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Abstract

In this work, we formalize the concept of naturalness in supersymmetric effective

field theories, as well as introduce novel methods for performing statistical analyses

in the string landscape. We revisit the various measures of practical naturalness

for models of weak-scale supersymmetry (SUSY) including: 1. electroweak (EW)

naturalness; 2. naturalness via sensitivity to high-scale (HS) parameters [Ellis-

Enquist-Nanopoulos-Zwirner/Barbieri-Giudice (EENZ/BG)]; 3. sensitivity of

Higgs soft terms due to high-scale radiative corrections; and 4. stringy naturalness

(SN) from the landscape. We debut a new numerical routine for calculating these

measures from any SUSY Les Houches Accord file. A vast array of (metastable)

vacuum solutions arise from string compactifications, each leading to different

4-d laws of physics. The space of these solutions, known as the string landscape,

allows for an environmental solution to the cosmological constant problem. We

argue that the landscape favors natural softly broken supersymmetric (SSB)

models over particle physics models containing quadratic divergences, such as the

Standard Model or unnatural SSB models by presenting a computable measure.

An anthropic selection of the weak scale to within a factor of a few of our measured

value — in order to produce complex nuclei as we know them (atomic principle)

— provides statistical predictions for Higgs and sparticle masses in accord with

LHC measurements. The predicted Higgs and superparticle spectra might be

testable at HL-LHC or ILC via higgsino pair production but is certainly testable

at higher energy hadron colliders with
√
s ∼ 30–100 TeV.
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Chapter 1

Particle physics and the string landscape

Modern physics can be mainly classified into two classes of theories. On one

side, we are able to describe phenomena occurring at a small scale to an extreme

precision – this is the essence of quantum field theory (QFT). On the other side, we

can accurately describe phenomena occurring at large scales via Einstein’s general

relativity (GR). As physicists, we simultaneously seek a method to unify these

concepts in addition to expanding our current understanding of these individual

fields of research, as our current knowledge of each possesses certain gaps that

must be remedied. At its core, physical processes can be described via specific

interactions between matter and energy, mediated by the four fundamental forces

at work within the universe. From weakest to strongest, these interaction forces

are gravity (governing paths of motion through curved space and time), the weak

force (governing radioactive beta decay of matter), the electromagnetic force

(governing interactions of electrically charged particles), and the strong force

(binding quarks together and stabilizing nuclei of atoms).

In this introduction, we conduct a brief literature reeview and briefly outline

the details and issues underlying the Standard Model of particle physics, extensions

to this Standard Model in supersymmetry to rectify these issues, and how gravity

is incorporated into the mix with superstring theory on the string landscape.

Then, with this background in place, we discuss concepts of naturalness as a

guiding principle to new, undiscovered physics at the Large Hadron Collider
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(LHC) and beyond. We will address how naturalness measures have typically

played a role in the literature along with our new developments towards producing

reliable numerical software to evaluate these measures, along with a new proposed

measure for stringy naturalness and some preliminary results.

1.1 The Standard Model

The most experimentally verified quantum field theory is known as the Standard

Model (SM) of particle physics, which incorporates three of these four forces

– electromagnetism, the weak force, and the strong force. Algebraically, the

SM is a non-Abelian Yang-Mills gauge theory and is described by the group

SU(3) × SU(2) × U(1), leading to the important particle physics lesson that

dynamics of particles and interactions are described by symmetries [3]. Each of

these forces has a corresponding “quantized” form in the SM, corresponding to a

gauge boson, or integer-spin particle, that effectively communicates these forces

between messengers and recipients of that interaction “message”. The Standard

Model also describes three generations of the fundamental matter fermions, or

half-integer-spin particles, that constitutes the matter that then forms structure

within the universe. Lastly, the SM also describes the spin-0 scalar boson, the

Higgs boson, that plays a vital role in generating the fermion masses.

This mass generation is achieved by the spontaneous breakdown of the

SU(2)× U(1) subgroup to the electromagnetic gauge group U(1)em – this break-

down is termed spontaneous electroweak symmetry breaking (EWSB). Briefly, this
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breakdown is achieved by the spin-0 doublet ϕ, containing the Higgs of the SM,

obtaining a non-zero vacuum expectation value (VEV). This VEV is then invari-

ant under specific combinations of the generators for the SU(2) and U(1) gauge

groups, generating a distinct U(1)em gauge group. Without this special breakdown,

the matter fermions would fail to obtain masses due to gauge invariance under

the electroweak SU(2)× U(1) group, but with this breakdown, masses for these

fermions are generated through Yukawa-type interactions between quarks and the

ϕ field’s VEV.

Despite the tremendous success of this model, there are still features of our

universe that fail to be satisfactorily explained by the SM alone. Some of the

biggest issues herein are:

• A quantum description of the fourth fundamental force, gravity, is not

present.

• In addition to failing to incorporate gravity, the Standard Model fails to

describe the relative strengths of the fundamental forces, leading to the

gauge hierarchy problem (GHP) [4, 5]. In particular, with the SM alone, the

Higgs mass is expected to be significantly more massive than its measured

value of mh ∼ 125 GeV. This value seems to only be attainable within the

SM given an extreme degree of finetuning of parameters due to quadratically

divergent contributions to the Higgs mass from scalar boson, gauge vector

boson, and fermion loops, when these interactions are described via Feynman

diagrams.
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• A SM dark matter and dark energy candidate is missing from the SM, which

is crucial, as dark matter and energy is predicted to constitute ∼ 85% of the

matter and energy content of the universe in order to describe its observed

expanding nature.

Supersymmetry (SUSY) offers an elegant solution to many of these issues.

Many supersymmetric constructions exist in the literature, with varying degrees

of complexity, but the simplest and potentially most phenomenologically viable

version of SUSY is present in the Minimal Supersymmetric Standard Model

(MSSM) [3].

1.2 Supersymmetry

1.2.1 A brief introduction to SUSY

SUSY is an extension of the Standard Model that posits a symmetry between

fermions (spin-half-integer particles) and bosons (spin-integer particles), the two

fundamental classes of particles. In the Standard Model, fermions (e.g., quarks

and leptons), are the constituents of matter, while bosons are the carriers of

fundamental forces, as mentioned before. SUSY suggests that for every fermion,

there is a bosonic superpartner, and for every boson, a corresponding fermionic

superpartner.

In unbroken supersymmetry, it is predicted that these supersymmetric particles

(sparticles) will have similar masses to their “twin” non-supersymmetric coun-

terpart. However, we have not yet observed these superpartners experimentally,
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suggesting the idea that if supersymmetry exists, it must be broken at some high

scale, leading to a mechanism that generates masses at a scale much larger than

the Standard Model slew of particles. The concept of a “broken” symmetry is fine,

as we understand that the breaking of the electroweak symmetry SU(2)× U(1)

down to the electromagnetic gauge group serves a vital role in generating fermion

masses. So, even with this requirement of broken supersymmetry (which will

be expanded upon shortly), SUSY offers a compelling framework for addressing

several theoretical challenges faced by the Standard Model, some of which are

given in the preceding section.

1.2.2 Motivation for SUSY

One of the primary motivations behind SUSY is the gauge hierarchy problem as

mentioned in the previous section, concerning the stability of the Higgs boson

mass against large, quadratically divergent radiative corrections. In the Standard

Model, we saw that these corrections “should” drive the Higgs mass to extremely

large values, unless an extreme degree of fine-tuning is present in the theory to

maintain the observed value. Supersymmetry helps mitigate this issue through

the introduction of superpartners that offer terms in the loop-corrected theory

that cancel against these large corrections, stabilizing the Higgs mass. Once

these quadratic divergences cancel, the only remaining divergences are merely

logarithmic.

Another very compelling motivation is the concept of gauge unification, or

unification of (three of) the fundamental forces. Such a unification would indicate
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a high-energy origin of these forces as a singular concept, instead of requiring

three separate constructions. In particular, the coupling constants of the strong,

weak, and electromagnetic forces do not naturally unify at high energies within the

Standard Model. However, when we incorporate SUSY and perform a Quantum

Field Theory technique called renormalization to reparameterize the theory in

such a way that näıvely divergent integrals can be shown to not diverge, we

introduce a new parameter called the renormalization scale that carries the

information of this reparameterization through the theory. In doing so, other

parameters of the theory (such as gauge couplings) vary with the renormalization

scale, producing a set of differential equations called the renormalization group

equations (RGEs), stemming from the concept that physical observables should

not depend on this mathematical artifact of the renormalization scale. These

RGEs evolve the coupling constants, for example, with energy in a way that

suggests they could converge or unify at a common high-energy scale (typically of

the order MG ∼ 2× 1016 GeV), hinting at a grand unified theory (GUT).

Furthermore, SUSY provides us a natural candidate for dark matter through

the lightest supersymmetric particle (LSP). This is often assumed to be the SUSY

particle termed the neutralino, which is generally stable under certain conditions

and could constitute the dark matter we expect to make up a significant portion

of the universe’s mass-energy content. If R-parity is conserved, then this LSP is

stable and could account for the dark matter observed.
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1.2.3 The supersymmetry algebra

Mathematically, early constructions with the Wess-Zumino model[3] demonstrated

the possibility of constructing a relativistic quantum field theory that is invariant

under supersymmetric transformations. At its core, supersymmetry contains

the SUSY algebra, which extends the standard Poincaré algebra known through

relativity to be required for spacetime symmetries. This new SUSY algebra

introduces spinorial generators (charges) Q, Q̄ that serve to transform fermions

into bosons and vice versa. These generators must satisfy certain anti-commutation

relations[3]:

{Qa, Q̄b} = 2 (γµ)ab Pµ,

{Qa, Qb} = −2(γµC)abPµ,

{Q̄a, Q̄b} = 2(C−1γµ)abPµ,

where Pµ is the standard 4-vector momentum. Through these relations, the SUSY

generators close on the Poincaré algebra, such that supersymmetry is effectively a

spacetime symmetry.

1.2.4 SUSY QFT and superfield formalism

In constructing a relativistic quantum field theory (QFT) that is invariant under

SUSY transformations, we must extend the field content of the Standard Model to

include superfields. Superfields are representations of the SUSY algebra combining

both fermionic and bosonic degrees of freedom. As a simple example, consider the
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chiral superfield Φ expressed in terms of a fermionic component field ψ, a scalar

field ϕ, and an auxiliary field F (introduced to balance the degrees of freedom and

ensure off-shell SUSY invariance). These fields transform into each other under

some SUSY transformation. To combine these into a superfield, we introduce a

Majorana spinor θ with four components who are Grassmann numbers, satisfying

the relation

{θa, θb} = 0.

A general superfield is then expressed as (generally complex)

Φ(x, θ) =ϕ− i
√
2θ̄γ5ψ − i

2

(
θ̄γ5θ

)
M+

1

2
(θ̄θ)N +

1

2
(θ̄γ5γµθ)V

µ

+ i
(
θ̄γ5θ

) [
θ̄

(
λ+

i√
2
��∂ψ

)]
− 1

4

(
θ̄γ5θ

)2 [D − 1

2
□ϕ

]
.

(1.1)

This expansion is in terms of the sixteen component fields M,N , V µ, λ, and D.

The action S for a SUSY theory is then constructed to be invariant under

SUSY transformations, requiring careful consideration of the interactions between

component fields within the superfields. In the Minimal Supersymmetric Standard

Model (MSSM) to be introduced shortly, the Lagrangian contains terms such

as kinetic terms, Yukawa interactions, and potential terms. The key is that the

entire action S respects the supersymmetry, while the Lagrangian transforms

under this symmetry as a total derivative.
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1.2.5 Soft SUSY breaking

While SUSY does elegantly address several theoretical issues, since we have not

observed superpartner masses with the same masses as their SM counterparts,

we must be consistent with this experimental evidence of the observed particle

spectrum and realize that SUSY is a broken symmetry. However, we do not want

to break SUSY in such a way that the cancellations of quadratic divergences

mentioned earlier are lost (termed hard SUSY breaking). Soft SUSY breaking

introduces explicit SUSY-breaking terms into the Lagrangian, which then ensures

that SUSY breaking occurs at a “low” energy scale without reintroducing the

GHP.

Soft SUSY-breaking terms typically include mass terms for the superpartners

(to generate their experimentally-expected large masses, relative to their SM

counterparts), trilinear scalar couplings, and bilinear scalar couplings [6]. These

terms will break SUSY while maintaining the desirable features of SUSY, such as

the stabilization of the Higgs mass and the unification of gauge coupling constants.

1.2.6 The Minimal Supersymmetric Standard Model (MSSM)

Among the various possible SUSY theories, the MSSM stands out due to its

parsimony and its potential for phenomenological viability. The MSSM extends

the SM by introducing the minimal set of new particles required to implement

supersymmetry. This includes superpartners for each Standard Model Particle,

as well as additional Higgs bosons to accommodate anomaly cancellation. The

MSSM is built on the assumption of N = 1 SUSY, meaning there is a single
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SUSY generator. This is the simplest form of supersymmetry and implies there is

one superpartner for each SM particle.

In N = 1 SUSY, the SUSY algebra includes a single set of SUSY generators

Q and Q̄, as mentioned above, serving to transform fermions into bosons and

vice versa. Higher N SUSY does not allow chiral matter as required in the

Standard Model. The presence of a single SUSY charge simplifies our theoretical

framework, while still addressing the key issues underlying the SM we want

to resolve. This minimal approach also makes the MSSM more accessible and

testable in phenomenological studies and collider experiments. Additionally, the

MSSM predicts the lightest Higgs boson (which coincides with the experimentally

found Higgs boson) mass to lie within a narrow range that explicitly contains the

measured value of 125 GeV.

The MSSM extends the SM by introducing superpartners for each of the

existing particles, as suggested. Specifically:

• Quarks and leptons: Each quark and lepton has a scalar superpartner

known as a squark and a slepton, respectively.

• Gauge bosons: Each gauge boson has a fermionic superpartner known

as a gaugino. For example, the gluon’s superpartner is the gluino, the W

and B bosons’ superpartners are the winos and bino, and the photon’s

superpartner is the photino.

• Higgs bosons: The Higgs sector is expanded to include two Higgs doublets,

introducing five physical Higgs bosons. Out of these five, two are CP-
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even, one is CP-odd, and two are electrically charged Higgs bosons. Their

fermionic superpartners are then called higgsinos.

The MSSM’s action is constructed to be invariant under N = 1 SUSY trans-

formations. The terms in the Lagrangian include:

• Kinetic terms: This ensures proper dynamics for all fields and generates

gauge interactions.

• Superpotential: This is a function of the chiral superfields that dictates

the interactions between the fields. It includes Yukawa interactions similar to

those in the Standard Model, but extended to include interactions between

Higgs fields and their superpartners.

• Soft SUSY breaking terms: These terms explicitly break SUSY at low

energies without reintroducing the hierarchy problem. Included here are

mass terms for the scalar and gaugino sparticles, trilinear scalar couplings

(also called A-terms), and bilinear scalar couplings (also called B-terms).

Despite its theoretical appeal, the MSSM’s predictions must be tested experi-

mentally. The search for superpartners is a major focus of experiments at particle

colliders such as the Large Hadron Collider (LHC), a proton-proton collider at

CERN which operates at
√
s = 13.6 TeV. To date, no direct experimental evidence

of superpartners has been found, leading to constraints on the parameter space

of the MSSM. However, some experiments have shown a few-σ deviations from

the expectations of the SM, indicating that SUSY or some other extension of the

11



SM may be required. These ongoing searches are crucial for either validating the

MSSM or guiding physicists towards alternative theories. In the following chapters,

we will delve deeper into the structure, particle content, and phenomenological

implications of the MSSM, highlighting its role as a cornerstone in the quest for a

more comprehensive understanding of fundamental physics. Next, we will intro-

duce some specific, common realizations of the MSSM in the literature through

the CMSSM and NUHMi models, where i = 1, 2, 3, 4, along with the concept of

the string landscape to implement gravity into the theory, and how some universes

within a broader “multiverse”, or landscape of universes, could support the idea

of the MSSM emerging from this landscape. In later chapters, we will present

our new results that compare finetuning measures within these models and more,

both within the context of our universe and within multiple possible universes in a

broader “landscape” of universes that may lead to large-scale structure formation,

the capability of chemistry to exist, and the possibility of observers within these

universes. Many of our results for traditional naturalness measures are presented

as a numerical refinement of older calculations that used assumptions leading to

inaccuracies in the results. Some of the most common MSSM models used in the

literature for phenomenological analyses are introduced briefly now.

1.2.7 Minimal supergravity model (mSUGRA) and the Constrained

MSSM (CMSSM)

The Constrained Minimal Supersymmetric Standard Model (CMSSM) is a specific

version of the Minimal Supersymmetric Standard Model (MSSM), characterized
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by its simplicity and predictive power. It assumes:

1. Universality of SSB parameters: At the Grand Unification Theory

(GUT) scale ∼ 2 ·1016 GeV where the SU(2) and U(1) gauge couplings unify

under renormalization group evolution, the soft SUSY-breaking parameters

are taken to be universal, meaning [7]:

• A common scalar mass (m0);

• A common gaugino mass (m1/2);

• A common trilinear coupling A0.

2. Radiative electroweak symmetry breaking: The Higgs sector parame-

ters are fixed by the requirement of electroweak symmetry breaking driven

by radiative corrections. In the CMSSM, this may come at the expense of

extreme finetuning amongst parameters, as we will delve into later in this

work. For example, the µ parameter of the MSSM, or the Higgsino mass

parameter, may be tuned such that the experimentally-observed value of

the Z-boson mass, m2
Z = 91.22 GeV2 is obtained from Higgs scalar potential

minimization conditions. This scenario may be obtained within the frame-

work of gravity-mediated SUSY breaking through a “minimal” choice of the

Kähler potential [3]. In the CMSSM, the Bµ parameter can be swapped for

a specification of the value of the ratio of the Higgs VEVs, tan(β) = vu/vd.

Generally, these assumptions significantly reduce the number of free parameters

within the MSSM, making the CMSSM a highly constrained and testable frame-

work for SUSY phenomenology. The CMSSM is often linked with the concept of
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minimal supergravity (mSUGRA) GUTs, a theoretical framework that provides

a mechanism for breaking supersymmetry in a hidden sector and transmitting

this breaking to the observable sector via gravitational interactions [8, 9]. Key

features of mSUGRA include:

1. Supersymmetry is broken in a hidden sector [10].

2. The breaking is communicated to the observable sector through gravitational

interactions [11].

3. At the GUT scale, the soft SUSY-breaking terms are universal, leading to

the CMSSM parameter structure.

mSUGRA provides a strong theoretical foundation for the universality assumptions

of the CMSSM.

1.2.8 Non-universal Higgs models (NUHMi)

Non-universal Higgs models (NUHM) extend the CMSSM by relaxing the univer-

sality condition(s) for the Higgs sector and scalar mass parameters. This allows

for more flexibility in the Higgs, squark, and slepton sectors (for higher values of i)

while keeping the universality for other gaugino and trilinear coupling parameters

[12]. There are four “flavors” of NUHM models, which are characterized below

and expanded upon later in this work. The extra non-universality granted by

these models may allow for a better fit to experimental data [13, 14]. The extra

degrees of freedom afforded also permit much lower levels of finetuning, compared

to the CMSSM, for example. Explicit comparisons on the grounds of finetuning
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and naturalness will be made in later chapters, but we present a review of the

four main types of NUHM models below.

NUHM1

This model is characterized by having one additional parameter to those set forth

in the CMSSM, allowing the Higgs masses m2
Hu

and m2
Hd

to still be unified with

each other at the GUT scale, but perhaps at a value separate from the other

scalar masses, which are set at m0 [15]. The parameter set for this model is then:

m2
Hu,d

,m0,m1/2, A0, tan(β).

NUHM2

This model introduces two additional parameters to the CMSSM parameter set

by allowing both Higgs mass parameters to be non-universal. This causes the

parameter space for this model to consist of:

m2
Hu
,m2

Hd
,m0,m1/2, A0, tan(β).

In practice for phenomenology, it is common for the GUT-scale values of m2
Hu,d

to

be swapped for the weak-scale values of µ and mA, the pseudoscalar mass, to be

specified.
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NUHM3

This model introduces three additional parameters to the CMSSM parameter set

by allowing both Higgs mass parameters to be non-universal, as well as allowing

the third generation squark and slepton masses to unify at a value separate from

the first two generations [14]. This causes the parameter space for this model to

consist of:

m2
Hu
,m2

Hd
,m0(3),m0(1, 2),m1/2, A0, tan(β).

Here, m0(i) denotes the unified scalar mass at the GUT scale for the squarks and

sleptons of the i’th generation.

NUHM4

Finally, this model has the most non-universality of the NUHM models by in-

troducing four additional parameters to the CMSSM parameter set. The Higgs

masses are allowed to be non-universal, and the first, second, and third generations

of squarks and sleptons are each allowed to unify at distinct values from other

generations [15, 16]. This causes the parameter space for this model to consist of:

m2
Hu
,m2

Hd
,m0(3),m0(2),m0(1)m1/2, A0, tan(β).

1.3 The string landscape

String theory is a theoretical framework that attempts to reconcile quantum

mechanics and general relativity by positing that the fundamental building blocks
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of the universe are not point-like particles but rather one-dimensional objects

known as strings. These strings can vibrate at different frequencies, with each

vibration mode corresponding to a different particle. One of the remarkable

aspects of string theory is that it naturally incorporates gravity, making it a

strong candidate for a theory of everything.

