sparticle
masses can be much larger than the third generation, with first/second
generation squarks and sleptons ranging up to 30 — 50 TeV. In the context
of the string landscape, this leads to a quasi-degeneracy/decoupling solution

to the SUSY flavor and CP problems[97].

e Gluinos affect the £ via RG running and directly at the two-loop level[98].
They can range up to mg < 6 TeV for Agw < 30, well beyond present LHC

bounds[99].
A positive feature of Agw is its model independence (within the context of
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models for which the MSSM is the weak scale EFT). The amount of finetuning
only depends on the weak scale spectrum which is generated, but not on how it
is obtained. Thus, if one generates a certain weak scale spectrum via some high
scale model, or just the pMSSM, then one gets the same value of Agw. This
of course isn’t true for the measures Apg or Apa. In these senses, Agw offers
a “minimal” or conservative estimation of the degree of electroweak finetuning,
leading to the conclusion that typically Axs and Apg overestimate the degree of
finetuning by as much as a factor of 1000, as exemplified in Figs. 2.9 and 2.10.
A common criticism of Agw is that it doesn’t account for high scale parameter
choices and correlations. This is not exactly true as discussed earlier. The u
parameter evolves only slightly from mgur t0 Myeak, as shown in Fig. 2.3. With
w(maur) = p(Myeax ), and in the context of all soft terms correlated (as should
be the case in a well specified SUSY breaking model), then Agg ~ Agw, sans the
radiative corrections £ and 4. Also, if the dependent terms m?%, (A) and dm3;
are combined, as required by PN, then Ags ~ Agw, sans radiative corrections.
Furthermore, the specific choices of high scale parameters can lead to more or less
finetuning via Eq. 2.9. In fact, a string landscape selection for larger soft terms
often results in smaller values of Agw as compared to any selection for small or

weak scale soft terms[100].

2.2.4 Stringy naturalness: anthropic origin of the weak scale

A fourth entry into the naturalness debate comes from Douglas with regards to

the string landscape: stringy naturalness, as remarked above. An advantage of
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stringy naturalness is that it actually provides an explanation for the magnitude
of the weak scale, and not just naturalness of the weak scale. The distribution of

vacua in the multiverse as a function of m.z is expected to be

deac ~ fSUSY(msoft) : fEWSB(msoft)dmsoft~ (225)

Douglas[101] advocates for a power-law draw to large soft terms based on the
supposition that there is no favored value for SUSY breaking fields on the landscape:
fsusy ~ migft”L"D_l where ng is the number of (complex-valued) F-breaking
fields and np is the number of (real-valued) D-breaking fields giving rise to
the ultimate SUSY breaking scale. The distribution frwgsp is suggested as
fewss = (30 — Agw)[102] such that the value of the weak scale in each pocket
universe lies within the ABDS window[80], the so-called atomic principle. Until

now, SN has not admitted a clear numerical measure[81, 103]. A novel method

for quantifying this concept will be presented in Chapter 5.
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2.3 Radiative natural SUSY and its phenomenology

Radiative natural SUSY refers to a class of supersymmetric models designed to
address the naturalness problem of the Higgs boson mass by ensuring that the
finetuning of parameters is minimized. Radiative natural SUSY balances the
need for naturalness with compliance to experimental constraints, maintaining
the attractive features of supersymmetry while addressing the Little Hierarchy
Problem. This is achieved through the mechanism of radiative electroweak
symmetry breaking and the particular choice of superpartner masses. Key features

of radiative natural SUSY include:

1. Radiative electroweak symmetry breaking (REWSB): This is a
mechanism where the electroweak symmetry breaking occurs dynamically
through radiative corrections. The running of the RGEs from the high-
energy scale to the low-energy scale naturally induces a negative squared
mass for the Higgs fields, leading to spontaneous electroweak symmetry

breaking.

2. Naturalness criteria: To minimize finetuning, the superpartner masses
are chosen such that the loop corrections to the Higgs mass are small. This

typically requires:

e Light stops (top squarks): The masses of the top squarks (¢; and #,)
are kept relatively low, usually below 1 TeV. This reduces the quantum

corrections to the Higgs mass parameter.
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e Light higgsinos: The higgsino mass parameter (typically denoted by 1)
is also kept close to the electroweak scale, as large values of 1 would
require finetuning to achieve the correct value of the Z boson mass,

m?%, and thus correct electroweak symmetry breaking.

3. Heavy first and second generation squarks and sleptons: To evade
the stringent constraints from flavor physics and CP-violating processes, the
masses of the first and second generation squarks and sleptons are typically
much heavier [3]. This hierarchy helps in maintaining naturalness while

complying with experimental limits.

4. Gluino mass: The gluino, which is the supersymmetric partner of the gluon,
can be relatively heavy (up to a few TeV) without introducing significant
finetuning issues, due to these terms appearing in two-loop terms in the
radiative corrections to the minimization conditions, which are suppressed
by a factor of ~ 1/(1672)%. This allows radiative natural SUSY models to

satisfy the bounds from LHC searches for colored superparticles.

Given that radiative natural SUSY (RNS) satisfactorily addresses the Little
Hierarchy Problem, it is important to determine whether the spectra predicted by
RNS are phenomenologically viable with our current understanding of experimental
data in SUSY searches. In fact, some rather strict bounds on masses have
been produced from this data, though we will demonstrate how natural SUSY
is expected to be revealed at future LHC upgrades. Early expectations from

naturalness predicted superpartners at or around the weak scale[44, 45, 48, 47].
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For instance, the naturalness upper bound for the gluino was predicted (under

< 400 GeV. In contrast, the

~Y

the naturalness measure Apge S 30) to be my
current mass limits from LHC Run 2 searches with 139 fb™! claim m; 2> 2.25
TeV[104, 105]. The yawning gap between the weak scale and the superpartner
mass scale — the Little Hierarchy Problem (LHP)[56] — has lead many authors to
conclude[106, 107, 108] that the weak scale supersymmetry[3] hypothesis is under
intense pressure, and possibly even excluded.

However, it has been pointed out in Chapter 2 that the resolution to the LHP
lies instead in that conventional early measures of naturalness over-estimated
the finetuning[67, 109, 68, 103], and that the appropriate measure of practical
weak-scale naturalness is Agy as in Eq. (2.10). One can quickly read off the

consequences for a low value of Agy:

. quu, which in the decoupling limit functions like the SM Higgs doublet and
gives mass to the W, Z and h bosons, must be driven under radiative EWSB
to small, typically negative values, a condition known as radiatively-driven

naturalness (RNS). Thus, electroweak symmetry is barely broken.

e The i parameter, which feeds mass to the W, Z and h bosons as well as to

the higgsinos, must be within a factor of several of my. 25 ~ 100 GeV.

e my ~ mpy, in the decoupling limit can live in the TeV regime since the

contribution of m%{d is suppressed by a factor of tan?(f3).

e Top squark contributions to the weak scale are loop suppressed and so can

live in the TeV range while maintaining naturalness.
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e The gluino contributes at two-loops[98] and via RG running contributions

to the stop soft masses[75, 74] and so also can live in the TeV range.

e First and second generation sfermion contributions to the weak scale are via
Yukawa-suppressed 1-loop terms and via 2-loop RG contributions (which
are dominant)[110]. Thus, they can live in the 10-50 TeV regime which

helps solve the SUSY flavor and CP problems[97].

An advantage of Agy is that it is model independent insofar as it only depends
on the weak scale sparticle and Higgs mass spectrum and not on how they are
arrived at. Thus, a given spectrum will generate the same value of Agy whether
it was computed from the pMSSM or some high scale model. Also, requiring
the contributions to m%/2 to be comparable to or less than its measured value
typically corresponds to an upper limit of Agy < 30. The turn-on of finetuning for
Apw 2 30 is visually displayed in Fig. 1 of Ref. [59]. While WSS seems ruled out
under the older naturalness measures[44, 45, 48, 47], there is still plenty of natural
parameter space left unexplored by LHC under the Agy measure[111]. However,
the Ay measure does predict the existence of light higgsino-like EWinos i
and )2?,2 with mass ~ 100 — 350 GeV. The light higgsinos can be produced at
decent rates at LHC, but owing to their small mass gaps mg — mgo ~ 5 — 10
GeV, there is only small visible energy released in their decays, making detection
a difficult[112] (but not impossible[113, 114]) prospect. The higgsino-like LSP X!
is thermally underproduced as dark matter, leaving room for axionic dark matter

as well[115].
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The Apgwy naturalness measure is built in to the Isajet/Isasugra[l116, 117]
event /spectrum generator. Also, the crucial 1-loop corrections to the Higgs
potential have been calculated within the (non-standard) notation of WSS[96].
As a result, of the spectrum generators available, Isasugra has been used the
most for such studies. These include sparticle mass bounds from naturalness,
and parameter space limits and lucrative collider signatures from natural SUSY.
However, a variety of other SUSY /Higgs spectra generators are available, including
SUSPECT([118], SoftSUSY|[119] and SPHENO[120]. Some special Higgs spectrum
calculators include FeynHIGGS[121] and SUSYHD[122] and others[29]. Thus, it
would be useful to know how other spectrum generators compare to Isasugra
in their natural SUSY spectra. For this reason, we have built a computer code
DEW4SLHA which operates on a SUSY Les Houches Accord file (SLHA)[82]
which is the standard output of spectrum generators. The program computes the

associated value of Agw, Apg, and Agyg and all the various contributions.

2.3.1 Natural SUSY benchmark points

Using the code DEW4SLHA, we can now compare spectra generated from the
various spectra calculators for a particular natural SUSY benchmark point. For
the BM point, we adopt the two-extra-parameter non-universal Higgs model

(NUHM2)[13, 15] with input parameters

Mo, My/2, AOa tanﬂa oy 1A (226)
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where we have traded the high scale Higgs soft masses m%{u and m%,d for the more
convenient weak scale parameters g and m,. Then we adopt the benchmark
parameter values mg = 5 TeV, my/, = 1.2 TeV, Ay = -8 TeV, tan = 10,
=200 GeV and my = 2 TeV. A pictorial representation of the spectra using
SoftSUSY is shown in Fig. 2.11 where we see that indeed the higgsinos and Higgs
boson h lie in the 100 — 200 GeV range whilst the top-squarks and gluino live in

the several TeV regime.
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Figure 2.11: Sparticle and Higgs mass spectra for a natural SUSY
benchmark point from SoftSUSY.

In Table 2.1, we list the mass spectra and Agy values from each of four
spectra generators. For ISAJET, we use version 7.88[116] while for SUSPECT we
use version 2.51[118]. For SoftSUSY, we use version 4.1.10[119] including two-loop

corrections to my and the default two-loop corrections to m;. We use SPHENO
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version 4.0.4[120] with MSSM-to-SM matching at scale Q) = mgsysy = /M, My, .
In contrast, SoftSUSY imposes EFT matching at Q = mz while ISAJET uses
multiple scales[16]. The gluino masses are all within 1.5% of each other. The
naturalness parameters for three codes are all less than thirty; the outlier here
is SPHENO where also the light top squark mass mj, is somewhat higher than
the other codes. Here, the top squark masses are highly sensitive to mixing
which comes from the weak scale value of A; and indeed the values of A;(Q)
for Isasugra/SoftSUSY /SUSPECT /SPHENO are -4898/-4830/-4894/-5090 GeV,
respectively. Thus, SPHENO has slightly more stop mixing than the other codes
which increases Agw somewhat. Another difference comes from the value of
my, generated: both SoftSUSY and SUSPECT generate my, ~ 127.4 GeV whilst
SPHENO generates m;, = 125.2 GeV and Isasugra generates m;, = 124.7 GeV.
It can be remarked that Isasugra has the least sophisticated light Higgs mass
calculation, and includes only third generation sparticle 1-loop contributions to
my,. Another feature is that the Isasugra value of My is about six GeV higher
than SoftSUSY and SUSPECT while the SPHENO is six GeV lower. These values
depend sensitively on the scale choice at which each EWino mass is calculated.
For instance, Isasugra uses the Pierce et al. (PBMZ)[123] recipe to calculate each
mass separately at each mass scale.

In Table 2.2, we list the top 46 contributions to Agy from each of the spectra
codes. We see from line 1 that the largest contribution comes for each code from
Y%(ty) which sets the value of Agyy, and where we see that SPHENO gives the

largest value. The second largest contribution comes from X%(f;) as might be
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parameter Isasugra SoftSUSY SUSPECT SPHENO

my 2830.7  2794.3 2838.6 2827.6
ma, 5440.3  5403.2 5406.0 5412.8
ma, 5561.7  5521.3 5523.0 5521.8
me, 4823.0  4817.3 4818.1 4825.8
m;, 17143  1682.8 1746.9 1942.1
mg, 3915.1  3879.0 3899.2 3947.0
mg, 3949.1 38716 3891.7 3939.1
mg, 5287.5  5266.4 5277.2 5281.7
ma, 47457 4746.1 4749.1 4757.4
ms, 5110.2  5109.7 5110.8 5107.2
ms, 5116.8  5108.7 5113.8 5106.2
Mg 1020.2  1027.5 1030.6 1031.9
Mg 209.7 203.1 203.0 197.3
o 10335  1027.3 1031.1 1032.0
Mo 540.1 536.4 537.2 538.1
My -208.3 -208.6 -208.7 -203.0
My 197.9 197.2 197.1 191.9
my, 124.7 127.3 127.5 125.2
Apw 24.8 23.0 28.2 441

Table 2.1: Sparticle and Higgs mass spectra from four spectra genera-
tors for a natural SUSY benchmark point with mo = 5 TeV, my 5 = 1.2
TeV, Ag = —8 TeV, tan 8 = 10 with p = 200 GeV and m4 = 2 TeV.
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expected. The next several largest contributions come from Hy, p and H, and
3%(by 5) although the ordering of these differs among the codes. In general, the

agreement for the remaining contributions is typically within expectations.
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Order

Isajet

SoftSUSY

Suspect

Spheno

© 0 N O U W N =

—
o

24.819, T4 (t5)
19.367, 24(1;)
10.449, X4(O(a,a4))
10.424, Hy
9.625, u
5.861, H,

4.164, (%)

3.933, $(by)

2.970, S4(7)

2.912, ¥%(¥ 2nd gen. q)
2912, ¥¥(X 1st gen. q)

2.003, $%(by)

1.169, S4(X5)
9.765¢-1, $(Z9)
6.987¢-1, 24(Z9)
5.98¢-1, DU(H*)

1.532¢-1, X4(t)
5.924e-2, (Z0)
5.543e-2, L4(HO)
4.758¢-2, S4(Z9)

4.3¢-2, %4(2°)
4.3¢-2, $4(by)
3.748e-2, T4(t1)
3.198e-2, $4(% 2nd gen. q)
3.198e-2, S4(X 1st gen. q)
2.329¢-2, X%(h0)
1.875¢-2, $4(29)
1.669e-2, S4(7)
1.279-2, 24(x3)
1.102e-2, X4(%)
1.095e-2, 34(O (O(asn))
9.869¢-3, $4(Z9)
8.366e-3, X24(by)
8.083¢-3, LU(H")
6.658¢-3, T4 (H*)
5.469e-3, SU(W*)
2.611e-3, S4(Z9)
1.081e-3, X4(Z9)
7.420e-4, $4(h°)
4.723c-4, £3"(2°)
4.205e-4, U(XT)
1.000¢-4, X4(%2)
6.007e-5, zd“m )
9.197¢-6, X4(yE)
2.315e-8, $4(b)
9.579¢-9, 24(r)

23.015, 3%(1)
18.318, 24(1y)
10.074, Hy
9.618,

6.985, B4(O(asay))
4.557, 5 (by)
4.316, 3% (%)
3.252, XU(7,)
2.909, ¥%(X 2nd gen. q)
2.909, $4(X 1st gen. q)
2.761, H,

2.101, $%(by)
L1191, 3(%3)

9.114e-1, £4(Z9)
6.924e-1, 24(Z9)
6.083¢-1, DU(H*)
1.438¢-1, X4(t)
7.522¢-2, 2’;;(210)
5.305e-2, ¥4 (H
4.397¢-2, $4(Z9
4.175¢-2, $4(by
3.783, £(2°)
3.438, 24(1)
3.128¢-2, $4( 2nd gen. q)
3.128e-2, 54X 1st gen. q)
2.377e-2, S(h°)
1.841e-2, £4(29)
1.787e-2, £4(7)
1.276¢-2, zd( )
1.107e-2, S¥(HO)
1.101e-2, 4( )
8.412e-3, $¢

7.381e-3, $4(O ( i)

7.315¢-3, 2(Z3)
6.542¢-3, S34(H*)
5.400e-3, S4(W*)
2.660e-3, £4(Z9)
2.305¢-3, 4(29)
2.044e-3, B4(X7)
7.568¢-4, $4(h°)
4.069e-4, 25%(2°)
2.013e-4, 24(1)
5.808¢-5, (W)
2.608¢-5, S4(XT)
2.302¢-8, X4(b)
7.904¢-9, $4(r)

Q emri*

28.227, 32 (1)
20.372, L4(t)
10.294, Hy
9.621, p
7.405, Z4(O(asev))
4.044, 5 (by)
3.761, (%)
2.801, ¥%(X 2nd gen. q)
2.801, £4(% 1st gen. q)
2.653, 2(7)
2.507, S4(by)
1.212, ¥4(X5)
9.235¢-1, %(29)
7.312¢-1, H,
7.076e-1, S4(Z9)
6.264e-1, SU(H*)
1.440¢-1, (1)
7.687¢-2, $U(Z9)
5.564e-2, X4(HO)
1507, SY(ZY)
3.909¢-2, $4(by)
3.825¢-2, X4(2°)
3.713¢-2, X(f)
3.075e-2, 54 2nd gen. q)
3.075e-2, 4(3 1st gen. q)
2.395¢-2, 33%(h0)
1.895¢-2, ¥4(Z9)
1.504e-2, 24(7)
1.326¢-2, Y4(X5)
1.079¢-2, SX(HY)
1.034e-2, $4(by)
9.897e-3, £4(7)
7.391e-3, $4(O (o az))
7.180e-3, 3%(Z9)
6.877¢-3, zjg(lfi)
5.467¢-3, Lu(IW¥)
2.717e-3, S4(Z9)
2.428e-3, 4(29)
2.336, Zu(X7)
7.776e-4, S4(h°)
4.199e-4, £7%(2°)
2.673¢-4, T4(1)
6.002¢-5, S5 (W)
2.986e-5, 4(XT)
2.282¢-8, B4(b)
7.812¢-9, Xi(7)

44.062, D% (t2)
27.465, 24(1)
11.205, H,
10.298, Hy
9.621, u
8.321, X (O(asn))
3.604, 3% (by)
2.505, $%(7)
2.486, 3% (b)
2.468, ¥(X 2nd gen. q)
2.468, XU(X 1st gen. q)
1.263, Z3(%7)
1.133, 33(7)
9.538e-1, %(Z9)
7.381e-1, 24(Z9)
6.755¢-1, D(H*)
2.064e-1, X(Z?)
1.361e-1, XU(t)
5.831e-2, L4(HO)
4.649¢-2, 34(Z9)
4.341e-2, B4(f1)
3.889¢-2, 1(2°)
2.793¢-2, Zd(bz)
2.706e-2, (S 2nd gen. §)
2.706e-2, S4(T 1st gen. q)
2.323¢-2, T (h° )
2.152¢-2, $(Z9
1.974e-2, Eg(
1.719e-2, B§(Z
1.553¢-2, X!
1.380e-2, Zd()(zi)
8.754e-3, U (HO)
8.132e-3, B4(O(asay))
7.408e-3, zd (HF)
6.470e-3, $4(72)
6.324e-3, $4(7,)
5.561e-3, SH(WE)
2.441e-3, $U(Y;
al

1.630e-3, 24(29)
7.394e-4, zd n°)
4.265e-4, £7(2°)
4.215¢-4, Zd(
6.098¢-5, Efj:
3.085e-5, S4(Y
1.895¢-8, Zd b

i
7.783¢-9, Zd(r

)
)

NHL\

Table 2.2: Top 46 contributions to Agy for our natural SUSY bench-

mark point for four different spectra calculator codes.

varying Ap.
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In Fig. 2.12, we show the values of a) my, b) m; , , ¢) Apw and d) A,
versus Ag/mg for the NUHM3 model with parameters as in the caption but with
(NUHM3 splits first/second generation sfermion soft terms from
third generation ones so that mg(1,2) # mo(3).) These plots are obtained using
SoftSUSY and can be compared to similar plots in Ref. [76] using Isasugra. We

see from frame a) that the value of my, is actually maximal at large negative A,



values (which are shown in frame d)). The large mixing in the stop sector lifts
the value of my, to the 125 GeV regime, but in this case only for negative A;
values. The stop mass eigenstates are shown in frame b) where again, when there
is large mixing, the eigenstates have the largest splittings and mj, becomes lowest
in value. In frame c), we show the corresponding value of Agy,. Here we see that
for large trilinear A;, then there can be large cancellations in X%(#; ») which lead
to decreased finetuning. The kinks in the curve occur due to transitions from one
maximal contribution to Agy, to a different one. The dominant contributions to
Agw in the middle of the plot comes from top-squark contributions whilst the left
and right edges come from tau-slepton contributions (as in Fig. 2 of Ref. [76]).
The low value of Agy coincides with the uplift in my to ~ 125 GeV for large
negative values of A;.

In Fig. 2.13, we show the third generation contributions to Agy vs. Ag/mo(3)
for the same parameters as in Fig. 2.12, but using SoftSUSY. These can be
compared with the same plot using Isasugra in Fig. 2 of Ref. [76]. Here, we
see that the contributions from staus and sbottoms are generally rather small,
and the top-squark contributions typically dominate. But for large |Aq/mq(3)],
then cancellations in both X¥(#;) and ¥%(f,) occur, and the stop contributions
become comparable to those of the other third generation sparticles, giving reduced

finetuning and greater naturalness.
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Figure 2.12: Values of a) mp, b) mz ,, ¢) Apw and d) A(Q) vs.
Ap/mg(3) for the NUHM3 model with mg(1,2) = 10 TeV, my(3) =5
TeV, my /3 = 0.7 TeV, tan 8 = 10 with p = 200 GeV and m4 = 2 TeV.
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Figure 2.13: Third generation contributions to Agy for the same
model parameters as Fig. 2.12 vs. Ag/mg(3) in the mg vs. m; /5 plane
of the NUHM2 model with g = 200, tan 8 = 10, A9 = —1.6mg and
myg =2 TeV.
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2.3.2 Natural regions of mg vs. m;,; plane

In Fig. 2.14, we show the mg vs. m,, parameter plane for the NUHM2 model
with Ay = —1.6myg, p = 200 GeV and m4 = 2 TeV. The plot is generated using
SoftSUSY but can be compared with similar results from Isasugra in Fig. 8b of
Ref. [81]. From the plot, we see the lower-left corner is actually excluded due
to charge-or-color-breaking (CCB) vacua which occur for too large Ay values.
Both SoftSUSY and Isasugra generate CCB regions there. We also show contours
of Higgs mass m;, = 123 and 127 GeV. These are qualitatively similar to the
Isasugra results but shifted to the right by a couple hundred GeV in mg. Thus,
much of the parameter space allows for the measured Higgs mass m;, ~ 125 GeV.
We also show naturalness contours for Agy = 15 and 30. These can also be
compared against the LHC Run 2 gluino mass limit m; 2 2.25 TeV as shown by
the light blue contour. The important point is that both SoftSUSY and Isasugra
agree that the bulk of this parameter space plane is EW natural, in accord with
LHC gluino mass limits, and in accord with the measured Higgs mass. This
is in contrast to older naturalness measures which required much lower gluino

masses[44, 45, 48, 47] and also Higgs boson masses[124].

2.4 Unnatural SUSY and its phenomenology

There also exist many renditions of supersymmetry that may yet still be potentially
viable at the LHC, yet fail in addressing the LHP via practical naturalness due to a

high degree of finetuning. Below, we address some of the most common versions of
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Figure 2.14: Contours of naturalness measure Agy and my in the
mg vs. my/p plane of the NUHM2 model with p = 200, tan 8 = 10,
AO = —1.6777,0 and ma = 2 TeV.
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unnatural SUSY in the MSSM, with some brief descriptions of the phenomenology
therein. Later, in Chapter 4, we devise a method on the string landscape that
allows us to compare these unnatural models to RNS, which ultimately leads to

the devised stringy naturalness calculation in Chapter 5.