However, string theory is not a single theory but a framework that encompasses

a multitude of possible solutions. These solutions are characterized by different

ways of compactifying the extra dimensions required by string theory. In most

string theories, our familiar four-dimensional spacetime is supplemented by six

or seven additional spatial dimensions which are compactified into a Calabi-

Yau space. The manner in which these extra dimensions are compactified leads

to different low-energy physical laws, effectively creating a vast “landscape” of

possible universes[17].

1.3.1 The landscape of vacua

The concept of the string landscape refers to the multitude of possible vacuum

states or solutions in string theory. Each vacuum state corresponds to a different

set of 4-d physical laws, particle spectra, and constants of nature. It is estimated

that the number of possible vacua in the string landscape is on the order of 10500

or even larger[17]. This vast number of solutions implies a rich diversity of possible

universes, each with its own distinct physical properties. However, a key note is

that only a subset of these may be able to support observers, due to factors such

as the cosmological constant[18] and the predicted value of the weak scale and its
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correlation with chemistry, or the “atomic principle”[19].

In the context of the string landscape, our universe is just one of many possible

“pocket universes” (PU) that exist within a broader multiverse [20]. Each pocket

universe corresponds to a different point in the string landscape, characterized by a

specific vacuum state with its own unique physical laws and parameters. The idea

of a multiverse composed of pocket universes raises many profound questions about

the nature of physical reality and the origin of the specific properties observed

in our universe. One intriguing possibility is that the properties of our universe,

such as the values of fundamental constants and the presence of the SM, are the

result of a selection process within the multiverse. This selection process may

be influenced by anthropic considerations, where only universes with properties

conducive to the development of large-scale structure and life are observed.

The MSSM may be seen as one possible low-energy effective field theory

(EFT) emerging from the string landscape. In some pocket universes, the vacuum

state of string theory may break supersymmetry in such a way that the low-

energy physics resembles the MSSM, at least within some “neighborhood” of

the landscape[19, 21, 22]. This provides a natural context for the MSSM and its

phenomenological viability within the broader framework of string theory. Some

relevant key notes from the theory are summarized below:

1. Compactification and SUSY breaking: Different ways of compactifying

the extra dimensions in string theory can lead to different mechanisms of

SUSY breaking. In some compactifications, SUSY may be broken at a low
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scale FX ∼ (1011 GeV)2 ≪ m2
P , resulting in the MSSM with TeV-scale soft

terms as the EFT at lower energies.

2. Vacuum selection and anthropic principle: The string landscape

allows for the possibility that the MSSM is realized in a universe (such as

ours) due to anthropic selection. Universes with the MSSM might be more

conducive to the formation of complex- and large-scale structures, as well

as observers, leading to their preferential observation. As an example of

vacuum selection and anthropic principles, the immense number of vacuum

states that are viable within the string landscape framework provided a

setting for Weinberg’s anthropic solution to the cosmological constant (CC)

problem by realizing that pocket universes with too high of a CC will expand

too rapidly and result in a universe devoid of large-scale structure such as

galaxies [18].

3. Predictive power and experimental tests: While the string land-

scape presents a challenge for making precise predictions, it also provides a

framework for understanding the diversity of possible low-energy theories.

Experimental tests at particle colliders and observations of cosmological

phenomena can provide indirect evidence for or against specific compactifi-

cations and the presence of supersymmetry. However, it may yet be possible

to offer statistical predictions of the theory from the large set of possible

vacua. This is what is addressed in Chapters 4 and 5, where we offer a novel

way of analyzing the density of vacua resulting from some supersymmetric
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EFT in the string landscape as a means of statistically comparing different

vacuum possibilities on the landscape.

To finalize our introduction, the string landscape offers a rich tapestry of possible

universes, each with its own unique physical laws and particle content. Within

this landscape, the MSSM emerges as a compelling candidate for the low-energy

effective theory in some pocket universes. This connection between the MSSM

and the string landscape provides a broader context for understanding the origins

and implications of supersymmetry and offers intriguing possibilities for future

theoretical and experimental exploration.

In the following chapters, we will explore specific models and mechanisms

within the string landscape that lead to the MSSM, examine the implications

of these models for our understanding of fundamental physics, and discuss how

ongoing and future experiments might provide insights into the structure of

the multiverse and the nature of our universe. To begin, we will address the

concepts of finetuning and naturalness, in regards to resolving the Little Hierarchy

Problem that has arisen in the research field, since we have not yet experimentally

observed superpartners. In doing so, we will present how traditional finetuning

measures overestimate the degree of electroweak finetuning via a newly developed

software that operates on the existing architecture for presenting supersymmetric

particle spectra for phenomenological studies [23, 24]. Then we will present new

analyses of the string landscape incorporating new probability measures for a

vacuum supporting observers to emerge from the string landscape, along with

their implementation into publicly available software.

20



Chapter 2

Practical naturalness as a guide to new physics

2.1 Naturalness

As mentioned in the Introduction, WSS provides us with a solution to the gauge

hierarchy problem by stabilizing the Higgs boson mass under quantum corrections,

while introducing a variety of new states of matter, the superpartners of the SM.

Phenomenologically, SUSY theory is supported by the data from the following

virtual effects.

1. The three gauge couplings unify at a high scale MGUT to a remarkable

precision due to the radiative effects of renormalization group running

[25, 26, 27, 28].

2. The Higgs boson mass mh ∼ 125 GeV lies directly within the narrow window

of possible values predicted in the Minimal Supersymmetric Standard Model

(MSSM) [29].

3. The top quark was predicted to be heavy – ∼ 100− 200 GeV – by SUSY

to facilitate radiative electroweak symmetry breaking (EWSB) prior to its

experimental discovery [30, 31].

4. Electroweak precision corrections to observables favor heavy SUSY over the

SM in the mt vs. mW plane [32].

Additionally, superstring theory provides the most promising avenue for unify-
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ing the SM with gravity. This comes at the price of requiring 6 or 7 extra spatial

dimensions[33, 34, 35, 36, 37]. The low energy limit of string theory, characterized

by E < mP , where mP is the reduced Planck mass, is expected to be 10 − d

supergravity (SUGRA), after integrating out Kaluza-Klein modes. The 10− d

SUGRA theory must then be compactified down to an extremely small 6 − d

space K tensored with our usual 4− d (approximately) Minkowski spacetime M4:

M10 =M4 ×K. Originally, K was taken to be a 6− d compact Ricci-flat Kähler

manifold with special holonomy[38]. This type of Calabi-Yau manifold admits a

conserved Killing spinor, which in effect leads to a remnant N = 1 SUSY on M4.

The cosmological constant (CC) problem remained a thorny issue until the

early 2000s when it was realized that string flux compactifications could lead to

an enormous number of vacuum states each with different 4− d laws of physics,

and in particular, different ΛCC values[39]. Such large numbers of vacuum states

(Nvac ∼ 10500 is an oft-quoted number[40]) provided a setting for Weinberg’s

anthropic solution to the CC problem[18]. But if the landscape[41] of string vacua

provides a solution to the CC problem, might it also enter into other naturalness

problems, such as the mweak/mP (or related, mSUSY /mP ) hierarchy problems

(where mP ≃ 2.4× 1018 GeV)? We will return to this subject in later chapters.

First, we must clarify the underlying concept of “naturalness” that continues to

guide our expectations of new physics and the scales at which those new physics

occur.

In spite of this impressive litany of successes, it is common nowadays to dismiss

weak scale supersymmetry (WSS)[3] as a viable beyond-the-Standard Model (BSM)
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theory due to the apparent lack of new physics signals at the CERN LHC[42].

The data from LHC, which is by-and-large in accord with SM expectations[43],

is in contrast to early theoretical expectations for WSS based upon naturalness

arguments that superpartners would emerge with mass values not far from the

weak scale mweak ≃ mW,Z,h ∼ 100 GeV[44, 45, 46, 47, 48, 49, 50, 51, 52]. At

present, such arguments are being used to set policy and guide future facilities for

the High Energy Physics (HEP) frontier[53, 54]. Given the stakes involved, it is

essential to go back and review the naturalness-based arguments to assess when

and where and if they present a reliable guide to the search for new physics.

2.1.1 The Little Hierarchy Problem and Practical Naturalness

Supersymmetry offers a ’t Hooft technically natural solution[55] to the hierarchy

of scales problem in that, as the hidden sector SUSY breaking scale mhidden (which

determines the magnitude of the soft terms via msoft ∼ m3/2 ∼ m2
hidden/mP

in gravity-mediation and hence of the weak scale via the scalar potential mini-

mization conditions in Appendix A) is taken to zero, the model becomes more

(super)symmetric. The SUSY solution to this big hierarchy problem (BHP) –

stabilizing the weak scale so that it doesn’t blow up to the Planck or GUT scale –

is not the naturalness issue which concerns many contemporary SUSY theorists.

Indeed, ’t Hooft naturalness remains a valid solution to the BHP even for very

large gaps msoft ≫ mweak. Instead, it is the so-called little hierarchy problem

(LHP) which is of concern[56, 57]:
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how can it be that mweak ∼ mW,Z,h ∼ 100 GeV is so much smaller

than the soft SUSY breaking terms, which, according to LHC data,

are msoft ≳ 1 TeV (owing to LHC bounds mg̃ ≳ 2.2 TeV, mt̃1 ≳ 1.1

TeV, · · · )[58]?

In addressing the LHP, what is of concern is what we call the notion of

practical naturalness (PN)[59]1:

An observable O = o1+ · · ·+on is practically natural if all independent

contributions oi to O are comparable to or less than O.

(Here, comparable to means within a factor of several from the measured value.)

Practical naturalness embodies the notion of naturalness that is most often used

in successful applications of naturalness. For instance, by requiring the charm

quark mass contribution

∆mK(c) ≃
GF√
2

α

6π

f 2
KmK

sin2 θW
cos2 θC sin2 θC

m2
c

m2
W

(2.1)

to be comparable to or less than the measured KL −KS mass difference ∆mK ∼

3.5 · 10−12 MeV, Gaillard and Lee[62] were able to predict mc ∼ 1.5 GeV several

months before the charm quark was discovered2.

Weak scale naturalness plays a key role in determining the viability of Beyond

the Standard Model theories such as SUSY. For the case of the SM, where the

1This is in accord with Veltman’s notion of naturalness as presented in Ref. [60]. See also
Susskind[61].

2It is still a breathtaking exercise to plug in the numbers and see the charm quark mass
emerge.
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Higgs potential is given by

V = −µ2
SMϕ

†ϕ+ λ(ϕ†ϕ)2, (2.2)

a vacuum expectation value v =
√
µ2
SM/λ develops and the tree-level Higgs boson

mass is given by m2
h = 2µ2

SM . The loop-corrected Higgs mass is quadratically

divergent up to some cutoff scale ΛSM where

m2
h = 2µ2

SM + δm2
h (2.3)

where at one loop

δm2
h ≃ 3

4π2

(
−
∑
i

λ2i +
g2

4
+

g2

8 cos2 θW
+ λ

)
Λ2

SM (2.4)

where the λi are Yukawa couplings for the ith fermion, g is the SU(2)L gauge

coupling and λ is the Higgs quartic coupling[63]. Requiring practical naturalness

then leads to ΛSM ≲ 1 TeV whilst finetuning is required for much higher values

of ΛSM ≫ 1 TeV.

In SUSY models with the MSSM as the LE-EFT, then the weak scale is

actually predicted in terms of the weak scale soft SUSY breaking terms and

superpotential µ parameter. Minimization of the Higgs potential in the MSSM

leads to Eq. 2.9, which will be described briefly.

An essential element of practical naturalness is that the contributions oi should

be independent of one another in the sense that if one of the oi is varied, then
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the others don’t necessarily vary. For instance, Dirac was bothered by various

divergent contributions to perturbative QED observables. However, these were

dependent contributions in that if the regulator was varied, the different divergent

terms would also vary. One should always first combine dependent terms before

evaluating naturalness. Once dependent terms are combined, then a measure of

naturalness emerges:

∆ ≡ max
i

|oi|/|O|. (2.5)

Using PN, we see that QED perturbation theory is practically natural in that the

leading terms are comparable to the measured observables whilst higher order

terms (once dependent terms are combined) are typically much smaller.

One must properly address the evaluation of electroweak finetuning in an

attempt to address the LHP. In the next section, we revisit several proposed

naturalness measures which have been applied to various supersymmetric models.

As opposed to ’t Hooft naturalness, these measures determine the degree of

practical naturalness. Historically, the first of these is the EENZ/BG[44, 45]

measure (labeled here as ∆BG) which determines the sensitivity of the measured

value of the weak scale to variation in model parameters pi (i labels the various

parameters under consideration). Typically the pi have been taken to be the

various soft SUSY breaking terms starting at a high effective field theory (EFT)

cutoff scale Λ = mGUT ≃ 2× 1016 GeV:

∆BG ≡ max
i

|∂ logm
2
Z

∂ log pi
| = maxi|

pi
m2

Z

∂m2
Z

∂pi
|. (2.6)
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For small ∆BG ≲ 30, then sparticle masses are expected below the several hundred

GeV range although in some special regions of model parameter space, such

as the focus point region[64, 65] of the minimal supergravity[66] (mSUGRA) or

constrained MSSM[7] (CMSSM) model, multi-TeV scale top squarks can be allowed.

Despite its popularity, this measure has been argued to overestimate finetuning

in SUSY models by large factors and to give ambiguous answers depending on

exactly which parameters are chosen to be the fundamental pi[67, 68].

A second measure, which we label here as ∆HS (for high scale sensitivity of the

up-Higgs soft mass m2
Hu

), starts with the approximate SUSY Higgs mass relation

m2
h ∼ µ2 +m2

Hu
(weak) where m2

Hu
(weak) = m2

Hu
(Λ) + δm2

Hu
. One then requires

∆HS = δm2
Hu
/m2

h (2.7)

to be small. (It is the large top-quark Yukawa coupling ft which radiatively drives

m2
Hu

from its large SUGRA value at the high scale to small, usually negative

values at the weak scale so that EW symmetry is spontaneously broken.) This

measure, which is inconsistent with ∆BG in that it doesn’t allow for multi-TeV

top squarks even in the FP region, has lead to intense scrutiny of LHC top squark

searches since it is expected that δm2
Hu

∼ 6f2
t

(4π)2
m2

t̃
log Λ2

m2
t̃

[69, 70, 71, 72, 73, 74, 75].

∆HS was found to lead to violations of the finetuning rule[67]: that it is not allowed

to claim finetuning amongst dependent terms which contribute to some observable

O. In this case, δm2
Hu

and m2
Hu

(Λ) are dependent due to renormalization group

running, leading to overestimates in finetuning. To see this, we see that the
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one-loop renormalization group equation (RGE) for the m2
Hu

parameter is given

below. The more complete two-loop expression is presented in Appendix B, Eqs.

(B.14, B.37).

β
(1ℓ)

m2
Hu

= 6Tr
[
(m2

Hu
+M2

Q̃
+M2

Ũ
)Y2

U + a2
U

]
− 3

5
g21

(
2M2

1 − S̃
)
− 6g22M

2
2 (2.8)

Here, M1,2 represent the U(1) and SU(2) gaugino masses, g1,2 their respective

gauge group couplings, S̃ is a function of m2
Hu

and the other scalar masses

(presented in Eq. (B.13)), Mĩ are squark mass squared matrices in generation

space, aU is the up-type soft trilinear coupling matrix in generation space, and YU

is the up-type Yukawa coupling matrix in generation space. Clearly, the evolution

of m2
Hu

directly depends on its own value.

A third measure is the electroweak measure ∆EW[76, 77] which is touted to be

more conservative and model independent than the others, and also unavoidable

(within the context of the MSSM). It is based on the SUSY Higgs potential

minimization condition

m2
Z/2 =

m2
Hd

+ Σd
d − (m2

Hu
+ Σu

u) tan
2 β

tan2 β − 1
− µ2 ≃ −m2

Hu
− µ2 − Σu

u(t̃1,2) (2.9)

where all right-hand-side (RHS) entries are taken as their weak scale values in

the renormalization group running and

∆EW ≡ max
i

|Ci|/(m2
Z/2). (2.10)
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Ci are the independent entries on the RHS of Eq. 2.9. As an aside, the approxima-

tion on the far RHS of Eq. 2.9 tends to hold for moderate to large values of tan(β),

but neglects some potentially important terms arising from the higher-order Σ

contributions, or from large m2
Hd

values, especially in certain cases of non-universal

Higgs masses at the GUT scale. For these reasons, the approximation here should

be used cautiously, depending on the application – the full expressions, presented

in Appendix A, lead to more numerically stable and complete analyses. This

measure was preceded by Chan et al.[78] who suggested that the magnitude of

the SUSY conserving µ parameter could serve as a finetuning measure all by itself.

This measure is sometimes criticized in that it apparently lacks sensitivity to high

scale parameters (more on this later).

A fourth entry has been formerly known to not be a quantifiable measure,

but known nonetheless as stringy naturalness (SN), which arises from Douglas’

consideration of the string landscape picture[79]:

Stringy naturalness: An observable O1 is more (stringy) natural

than observable O2 if more phenomenologically viable string vacua

lead to O1 than to O2.

In this work, we present a method by which stringy naturalness may be quantified

within regions of the string landscape. To quantify stringy naturalness, at least

two ingredients are needed: 1. the expected distribution of some quantity within

the landscape of vacua possibilities and 2. an anthropic selection ansatz for which

many choices would lead to universes that are unable to support observers. For the
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case of SUSY models, the first of these is usually how soft terms are distributed in

the landscape while the second of these is the magnitude of the weak scale itself:

if the predicted value of mweak within each pocket universe is too far displaced

from its measured value in our universe, then nuclear physics goes astray, and

atoms as we know them fail to appear– leading to no complex chemistry as seems

to be needed for life as we know it (atomic principle)[80]. An attempt to compute

and display stringy naturalness via density of dots in model parameter space has

been made in Ref. [81].

In the present work, we reexamine these several measures of naturalness, filling

in some of the many gaps of understanding that exist in the literature. Part of

our work is based on a new computation of ∆BG naturalness based on evaluating

numerically the derivatives in Eq. 2.6. This new computation is embedded in the

publicly available code DEW4SLHA[77] so that the updated code can provide

values of each of the measures ∆BG, ∆HS and ∆EW given an input SUSY Les

Houches Accord (SLHA) file[82].3 We also compute ratios of naturalness measures

to determine the extent of which some measures can overestimate finetuning in

SUSY models. For instance, in the SUSY theory review contained in the Particle

Data Book[83], it is suggested that the overestimates may range up to a factor 10;

in contrast, we find overestimates ranging up to factors of over 1000.

3The code DEW4SLHA, written by D. Martinez, is available at https://www.dew4slha.com.
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2.2 On the evaluation of electroweak finetuning

2.2.1 Sensitivity to high scale parameters: EENZ/BG naturalness

Historically, the first measure of SUSY model naturalness was proposed by Ellis

et al. in Ref. [44] and subsequently used by Barbieri and Giudice[45] to compute

sparticle mass upper bounds in the mSUGRA/CMSSM model: Eq. 2.6. The

measure purports to compute sensitivity of the measured value of the weak

scale to variation in high scale parameters pi. The ∆BG measure is actually

a measure of practical naturalness of the weak scale in the case where m2
Z =

a1p1 + · · · + anpn. Let’s suppose the jth contribution to m2
Z is largest. Then

∆BG = maxi |(pi/m2
Z)∂m

2
Z/∂pi| = |ajpj/m2

Z | in accord with Eq. 2.5. The various

|aipi/m2
Z | ≡ ci terms are labeled sensitivity coefficients[84]. The rub here is what

choice to take as to the free parameters pi.
4

The starting point is to express m2
Z in terms of weak scale SUSY parameters

as in Eq. 2.9:

m2
Z ≃ −2m2

Hu
− 2µ2 (2.11)

where the partial equality is obtained for moderate-to-large tan(β) values and

where we assume for now that the radiative corrections are small. To evaluate

∆BG, one needs to know the explicit dependence of m2
Hu

and µ2 on the fundamen-

tal parameters. Semi-analytic solutions to the one-loop renormalization group

4Giudice remarks in Ref. [63]: “It may well be that, in some cases, Eq. 2.6 overestimates
the amount of tuning. Indeed, Eq. 2.6 measures the sensitivity of the prediction of mZ as we
vary parameters in theory space. However, we have no idea how this theory space looks like, and
the procedure of independently varying all parameters may be too simple-minded” . See also
discussion in Ref. [50].
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equations for m2
Hu

and µ2 can be found for instance in Refs. [85, 86]. For the case

of tan β = 10, then[52, 87, 84]

m2
Z ≃ −2.18µ2 + 3.84M2

3 + 0.32M3M2 + 0.047M1M3

−0.42M2
2 + 0.011M2M1 − 0.012M2

1 − 0.65M3At

−0.15M2At − 0.025M1At + 0.22A2
t + 0.004M3Ab

−1.27m2
Hu

− 0.053m2
Hd

+0.73m2
Q3

+ 0.57m2
U3

+ 0.049m2
D3

− 0.052m2
L3

+ 0.053m2
E3

+0.051m2
Q2

− 0.11m2
U2

+ 0.051m2
D2

− 0.052m2
L2

+ 0.053m2
E2

+0.051m2
Q1

− 0.11m2
U1

+ 0.051m2
D1

− 0.052m2
L1

+ 0.053m2
E1
, (2.12)

where all terms on the right-hand-side are understood to be GUT scale parameters.

As an example, if we adopt m2
Q3

as a fundamental parameter, then the sensitivity

coefficient cm2
Q3

= 0.73m2
Q3
/m2

Z and for mQ3 = 3 TeV, then one finds cm2
Q3

≃ 800

so that ∆BG > 800 and the model is certainly finetuned. If instead we declare all

scalar masses unified to m0, then there are large cancellations and instead one

finds cm2
0
= 0.013m2

0/m
2
Z ∼ 14.2: a reduction in finetuning by over a factor 50!

Clearly, whether or not soft terms are correlated or not makes a big difference in

the evaluation of ∆BG!

Numerical routine to compute ∆BG

The evaluation of ∆BG can be done by approximating the partial derivatives

with the method of finite difference quotients (particularly, central differences

32



here). That is, for finding the partial derivative with respect to a parameter p1 of

m2
Z(p1, p2, . . . , pn), where pi are the fundamental parameters of the model chosen

for evaluating ∆BG, then

∂m2
Z (p1, p2, . . . , pn)

∂p1
≈ m2

Z(p1 + h1, p2, . . . , pn)−m2
Z(p1 − h1, p2, . . . , pn)

2h1
. (2.13)

h1 is the size of the variation of the differentiation parameter p1, which is then

used to determine the resulting change in m2
Z . Since this is a partial derivative, all

other input parameters are left fixed at their original values prior to differentiation.

To compute this derivative, m2
Z must be evaluated in the right-hand side of

Eq. 2.13 as an output of the m2
Z Higgs minimization condition, Eq. 2.9, at the

weak renormalization scale QSUSY =
√
mt̃1

mt̃2
to minimize radiative corrections

in the Higgs minimization condition. For the partial derivative of m2
Z with respect

to pi, the GUT-scale parameter pi defined at the renormalization scale QGUT

is varied to pi + hi, with hi ≪ pi. Then the new set of GUT-scale parameters

{p1, p2, . . . , pi + hi, . . . , pn−1, pn} are evolved from QGUT down to QSUSY using the

full two-loop MSSM renormalization group equations (RGEs). Lastly, the varied

value m2
Z(p1, p2, . . . , pi + hi, . . . , pn−1, pn) is computed from the tree-level Higgs

minimization condition for m2
Z , giving a value slightly deviated from 91.22. This

value is then used in Eq. 2.13 and the process is repeated for the other direction

of variation.

In this numerical derivative approach, two sources of error can enter and skew
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the results: truncation error and roundoff error. Below are some descriptions of

these errors and how we minimize them.

• Truncation error is the error of approximating the true, analytical derivative

of m2
Z , a tangent line to the m2

Z curve, with our numerical two-point method,

producing a secant line to the m2
Z curve. For a given derivative variation

size of h, the truncation error for this two-point method is suppressed by a

term of O(h2). This error remains relatively small so long as the step size

h < 1 and the higher-order derivatives of m2
Z are reasonably bounded.

• Roundoff error comes from representing the values p1, p2, . . . , pn, and h1

in Eq. 2.13 as floating point numbers, where the computer must “round

off” most decimal values after a certain number of digits due to storage

limitations in binary. Because of this, there is a non-zero spacing between

two consecutive floating point numbers x and y, and this spacing is called the

unit of least precision (denoted ULP(x)). Careful error analysis reveals that

the roundoff error is proportional to the step size used in the evaluation. This

roundoff error is then minimized when, for a two-point central difference,

the step size hi for the derivative with respect to some pi is chosen as

hi ≈ [ULP (pi)]
1/3. In order for hi < 1 to occur, the ULP(pi) must then also

be less than unity.

Numerical error may also enter through the numerical solution of the RGEs,

though similar numerical considerations can help control these errors as well.

With these sources of error in mind, the error in evaluating this derivative will
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remain small, i.e., O(< 1), so long as |pi| ≲ 1015 in magnitude for all i. This

leads to hi < 1 for double-precision floating point numbers. DEW4SLHA offers

the option of performing this calculation with even higher accuracy derivative

approximations, such as a four-point or eight-point central difference quotient to

further minimize truncation error.

The numerical evaluation of ∆BG has several advantages over the semi-analytic

formulae using expansions such as Eq. 2.12.

• The numeric routine uses full two-loop RGEs including all third generation

Yukawa couplings[88] and one- and partial two-loop radiative corrections,

while semi-analytic expansions use one-loop RGEs without loop-corrected

weak-scale contributions.

• The semi-analytic expansions were formulated to compute the Higgs potential

at a scale Q ∼ mZ whilst the numeric routine uses an optimized scale choice

Q2 = mt̃1mt̃2 which matches the higher scales for MSSM/SM decoupling

that are expected from LHC data.

• Usually the semi-analytic expansions are computed for a particular tan β

value while the numeric evaluation is valid for all tan β.

To illustrate the comparison between the two methods, in Fig. 2.1a) we com-

pute the ratio ∆BG(numerical)/∆BG(semianalytic) in the m0 vs. m1/2 plane of the

mSUGRA/CMSSM plane for A0 = 0 and tan β = 10 with µ > 0. The blue region

corresponds to a ratio∼ 0.5 while for smallm0 we find ∆BG(numerical)/∆BG(semianalytic) ≲
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1 and for large m0 then we find ∆BG(numerical)/∆BG(semianalytic) ≳ 1 with the

ratio reaching as high as ∼ 2 near the lower focus point region.

In Fig. 2.1b) we again compute the ratio ∆BG(numerical)/∆BG(semianalytic)

in the m0 vs m1/2 plane of the mSUGRA/CMSSM, but now for A0 = −2m0

and tan β = 10 with µ > 0. The large value of A0 here permits the Higgs

mass to be within the allowed range of 125± 2 GeV. The broad orange and red

regions throughout the RHS of the plane correspond to where ∆BG(numerical) ∼

∆BG(semianalytic). The largest discrepancy between the evaluation methods

occurs on the LHS of the plane near the stau LSP region, where ∆BG(numerical) ∼

0.6∆BG(semianalytic). Fig. 2.1c) instead shows the ratio comparing the numerical

method to the semianalytic method in the m0 vs m1/2 plane of the NUHM2 model

with µ = 200 GeV, mA = 2 TeV and A0 = −1.6m0. Again, the broad orange and

red region on the RHS of this plane shows very good agreement between the two

methods: ∆BG(numerical) ∼ ∆BG(semianalytic). On the LHS above the CCB

minima region, where m1/2 > m0, then the semianalytic method result becomes

somewhat larger than the numerical method result, leading to a minimal ratio

∆BG(numerical) ∼ 0.57∆BG(semianalytic).

Numerical results for ∆BG

In Fig. 2.2, we compute contours and color-coded regions of ∆BG in the mSUG-

RA/CMSSM model using a numerical routine to evaluate the sensitivity co-

efficients. This routine is embedded in the publicly available computer code

DEW4SLHA which computes the three measures of naturalness ∆BG, ∆HS and
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Figure 2.1: Plot of ∆BG(numerical)/∆BG(semianalytic) in the m0 vs.
m1/2 plane of a) the CMSSM/mSUGRAmodel withA0 = 0, tanβ = 10
and µ > 0, b) the CMSSM/mSUGRA model with A0 = −2m0 and c)
the NUHM2 model with µ = 200 GeV and A0 = −1.6m0 with mA = 2
TeV. We use the code DEW4SLHA to compute ∆BG(numerical) using
a numerical algorithm for the sensitivity coefficients and SoftSUSY
v4.1.17 for the spectrum.
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∆EW for any model based on its Les Houches Accord spectrum generator output

file. The results in Fig. 2.2 agree well with those presented by Allanach et al. in

Ref. [89].

Figure 2.2: Plot of naturalness contours ∆BG in the m0 vs. m1/2

plane of the CMSSM/mSUGRA model with A0 = 0, tanβ = 10
and µ > 0. We use the code DEW4SLHA to compute ∆BG using a
numerical algorithm for the sensitivity coefficients and SoftSUSY for
the spectrum.

In truth, the various supposedly independent high scale soft terms are in-

troduced by hand in the mSUGRA/CMSSM model as a parametrization of our

ignorance as to the SUSY breaking mechanism. Indeed, in the case of gravity-

mediation, if we specify a specific SUSY breaking mechanism, then all soft terms

are calculable in terms of the gravitino mass m3/2. An example is the famous
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dilaton-dominated SUSY breaking model[90]: in this case

m0 = m3/2 with m1/2 = −A0 =
√
3m3/2. (2.14)

In such a case, then it doesn’t make sense that the soft terms are independent:

invoking PN, we should combine dependent terms in Eq. 2.12. Then m2
Z ≃

−2.18µ2 + 14.494m2
3/2. Adopting m3/2 = 3 TeV as in the previous example, then

we find µ = 7735 GeV and ∆BG = cm2
3/2

= 15683.

The SUSY µ parameter evolves very little from the GUT scale to the weak

scale, due to the supersymmetric non-renormalization theorems[6]. The ratio of

µ(mweak)/µ(mGUT) is shown in Fig. 2.3 for the tan β vs. µ(mweak) plane in the

mSUGRA/CMSSM model. The deviation between µ(mweak)/µ(mGUT) is typically

a few percent, climbing to ∼ 10% at very large tan β.

Now, in the case where all soft terms are determined in terms of m3/2 (such

as gravity-mediation, anomaly-mediation and mirage-mediation), then we expect

roughly that

m2
Z ≃ −2µ2 + a ·m2

3/2 (2.15)

and since µ hardly evolves, then a ·m2
3/2 ≃ −2m2

Hu
(weak). In this case – with

all correlated soft terms (which we may dub as the SUGRA1 model) – then

∆BG ∼ cm2
3/2

= am2
3/2/m

2
Z ≃ max[2µ2, 2m2

Hu
(weak)]/m2

Z . This latter case we will

find is nearly the same as ∆EW aside from the inclusion of the radiative corrections

to the weak scale scalar potential.

In Fig. 2.4, we plot naturalness contours in the same parameter plane as in
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Figure 2.3: Ratio of µ/µ0 in the tanβ vs. µ(weak) plane, where µ0 is
the GUT-scale value of the µ parameter.

Fig. 2.2, but now assuming instead the one-soft-parameter SUGRA1 model. For

SUGRA1, we have

m2
Z = −2.18µ2

0 + a ·m2
0 (SUGRA1) (2.16)

where the constant a can be determined via a = (m2
Z + 2.18µ2

0)/m
2
0. In this case,

the naturalness contours roughly follow the contours of constant µ value. (The

µ term all by itself has been advocated as a measure of naturalness by Chan et

al.[78].) For the case of SUGRA1, the naturalness contours are very different from

the case of independent high scale soft terms assumed in the mSUGRA/CMSSM

model.
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Figure 2.4: Plot of naturalness contours ∆BG in the m0 vs. m1/2 plane
of the one-soft-parameter SUGRA1 model with A0 = 0, tanβ = 10
and µ > 0. We use SoftSUSY to generate the spectra.

One may also define a SUGRA2 model. Here, we assume that since gaugino

masses arise from the gauge kinetic function, this soft term is independent of

the others which are determined instead by the Kähler function, but where A0 is

determined in terms of m0 (such as A0 = −2m0) so that

m2
Z = −2.18µ2

0 + 3.786m2
1/2 − 0.427m2

0 + 1.642m1/2m0 (SUGRA2). (2.17)

Finally, SUGRA3 allows that A0 is somehow independent from m0 (or m3/2) so
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that

m2
Z = −2.18µ2

0 + 3.786m2
1/2 + 0.013m2

0 + 1.642m1/2m0 + 0.22A2
0 (SUGRA3).

(2.18)

For the three cases, we find that the ∆BG values are very different in the SUGRA1,

SUGRA2 or SUGRA3 models just depending on which parameters are assumed

to be truly independent.

In Fig. 2.5, we show color coded regions of ∆BG as computed in the m0 vs.

m1/2 plane of the NUHM2 model where tan β = 10, A0 = −1.6m0 with µ = 200

GeV and mA = 2 TeV. In frame a), we assume all soft terms are correlated as in

Eq. 2.16. In this case, since µ is fixed, there is a constant value of ∆BG = 21.2

throughout the plane.

In frame b), we instead assume two independent soft parameters m0 and m1/2

(but with A0 fixed in terms of m0) so that we are in the SUGRA2 model, Eq. 2.17.

Here, the value of ∆BG is vastly different from frame a), reaching up to values of

∼ 3900 in the upper-right corner: a factor of ∼ 180 times greater than the frame a)

value. Here, the ∆BG finetuning is dominated by the m1/2 value but not so much

by m0. In frame c), instead we show values of ∆BG assuming three independent

soft parameters as in Eq. 2.18. In this case, with A0 fixed as A0 = −1.6m0 but

nonetheless declared as independent, we see a greater dependence on m0, so ∆BG

increases as m0 increases, mainly because A0 increases with increasing m0. Here,

∆BG reaches maximal values of ∼ 14500 in the upper-right corner, a factor ∼ 680

larger than the frame a) value!
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Figure 2.5: Plot of ∆BG values in the m0 vs. m1/2 plane for the
NUHM2 model for A0 = −1.6m0, tanβ = 10 with µ = 200 GeV and
mA = 2 TeV. In a), we plot ∆BG assuming a single independent soft
parameter m3/2 while in b) we plot ∆BG for assumed two independent
soft parameters m0 and m1/2 while in c) we plot assuming all three of
m0, m1/2 and A0 are independent. The spectrum is calculated using
SoftSUSY and the naturalness measures with DEW4SLHA.
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In summary, from the discussion of this Section, we see that the measure

∆BG could be a legitimate finetuning measure if there could be consensus on

what constitutes independent parameters of the model. The plots also illustrate

the extreme model-dependence of ∆BG, where ∆BG can obtain values differing

by several orders of magnitude depending on which parameters pi are assumed

fundamental or independent.

2.2.2 High scale finetuning

An alternative to EENZ/BG naturalness which we label as high scale finetuning

(HS) emerged early on in the 21st century. It may have been intended originally

as a figurative bullet point indicator to argue for sparticle masses near the weak

scale[69], but later was taken more seriously[70, 73, 74, 75]. This measure seeks

to apply PN to the Higgs boson mass relation (see e.g. Eq. 10 of [91])

m2
h ≃ µ2 +m2

Hu
(weak) + EW+mixing (2.19)

where the EW corrections and mixings are already ≲ m2
h. The idea then is to

break m2
Hu

(weak) into m2
Hu

(mGUT) + δm2
Hu

and require δm2
Hu

≲ m2
h. The full

one-loop expression for δm2
Hu

may be obtained by integrating its one-loop RGE

from mGUT to mweak:

dm2
Hu

dt
=

2

16π2

(
−3

5
g21M

2
1 − 3g22M

2
2 +

3

10
g21S + 3f 2

t Xt

)
(2.20)
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where t = logQ, S = m2
Hu

− m2
Hd

+ Tr
[
m2

Q −m2
L − 2m2

U +m2
D +m2

E

]
and

Xt = m2
Q3

+ m2
D3

+ m2
Hu

+ A2
t . In the literature[73, 74, 75], to gain a simple

expression, the terms with gauge couplings are ignored and Xt is approximated

as Xt ∼ m2
Q3

+m2
D3

+ A2
t , where m

2
Q3
,m2

D3
, and A2

t here are GUT-scale values.

Then a single step integration leads to

δm2
Hu

∼ − 3

8π2
f 2
t

(
m2

Q3
+m2

U3
+ A2

t

)
log (Λ/mweak) (2.21)

where the high scale Λ is usually assumed ∼ mGUT. The ∆HS measure famously

promoted three light third generation squarks below the 500 GeV scale[74], and

motivated intensive searches by the LHC collaborations to root out light top-squark

signals.

In order to compare ∆HS more appropriately with ∆BG and ∆EW, we slightly

redefine ∆HS in terms of m2
Z/2[92] where in this case we take

m2
Z/2 =

(m2
Hd
(Λ) + δm2

Hd
+ Σd

d)− (m2
Hu

(Λ) + δm2
Hu

+ Σu
u) tan

2 β

tan2 β − 1
−(µ2(Λ)+δµ2)

(2.22)

and Λ is some input high scale, perhaps mP or mGUT. Then

∆HS = max |largest term on RHS of Eq. (2.22)|. (2.23)

In this way, the three measures become equal in certain limiting cases.

The ∆HS measure is problematic on several counts
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1. It violates the PN precept in that, in simplifying δm2
Hu

, all dependence

on m2
Hu

(Λ) is lost, which hides the fact that δm2
Hu

is actually dependent

on m2
Hu

(Λ). In fact, the bigger the assumed value for m2
Hu

(Λ), then the

bigger is the cancelling correction δm2
Hu

[93]. This is shown in Fig. 2.6

where we show the exact two-loop value of δm2
Hu

vs. m2
Hu

(GUT ), where

the clear dependence of δm2
Hu

on m2
Hu

(GUT ) is shown. The plot also

shows that the bigger mHu(GUT ) becomes, then the more EW-natural

the model becomes in that m2
Hu

(weak) becomes comparable to m2
Z on the

right-hand-side shortly before EWSB is no longer broken. The splitting up

of m2
Hu

(weak) into m2
Hu

(Λ) + δm2
Hu

turns ∆HS into contradiction with ∆BG,

where m2
Hu

(weak) is expanded into high scale parameters in Eq. 2.12 but

not split into m2
Hu

(Λ) + δm2
Hu

. This splitting of m2
Hu

(weak) into dependent

parts destroys the cancellations needed for focus point SUSY[64, 65] which

is promoted as allowing for TeV-scale top-squarks.

2. Electroweak symmetry breaking in SUSY models is accomplished by driving

m2
Hu

to negative values owing to the large top-quark Yukawa coupling ft.

Indeed, the REWSB mechanism is touted as one of the triumphs of WSS

since it required mt ∼ 100 − 200 GeV[94] at a time when experiments

seemed to indicate mt ∼ 40 GeV. By requiring δm2
Hu

to be small, then

often m2
Hu

(weak) will not be large-negative enough to cause EWSB. In the

context of vacua selection in the string landscape, such models without

EWSB would likely not lead to inhabitable universes and would be vetoed.
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This can be viewed as a selection mechanism to favor models with large

enough δm2
Hu

such that EW symmetry is properly broken (see e.g. Fig. 3

of Ref. [95].)

3. There is also substantial ambiguity in evaluating ∆HS. In Fig. 2.7 we show

the value of δmHu ≡ sign(δm2
Hu

)
√
|δm2

Hu
| vs. mHu(mGUT) for a NUHM2

benchmark point with m0 = 4.5 TeV, m1/2 = 1 TeV, A0 = −7.2 TeV with

tan β = 10 and mA = 2 TeV. The approximate expression Eq. 2.21 is shown

as the flat red-dashed line which of course doesn’t depend on m2
Hu

(mGUT).

The solid blue curve is the exact (numerical) two-loop RG expression for

δmHu and is shown to deviate from the approximate result by well over a

factor of 2 at low mHu(mGUT) and only agrees with the approximation far

into the excluded region where the electroweak symmetry isn’t properly

broken. Alternatively, one may use the m2
h ≃ µ2 +m2

Hu
+ δm2

Hu
equation

for a particular set of input parameters including m2
Hu

(mGUT) (e.g. in the

NUHM2 model) to compute the value of δm2
Hu

and then try to finetune

m2
Hu

(mGUT) to enforce mh = 125 GeV. But as one tunes the value of

m2
Hu

(mGUT), then the value of δm2
Hu

changes accordingly (as indicated by

the various dotted lines for different input µ values), so that instead of

finetuning, one must adopt an iterative procedure to try and find a solution.

Sometimes the solution will migrate into the noEWSB region while other

times the iterations can find a viable solution.
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Figure 2.6: Plot of sign(δm2
Hu

) ·
√
|δm2

Hu
| vs. mHu(GUT ) for the

NUHM2 model with m0 = 5 TeV, m1/2 = 1.2 TeV, A0 = −1.6m0,
tanβ = 10 and mHd

= 5 TeV.

Figure 2.7: Plot of sign(δm2
Hu

) ·
√
|δm2

Hu
| vs. mHu(GUT ) for the

NUHM2 model with m0 = 4.5 TeV, m1/2 = 1 TeV, A0 = −7.2 TeV
and tanβ = 10 withmA = 2 TeV. We show the approximate expression
Eq. 2.20 (red-dashed curve) along with exact 2-loop expression (blue
solid) along with the value gleaned from finetuning for various values
of µ.
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2.2.3 Electroweak naturalness

As mentioned before, the electroweak naturalness measure ∆EW measures the

largest contribution on the right-hand-side of Eq. (2.9) and compares that to

m2
Z/2. This is the most conservative, unavoidable measure of naturalness since

it is independent of any high scale model. Even when high scale parameters are

correlated in some way, those correlations are typically lost under RG running

and subsequent computation of the physical sparticle mass eigenstates. The

interpretation of ∆EW is clear: if any one of the RHS contributions to Eq. (2.9)

is far larger than m2
Z/2, then it is highly implausible (but not impossible) that

some other contribution would accidentally be large, opposite-sign such that the

two conspire to give an mZ value of just 91.2 GeV. In this sense, natural models

correspond to plausible models; models with large ∆EW are logically possible, but

highly implausible. We’ll see later that this manifests itself as a probability, or

likelihood, to emerge from scans over the string landscape.