2.4.1 CMSSM

For a long time, the mSUGRA[8] or CMSSM|7] model served as a sort of paradigm
model for SUSY phenomenology. This model posits gravity-mediated SUSY
breaking which induces a common scalar mass mg, a common gaugino mass 1m; 2
and a common trilinear soft term A all prescribed at the GUT scale m¢ ~ 2 x 10'°
GeV. The weak scale soft terms are determined by RGE running to the weak
scale, where electroweak symmetry is radiatively broken via a large top quark
Yukawa coupling. The p term is tuned via Eq. (2.9) to give the measured value
of my. In pre-LHC days, it was possible within the CMSSM model to gain accord
with naturalness (low Agy ) and with an acceptable thermal relic abundance of
the LSP. After LHC Run 2 — while respecting the LHC measured Higgs mass
and also LHC sparticle search limits — natural CMSSM spectra are no longer
possible[92, 68, 81].

For illustrative purposes, we compute the mSUGRA /CMSSM spectra using
the Isasugra spectrum generator[116, 117] for a mSUGRA/CMSSM benchmark
point with (mg, My, Ao, tanf = 5000 GeV, 1200 GeV, —8000 GeV, 10) which
yields a gluino mass myz; = 2.8 TeV (well above current LHC bounds) with

myp, = 124.3 GeV and with Agy = 2641 (highly EW finetuned). The thermal
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bino LSP abundance is ©,h* ~ 249 so non-thermal processes would need to be
invoked to bring the relic density into alignment with the measured dark matter

abundance[125].

2.4.2 PeV SUSY

PeV-scale supersymmetry[126, 127] is motivated by the possibility of SUSY
breaking via “charged” SUSY breaking fields S. For charged SUSY breaking,
scalar partners gain mass via Kahler potential terms K > %QTQ where the @)
are visible sector fields and S are hidden sector fields which carry some charge,
perhaps R charge. Thus, scalar fields gain a mass mg, ~ F TFg/m3 ~ m; /o Whilst
gaugino masses, which ordinarily gain mass via the gauge kinetic function f 3 kS
are forbidden. Hence, the leading contribution to gaugino masses (and also A-
terms) are the loop-suppressed anomaly-mediated contributions m, = %mg /2
and we expect My ~ mg/,/120, My ~ mg//360 and Ms ~ mg/5/40. The wino is
then the LSP and can make up the dark matter. Thermally produced relic winos
can make up all the missing dark matter for m,, ~ 3 TeV. Then, with a 3 TeV
wino, one expects scalar masses m ~ 1000 TeV, i.e. close to the PeV scale (1
PeV=1000 TeV). The PeV scale scalar masses provide a decoupling solution to
the SUSY flavor and CP problems[128]. The u parameter may range anywhere

between min, and m. The resultant light Higgs mass is expected in the range

125 GeV < my, < 155 GeV[129).
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2.4.3 Split SUSY

In split SUSY[130, 129, 131], the motivation is that the string landscape may
provide a selection mechanism for the finetuning of the electroweak scale in that
the weak scale must lie within the ABDS window in order to have a universe
with complex atoms as we know them, which seem necessary for life. However,
SUSY may still be needed for consistency with string theory, but the SUSY
breaking scale may now be far higher than that which is usually required by
naturalness. One may then allow masses of squarks and sleptons (which occur
in multiplets of SU(5)) to be as high as my ~ 10° GeV while fermion masses,
which are protected by chiral symmetry, can lie near the weak scale. This model
then preserves the SUSY success stories of gauge coupling unification and WIMP
dark matter while appealing to vacuum selection from the string landscape to
“tune” the EW scale to its value as required by the atomic principle. Thus, in
split SUSY, one expects both gauginos and higgsinos around the weak scale
whilst squarks and sleptons decouple at some intermediate scale (e.g. 10° GeV).
Such a split hierarchy of masses can arise from D-term SUSY breaking which
maintains an approximate, accidental R-symmetry[131]. The very high scalar
mass scale m provides a decoupling solution to the SUSY flavor and CP problems
and also alleviates the cosmological gravitino and moduli problems by making
these particles sufficiently heavy and thus shortlived in the early universe. The
striking signature of split SUSY models is long lived gluinos which may decay

with displaced vertices or even outside of the collider detector. For scalar masses
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as high as ~ 10° GeV, then the lightest Higgs scalar is expected to have mass

my, ~ 130 — 145 GeV[132].

2.4.4 High-scale SUSY

In high-scale SUSY (HS-SUSY)[133, 134, 135], it is assumed that the underlying
4-d theory is indeed SUSY, but with a much higher SUSY breaking scale than
that which is usually assumed to solve the gauge hierarchy problem. Thus, in
HS-SUSY, the superpartners are typically clustered at some very high mass scale
m ~ 10 — 10* TeV. In HS-SUSY, the SM is the LE-EFT and only the light Higgs
particle is expected to be produced at LHC. Indeed, by requiring the model to

yield the measured Higgs mass my ~ 125 GeV, then m ~ 10* — 107 TeV[132, 136].

2.4.5 Mini-Split

Mini-Split[137] SUSY is a version of split SUSY wherein the scalar mass m is
lowered to the ~ 10>~* TeV range in order to accommodate the measured Higgs
mass my =~ 125 GeV while gauginos remain near the TeV scale. Several scenarios
are envisaged in [137] including non-sequestered AMSB and U(1)" mediation.
These scenarios include a small A parameter while g may be either at the gaugino

scale (light) or at the scalar scale (heavy).

2.4.6 Simply unnatural SUSY

In simply unnatural SUSY[138] (SUN-SUSY), the scalar mass scale m is deter-

mined by the measured value of the Higgs mass m;, ~ 125 GeV to be m ~ 10> —10?
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TeV where the trilinear soft terms A; are assumed to be tiny (little mixing in the
stop sector). The SUSY pu term is also expected to be p ~ m while the gaugino
masses, which require an R-symmetry breaking to gain mass, are expected to
be at the TeV scale. Minimally, the gaugino masses are expected to obtain the
AMSB form, but the presence of heavy vector-like states could alter those relations
leading to a more compressed gaugino spectrum. Typically, the wino is expected
to be the LSP, and the relic abundance may be produced either thermally or

non-thermally due to late-decaying TeV-scale moduli fields.

2.4.7 Spread SUSY

In Ref. [139], it is emphasized that there may exist a forbidden region on the scale
of SUSY breaking m such that if m 2 O(1) TeV, then LSP dark matter will be
overproduced which can violate the anthropic bounds which disfavor/forbid DM
overproduction in that the baryon-to-DM ratio may be insufficient for baryonic
structure formation in the universe[140]. This forbidden region should persist
up to m ~ Tr where Ty is the reheat temperature of the universe at the end of
inflation. Higher values of m > Ty are allowed in that SUSY particles wouldn’t
be produced during the reheat process. Taking m > Tx then leads to a very
heavy SUSY spectrum (High Scale SUSY) whilst taking m ~ 1 TeV leads to
Spread SUSY in the case of SUSY breaking via “charged” hidden sector fields
(where scalars gain mass m but gauginos and A terms do not) or via uncharged
hidden sector fields (which leads to all sparticles at m ~ 10 TeV, dubbed the

“environmental MSSM”). The spread SUSY spectrum divides into two possibilities:
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1. scalar masses m ~ 10° TeV with gauginos at 10? TeV and higgsinos at ~ 1
TeV and 2. scalars around 10® TeV with higgsinos and gravitinos ~ 10 TeV and
gauginos ~ 1 TeV. Thus, the spread SUSY models typically have SUSY mass

spectra spread across three mass scales.

2.4.8 G;MSSM

The GoMSSM labels the sort of SUSY spectra expected to emerge from 11-
dimensional M-theory compactified on a manifold of Gy holonomy[141, 142] which
preserves N = 1 SUSY in the low energy 4-d effective field theory (LE-EFT). The
LE-EFT then consists of the usual MSSM fields plus an assortment of moduli
fields which are string remnants from the compactification. Scalar masses m
and the lightest modulus field are expected to gain masses of order the gravitino
mass Mg/, and in order to solve the cosmological moduli/gravitino problems then
m ~ 30 — 100 TeV. Gaugino masses are suppressed relative to scalars by a factor
log(mp/ms/2) ~ 30 so gauginos (and higgsinos) are expected at the 1-3 TeV range
and may have comparable moduli/anomaly-mediated contributions. The LSP
may be bino or wino-like but the relic density is seriously affected by non-thermal
production via the late-decaying lightest modulus field[143]. In later renditions,

the possibility of a hidden sector LSP is entertained[144].
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Chapter 3

Scalar sequestering: an alternate solution to the
LHP

Other methods exist for addressing the Little Hierarchy Problem and must be
addressed in turn. Recall from the previous chapter that the non-appearance
of supersymmetric matter at the CERN Large Hadron Collider[58] (LHC) has
potentially opened up a different naturalness problem[107]: the little hierarchy
problem (LHP) concerning the burgeoning mass gap between the weak scale
Mayeak ~ Mw,zn ~ 100 GeV and the so-called soft SUSY breaking scale mgof: ~
Mesparticless &€, WY 18 Muypear K Mgy 2 1 — 10 TeV?

Unnatural SUSY with large |p| > Mupear, while possible, seems at first glance
highly implausible. However, model builders have proposed a way to remain
natural even with |p| > Mmyeqr by discovering models where the combinations
m%{u’d + p? are driven to be tiny, while /|m§{u7d| and g individually can each be
large at the weak scale. This method is called scalar sequestering (SS)[145, 146,
147, 148].

The method of hidden sector sequestering (HSS) of visible sector operators
arises from postulating the existence of a strongly interacting nearly supercon-
formal hidden sector (HS) which is operative between the messenger scale M,
(taken to be of order the reduced Planck mass ~ mp in the case of gravity
mediation) and a much lower intermediate scale M;,; where the superconformal

symmetry is broken and SUSY is also broken. This method of sequestering was
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originally proposed[149] as a means to obtain anomaly-mediated SUSY breaking
(AMSB) models[150, 151] when geometric sequestering was shown to be difficult
to realize[152].

Under HSS, the various soft SUSY breaking terms get squeezed to tiny values

via RG running between m, and M,,; by a power-law behavior:
msoft(Mint) ~ (Mint/m*)rmsoft<m*) (31)

where the exponent I' includes combinations of classical and anomalous dimensions
of HS fields S. T is not directly calculable due to the strong dynamics in the
HS but is instead assumed to be ~ 1. For M;,; ~ 10 GeV and I" ~ 1, then
the suppression of gravity-mediated soft terms can be ~ 1077 in which case
the AMSB soft terms would be dominant. Additional symmetries seemed to be
required in order for HSS to be viable; nonetheless, the lesson was that (model
dependent) hidden sector effects could potentially modify the assumed running of
SUSY model parameters as expected under the MSSM only[153, 154]. HSS was
then found to offer a solution to the needed suppression of various problematic
operators. For instance, in gauge mediation[155] the By soft term is expected with
Bp > p?, leading to the famous By /u problem. HSS could be used to suppress
Bu(M;n) ~ 0 thus solving the problem[156, 145]. Also, in gravity mediation,

scalar masses arise via hidden sector-visible sector couplings such as
Cii
/ d4em—;STSQ§Qj (3.2)
P
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where the (); are visible sector fields and the S are hidden sector fields which
acquire an auxiliary field SUSY breaking vev Fg ~ (10! GeV)2. In gravity-
mediation, such operators are unsuppressed by any known symmetry (leading
to the SUSY flavor problem), but could be squeezed to tiny values via scalar
sequestering. A third application of (scalar) sequestering is to ameliorate the LHP
while maintaining large p values: |p| > Mueqr. This case, which is the subject
of this dissertation chapter, makes use of Eq. 3.2 to suppress via hidden sector
running all scalar masses to ~ 0. However, in the case where the Giudice-Masiero
mechanism|[157] is assumed® to generate a weak scale value of p, then the scalar
sequestering actually applies to mé for matter scalars, but to the combinations
m%,u’d + p? for Higgs scalars. In this case, at the intermediate scale M;,,, then
one expects mé ~ 0 but with quu’d ~ —p? so that p can be large whilst the
combination quu’d + p? is small: this has the potential to fulfill the naturalness
requirement in Eq. 2.9 while maintaining large || >> myear since p? and m%{uyd
are no longer independent.

In this dissertation, we examine the phenomenology of SUSY models with
scalar sequestering. In Sec. 3.1, we present a brief review of the theory underlying
scalar sequestering. Two different theory approaches have emerged: strong scalar
sequestering where hidden sector running overwhelms MSSM running[145, 146],
and moderate scalar sequestering[148], wherein hidden sector running and MSSM
running are comparable, leading to quasi-fixed point behavior for the intermediate

scale soft term boundary conditions. In Sec. 3.2, we examine strong SS, dubbed

!Twenty solutions to the SUSY p problem are reviewed in Ref. [158]
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here as the PRS (Perez, Roy and Schmaltz) scheme[146]. Here, the intermediate
scale boundary conditions are so determinative that only one (or a few) parameters
completely determine the SUSY phenomenology. In this case, problems emerge for
appropriate electroweak symmetry breaking, vacuum stability, and dark matter
physics (with typically a charged LSP and sometimes a left-sneutrino LSP). The
latter case with a charged LSP can be dispensed with via either an assumed
R-parity violation[159, 160] or assumed LSP decays to non-MSSM DM particles
such as an axino a[161]. In Sec. 3.3, we verify these results with parameter space
scans in the PRS scheme with and without unified gaugino masses. In Sec. 3.4,
we instead adopt the scheme in [148] — we refer to this scheme as SPM (Stephen P.
Martin)— with more limited HS running which is comparable to MSSM running. In
this scheme, for the case of unified gaugino masses (UGM), we find that although
SS reduces the amount of EW finetuning, significant weak scale finetuning arising
from large top-squark masses remains, so that the finetuning problem cannot be
said to be eliminated for large u. However, in the case of non-universal gaugino
masses (NUHM) which lead to large stop mixing and m, ~ 125 GeV, then
evidently low finetuning along with appropriate EWSB can be achieved for more

moderate values of y ~ 1 TeV.

3.1 Brief review of scalar sequestering

Let us assume a gravity-mediated generation of soft SUSY breaking terms since

gauge-mediation gives rise to trilinear soft terms A ~ 0 and hence requires large,
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unnatural values of top squarks[68] to generate m;, ~ 125 GeV[162]. At some
scale m, < mp, the (superconformal) hidden sector becomes strongly interacting.
Its coupling to visible sector fields leads to suppression of scalar soft breaking
masses and also the bilinear soft term b = Bpu. At some intermediate scale M;,;,
the conformal symmetry is broken and the hidden sector is integrated out of the
low energy EFT. Also around this scale, SUSY is broken at a scale Q% ¢y ~ Fs.

Under gravity-mediation, the following operators give rise to the usual soft

terms:
9 S
d HcAm—WW + h.c. = my ~ cx(Fs/mp), (3.3)
P
2 S
d QCAm_¢i¢j¢k + h.c. = Aijk ~ CA(FS/mp), (34)
P
d4ecuﬁ¢f¢- =m2 ~ ¢;;j(Fg/mp)* (3.5)
1 m%g 1] bij ig\L'S P) .
and
4 R 2
/d chm—QHqu + h.c. = Bu ~ c,(Fs/mp)~, (3.6)
P

where S is a HS chiral superfield and R is a real product of hidden sector fields
with R ~ STS + ---. In addition, for the scalar sequestering model, one assumes
the p term is initially suppressed (by some symmetry?) but then arises via the

Giudice-Masiero[157] mechanism at the scale m, s via
4y ST
d chm—Hqu = pam ~ cu(Fs/mp). (3.7)
P

The holomorphic terms ( [ d?0) are protected against renormalization effects by
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non-renormalization theorems but the non-holomorphic terms are not. The latter
terms give rise to scalar masses m(iij and the bilinear soft term Bp, and will
scale between m, and M;,; as (M;,:/m.)" where the exponent T is related to the
anomalous dimension of the S field.

While I' is not directly calculable since the HS is strongly interacting, under the
assumption that I is large and positive, e.g. ~ 1, then the factor (M,;/m.)" can
lead to large suppression of scalar masses and By as compared to gaugino masses,
A-terms and p. However, while i1 can remain large under scalar sequestering, the

2

combination ¥, = mj; , + u? gets driven to tiny values by the (Mip/m.)"

factor.

3.2 Scalar sequestered SUSY: PRS boundary conditions

In the PRS scheme[145, 146], the SS is assumed to dominate any MSSM running
of soft terms. In this case, one expects the usual MSSM running for gaugino
masses, A-terms and p between the high scale m, and the intermediate scale M;,;,
whilst HS effects suppress matter scalar masses m?%_, B and Higgs combinations
m%{u’d + 2. Thus, (under the assumption of unified gaugino masses) the parameter

space of the model is given by

m1/2, Ao, 1% and Mint (38)

where the first three of these are given at the high scale m,. Motivated by gauge

coupling unification, we take m, = mgyr, the scale where g; and g, unify under
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MSSM running, and where mgyr ~ 2 x 1016 GeV. Meanwhile, the matter scalar

masses, By and m%{u .t 1% are taken to be ~ 0 at the scale Q ~ M.

3.2.1 Results for M;,; = 10'' GeV and A, < 0

As an illustration, we show in Fig. 3.1 the running of soft terms and p for the case
where m;, = —Ag = 1.5 TeV with p = 500 GeV (the reason for ju ~ 500 GeV
is to be explained shortly). The pink shaded region shows the superconformal
regime, whilst the soft terms run according to MSSM-only RGEs in the left-side
unshaded region. We see from frame a) that the matter scalars start running at
Q = 10* GeV where the squark masses are pulled to large values > 2 TeV due to
the influence of the SU(3) gaugino mass M. Left-slepton masses are pulled up
by a large SU(2), gaugino mass M, to the vicinity of ~ 650 GeV at myeqr whilst
the right slepton masses are pulled up by the U(1)y gaugino mass M; to ~ 300

GeV. The running of the bilinear b-term is given by

b By
dt 1672

(3.9)
where the beta function is given at one-loop by

3 6
B = b(3f2+3f2+ f2—3g2 - ggf) + p(6asfi + 6apfo + 2a, - + 6922 Mo + gngl)
(3.10)

where the f; are Yukawa couplings, the g; are gauge couplings, the a; = A;f; are

the reduced trilinear couplings, and the M; are gaugino masses (further RGEs are
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given in, e.g., Ref. [3]). The vb = /By term is pulled from zero at Q = M,
to ~ 550 GeV at () = myeqr mainly by the second term of Eq. 3.10. Meanwhile,
with p = 500 GeV, the sign(m%{uyd) *1/|Imu, ,| soft terms begin at —500 GeV and
m%u is driven to large negative values at my,.qr due to the large top-quark Yukawa
coupling f;. Also, my, is driven dominantly by the gaugino mass M, to small
negative values ~ —100 GeV at Mmyeqx. Frame b) shows the running of trilinear soft
terms starting from ) = mgyr. These terms are pushed to large negative values
by the respective gauge interactions. In the case of A;, this may help drive stop
masses towards tachyonic values (i.e., negative squared mass values, where mt2 < 0,
implying the running mass is not a real value, which can affect minima of the
scalar potential) and consequently to charge and/or color breaking (CCB) minima
in the scalar potential. The importance of avoiding CCB minima is emphasized
in the following phenomenological features. Since the Standard Model and its
supersymmetric extensions assume a stable or metastable vacuum corresponding
to the observed universe, then if the scalar potential develops CCB minima, it
implies that there are alternate vacua where either charge, color, or both are
broken. This would mean that the universe could transition to these undesired
vacua, leading to a state where the fundamental symmetries of electromagnetism
and QCD are broken. Such a transition would likely result in a universe very
different from the one we observe, as well as leading to other exotic phenomena
and proton destabilization that would need to be explained. In particular, if
it were allowed for squark and slepton (squared) masses to run negative, then

these fields may be able to acquire non-zero vacuum expectation values (VEVs),
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leading to the aforementioned undesirable observable consequences, which would
be inconsistent with our current observations.

A major check on this very constrained PRS scheme is if the EW symmetry is
properly broken. Let us recall the (tree-level) conditions for proper EWSB. First,
one must check whether the scalar potential indeed does not develop a minimum
at hY = hY = 0, the origin of neutral scalar field space. The stability of the critical

point satisfying

o
O

u

ov
Oh

=0
h9=h%=0

h9=h%=0
are determined by the nature of the eigenvalues of the matrix of second derivatives
of the scalar potential, V', evaluated at the origin of field space. We refer to this
matrix of second derivatives as the Hessian. Here, the neutral scalar fields are
denoted A ;.

The goal is to have a vacuum whose origin of field space is destabilized, else

EWSB fails to occur properly. There are two cases in which this can happen:

1. the origin is a maximum in field space, or perhaps

2. the origin is a saddle point.

To determine the stability of the critical points we find, the type of critical point
can be identified using the second variable partial derivative test. Case 1 occurs
when the determinant of this Hessian is positive, but m7, + p? < 0 at the SUSY
scale; then, the origin of field space will be a maximum. This secondary condition
is crucial, meaning the positive determinant alone is insufficient here to determine

the nature of the critical point at the origin. When the determinant is positive,
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Figure 3.1: Running of soft terms and —p in the PRS scalar seques-
tering scheme for my,, = 1.5 TeV, Ag = —my 3, and pu = 500 GeV.
We also take the intermediate scale M;,; = 10" GeV. In frame a) we
show running scalar masses and the p term, while in frame b) we show
the running trilinear soft terms.
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but m%lu + 1% > 0, then the origin of field space will be a minimum, hence the
scalar fields fail to acquire nonzero VEVs and EWSB fails to occur.

Case 2 occurs when the determinant of the Hessian of the scalar potential at
the origin with respect to the neutral Higgs scalars is negative, as this implies its

eigenvalues have opposite signs, leading to

(Bu)* > (miy, + p*)(mi, + 11%). (3.11)

This is often referred to in the literature as the condition for having a maximum
at the origin of field space, but is more accurately described as a saddle point.
In either case of a maximum or a saddle point, the origin is destabilized, so
proper EWSB may yet be achievable, barring failure in the conditions below. In
particular, given that m%{u is driven large negative and By is driven small positive,
this saddle point condition may not always occur, but maxima sometimes occur
instead as in case 1!

Secondly, one must check that the scalar potential is bounded from below

(vacuum stability) in the D-flat direction h2 = hJ leading to the requirement that

my, +mi, + 21 > 2|By. (3.12)

Given that m%(u is large negative, this condition also may be subject to failure, in
which case the scalar potential is unbounded from below (UFB).

If an appropriate EWSB occurs, then minimization of the Higgs potential
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allows one to determine the Higgs vevs v, and vy, with tan 5 = v, /v, as usual.

The minimization conditions can be recast at tree-level as

m2, +m?, + 2u?) sin(2

and
2 2 2
my, — my, tan® 3

2
mz/2 = tan? 3 — 1

— 2. (3.14)

Usually, in models like mSUGRA, the first of these is used to trade By for
tan 4 and the second is used to determine the magnitude of . In the present
case, since the boundary condition for By is ~ 0 at Q = M;,, it is not available
to determine a unique value of tan 3, since the running of the soft parameters
depends on the Yukawa couplings which in turn depend on v, and vg, whose
values then define tan 5. Furthermore, from Eq. 3.14 we see that p is not freely
available to be determined by the measured value of my = 91.2 GeV. Thus, the
equations 3.13 and 3.14 must be used to map out the derived values of my in the
1 vs. tan 8 plane.

This is shown in Fig. 3.2 for the case at hand. Here, we see that for large u
values, then m?% is computed to be negative. For smaller u, then typically my is
of order the TeV scale. For a given value of tan /3, one can choose p near the edge
of the gray excluded region where my; ~ 100 GeV. For Fig. 3.1, we have chosen
tan f = 10 which then fixes p ~ 500 GeV. Unfortunately, for all choices of y and
tan 3 shown in the plane, we find the scalar potential to be UFB in the D-flat

direction.
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3.2.2 Results for A, >0

In Fig. 3.3, we show a PRS point that does develop appropriate EWSB where
My = 4 x 10! GeV and my 5 = Ag =1 TeV. For tan 3 = 21.25, we find p ~ 1.8
TeV. In this case, with Ay = 1 TeV, we see from frame b) that the A; parameters
are all positive for large @), with A; and A, becoming small and then negative
around @ < 10'° GeV. This feeds into the b parameter evolution causing b to run
at ) < M;,; to negative values until the large negative A; terms cause it to turn
up and become positive around ) ~ Myeqr, aiding in appropriate EWSB. While
this model does develop a viable EW vacuum, the slepton masses evolve only to
mpg, ~ 250 GeV at () ~ Myeqr SO that slepton masses are well below both the
u and M; terms. Thus, for this point we have a charged slepton as the lightest
SUSY particle. The derived sparticle mass spectra for this case are shown in Fig.
3.4.