The tree-level contributions to ∆EW are instructive:

• the SUSY conserving µ parameter, which sets the mass scale for the W ,

Z, h and higgsinos enters the weak scale directly. We already know that

mW,Z,h ∼ 100 GeV; the higgsinos should lie within a factor of several of the

measured value of the weak scale. In light of LHC constraints, the SUSY LSP

is likely a higgsino-like lightest neutralino, or at worst a gaugino-higgsino

admixture.

• The value of m2
Hu

, where Hu acts as the SM Higgs doublet, should be driven
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to small, usually negative values since it also sets the mass of the W , Z and

h bosons.

• The value of mHd
– which sets the mass scale for the heavier Higgs bosons

A, H and H± – can be much larger since its contribution to the weak scale

is suppressed by a factor of tan(β).

The loop-level contributions Σu
u and Σd

d are proportional to the individual

particle/sparticle masses but since the Σd
d terms are suppressed by tan β, the Σu

u

terms are usually dominant. Of the Σu
u terms, usually Σu

u(t̃1,2) are largest owing

to the large top-quark Yukawa coupling. Since these terms are all suppressed by

loop factors, the particle/sparticle masses which enter the Σu
u terms can be at

the TeV or beyond scale before becoming comparable to the weak scale. Explicit

expressions for the Σu
u and Σd

d are given in the Appendices to Ref’s [96] and [77].

The dominant terms are given by

Σu
u(t̃1,2) =

3

16π2
F (m2

t̃1,2
)

[
f 2
t − g2Z ∓

f 2
t A

2
t − 8g2Z(

1
4
− 2

3
xW )∆t

m2
t̃2
−m2

t̃1

]
(2.24)

where F (m2) = m2
(
log m2

Q2 − 1
)
and the optimized scale choice is taken as Q2 =

mt̃1mt̃2 . Also, ∆t = (m2
t̃L
−m2

t̃R
)/2 +m2

Z cos 2β(1
4
− 2

3
xW ) with g2Z = (g2 + g′2)/8

and xW = sin2 θW ; in the denominator of Eq. 2.24, the tree-level masses should

be used.

Some highlights of the Σu
u terms include the following.

• For ∆EW ≲ 30, the top-squark contributions Σu
u(t̃1,2) allow for top-squarks
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up to mt̃1 ≲ 3 TeV and mt̃2 ≲ 8 TeV. The explicit expressions contain large

cancellations for large At both for Σu
u(t̃1) and Σu

u(t̃2). The large At helps

to lift mh into the 125 GeV range since mh is maximal for xt ∼
√
6mt̃[29].

This is in contrast to ∆BG and ∆HS which both prefer small trilinear soft

terms. In Fig. 2.8 we show color-coded regions of ∆BG in the m1/2 vs. A0

plane of the mSUGRA/CMSSM model for m0 = 5 TeV, tan β = 10 and

µ > 0. We also show contours of Higgs mass mh = 123 and 127 GeV, and

contours of ∆EW and ∆HS. The grey region around A0 ∼ 0 is the focus point

region. From the plot, we see that ∆HS is always large, ∆HS ≳ 6000, due to

the large value of m0. Meanwhile, ∆BG reaches as low as ∼ 1000, also in

the FP region. ∆EW can reach as low as 62 in between the two ∆EW = 125

contours. As expected from the mSUGRA/CMSSM model, no points allow

for both low finetuning and mh ∼ 125 GeV.

• Since first/second generation Yukawa couplings are tiny, then these sparticle

masses can be much larger than the third generation, with first/second

generation squarks and sleptons ranging up to 30− 50 TeV. In the context

of the string landscape, this leads to a quasi-degeneracy/decoupling solution

to the SUSY flavor and CP problems[97].

• Gluinos affect the Σu
u via RG running and directly at the two-loop level[98].

They can range up to mg̃ ≲ 6 TeV for ∆EW ≲ 30, well beyond present LHC

bounds[99].

A positive feature of ∆EW is its model independence (within the context of
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Figure 2.8: Plot of color-coded values of ∆BG in the m1/2 vs. A0 plane
of the mSUGRA/CMSSM model for m0 = 5 TeV, tanβ = 10 and
µ > 0. We also show contours of Higgs mass mh = 123 and 127 GeV,
and contours of ∆EW and ∆HS.
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Figure 2.9: Scatter plots of ratios of three naturalness measures,
∆BG,∆HS,∆EW in a scan of the CMSSM. The results demonstrate that
the traditional naturalness measures ∆BG,∆HS vastly overestimate the
degree of electroweak finetuning. Panel (a) plots the ratio ∆BG/∆EW,
panel (b) plots the ratio ∆HS/∆EW, and panel (c) plots the ratio
∆HS/∆BG.
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Figure 2.10: Scatter plots of ratios of three naturalness measures,
∆BG,∆HS,∆EW in a scan of the NUHM2 model. The results demon-
strate that the traditional naturalness measures ∆BG,∆HS vastly
overestimate the degree of electroweak finetuning. Panel (a) plots the
ratio ∆BG/∆EW, panel (b) plots the ratio ∆HS/∆EW, and panel (c)
plots the ratio ∆HS/∆BG.
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models for which the MSSM is the weak scale EFT). The amount of finetuning

only depends on the weak scale spectrum which is generated, but not on how it

is obtained. Thus, if one generates a certain weak scale spectrum via some high

scale model, or just the pMSSM, then one gets the same value of ∆EW. This

of course isn’t true for the measures ∆HS or ∆BG. In these senses, ∆EW offers

a “minimal” or conservative estimation of the degree of electroweak finetuning,

leading to the conclusion that typically ∆HS and ∆BG overestimate the degree of

finetuning by as much as a factor of 1000, as exemplified in Figs. 2.9 and 2.10.

A common criticism of ∆EW is that it doesn’t account for high scale parameter

choices and correlations. This is not exactly true as discussed earlier. The µ

parameter evolves only slightly from mGUT to mweak, as shown in Fig. 2.3. With

µ(mGUT) ≃ µ(mweak), and in the context of all soft terms correlated (as should

be the case in a well specified SUSY breaking model), then ∆BG ≃ ∆EW, sans the

radiative corrections Σu
u and Σd

d. Also, if the dependent terms m2
Hu

(Λ) and δm2
Hu

are combined, as required by PN, then ∆HS ≃ ∆EW, sans radiative corrections.

Furthermore, the specific choices of high scale parameters can lead to more or less

finetuning via Eq. 2.9. In fact, a string landscape selection for larger soft terms

often results in smaller values of ∆EW as compared to any selection for small or

weak scale soft terms[100].

2.2.4 Stringy naturalness: anthropic origin of the weak scale

A fourth entry into the naturalness debate comes from Douglas with regards to

the string landscape: stringy naturalness, as remarked above. An advantage of
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stringy naturalness is that it actually provides an explanation for the magnitude

of the weak scale, and not just naturalness of the weak scale. The distribution of

vacua in the multiverse as a function of msoft is expected to be

dNvac ∼ fSUSY (msoft) · fEWSB(msoft)dmsoft. (2.25)

Douglas[101] advocates for a power-law draw to large soft terms based on the

supposition that there is no favored value for SUSY breaking fields on the landscape:

fSUSY ∼ m2nF+nD−1
soft where nF is the number of (complex-valued) F -breaking

fields and nD is the number of (real-valued) D-breaking fields giving rise to

the ultimate SUSY breaking scale. The distribution fEWSB is suggested as

fEWSB = Θ(30−∆EW)[102] such that the value of the weak scale in each pocket

universe lies within the ABDS window[80], the so-called atomic principle. Until

now, SN has not admitted a clear numerical measure[81, 103]. A novel method

for quantifying this concept will be presented in Chapter 5.
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2.3 Radiative natural SUSY and its phenomenology

Radiative natural SUSY refers to a class of supersymmetric models designed to

address the naturalness problem of the Higgs boson mass by ensuring that the

finetuning of parameters is minimized. Radiative natural SUSY balances the

need for naturalness with compliance to experimental constraints, maintaining

the attractive features of supersymmetry while addressing the Little Hierarchy

Problem. This is achieved through the mechanism of radiative electroweak

symmetry breaking and the particular choice of superpartner masses. Key features

of radiative natural SUSY include:

1. Radiative electroweak symmetry breaking (REWSB): This is a

mechanism where the electroweak symmetry breaking occurs dynamically

through radiative corrections. The running of the RGEs from the high-

energy scale to the low-energy scale naturally induces a negative squared

mass for the Higgs fields, leading to spontaneous electroweak symmetry

breaking.

2. Naturalness criteria: To minimize finetuning, the superpartner masses

are chosen such that the loop corrections to the Higgs mass are small. This

typically requires:

• Light stops (top squarks): The masses of the top squarks (t̃1 and t̃2)

are kept relatively low, usually below 1 TeV. This reduces the quantum

corrections to the Higgs mass parameter.
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• Light higgsinos: The higgsino mass parameter (typically denoted by µ)

is also kept close to the electroweak scale, as large values of µ would

require finetuning to achieve the correct value of the Z boson mass,

m2
Z , and thus correct electroweak symmetry breaking.

3. Heavy first and second generation squarks and sleptons: To evade

the stringent constraints from flavor physics and CP-violating processes, the

masses of the first and second generation squarks and sleptons are typically

much heavier [3]. This hierarchy helps in maintaining naturalness while

complying with experimental limits.

4. Gluino mass: The gluino, which is the supersymmetric partner of the gluon,

can be relatively heavy (up to a few TeV) without introducing significant

finetuning issues, due to these terms appearing in two-loop terms in the

radiative corrections to the minimization conditions, which are suppressed

by a factor of ∼ 1/(16π2)2. This allows radiative natural SUSY models to

satisfy the bounds from LHC searches for colored superparticles.

Given that radiative natural SUSY (RNS) satisfactorily addresses the Little

Hierarchy Problem, it is important to determine whether the spectra predicted by

RNS are phenomenologically viable with our current understanding of experimental

data in SUSY searches. In fact, some rather strict bounds on masses have

been produced from this data, though we will demonstrate how natural SUSY

is expected to be revealed at future LHC upgrades. Early expectations from

naturalness predicted superpartners at or around the weak scale[44, 45, 48, 47].
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For instance, the naturalness upper bound for the gluino was predicted (under

the naturalness measure ∆BG ≲ 30) to be mg̃ ≲ 400 GeV. In contrast, the

current mass limits from LHC Run 2 searches with 139 fb−1 claim mg̃ ≳ 2.25

TeV[104, 105]. The yawning gap between the weak scale and the superpartner

mass scale – the Little Hierarchy Problem (LHP)[56] – has lead many authors to

conclude[106, 107, 108] that the weak scale supersymmetry[3] hypothesis is under

intense pressure, and possibly even excluded.

However, it has been pointed out in Chapter 2 that the resolution to the LHP

lies instead in that conventional early measures of naturalness over-estimated

the finetuning[67, 109, 68, 103], and that the appropriate measure of practical

weak-scale naturalness is ∆EW as in Eq. (2.10). One can quickly read off the

consequences for a low value of ∆EW :

• m2
Hu

, which in the decoupling limit functions like the SM Higgs doublet and

gives mass to theW , Z and h bosons, must be driven under radiative EWSB

to small, typically negative values, a condition known as radiatively-driven

naturalness (RNS). Thus, electroweak symmetry is barely broken.

• The µ parameter, which feeds mass to the W , Z and h bosons as well as to

the higgsinos, must be within a factor of several of mW,Z,h ∼ 100 GeV.

• mA ∼ mHd
in the decoupling limit can live in the TeV regime since the

contribution of m2
Hd

is suppressed by a factor of tan2(β).

• Top squark contributions to the weak scale are loop suppressed and so can

live in the TeV range while maintaining naturalness.
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• The gluino contributes at two-loops[98] and via RG running contributions

to the stop soft masses[75, 74] and so also can live in the TeV range.

• First and second generation sfermion contributions to the weak scale are via

Yukawa-suppressed 1-loop terms and via 2-loop RG contributions (which

are dominant)[110]. Thus, they can live in the 10-50 TeV regime which

helps solve the SUSY flavor and CP problems[97].

An advantage of ∆EW is that it is model independent insofar as it only depends

on the weak scale sparticle and Higgs mass spectrum and not on how they are

arrived at. Thus, a given spectrum will generate the same value of ∆EW whether

it was computed from the pMSSM or some high scale model. Also, requiring

the contributions to m2
Z/2 to be comparable to or less than its measured value

typically corresponds to an upper limit of ∆EW ≲ 30. The turn-on of finetuning for

∆EW ≳ 30 is visually displayed in Fig. 1 of Ref. [59]. While WSS seems ruled out

under the older naturalness measures[44, 45, 48, 47], there is still plenty of natural

parameter space left unexplored by LHC under the ∆EW measure[111]. However,

the ∆EW measure does predict the existence of light higgsino-like EWinos χ̃±
1

and χ̃0
1,2 with mass ∼ 100 − 350 GeV. The light higgsinos can be produced at

decent rates at LHC, but owing to their small mass gaps mχ̃0
2
−mχ̃0

1
∼ 5 − 10

GeV, there is only small visible energy released in their decays, making detection

a difficult[112] (but not impossible[113, 114]) prospect. The higgsino-like LSP χ̃0
1

is thermally underproduced as dark matter, leaving room for axionic dark matter

as well[115].
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The ∆EW naturalness measure is built in to the Isajet/Isasugra[116, 117]

event/spectrum generator. Also, the crucial 1-loop corrections to the Higgs

potential have been calculated within the (non-standard) notation of WSS[96].

As a result, of the spectrum generators available, Isasugra has been used the

most for such studies. These include sparticle mass bounds from naturalness,

and parameter space limits and lucrative collider signatures from natural SUSY.

However, a variety of other SUSY/Higgs spectra generators are available, including

SUSPECT[118], SoftSUSY[119] and SPHENO[120]. Some special Higgs spectrum

calculators include FeynHIGGS[121] and SUSYHD[122] and others[29]. Thus, it

would be useful to know how other spectrum generators compare to Isasugra

in their natural SUSY spectra. For this reason, we have built a computer code

DEW4SLHA which operates on a SUSY Les Houches Accord file (SLHA)[82]

which is the standard output of spectrum generators. The program computes the

associated value of ∆EW , ∆BG, and ∆HS and all the various contributions.

2.3.1 Natural SUSY benchmark points

Using the code DEW4SLHA, we can now compare spectra generated from the

various spectra calculators for a particular natural SUSY benchmark point. For

the BM point, we adopt the two-extra-parameter non-universal Higgs model

(NUHM2)[13, 15] with input parameters

m0, m1/2, A0, tan β, µ, mA (2.26)
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where we have traded the high scale Higgs soft masses m2
Hu

and m2
Hd

for the more

convenient weak scale parameters µ and mA. Then we adopt the benchmark

parameter values m0 = 5 TeV, m1/2 = 1.2 TeV, A0 = −8 TeV, tan β = 10,

µ = 200 GeV and mA = 2 TeV. A pictorial representation of the spectra using

SoftSUSY is shown in Fig. 2.11 where we see that indeed the higgsinos and Higgs

boson h lie in the 100− 200 GeV range whilst the top-squarks and gluino live in

the several TeV regime.

Figure 2.11: Sparticle and Higgs mass spectra for a natural SUSY
benchmark point from SoftSUSY.

In Table 2.1, we list the mass spectra and ∆EW values from each of four

spectra generators. For ISAJET, we use version 7.88[116] while for SUSPECT we

use version 2.51[118]. For SoftSUSY, we use version 4.1.10[119] including two-loop

corrections to mg̃ and the default two-loop corrections to mh. We use SPHENO
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version 4.0.4[120] with MSSM-to-SM matching at scale Q = mSUSY =
√
mt̃1mt̃2 .

In contrast, SoftSUSY imposes EFT matching at Q = mZ while ISAJET uses

multiple scales[16]. The gluino masses are all within 1.5% of each other. The

naturalness parameters for three codes are all less than thirty; the outlier here

is SPHENO where also the light top squark mass mt̃1 is somewhat higher than

the other codes. Here, the top squark masses are highly sensitive to mixing

which comes from the weak scale value of At and indeed the values of At(Q)

for Isasugra/SoftSUSY/SUSPECT/SPHENO are -4898/-4830/-4894/-5090 GeV,

respectively. Thus, SPHENO has slightly more stop mixing than the other codes

which increases ∆EW somewhat. Another difference comes from the value of

mh generated: both SoftSUSY and SUSPECT generate mh ∼ 127.4 GeV whilst

SPHENO generates mh = 125.2 GeV and Isasugra generates mh = 124.7 GeV.

It can be remarked that Isasugra has the least sophisticated light Higgs mass

calculation, and includes only third generation sparticle 1-loop contributions to

mh. Another feature is that the Isasugra value of mχ̃±
1
is about six GeV higher

than SoftSUSY and SUSPECT while the SPHENO is six GeV lower. These values

depend sensitively on the scale choice at which each EWino mass is calculated.

For instance, Isasugra uses the Pierce et al. (PBMZ)[123] recipe to calculate each

mass separately at each mass scale.

In Table 2.2, we list the top 46 contributions to ∆EW from each of the spectra

codes. We see from line 1 that the largest contribution comes for each code from

Σu
u(t̃2) which sets the value of ∆EW , and where we see that SPHENO gives the

largest value. The second largest contribution comes from Σu
u(t̃1) as might be
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parameter Isasugra SoftSUSY SUSPECT SPHENO
mg̃ 2830.7 2794.3 2838.6 2827.6
mũL

5440.3 5403.2 5406.0 5412.8
mũR

5561.7 5521.3 5523.0 5521.8
mẽR 4823.0 4817.3 4818.1 4825.8
mt̃1 1714.3 1682.8 1746.9 1942.1
mt̃2 3915.1 3879.0 3899.2 3947.0
mb̃1

3949.1 3871.6 3891.7 3939.1
mb̃2

5287.5 5266.4 5277.2 5281.7
mτ̃1 4745.7 4746.1 4749.1 4757.4
mτ̃2 5110.2 5109.7 5110.8 5107.2
mν̃τ 5116.8 5108.7 5113.8 5106.2
mχ̃±

2
1020.2 1027.5 1030.6 1031.9

mχ̃±
1

209.7 203.1 203.0 197.3

mχ̃0
4

1033.5 1027.3 1031.1 1032.0

mχ̃0
3

540.1 536.4 537.2 538.1

mχ̃0
2

-208.3 -208.6 -208.7 -203.0

mχ̃0
1

197.9 197.2 197.1 191.9

mh 124.7 127.3 127.5 125.2
∆EW 24.8 23.0 28.2 44.1

Table 2.1: Sparticle and Higgs mass spectra from four spectra genera-
tors for a natural SUSY benchmark point withm0 = 5 TeV,m1/2 = 1.2
TeV, A0 = −8 TeV, tanβ = 10 with µ = 200 GeV and mA = 2 TeV.
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expected. The next several largest contributions come from Hd, µ and Hu and

Σu
u(b̃1,2) although the ordering of these differs among the codes. In general, the

agreement for the remaining contributions is typically within expectations.
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Order Isajet SoftSUSY Suspect Spheno

1 24.819, Σu
u(t̃2) 23.015, Σu

u(t̃2) 28.227, Σu
u(t̃2) 44.062, Σu

u(t̃2)

2 19.367, Σu
u(t̃1) 18.318, Σu

u(t̃1) 20.372, Σu
u(t̃1) 27.465, Σu

u(t̃1)
3 10.449, Σu

u(O(αsαt)) 10.074, Hd 10.294, Hd 11.205, Hu

4 10.424, Hd 9.618, µ 9.621, µ 10.298, Hd

5 9.625, µ 6.985, Σu
u(O(αsαt)) 7.405, Σu

u(O(αsαt)) 9.621, µ

6 5.861, Hu 4.557, Σu
u(̃b2) 4.044, Σu

u(̃b2) 8.321, Σu
u(O(αsαt))

7 4.164, Σu
u(τ̃2) 4.316, Σu

u(τ̃2) 3.761, Σu
u(τ̃2) 3.604, Σu

u(̃b1)

8 3.933, Σu
u(̃b2) 3.252, Σu

u(τ̃1) 2.801, Σu
u(Σ 2nd gen. q̃) 2.505, Σu

u(τ̃2)

9 2.970, Σu
u(τ̃1) 2.909, Σu

u(Σ 2nd gen. q̃) 2.801, Σu
u(Σ 1st gen. q̃) 2.486, Σu

u(̃b2)
10 2.912, Σu

u(Σ 2nd gen. q̃) 2.909, Σu
u(Σ 1st gen. q̃) 2.653, Σu

u(τ̃1) 2.468, Σu
u(Σ 2nd gen. q̃)

11 2.912, Σu
u(Σ 1st gen. q̃) 2.761, Hu 2.507, Σu

u(̃b1) 2.468, Σu
u(Σ 1st gen. q̃)

12 2.003, Σu
u(̃b1) 2.101, Σu

u(̃b1) 1.212, Σu
u(χ̃

±
2 ) 1.263, Σu

u(χ̃
±
2 )

13 1.169, Σu
u(χ̃

±
2 ) 1.191, Σu

u(χ̃
±
2 ) 9.235e-1, Σu

u(Z̃
0
3) 1.133, Σu

u(τ̃1)

14 9.765e-1, Σu
u(Z̃

0
3) 9.114e-1, Σu

u(Z̃
0
3) 7.312e-1, Hu 9.538e-1, Σu

u(Z̃
0
3)

15 6.987e-1, Σu
u(Z̃

0
4) 6.924e-1, Σu

u(Z̃
0
4) 7.076e-1, Σu

u(Z̃
0
4) 7.381e-1, Σu

u(Z̃
0
4)

16 5.98e-1, Σu
u(H

±) 6.083e-1, Σu
u(H

±) 6.264e-1, Σu
u(H

±) 6.755e-1, Σu
u(H

±)

17 1.532e-1, Σu
u(t) 1.438e-1, Σu

u(t) 1.440e-1, Σu
u(t) 2.064e-1, Σu

u(Z̃
0
1)

18 5.924e-2, Σu
u(Z̃

0
1) 7.522e-2, Σu

u(Z̃
0
1) 7.687e-2, Σu

u(Z̃
0
1) 1.361e-1, Σu

u(t)
19 5.543e-2, Σd

d(H
0) 5.305e-2, Σd

d(H
0) 5.564e-2, Σd

d(H
0) 5.831e-2, Σd

d(H
0)

20 4.758e-2, Σd
d(Z̃

0
3) 4.397e-2, Σd

d(Z̃
0
3) 4.507, Σd

d(Z̃
0
3) 4.649e-2, Σd

d(Z̃
0
3)

21 4.3e-2, Σu
u(Z

0) 4.175e-2, Σd
d(̃b2) 3.909e-2, Σd

d(̃b2) 4.341e-2, Σd
d(t̃1)

22 4.3e-2, Σd
d(̃b2) 3.783, Σu

u(Z
0) 3.825e-2, Σu

u(Z
0) 3.889e-2, Σu

u(Z
0)

23 3.748e-2, Σd
d(t̃1) 3.438, Σd

d(t̃1) 3.713e-2, Σd
d(t̃1) 2.793e-2, Σd

d(̃b2)
24 3.198e-2, Σd

d(Σ 2nd gen. q̃) 3.128e-2, Σd
d(Σ 2nd gen. q̃) 3.075e-2, Σd

d(Σ 2nd gen. q̃) 2.706e-2, Σd
d(Σ 2nd gen. q̃)

25 3.198e-2, Σd
d(Σ 1st gen. q̃) 3.128e-2, Σd

d(Σ 1st gen. q̃) 3.075e-2, Σd
d(Σ 1st gen. q̃) 2.706e-2, Σd

d(Σ 1st gen. q̃)
26 2.329e-2, Σu

u(h
0) 2.377e-2, Σu

u(h
0) 2.395e-2, Σu

u(h
0) 2.323e-2, Σu

u(h
0)

27 1.875e-2, Σd
d(Z̃

0
4) 1.841e-2, Σd

d(Z̃
0
4) 1.895e-2, Σd

d(Z̃
0
4) 2.152e-2, Σu

u(Z̃
0
2)

28 1.669e-2, Σd
d(τ̃1) 1.787e-2, Σd

d(τ̃1) 1.504e-2, Σd
d(τ̃1) 1.974e-2, Σd

d(Z̃
0
4)

29 1.279e-2, Σd
d(χ̃

±
2 ) 1.276e-2, Σd

d(χ̃
±
2 ) 1.326e-2, Σd

d(χ̃
±
2 ) 1.719e-2, Σd

d(Z̃
0
1)

30 1.102e-2, Σd
d(τ̃2) 1.107e-2, Σu

u(H
0) 1.079e-2, Σu

u(H
0) 1.553e-2, Σd

d(̃b1)

31 1.095e-2, Σd
d(O(αsαt)) 1.101e-2, Σd

d(τ̃2) 1.034e-2, Σd
d(̃b1) 1.380e-2, Σd

d(χ̃
±
2 )

32 9.869e-3, Σu
u(Z̃

0
2) 8.412e-3, Σd

d(̃b1) 9.897e-3, Σd
d(τ̃2) 8.754e-3, Σu

u(H
0)

33 8.366e-3, Σd
d(̃b1) 7.381e-3, Σd

d(O(αsαt)) 7.391e-3, Σd
d(O(αsαt)) 8.132e-3, Σd

d(O(αsαt))

34 8.083e-3, Σu
u(H

0) 7.315e-3, Σu
u(Z̃

0
2) 7.180e-3, Σu

u(Z̃
0
2) 7.408e-3, Σd,u

d,u(H
±)

35 6.658e-3, Σd,u
d,u(H

±) 6.542e-3, Σd,u
d,u(H

±) 6.877e-3, Σd,u
d,u(H

±) 6.470e-3, Σd
d(τ̃2)

36 5.469e-3, Σu
u(W

±) 5.400e-3, Σu
u(W

±) 5.467e-3, Σu
u(W

±) 6.324e-3, Σd
d(τ̃1)

37 2.611e-3, Σd
d(Z̃

0
2) 2.660e-3, Σd

d(Z̃
0
2) 2.717e-3, Σd

d(Z̃
0
2) 5.561e-3, Σu

u(W
±)

38 1.081e-3, Σd
d(Z̃

0
1) 2.305e-3, Σd

d(Z̃
0
1) 2.428e-3, Σd

d(Z̃
0
1) 2.441e-3, Σu

u(χ̃
±
1 )

39 7.420e-4, Σd
d(h

0) 2.044e-3, Σu
u(χ̃

±
1 ) 2.336, Σu

u(χ̃
±
1 ) 1.630e-3, Σd

d(Z̃
0
2)

40 4.723e-4, Σd,u
d,u(Z

0) 7.568e-4, Σd
d(h

0) 7.776e-4, Σd
d(h

0) 7.394e-4, Σd
d(h

0)

41 4.205e-4, Σu
u(χ̃

±
1 ) 4.069e-4, Σd,u

d,u(Z
0) 4.199e-4, Σd,u

d,u(Z
0) 4.265e-4, Σd,u

d,u(Z
0)

42 1.000e-4, Σd
d(t̃2) 2.013e-4, Σd

d(t̃2) 2.673e-4, Σd
d(t̃2) 4.215e-4, Σd

d(t̃2)

43 6.007e-5, Σd,u
d,u(W

±) 5.808e-5, Σd,u
d,u(W

±) 6.002e-5, Σd,u
d,u(W

±) 6.098e-5, Σd,u
d,u(W

±)

44 9.197e-6, Σd
d(χ̃

±
1 ) 2.608e-5, Σd

d(χ̃
±
1 ) 2.986e-5, Σd

d(χ̃
±
1 ) 3.085e-5, Σd

d(χ̃
±
1 )

45 2.315e-8, Σd
d(b) 2.302e-8, Σd

d(b) 2.282e-8, Σd
d(b) 1.895e-8, Σd

d(b)
46 9.579e-9, Σd

d(τ) 7.904e-9, Σd
d(τ) 7.812e-9, Σd

d(τ) 7.783e-9, Σd
d(τ)

Table 2.2: Top 46 contributions to ∆EW for our natural SUSY bench-
mark point for four different spectra calculator codes.

In Fig. 2.12, we show the values of a) mh, b) mt̃1,2 , c) ∆EW and d) At

versus A0/m0 for the NUHM3 model with parameters as in the caption but with

varying A0. (NUHM3 splits first/second generation sfermion soft terms from

third generation ones so that m0(1, 2) ̸= m0(3).) These plots are obtained using

SoftSUSY and can be compared to similar plots in Ref. [76] using Isasugra. We

see from frame a) that the value of mh is actually maximal at large negative At
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values (which are shown in frame d)). The large mixing in the stop sector lifts

the value of mh to the 125 GeV regime, but in this case only for negative At

values. The stop mass eigenstates are shown in frame b) where again, when there

is large mixing, the eigenstates have the largest splittings and mt̃1 becomes lowest

in value. In frame c), we show the corresponding value of ∆EW . Here we see that

for large trilinear At, then there can be large cancellations in Σu
u(t̃1,2) which lead

to decreased finetuning. The kinks in the curve occur due to transitions from one

maximal contribution to ∆EW to a different one. The dominant contributions to

∆EW in the middle of the plot comes from top-squark contributions whilst the left

and right edges come from tau-slepton contributions (as in Fig. 2 of Ref. [76]).

The low value of ∆EW coincides with the uplift in mh to ∼ 125 GeV for large

negative values of At.

In Fig. 2.13, we show the third generation contributions to ∆EW vs. A0/m0(3)

for the same parameters as in Fig. 2.12, but using SoftSUSY. These can be

compared with the same plot using Isasugra in Fig. 2 of Ref. [76]. Here, we

see that the contributions from staus and sbottoms are generally rather small,

and the top-squark contributions typically dominate. But for large |A0/m0(3)|,

then cancellations in both Σu
u(t̃1) and Σu

u(t̃2) occur, and the stop contributions

become comparable to those of the other third generation sparticles, giving reduced

finetuning and greater naturalness.
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Figure 2.12: Values of a) mh, b) mt̃1,2
, c) ∆EW and d) At(Q) vs.

A0/m0(3) for the NUHM3 model with m0(1, 2) = 10 TeV, m0(3) = 5
TeV, m1/2 = 0.7 TeV, tanβ = 10 with µ = 200 GeV and mA = 2 TeV.
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Figure 2.13: Third generation contributions to ∆EW for the same
model parameters as Fig. 2.12 vs. A0/m0(3) in the m0 vs. m1/2 plane
of the NUHM2 model with µ = 200, tanβ = 10, A0 = −1.6m0 and
mA = 2 TeV.
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2.3.2 Natural regions of m0 vs. m1/2 plane

In Fig. 2.14, we show the m0 vs. m1/2 parameter plane for the NUHM2 model

with A0 = −1.6m0, µ = 200 GeV and mA = 2 TeV. The plot is generated using

SoftSUSY but can be compared with similar results from Isasugra in Fig. 8b of

Ref. [81]. From the plot, we see the lower-left corner is actually excluded due

to charge-or-color-breaking (CCB) vacua which occur for too large A0 values.

Both SoftSUSY and Isasugra generate CCB regions there. We also show contours

of Higgs mass mh = 123 and 127 GeV. These are qualitatively similar to the

Isasugra results but shifted to the right by a couple hundred GeV in m0. Thus,

much of the parameter space allows for the measured Higgs mass mh ∼ 125 GeV.

We also show naturalness contours for ∆EW = 15 and 30. These can also be

compared against the LHC Run 2 gluino mass limit mg̃ ≳ 2.25 TeV as shown by

the light blue contour. The important point is that both SoftSUSY and Isasugra

agree that the bulk of this parameter space plane is EW natural, in accord with

LHC gluino mass limits, and in accord with the measured Higgs mass. This

is in contrast to older naturalness measures which required much lower gluino

masses[44, 45, 48, 47] and also Higgs boson masses[124].

2.4 Unnatural SUSY and its phenomenology

There also exist many renditions of supersymmetry that may yet still be potentially

viable at the LHC, yet fail in addressing the LHP via practical naturalness due to a

high degree of finetuning. Below, we address some of the most common versions of
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Figure 2.14: Contours of naturalness measure ∆EW and mh in the
m0 vs. m1/2 plane of the NUHM2 model with µ = 200, tanβ = 10,
A0 = −1.6m0 and mA = 2 TeV.
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unnatural SUSY in the MSSM, with some brief descriptions of the phenomenology

therein. Later, in Chapter 4, we devise a method on the string landscape that

allows us to compare these unnatural models to RNS, which ultimately leads to

the devised stringy naturalness calculation in Chapter 5.

2.4.1 CMSSM

For a long time, the mSUGRA[8] or CMSSM[7] model served as a sort of paradigm

model for SUSY phenomenology. This model posits gravity-mediated SUSY

breaking which induces a common scalar mass m0, a common gaugino mass m1/2

and a common trilinear soft term A0 all prescribed at the GUT scalemG ≃ 2×1016

GeV. The weak scale soft terms are determined by RGE running to the weak

scale, where electroweak symmetry is radiatively broken via a large top quark

Yukawa coupling. The µ term is tuned via Eq. (2.9) to give the measured value

of mZ . In pre-LHC days, it was possible within the CMSSM model to gain accord

with naturalness (low ∆EW ) and with an acceptable thermal relic abundance of

the LSP. After LHC Run 2 – while respecting the LHC measured Higgs mass

and also LHC sparticle search limits – natural CMSSM spectra are no longer

possible[92, 68, 81].

For illustrative purposes, we compute the mSUGRA/CMSSM spectra using

the Isasugra spectrum generator[116, 117] for a mSUGRA/CMSSM benchmark

point with (m0, m1/2, A0, tan β = 5000 GeV, 1200 GeV, −8000 GeV, 10) which

yields a gluino mass mg̃ = 2.8 TeV (well above current LHC bounds) with

mh = 124.3 GeV and with ∆EW = 2641 (highly EW finetuned). The thermal
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bino LSP abundance is Ωχh
2 ≃ 249 so non-thermal processes would need to be

invoked to bring the relic density into alignment with the measured dark matter

abundance[125].

2.4.2 PeV SUSY

PeV-scale supersymmetry[126, 127] is motivated by the possibility of SUSY

breaking via “charged” SUSY breaking fields S. For charged SUSY breaking,

scalar partners gain mass via Kähler potential terms K ∋ S†S
m2

P
Q†Q where the Q

are visible sector fields and S are hidden sector fields which carry some charge,

perhaps R charge. Thus, scalar fields gain a mass m2
Q ∼ F †

SFS/m
2
P ∼ m2

3/2 whilst

gaugino masses, which ordinarily gain mass via the gauge kinetic function f ∋ kS

are forbidden. Hence, the leading contribution to gaugino masses (and also A-

terms) are the loop-suppressed anomaly-mediated contributions mλ = β(gλ)
gλ

m3/2

and we expect M1 ≃ m3/2/120, M2 ≃ m3/2/360 and M3 ≃ m3/2/40. The wino is

then the LSP and can make up the dark matter. Thermally produced relic winos

can make up all the missing dark matter for mwino ∼ 3 TeV. Then, with a 3 TeV

wino, one expects scalar masses m̃ ∼ 1000 TeV, i.e. close to the PeV scale (1

PeV=1000 TeV). The PeV scale scalar masses provide a decoupling solution to

the SUSY flavor and CP problems[128]. The µ parameter may range anywhere

between mwino and m̃. The resultant light Higgs mass is expected in the range

125 GeV < mh < 155 GeV[129].
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2.4.3 Split SUSY

In split SUSY[130, 129, 131], the motivation is that the string landscape may

provide a selection mechanism for the finetuning of the electroweak scale in that

the weak scale must lie within the ABDS window in order to have a universe

with complex atoms as we know them, which seem necessary for life. However,

SUSY may still be needed for consistency with string theory, but the SUSY

breaking scale may now be far higher than that which is usually required by

naturalness. One may then allow masses of squarks and sleptons (which occur

in multiplets of SU(5)) to be as high as mϕ ∼ 109 GeV while fermion masses,

which are protected by chiral symmetry, can lie near the weak scale. This model

then preserves the SUSY success stories of gauge coupling unification and WIMP

dark matter while appealing to vacuum selection from the string landscape to

“tune” the EW scale to its value as required by the atomic principle. Thus, in

split SUSY, one expects both gauginos and higgsinos around the weak scale

whilst squarks and sleptons decouple at some intermediate scale (e.g. 109 GeV).

Such a split hierarchy of masses can arise from D-term SUSY breaking which

maintains an approximate, accidental R-symmetry[131]. The very high scalar

mass scale m̃ provides a decoupling solution to the SUSY flavor and CP problems

and also alleviates the cosmological gravitino and moduli problems by making

these particles sufficiently heavy and thus shortlived in the early universe. The

striking signature of split SUSY models is long lived gluinos which may decay

with displaced vertices or even outside of the collider detector. For scalar masses
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as high as ∼ 109 GeV, then the lightest Higgs scalar is expected to have mass

mh ∼ 130− 145 GeV[132].

2.4.4 High-scale SUSY

In high-scale SUSY (HS-SUSY)[133, 134, 135], it is assumed that the underlying

4-d theory is indeed SUSY, but with a much higher SUSY breaking scale than

that which is usually assumed to solve the gauge hierarchy problem. Thus, in

HS-SUSY, the superpartners are typically clustered at some very high mass scale

m̃ ∼ 10− 1013 TeV. In HS-SUSY, the SM is the LE-EFT and only the light Higgs

particle is expected to be produced at LHC. Indeed, by requiring the model to

yield the measured Higgs mass mh ∼ 125 GeV, then m̃ ∼ 101 − 107 TeV[132, 136].

2.4.5 Mini-Split

Mini-Split[137] SUSY is a version of split SUSY wherein the scalar mass m̃ is

lowered to the ∼ 102−4 TeV range in order to accommodate the measured Higgs

mass mh ≃ 125 GeV while gauginos remain near the TeV scale. Several scenarios

are envisaged in [137] including non-sequestered AMSB and U(1)′ mediation.

These scenarios include a small A parameter while µ may be either at the gaugino

scale (light) or at the scalar scale (heavy).

2.4.6 Simply unnatural SUSY

In simply unnatural SUSY[138] (SUN-SUSY), the scalar mass scale m̃ is deter-

mined by the measured value of the Higgs massmh ≃ 125 GeV to be m̃ ∼ 102−103
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TeV where the trilinear soft terms Ai are assumed to be tiny (little mixing in the

stop sector). The SUSY µ term is also expected to be µ ∼ m̃ while the gaugino

masses, which require an R-symmetry breaking to gain mass, are expected to

be at the TeV scale. Minimally, the gaugino masses are expected to obtain the

AMSB form, but the presence of heavy vector-like states could alter those relations

leading to a more compressed gaugino spectrum. Typically, the wino is expected

to be the LSP, and the relic abundance may be produced either thermally or

non-thermally due to late-decaying TeV-scale moduli fields.

2.4.7 Spread SUSY

In Ref. [139], it is emphasized that there may exist a forbidden region on the scale

of SUSY breaking m̃ such that if m̃ ≳ O(1) TeV, then LSP dark matter will be

overproduced which can violate the anthropic bounds which disfavor/forbid DM

overproduction in that the baryon-to-DM ratio may be insufficient for baryonic

structure formation in the universe[140]. This forbidden region should persist

up to m̃ ∼ TR where TR is the reheat temperature of the universe at the end of

inflation. Higher values of m̃ > TR are allowed in that SUSY particles wouldn’t

be produced during the reheat process. Taking m̃ > TR then leads to a very

heavy SUSY spectrum (High Scale SUSY) whilst taking m̃ ∼ 1 TeV leads to

Spread SUSY in the case of SUSY breaking via “charged” hidden sector fields

(where scalars gain mass m̃ but gauginos and A terms do not) or via uncharged

hidden sector fields (which leads to all sparticles at m̃ ∼ 10 TeV, dubbed the

“environmental MSSM”). The spread SUSY spectrum divides into two possibilities:
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1. scalar masses m̃ ∼ 105 TeV with gauginos at 102 TeV and higgsinos at ∼ 1

TeV and 2. scalars around 103 TeV with higgsinos and gravitinos ∼ 102 TeV and

gauginos ∼ 1 TeV. Thus, the spread SUSY models typically have SUSY mass

spectra spread across three mass scales.

2.4.8 G2MSSM

The G2MSSM labels the sort of SUSY spectra expected to emerge from 11-

dimensionalM -theory compactified on a manifold of G2 holonomy[141, 142] which

preserves N = 1 SUSY in the low energy 4-d effective field theory (LE-EFT). The

LE-EFT then consists of the usual MSSM fields plus an assortment of moduli

fields which are string remnants from the compactification. Scalar masses m̃

and the lightest modulus field are expected to gain masses of order the gravitino

mass m3/2 and in order to solve the cosmological moduli/gravitino problems then

m̃ ∼ 30− 100 TeV. Gaugino masses are suppressed relative to scalars by a factor

log(mP/m3/2) ∼ 30 so gauginos (and higgsinos) are expected at the 1-3 TeV range

and may have comparable moduli/anomaly-mediated contributions. The LSP

may be bino or wino-like but the relic density is seriously affected by non-thermal

production via the late-decaying lightest modulus field[143]. In later renditions,

the possibility of a hidden sector LSP is entertained[144].
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Chapter 3

Scalar sequestering: an alternate solution to the

LHP

Other methods exist for addressing the Little Hierarchy Problem and must be

addressed in turn. Recall from the previous chapter that the non-appearance

of supersymmetric matter at the CERN Large Hadron Collider[58] (LHC) has

potentially opened up a different naturalness problem[107]: the little hierarchy

problem (LHP) concerning the burgeoning mass gap between the weak scale

mweak ∼ mW,Z,h ∼ 100 GeV and the so-called soft SUSY breaking scale msoft ∼

msparticles, i.e., why is mweak ≪ msoft ≳ 1− 10 TeV?