In the case shown, with the MSSM-only as the low energy EFT, then one
would expect a charged stable relic, and dark matter wouldn’t be dark. One
can circumvent this situation by adding extra particles or interactions to the low
energy EFT. An example of the former would be to add a Peccei-Quinn (PQ)
sector with an axino a as the LSP so that €z — ea. In this case, one would get a
potentially long-lived but unstable slepton and one must avoid collider and other
constraints on such objects. The slepton lifetime would depend on the assumed
value of the PQ scale f,. An example of added interactions would be to postulate

broken R-parity so that the slepton LSP decays to SM particles. Then one must
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Figure 3.3: Running of soft terms and p in the PRS scalar sequestering
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= 1.8 TeV. The spectrum was produced using SoftSUSY v4.1.17 [1]
and slhaplot [2].

explain why some RPV couplings are substantial whilst others are very small, as

required by proton stability bounds[159, 160].

3.3 Parameter space scans: PRS scheme

3.3.1 Universal gaugino masses

In order to search for viable weak scale SUSY spectra in the PRS scheme, we

implement a scan over the PRS parameter space:
e my;p: 0.2 —5TeV
o Ay: =5 — +5TeV
o M, : 10° — 10* GeV.
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Our code then scans over values of (u, tan 3) leading to mz ~ 91.2 GeV. We then
check for CCB minima, points that are UFB, and appropriate EWSB. For points
that pass all criteria with appropriate EWSB, we then check for a neutral or a
charged LSP.

Our first results are shown in Fig. 3.5 where we show scan points a) in the Ay
vs. My plane and b) in the Ay vs. mq/o plane. From frame a), we see that only
the yellow points satisfy all EWSB constraints, although all the surviving points
have a slepton as the LSP. In particular, the Ay < 0 points almost all have either
CCB minima (for large negative Ag) or else an UFB potential. For Ag > 0, then
the scalar potential is better behaved but frequently does not have appropriate
EWSB. The scan points with appropriate EWSB are much more prominent at
large My, and large m s.

In Fig. 3.6, we show our scan points in the m,, vs. p plane. Here, we see some
structure where p ~ 2my s is favored. These qualitative features were also found
by Perez, et al. in Ref. [146] where most of their parameter space was excluded
by EWSB constraints except for large M;,, where they also found p ~ 2m,/, and
for their lone sample point, they also obtained a slepton as the LSP.

Given our overall scan results in the PRS scheme, we find the strong scalar
sequestering scenario (with unified gaugino masses) rather difficult (but not
impossible) to accept: the bulk of p-space points have problematic EWSB and
any surviving points have a charged LSP thus requiring new particles and/or
new interactions to evade cosmological constraints on charged relics from the Big

Bang.
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3.3.2 Non-universal gaugino masses
Varying M; and M,

One possibility to try to circumvent the slepton-LSP problem in the PRS scheme
is to appeal to NUGMs, by dialing down either M; or M, from their unifed values
until either the bino or the wino becomes the LSP. The computed sparticle mass
spectra are shown in Fig. 3.7 in frame a) for varying M; and in frame b) for
varying Ms. From frame a), we see that as M; diminishes, the lightest neutralino

mass mgo does indeed decrease (moving from unified gaugino masses on the right

>

to small M; on the left as shown by the lavender dashed curve). However, as M,
decreases, then upward RGE pull on mg; (right-slepton soft mass of generation )

from the U(1)y gaugino also diminishes, and ultimately m3, | go tachyonic (i.e.,
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m%ly , < 0, indicating charge breaking minima within the scalar potential) around
M ~ 0.23m; /2. Note in this case that the stau soft mass remains larger due to
a large negative X, term in the mQE3 RGE owing to large negative m?{d. This is
shown in Fig. 3.8 which shows the soft mass running for a case with small M;
compared to m;p. This behavior where the bino fails to become LSP in the PRS
scheme with small M; appears rather general when we scan over all M; values
(to be shown shortly).

Likewise, in frame b), we take M, to be its unified value on the right-side
of the plot, and then dial its value down to try to gain a wino as LSP. Around
Mj ~ 0.58m 2, the M+ and mgo mass curves coincide, showing that the lightest
neutralino has gone from bino to wino. However, in this case, the right-sleptons
remain LSP until M; ~ 0.35m,/, whence the left sleptons, and particularly
here the left-sneutrino, becomes LSP. Left-sneutrinos have direct detection cross
sections for scattering on Xe nuclei of o(t.p Xe — Do Xe) of ~ 4.5 x 107
cm?[163], about 23 orders of magnitude larger than current LZ limits[164], and so
are excluded as dark matter. For somewhat lower values of My, then By runs to
very small values, leading to a UFB scalar potential. This behavior also seems

rather general from our PRS scan with NUGMs.

Scan over PRS scheme with NUGMs

For completeness in our search for viable weak scale SUSY spectra in the PRS
scheme, we can adopt the case of non-universal gaugino masses and scan over this

expanded parameter space:
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Figure 3.7: The SUSY mass spectrum vs. GUT-scale gaugino mass
parameters M, Ms in the PRS model varied below m; /5. In both
frames, the spectrum at the far right is similar to the spectrum seen in
Fig. 3.4. In frame a) the mass spectrum as M;(GUT) is varied below
my o to zero is plotted. The neutralino never becomes the LSP, as the
selectron and smuon remain lighter until CCB minima are realized. In
frame b) we display the mass spectrum as M>(GUT) is varied below
my o to zero. Near My ~ 0.4m /9, the sneutrino briefly becomes the
LSP before the Higgs potential becomes unbounded from below due
to a lack of running in the b = By parameter. Thus, a neutralino LSP
cannot be achieved here. In both frames, we take m; 5, = M3(GUT) =

Ag=1TeV, My =4-10" GeV, and tan(3) = 21.25.
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o Mi(GUT): 0.2 -5 TeV

o My(GUT): 0.2 — 5 TeV

o M;(GUT): 0.2 — 5 TeV

o Ay: —5— +5 TeV

M+ 105 — 10™ GeV.

Similar to above, our code then finds pairs of (u, tan 3) leading to my ~ 91.2 GeV.
We then check for CCB minima, points that are UFB, and appropriate EWSB. For
points that pass all criteria with appropriate EWSB, we then check for a neutral
or a charged LSP along with LHC constraints on the gluino mass and lightest stop
mass. As discussed above, one may try to dial down the M;(GUT) parameter to
obtain a neutralino LSP, this leads to both CCB and EWSB issues in this model.
The issue of a charged LSP persists as in the UGM case, though it is possible
to accommodate a sneutrino LSP in some cases, when My(GUT) < M;(GUT).
However, this scenario is severely ruled out due to direct dark matter detection
constraints.

Our non-universal gaugino mass scan results are demonstrated in Fig. 3.9 where
we show scan points a) in the Ag vs. M, plane and b) in the M;(GUT)/M,(GUT)
vs. M3(GUT) plane. Even with NUGMs, we do not find any points where EWSB

is appropriately broken but without a charged slepton or left-sneutrino LSP.
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3.4 Scalar sequestered SUSY: SPM approach

In the SPM approach[148], it is noticed that there exist bounds on the scaling
dimension I' such that I" is positive but not too large, with I' ~ 0.3 maximally[165,
166, 167]. In this case, the superconformal running may be much less, and
comparable to the MSSM running. Let us denote the dimension 1 soft breaking
terms as m; and dimension 2 soft terms as mo. Then, after several field rescalings,

the dimension-1 terms (the M;, a;;; and p) run according to

di 3! MSSM
- = 3.15
dt mi ( )

while dimension-2 terms (matter scalars m(il_]_, M, , and b) run as

d
2 — g 4 BUSSV (3.16)

where the 3M59M are the usual MSSM beta functions and ¢ = log(Q/Q,) where
@ is the energy scale and () is a reference scale. For the superconformal regime
with M,y < @ < m,, then I' # 0 but for Q < M;,;, then the superconformal
symmetry is broken and integrated out, and I' — 0.

An intriguing effect in this case is that the m2 terms can run until the T'm3 ~

MSSM

MSSM which defines a quasifived point for the m3 running at m3 ~ —gM5M /T,

Approximate expressions for the fixed point values are given by SPM[148], but
will not be repeated here. Thus, the m3 terms tend to approach their quasifixed

point values as ) — M;,; instead of zero, as in the PRS scheme. This behavior
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helps to ameliorate the problems of the PRS scheme with respect to EWSB. The
approach to the quasifixed point values are shown in Figs. 3.10 and 3.11 for five
m3 cases.

In the SPM scheme, the m3 values approach (but do not exactly meet) their
quasifixed point values at () = M;,,;, so that the boundary conditions at ) = M;,,;
are no longer fixed. Thus, to generate a workable model, we must expand the
parameter space from the PRS scheme. For SPM, therefore, one must reintroduce

the various m2 boundary conditions at @ = m., and we will take

My, My/2, Ao, M, b:Bu (317)

After checking for appropriate EWSB, and then employing the EWSB minimiza-
tion conditions, one can again solve for the derived value of my. This is shown
in Fig. 3.12 where we show color-coded regions of myz in the Ay vs. u(GUT)
plane for mg = 10 TeV, my = 4.5 TeV and tan 3 = 15. From the plot, one sees
that there is no unique solution for mz ~ 91.2 GeV but rather two disconnected
regions depending on the sign of u, with a different pu value being obtained for

each choice of Ajy.

3.4.1 Case with UGMs

In the SPM paper, Martin has plotted out sample spectra for two cases, one with
unified gaugino masses (UGM) and one with non-unified gaugino masses (NUGM).

For the case of UGM, he shows sparticle mass spectra vs. my/, for mg = my,
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and also for my = 2.5m; 2, with tan 8 = 15 and with b = mf/Q, where Ag and p
are solved for. For the my = my/, case, he always finds a right selectron as the
LSP (as do we), so that either additional R-parity violating interactions or lighter
DM particles (such as axino) are needed to avoid charged stable relics from the
early universe. In the case of mg 2 2.5my /5, then the bino can become LSP. In
Fig. 3.13, we reproduce these results for the case of mg = 2.5m;,5. The region
between the pink shaded boundaries has 123 GeV < m;, < 127 GeV (as computed
here using FeynHiggs[168]). Typically, in such cases with heavy sparticles in the
multi-TeV range and a bino as the LSP, the thermally-produced neutralino relic
density Q,h% > 0.12. However, from Fig. 3.13 we do see that since slepton masses
are very nearly equal to m(bino), then coannihilation is available to reproduce
the measured DM relic density. We also see that the higgsino mass ~ p is very
large, varying from ~ 5 — 10 TeV over the range of m;/, shown. This would make
the model very unnatural under the conservative Agy measure. However, the
point here is that a mechanism is now present to drive the combination m%{u + p?
to small values, thus potentially ameliorating the LHP.

Since we have now arrived at acceptable spectra for the case of scalar seques-
tering in the SPM scheme, we next want to check whether it really solves the
LHP. In Fig. 3.14, we compute in frame a) the top five signed contributions
to the naturalness measure Agy. The largest contributions come from p and
mp, (weak), which are seen here as the blue and red curves. These lie in the
~ 10 range, making the model highly finetuned under Agy . In frame b), we

define a revised finetuning measure A’;;,, which is the same as Agy except that
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Figure 3.13: Sparticle masses vs. m;/p in the SPM UGM case with my /5 = mg/2.5.

now mjy;, + p* and mj; + p are combined into single entities since they are

now dependent (due to the CFT running above Q = M;,,;). In frame b), we see
the top five contributions to Ay, In this case, the X%(#;5) terms and my,
terms are largest, typically of order ~ 103. Thus, we find that although the SPM
scheme in the UGM case has reduced finetuning, it is still found to be highly
finetuned, mainly due to the large lightly-mixed top-squark masses contributing

to the radiative corrections X%(#; o).

3.4.2 Case with NUGM

Along with the UGM case, SPM also considers the case with NUGMs. This case
is motivated by obtaining a large stop mixing element A; which can enhance

my, — 125 GeV via maximal stop mixing rather than too large of stop masses.
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This can be achieved with M3 < M, while adjusting M; so that the bino remains
as the LSP. In Fig. 3.15, we show the weak scale sparticle mass spectra in the
SPM scheme with NUGMs. We plot vs. mg where M3 = 1.2 TeV, My = 4 TeV,
and M; = 2 TeV (all M; defined at @Q = mgyr). Our calculations match well with
the results of SPM. From the plot, we see that for low mg we still get a slepton as
the LSP (this time, it is the 7-slepton 7). For higher values of mg, then sfermion
masses increase as expected and for my 2 6 TeV one obtains m; 2 m(bino) and
so we get a bino as the LSP. Also, with M3(mgyr) only 1.2 TeV, then squarks
and sleptons are much lighter than in Fig. 3.13. With large stop mixing, then
my, ~ 125 GeV with not-too-heavy of stops and a chance for naturalness. The
higgsinos are heavy and lie near mg ~ 2.3 TeV.

In Fig. 3.16 we compute the top five signed contributions to the finetuning
measures a) Agy and b) Ay, for the same parameters as in Fig. 3.15. From
frame a), we see that the my, and p contributions to Agy are opposite sign
but with absolute values ~ 10% so that the spectra are finetuned under Agyy, .
However, the SS of quuy .t 1% means these quantities are no longer independent
and instead A’y should be used. From frame b), we see the top five contributions
to A’y are typically of order ~ 10: thus, this case of the SPM scheme with
NUGMs seems natural even with higgsino masses of ~ 2.3 TeV. (The breaks in
the curves of frame b) occur due to different contributions to Eq. 2.9 vying to be

within the top five.)
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Chapter 4

The string landscape: a statistical approach

4.1 Distributions on the string landscape

Supersymmetry is a key ingredient in superstring theory constructs. An advantage
of compactification of 10-d string theory on a Calabi-Yau manifold[38] is that it
preserves some remnant spacetime supersymmetry in the 4-d theory. Likewise,
compactification of 11-d M-theory on a manifold of G5 holonomy preserves some
remnant spacetime supersymmetry[169]. Acharya[170] argues for the proposal
that the landscape of all geometric, stable, string/M theory compactifications to
Minkowski spacetime at leading order are supersymmetric. Non-SUSY preserving
compactifications would lead to bubble of nothing instabilities and presumably lie
within the swampland[171].

Making contact with 4-d physics at the TeV scale (which is currently being
explored at the CERN LHC), it is apparent that N = 1 spacetime SUSY must
be broken.! But the question is: broken at which scale? The gauge hierarchy
problem (GHP) suggests SUSY which is broken at or around the weak scale, thus
providing a “natural” solution to the GHP wherein all quadratically divergent
contributions to the Higgs boson mass cancel. Weak scale supersymmetry is
also supported experimentally via the measured value of gauge couplings, whose
values unify at a scale mgyr ~ 2 x 10'6 GeV[26] under renormalization group

evolution[172] within the Minimal Supersymmetric Standard Model[173] (MSSM)

IFor a recent review of the status of SUSY after LHC Run 2, see [111].
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while they do not within the context of the Standard Model (SM). In addition,
the measured value of the Higgs boson mass falls directly within the narrow range
of values allowed by the MSSM[29]. Unfortunately, superpartners have so far
failed to appear at LHC leading to an apparent naturalness crisis[107].

An apparent alternative to naturalness has emerged from the string landscape[41].
Under flux compactifications[174], an enormous number of different compactifica-
tion possibilities are available[39, 40], each leading to different 4-d laws of physics.
Each of these possibilities can be accessed within the context of an eternally-
inflating multiverse[175]. This scenario provides the proper setting to realize
Weinberg’s anthropic solution to the cosmological constant problem[18]: we find
ourselves in a (pocket) universe with a tiny cosmological constant A.. ~ 107'%3m?
because if A.. was much larger, the universe would expand so fast that structure
(galaxies, stars, etc.) would not be able to form and life as we know it would
not arise. Such a solution to the CC problem is known as an environmental (or
anthropic) solution: environmental selection of a tiny cosmological constant within
the plenitude of pocket universes within the greater multiverse can select a highly
fine-tuned value for one (or more) of our fundamental physical constants. Such
a solution may stand in apparent opposition to a natural solution to the CC
problem.

Can the GHP also be explained via environmental /anthropic reasoning rather
than naturalness? Maybe. In the seminal papers by Agrawal, Barr, Donoghue
and Seckel (ABDS)[80, 176], the scenario of the Standard Model emerging from

the multiverse via an anthropic solution to the hierarchy problem is investigated.
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The authors consider the SM as the low energy effective field theory (LE-EFT),
but with a variable magnitude for the weak scale. If the weak scale were a factor
of ~ 2 —5 times larger than its actual value, then up-down quark mass differences
would increase, leading to nuclear instability: one enters a domain of the universe
where only protons exist, with no complex nuclei. For the weak scale reduced by
a factor of two from its measured value, then protons become unstable and beta
decay to neutrons: there would be no Hydrogen, just neutron rich matter. In terms
of the Higgs vacuum expectation value v, one finds 0.5 < v/vy < (2 —5) (where
v is the Higgs vev in our universe). This narrow range of values for the weak
scale has been dubbed the ABDS window in that values of v outside this range
would not lead to a universe with life as we know it. The anthropic requirement
for v to lie within the ABDS window could allow for a tuning of the weak scale
within the wider multiverse. It also selects out a narrow range of allowed values:
namely Myear =~ Mw,zn ~ 100 GeV and can ezplain the magnitude of the weak
scale rather than just accommodate it. The requirement for the magnitude to lie
within the ABDS window is sometimes also referred to as the atomic principle
in that it is required in order for any pocket universe to contain complex atoms
which seem necessary for a rich chemistry and for life as we know it.

Building upon the SM and ABDS, Arkani-Hamed and Dimopoulos[130, 129,
131] proposed a model known as Split Supersymmetry wherein the natural SUSY
solution to the GHP is eschewed in exchange for an environmental solution. This
then allows the possibility of a highly fine-tuned supersymmetric model. The

authors then investigate the consequences of scalar masses m far beyond the
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naturalness limit, taking /m as high as ~ 10° GeV. SUSY fermions, higgsinos and
gauginos, may be protected by a chiral or R-symmetry and may still live around
the EW scale. This set-up maintains the successful gauge coupling unification and
WIMP dark matter of SUSY models, but enlists the vast number of landscape
solutions to effectively tune the weak scale to lie within the ABDS window as
required by the atomic principle. The advantage of very heavy scalars (especially
first /second generation matter scalars), as noted much earlier by Dine et al.[128]
and others[177, 178] is that they provide a decoupling solution to the SUSY flavor
and CP problems and may also suppress proton decay. In addition, under gravity
mediation wherein scalars get mass of order the gravitino mass, this provides a
solution to the cosmological gravitino and moduli problems.?

Thus, Split SUSY and a variety of successor models[139, 137] have been
considered as legitimate expressions of what sort of SUSY models are expected to
emerge from the string landscape. In the literature, it is sometimes claimed that a
rather heavy Higgs mass and no sign of SUSY scalars at LHC might be construed
as evidence for finetuning within the multiverse as opposed to a natural solution
to the GHP, wherein there is no finetuning. Split SUSY, and the other high-scale
SUSY models considered here, are motivated by the expectation that the soft
SUSY breaking terms are statistically favored to occur at large as opposed to small
values on the landscape via a power law relation P(mop) ~ migjftJr”D ~! which
obtains if the complex-valued SUSY breaking F-term fields and real-valued SUSY

breaking D-term fields are distributed uniformly on the landscape[101, 180, 22].

2For a recent overview of the cosmological moduli problem, see e.g. [179].
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(Here, np is the number of hidden sector F-term fields and np is the number

of hidden sector D-term fields contributing to the overall SUSY breaking scale

)

migen = S FIF; + > D,D,.) This landscape draw to large soft terms must
be balanced by the anthropic/environmental condition that the derived value of
the weak scale in each pocket universe lies within the ABDS window of allowed
values[95, 102].

In this chapter we survey a variety of finetuned models (both the SM and
SUSY), including those in Section 2.4, and compare these to natural SUSY models,
all within the context of the string landscape. What we find is somewhat at odds
with the literature: natural SUSY models are more likely to emerge from the string
landscape than finetuned models. We advance a particular probability measure
P, which quantifies these probabilities. By taking ratios, we are able to evaluate
the relative probabilities for different models to emerge from the landscape.

In radiatively-driven natural SUSY (RNS)[76, 96], large high scale soft terms
can be radiatively driven to small weak scale values. Then all weak scale contribu-
tions to the weak scale are of order the weak scale. This corresponds to Agy < 30.
The RNS models can be generated from NUHM2 or NUHM3 models[76, 96], from
generalized mirage mediation[181] and from natural anomaly-mediation[182]. As
an example, we take a simple NUHM2 model with first/second/third generation
GUT scale scalar masses mg(1,2) = mg(3) = 4.5 TeV, myjp =1 TeV, Ag = —7.2
TeV, tan 8 = 10 with p = 200 GeV and m4 = 2 TeV. The model has mz ~ 2.4
TeV (LHC safe) with Agy = 12.8 and m;, = 124.3 GeV. The higgsino-like LSP is

m, = 195.3 GeV with Q,h? = 0.011 (so room for additional axion dark matter).
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While RNS models are typically slightly more natural for lower mq and m;,
values, we expect from the string landscape, under spontaneous SUSY breaking via
a single F-term field distributed uniformly as a complex number throughout the
landscape, a linear statistical draw to large soft terms[95]. For more SUSY breaking
fields, the statistical draw goes as fsygy ~ migftwl’ ~ where ng is the number of
hidden sector F' breaking fields and np is the number of hidden sector D-breaking
fields (the latter distributed as real numbers)[101, 180, 22].*> Convolution of the
statistical draw to large soft terms with the anthropic requirement that the derived
weak scale lies within the ABDS window then leads to a probability distribution
for my, that rises to a peak around mj ~ 125 GeV[102] (in part because Ay is also
drawn to large (negative) values giving maximal stop mixing[185]) with sparticles
typically beyond LHC reach. In this rendition, naturalness is replaced by what
Douglas calls stringy naturalness[79], where a mode is more stringy natural if
more landscape vacua lead to such a result. In stringy natural SUSY, a 3 TeV
gluino is more (stringy) natural than a 300 GeV gluino[81]. The RNS benchmark
given above is thus highly stringy natural. Thus, under stringy naturalness, RNS

models with LHC-compatible sparticle masses most commonly emerge from the

landscape[186].

3In [183], it is found that a linear n = 1 soft term draw is obtained for KKLT[184] moduli-
stabilization models.
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4.2 A scheme for computing relative probabilities from

the landscape

The central question we wish to address is: how likely are various SUSY models
(and the SM) to arise from the landscape? To answer this, we will restrict ourselves
to string vacua containing the MSSM as the low energy EFT, and where SUSY
breaking is mediated by gravity, i.e. spontaneous SUSY breaking in a N =1
supergravity framework.[187] In such a SUGRA framework, scalar masses are
generically non-universal[188, 189, 90, 190] unless protected by some symmetry:
e.g. the matter scalars of each generation fill the 16-dimensional spinor rep of
SO(10) so one might expect these to have a common mass mg(i), i = 1 — 3
a generation index.* Since the Higgs scalars come in split multiplets, there is
no reason to expect mg(i) = my,, and thus we expect the LE-EFT to be a
non-universal Higgs model (NUHM). This framework accommodates all of the
high-scale and natural SUSY models under consideration here.® While an absolute
probability for any particular LE-EFT (including those not within the realm
of the MSSM) is not possible to calculate (at least at this time), we can make
estimates of relative probabilities amongst gravity-mediated MSSM models based
on certain reasonable assumptions.