Unnatural SUSY with large |µ| ≫ mweak, while possible, seems at first glance

highly implausible. However, model builders have proposed a way to remain

natural even with |µ| ≫ mweak by discovering models where the combinations

m2
Hu,d

+ µ2 are driven to be tiny, while
√

|m2
Hu,d

| and µ individually can each be

large at the weak scale. This method is called scalar sequestering (SS)[145, 146,

147, 148].

The method of hidden sector sequestering (HSS) of visible sector operators

arises from postulating the existence of a strongly interacting nearly supercon-

formal hidden sector (HS) which is operative between the messenger scale M∗

(taken to be of order the reduced Planck mass ∼ mP in the case of gravity

mediation) and a much lower intermediate scale Mint where the superconformal

symmetry is broken and SUSY is also broken. This method of sequestering was
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originally proposed[149] as a means to obtain anomaly-mediated SUSY breaking

(AMSB) models[150, 151] when geometric sequestering was shown to be difficult

to realize[152].

Under HSS, the various soft SUSY breaking terms get squeezed to tiny values

via RG running between m∗ and Mint by a power-law behavior:

msoft(Mint) ∼ (Mint/m∗)
Γmsoft(m∗) (3.1)

where the exponent Γ includes combinations of classical and anomalous dimensions

of HS fields S. Γ is not directly calculable due to the strong dynamics in the

HS but is instead assumed to be ∼ 1. For Mint ∼ 1011 GeV and Γ ∼ 1, then

the suppression of gravity-mediated soft terms can be ∼ 10−7 in which case

the AMSB soft terms would be dominant. Additional symmetries seemed to be

required in order for HSS to be viable; nonetheless, the lesson was that (model

dependent) hidden sector effects could potentially modify the assumed running of

SUSY model parameters as expected under the MSSM only[153, 154]. HSS was

then found to offer a solution to the needed suppression of various problematic

operators. For instance, in gauge mediation[155] the Bµ soft term is expected with

Bµ≫ µ2, leading to the famous Bµ/µ problem. HSS could be used to suppress

Bµ(Mint) ∼ 0 thus solving the problem[156, 145]. Also, in gravity mediation,

scalar masses arise via hidden sector-visible sector couplings such as

∫
d4θ

cij
m2

P

S†SQ†
iQj (3.2)
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where the Qi are visible sector fields and the S are hidden sector fields which

acquire an auxiliary field SUSY breaking vev FS ∼ (1011 GeV)2. In gravity-

mediation, such operators are unsuppressed by any known symmetry (leading

to the SUSY flavor problem), but could be squeezed to tiny values via scalar

sequestering. A third application of (scalar) sequestering is to ameliorate the LHP

while maintaining large µ values: |µ| ≫ mweak. This case, which is the subject

of this dissertation chapter, makes use of Eq. 3.2 to suppress via hidden sector

running all scalar masses to ∼ 0. However, in the case where the Giudice-Masiero

mechanism[157] is assumed1 to generate a weak scale value of µ, then the scalar

sequestering actually applies to m2
Q for matter scalars, but to the combinations

m2
Hu,d

+ µ2 for Higgs scalars. In this case, at the intermediate scale Mint, then

one expects m2
Q ∼ 0 but with m2

Hu,d
∼ −µ2 so that µ can be large whilst the

combination m2
Hu,d

+ µ2 is small: this has the potential to fulfill the naturalness

requirement in Eq. 2.9 while maintaining large |µ| ≫ mweak since µ2 and m2
Hu,d

are no longer independent.

In this dissertation, we examine the phenomenology of SUSY models with

scalar sequestering. In Sec. 3.1, we present a brief review of the theory underlying

scalar sequestering. Two different theory approaches have emerged: strong scalar

sequestering where hidden sector running overwhelms MSSM running[145, 146],

and moderate scalar sequestering[148], wherein hidden sector running and MSSM

running are comparable, leading to quasi-fixed point behavior for the intermediate

scale soft term boundary conditions. In Sec. 3.2, we examine strong SS, dubbed

1Twenty solutions to the SUSY µ problem are reviewed in Ref. [158]
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here as the PRS (Perez, Roy and Schmaltz) scheme[146]. Here, the intermediate

scale boundary conditions are so determinative that only one (or a few) parameters

completely determine the SUSY phenomenology. In this case, problems emerge for

appropriate electroweak symmetry breaking, vacuum stability, and dark matter

physics (with typically a charged LSP and sometimes a left-sneutrino LSP). The

latter case with a charged LSP can be dispensed with via either an assumed

R-parity violation[159, 160] or assumed LSP decays to non-MSSM DM particles

such as an axino ã[161]. In Sec. 3.3, we verify these results with parameter space

scans in the PRS scheme with and without unified gaugino masses. In Sec. 3.4,

we instead adopt the scheme in [148] – we refer to this scheme as SPM (Stephen P.

Martin)– with more limited HS running which is comparable to MSSM running. In

this scheme, for the case of unified gaugino masses (UGM), we find that although

SS reduces the amount of EW finetuning, significant weak scale finetuning arising

from large top-squark masses remains, so that the finetuning problem cannot be

said to be eliminated for large µ. However, in the case of non-universal gaugino

masses (NUHM) which lead to large stop mixing and mh ≃ 125 GeV, then

evidently low finetuning along with appropriate EWSB can be achieved for more

moderate values of µ ∼ 1 TeV.

3.1 Brief review of scalar sequestering

Let us assume a gravity-mediated generation of soft SUSY breaking terms since

gauge-mediation gives rise to trilinear soft terms A ∼ 0 and hence requires large,
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unnatural values of top squarks[68] to generate mh ∼ 125 GeV[162]. At some

scale m∗ < mP , the (superconformal) hidden sector becomes strongly interacting.

Its coupling to visible sector fields leads to suppression of scalar soft breaking

masses and also the bilinear soft term b ≡ Bµ. At some intermediate scale Mint,

the conformal symmetry is broken and the hidden sector is integrated out of the

low energy EFT. Also around this scale, SUSY is broken at a scale Q2
SUSY ∼ FS.

Under gravity-mediation, the following operators give rise to the usual soft

terms: ∫
d2θcλ

S

mP

WW + h.c.⇒ mλ ∼ cλ(FS/mP ), (3.3)

∫
d2θcA

S

mP

ϕiϕjϕk + h.c.⇒ Aijk ∼ cA(Fs/mP ), (3.4)

∫
d4θcij

R

m2
P

ϕ†
iϕj ⇒ m2

ϕij
∼ cij(FS/mP )

2, (3.5)

and ∫
d4θcb

R

m2
P

HuHd + h.c.⇒ Bµ ∼ cb(FS/mP )
2, (3.6)

where S is a HS chiral superfield and R is a real product of hidden sector fields

with R ∼ S†S + · · · . In addition, for the scalar sequestering model, one assumes

the µ term is initially suppressed (by some symmetry?) but then arises via the

Giudice-Masiero[157] mechanism at the scale msoft via

∫
d4θcµ

S†

mP

HuHd ⇒ µGM ∼ cµ(FS/mP ). (3.7)

The holomorphic terms (
∫
d2θ) are protected against renormalization effects by
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non-renormalization theorems but the non-holomorphic terms are not. The latter

terms give rise to scalar masses m2
ϕij

and the bilinear soft term Bµ, and will

scale between m∗ and Mint as (Mint/m∗)
Γ where the exponent Γ is related to the

anomalous dimension of the S field.

While Γ is not directly calculable since the HS is strongly interacting, under the

assumption that Γ is large and positive, e.g. ∼ 1, then the factor (Mint/m∗)
Γ can

lead to large suppression of scalar masses and Bµ as compared to gaugino masses,

A-terms and µ. However, while µ can remain large under scalar sequestering, the

combination m̂2
Hu,d

≡ m2
Hu,d

+ µ2 gets driven to tiny values by the (Mint/m∗)
Γ

factor.

3.2 Scalar sequestered SUSY: PRS boundary conditions

In the PRS scheme[145, 146], the SS is assumed to dominate any MSSM running

of soft terms. In this case, one expects the usual MSSM running for gaugino

masses, A-terms and µ between the high scale m∗ and the intermediate scale Mint,

whilst HS effects suppress matter scalar masses m2
ϕij

, Bµ and Higgs combinations

m2
Hu,d

+µ2. Thus, (under the assumption of unified gaugino masses) the parameter

space of the model is given by

m1/2, A0, µ and Mint (3.8)

where the first three of these are given at the high scale m∗. Motivated by gauge

coupling unification, we take m∗ = mGUT , the scale where g1 and g2 unify under

83



MSSM running, and where mGUT ≃ 2× 1016 GeV. Meanwhile, the matter scalar

masses, Bµ and m2
Hu,d

+ µ2 are taken to be ∼ 0 at the scale Q ∼Mint.

3.2.1 Results for Mint = 1011 GeV and A0 < 0

As an illustration, we show in Fig. 3.1 the running of soft terms and µ for the case

where m1/2 = −A0 = 1.5 TeV with µ = 500 GeV (the reason for µ ∼ 500 GeV

is to be explained shortly). The pink shaded region shows the superconformal

regime, whilst the soft terms run according to MSSM-only RGEs in the left-side

unshaded region. We see from frame a) that the matter scalars start running at

Q = 1011 GeV where the squark masses are pulled to large values ≳ 2 TeV due to

the influence of the SU(3) gaugino mass M3. Left-slepton masses are pulled up

by a large SU(2)L gaugino mass M2 to the vicinity of ∼ 650 GeV at mweak whilst

the right slepton masses are pulled up by the U(1)Y gaugino mass M1 to ∼ 300

GeV. The running of the bilinear b-term is given by

db

dt
=

βb
16π2

(3.9)

where the beta function is given at one-loop by

β
(1)
b = b(3f 2

t +3f 2
b +f

2
τ −3g22 −

3

5
g21)+µ(6atft+6abfb+2aτfτ +6g22M2+

6

5
g21M1)

(3.10)

where the fi are Yukawa couplings, the gi are gauge couplings, the ai = Aifi are

the reduced trilinear couplings, and the Mi are gaugino masses (further RGEs are

84



given in, e.g., Ref. [3]). The
√
b =

√
Bµ term is pulled from zero at Q = Mint

to ∼ 550 GeV at Q = mweak mainly by the second term of Eq. 3.10. Meanwhile,

with µ = 500 GeV, the sign(m2
Hu,d

) ∗
√

|mHu,d
| soft terms begin at −500 GeV and

m2
Hu

is driven to large negative values at mweak due to the large top-quark Yukawa

coupling ft. Also, mHd
is driven dominantly by the gaugino mass M2 to small

negative values ∼ −100 GeV atmweak. Frame b) shows the running of trilinear soft

terms starting from Q = mGUT . These terms are pushed to large negative values

by the respective gauge interactions. In the case of At, this may help drive stop

masses towards tachyonic values (i.e., negative squared mass values, where m2
t̃
< 0,

implying the running mass is not a real value, which can affect minima of the

scalar potential) and consequently to charge and/or color breaking (CCB) minima

in the scalar potential. The importance of avoiding CCB minima is emphasized

in the following phenomenological features. Since the Standard Model and its

supersymmetric extensions assume a stable or metastable vacuum corresponding

to the observed universe, then if the scalar potential develops CCB minima, it

implies that there are alternate vacua where either charge, color, or both are

broken. This would mean that the universe could transition to these undesired

vacua, leading to a state where the fundamental symmetries of electromagnetism

and QCD are broken. Such a transition would likely result in a universe very

different from the one we observe, as well as leading to other exotic phenomena

and proton destabilization that would need to be explained. In particular, if

it were allowed for squark and slepton (squared) masses to run negative, then

these fields may be able to acquire non-zero vacuum expectation values (VEVs),
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leading to the aforementioned undesirable observable consequences, which would

be inconsistent with our current observations.

A major check on this very constrained PRS scheme is if the EW symmetry is

properly broken. Let us recall the (tree-level) conditions for proper EWSB. First,

one must check whether the scalar potential indeed does not develop a minimum

at h0u = h0d = 0, the origin of neutral scalar field space. The stability of the critical

point satisfying

∂V

∂h0u

∣∣∣∣∣
h0
u=h0

d=0

=
∂V

∂h0d

∣∣∣∣∣
h0
u=h0

d=0

= 0

are determined by the nature of the eigenvalues of the matrix of second derivatives

of the scalar potential, V , evaluated at the origin of field space. We refer to this

matrix of second derivatives as the Hessian. Here, the neutral scalar fields are

denoted h0u,d.

The goal is to have a vacuum whose origin of field space is destabilized, else

EWSB fails to occur properly. There are two cases in which this can happen:

1. the origin is a maximum in field space, or perhaps

2. the origin is a saddle point.

To determine the stability of the critical points we find, the type of critical point

can be identified using the second variable partial derivative test. Case 1 occurs

when the determinant of this Hessian is positive, but m2
Hu

+ µ2 < 0 at the SUSY

scale; then, the origin of field space will be a maximum. This secondary condition

is crucial, meaning the positive determinant alone is insufficient here to determine

the nature of the critical point at the origin. When the determinant is positive,
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Figure 3.1: Running of soft terms and −µ in the PRS scalar seques-
tering scheme for m1/2 = 1.5 TeV, A0 = −m1/2, and µ = 500 GeV.
We also take the intermediate scale Mint = 1011 GeV. In frame a) we
show running scalar masses and the µ term, while in frame b) we show
the running trilinear soft terms.
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but m2
Hu

+ µ2 > 0, then the origin of field space will be a minimum, hence the

scalar fields fail to acquire nonzero VEVs and EWSB fails to occur.

Case 2 occurs when the determinant of the Hessian of the scalar potential at

the origin with respect to the neutral Higgs scalars is negative, as this implies its

eigenvalues have opposite signs, leading to

(Bµ)2 > (m2
Hu

+ µ2)(m2
Hd

+ µ2). (3.11)

This is often referred to in the literature as the condition for having a maximum

at the origin of field space, but is more accurately described as a saddle point.

In either case of a maximum or a saddle point, the origin is destabilized, so

proper EWSB may yet be achievable, barring failure in the conditions below. In

particular, given that m2
Hu

is driven large negative and Bµ is driven small positive,

this saddle point condition may not always occur, but maxima sometimes occur

instead as in case 1!

Secondly, one must check that the scalar potential is bounded from below

(vacuum stability) in the D-flat direction h0u = h0d leading to the requirement that

m2
Hu

+m2
Hd

+ 2µ2 > 2|Bµ|. (3.12)

Given that m2
Hu

is large negative, this condition also may be subject to failure, in

which case the scalar potential is unbounded from below (UFB).

If an appropriate EWSB occurs, then minimization of the Higgs potential
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allows one to determine the Higgs vevs vu and vd, with tan β = vu/vd as usual.

The minimization conditions can be recast at tree-level as

Bµ =

(
m2

Hu
+m2

Hd
+ 2µ2

)
sin(2β)

2
(3.13)

and

m2
Z/2 =

m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
− µ2. (3.14)

Usually, in models like mSUGRA, the first of these is used to trade Bµ for

tan β and the second is used to determine the magnitude of µ. In the present

case, since the boundary condition for Bµ is ∼ 0 at Q =Mint, it is not available

to determine a unique value of tan β, since the running of the soft parameters

depends on the Yukawa couplings which in turn depend on vu and vd, whose

values then define tan β. Furthermore, from Eq. 3.14 we see that µ is not freely

available to be determined by the measured value of mZ = 91.2 GeV. Thus, the

equations 3.13 and 3.14 must be used to map out the derived values of mZ in the

µ vs. tan β plane.

This is shown in Fig. 3.2 for the case at hand. Here, we see that for large µ

values, then m2
Z is computed to be negative. For smaller µ, then typically mZ is

of order the TeV scale. For a given value of tan β, one can choose µ near the edge

of the gray excluded region where mZ ∼ 100 GeV. For Fig. 3.1, we have chosen

tan β = 10 which then fixes µ ∼ 500 GeV. Unfortunately, for all choices of µ and

tan β shown in the plane, we find the scalar potential to be UFB in the D-flat

direction.
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Figure 3.2: Computed value of mZ in the µGUT vs. tanβ plane for the
PRS BM point with m1/2 = −A0 = 1.5 TeV, and Mint = 1011 GeV.
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3.2.2 Results for A0 > 0

In Fig. 3.3, we show a PRS point that does develop appropriate EWSB where

Mint = 4× 1011 GeV and m1/2 = A0 = 1 TeV. For tan β = 21.25, we find µ ≃ 1.8

TeV. In this case, with A0 = 1 TeV, we see from frame b) that the Ai parameters

are all positive for large Q, with At and Ab becoming small and then negative

around Q ≲ 1010 GeV. This feeds into the b parameter evolution causing b to run

at Q < Mint to negative values until the large negative Ai terms cause it to turn

up and become positive around Q ∼ mweak, aiding in appropriate EWSB. While

this model does develop a viable EW vacuum, the slepton masses evolve only to

mEi
∼ 250 GeV at Q ∼ mweak so that slepton masses are well below both the

µ and M1 terms. Thus, for this point we have a charged slepton as the lightest

SUSY particle. The derived sparticle mass spectra for this case are shown in Fig.

3.4.

In the case shown, with the MSSM-only as the low energy EFT, then one

would expect a charged stable relic, and dark matter wouldn’t be dark. One

can circumvent this situation by adding extra particles or interactions to the low

energy EFT. An example of the former would be to add a Peccei-Quinn (PQ)

sector with an axino ã as the LSP so that ẽR → eã. In this case, one would get a

potentially long-lived but unstable slepton and one must avoid collider and other

constraints on such objects. The slepton lifetime would depend on the assumed

value of the PQ scale fa. An example of added interactions would be to postulate

broken R-parity so that the slepton LSP decays to SM particles. Then one must
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Figure 3.3: Running of soft terms and µ in the PRS scalar sequestering
scheme for m1/2 = 1 TeV, A0 = m1/2, and µ = 1.8 TeV. We take the
intermediate scale Mint = 4× 1011 GeV. In frame a) we show running
scalar masses and µ term while in frame b) we show the running
trilinear soft terms.
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Figure 3.4: The resulting mass spectrum with a characteristic slepton
as the LSP for the PRS scheme with m1/2 = 1 TeV, A0 = m1/2, and
µ = 1.8 TeV. The spectrum was produced using SoftSUSY v4.1.17 [1]
and slhaplot [2].

explain why some RPV couplings are substantial whilst others are very small, as

required by proton stability bounds[159, 160].

3.3 Parameter space scans: PRS scheme

3.3.1 Universal gaugino masses

In order to search for viable weak scale SUSY spectra in the PRS scheme, we

implement a scan over the PRS parameter space:

• m1/2 : 0.2 → 5 TeV

• A0 : −5 → +5 TeV

• Mint : 106 → 1014 GeV.
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Our code then scans over values of (µ, tan β) leading to mZ ∼ 91.2 GeV. We then

check for CCB minima, points that are UFB, and appropriate EWSB. For points

that pass all criteria with appropriate EWSB, we then check for a neutral or a

charged LSP.

Our first results are shown in Fig. 3.5 where we show scan points a) in the A0

vs. Mint plane and b) in the A0 vs. m1/2 plane. From frame a), we see that only

the yellow points satisfy all EWSB constraints, although all the surviving points

have a slepton as the LSP. In particular, the A0 < 0 points almost all have either

CCB minima (for large negative A0) or else an UFB potential. For A0 > 0, then

the scalar potential is better behaved but frequently does not have appropriate

EWSB. The scan points with appropriate EWSB are much more prominent at

large Mint and large m1/2.

In Fig. 3.6, we show our scan points in the m1/2 vs. µ plane. Here, we see some

structure where µ ∼ 2m1/2 is favored. These qualitative features were also found

by Perez, et al. in Ref. [146] where most of their parameter space was excluded

by EWSB constraints except for large Mint where they also found µ ∼ 2m1/2 and

for their lone sample point, they also obtained a slepton as the LSP.

Given our overall scan results in the PRS scheme, we find the strong scalar

sequestering scenario (with unified gaugino masses) rather difficult (but not

impossible) to accept: the bulk of p-space points have problematic EWSB and

any surviving points have a charged LSP thus requiring new particles and/or

new interactions to evade cosmological constraints on charged relics from the Big

Bang.
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Figure 3.5: Scan over the PRS parameter space with UGMs in the a)
A0 vs. Mint plane and b) the A0 vs. m1/2 plane.
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Figure 3.6: Scan over the PRS parameter space with UGMs in the m1/2 vs. µ plane.

3.3.2 Non-universal gaugino masses

Varying M1 and M2

One possibility to try to circumvent the slepton-LSP problem in the PRS scheme

is to appeal to NUGMs, by dialing down either M1 or M2 from their unifed values

until either the bino or the wino becomes the LSP. The computed sparticle mass

spectra are shown in Fig. 3.7 in frame a) for varying M1 and in frame b) for

varying M2. From frame a), we see that as M1 diminishes, the lightest neutralino

mass mχ̃0
1
does indeed decrease (moving from unified gaugino masses on the right

to small M1 on the left as shown by the lavender dashed curve). However, as M1

decreases, then upward RGE pull on mEi (right-slepton soft mass of generation i)

from the U(1)Y gaugino also diminishes, and ultimately m2
E1,2

go tachyonic (i.e.,
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m2
E1,2

< 0, indicating charge breaking minima within the scalar potential) around

M1 ∼ 0.23m1/2. Note in this case that the stau soft mass remains larger due to

a large negative Xτ term in the m2
E3

RGE owing to large negative m2
Hd
. This is

shown in Fig. 3.8 which shows the soft mass running for a case with small M1

compared to m1/2. This behavior where the bino fails to become LSP in the PRS

scheme with small M1 appears rather general when we scan over all M1 values

(to be shown shortly).