In Table 4.1, we list a variety of supersymmetric models, along with the SM,

and the proposed range for various first/second mg(1,2) and third generation

4We regard the AMSB soft terms as included in the gravity-mediated soft terms.
5For instance, in this framework, there is no known reason to favor the CMSSM model over
any of the NUHM models.
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model m(1,2) m(3)  gauginos higgsinos mp, P,

SM - - - - - 7-107%7
CMSSM (Apy = 2641) ~1 ~1 ~1 ~1 01-0.13 5.10°3
PeV SUSY ~ 103 ~ 103 ~1 1—-10> 0.125—-0.155 5-107¢
Split SUSY ~ 109 ~ 108 ~1 ~1 0.13—0.155 7-10712
HS-SUSY > 10? > 10? > 102 > 10? 0.125—-0.16 6-107*
Spread (ALSP) 10° 10° 102 ~1 0.125—0.15 9-10"10
Spread (wWLSP) 108 103 ~1 ~ 10? 0.125—-0.14 5-10°¢
Mini-Split (hLSP) ~ 10* ~ 10* ~ 10? ~1 0.125—0.14 8-10°%
Mini-Split (wLSP) ~ 10% ~ 10? ~1 ~ 10? 0.11-0.13 4-107*
SUN-SUSY ~ 10% ~ 10? ~1 ~ 102 0.125 4.10™*
GoMSSM 30 — 100 30— 100 ~1 ~1 0.11—-0.13 2-1073
RNS/landscape 5—-40 05-3 ~1 0.1-0.35 0.123 —0.126 1.4

Table 4.1: A survey of some unnatural and natural SUSY models
along with general expectations for sparticle and Higgs mass spectra
in TeV units. We also show relative probability measure P, for the

model to emerge from the landscape. For RNS, we take i = 10
GeV.

mo(3) scalar masses, along with the expected range for gaugino and higgsino
masses and the range of the light Higgs mass. In the last column we list the
relative probability measure P, to be explained below. For the two SUSY models
CMSSM and RNS, we have approximate supersymmetry extending all the way
down to the weak scale. For the remainder of SUSY models, which include rather
high mass scales m, we assume the heavy SUSY states are integrated out at
scale () ~ m which then destroys softly broken SUSY below the m scale, so that
quadratic divergences arise which are proportional to A = m as in Eq. 2.4. A
pictorial comparison of the spectra from the various models is given in Fig. 4.1.

For the two SUSY models RNS and CMSSM, the dominant contribution to
the weak scale can be extracted from the value of Agy,. Then the pocket universe
value of mLY can be computed using Eq. 2.9 as

mPUQ mOU\/A—Q
A (1.
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models as depicted in Table 4.1.
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(assuming the dominant contribution dominates all other contributions to (m5Y)?,

9U = 91.2 GeV, the value of myz in our

which is usually the case.) Here, m
universe (OU). In most SUSY spectrum calculations, the value of the p parameter
is finetuned to ensure that m gains its measured value in our universe. However,
in the multiverse, each pocket universe containing the MSSM as the LE-EFT will
have a different value of upy which will in general lead to a value for the weak
scale which is very different from the one in our universe: m45Y # m%V. In fact,
frequently m%Y may differ from m9Y by many orders of magnitude. If it does,
then one will have a pocket universe with m,eq; outside the anthropic ABDS
window, thus violating the atomic principle.

What is the likely distribution of SUSY ppy parameters in the multiverse?
Here, we assume the p parameter arises in the superpotential as in the Kim-Nilles
(KN) solution to the SUSY i problem[191],% where we expect W 3 \,S?H, Hy/mp.

The PQ charged field S acquires a vev of order f, ~ 10! GeV under PQ breaking

so that a p parameter arises:

/L(KN) ~ )\Mfs/mp ~ Myeak - (42)

Thus, the KN p parameter has the form of a (Planck-suppressed) Yukawa coupling,
in accord with the other Yukawa couplings which occur in the superpotential. But
the question is: what sort of distribution for 4 would we expect on the landscape?

For fixed A, this has been computed in a particular well-motivated KN solution

SFor a recent review of twenty solutions to the SUSY u problem, see Ref. [158].
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based on an anomaly-free discrete R-symmetry Z%[192]. However, for non-fixed
Ay, this may well be different. In fact, Donoghue, Dutta and Ross[193] make
a convincing case that Yukawa couplings are distributed uniformly across the
decades of possible values, which appears to match well with the measured fermion
mass values. We will adopt the Donoghue et al. ansatz for the KN p parameter
as well: that no particular scale for the ppy value is favored over any other from
the string landscape. This seems reasonable in that the only scale inherent in
string theory is the string scale, and all other scales likely arise dynamically: i.e.
there is no preferred scale for ppy. This corresponds to a landscape distribution
fu ~ 1/ so that the integrated distribution is indeed scale invariant.

In Fig. 4.2, we show on the x-axis over 15 decades of possible values for ppy.
For the RNS model, where the maximal contribution to the RHS of Eq. 2.9 is
bounded to lie within a factor a few of our measured value of the weak scale,
then there is a substantial range of ppy values leading to mLV lying within the
(blue-shaded) ABDS window. We will take (quite arbitrarily) the lower limit of
wpy to be ~ 10 GeV. Values of ppy(min) higher or lower by an order of magnitude
from this value lead to differences in P, of a factor ~ 2 which is inconsequential
for our purposes. The probability for a random value of upy to give rise to m4Y

within the ABDS window is then

P, = logyo(ppu(maz)/ ppy (min)) (4.3)

i.e. the length of the interval of logarithmically distributed ppy values. Using
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this interval, we find P,(RNS) ~ 1.4.
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Figure 4.2: Values of mLY vs. ppy or pgys for various natural (RNS)
and unnatural SUSY models and the SM. The ABDS window extends
here from mgU ~ 50 — 500 GeV.

For the CMSSM benchmark model with Agy = 2641, then the maximal
contribution to the RHS of Eq. 2.9 is well beyond the ABDS window. Thus,
a finely-tuned value of ppy will be needed in order for mLY to lie within the
ABDS window, in accord with the atomic principle. One will have to live in the
nearly vertical portion of the red CMSSM curve, for which the interval length is
P,(CMSSM) ~ 0.005. While the absolute values of P, don’t have a particular
meaning (we don’t know the overall normalization), the ratios of probabilities do.
In this case, we would expect the RNS model to be P,(RNS)/P,(CMSSM) ~ 260
times more probable on the landscape than the CMSSM benchmark model. In this

case, the “natural” value for the weak scale in the case of the CMSSM benchmark
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model would be Myear ~ Mz Apw ~ 5 TeV.

We can also calculate a value of P, for the SM, assuming the SM is valid all
the way up to a scale Q ~ mgyr as is assumed in estimates of the SM vacuum
stability[194]. Here, we will also assume that gy, has a scale invariant distribution
so that the z-axis of Fig. 4.2 pertains to pugy of Eq. 2.19 as well as to pupy. Taking
the value of m5Y ~ m}’Y, we can use Eq. 2.19 to plot the value of the weak scale
in the SM. The plot is shown in Fig. 4.2 as the SM curve. Here, we see a value of
psar ~ 101 GeV is needed for mEY(SM) to lie within the ABDS window while
the natural value of m%4Y(SM) is ~ 10'> GeV. This shows the extreme finetuning
needed by the SM in order to ensure the weak scale lies within the ABDS window.
We can compute P,(SM) and find it to be ~ 710727, that is the RNS model
about 10%° times more likely than the SM to emerge from the landscape.

We can now also compute P, values for the various high-scale SUSY models
listed in Table 4.1. The key point here is that quadratic divergences still cancel
out at energy scales () > m. But once () drops below m, then we must integrate
out the heavy sparticles in the LE-EFT and the quadratic divergences no longer
cancel. Then we may use the uncanceled terms in Eq. 2.4 to compute corrections

to the Higgs mass, again with mZY ~ my,. For most of these models, we take

A ~ m = mg(3) to compute the curves of m4Y vs. gy, where now the Higgs

potential is that of the SM for Q < m.”

The various curves are shown in Fig. 4.2 for the assorted high scale SUSY

“For the SM parameter values entering Eq. 2.4 in the case of high scale SUSY models with
scale boundary m, we use FlexibleSUSY and FlexibleEFTHiggs to extract the appropriate
values [195, 196, 197].
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models of Table 4.1. We can then extract the values of P, for each case. As an
example, Split SUSY with mg(3) ~ 10° TeV gives P, ~ 7-107'? so that RNS is
~ 10'? times more likely than Split SUSY to emerge from the landscape. Lest
one be dismayed by the low relative probability for Split SUSY to emerge from
the landscape, it is worth noting that the Split SUSY benchmark is ~ 10'° times
more likely to emerge from the landscape than the SM (when the SM is valid up
to @ = mgur). Scaling m to lower values in order to accommodate the measured
value of my, as in mini-split helps matters somewhat: in this case, mini-split with
a wino LSP and m ~ 10% TeV has P, ~4-107%, so the RNS benchmark is more

likely to emerge than the mini-split benchmark by a factor ~ 3000.
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Chapter 5

Quantifying stringy naturalness from bottom to

top

5.1 Stringy naturalness as a density measure in the land-

scape

Stringy naturalness may be viewed as a measure on the density and abundance of
vacua satisfying some set of criteria, such as the ABDS condition. Additionally,
we may require that an additional set of alternative criteria are satisfied, such as
proper EWSB and absence of CCB minima (such as negative squared masses in

squarks or sleptons). Here, stringy naturalness is defined as the following [198]:

Stringy naturalness: The value of an observable Oy is more stringy natural
than a value O1 if more phenomenologically viable vacua lead to Oy than to

O;.

In particular, choosing the mass of the Z boson and its relation to the ABDS
window as a selection criterion for vacua satisfying the atomic principle, then we

can say:

If more vacua lead to the ABDS window in scenario A than in scenario B, then

scenario A is considered more stringy natural than scenario B.

In regards to “scenarios”, one can compare different realizations of supersym-

metry on the landscape, such as comparing high-scale SUSY against radiative

127



natural SUSY (RNS), or even against non-supersymmetric models like the Stan-
dard Model(albeit with different statistical distributions — see [17, 199]for detailed
stringy constructions). While useful densities and distributions are given in these
references, in practice this is a very broad and complex task in and of itself. In
practice, a researcher may just have data on a single possible vacuum where my
is tuned to 91.1876 GeV, such as in an SLHA file for a supersymmetric spectrum
generated by a spectrum generator. For this reason, it is necessary to create a
stringy naturalness measure that can evaluate the density of ABDS-compliant (as
well as EWSB-compliant and "no CCB”-compliant) vacua “surrounding” some
initial vacuum in the landscape. These are the efforts presented here.

In [19], we determined an approximate relative vacuum density, P,, based
on the Higgsino (or Higgs) mass parameter u'V within some pocket universe of
the landscape with variable m . This effectively offered a comparison standard
between scenarios, comparing the “width” of the ABDS window in these scenarios
by evaluating m%Y from the relevant weak-scale parameters and Y with the
Higgs minimization conditions (or weak-scale mass conditions in the Standard

Model) in the following models:
e Radiative natural SUSY,
e mSUGRA/CMSSM,
e Split SUSY,

e Mini-split SUSY,
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Spread SUSY,

High-scale SUSY,

PeV SUSY,

the Standard Model.

The evaluations to obtain this measure P, can be expressed as the following
integral in Eq. (5.2). Let the lower edge of the ABDS window lie at m2" /2 = 45.6
GeV, and the upper edge lie at 4mQV = 364.8 GeV. The uF'Y term is distributed
on the landscape in a fashion such that mu is uniformly distributed over the

decades, i.e., the probability distribution of u”Y is

1

T Log10) [P0

(5.1)

Then the density of vacua associated with vacua containing PV values leading to
the ABDS window allow us to approximately compare different landscape vacuum
scenarios as
pPY (max)
b= / fudp™
4#PU (min) (52)

= logy, (M) .
P (i)
Clearly, “wider” ABDS windows (as in RNS) will lead to many more vacua that
are ABDS-compliant, relative to “narrower” ABDS windows (as in the Standard
Model, up to ~ 10?® times smaller of a density relative to RNS). Two primary

“incompleteness” issues may arise here, however:
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1. The density measure here is unnormalized and only can effectively compare
different, pre-simulated scenarios. However, this may be a non-issue, as the
current number of flux vacua in the string landscape with the MSSM or
SM as its low-energy EFT is not a settled debate. Hence, this need not
be addressed here, as the definition of stringy naturalness can easily be
connected to the idea of the density of vacua in some neighborhood of the

landscape.

2. There are other parameters potentially distributed on the landscape. For
example, soft-SUSY-breaking (SSB) terms could be distributed on the
landscape according to a power-law distribution, based on the number
of F- and D-type SUSY breaking fields present in the theory [199]. A
more complete vacuum density measure would incorporate the statistical

contributions of these terms to the relative population of the ABDS window.

Given our understandings of the statistical distributions of soft terms on the
landscape, when we couple the ABDS window criterion with other criteria such
as proper EWSB and absence of CCB minima, we can address this second issue.
An algorithm will be constructed below to permit a “point-by-point” evaluation
of stringy naturalness.

While the overall SUSY breaking scale is distributed as a power-law, the
different functional dependence[188, 189, 90] of the soft terms on the hidden sector
SUSY breaking fields means that gaugino masses, the trilinear soft terms and the

various scalar masses will effectively scan independently on the landscape[190].

130



Now it is an advantage that different scalar mass-squared terms scan independently
(as expected in SUGRA) since the first/second generation scalars get pulled to
much higher values than 3rd generation scalars, while the two Higgs soft masses
are also non-universal and scan independently. This situation is borne out in
Nilles et al. mini-landscape where different fields gain different soft masses due to
their different geographical locations on the compactification manifold[200]. In
terms of gravity mediation, then the so-called n-extra-parameter non-universal

Higgs model (NUHMn) with parameters[13, 15]

mo(i), mu,, M, M, Ao, tans  (NUHMA4) (5.3)

provides the proper template. Since the matter scalars fill out a complete spinor
rep of SO(10), we assume each generation ¢ = 1 — 3 is unified to mg(i). Also,
for convenience one may ultimately trade mpy, and my, for the more convenient
weak scale parameters m,4 and p. One may also build (and scan separately) the
natural anomaly-mediated SUSY breaking model[182, 201] (nAMSB) and the

natural generalized mirage mediation model[181] (nGMM).

5.1.1 The ABDS window

The anthropic selection on the landscape comes from the probability distribution
fEwsn to be discussed shortly. This involves a rather unheralded prediction of
the MSSM: the value of the weak scale in terms of soft SUSY breaking parameters

and p, as displayed in Eq. (2.9). However, in the multiverse, here we rely on
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the existence of a friendly neighborhood[22] wherein the LE-EFT contains the
MSSM but where only dimensionful quantities such as Acc and v2 + v3 scan,
whilst dimensionless quantities like gauge and Yukawa couplings are determined
by dynamics. This assumption leads to predictivity as we shall see.

Under these assumptions, then we ask what conditions lead to complex nuclei,
atoms as we know them, and hence the ability to generate complex lifeforms in
a pocket universe? For different values of soft terms, frequently one is pushed
into a weak scale scalar potential with charge-or-color breaking minima (CCB)
where one or more charged or colored scalar mass squared is driven tachyonic
(i.e., m* < 0). Such CCB minima must be vetoed. Also, for too large of values
of m%[u, then its value is not driven to negative values and EW symmetry is not
broken. These we label as “no EWSB” and veto them as well. In practice, we
must check boundedness of the scalar potential from below in the vacuum stability
conditions and that the origin of field space has been destabilized, at least at
tree-level. Some leading loop-level contributions to these conditions have been
presented in Appendix C.

At this point, we are left with (MS)SM vacua where EW symmetry is properly
broken, but where myeqr, ~ mw 2 is at a different value from what we see in our
universe. Here, we rely on the prescient analysis of Agrawal, Barr, Donoghue and
Seckel (ABDS)[80, 176]. If the derived value of the weak scale is bigger than ours
by a factor (2 — 5), then the light quark mass difference my — m, becomes so
large that neutrons are no longer stable in the nucleus and nuclei with Z > N

are not bound; such pocket universes would have nuclei of single protons only,
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and would be chemically inert. Likewise, if the PU value of the weak scale is a
factor ~ 0.5 less than our measured value, then one obtains a universe with only

neutrons — also chemically inert. The ABDS window of allowed values is that

0.5moY, < mbY, < 4am (5.4)

wea weak ~o weak

where we take the (2 —5)mY, to be ~ 4mPY  for definiteness, which is probably
a conservative value. It is very central to our analysis and so is displayed in Fig.
5.1. Our anthropic condition fgwsp is then that the scalar potential lead to
minima with not only appropriate EWSB, but also that the derived value of the
weak scale lie within the ABDS window. Vacua not fulfilling these conditions

must be vetoed.® This lays the foundations for the requirements of a quantifiable

A]?_)DS window

mG =012 GeV

: PU
" : mz
Y ”

0.5mz == 45.6 GeV dmyg = 365 GeV

Figure 5.1: The ABDS-allowed window within the range of mgU values.

stringy naturalness measure, which will be elaborated upon in the next section.

'Early papers on this topic used instead a naturalness “penalty” of fewsp ~ m2_ ../ Mm% sy
this condition would allow for many of the vacua which are forbidden by our approach.
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5.2 Requirements for a stringy naturalness measure

If one were to try and evaluate stringy naturalness in a reliable manner more
rigorously than simply “counting dots” from a multiverse simulation [21], there

are a few key details that must be included in the evaluation.

1. One must account for the probability distributions of terms (e.g., soft terms
distributed as power law based on number of D and F' SUSY-breaking fields)

on the string landscape;

2. One must incorporate a method for establishing the density of the number
of vacua leading to some observable, as given by the definition of stringy

naturalness;

3. Since on the string landscape, my is variable, one can use a set of selection

criteria for “valid” vacua as:

(a) The Z boson mass lies within the ABDS window, as determined by the

weak-scale Higgs minimization conditions:

m}  mi, +Sa— (my, + 5,) tan?(J)
2 tan®(B) — 1 o o
sin(2f) = 20 (5.6)

myy, + Xy +my, + g+ 2%

Yu.q are radiative loop corrections to these equations, which are listed
in Appendix A. It is key that as the value of my shifts in the landscape,

both conditions Eqgs. (5.5-5.6) must be satisfied to ensure criticality of
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the scalar potential from the EFT viewpoint. Thus, a distribution of
tan(f) is induced on the landscape through this requirement. Existence
and stability of scalar potential extrema and subsequent minimization

must also be ensured as in the points below.
(b) There are no CCB minima.

(c¢) The electroweak symmetry is satisfactorily broken, i.e., when the fol-

lowing weak-scale conditions are true:

2b < 2u* +m3;, +my,, (5.7)

b* > (p° +my,) (1* +mj,) . (5.8)

There are potentially relevant loop corrections to these tree-level ex-

pressions. These corrections are listed in Appendix C.

(d) It will be otherwise assumed that the weak-scale structure and strong
gauge couplings are assumed to be similar to their SM counterparts
in our universe through stringy dynamics, ignoring contributions from
the variable Higgs VEV. Gauge and Yukawa couplings can then be
determined in the appropriate renormalization scheme from dynamics
based on this construction. It must be noted that variations in tan(f3)
within the landscape to ensure minimization also will shift Yukawa

couplings at tree-level.

Next, we construct an algorithm to accomplish these requirements and produce a
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measure for evaluating stringy naturalness on a point-by-point basis.

5.3 Numerical precision and statistical considerations

Depending on the level of statistical rigor we would like to apply to this density
measure, different approximations of the stringy naturalness value can be employed.
The level of accuracy of these approximations are directly proportional to their
levels of robustness for the corresponding statistical analyses of the landscape, and
hence, the level of computational complexity. In brief, we present an approximate
expression (& la P,) for computing the density of ABDS-compliant vacua emerging
from the landscape around some initial vacuum. In the future, a more robust
and specialized Monte-Carlo simulation algorithm for computing the density of
ABDS-compliant vacua randomly emerging from the landscape can be produced.
The landscape is assumed to be parameterized by the Minimally Supersymmetric
Standard Model (MSSM) parameter space, in some local neighborhood surrounding
one user-specified possible vacuum with the MSSM and Standard Model (SM)
(with potentially different Higgs VEV and, by extension, Z boson mass) as its
low-energy effective field theories (EFTs). The specific requirements are outlined
in the previous section.

Many supersymmetric spectrum generators today (e.g., SoftSUSY, Isajet /Isas-
ugra, SPheno, etc.) can provide predictions of the MSSM that are potentially
testable at a collider. Often, the user is able to save their results to a standardized

format, the SUSY Les Houches Accord (SLHA) [23, 24]. From this format, one
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can compute various naturalness measures such as the electroweak naturalness
measure Agy, the high-scale naturalness measure Ayg, and the Barbieri-Giudice
naturalness measure Apgg as described in the preceding Chapters. These can all
be calculated from a user-submitted SLHA-format file, from the user’s choice
of spectrum generator, using the program natLHA, developed by D. Martinez
[202]. In a similar sense, we have developed a program to compute a proposed
stringy naturalness measure. In an approximate form, we can write this stringy
naturalness measure as an analytic expression.

However, before introducing these expressions and algorithms, we must ensure
we have a concrete method for determining the density of vacua. Included in this
is the requirement of understanding the parameter space in which our parameters
are distributed. For this reason, we parameterize some “friendly” neighborhood
of the landscape surrounding an initial vacuum with the MSSM parameters as
mentioned above. The MSSM in itself contains a vast parameter space, though, so
we specifically restrict ourselves to the real-valued MSSM, but still maintain some
generality by relaxing universality conditions, neglecting off-diagonal CP-violating
effects. We also assume the relevant gauge-eigenstate mass matrices are diagonal.
In our proposed parameter space here, we assume there are 30 fundamental soft
supersymmetry-breaking (SSB) parameters (15 SSB squark/slepton masses, two
SSB Higgs masses, nine SSB trilinear couplings, three SSB gaugino masses, and
one SSB bilinear parameter) along with one SUSY-conserving parameter, p, which
is important for weak-scale physics. This full parameter space can then be written

as the set:
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An important note to consider here is that we are working in the regime of
weak-scale physics and its minimization conditions, whereas these parameters
are renormalization-scale dependent (see Appendix B). Thus, to approximately
account for renormalization effects in a consistent manner, our parameterization
of the landscape in terms of MSSM parameters is specifically through their
weak-scale values. These weak-scale values will be coupled (within the regime of
perturbativity) to GUT-scale parameters through the renormalization group flow,
which then is assumed to be the consequence set by some stringy dynamics on
the number and configuration of F- and D-type SUSY-breaking fields. No further
assumptions are made in regards to the stringy aspects of the theory, as this is
outside the regime of the EFT.

However, in regards to practical naturalness, we should compare contributions
to the density of vacua that have ABDS-compliant weak scales. Thus, the stringy
naturalness measure we construct will share more similarities with Agw in Eq.
(2.10) than Apg or Agg in Egs. (2.6-2.7)

Vacua in the landscape can be selected for analysis according to a well-defined

set of selection criteria, which we will denote generally here as an indicator function
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6. 0 is defined as

1 if conditions are true,
0 = 0(conditions) = (5.9)

0 otherwise.

According to Douglas and others [199], these soft-supersymmetry breaking terms
may be distributed in the string landscape according to the numbers np and
np of F- and D-type SUSY breaking fields, where these fields may lie in some
hidden sector or potentially within a more UV-complete theory that breaks
down to the MSSM as an EFT somewhere below mp, the reduced Planck scale.
This can be expressed approximately as a density of vacua, scaled by the power
law distribution provided by the number of SUSY-breaking fields on the soft

supersymmetry breaking scale:

deac, soft ™~ fSUSY (msoft> -0 - dmsoft
(5.10)

2np4+np—1
~ Mg -0 - dmsoftu

Meoty here denotes the scale of the soft supersymmetry breaking terms and is
typically expected ~ 10! GeV such that this scale is given by mgog ~ méygy/mp
with mp ~ 2.4-10'® GeV the reduced Planck mass. Douglas and others [199, 198]
mention that the SUSY-breaking scale is on the order of the distance from the

origin in SUSY-breaking field space, which is expressed in terms of the magnitudes
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of the F'— and D—type SUSY breaking fields.

1
Msysy = Z |Fl* + 9 Z |1D;?
ng np

Since we are parameterizing this space in terms of the MSSM EFT parameters,
we can construct a similar Ly (Euclidean) norm measure computing the distance
of a vacuum, parameterized by its parameter vector p, from the origin of this

parameter space. For this parameter vector p, the Lo norm takes the form

|p|2 = Z |pi|27

where a sum is taken over the magnitude squared of the components of p.

In other words, m3;qy can be set using the L, norm (specifically Ly(C))
of mass-dimension 1 parameters in the soft SUSY-breaking sector. For mass-
dimension 2 parameters, since we are just interested in the distance from the origin
of parameter space, we only need the magnitude of a parameter p; = m . Note
that p is not a soft term and is not included in this measure, and so its effect on
the b = Bpu soft parameter must be carefully split into independent components B
and pu, each of mass dimension 1. This leaves 30 soft SUSY breaking parameters

with dimension-1 magnitude p; in our parameter space. Hence,

2
m
Migopy ~ —200F

mp

1 30
2
m > il

i=1

(5.11)
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We then cast our density of vacua due to the soft parameters of the theory as

2np+np—1
fsusy ~ Mo

. 30 n (5.12)
~ mn (Z |Pi|2>

p =1

where n = 2np +np — 1.
To turn this into a calculable expression that can be integrated, we convert
the differential dmg.g to differentials dp; in various directions of soft parameter

space, based on the definitions above.

9 30
dmsoft ~ E [Z |pl|d|pz|] (513)

P |i=1

The full differential density of vacua in terms of the soft parameters in Eq.
(5.10) may then be expanded and subsequently integrated to give the parametric

dependence of the density as below.

30
2 n
dNvac, soft ~ mnt (mgusy) [E |pi|d|pi|] (5.14)
=1

p

In integrating, consider the possibility that m%{%d < 0, meaning |mpy, ,| =
\ /]m%(u d\ Squark and slepton squared masses should not run negative to avoid
CCB minima, but the integration method in the d|mpy, ,| directions must be
addressed. This is the reason for the Ly(C) norm in our expressions for m3qy-

Since we care about the “distance from the origin” of SUSY-breaking parameter

space, and the solution will only depend on the magnitude of parameters |p;|, then
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if p? < 0, we may take p; = ib (where i = \/—1) purely imaginary, with b > 0.
The integration in this direction then proceeds along the positive imaginary axis
d|p;| = db, until the origin (or edge of the indicator 6) is encountered. If p; = 0 is
reached, the integration direction switches to run along the real axis, away from
the origin — such that p? > 0 — until integration conditions are met according to
the indicator function 6.

On the other hand, for parameters such that p? = 0, then integration with
|p:|d|p;| towards and away from the origin of parameter space can proceed along
the real axis. Proceeding with this integration, we get the density of ABDS vacua

below.
30 Pj+

Nusesott ~ €3 | (m&hEY) (5.15)

=1 Pj -
Here we adopt the general notation that p. denotes the left and right ends of the
integration over dp, which in general depend on the satisfaction of the indicator
function 6. The coefficients ¢ are introduced here and serve to locally eliminate

the mass dimension of the probability density within the available ABDS window.

This follows from the idea that since

n
deac ~ msoftdmsoft7

then after introducing a term c¢ to account for the correct mass dimension, inte-

grating both sides of this dependence shows that

n+1
Nvac ~ n -+ 1msoft .
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Since Ny, accounts for a number of a vacua (a dimensionless quantity), this

expression can be inverted to find the coefficient ¢ parametrically as

n+1

n+1"
msoft

C

Expanded in terms of mgn in Eq. (5.11) and simplifying against factors of m,,

gives the following calculable expression for c.

n-+1
“= e (5.16)

Including this normalization factor is consistent with the idea of finding the
vacuum density (relative to the SUSY scale) within ABDS-compliant parameter
space near a user-supplied vacuum, within different directions of parameter space.
In other words, we can compute on average within a model how the vacuum
density shifts in the ABDS window relative to the distance scale of the user-
supplied vacuum, serving as a representative point for the weak-scale model
being tested. This provides a broader understanding of the shape of the ABDS-
compliant landscape and incorporating values for models with an MSSM EFT
while remaining consistent with the ideas motivating stringy naturalness.

To be consistent with the distribution of Standard Model fermion masses, then

we suppose that the distribution of 1 on the landscape can be expressed as a
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log,,-uniform distribution (simultaneously allowing for 1 < 0 solutions):

ANvac, y ~ fu(ﬂ) 0 du

0
~—— . dp.
(104

(5.17)

The factor of In(10) serves to change the base of the logarithm obtained after
integration to base 10, such that the probability associated with the u parameter
on the landscape is uniform across the decades. Note that integrating Eq. (5.17)
then leads to the expression for P, in Eq. (5.2) (potentially with more appro-
priate integration bounds induced by #). A similar idea, together with certain
assumptions, allows us to come up with an explicit, but approximate evaluation
of the desired ABDS density of vacua surrounding some initial point at which we

can begin this integration process.

5.3.1 P,-esque expression

For deriving the approximate expression, we started with some assumptions on
our statistical distributions. First, we assume each of the 30 specified soft terms
and p are all distributed independently of one another. Care must be taken
particularly with the bilinear soft SUSY breaking term b = Bu. The independent
soft distribution must be assumed to be on the soft linear parameter B to ensure
independence from the otherwise-distributed .

As a technical aside, varying the values of p or B in turn affects the predicted

value of tan(3), according to Eq. (5.6). In fact, variations in m%  at tree-level
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and the other soft terms at loop level alter this prediction as well, if we are indeed
ensuring a minimized vacuum within the scalar potential and not a dangerous
metastable or unstable state in the high-dimensional parameter space. Variations
in this value of tan(/3) then affects Yukawa couplings, which in turn affects the
minimization conditions further. This is a glimpse “under the hood” into the
dynamics governing the gauge and Yukawa couplings under our assumptions
set forth here, though the effect on gauge couplings is lessened, as these effects
would appear in the threshold corrections to the SM values, which are at loop
level. The induced changes in these general directions of parameter space become
strongly constrained by perturbativity bounds on tan(5). As a general rule of
thumb, tan(3) < 2.5 leads to a non-perturbative top Yukawa coupling, whereas
tan(f3) 2 60 leads to a non-perturbative bottom and/or 7 Yukawa coupling. In
both cases, predictivity is lost, so vacua violating these bounds will be subject
to one of our selection criteria, thus constraining these directions of parameter
space further. This ties in closely with electroweak stability conditions, which are
expanded upon in Appendix C.

For a given set of selection and integration criteria 6, the statistical inde-
pendence assumption causes our selection criteria to select a hyperrectangular
region in this 31-dimensional parameter space (30 dimensions of soft parame-
ters, one dimension for the u parameter, and within this space lies the original,
user-supplied vacuum). In particular, the independence assumption specifies that
the boundaries of the region defined by our indicator function 8 are rectangular.

In general, this is not the case. This is particularly important due to the high
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dimensionality of this parameter space and the indicated region: it is a well known
fact in geometry that in higher dimensional shapes and regions, the significant
majority of the hypervolume of that shape lies near its boundary. In the context
of the landscape, this would mean that the majority of vacua geometrically live
near the boundaries of our selected region of parameter space. This distribution
of vacua is then shifted further by the probability distributions of our parameters.
Thus, an algorithm will follow that will attempt to maximize the ability to probe
large regions of weak-scale parameter space surrounding an initial vacuum. This
will provide a systematic probe on the string landscape “near” some user-supplied
vacuum (USV) in addition to an “ABDS integrated density” near the USV.
Since we are counting vacua in the string landscape by parameterizing them in
this high-dimensional parameter space, counting ABDS-compliant vacua is similar
to finding a weighted hypervolume of the region of parameter space containing
these ABDS-compliant vacua. Due to the high dimensionality, subtle variations
in region boundaries can result in significant deviations in the evaluation of
this weighted hypervolume, where the weights come from the known probability
densities of each parameter. When the boundary of a statistically indicated region
(such as the one indicated by #) is nonrectangular, this implies that the boundary
is inducing some correlations between the random variables at that boundary.
So, despite the relative independence of statistical distributions in the bulk of
the indicated region of parameter space, potentially important correlations are
introduced at this region’s boundaries, in direct contradiction with the assumption

of (global) independence.
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In other words, rectangular boundaries on our ABDS, CCB, and EWSB
selection criteria, as imposed by the global assumption of statistical independence
of randomly distributed variables, may provide an inaccurate vacuum density
estimate due to boundary effects in our selection criteria. However, it can provide
a rough, leading order idea of the magnitude of stringy naturalness for a vacuum.

Therefore, for some selection criteria represented as an indicator function
0 (criteria) and a joint probability density function f(Z) for a vector of random

variables Z, a reasonable density measure can be expressed as

N ~ / 9(ABDS, EWSB, no CCB)f(Z) dz. (5.18)

Then, in keeping with the tradition of smaller naturalness values corresponding to
greater levels of “naturalness”, a clear choice for the stringy naturalness measure
is

1

By scanning the parameter space in one direction at a time, starting at the
user-supplied vacuum, one can find “endpoints” in each direction of the parameter
space, akin to the “width” of the ABDS window computed in the P, measure. In
general, this collection of endpoints on our parameters creates an approximately
bounding hyperrectangle in the parameter space, approximately containing our
subregion of interest. Consider the 2D example in Fig. 5.2 to illustrate this.

Fig. 5.2 demonstrates the idea that this method of computing independent

probabilities is akin to computing the weighted area of the blue rectangle (weighted
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Figure 5.2: A 2D conceptual example showing the approximately

bounding hyperrectangle (blue) mostly containing the desired subre-

gion of the plane (red). The intersection of the vertical and horizontal

dark blue lines represents the location of the user-submitted vacuum

in this parameter space.
by the appropriate probability densities), whereas the “true” probability may be
more like the weighted area of the red region. As such, since the blue region is
usually at least as large as the red space, this could potentially overestimate the
probability. The exception is when long “legs” of the red region leaving the blue
bounding rectangle contribute significantly to the size of the red region as in Fig.
5.2, which may be less significant given an appropriate bounding rectangle or
scanning regime. Moreover, the boundaries of the EWSB and no-CCB conditions
are generally non-rectangular in this space. These approximation issues can be
addressed with a more rigorous Monte-Carlo method, for example, but these
differences will be considered sub-leading order.

Then, utilizing the probability density functions in Eqgs. (5.10, 5.17) to count

the relative abundance of ABDS-compliant vacua, we can write the following
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approximate expression for Agy. Here, we denote the number of soft terms in our
parameter space by ngg (in practice, we will use ngr, = 30). We will denote the
probability density of a random variable x with f,(z). The bounds of integration
obtained from the one-dimensional scans over points satisfying ABDS, EWSB

and no-CCB conditions are generally denoted as p; + and fi4.

1

]\/vvac7 soft * Nvac,u

10 Pis p -1 (5.20)
Z ¢ (msyey) -logg ( M_+ )

Jj=1 Pj,—

Asy =

Q

Lastly, if one wished to just look at the differential vacuum density at the
user-supplied vacuum point, the contribution to d/N,. will be as below, where one
can construct a simpler measure dsy = 1/dNy,.. The dimensional normalization
gives units consistent with the previous results by normalizing relative to the

SUSY scale at the USV point.

5 ) 30 -1 (5.21)
= logyg < n + 1) Z \pﬂ)

10g<10> ’/’l’|m§USY j=1

Thus, a change of € in the measure dsy from

dsN — Osn + €
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approximately corresponds to a change in the differential vacuum density of

dNyae = dNyae + 107958107 - (1 — 109).

The term in parentheses shows that if dgn increases (less stringy natural), the
differential vacuum density dN,,. decreases. On the other hand, if dgy decreases
(more stringy natural), then dNy,. increases.

Conceptually, d Ny, consists of the products of the joint probabilities from du
and dmsog, which then connect to each dp;. Here it is assumed that all differentials
dp, dp; are of the same small order, and we seek to model the functional dependence
of the coefficients for these differentials in its relationship to vacuum density on
the landscape. Hence, in computing dNy,c, the results are O(du dp;). The log for

dsN is used to tame the large numbers produced by dividing by a small dN,e.

5.3.2 Numerical method for Agy

When implementing this result numerically, we need to know the stopping points
of integration in each direction of parameter space. Here, we provide a conceptual
approach to performing this task, though full numerical results are saved for a
future work. If the user provides the program with an initial point potentially
describing our universe, where EWSB conditions are satisfied at the weak scale,
there are no CCB minima, and mz = m$Y, then we can gradually vary away from
this initial point through small increments in mz and solve for the corresponding

changes in the scanned soft parameter p; and ratio of Higgs vev’s tan(/3). After
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each small increment in my, the scalar potential is re-minimized at loop-level
through a Newton-Raphson method iterator, producing an updated tuple of
parameters (m', p}, tan(8’), pix;) that (hopefully) satisfy the indicator conditions
in § and the minimization conditions. More robustly, since tan(/) and myz both
arise from the Higgs VEVs v, 4, one could vary the parameter p; from the initial
point and determine its effect on v, 4 through a similar iterative solver. In doing so,
we are making a more direct connection with minimization of the scalar potential
via the non-zero Higgs VEVs, and then extracting information on my and tan(p)
as a result.

Newton’s method may be sensitive to the initial guesses provided to the system.
This is accounted for on an as-needed basis through linearization of the system
due to a small shift of p; — p; + 6, where § € R is small. The minimization
conditions are then assumed to be satisfied at a close point (v, + dv,, vq + dvg)
for “small” (a subjective term here) dv,,dv,;. Other sub-leading terms in this
linearization will be O(dvi 4) and will be neglected in this approximation.

However, hypersensitivity (or even insensitivity) of these Higgs VEVs on spe-
cific parameters p; may prove to have a convergence basin in Newton’s method
with width much smaller than floating-point precision can allow, or the minimiza-
tion conditions can even prove too sensitive to extremely tuned parameters, again
due to float-point precision. Both of these have been addressed by using the C++
library Boost’s MPFR multiprecision backend to use extended precision floating
point variables to 50 decimal places.

Recall that the large dimension of this problem, such as in the MSSM parameter
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space, greatly exacerbates boundary effects seen in the bounds of the integrals
above. Therefore, a more sophisticated method for efficiently approximating
the integrals in Agy while obeying the correct bounds may use a Monte Carlo
integrator with a Monte Carlo semi-stratified importance sampler to select points

for the integration. The idea is outlined in the bullet points below:

e We know one point within the region of desired integration: the user-

submitted vacuum specified by an SLHA file.

e Akin to the hyperrectangle formulation of Eq. (5.20), we can find one-
dimensional boundaries to our integration region, relative to our initial

point. We save these one-dimensional bounds for future use.

e We partition the 31-dimensional parameter space into two-dimensional

slices containing the “origin” (the original SLHA-supplied vacuum). There

31

2) = 465 such slices, and each of these slices are bounded in each

are (
perpendicular direction by the respective one-dimensional bounds of that
slice, obtained previously. We then sample from the appropriate distributions

within these slices or within the whole parameter space to refine the Monte

Carlo integration estimate of Agy.

— In practice, for some points of the Monte Carlo integration routine, we
can start by randomly sampling two integers uniformly between 1 and
31, including these endpoints. These will index two of the 31 parameters
in our space, allowing us to select a random two-dimensional slice of

our large parameter space. From this random slice, a planar region
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exists that is roughly bounded by the individual one-dimensional limits
obtained from the user-submitted file and contains the user-supplied
vacuum. This two-dimensional region then can be sampled uniformly to
find a new vacuum to test for inclusion in the Monte Carlo integrator.
If the relevant conditions are satisfied (EWSB, CCB, and ABDS),
then the value is added into the Monte Carlo integrator — otherwise,
the Monte Carlo integrator effectively adapts the integration region,

refining it according to this conditional sampled failure.

— The sampled region contains the original vacuum by construction and
approximately contains the desired region of integration within the

random slice.

e This process is iterated until some specified level of convergence in the

integral between successive iterations is reached.

We perform this integration with a Monte Carlo integration technique using
a “semi-stratified” importance sampling mechanism, where semi-stratified refers
to an alternation between sampling the entire parameter space and sampling
slices, as described above. In practice, this means we sample points from each
of the slices of our parameter space according to the probability densities of the
points in these planes, which are easily computable since the parameters are
independently distributed with known densities. Since the sampling distribution
matches the integrand we are approximating the integral of, this is an example of

ideal importance sampling, or self-normalized importance sampling. The integral
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approximation for a scalar-valued vector function fg(Z) over a region S contained
in a larger region R involves N sample points #1, ..., Ty, each drawn from R with
the selection distribution f(#). But the target probability density fs(Z) simply
consists of a probability density function very similar to f(Z) convolved with a
binary indicator function # indicating the region S within R. With this nearly

optimal choice in selection distribution, the integral is approximated as

I= /st(f) 7 ~

i fS(J}-_’L:z)

=1

f(
N ifr; €8
Z ( (5.22)

ZIH

ZIH

=1
0 otherwise

=&

In other words, with this choice of Monte Carlo integrator, we can approximate
the integrals of the densities in Agy as a the number of vacua ng satisfying the
conditions of 6, divided by the total number of vacua, N, scanned in the scanning
region. This is in alignment with the definition of stringy naturalness we began
with, so this lends credence to this selection of a Monte Carlo integrator while
simultaneously approximately minimizing the variance of our approximation.
Thus, using this careful Monte Carlo simulation and integrator, we approximate

Agn more rigorously than in Eq. (5.20) as

UZW\
Agy ~ —22

(5.23)
B 16,10t VA

- 9
nG,ANtot
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where N, is the total number of vacua scanned in a hyperrectangle approximately
bounding the ABDS region, and ng 4 is the number of vacua scanned in Ny
satisfying EWSB, no-CCB, and ABDS conditions.

To assist with stability of the Monte Carlo integrator’s convergence on a
solution, as well as protecting its sensitivity to outliers in the limit of large N, a
smooth relative error cutoff may be used involving a simple moving average of the
integral approximation across the iterations {N —k,N —k+1,...,N — 1, N},
where this moving average is represented by the function M(In_y,...,In,k):

|M(IN—/€7 . ‘7]N—17-[N7k) — IN’

€ >
Iy

(5.24)

This condition determines the convergence and termination of the iterative ap-
proximation. Good choices for € may be € = 1072 or ¢ = 1075, though exact
analyses with these are left for a future work. Smaller values of epsilon would
require a (potentially significantly) greater number of sample points N for an
accurate evaluation. In practice, we take £k = 100 to ensure adequate smoothing

of data based on empirical observation obtained during the simulation.

5.3.3 Yukawa and gauge couplings

Note that so far, little has been mentioned regarding Yukawa and gauge couplings
in our systematic landscape scans. One might naively think that the Yukawas
and gauge couplings could be held invariant between different vacua. However,

since the MSSM parameter B is considered fundamental in regards to the soft
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parameter distributions, b = By is no longer a free parameter to be solved for
from the second Higgs minimization condition, Eq. (5.6). Instead b(weak) is fixed
by its GUT scale value and corresponding RGE running, meaning tan(/) must no
longer be fixed for consistency, but instead must be solved for on a point-by-point
basis along with mz. Thus, part of the routine in checking the conditions in 6
entails finding a simultaneous solution (my, 5) to Eqgs. (5.5, 5.6). Special care will
be taken in a future version of the natLHA software to account for this continual
minimization of the scalar potential while we gradually search for the integral

bounds appearing in Agy.

5.4 An algorithm for stringy naturalness from SLHA out-

puts

Below is a series of flowcharts demonstrating the algorithm, code-named DSN4SLHA,
presented here. For formatting purposes, the algorithm has been split into
three flowcharts below. The full flowchart may be seen in the README file at

https://github.com/Dmartinez-96/DSN4SLHA.

Though we leave these evaluations of the full integrated Agy measure to a
future work and instead just present the mathematical ideas here, in the next
chapter we will demonstrate these ideas through the differential stringy naturalness

measure dgy.
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The user obtains an SLHA file containing the MSSM
spectrum and soft parameters at an input scale Q.

v

The user supplies DSN4ASLHA with this SLHA file.

¥

The user-input parameters are evolved w/ 2-loop MSSM RGEs to the weak scale at the
geometric mean of the squark and slepton masses. u(weak) is then tuned so mz = 91.1876 GeV
for this initial point, including radiative corrections. To preserve the initial point’s value of tan(/3),
as supplied by the user’s SLHA file, b(weak) is also tuned to satisfy Higgs minimization conditions.

v

Choose one of the 31 relevant weak-scale RGE parameters not bounded yet. /fe——

Increment only the chosen parameter
in the positive direction, fixing others
and recording newly incremented value.

both dir’s
in parallel.

A

Increment in | Increment only the chosen parameter

in the negative direction, fixing others
and recording newly incremented value.

A

Solve for v, vy, extract the corresponding mz, tan(/) values, and adjust Yukawa couplings.
Eval. mass spectrum, check CCB, EWSB, & ABDS conditions.

!

Yes, in “4” direction. All relevant Yes, in “—” direction.
selection criteria 6

e satisfied? -
@ %
a Q.
by < _ No. J
=} 5
Z. Z

Both directions

Yes. | Record maximal values
failed 7 " | of current parameter.

No.

All parameter
scans done?

Yes.

]

Use recorded maximal values for conditions 6

to evaluate Agy approximately.

lCOntinue to high-precision flowchart if desired.

Figure 5.3: A flowchart describing the approximate, P,-esque deriva-

tion of Agy as in Eq. (5.20).

157



With the one-dimensional bounds for the selection region established,
we begin the Monte Carlo integration of Agy.

The user supplies a desired relative error tolerance level € for convergence
(recommended values for € are between 10~ and 107°).

'

By generating ABDS and CCB/EWSB bounds, we have automatically generated
Ny = ng 4 = 63 vacua from boundary terms and the initial point, “seeding” the probability.

v

465 two-dimensional slices of parameter space containing the initial vacuum
are possible to roughly partition our parameter space and make it more manageable.
These slices are bounded by the one-dimensional bounds found in the basic DSN4ASLHA flowchart.

A

Uniformly but randomly select one of these slices if N, is odd.
A random point is generated for the selected slice according to the slice’s 2D joint probability density.
If N, is even, generate a random point within the whole
bounding hyperrectangle according to the proper, 31-dimensional sampling distributions.

‘ For each randomly generated point, find Yukawa couplings, mz and (. ‘

Increment N4 and ng 4 each by 1.

Increment N,y by 1.

0(ABDS) = 1?

[Evaluate Agn numerically. ]%

Figure 5.4: A flowchart describing the Monte Carlo integration with
stratified importance sampling to approximate Agy as Eq. (5.23).
This method is amenable to parallelization, adding the results for
the n’s and N’s from independent Monte Carlo integrators running
in parallel to speed up computations. A combination of stratified
importance sampling from the 2D slices with full-space importance
sampling helps adequately cover this high-dimensional space.
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Chapter 6

Results and discussion

6.1 Surveying dgn for SUSY models on the landscape

Below we survey some SUSY models on the string landscape and their respective
dsn values, as determined by Eq. (5.21). The results are presented for an example

BM point of each model, as generated by SoftSUSY v4.1.17 [119, 203, 204, 205].

Model Aow Sox dNume/dNwe(RNS)
CMSSM 2367.4 7.2174 6.912 - 1072
Go-MSSM 17045 8.3578 5.003 - 1073
Mini-Split (@wLSP) 2.4210-105 10.056 1.002-10~*
PeV SUSY 6.1433 -10°  10.920 1.371-107°
Spread (wLSP) 3.5753-10°  11.140 8.260 - 10~°
Mini-Split (ALSP)  5.9054-10% 12727  2.138-10°7
Spread (RLSP)  5.2311-10' 14.880 1472107
HS-SUSY 2.42100 - 10% 10.058 9.977-107°
Split SUSY 4.6581 - 102 16.866 1.552 x 10~
RNS 15.761 6.057 1

Table 6.1: A survey of some unnatural and natural SUSY models
along with some examples of the stringy naturalness measure Agy
and electroweak naturalness measure Agw from an example BM point
in the model. The stringy naturalness measures are calculated using
Eq. (5.20). It is assumed in this calculation of Agy that there is a
single F-type SUSY-breaking field, leading to a total linear power-law
draw on the soft terms. As predicted by our P, hypothesis, it is clear
that RNS models provide the most stringy natural model amongst our
selection of SUSY models.

A robust method for computing the integrated vacuum density, which con-
tributes to what we have termed Agy, is currently under development. The final
version will be released in a future version of natLHA.