Likewise, in frame b), we take M2 to be its unified value on the right-side

of the plot, and then dial its value down to try to gain a wino as LSP. Around

M2 ∼ 0.58m1/2, the mχ̃±
1
and mχ̃0

1
mass curves coincide, showing that the lightest

neutralino has gone from bino to wino. However, in this case, the right-sleptons

remain LSP until M2 ∼ 0.35m1/2 whence the left sleptons, and particularly

here the left-sneutrino, becomes LSP. Left-sneutrinos have direct detection cross

sections for scattering on Xe nuclei of σ(ν̃eLXe → ν̃eLXe) of ∼ 4.5 × 10−23

cm2[163], about 23 orders of magnitude larger than current LZ limits[164], and so

are excluded as dark matter. For somewhat lower values of M2, then Bµ runs to

very small values, leading to a UFB scalar potential. This behavior also seems

rather general from our PRS scan with NUGMs.

Scan over PRS scheme with NUGMs

For completeness in our search for viable weak scale SUSY spectra in the PRS

scheme, we can adopt the case of non-universal gaugino masses and scan over this

expanded parameter space:
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Figure 3.7: The SUSY mass spectrum vs. GUT-scale gaugino mass
parameters M1,M2 in the PRS model varied below m1/2. In both
frames, the spectrum at the far right is similar to the spectrum seen in
Fig. 3.4. In frame a) the mass spectrum as M1(GUT) is varied below
m1/2 to zero is plotted. The neutralino never becomes the LSP, as the
selectron and smuon remain lighter until CCB minima are realized. In
frame b) we display the mass spectrum as M2(GUT) is varied below
m1/2 to zero. Near M2 ∼ 0.4m1/2, the sneutrino briefly becomes the
LSP before the Higgs potential becomes unbounded from below due
to a lack of running in the b = Bµ parameter. Thus, a neutralino LSP
cannot be achieved here. In both frames, we take m1/2 = M3(GUT) =
A0 = 1 TeV, Mint = 4 · 1011 GeV, and tan(β) = 21.25.
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Figure 3.8: Example RGE running of the soft masses from Fig.
3.7a) demonstrating the CCB nature of a point with m2

ẽR
< 0 with

M1(GUT) ∼ 0.15m1/2. Though the left-handed slepton states (red)
evolve to moderate values, the right-handed slepton states of the first
two generations evolve to be negative at the SUSY scale due to the
small value of M1.
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• M1(GUT) : 0.2 → 5 TeV

• M2(GUT) : 0.2 → 5 TeV

• M3(GUT) : 0.2 → 5 TeV

• A0 : −5 → +5 TeV

• Mint : 106 → 1014 GeV.

Similar to above, our code then finds pairs of (µ, tan β) leading to mZ ∼ 91.2 GeV.

We then check for CCB minima, points that are UFB, and appropriate EWSB. For

points that pass all criteria with appropriate EWSB, we then check for a neutral

or a charged LSP along with LHC constraints on the gluino mass and lightest stop

mass. As discussed above, one may try to dial down the M1(GUT) parameter to

obtain a neutralino LSP, this leads to both CCB and EWSB issues in this model.

The issue of a charged LSP persists as in the UGM case, though it is possible

to accommodate a sneutrino LSP in some cases, when M2(GUT) < M1(GUT).

However, this scenario is severely ruled out due to direct dark matter detection

constraints.

Our non-universal gaugino mass scan results are demonstrated in Fig. 3.9 where

we show scan points a) in the A0 vs. Mint plane and b) in theM1(GUT)/M2(GUT)

vs. M3(GUT) plane. Even with NUGMs, we do not find any points where EWSB

is appropriately broken but without a charged slepton or left-sneutrino LSP.
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Figure 3.9: Scan over the PRS parameter space with NUGMs in the
a) A0 vs. Mint plane and b) the M1(GUT)/M2(GUT) vs. M3(GUT)
plane.
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3.4 Scalar sequestered SUSY: SPM approach

In the SPM approach[148], it is noticed that there exist bounds on the scaling

dimension Γ such that Γ is positive but not too large, with Γ ∼ 0.3 maximally[165,

166, 167]. In this case, the superconformal running may be much less, and

comparable to the MSSM running. Let us denote the dimension 1 soft breaking

terms as m1 and dimension 2 soft terms as m2. Then, after several field rescalings,

the dimension-1 terms (the Mi, aijk and µ) run according to

dm1

dt
= βMSSM

m1
(3.15)

while dimension-2 terms (matter scalars m2
ϕij

, m̂HU,d
and b) run as

dm2

dt
= Γm2

2 + βMSSM
m2

(3.16)

where the βMSSM are the usual MSSM beta functions and t = log(Q/Q0) where

Q is the energy scale and Q0 is a reference scale. For the superconformal regime

with Mint < Q < m∗, then Γ ̸= 0 but for Q < Mint, then the superconformal

symmetry is broken and integrated out, and Γ → 0.

An intriguing effect in this case is that the m2
2 terms can run until the Γm2

2 ≃

βMSSM
m2

which defines a quasifixed point for the m2
2 running at m2

2 ≃ −βMSSM
m2

/Γ.

Approximate expressions for the fixed point values are given by SPM[148], but

will not be repeated here. Thus, the m2
2 terms tend to approach their quasifixed

point values as Q→Mint instead of zero, as in the PRS scheme. This behavior
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helps to ameliorate the problems of the PRS scheme with respect to EWSB. The

approach to the quasifixed point values are shown in Figs. 3.10 and 3.11 for five

m2
2 cases.

In the SPM scheme, the m2
2 values approach (but do not exactly meet) their

quasifixed point values at Q =Mint, so that the boundary conditions at Q =Mint

are no longer fixed. Thus, to generate a workable model, we must expand the

parameter space from the PRS scheme. For SPM, therefore, one must reintroduce

the various m2
2 boundary conditions at Q = m∗, and we will take

m0, m1/2, A0, µ, b = Bµ. (3.17)

After checking for appropriate EWSB, and then employing the EWSB minimiza-

tion conditions, one can again solve for the derived value of mZ . This is shown

in Fig. 3.12 where we show color-coded regions of mZ in the A0 vs. µ(GUT )

plane for m0 = 10 TeV, m1/2 = 4.5 TeV and tan β = 15. From the plot, one sees

that there is no unique solution for mZ ≃ 91.2 GeV but rather two disconnected

regions depending on the sign of µ, with a different µ value being obtained for

each choice of A0.

3.4.1 Case with UGMs

In the SPM paper, Martin has plotted out sample spectra for two cases, one with

unified gaugino masses (UGM) and one with non-unified gaugino masses (NUGM).

For the case of UGM, he shows sparticle mass spectra vs. m1/2 for m0 = m1/2
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Figure 3.10: Running of various m2
2 parameters from Q = mGUT to

Q = mweak under the SPM scheme with Γ = 0.3
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Figure 3.11: Running of various mass dimension 2 and dimension 1
parameters from Q = mGUT to Q = mweak under the SPM scheme
with Γ = 0.3.
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Figure 3.12: Color-coded regions of the derived value of mZ in the µ
vs. A0 plane for tanβ = 15 with m0 = 10 TeV and m1/2 = 4.5 TeV.
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and also for m0 = 2.5m1/2, with tan β = 15 and with b = m2
1/2, where A0 and µ

are solved for. For the m0 = m1/2 case, he always finds a right selectron as the

LSP (as do we), so that either additional R-parity violating interactions or lighter

DM particles (such as axino) are needed to avoid charged stable relics from the

early universe. In the case of m0 ≳ 2.5m1/2, then the bino can become LSP. In

Fig. 3.13, we reproduce these results for the case of m0 = 2.5m1/2. The region

between the pink shaded boundaries has 123 GeV < mh < 127 GeV (as computed

here using FeynHiggs[168]). Typically, in such cases with heavy sparticles in the

multi-TeV range and a bino as the LSP, the thermally-produced neutralino relic

density Ωχh
2 ≫ 0.12. However, from Fig. 3.13 we do see that since slepton masses

are very nearly equal to m(bino), then coannihilation is available to reproduce

the measured DM relic density. We also see that the higgsino mass ≃ µ is very

large, varying from ∼ 5− 10 TeV over the range of m1/2 shown. This would make

the model very unnatural under the conservative ∆EW measure. However, the

point here is that a mechanism is now present to drive the combination m2
Hu

+ µ2

to small values, thus potentially ameliorating the LHP.

Since we have now arrived at acceptable spectra for the case of scalar seques-

tering in the SPM scheme, we next want to check whether it really solves the

LHP. In Fig. 3.14, we compute in frame a) the top five signed contributions

to the naturalness measure ∆EW . The largest contributions come from µ and

mHu(weak), which are seen here as the blue and red curves. These lie in the

∼ 104 range, making the model highly finetuned under ∆EW . In frame b), we

define a revised finetuning measure ∆′
EW , which is the same as ∆EW except that

107



Figure 3.13: Sparticle masses vs. m1/2 in the SPM UGM case with m1/2 = m0/2.5.

now m2
Hu

+ µ2 and m2
Hd

+ µ2 are combined into single entities since they are

now dependent (due to the CFT running above Q = Mint). In frame b), we see

the top five contributions to ∆′
EW . In this case, the Σu

u(t̃1,2) terms and m̂2
Hu

terms are largest, typically of order ∼ 103. Thus, we find that although the SPM

scheme in the UGM case has reduced finetuning, it is still found to be highly

finetuned, mainly due to the large lightly-mixed top-squark masses contributing

to the radiative corrections Σu
u(t̃1,2).

3.4.2 Case with NUGM

Along with the UGM case, SPM also considers the case with NUGMs. This case

is motivated by obtaining a large stop mixing element At which can enhance

mh → 125 GeV via maximal stop mixing rather than too large of stop masses.
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Figure 3.14: Top five signed contributions to a) ∆EW and b) ∆′
EW for

the UGM spectra with m0 = 2.5m1/2.
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This can be achieved with M3 ≪M2 while adjusting M1 so that the bino remains

as the LSP. In Fig. 3.15, we show the weak scale sparticle mass spectra in the

SPM scheme with NUGMs. We plot vs. m0 where M3 = 1.2 TeV, M2 = 4 TeV,

and M1 = 2 TeV (all Mi defined at Q = mGUT ). Our calculations match well with

the results of SPM. From the plot, we see that for low m0 we still get a slepton as

the LSP (this time, it is the τ -slepton τ̃1). For higher values of m0, then sfermion

masses increase as expected and for m0 ≳ 6 TeV one obtains mℓ̃ ≳ m(bino) and

so we get a bino as the LSP. Also, with M3(mGUT ) only 1.2 TeV, then squarks

and sleptons are much lighter than in Fig. 3.13. With large stop mixing, then

mh ∼ 125 GeV with not-too-heavy of stops and a chance for naturalness. The

higgsinos are heavy and lie near mH̃ ∼ 2.3 TeV.

In Fig. 3.16 we compute the top five signed contributions to the finetuning

measures a) ∆EW and b) ∆′
EW for the same parameters as in Fig. 3.15. From

frame a), we see that the mHu and µ contributions to ∆EW are opposite sign

but with absolute values ∼ 103 so that the spectra are finetuned under ∆EW .

However, the SS of m2
Hu,d

+ µ2 means these quantities are no longer independent

and instead ∆′
EW should be used. From frame b), we see the top five contributions

to ∆′
EW are typically of order ∼ 10: thus, this case of the SPM scheme with

NUGMs seems natural even with higgsino masses of ∼ 2.3 TeV. (The breaks in

the curves of frame b) occur due to different contributions to Eq. 2.9 vying to be

within the top five.)
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Figure 3.15: Sparticle and Higgs masses vs. m0 in the SPM scheme
with NUGM where M1 = 2 TeV, M2 = 4 TeV, and M3 = 1.2 TeV,
with b = (2 TeV)2, tanβ = 15 and µ > 0.
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Figure 3.16: Top five signed contributions to a) ∆EW and b) ∆′
EW

vs. m0 for the SPM scheme with NUGM where M1 = 2 TeV, M2 = 4
TeV, and M3 = 1.2 TeV, with b = (2 TeV)2 and tanβ = 15.
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Chapter 4

The string landscape: a statistical approach

4.1 Distributions on the string landscape

Supersymmetry is a key ingredient in superstring theory constructs. An advantage

of compactification of 10-d string theory on a Calabi-Yau manifold[38] is that it

preserves some remnant spacetime supersymmetry in the 4-d theory. Likewise,

compactification of 11-d M-theory on a manifold of G2 holonomy preserves some

remnant spacetime supersymmetry[169]. Acharya[170] argues for the proposal

that the landscape of all geometric, stable, string/M theory compactifications to

Minkowski spacetime at leading order are supersymmetric. Non-SUSY preserving

compactifications would lead to bubble of nothing instabilities and presumably lie

within the swampland[171].

Making contact with 4-d physics at the TeV scale (which is currently being

explored at the CERN LHC), it is apparent that N = 1 spacetime SUSY must

be broken.1 But the question is: broken at which scale? The gauge hierarchy

problem (GHP) suggests SUSY which is broken at or around the weak scale, thus

providing a “natural” solution to the GHP wherein all quadratically divergent

contributions to the Higgs boson mass cancel. Weak scale supersymmetry is

also supported experimentally via the measured value of gauge couplings, whose

values unify at a scale mGUT ≃ 2 × 1016 GeV[26] under renormalization group

evolution[172] within the Minimal Supersymmetric Standard Model[173] (MSSM)

1For a recent review of the status of SUSY after LHC Run 2, see [111].
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while they do not within the context of the Standard Model (SM). In addition,

the measured value of the Higgs boson mass falls directly within the narrow range

of values allowed by the MSSM[29]. Unfortunately, superpartners have so far

failed to appear at LHC leading to an apparent naturalness crisis[107].

An apparent alternative to naturalness has emerged from the string landscape[41].

Under flux compactifications[174], an enormous number of different compactifica-

tion possibilities are available[39, 40], each leading to different 4-d laws of physics.

Each of these possibilities can be accessed within the context of an eternally-

inflating multiverse[175]. This scenario provides the proper setting to realize

Weinberg’s anthropic solution to the cosmological constant problem[18]: we find

ourselves in a (pocket) universe with a tiny cosmological constant Λcc ∼ 10−123m2
P

because if Λcc was much larger, the universe would expand so fast that structure

(galaxies, stars, etc.) would not be able to form and life as we know it would

not arise. Such a solution to the CC problem is known as an environmental (or

anthropic) solution: environmental selection of a tiny cosmological constant within

the plenitude of pocket universes within the greater multiverse can select a highly

fine-tuned value for one (or more) of our fundamental physical constants. Such

a solution may stand in apparent opposition to a natural solution to the CC

problem.

Can the GHP also be explained via environmental/anthropic reasoning rather

than naturalness? Maybe. In the seminal papers by Agrawal, Barr, Donoghue

and Seckel (ABDS)[80, 176], the scenario of the Standard Model emerging from

the multiverse via an anthropic solution to the hierarchy problem is investigated.

114



The authors consider the SM as the low energy effective field theory (LE-EFT),

but with a variable magnitude for the weak scale. If the weak scale were a factor

of ∼ 2− 5 times larger than its actual value, then up-down quark mass differences

would increase, leading to nuclear instability: one enters a domain of the universe

where only protons exist, with no complex nuclei. For the weak scale reduced by

a factor of two from its measured value, then protons become unstable and beta

decay to neutrons: there would be no Hydrogen, just neutron rich matter. In terms

of the Higgs vacuum expectation value v, one finds 0.5 ≲ v/v0 ≲ (2− 5) (where

v0 is the Higgs vev in our universe). This narrow range of values for the weak

scale has been dubbed the ABDS window in that values of v outside this range

would not lead to a universe with life as we know it. The anthropic requirement

for v to lie within the ABDS window could allow for a tuning of the weak scale

within the wider multiverse. It also selects out a narrow range of allowed values:

namely mweak ≃ mW,Z,h ∼ 100 GeV and can explain the magnitude of the weak

scale rather than just accommodate it. The requirement for the magnitude to lie

within the ABDS window is sometimes also referred to as the atomic principle

in that it is required in order for any pocket universe to contain complex atoms

which seem necessary for a rich chemistry and for life as we know it.

Building upon the SM and ABDS, Arkani-Hamed and Dimopoulos[130, 129,

131] proposed a model known as Split Supersymmetry wherein the natural SUSY

solution to the GHP is eschewed in exchange for an environmental solution. This

then allows the possibility of a highly fine-tuned supersymmetric model. The

authors then investigate the consequences of scalar masses m̃ far beyond the
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naturalness limit, taking m̃ as high as ∼ 109 GeV. SUSY fermions, higgsinos and

gauginos, may be protected by a chiral or R-symmetry and may still live around

the EW scale. This set-up maintains the successful gauge coupling unification and

WIMP dark matter of SUSY models, but enlists the vast number of landscape

solutions to effectively tune the weak scale to lie within the ABDS window as

required by the atomic principle. The advantage of very heavy scalars (especially

first/second generation matter scalars), as noted much earlier by Dine et al.[128]

and others[177, 178] is that they provide a decoupling solution to the SUSY flavor

and CP problems and may also suppress proton decay. In addition, under gravity

mediation wherein scalars get mass of order the gravitino mass, this provides a

solution to the cosmological gravitino and moduli problems.2

Thus, Split SUSY and a variety of successor models[139, 137] have been

considered as legitimate expressions of what sort of SUSY models are expected to

emerge from the string landscape. In the literature, it is sometimes claimed that a

rather heavy Higgs mass and no sign of SUSY scalars at LHC might be construed

as evidence for finetuning within the multiverse as opposed to a natural solution

to the GHP, wherein there is no finetuning. Split SUSY, and the other high-scale

SUSY models considered here, are motivated by the expectation that the soft

SUSY breaking terms are statistically favored to occur at large as opposed to small

values on the landscape via a power law relation P (msoft) ∼ m2nF+nD−1
soft which

obtains if the complex-valued SUSY breaking F -term fields and real-valued SUSY

breaking D-term fields are distributed uniformly on the landscape[101, 180, 22].

2For a recent overview of the cosmological moduli problem, see e.g. [179].
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(Here, nF is the number of hidden sector F -term fields and nD is the number

of hidden sector D-term fields contributing to the overall SUSY breaking scale

m4
hidden =

∑
i

F †
i Fi +

∑
α

DαDα.) This landscape draw to large soft terms must

be balanced by the anthropic/environmental condition that the derived value of

the weak scale in each pocket universe lies within the ABDS window of allowed

values[95, 102].

In this chapter we survey a variety of finetuned models (both the SM and

SUSY), including those in Section 2.4, and compare these to natural SUSY models,

all within the context of the string landscape. What we find is somewhat at odds

with the literature: natural SUSY models are more likely to emerge from the string

landscape than finetuned models. We advance a particular probability measure

Pµ which quantifies these probabilities. By taking ratios, we are able to evaluate

the relative probabilities for different models to emerge from the landscape.

In radiatively-driven natural SUSY (RNS)[76, 96], large high scale soft terms

can be radiatively driven to small weak scale values. Then all weak scale contribu-

tions to the weak scale are of order the weak scale. This corresponds to ∆EW ≲ 30.

The RNS models can be generated from NUHM2 or NUHM3 models[76, 96], from

generalized mirage mediation[181] and from natural anomaly-mediation[182]. As

an example, we take a simple NUHM2 model with first/second/third generation

GUT scale scalar masses m0(1, 2) = m0(3) = 4.5 TeV, m1/2 = 1 TeV, A0 = −7.2

TeV, tan β = 10 with µ = 200 GeV and mA = 2 TeV. The model has mg̃ ∼ 2.4

TeV (LHC safe) with ∆EW = 12.8 and mh = 124.3 GeV. The higgsino-like LSP is

mχ = 195.3 GeV with Ωχh
2 = 0.011 (so room for additional axion dark matter).

117



While RNS models are typically slightly more natural for lower m0 and m1/2

values, we expect from the string landscape, under spontaneous SUSY breaking via

a single F -term field distributed uniformly as a complex number throughout the

landscape, a linear statistical draw to large soft terms[95]. For more SUSY breaking

fields, the statistical draw goes as fSUSY ∼ m2nF+nD−1
soft where nF is the number of

hidden sector F breaking fields and nD is the number of hidden sector D-breaking

fields (the latter distributed as real numbers)[101, 180, 22].3 Convolution of the

statistical draw to large soft terms with the anthropic requirement that the derived

weak scale lies within the ABDS window then leads to a probability distribution

for mh that rises to a peak around mh ∼ 125 GeV[102] (in part because A0 is also

drawn to large (negative) values giving maximal stop mixing[185]) with sparticles

typically beyond LHC reach. In this rendition, naturalness is replaced by what

Douglas calls stringy naturalness[79], where a mode is more stringy natural if

more landscape vacua lead to such a result. In stringy natural SUSY, a 3 TeV

gluino is more (stringy) natural than a 300 GeV gluino[81]. The RNS benchmark

given above is thus highly stringy natural. Thus, under stringy naturalness, RNS

models with LHC-compatible sparticle masses most commonly emerge from the

landscape[186].