However, from just looking at the differential vacuum density contributions
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Figure 6.1: Bar chart of Agy contributions for the CMSSM model BM

point in Table 6.1 with mg = 5 TeV, m;/; =1 TeV, 49 = —8 TeV,
and tan(3) = 10 at the input GUT scale of Mg ~ 1.4 - 10'¢ GeV.
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Figure 6.2: Bar chart of Agy contributions for the Go-MSSM model
BM point in Table 6.1 with mg = 50 TeV, my/, =1 TeV, Ag = 0 TeV,
w=1TeV, ma(pole) = 50 TeV, and tan() = 10 at the input GUT

scale of Mg ~ 1.5-10'6 GeV.
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Figure 6.3: Bar chart of Agn contributions for the PeV-SUSY model
BM point in Table 6.1 with mg =1 PeV, m;,, =1 TeV, Ag =0 TeV,
uw=1TeV, ma(pole) =1 PeV, and tan(s) = 10 at the input SUSY
scale of My =1 PeV.
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Figure 6.4: Bar chart of Agn contributions for the Split SUSY model
BM point in Table 6.1 with mo = 100 PeV, my,, =1 TeV, A9 =0
TeV, p =1 TeV, ma(pole) = 100 PeV, and tan(f8) = 10 at the input
SUSY scale of My = 100 PeV.
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Figure 6.5: Bar chart of Agy contributions for the HS-SUSY model
BM point in Table 6.1 with mg = 100 TeV, my,, = 100 TeV, 49 =0
TeV, p = 100 TeV, ma(pole) = 100 TeV, and tan(8) = 10 at the
input GUT scale of Mg ~ 4.1-10'7 GeV.
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Figure 6.6: Bar chart of Agn contributions for the Spread SUSY
model with higgsino LSP BM point in Table 6.1 with mg = 100 PeV,
myj = 100 TeV, Ag = 0 TeV, pu = 100 TeV, m(pole) = 100 PeV,
and tan(f) = 10 at the input SUSY scale of My = 100 PeV.
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Figure 6.7: Bar chart of Agn contributions for the Spread SUSY model
with wino LSP BM point in Table 6.1 with mg = 1 PeV, my/; =1
TeV, Ag =0 TeV, p =100 TeV, ma(pole) = 1 PeV, and tan(8) = 10
at the input SUSY scale of My =1 PeV.
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Figure 6.8: Bar chart of Agy contributions for the Mini-Split SUSY
model with higgsino LSP BM point in Table 6.1 with mg = 100 TeV,
myj = 10 TeV, Ag = 0 TeV, u =1 TeV, ma(pole) = 100 TeV, and
tan(B3) = 10 at the input GUT scale of Mg ~ 4.4 - 10'7 GeV.
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Figure 6.9: Bar chart of Agy contributions for the Mini-Split SUSY

model with wino LSP BM point in Table 6.1 with my = 100 TeV,

myj =1TeV, Ag =0 TeV, =100 TeV, ma(pole) = 100 TeV, and
tan(B3) = 10 at the input GUT scale of Mg ~ 3.0 - 10'7 GeV.
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Figure 6.10: Bar chart of Agy contributions for the RNS (NUHM?2)
model BM point in Table 6.1 with mg = 5 TeV, my;, = 1 TeV,
Ayp = —8 TeV, u =200 GeV, my(pole) = 2 TeV, and tan(S) = 10 at
the input GUT scale of Mg ~ 1.7 - 1016 GeV.
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Figure 6.12: Stringy naturalness plane scans from mg = 100 GeV to 20
TeV and my /5 = 100 GeV to 10 TeV for the NUHM2 parameter space,
where p = 200 GeV, ma(pole) =2 TeV, Ag = —1.6mg, and tan(8) =
10. In subfigure a), the differential stringy naturalness measure dsn
(Eq. (5.21)) is plotted. In subfigure b), the differential vacuum density
dNyae (Egs. (5.14,5.17)) is plotted. Note the significantly larger
densities (lower dgn) when compared to an unnatural model, like the
CMSSM, in Fig. 6.13 or Table 6.1.
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Figure 6.13: Stringy naturalness plane scans from mg = 100 GeV to
20 TeV and my /5 = 100 GeV to 10 TeV for the CMSSM parameter
space, where Ag = 0 and tan(8) = 10. In subfigure a), the differential
stringy naturalness measure dgn (Eq. (5.21)) is plotted. In subfigure
b), the differential vacuum density dNyac (Eqgs. (5.14, 5.17)) is plotted.
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above, our hypothesis of RNS stringy naturalness is strongly supported. First,
consider the p contributions to these measures. With our P, analysis, we noted
that due to the intense fine-tuning of u against m%Y within the ABDS window,
then larger values of p result in smaller values of P,. Similarly, here we see that
smaller values of u give a larger contribution to the differential vacuum density
measure. Conversely, larger values of p suppress the differential vacuum density
measure. So, combined with our knowledge that finetuning constrains the volume
of our y parameter space in order to produce vacua in the ABDS window, it is
immediately clear that for finetuned models, integrating the differential vacuum
density will produce smaller density measures than in the case of RNS, where

finetuning is low. This comes from two factors:

e In integrating a given point within the domain of integration, the size of the
individual contribution (dsn(p)) from that point is inversely proportional to

the finetuning of the p parameter.

e The “width” of the domain of integration is also inversely proportional to

this level of finetuning.

Hence, adding up tiny numbers over a tiny interval (as in finetuned models) results
in a lower integration value compared to adding up larger numbers over a larger
interval (as in RNS).

Similarly, as the scale of SUSY parameters (and thus the scale of SUSY
breaking) rises, the same idea arises. If a given soft parameter p has high

finetuning at the weak scale, then it does not afford much “wiggle room” in
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parameter space to accomodate ABDS vacua. Additionally, since

2(n+1
d]\fvauc7 soft ™~ #
SUSY

30
Z |pi|d|pi|] )

=1

then clearly larger values of mé;qy also suppress the differential density. Thus,
the same logic applies in this sector: in finetuned models, we are adding up tiny
numbers over a tiny interval, giving a tiny result (few vacua). In RNS, we are
adding up larger numbers over a larger interval, giving a larger result (more vacua).
Thus, these results seem consistent with our hypothesis on stringy naturalness

and RNS.
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Chapter 7

Conclusions

To conclude this dissertation, we offer some summarizing remarks from the
preceding chapters. As bounds for supersymmetric masses increase from LHC
findings (or lack thereof), the Little Hierarchy Problem describing the burgeoning
gap between the known weak scale and the unknown SUSY scale has become
a thorny issue in the side of the particle physics frontier community. It is a
commonly held belief that if supersymmetry exists, then it must be extremely
finetuned to accommodate these experimental bounds.

Here, we have presented many arguments on why this is truly not an issue,
and how radiative natural supersymmetry with practical naturalness is not only
consistent with our current understanding of experimental data, but also predicts
supersymmetry to lie just beyond the reach of current colliders. Many alternative
hypotheses have been proposed in the literature to attempt to address this Little
Hierarchy Problem in alternative ways, as in Chapter 3. However, these often
require mathematical gymnastics to remain consistent with current experimental
data, and each come with their own slew of issues that remain to be explained,
such as charged LSPs, difficulty accommodating the correct Higgs mass, or vacuum
instability.

If we forego the concept of practical naturalness, then there are still many
different realizable but highly finetuned versions of supersymmetry are still exper-

imentally viable, as were outlined in Chapter 2. Even the Standard Model alone
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may still be a sufficient EFT model, if we permit an extreme degree of finetuning.
However, when put into the context of the string landscape, we demonstrated in
the preceding section and in Chapters 4, 5 that this is extremely unlikely to be
the case, and in fact, that RNS is exponentially more probable to emerge from
the string landscape and describe a universe with chemistry such as our own,
compared to these finetuned supersymmetric or SM theories.

Some tasks for future work are listed below:

e For stringy naturalness, the differential vacuum density measures provided
in Chapter 5 should be integrated carefully. This entails constructing a
numerical routine that dynamically searches for the bounds of integration in

each parameter p while ensuring proper vacuum minimization at loop-level.

e The integration region will generally be non-rectangular, introducing nonlin-
ear correlations between variables at the boundaries of the EWSB-compliant,
no CCB, and ABDS-compliant regions of parameter space. This should be
addressed for accuracy in the future. For example, after rectangular bounds
are obtained as in the previous point, one may perform a Monte-Carlo
simulation and sampling on the hyperrectangle of parameter space selected

to obtain a more accurate measure of the integrated vacuum density.

e In each step of integrating the differential vacuum density, threshold correc-
tions may shift gauge and Yukawa coupling values. The threshold corrections
involve the evaluation of various Passarino-Veltman functions that depend

on the soft SUSY breaking parameters, as well as the value of my; and
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my, which are shifting from vacuum to vacuum in our scans here. These
effects should be incorporated, but are in general higher-order effects that,
within the regime of perturbativity, should be smalller than the leading-order
analyses presented here. This enhancement should be carefully balanced
against the idea of “predictivity” to ensure the results are mathematically

sound but also physically viable.

e Further efforts can be made to reduce the effect of the renormalization scale
(not a physical observable, but rather a parameter introduced to handle

infinities arising from loop calculations) on the predicted values of m5Y.

e Higher order stabilization conditions — particularly 1-loop conditions for
CCB and 2-loop conditions for EWSB — are still lacking from natLHA and

may provide some additional “width” to the ABDS windows tested.

e The analyses provided above should be performed on other realizations of

supersymmetry, such as GMSB and nAMSB.

e In the SM, we provided an approximate evaluation of the P, measure. It
may be possible to incorporate other parameters of the SM theory (such
as quark and lepton masses) and our ABDS analysis to provide a more
thorough evaluation of the relative abundance of SM vacua on the string
landscape. This can then be compared to the values obtained from SUSY

vacua.

e Connections between our Euclidean interpretation of the SUSY scale and the
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original Euclidean interpretation relating to the number of F- and D-type

SUSY-breaking fields within a larger theory should be expanded upon.

The next several decades of experimental data will prove to be invaluable in
the discovery or elimination of supersymmetry as a viable theory. The arguments

presented here are favorable towards its discovery within the context of RNS.
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Appendix A

Radiative corrections in the MSSM

A.1 The Higgs scalar potential: an EFT approach

In the effective field theory approach, one may minimize the Higgs field VEV-
dependent scalar potential to get constraints and requirements on electroweak
symmetry breaking in the MSSM. This effective scalar potential can be subject to

loop corrections above its tree-level expression, and generally is written as follows.
V(Uua Ud) = ‘/tree(vﬂu Ud) + AV(UW vd) (Al)

In the minimized vacuum, the tree-level potential V;... can be written in terms
of the neutral Higgs fields hy, ; that obtain non-zero VEVSs vy, 4, soft SUSY-breaking
parameters quu , and b, the superpotential parameter p, and the SU(2) and U(1)
gauge couplings g and ¢'.

‘2

Visee = (mi, + 1) [0S+ (miy, + 12%) |1
(A.2)

2 2 2
070 g°+g 012 012
— b(hhy+ c.c) + T ([m]* = [S[°)
In the remainder of these appendices, we work in the DR’ renormalization scheme.
At tree-level, the Higgs minimization conditions correspond to when the deriva-
tives of Vj.ee are equal to zero, together with appropriate stability conditions from

Appendix C. At the minimum where these conditions are satisfied appropriately,
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the values of the fields h2 and |hY| determine the values of the Higgs VEVs.
Through definitions of mass parameters, angles, and with algebraic manipulation,

one arrives at the following tree-level minimization conditions.

2b = sin(28) (m3;, + my,, + 2u°) (A.3)
(i, )
2 _ u a2 2 2
mZ - COS(QB) (mHu + de + 2M ) <A4>

Often in the literature, one may see Eq. (A.4) instead expressed in terms of
the ratio of the Higgs VEVs, tan(3) = oL
my  md, = m, tan(5)

PR S (A.5)

Alternatively, one can solve for tan(f) > 0 in terms of SSB and superpotential

parameters as in Eq. (A.6) below.

m%{u + m%{d +2u% + \/(m%{u + qud + 2u?)? — 4b?

tan(f) = 5 (A.6)

A.2 One-loop corrections to the scalar potential

Radiative corrections to the Higgs potential may be particularly important in
regards to practical naturalness and proper electroweak symmetry breaking,
especially those arising from the stop sector in the MSSM. The tree-level VEV-

dependent scalar potential is given in Eq. (A.2). The total, loop-corrected effective
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potential may then be expressed as

‘/eﬂ - ‘/tree + AV,

with AV containing loop corrections to the tree-level potential. These loop
corrections come from the VEV-dependent masses of the MSSM spectrum at
tree-level, in the one-loop case. Higher order corrections typically involve more
complicated expressions.

The one-loop correction to the effective potential is given as

@:Cimi (vy, vg) (—1)%%

X (28, + 1) (10g (%) - g) ] |

where the sum runs over all SUSY and SM particles whose (tree-level) squared

1
A‘/Vl—loop(vua Ud) = 6471'2 Z

(A7)

masses m?(v,,vy) are a function of the Higgs VEVs v, and vg. The scalar
potential is evaluated at the renormalization scale ), as are many of the terms in
the expressions in the entirety of the Appendices. Each particle contributes an
electric charge factor ¢; = 1 for uncharged species ¢ and ¢; = 2 for charged species
1. Similarly, each particle contributes a color charge factor C; = 1 for uncolored
particles and C; = 3 for colored particles. The spin of particle ¢ is represented by
s;. In the literature, the sum over the spins and masses is called a “supertrace”,
denoted as

STr(M™) = (—1)*(2s; + 1)m. (A.8)

%
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Corrections to the Higgs minimization conditions are calculated from deriva-
tives of the loop-corrected Higgs scalar potential. In practice, this amounts to the

following replacements in Eqs. (A.3 - A.6):

) ) 1 AV
M M g e,

1 0AV
2’Ud 8Ud )

my, — mi, + (A.9)

We denote the correction derivative terms as %%AT‘_/ = 3; for ¢ = u,d. Note that
in some instances of the literature, the radiative corrections are instead expressed

as EZ:Z, which exploit the SU(2) symmetry for the derivatives and are defined as

OAV

u,d
E% 4= g7
u,d

These can be obtained from the expressions presented below through reorganization
via the chain rule in calculus. However, it must be noted that for the loop
corrections to the second Higgs minimization condition presented in Eq. (A.3),

then there exist other corrections of the form

OAV
yd = .
“ 8%8%

These must be included to obtain the correct loop-level expressions in this mini-
mization condition, and thus minimize the Higgs potential with the correct value
of tan(). This is not an issue if instead the derivatives are computed with the

linear Higgs VEVs, as in our definition of the ¥, 4 terms.
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Differentiating Eq. (A.7) yields the expression

1 2s;
Youd = 592 Z ¢:Ci(—1)™(2s; + 1)
! (A.10)
X m? L omi lo AN 1
' 2Uu,d a'Uu,d s Q2
The individual contributions
1 Om?

0ya(t) = L A1l
i) = g ot (A1)

are listed in the following subsections. The full radiative corrections are then

obtained by substituting in the appropriate derivatives to Eq. (A.10) above.

A.2.1 Obtaining the tree-level mass (squared) spectrum

The tree-level mass matrices in the MSSM can be determined using the MSSM
Lagrangian, in particular, the soft SUSY breaking sector of the Lagrangian. The
parameters herein are numerically determined mostly through the use of the
Renormalization Group Equation parameters listed in Appendix B, at a scale
where higher order logarithmic corrections may be reduced or minimized. In
practice, we often find ourselves obtaining the eigenvalues of a 2 x 2 matrix
MIM = M?2. For each particle in the SM and MSSM spectra, we assume the
entries in these mass squared matrices are real. For a general 2 X 2 square matrix

of the form
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then M? will have eigenvalues of the form

m?, = % (a+d/a—dp + dc). (A.12)

In the remainder of this Appendix, we will denote the lighter mass eigenvalue (the
“—” expression above) with the subscript index “17, as in m?, whereas the heavier
mass eigenvalue (the “+” expression above) will be denoted by the subscript index

“27 as in m3.

A.2.2 SM particles
Gauge bosons

In the Standard Model sector, we can write the electroweak gauge boson squared
masses mQZ’W in terms of the Higgs VEVs v,, 4. The Z boson squared mass is given
at tree-level as

(g% + g?) v?

2 _
my = 5 (A.13)

and the tree-level W boson squared mass is

2,2
m2, = %. (A.14)
The derivatives of these masses entering into Eq. (A.10) are listed below.
2 12
5.(2) = b64(2) = L1 (A.15)

184



5u(W) = d,(W) = L (A.16)

Quarks and leptons

At tree-level, the quarks and leptons depend on Yukawa couplings and the Higgs
VEVs v, 4. For up-type quarks, denoted here as U, where g = 1,2, 3 indexes the

generation of the quark, the tree-level squared mass is given by

mQUg = y?]gvi. (A.17)

For example, m2U3 corresponds to the tree-level squared mass of the top quark.
For down-type quarks, denoted here as D, with generation index g, the tree-level
squared mass is given by

m%g = y%gvﬁ. (A.18)

Lastly, for Standard Model charged leptons, denoted here as F, with generation

index g, the tree-level squared mass is

mQEg = y%gvﬁ. (A.19)

The derivatives of the Standard Model quark and lepton sector in Eq. (A.10)
are listed below.

0u(Uy) = v, (A.20)
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5a(U,) =0 (A.21)

0u(Dg) =0 (A.22)
da(Dyg) = yp, (A.23)
ou(Ey) =0 (A.24)
0a(Ey) =y (A.25)

A.2.3 SUSY particles
Higgs bosons

The Higgs masses can be obtained by expressing the gauge-eigenstate Higgs fields
(RS, RhY) and (h}, h;*) in terms of the fields (h°, HY, G°, A°) and (G*, HE) as well
as the Higgs VEVs (v, vq). These fields form the Higgs mass eigenstate basis. By

minimizing the tree-level potential, one obtains

mho = my;, + my, + 247, (A.26)

(mio +m% F \/(mio —m%)? + 4mim?, sin2(26)> , (A.27)

N | —

2
Mpo go =
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and

mie = mio + miy. (A.28)

The Nambu-Goldstone bosons G%* are shown to be massless after minimization
of the tree-level potential. In Eq. (A.27), we use the convention that the h° state
is the lighter neutral Higgs mass eigenstate.

The derivatives in Eq. (A.10) are listed below.

2

Su(H*) = 8u(H*) = & (A.29)

2 2
mHO - mho

5. (0, 1) — e 1_ 7? (1 . [mQZ +m?, (2 + 4 cos(26) + cos(4ﬁ))]> (A.30)

2+ 2
da(h", HY) = T2 | 1%

2 2
mHO - mho

[ + mo (2 — 4c03(25) + cos(45))] ) (A31)
The “” (“4”) terms correspond to the derivatives of mio( HO)-

Neutralinos
The term in the MSSM Lagrangian leading to the neutralino masses is given in

terms of the gauge-eigenstate fields ¢° by

Lz 2 —% [(QZJO)TMZM#O + c.c. (A.32)
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The unsquared neutralino mass matrix is given by

M, 0 —qva/V2  gu V2
0 M, gva/NV2  —gu/V?2
MZO - (A33)
—g'va/V2  gua/V?2 0 .y

I glvu/\/§ _gvu/\/§ —H 0

One may diagonalize this matrix to obtain the mass eigenvalues, which are the
square roots of the squared mass eigenvalues. Explicit expressions are attainable
here, though it involves solving quartic polynomials, leading to unintuitive and
unwieldy solutions. Hence, the expressions for the neutralino squared masses
will not be reproduced here, though it is simple to solve for them on a modern
computer. The complexity lies in then taking the derivatives of these unwieldy
expressions. This complexity can be reduced using features of basic calculus and
linear algebra.

Since the neutralino squared masses come from the eigenvalues of the square of
Eq. (A.33), we can obtain derivatives of these squared masses through derivatives
on the characteristic polynomial of the unsquared mass matrix. Denoting an

eigenvalue of the squared mass matrix as A, the characteristic polynomial reads

p(A) =0 =\ +0a) +b\? +c\+d. (A.34)

The coefficients a, b, ¢, d are all functions of the Higgs VEVs v, v4, and so are the
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eigenvalues A(v,,v4). Then, by a careful application of the chain rule, one obtains

2
6u,d(Zzo) = 2 d v d7

(A.35)

da 3 b 2 Jdc od
I )\ 8’U'u,,d >\ + 81)u,d A + 8Uu,d )\ + 8Uu,d
AN3 + 3aX? + 26\ + ¢

Vu,d
=mzo ;

with ¢ = 1,2, 3,4. The characteristic polynomial for the neutralino mass matrix

gives terms we list below.

a=— (M + My) (A.36)
b= MMy —mj — p* (A.37)
Uz 2 2 2 2 .
c= 5 (9 M, +g Mg) + (My + M) p* — mypusin(2p3) (A.38)
02
d = — (¢*M + g* M) psin(258) — M, Moy (A.39)

2

Differentiating these expressions gives the following terms, which then allow

us to compute radiative corrections from the neutralino sector.

aa_aa

=— = A4
ov,  0vg 0 (A.40)
ob ,
5 = —(g* + g™, (A.41)
db 2 ”
o = = A 42
Bon (9" + 9" )va (A.42)
dc 2 2 2 2
. (9°My + ¢ Ms) vy — (9° + ¢%) poa (A.43)
dc 2 ” 2 ”
a—UdZ(g My + g”My) va — (9° + ¢7) p (A.44)
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od

. (9° My + g My) pog (A.45)
ad
o~ (9> My + ¢*Ms) po, (A.46)

Charginos

The term in the MSSM Lagrangian leading to the chargino masses is given in

terms of the gauge-eigenstate fields ¥/* by

Lz D —% [(¢i)TMéi¢i + c.c. (A.47)

The chargino unsquared mass matrix M. takes the form

0 X7
M@i -

0 0 M, gug (A.48)

My gv, O 0

gug 0 0

The two distinct eigenvalues of the squared mass matrix /\/lg . Mgy, each with

degeneracy of two are given as

MAs :1 M2+ 12 +2m?
01’2 2 2 w

(A.49)

£\ (M2 + 2 4 2m2,)? — 4 (M — m3, Sin(25))2> :
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This leads to derivatives in the radiative corrections in Eq. (A.10) of the form

~ 2 M3 + u? — g*0v? 2 2M. t
5u(0f2) — % <1 + [ 2 +:u g U2COS( /8)2+ 24 CO (ﬁ)]) (A50)
and
. 2 M2 2 2,,2 2 2Mout
N J (IRLLRYGY ot NS TR e
where the “” (“47) terms correspond to the derivatives of m%i .
1(2)
Squarks

The squarks and sleptons have masses that depend on gauge-eigenstate contri-
butions, as well as hyperfine splitting contributions coming from the particle’s
isospin, hypercharge, the gauge couplings g and ¢, and the Higgs VEVs. These
hyperfine splitting contributions arise from D-term quartic interactions in the
MSSM Lagrangian. For a squark or slepton field f, the splitting function takes

the form

(v — vg

Ar= ) (ijgg'2 — 1'3ng> (A.52)

2
where 13]7 is the third component of the weak isospin of field f, and Yf is its

hypercharge. The squark hyperfine splitting functions are listed in Table A.1

below.

The squarks obtain masses from the following form of terms in the Lagrangian

191



Table A.1: Hyperfine splitting functions as in Eq. (A.52) of left- and
right-handed squark fields. Up-type squark fields are denoted as U
and down-type squark fields are denoted as D. These contributions
are generation-independent.

-~ ~ 2 Go.1
‘Cag 9 - q;,L q;,R Maq N . (A53>
Qg,R

The fields g, denote up-type squarks ﬁg or down-type squarks ﬁg generation

g =1,2,3. For example,

corresponds to the stop gauge-eigenstate fields. The squared mass matrix of
the up-type squarks then will be written for each generation ¢ in terms of the
left- and right-handed running squark masses m% and mZ (determined via

9 Uy

RGE running, described in Appendix B), the Standard Model quark squared
masses mZUg (found in Eq. (A.17)), the up-type soft trilinear couplings ay,, the

superpotential parameter p, the hyperfine splitting functions above in Table A.1,
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and the Higgs VEVs.

2 2 ~ .
m@g =+ ng + AUL ay, Uy — HYu,Vd

MG = (A.54)
2 2
ay,Vy — HYu,Vq mﬁg +mg, + AffR
This leads to the mass eigenvalues listed below.
m: =Lk em2 romd 4 A; +A;
Ugiz2 2 Qg [ Uy Ur Ur
(A.55)
+ \/(m%g +Ag, — m%g — Ag,)? + 4ay, v, — qugvd)2>
The lighter (heavier) mass eigenvalue m% ') corresponds to the “” (“+7) term
gs

above.
Differentiating with respect to the Higgs VEVs gives the following contributions

in Eq. (A.10).

1 1
+ me  —m2 (a%]g - ﬂ(?’gQ - 109/2)(m% %g)
Yoz Vaa (A.56)
]' 2
b 100?202 9
55 (39" — 109)70" cos(20)
— ay,Yu, It COt(ﬁ))
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~ (9% +2¢?)

0a(Uga2) = =
£t (a3~ 1067 (2 )
m% - m% Us 24 Qg Uy
92 o (A.57)
1
+ @(392 —10g"*)*v? cos(23)
- auqyuqﬂtan(ﬁ))
Again, the derivative of the lighter (heavier) mass eigenvalue m% corresponds

Ug,1(2)
to the “” (“4”) term above.

Analysis of the down-type squarks and their tree-level masses proceeds in a
very similar manner. The squared mass matrix of down-type squarks of generation
g takes the form below.

2 2 _ _
m +ng+ADL ap,Vd — HYD,Vu

M2 o= | @ (A.58)

2 2
ap,Vd — HYp,Vu T +mp, + Af)R
g

The mass eigenvalues are listed here.

1
:—< 2z +m% +2m2Dg—|—A5L—I—A5R
g

mf)g,1,2 2 Qg
(A.59)
+ \/(m%g +Ap, — m%g — Ap,)? +4(ap,vi — uyngu)2>
The lighter (heavier) mass eigenvalue m% corresponds to the “-” (“+”) term.

Dyg,1(2)

Differentiating with respect to the Higgs VEVs gives the following contributions
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in Eq. (A.10).

64(Dg12) =

The derivative of the lighter (heavier) mass eigenvalue m%
g

(9% +2¢")
8
(B = (30— 2 —m )
m¥ —mX Dy 24 Qg Dy
vz o (A.60)
1
- @(392 — 2¢”)%v” cos(29)
— ap,Ypy COt(ﬁ))
o (6°+2¢7)
Yp, s
v (2~ Lo mz —m2)
m% —m2 Dy~ g\ g Qg Dy
Doz Do (A.61)

1 2
— 94/2)2y2 9

5,102) corresponds to the

“7 (“47) term above.

Sleptons

The charged sleptons in the MSSM obtain masses at tree level by the same analysis

as the down-type squarks, with some substitutions. The charged sleptons obtain

masses from the following form of terms in the Lagrangian
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} fat | (A.62)

The squared mass matrix of the charged slepton of generation g takes the form

below.
Ap,Vd — HYE,Vy
(A.63)

2 2 _
ng + mEg + AEL
_ 2 2 A~
ap,Vd — HYE,Vy mﬁ + mEg + Eg
g

The hyperfine splitting functions of the charged sleptons are listed here in Table

A2

14 Az

~ 2 12
B (- (2-%)
B (02—}

Table A.2: Hyperfine splitting functions as in Eq. (A.52) of left-
and right-handed charged slepton fields. These contributions are

generation-independent.

The mass eigenvalues are listed here.

2 _ 22

L 2 2
me = 2( Lg+m§g+2mEg+AEL+AER
(A.64)

)2+ 4(ag,va — N?/Egvu)2>

i\/(m%g+AEL —m% _AE
g

2 corresponds to the “” (“47) term.

The lighter (heavier) mass eigenvalue m% | @
g

Differentiating with respect to the Higgs VEVs gives the following contributions
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in Eq. (A.10).

2 12
~ +2
5u(Eyr) — (9% +24"7)
8
1 2 2 1 2 12 2 2
+ me —m2 yEg/'L + g(g - 69 )(ng - mﬁg)
Poz B (A.65)
1
- g 6 eos(29)
— ap,Yp, M COt(ﬁ))
2 12
. +2
0a(Eg12) = yp, — w
4 1 2 1.4 602 (m2 — m2
mZ  —m2 ag, 8(9 g )(ng mi])
Bga Fon (A.66)
1
+ — (g% — 69"*)*v? cos(28)
32

2

5,102) corresponds to the

The derivative of the lighter (heavier) mass eigenvalue m
“7 (“47) term above.

Lastly, the neutral sleptons (sneutrinos) have tree-level masses

2 2
mg, =2 4T ) (A.67)

where g indexes the generation as before, which lead to the simple derivatives

(A.68)
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The “” (“+7) derivative corresponds to d,q).

A.3 Two-loop corrections to the scalar potential

Higher order corrections than those seen in Section A.2 can also be relevant
to radiative electroweak symmetry breaking and in addressing the finetuning
issues seen in the Little Hierarchy Problem and naturalness. For example, the
tree-level gluino mass mgz = M3 is just expressed in terms of the soft SUSY
breaking parameter M3 and does not depend on the Higgs VEVs. However, higher
order effects can exist within the scalar potential, particularly dominant effects of
O(asa; + o). We focus here on terms of O(asay), as the effects of heavy gluinos
can contribute potentially significant corrections to the minimization conditions
through these terms.

The renormalized two-loop effective potential consists of two parts: a finite
part with the renormalization prescription as in CITE HERE, and a part coming
from derivatives of the e-suppressed terms in the unrenormalized one-loop effective
potential with respect to bare parameters p;. € is the regulator of the spacetime

dimension against UV divergences.

o OV
A‘/2_loop _ (finite) 4+ 1-loop 6p2 (A69)

2-loop o Di
i

0p; denotes the coefficient of the % term in the one-loop part of the counterterm for

the bare parameter p;. Vg the epsilon-suppressed term of the unrenormalized

1-loop
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one-loop effective potential mentioned above and is reproduced from CITE HERE.

o _ —1 w (™, T 3, (ML e (M
‘/1-100p—64w28Tr(M)[12+4 2log o —|—210g 0 (A.70)

For the purposes of radiative corrections to the Higgs potential minimization
conditions Eq. (A.3,A.4), we only need expressions for the derivatives of the two-
loop part of this potential. By considering the “gaugeless limit” of the potential as
in CITE HERE, wherein the strong gauge coupling is the only non-vanishing gauge
coupling, and the top Yukawa is the only non-vanishing Yukawa coupling, we can
construct approximate but analytical formulae for the O(aza;) contributions to
the Higgs minimization condition loop corrections.

We denote the angle ¢; that diagonalizes the squared stop mass matrix in Eq.

(A.54) by the tree-level relation

6in(260) = —2 (q + s cot(B)). (AT1)

mx
tlfm{%

In our gaugeless limit, the derivatives of the field-dependent parts of the two-loop
renormalized effective potential can be written in terms of this angle in Eq. (A.71),

the stop squared masses in Eq. (A.55) and the top quark mass.
542 loop = %usm(zeg)zg_mp (A.72)
d

a .
w2 loop = U—tusm(zeg)FQ_bOp + 252Gl 100p (A.73)
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The formulae for the 2-loop functions Fj jo0p, G2-100p are computed in the DR
scheme in terms of the gluino mass, the stop masses, the top quark mass, and the
gaugeless limit couplings. The expressions may be found in Appendix B of CITE

HERE and need not be reproduced here.

200



Appendix B

Renormalization group equations in the MSSM

The renormalization group equations in the MSSM are listed below. The Yukawa
couplings Yy are 3 x 3 real, diagonal matrices in generation space, indexed by the
generation g. In Appendix A, we denoted the diagonal elements of these matrices
as follows: the g-th generation up-type Yukawa couplings by yy,, down-type
Yukawa couplings by yp,, and lepton-type Yukawa coupligns by yg,. It is also
assumed that the soft trilinear couplings aj = Yy Ay are 3 x 3 real, diagonal
matrices in generation space. The superpotential parameter p is taken to be real
(though 1 may be negative), as is the Higgs soft bilinear parameter b = Bu. All
soft SUSY breaking (SSB) squared masses are required to be real and positive
(the latter being required to avoid charge- and/or color-breaking minima that
may occur in the vacuum with tachyonic squark or sleptons), except the Higgs
parameters m%{uyd which may run negative. Table B.1 describes the renormalized

parameters entering the equations in the proceeding sections.

The general form of the two-loop RGEs for a parameter p will be presented
in terms of the one-loop part 515112) and the two-loop part /Bl(,%) as in Eq. (B.1),
where () is a reference scale unit and @) is the renormalization scale. Summation

of repeated indices will be ignored here in Appendix B.
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Renormalized parameter

Description

9i
N

ay

Gauge coupling for SM gauge group i
Yukawa coupling matrix for f-type fermions
SSB trilinear coupling matrix for f-type fermions
SSB gaugino mass for SM gauge group ¢
SUSY-preserving superpotential parameter p
SSB Higgs bilinear parameter
Up-type SSB Higgs mass?

Down-type SSB Higgs mass?

Left SSB squark mass? of gen. g
Right up-type SSB squark mass? of gen. g

Right down-type SSB squark mass? of gen. ¢

Left SSB slepton mass? of gen. g
Right SSB slepton mass? of gen. ¢

Table B.1: Renormalized parameters and corresponding descriptions of
these parameters. Standard Model gauge groups are indexed according
toi=1+U(1),i=2,3+« SU(2,3). Generation indices g run from
g =1 — 3, where generation g = 1 contains the up and down quarks
and the electron in the SM content. Fermions in )y and ay can be
up-type, down-type, or lepton-type.
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dp
By =

dlog (Q/Qo)
I()uz) 5?()24) (B.1)

= 1672 T (1672)2
In numerically solving the two-loop RGEs (3, below, we obtain p(Q)), or the
parameter p evaluated at the renormalization (). In practice, this involves evolving
p from some initial scale A where the boundary condition for p is defined — such
as the gauge unification (GUT) scale where g; and go unify — to the target scale
Q. Table B.2 lists some typical scales where the different renormalized quantities
discussed here have their boundary conditions and definitions, as well as typical

sources of these boundary values.

For matrix equations below as in the Yukawa and soft trilinear couplings,
traces of a matrix X are denoted Tr(&x’). Through an abuse of notation, we use
the notation that, in matrix equations, Tr(X) implies that the scalar Tr(X) is
multiplied on the appropriate size of identity matrix, usually 3 x 3. Similarly, if a
scalar is being added to a matrix, this should be interpreted as the scaled identity

matrix adding to the second summand matrix.

B.1 One-loop

B.1.1 Gauge couplings and superpotential parameters
Gauge couplings

The one-loop RGEs for the gauge couplings are listed below. ¢ indexes the Standard

Model gauge group as described in Table B.1. GUT-normalized coefficients are
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Parameter Typical BC scale Typical MSSM source

G Qweak Exp. data + thresholds
Yy Q) weak Exp. data + thresholds
ar Qaut SSB
M; Qaut SSB
1 Qsusy Higgs minimization
b Qsusy Higgs minimization
mi, Qcut or Qint SSB
m%d Qcur or Qint SSB
m%g Qcur Or Qint SSB
m%g Qaut or Qint SSB
m%g Qaut or Qint SSB
m%g Qaut or Qint SSB
m%g Qcut or Qint SSB

Table B.2: Typical scales at which RGE boundary conditions are
defined and where those boundary conditions typically come from
in the MSSM theory. In the MSSM, gauge unification often occurs
around the GUT scale Qqut ~ 2 x 10'6 GeV. Intermediate scales
Qint lie between the weak scale (Qyweak ~ 100 GeV) and a high scale
such as the GUT scale. The SUSY scale is the scale where logarithmic
corrections from Appendix A are minimized. In the MSSM, this is

typically of the order Qsysy ~ /T T, -
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given here with columns and rows labeled according to the indices.

Bli=1
b; = s (B.2)
7 =
|-3]| i=3
B = b;g? (B.3)

Yukawa couplings

The one-loop Yukawa coupling RGEs are listed below, without ignoring the
Yukawas of the first two generations, but assuming the Yukawas are diagonalized
in generation space. In this generation space, the Yukawa couplings may be

written in the following matrix form.

— B4
15 9o 3 ( )

13g2 1642
00 = [s1e (92) + 30+ 9 — B - 190

(16) _ 2 2 2 2 79% 2 169:?
By =Y | Tr (3Vh + Vi) +3Vh + Vi — 15 36— — (B.5)
(16 _ 2 2 2 99% 2
ByL _yL Tr (3yD+yL)+3yL—?— 9o (Bﬁ)
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Superpotential parameter p

The superpotential parameter u has the one-loop RGE below.

1
B0 = | Tx (3% + VB) + 3) — 3 (59? *93)] >

B.1.2 Soft parameters
Soft trilinear couplings

The one-loop soft trilinear coupling RGEs are listed below. These 3 x 3 matrices
in generation space are sometimes referred to as “reduced” trilinear couplings and
are factored as aj = Yy Ay. Here we will use these reduced matrices ay, and the

RGESs will be presented in the diagonal, 3 x 3 matrix form.

13¢? 1
B = ay [3Tr (V5) +5Y5 + V5 — S Y 2}

ay 15 9o 3 g3
+Vu [6T1“ (Vvay) + 4Yvay + 2Ypap (B.8)
- i—nggf +6Mags + %M?)gzﬂ
B = ap {Tr (3Yp + Vi) +5Yh + Vi — 71—%% —3¢3 — ?93}
+ Vb [TY (6Ypap +2Yrar) +4Ypap + 2Vpay (B.9)

14 32
+ I 1G5 + 6Mag; + EM:}Q??,]
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2
U0 = [T (3 + ) + 9% — L - 3
+)VL [Tr (6Ypap +2Yrar) +4Yrar (B.10)

18
+ EMlg% - 6M29§}

Higgs bilinear parameter

The soft Higgs bilinear parameter b = B has the one-loop RGE below.

b
6{516) B;(LM)
a (B.11)

1
+ p | Tr (6(ayYy +apYp) +2a,LY;) +6 (EQ%Ml + !J%MZ)]

B.1.3 Soft masses
Gaugino masses

The one-loop SSB gaugino mass RGEs are listed below. ¢ indexes the Standard
Model gauge group as described in Table B.1. The coefficients b; are given in Eq.

(B.2).

W = 2097 M, (B.12)

Scalar masses

For the SSB scalar squared mass one-loop RGEs, we utilize the shorthand notation

S = miy, — miy, + Tr (MG — M2 =202 + M2 + M) (B.13)
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with the diagonalized matrices of the squarks and sleptons of the form below in

generation space.

2
mf1 0 0
M = 2
f 0 mf2 0
2
] 0 0 mﬁ_

Below we list the Higgs and scalar squared mass RGEs at one-loop order.

Higgs masses

3 ~
Bl = 6Tr | (miy, + M+ M2)V] + a,ﬂ = <2M12 - 5) — 6g2M? (B.14)

Hy,

By = 6Tx |y, + M+ MZ)V} + a)
+ 2Tr [(m2 +M2~+M2~)y2+aﬂ _3 2<2M2+§> (B.15)
Haq L /YL L 591 1

— 695 M3

Squark masses

The one-loop soft squark squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3 x 3 matrix form.

gl =2 [(M% + M+ )V + (MG + M +miy, )V +af, + af,
@ . (B.16)

g 25
-8 (a2 - 38) - otz - 2o
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1 4 Q
Bt = 4| (MG + Mm%+ af| — gt (3147 +35)

. (B.17)
- 3992,]\/[9?
2 4 ~
Bl =4 [(ME+ M+ m3 )Vh +ad] - Zgf (M7 -3
b D ) 3 B
N (B.18)
- §9§M32

Slepton masses

The one-loop soft slepton squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3 x 3 matrix form.

y 3 .
5&% =2 [(M% +ME +miyy, )V + aQL] - ggf <2M12 + S) ~6g2ME (B.19)

6 ~
= 4 [(M2 + M2 )V + 8| - Za? (am7 - S) (5:20)
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B.2 Two-loop

B.2.1 Gauge couplings and superpotential parameters
Gauge couplings

The two-loop RGEs for the gauge couplings are listed below. ¢ and j index the
Standard Model gauge group as described in Table B.1. f indexes the fermion type
(up-type, down-type, or lepton-type) being summed over. The GUT-normalized

coefficients are given here with columns and rows labeled according to the indices.

b = _ (B.21)

[ % 1 s |
5 5 5
cf = (B.22)
6 6 2 |i=2
| 4 4 0 |i=3
3 .
B =gl > blgi— > CITe(¥5) (B.23)
Jj=1 f=U,D,L
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Yukawa couplings

The two-loop Yukawa coupling RGEs are listed below. These equations are

expressed as real, diagonal 3 X 3 matrices.

4 1
B’ = Yo [ (gg% + 1693 - 93%) Tr (V) +2 (59% + 393 - 23%) i

2
; (—g% oy 932 Tr (332 + yg)) v

’ (B.24)
2743 136
—3Tr 3V + ViVp) + gt (mgf +95+ Egg)
15 16
+ 95 (595 + 893) - 393]
4 6
55 =0 (8-t - om0 ) 3+ it )
4
+ (ggf + 695 — 205 — 4V — 3Tr (3Vp + y,%)) Vb
(B.25)
1
~2 (ot - 802 Tr (98) — 3T (30 + V295 + )
287 8 15 16
+ g7 (ng +95 + 5932,) + 95 (393 + 89?,) - 393]
2
B — y, [ (—593 + 16g§) Tr (V) — 3Tr (3V5 + V2Vh + V1)
— (4Y7 — 693 + 3T (3V5 + 37)) Vi (B.26)

6 9 27 15
+g; <5Tr (Vi) + 593 + 79%) + 593
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Superpotential parameter p

The superpotential parameter u has the two-loop RGE below.

] 1
BEY = [4 (ggf + 4g§) Tr (Vi) — 2 (59f - 89§> Tr (¥5)

6
ot () (B.27)

—3Tx (3(V5 + Vb) + Vi +2V5VD)

23 1 15
+ 997 (%gf + 593) + 793

B.2.2 Soft parameters

Soft trilinear couplings

The two-loop soft trilinear coupling RGEs are listed below. These equations are

expressed as real, diagonal 3 x 3 matrices.
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B = ay [ (12g5 — 4V} — 6Y5 — 15Tr (V7)) Vi

2
+ (ggf — 22 — Tr (3)% + y%)) i

— 3Tr 3V} + VEVD) + (%g% - 16g§> Tr (V7))

2743 136 15 16
+ g7 <4—wa +95+ 4—59§> + g5 <?g§ + 89§> - 59?:]

+Vu| —2 <9Tr<aUyU) + Tay Yy +2apYp

2
+ gngl + 69§M2> V2

4
— (Tl“ (6apYp +2a,Yy) + 8apYp + 2ap Yy + SQ%MI) y%

1
+6 (59% + g5 —2Tr (3%)) ayVu

4
+ (9 e 633+ 222) ) an ¥

1 1
+8 (gg% + 4g§) Tr (agdy) — 8 (gngl + 4g§M3) Tr ())(2])

— 6Tr (6Vpay + VuYpau + YpYiap)

2743 136
— 247 (EQ%Ml + g3 (M + Ms) + Eg:%(Ml + MS))

64

(B.28)
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20 — a, [ (ggf —3Tr (Vi) — 2V5 — 43%) Vo

6
+ (593 +12¢5 — 65 — 5Tr (35 + y%)) Vs,

2 6
- (3ot - 1002) T 08) + St TOR)

287 8
— 3T (3V) + ViVh + Vi) + ¢ (%gf + 95+ 593)

15 16
+ 93 (795 + 893) - 5931]

4
+yD — 2<gg%M1 +aDyD + 4aUJ}U + BTI(aUyU)>y(2]

4
-2 (gngl + 693 M, — 2ayYy — TapYp

B.29
—3Tr (3apYp +aLdy) > Vi ( )

4
+2 (gg% —3Tr (3%)) ayYu
3
+92 (gg% + 392 — 2T (3)7127 - yﬁ)) apYVp

— 6Tr (6ap)}, +apYuYp +apYpdi + 2aL)})

1 12
—4 (59% — 8932)) Tr (aDyD) + Eg%Tr (aLyL)

12
—gi MiTr (V7)

5

1
+4 (gg%Ml - 89§M3> Tr (V) —

287 16
—2 (Bt + 0+ 0+ Pai0+ 00

64
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B2 = ay, [ (_2 <§g$ — 6g§> —6Y; — 5Tr (3V) + yg)) Vi

6 1
+ =T (Vi) =2 (59f — 89%) Tr (V5)

9, 3 15
—3Tr BYp + VL + VoV3) + 347 (593 + 393) + 793

+ Y| —2(6g3Ms + TaLYy + 3Tr (3apYp +aLVr)) Vi

3
+ 2 (—gf + 3g§ — 2Ty (337,23 + yﬁ)) aryp

5 (B.30)

— 6Tr (6ap)}, + 2a,V; + avYuYh + apVpVi)

12 12
_ gnglTr ()}%) + Fngr (arVr)

1
4 (ggf — 8g§> Tr (apYp)
1
+4 (gg%Ml — 8g§Ms) Tr (V3)

1
— 18 (39%1\/[1 + 593 (M, + M2)> - 309§M2]
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Higgs bilinear parameter

The soft Higgs bilinear parameter b = Bu has the two-loop RGE below.

b
50 _ b g0
b T
1 1
+p|8 <gg% + 4932,> Tr(apdy) — 4 (59% - 893) Tr(apYp)

12 1
+ gngr (aryr) — 8 (gngl + 4g§M3> Tr (V7))
(B.31)

. 12
+4 (5931\41 - 89§M3) Tr (Vp) — gnglTr (i)

— 12Tr (3(ap Yy + apYp) + avVuVh + apYpVp + ari)

18 23
- 39? (gngl + g5 (M + Mz)) - 309§1M2]

B.2.3 Soft masses

Gaugino masses

The two-loop SSB gaugino mass RGEs are listed below. 7 and j index the Standard
Model gauge group as described in Table B.1. The coefficients b{ and C’if are

given in Egs. (B.21,B.22).
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Scalar masses

For the SSB scalar squared mass two-loop RGEs, we utilize the shorthand notation

in Eq. (B.13) and the following.

S =Tr [(4/\/% - M5~ 3m?{u)y5]
Ty [(M% +2M2 — 3m§{d) 3%}
Ty [(M% —2M2 + mzd) yg]
Lo 3,5 8, 2 16 (1, 2 2 (B33)
+ {%91 59+ ggg] Tr(M3) — = <—91 + 93> Ty (/V%)

3 \5
2 (1
+ g (59% + 4g§> Tr (M%)

L, 1, 2 2 2 6 5 2
+3 (1—091 + 592) [, —mi, — Tr (MZ)] + gngr <M§>

g3

o= [3(quu +my,) + Tr (M% +8MZ +2MZ +3M] + 6/\/%)] (B.34)
PR [ 2 2 2 2
o3 = goTr (2/\/% + M% + M%) (B.36)

with the squared mass matrices of the squarks and sleptons real and diagonalized

in generation space. Below we list the Higgs and scalar squared mass RGEs at

one-loop order.

217



Higgs masses

20
ﬁfnz) =

Hy

— 36Tr [(/\/% + M2 + m?{u)yﬂ
— 6Te [(@M2 + M2 + M2 iy + i, ) VRV
— 6Tr [(12af + ad) V& + aZ V3 + 2apapYudn)

1
#8 (ot 162 T [ (5 + A2 4 0 ) 98 4 0]

" (B.37)
+ Eg% [M{Tr (V) — MiTr (apYy)]

+ 6492 [MZTr (V3) — MTr (ap V)]

207 =
g1 M} + 695 (M7 + M3 + MiMs) + 28" + 0,

L3
59175

+3g5 (11g; M5 + o)
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B == 86Tx (M + M2+ m3 )V |

— 6Tr [(2/\/% + M% + M% +my + m%ld)y%}y%]
— 12T [ (M2 + M2 +miy, ) Vi

—6Tr [(12a2,5 +ap) Vi +aph V) + 2(avapYuYp + a%yi)}

1
—4 (ggf + 8g§) Tr [(/\/% + /\/l% + qud> Vi + aQD]

8
- ggf [M{Ty (V3) — MiTr (apYp)] (B.38)

+ 6495 [M3Tr (V}) — M3Tr (apYp)]

12
+ Eg% (Tr [(/\/l% + M% + m?qd)yﬂ

+2(M*Te(Y3) — MlTr(aLyL)))

3
+ ggf

207

- GM? +6g2 (M2 + M2+ M M,) — 25 + oy

+ 3g§ (11g§M22 + 02)

Squark masses

The two-loop soft squark squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3 x 3 matrix form.
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4
ﬁﬁ% = 2D} [ggf (M% + M2 +miy, + 2M12>
— 4ME + ME 4 mi; )V
= 3(ME + M2 + 2mi; ) Te(V5) — 3Ti(ap)

— 3T <(./\/% + M%)y@) - 8a?]]

+2)%

gg% (/\/% +ME +myy, + 2M12>

— 4ME + ML +miy, )V — Tr(3a}, + aj)

— (M5 + M2+ ot ) Te(3D + D2)

~Tr (3(/\/% + ME)VE + (M2 + M%D’i) - 83?3] (B.39)

4
—day Yy |3Tr(apYy) + —gi My

>

—4ap)p

2
Tr(3apYp +arVL) + SQ%MI

4 2
v (S0t - 3mOR) ) + 20 (3t - v + 9D))
1 2 199 2172 2 2 2
+ 591 E91M1 + 295 (M7 + M3 + My M)

32 - 1
+ ggg(Mf + M2 + My Ms) + 25" + 301

+ g5 [3395 M> + 3295 (Mj + M + MyMs) + 305]

16
— ggg, [8g§M§ + 03]
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2 =
U

5 = 0t oo - 2o

— (M3 + ML 4 m3, )V} — 3Th [(M% + M%)y@]

— (2ME+ M+ ME 4 iy, ) VB — 3T (a)

—3(ME+ M% +2m3, ) Tr(V7) — 4af, — aj,

(ot o) (w3 -t ) | B0
— 8ay Wy [aDyd + 3Tr(apVy) — %g%l\% + 39§M2]

1
— 4a3, {gg% — 3¢5+ 3Tr (V7)) + y,g}

8 428 04 2 ~
+ gt |—— G M7 + — g5 (M7 + M5 + My M3) + o1 — S
5 15 9 3
16
— 393, [8g3M5 — 03]
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B = _4y5[<2M%+M%+M%+m§,d> YV} +aj,
D

2
FAVE | SO} +603MF — 2 (M + M2 iy, )

— (M + ME 4+ 2m, ) Tr (33 + )
—Tr (3(/\/% + M%)y}é + (M3 + M%)J},%)
— Tr(3a}, +aj) — 16a7, — 4a?,

. (B.41)
+ (ggf + 393) (M% +MZ + qud) ]

1
—8apyp [aUyU + Tr (3apYp +arYr) + gg%M1 + 39§M2]

1
+ 4a% {ggf +3g2 — Tr (3V% + y,%)}

4 202 32 ~ 1
+ —g¢? [—g%Mf + g2 (ME + M2+ M M) + S+ 501]

5 15 9
16
- 3932, (893 M3 — 03]

Slepton masses

The two-loop soft slepton squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3 x 3 matrix form.
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82 = —2y2 [4 (M% + M2+ m?id) Vi

n ( M2+ M+ Qmi,d) Tr(3V3 + V3)
+Tr (3(/\/% + M)V + (MF + M%)yi)
+8aj + Tr(3a}, +aj)

6 2 2 M2 2 + 2M2>

6
— 4aLYL lgg%Ml + TI‘(?)aUyU + aLyL)]

6
+2a; | =91 = Tr(3Vp + V1)

#20t [ 2R 4 003 (01 4 MF 4 M) — 2514

+ 393 (1lg§M22 + 02)
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B = —2)? [4 (M% + M2+ m?id) Vi +8aj

+92 <M2Z + /\/l% + 2m§{d> Tr (3:)7,% + )/%)

+2HC%M%+N%D%+@M%+W%D%)
12

+2Tr (3a}, +af) + £ gf M} — 125005

) (B.43)
+6 (SQ% + 93) (M% + M% + m?{d) ]

—8ar)r

3
Tﬂ&mwy+mym—gﬁMk+@ﬂb]

1
—4a§[3(ggf+4ﬁ)-+T¥BJ%-%J€)

+ | M+ 5+ o

12 ,(234
571 5
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Appendix C

Stability conditions for proper EWSB

The conditions for proper electroweak symmetry breaking (EWSB) can provide
strong constraints on the parameter space of the MSSM, especially in the context
of the string landscape and in comparing models of physically realizable super-
symmetry. In this Appendix, we review and formalize the conditions required
to ensure proper electroweak symmetry breaking, based on the nature of critical
points in the field space of the scalar potential Eq. (A.1).

The well-known tree-level conditions and the less well-known loop-level condi-
tions for proper EWSB in the MSSM are listed below, with elaboration on the
notion of vacuum stability, as the literature tends to misrepresent classifications
of vacuum stability with regards to EWSB. Minimization of the scalar potential
occurs as in Appendix A, where the scalar potential V' (h2, hY) is a function of the

neutral Higgs fields, and at some point(s) in field space, critical points occur:

ov. oV

o~ ony

Such a point will satisfy the equations Eq. (A.3-A.5) at tree-level, and then at

loop level with the inclusion of the corrections in Eq. (A.9-A.10).
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C.1 Destabilizing the origin of field space

C.1.1 Tree level

We begin with the tree-level scalar potential Eq. (A.2). Two conditions exist to
guarantee the stability of the vacuum and that EWSB occurs properly. The first
is to check whether the scalar potential fails to develop a minimum at the origin
of neutral scalar field space, where h? = 0 = hJ. If not, then the Higgs scalars will
fail to develop non-zero VEVs, and EWSB will fail to occur as expected. Two
possibilities arise for an unstable origin of field space, which is naturally a critical
point of the scalar potential: either the origin is a saddle point of field space, or it
is a maximum. In order to accurately classify the stability of these critical points,
we must construct the matrix of derivatives of the tree-level scalar potential Vi,ce,
called the Hessian. The form of the Hessian is listed below for a general (real)

point (h2, hY) of field space.

82 ‘/EI'CE 82 ‘/tree
Oh%)2  On%oRY

H [Vivee (R, hy)| = (C.1)

62 ‘/tree 82 ‘/tree
oR%onY  (9h9)?

At a critical point of field space, one can perform the multivariable second
derivative test with this Hessian. If a critical point has a Hessian whose eigenvalues
are opposite sign, then the critical point is a saddle point. Since the determinant
is equal to the product of the eigenvalues, then this condition amounts to checking
whether the determinant of the Hessian Eq. (C.1) is negative.

However, if the determinant is instead positive, we must check one more
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condition to test whether the point of field space is a minimum or maximum, as
the determinant alone here is insufficient for proper analysis. The determinant
being positive implies that both of the Hessian’s eigenvalues are the same sign,
which can occur if both values are negative, or if both are positive. Thus, one must
check the signs of one of the diagonal entries of the Hessian here to determine the
nature of the critical point. For example, if at a critical point whose Hessian has

positive determinant, and

then that critical point will be a maximum (minimum) by this second derivative
test.
At tree level and at the origin of field space, the Hessian takes the form below.

o< | =" - (C.2)

—b mi, + 1

If the origin is a saddle point of field space, then this would mean that

det(H [V(0,0)]) < 0 =>
(C.3)

(miy, + 1) (miy, + i) < b*
If instead the inequality sign is flipped in Eq. (C.3), but Tr (H[V'(0,0)]) < (>) 0,
then the origin will be a maximum (minimum), and the origin will succeed (fail)
in destabilization. The qualitative effects of these results are summarized in Table

C.1. In the case where the origin is a maximum, extra care must be taken to
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ensure that the CP-odd pseudoscalar Higgs mass remains positive at loop level,

as the tree-level expression here implies that m? < 0.

Stability type Hessian determinant sign Hessian diagonal sign

Saddle point — Not needed
Minimum + +
Maximum + —

Table C.1: Summary of the requirements on the scalar potential’s
Hessian for classifying the stability of critical points of field space for
EWSB. Highlighted rows are potentially phenomenologically allowed
cases at the origin of field space, so that this origin is destabilized and
EWSB can occur as expected.

C.1.2 Loop level

At loop level, it is possible that destabilization of a tree-level stable vacuum field
space’s origin can occur. To examine the effects of this, one must consider the
loop-corrected effective potential in Eq. (A.1) and adjust the Hessian in Eq. (C.2)

accordingly. This loop-corrected Hessian is listed below.

2 2 AV AV
My, + 1+ Gy - —b+ Fhoony .
—h0—0 —h9=0
H [V (0,0)] = u="d u="a (C.4)
. PAV 2 2 AV
b+ Dh0,0RT M, + 1+ Gy
h0=h0=0 h9=h9=0

By taking the determinant of this matrix and utilizing Table C.1, one can determine
the stability of the origin of field space for EWSB at loop level. The second
derivatives in Eq. (C.4) may be computed via derivatives of the expressions in

Appendix A, then limiting v, — 0,v4 — 0, while leaving their ratio v, /vg = tan(3)

228



fixed, since the field-dependent masses by extension depend somewhat on the
specific value of 8. These expressions are listed below.

Second derivatives on the diagonal of the Hessian of the form

can be expressed as follows.

1
Egi)dd = Z {qu@(—l)%i@gi +1)
om2\ 2 2
X [ <3Z,ld> log (%) (C.5)
o) (s (&) )
o ((8%@)2) o Q? !

Second derivatives on the off-diagonal of the Hessian of the form

Vy=vq=0

PAV AV e
OhOORY — OR%ORY — Tl
can be expressed as follows.
1
2(2) — Y 1)\2s; )
: ;{—3%2%0,( 1) (2s; + 1)
y om? Om? o m? 6
a0, Ovg 2\ Q2 (C.6)

0*m? m?
ot () (e () 1) |

The individual contributions ZQ(LQU) ddu

Vy=vg=0

4 are listed in the following subsections, having
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taken v, 4 — 0 in such a way that we maintain their ratio v, /vg = tan(8). This
limiting towards the origin of field space is performed after the derivatives with

respect to the appropriate fields are taken.

SM particles

The one-loop contributions to the vacuum stability condition for Standard Model
particles are listed below.
Gauge bosons

The radiative corrections to the vacuum stability conditions vanish upon taking

the limit v — 0 for the W and Z SM gauge bosons.

22(2) =53(2) =58(2) =0 (C7)

uY

Quarks and leptons

Similar to the gauge bosons, the radiative corrections to the vacuum stability
conditions vanish upon taking the limit v — 0 for the SM fermions fsy (quarks

and leptons).

2@ (fom) = 22 (fsum) = B2 (four) = 0 (C.8)

230



SUSY particles

The one-loop contributions to the vacuum stability condition for SUSY particles

are listed below.

Higgs bosons

For the neutral Higgs bosons, the diagonal terms of the Hessian are given below.

$2(h0) = S5 (h°) =0 (C.9)
(%) = L [ cost) (2eon(zs) ~ 1) (10g () -1 a0

@ (H) = —lg"+9%) {mzo sin(8) (2 cos(288) + 1) (log (”22—%) - 1)} (C.11)

2

The off-diagonal second derivatives take the forms below.

2 (n%) =0 (C.12)

SO (HO) = (921;—7;;"2) [mi sin®(25) <log <”§g> - 1)} (C.13)

For the charged Higgs bosons, the diagonal terms of the Hessian are given

below.

2
SQH®) = DE(H) = < m? {log (mAO) - 1} (C.14)
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The off-diagonal second derivatives vanish.

S (H*) =0 (C.15)

Neutralinos

The neutralino terms are more computationally challenging to obtain due to the
fact that the neutralino mass squared eigenvalues arise from solutions to the fourth
degree characteristic polynomial of the mass matrix squared. Alternatively, as in
Appendix A, we can compute derivatives of the eigenvalues of the unsquared mass
matrix through the chain rule on its characteristic polynomial. A straightforward
application of the chain rule reveals the general form of the second derivative we

desire below.
2, 2
2 . . 2
0 M7, Imzo ; Omz ; d"mzo

oyoxr dy ox Mz 0xdy

(C.16)

Letting x,y be v, and/or vy then permits us to compute the eigenvalues
with the following formula, obtained via the chain rule from the characteristic
polynomial of the unsquared mass matrix, whose coefficients are given in Eqs.
(A.36 - A.39). First derivatives take the form here. Simplifications have been

made, considering that da/0v, 4 = 0, as seen in Eq. (A.36).

8m§o’i . 81(1957(1 )\2 + 61?:61)\ + 83jd (C 17)
Oua | 4X3+3aX2 + 2D\ + ¢ '

A=mzo ;

The second derivatives then follow, where x or y can be v, and/or vg4, depending

on the derivative in question. We denote the ¢’th eigenvalue of the neutralino
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mass matrix as A = mz, ,, where 1 =1 — 4.

o\ o] Oc
92\ _ (12X + 6aX +20) 5 + 2252 + 5¢
dyox (43 4 3a)2 + 26\ + ¢)°

_ [(2)\%+%)g—2+<8228l;)\2>+<£28€x)‘>+(%)]} (C.18)

4N3 + 3aA? 4+ 2b\ + ¢

The explicit expressions obtained are long and unwieldy. However, after taking

the limit of v, 4 — 0, the result simplifies well. Algebraically, it can be shown that

o\
Ovy,4

terms of the form vanish when we take v, 4 = 0 (after the derivative), where
A =mz,; and i = 1 — 4. The first derivatives of the characteristic polynomial
coefficients also vanish at the origin of field space. However, some of the second

derivatives of the characteristic polynomial coefficients survive and are listed

below — all others vanish.

9%b 9%b ,
@u.) ~ O =) (19
u Vy=vg=0 d Uy, =vg=0
%c 0?b ,
a 3 = a ) = M1g2 + Mgg 2 (CQO)
( Uu) Uy, =vg=0 ( Ud) Uy =vg=0
D¢ ,
0. 90, = - (92 +g 2) I (C.21)
Uy =vq=0
0*d 2 P
Jodun = (Mlg + Msg )u (C.22)
v Vy=vg=0

With these evaluations complete, the full form of the second derivatives is
listed below. We denote a neutralino mass my, ; evaluated at the origin of field

space by \. The expressions for the neutralino masses simplify tremendously at
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the origin of field space. Evaluating the eigenvalues of the neutralino mass matrix

at the origin of field space simply reveals the following eigenvalues.

X e {u, —p, My, My} (C.23)

The second derivatives of the neutralino eigenvalues at the origin of field space

are below.
A=mzg , ~ -
0°A e (9° + 9N\ = (Mig* + Mag)A (C.24)
(Ovaa)?|, _, o 4N = B(My+ Mp)X2 + (2(My My — p2))A — My Mpp®
A=mzg , ~
82/\ Z0, _ (92 + g/QA)Ju)\ _ (M192 + ]\429/22'u (C.25)
c%u@vd S 4N3 — B(Ml + ]\/[2)/\2 + (2(M1M2 — ILL2)))\ — MlMQ/LQ

Finally, the one-loop neutralino contributions to the scalar potential’s Hessian

then take the following forms.

@ (7o @ (7o N 2 x|
S (ZZ) = Yud <Z’> Y tog Q) ! (0v4a)” 0 (€:20)
’ Uy =Vg=
o X[ (3 o [
=) (Z) a1 P R s 0 (C.27)
Vy =Vg=

Charginos

The one-loop chargino contributions to the scalar potential’s Hessian are listed

below. The lighter eigenstate (index 1) corresponds to the upper signs, and the
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heavier eigenstate (index 2) corresponds to the lower signs.

_ 9 [ ~
Efu) (Clig) - E&d) (CE)

2
Fg* (M3 + 1 F M35 — p?|)

= o5 ] (C.28)
MQ_"MQ:F‘MQ_,U/Q‘
1 2 2 —1
. {g< *
$(2) (~:|: > . +g* Moy (M3 + 1 F | M3 — 1i?))
m M2+| 2«; \AZQl ' (C.29)
H 2 T H
1 2 —1
s () -]

Squarks

The one-loop up-type squark ﬁg of generation g contributions to the scalar
potential’s Hessian are listed below. Here, m%g denotes the mass of the right-
handed SSB up-type gauge eigenstate squark running squared mass of generation
g. Zﬁz (ﬁg,i> with ¢ = 1,2 denotes the one-loop Hessian contribution from the

i'th up-squark mass eigenstate of generation g (¢ = 1 for the lighter state or 2 for

the heavier state as usual). The top sign corresponds to the lighter eigenstate,

235



and the bottom sign corresponds to the heavier eigenstate.

i( 2 42 ‘ 2 2 )
Zgu) ((7912) = ng —i—ng - ng ng
" 20,2 2
1287 ‘még ng
[ 2 2 2 _ .2
- m@g+mﬁg$‘m~g ng .
g 202
(C.SO)

x | (3¢% — 10g7) <m% —mZ > — 24a;,

F3 (92 + 247 — 8y(2]g> )m%g - m%g

|

2 2 2 .2
5O (5 Yo (g, +m,  [m, —m,|)
dd olz) = 128 2 2 2
T ‘méq - mﬁq
[ 2 2 2 _ 2
x |log g, " ", T ‘ng ", —1
20)?
(C.31)

x| (3g° = 1097) (m3, —m? ) + 2497 42

T3 (g* + 2497 )m%g - m%g

5 (D) - — Lot

1672 2

2
m= —m=
Qg UQ

2 2 2
m= + m= :F‘m~ —m
g Ug Qg

Q
20

2
Ug

(C.32)

x |log

The one-loop down-type squark l~?g of generation g contributions to the scalar
potential’s Hessian are listed below. Here, m%Z denotes the mass of the right-

Dy

handed SSB down-type gauge eigenstate squark running squared mass of genera-
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tion g. Zq(f) (5g,i> with ¢ = 1,2 denotes the one-loop Hessian contribution from

the ¢’th down-squark mass eigenstate of generation g (again, ¢ = 1 for the lighter
state or 2 for the heavier state as usual). Once more, the top sign corresponds to

the lighter eigenstate, and the bottom sign corresponds to the heavier eigenstate.

)

9 9

Zi (59’1’2> - > 2D 2 2 -
12 ‘ 2 2
8T ng ng
i 2 2 2 2
. ng—l—mﬁgZF‘m@g ng X
g 20?
] (C.33)
2 2 2 2 2 2
X (3g — 2g )(m@g—mﬁ) + 24yp, 1
2 ) 2 2
IF3(g + 2¢g )‘még—mﬁg ]
i( 2 4 m2 ’ 2 _m2 )
50 (Byaz) - ™o, 7", T|™Ma, b,
d g77 -
12 2‘ 2 _m2
8 ng ng
i 2 2 2 2
i [Tt D, T ‘m@g "hl\
g 20?
(C.34)

x (392 _ 29/2) (m%g — m%g) — 24a2Dg

T3 <92 +2¢"” — 8y%g> ‘m%g — m%g

|

~ +3a
ZiQd) (Dg,1,2) - l:gyDgl“LQ

2 —_— ~

167 még ng
2 2 2 2
« |log MG, T, T ’m@g "B, ) (C.35)
2()?
2 2 2 2

X (m@g +my F ‘mé —mf)g )
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Sleptons

The one-loop charged slepton Eg of generation ¢ contributions to the scalar
potential’s Hessian are listed below. Here, m%g denotes the mass of the right-
handed SSB gauge eigenstate charged slepton running squared mass of generation
g. » <Egyi> with ¢ = 1,2 denotes the one-loop Hessian contribution from the
i’th charged slepton mass eigenstate of generation g (again, ¢ = 1 for the lighter

state or 2 for the heavier state as usual). Once more, the top sign corresponds to

the lighter eigenstate, and the bottom sign corresponds to the heavier eigenstate.

)

2 2 2 2
<~ ) $(ng+mﬁﬁ‘ng‘mﬁg
1,2

> (E —
AN 12872 |m2 — m?
Ly E,
[ 2 2 2 2
« |1og ng +mEg F ‘ng - mEg X
2
] 2¢ (C.36)
x | (¢° — 647 (m% —m% ) + Sy, 1
T (8 +27) [m2, —m%, ]
2 2 2 _ 2
2(2) (E ) B + <mz —l—még F ‘mL mEg )
dd 91,2 ) —
12872 )m% mZ
g EQ
[ 2 2 2 2
« |1og m3 +mEQ$ ng—mEQ .
2
2¢ (C.37)
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j:aEgyEgu

=& (Eg,l,2> =

1672 ‘m% —mZ

Lg EQ
2 2 2 _ 2
« |1og mg, tmg, T |mg, ~ M, . (C.38)
2()?
2 2 2 2
X (ng +mEg F )ng — mEg )

Finally, the one-loop neutral slepton (sneutrino) 7, of generation g contribu-

tions to the scalar potential’s Hessian are listed below.

Eﬁﬁ@%=:£iiiﬁmi[bg<ma)—4] (C.39)

il (%) = Mm [10g (ng> - 1] (C.40)

S5 (%) =0 (C.41)

C.2 Bounding the scalar potential from below

C.2.1 Tree level

In addition to requiring that the origin of field space be destabilized, it is also
important for vacuum stability that the Higgs scalar potential remains bounded
from below and does not precipitously run off to unbounded, large, negative values
for arbitrarily large values of the Higgs fields h&d. Due to the form of the scalar
potential at tree level, Eq. (A.2), the risk of being unbounded from below mainly
arises from directions of field space termed D-flat directions, i.e., where [h2] = |RY|.

In such directions, the quartic term of Eq. (A.2) will cancel. Then requiring that
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the scalar potential in this direction is positive for arbitary D-flat field values

amounts to the second EWSB condition below.
2b < (myy, +mi, + 2p°) (C.42)

Should Eq. (C.42) fail to hold, then issues arise at the very least with the
minimization process, as we can no longer find a real mixing angle g in the
half-open interval [r/4,7/2) that satisfies the tree-level minimization condition
Eq. (A.3). It is possible that this is rectified at loop level, but bodes as a very

bad sign for proper EWSB and a stable vacuum to occur.

C.2.2 Loop level

Similar to in Appendix C.1.2, one may obtain a loop-corrected version of Eq.
(C.42) by adding the loop corrections in Eq. (A.1) to the analysis in Appendix
C.2.1. Then, for any arbitrary D-flat value of the Higgs fields |hl| = |h)| = v -
which also implies tan(5) — 1 — one may try to naively update Eq. (C.42) to the

expression below.

1
2b < my, +my, + 20’ + 5 AV

D-flat (C.43)

1
~my +my, + 20 + ?AV

tan(8)—1,vy—y,vq—y

This may seem correct, especially since for very large values of |hl| = |RY| = 7,
the loop contributions AV are suppressed by v~2. However, care must still be

taken in ensuring the expected behavior for large field values.
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In the D-flat directions of field space, at tree level, the dominant terms for
large Higgs field values ~ in the scalar potential are O(7?). At the one-loop level,
however, the dominant terms in the scalar potential actually are O(v*log(7y)),
which grows faster for large field values than the tree-level expression. This

asymptotic nature of the scalar potential is summarized in Table C.2.

Tree level One-loop level

O(?)  O(y*log(v))

Table C.2: Order of the dominant terms in the Higgs scalar potential
for arbitrary large Higgs field values « in the D-flat direction, |h0| =

|h9] = .

Thus, at the one-loop level, to check boundedness from below of the scalar
potential, it suffices to check whether AV — +00 as v — oo since either case
will dominate the asymptotic behavior of Vi,.. By analyzing the coefficients of
the dominant terms from Table C.2, it turns out that the coefficient is positive

definite, as shown in Eq. (C.44).

AV 1oop, dom. ~ g*v*log(7) (C.44)

For this reason, the D-flat direction of tan(f) = 1 can never be a minimum for
arbitrarily large field values at the one-loop level. As such, in this D-flat direction,
then the one-loop level is automatically bounded from below.

At the one-loop level, one must be careful of non-D-flat directions in the
neutral Higgs field space. By keeping ourselves constrained to the standard

parameter space where tan(f3) > 1, such directions will be dominated by terms of
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O (73 410g(7u,q)) for large Higgs field values |h)| = v, and |h)| = ~4. This differs
from (and dominates) the dominant tree-level terms of O(v; ,), as summarized

in Table C.3. By analyzing the sign of the coefficients of these dominant terms,

Tree level One-loop level

O(Vaa), O(vivd) Oy q108(Vaa)), O(Vevi 10g(Vua))

Table C.3: Order of the dominant terms in the Higgs scalar potential
for arbitrary large Higgs field values v, 4 = |k 4| in a generic direction
of field space, with tan(g) = 1 > 1.

one may arrive at the following condition to ensure that the scalar potential is
bounded below in the generic field space direction tan(f3) > 1, presented in Eq.
(C.45). This condition should be coupled with the condition in Eq. (C.46), coming
from the loop-corrected version of Eq. (A.6), for numerical stability and to ensure
a real value of tan(():

=1 > cos(20)=kg, (C.45)

where
=1 =8(g" +29%) 3Tr (V) = V5) + Tr (V7)]
and
Zr = 13¢" + 2999 — 8 (29”2 + ¢?) [3Tr (V2 + V3) + Tr (V2)]
— 18¢%¢"
A real value of tan(f) at loop level is achieved so long as the condition below

holds.

2b < mPy, + X, + mi, + Saq + 2p4° (C.46)
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