3In [183], it is found that a linear n = 1 soft term draw is obtained for KKLT[184] moduli-
stabilization models.
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4.2 A scheme for computing relative probabilities from

the landscape

The central question we wish to address is: how likely are various SUSY models

(and the SM) to arise from the landscape? To answer this, we will restrict ourselves

to string vacua containing the MSSM as the low energy EFT, and where SUSY

breaking is mediated by gravity, i.e. spontaneous SUSY breaking in a N = 1

supergravity framework.[187] In such a SUGRA framework, scalar masses are

generically non-universal[188, 189, 90, 190] unless protected by some symmetry:

e.g. the matter scalars of each generation fill the 16-dimensional spinor rep of

SO(10) so one might expect these to have a common mass m0(i), i = 1 − 3

a generation index.4 Since the Higgs scalars come in split multiplets, there is

no reason to expect m0(i) = mHu,d
and thus we expect the LE-EFT to be a

non-universal Higgs model (NUHM). This framework accommodates all of the

high-scale and natural SUSY models under consideration here.5 While an absolute

probability for any particular LE-EFT (including those not within the realm

of the MSSM) is not possible to calculate (at least at this time), we can make

estimates of relative probabilities amongst gravity-mediated MSSM models based

on certain reasonable assumptions.

In Table 4.1, we list a variety of supersymmetric models, along with the SM,

and the proposed range for various first/second m0(1, 2) and third generation

4We regard the AMSB soft terms as included in the gravity-mediated soft terms.
5For instance, in this framework, there is no known reason to favor the CMSSM model over

any of the NUHM models.
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model m̃(1, 2) m̃(3) gauginos higgsinos mh Pµ

SM - - - - - 7 · 10−27

CMSSM (∆EW = 2641) ∼ 1 ∼ 1 ∼ 1 ∼ 1 0.1− 0.13 5 · 10−3

PeV SUSY ∼ 103 ∼ 103 ∼ 1 1− 103 0.125− 0.155 5 · 10−6

Split SUSY ∼ 106 ∼ 106 ∼ 1 ∼ 1 0.13− 0.155 7 · 10−12

HS-SUSY ≳ 102 ≳ 102 ≳ 102 ≳ 102 0.125− 0.16 6 · 10−4

Spread (h̃LSP) 105 105 102 ∼ 1 0.125− 0.15 9 · 10−10

Spread (w̃LSP) 103 103 ∼ 1 ∼ 102 0.125− 0.14 5 · 10−6

Mini-Split (h̃LSP) ∼ 104 ∼ 104 ∼ 102 ∼ 1 0.125− 0.14 8 · 10−8

Mini-Split (w̃LSP) ∼ 102 ∼ 102 ∼ 1 ∼ 102 0.11− 0.13 4 · 10−4

SUN-SUSY ∼ 102 ∼ 102 ∼ 1 ∼ 102 0.125 4 · 10−4

G2MSSM 30− 100 30− 100 ∼ 1 ∼ 1 0.11− 0.13 2 · 10−3

RNS/landscape 5− 40 0.5− 3 ∼ 1 0.1− 0.35 0.123− 0.126 1.4

Table 4.1: A survey of some unnatural and natural SUSY models
along with general expectations for sparticle and Higgs mass spectra
in TeV units. We also show relative probability measure Pµ for the
model to emerge from the landscape. For RNS, we take µmin = 10
GeV.

m0(3) scalar masses, along with the expected range for gaugino and higgsino

masses and the range of the light Higgs mass. In the last column we list the

relative probability measure Pµ to be explained below. For the two SUSY models

CMSSM and RNS, we have approximate supersymmetry extending all the way

down to the weak scale. For the remainder of SUSY models, which include rather

high mass scales m̃, we assume the heavy SUSY states are integrated out at

scale Q ≃ m̃ which then destroys softly broken SUSY below the m̃ scale, so that

quadratic divergences arise which are proportional to Λ = m̃ as in Eq. 2.4. A

pictorial comparison of the spectra from the various models is given in Fig. 4.1.

For the two SUSY models RNS and CMSSM, the dominant contribution to

the weak scale can be extracted from the value of ∆EW . Then the pocket universe

value of mPU
Z can be computed using Eq. 2.9 as

(mPU
Z )2

2
=

(mOU
Z

√
∆EW )2

2
− µ2

PU (4.1)
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Figure 4.1: Mass spectra from various unnatural and natural SUSY
models as depicted in Table 4.1.
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(assuming the dominant contribution dominates all other contributions to (mPU
Z )2,

which is usually the case.) Here, mOU
Z = 91.2 GeV, the value of mZ in our

universe (OU). In most SUSY spectrum calculations, the value of the µ parameter

is finetuned to ensure that mZ gains its measured value in our universe. However,

in the multiverse, each pocket universe containing the MSSM as the LE-EFT will

have a different value of µPU which will in general lead to a value for the weak

scale which is very different from the one in our universe: mPU
Z ̸= mOU

Z . In fact,

frequently mPU
Z may differ from mOU

Z by many orders of magnitude. If it does,

then one will have a pocket universe with mweak outside the anthropic ABDS

window, thus violating the atomic principle.

What is the likely distribution of SUSY µPU parameters in the multiverse?

Here, we assume the µ parameter arises in the superpotential as in the Kim-Nilles

(KN) solution to the SUSY µ problem[191],6 where we expectW ∋ λµS
2HuHd/mP .

The PQ charged field S acquires a vev of order fa ∼ 1011 GeV under PQ breaking

so that a µ parameter arises:

µ(KN) ∼ λµf
2
a/mP ∼ mweak. (4.2)

Thus, the KN µ parameter has the form of a (Planck-suppressed) Yukawa coupling,

in accord with the other Yukawa couplings which occur in the superpotential. But

the question is: what sort of distribution for µ would we expect on the landscape?

For fixed λµ, this has been computed in a particular well-motivated KN solution

6For a recent review of twenty solutions to the SUSY µ problem, see Ref. [158].
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based on an anomaly-free discrete R-symmetry ZR
24[192]. However, for non-fixed

λµ, this may well be different. In fact, Donoghue, Dutta and Ross[193] make

a convincing case that Yukawa couplings are distributed uniformly across the

decades of possible values, which appears to match well with the measured fermion

mass values. We will adopt the Donoghue et al. ansatz for the KN µ parameter

as well: that no particular scale for the µPU value is favored over any other from

the string landscape. This seems reasonable in that the only scale inherent in

string theory is the string scale, and all other scales likely arise dynamically: i.e.

there is no preferred scale for µPU . This corresponds to a landscape distribution

fµ ∼ 1/µ so that the integrated distribution is indeed scale invariant.

In Fig. 4.2, we show on the x-axis over 15 decades of possible values for µPU .

For the RNS model, where the maximal contribution to the RHS of Eq. 2.9 is

bounded to lie within a factor a few of our measured value of the weak scale,

then there is a substantial range of µPU values leading to mPU
Z lying within the

(blue-shaded) ABDS window. We will take (quite arbitrarily) the lower limit of

µPU to be ∼ 10 GeV. Values of µPU (min) higher or lower by an order of magnitude

from this value lead to differences in Pµ of a factor ∼ 2 which is inconsequential

for our purposes. The probability for a random value of µPU to give rise to mPU
Z

within the ABDS window is then

Pµ ≡ log10(µPU(max)/µPU(min)) (4.3)

i.e. the length of the interval of logarithmically distributed µPU values. Using
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this interval, we find Pµ(RNS) ∼ 1.4.

Figure 4.2: Values of mPU
Z vs. µPU or µSM for various natural (RNS)

and unnatural SUSY models and the SM. The ABDS window extends
here from mPU

Z ∼ 50− 500 GeV.

For the CMSSM benchmark model with ∆EW = 2641, then the maximal

contribution to the RHS of Eq. 2.9 is well beyond the ABDS window. Thus,

a finely-tuned value of µPU will be needed in order for mPU
Z to lie within the

ABDS window, in accord with the atomic principle. One will have to live in the

nearly vertical portion of the red CMSSM curve, for which the interval length is

Pµ(CMSSM) ∼ 0.005. While the absolute values of Pµ don’t have a particular

meaning (we don’t know the overall normalization), the ratios of probabilities do.

In this case, we would expect the RNS model to be Pµ(RNS)/Pµ(CMSSM) ∼ 260

times more probable on the landscape than the CMSSM benchmark model. In this

case, the “natural” value for the weak scale in the case of the CMSSM benchmark
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model would be mweak ∼ mZ

√
∆EW ∼ 5 TeV.

We can also calculate a value of Pµ for the SM, assuming the SM is valid all

the way up to a scale Q ∼ mGUT as is assumed in estimates of the SM vacuum

stability[194]. Here, we will also assume that µSM has a scale invariant distribution

so that the x-axis of Fig. 4.2 pertains to µSM of Eq. 2.19 as well as to µPU . Taking

the value of mPU
Z ∼ mPU

h , we can use Eq. 2.19 to plot the value of the weak scale

in the SM. The plot is shown in Fig. 4.2 as the SM curve. Here, we see a value of

µSM ∼ 1015 GeV is needed for mPU
Z (SM) to lie within the ABDS window while

the natural value of mPU
Z (SM) is ∼ 1015 GeV. This shows the extreme finetuning

needed by the SM in order to ensure the weak scale lies within the ABDS window.

We can compute Pµ(SM) and find it to be ∼ 7 · 10−27, that is the RNS model

about 1026 times more likely than the SM to emerge from the landscape.

We can now also compute Pµ values for the various high-scale SUSY models

listed in Table 4.1. The key point here is that quadratic divergences still cancel

out at energy scales Q > m̃. But once Q drops below m̃, then we must integrate

out the heavy sparticles in the LE-EFT and the quadratic divergences no longer

cancel. Then we may use the uncanceled terms in Eq. 2.4 to compute corrections

to the Higgs mass, again with mPU
Z ≃ mh. For most of these models, we take

Λ ∼ m̃ = m0(3) to compute the curves of mPU
Z vs. µSM , where now the Higgs

potential is that of the SM for Q < m̃.7

The various curves are shown in Fig. 4.2 for the assorted high scale SUSY

7For the SM parameter values entering Eq. 2.4 in the case of high scale SUSY models with
scale boundary m̃, we use FlexibleSUSY and FlexibleEFTHiggs to extract the appropriate
values [195, 196, 197].
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models of Table 4.1. We can then extract the values of Pµ for each case. As an

example, Split SUSY with m0(3) ∼ 106 TeV gives Pµ ∼ 7 · 10−12 so that RNS is

∼ 1012 times more likely than Split SUSY to emerge from the landscape. Lest

one be dismayed by the low relative probability for Split SUSY to emerge from

the landscape, it is worth noting that the Split SUSY benchmark is ∼ 1015 times

more likely to emerge from the landscape than the SM (when the SM is valid up

to Q = mGUT ). Scaling m̃ to lower values in order to accommodate the measured

value of mh as in mini-split helps matters somewhat: in this case, mini-split with

a wino LSP and m̃ ∼ 102 TeV has Pµ ∼ 4 · 10−4, so the RNS benchmark is more

likely to emerge than the mini-split benchmark by a factor ∼ 3000.
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Chapter 5

Quantifying stringy naturalness from bottom to

top

5.1 Stringy naturalness as a density measure in the land-

scape

Stringy naturalness may be viewed as a measure on the density and abundance of

vacua satisfying some set of criteria, such as the ABDS condition. Additionally,

we may require that an additional set of alternative criteria are satisfied, such as

proper EWSB and absence of CCB minima (such as negative squared masses in

squarks or sleptons). Here, stringy naturalness is defined as the following [198]:

Stringy naturalness: The value of an observable O2 is more stringy natural

than a value O1 if more phenomenologically viable vacua lead to O2 than to

O1.

In particular, choosing the mass of the Z boson and its relation to the ABDS

window as a selection criterion for vacua satisfying the atomic principle, then we

can say:

If more vacua lead to the ABDS window in scenario A than in scenario B, then

scenario A is considered more stringy natural than scenario B.

In regards to “scenarios”, one can compare different realizations of supersym-

metry on the landscape, such as comparing high-scale SUSY against radiative
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natural SUSY (RNS), or even against non-supersymmetric models like the Stan-

dard Model(albeit with different statistical distributions – see [17, 199]for detailed

stringy constructions). While useful densities and distributions are given in these

references, in practice this is a very broad and complex task in and of itself. In

practice, a researcher may just have data on a single possible vacuum where mZ

is tuned to 91.1876 GeV, such as in an SLHA file for a supersymmetric spectrum

generated by a spectrum generator. For this reason, it is necessary to create a

stringy naturalness measure that can evaluate the density of ABDS-compliant (as

well as EWSB-compliant and ”no CCB”-compliant) vacua “surrounding” some

initial vacuum in the landscape. These are the efforts presented here.

In [19], we determined an approximate relative vacuum density, Pµ, based

on the Higgsino (or Higgs) mass parameter µPU within some pocket universe of

the landscape with variable mZ . This effectively offered a comparison standard

between scenarios, comparing the “width” of the ABDS window in these scenarios

by evaluating mPU
Z from the relevant weak-scale parameters and µPU with the

Higgs minimization conditions (or weak-scale mass conditions in the Standard

Model) in the following models:

• Radiative natural SUSY,

• mSUGRA/CMSSM,

• Split SUSY,

• Mini-split SUSY,
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• Spread SUSY,

• High-scale SUSY,

• PeV SUSY,

• the Standard Model.

The evaluations to obtain this measure Pµ can be expressed as the following

integral in Eq. (5.2). Let the lower edge of the ABDS window lie at mOU
Z /2 = 45.6

GeV, and the upper edge lie at 4mOU
Z = 364.8 GeV. The µPU term is distributed

on the landscape in a fashion such that mu is uniformly distributed over the

decades, i.e., the probability distribution of µPU is

fµ ∼ 1

log(10) |µPU|
(5.1)

Then the density of vacua associated with vacua containing µPU values leading to

the ABDS window allow us to approximately compare different landscape vacuum

scenarios as

Pµ =

µPU(max)∫
µPU(min)

fµ dµ
PU

= log10

(
µPU(max)

µPU(min)

)
.

(5.2)

Clearly, “wider” ABDS windows (as in RNS) will lead to many more vacua that

are ABDS-compliant, relative to “narrower” ABDS windows (as in the Standard

Model, up to ∼ 1026 times smaller of a density relative to RNS). Two primary

“incompleteness” issues may arise here, however:
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1. The density measure here is unnormalized and only can effectively compare

different, pre-simulated scenarios. However, this may be a non-issue, as the

current number of flux vacua in the string landscape with the MSSM or

SM as its low-energy EFT is not a settled debate. Hence, this need not

be addressed here, as the definition of stringy naturalness can easily be

connected to the idea of the density of vacua in some neighborhood of the

landscape.

2. There are other parameters potentially distributed on the landscape. For

example, soft-SUSY-breaking (SSB) terms could be distributed on the

landscape according to a power-law distribution, based on the number

of F - and D-type SUSY breaking fields present in the theory [199]. A

more complete vacuum density measure would incorporate the statistical

contributions of these terms to the relative population of the ABDS window.

Given our understandings of the statistical distributions of soft terms on the

landscape, when we couple the ABDS window criterion with other criteria such

as proper EWSB and absence of CCB minima, we can address this second issue.

An algorithm will be constructed below to permit a “point-by-point” evaluation

of stringy naturalness.

While the overall SUSY breaking scale is distributed as a power-law, the

different functional dependence[188, 189, 90] of the soft terms on the hidden sector

SUSY breaking fields means that gaugino masses, the trilinear soft terms and the

various scalar masses will effectively scan independently on the landscape[190].
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Now it is an advantage that different scalar mass-squared terms scan independently

(as expected in SUGRA) since the first/second generation scalars get pulled to

much higher values than 3rd generation scalars, while the two Higgs soft masses

are also non-universal and scan independently. This situation is borne out in

Nilles et al. mini-landscape where different fields gain different soft masses due to

their different geographical locations on the compactification manifold[200]. In

terms of gravity mediation, then the so-called n-extra-parameter non-universal

Higgs model (NUHMn) with parameters[13, 15]

m0(i), mHu , mHd
, m1/2, A0, tan β (NUHM4) (5.3)

provides the proper template. Since the matter scalars fill out a complete spinor

rep of SO(10), we assume each generation i = 1 − 3 is unified to m0(i). Also,

for convenience one may ultimately trade mHu and mHd
for the more convenient

weak scale parameters mA and µ. One may also build (and scan separately) the

natural anomaly-mediated SUSY breaking model[182, 201] (nAMSB) and the

natural generalized mirage mediation model[181] (nGMM).

5.1.1 The ABDS window

The anthropic selection on the landscape comes from the probability distribution

fEWSB to be discussed shortly. This involves a rather unheralded prediction of

the MSSM: the value of the weak scale in terms of soft SUSY breaking parameters

and µ, as displayed in Eq. (2.9). However, in the multiverse, here we rely on
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the existence of a friendly neighborhood[22] wherein the LE-EFT contains the

MSSM but where only dimensionful quantities such as ΛCC and v2u + v2d scan,

whilst dimensionless quantities like gauge and Yukawa couplings are determined

by dynamics. This assumption leads to predictivity as we shall see.

Under these assumptions, then we ask what conditions lead to complex nuclei,

atoms as we know them, and hence the ability to generate complex lifeforms in

a pocket universe? For different values of soft terms, frequently one is pushed

into a weak scale scalar potential with charge-or-color breaking minima (CCB)

where one or more charged or colored scalar mass squared is driven tachyonic

(i.e., m2 < 0). Such CCB minima must be vetoed. Also, for too large of values

of m2
Hu

, then its value is not driven to negative values and EW symmetry is not

broken. These we label as “no EWSB” and veto them as well. In practice, we

must check boundedness of the scalar potential from below in the vacuum stability

conditions and that the origin of field space has been destabilized, at least at

tree-level. Some leading loop-level contributions to these conditions have been

presented in Appendix C.

At this point, we are left with (MS)SM vacua where EW symmetry is properly

broken, but where mweak ∼ mW,Z,h is at a different value from what we see in our

universe. Here, we rely on the prescient analysis of Agrawal, Barr, Donoghue and

Seckel (ABDS)[80, 176]. If the derived value of the weak scale is bigger than ours

by a factor (2 − 5), then the light quark mass difference md −mu becomes so

large that neutrons are no longer stable in the nucleus and nuclei with Z ≫ N

are not bound; such pocket universes would have nuclei of single protons only,
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and would be chemically inert. Likewise, if the PU value of the weak scale is a

factor ∼ 0.5 less than our measured value, then one obtains a universe with only

neutrons – also chemically inert. The ABDS window of allowed values is that

0.5mOU
weak < mPU

weak ≲ 4mOU
weak (5.4)

where we take the (2− 5)mOU
weak to be ∼ 4mOU

weak for definiteness, which is probably

a conservative value. It is very central to our analysis and so is displayed in Fig.

5.1. Our anthropic condition fEWSB is then that the scalar potential lead to

minima with not only appropriate EWSB, but also that the derived value of the

weak scale lie within the ABDS window. Vacua not fulfilling these conditions

must be vetoed.1 This lays the foundations for the requirements of a quantifiable

Figure 5.1: The ABDS-allowed window within the range of mPU
Z values.

stringy naturalness measure, which will be elaborated upon in the next section.

1Early papers on this topic used instead a naturalness “penalty” of fEWSB ∼ m2
weak/m

2
SUSY ;

this condition would allow for many of the vacua which are forbidden by our approach.
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5.2 Requirements for a stringy naturalness measure

If one were to try and evaluate stringy naturalness in a reliable manner more

rigorously than simply “counting dots” from a multiverse simulation [21], there

are a few key details that must be included in the evaluation.

1. One must account for the probability distributions of terms (e.g., soft terms

distributed as power law based on number of D and F SUSY-breaking fields)

on the string landscape;

2. One must incorporate a method for establishing the density of the number

of vacua leading to some observable, as given by the definition of stringy

naturalness;

3. Since on the string landscape, mZ is variable, one can use a set of selection

criteria for “valid” vacua as:

(a) The Z boson mass lies within the ABDS window, as determined by the

weak-scale Higgs minimization conditions:

m2
Z

2
=
m2

Hd
+ Σd − (m2

Hu
+ Σu) tan

2(β)

tan2(β)− 1
− µ2 (5.5)

sin(2β) =
2b

m2
Hu

+ Σu +m2
Hd

+ Σd + 2µ2
. (5.6)

Σu,d are radiative loop corrections to these equations, which are listed

in Appendix A. It is key that as the value of mZ shifts in the landscape,

both conditions Eqs. (5.5-5.6) must be satisfied to ensure criticality of
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the scalar potential from the EFT viewpoint. Thus, a distribution of

tan(β) is induced on the landscape through this requirement. Existence

and stability of scalar potential extrema and subsequent minimization

must also be ensured as in the points below.

(b) There are no CCB minima.

(c) The electroweak symmetry is satisfactorily broken, i.e., when the fol-

lowing weak-scale conditions are true:

2b < 2µ2 +m2
Hu

+m2
Hd
, (5.7)

b2 >
(
µ2 +m2

Hu

) (
µ2 +m2

Hd

)
. (5.8)

There are potentially relevant loop corrections to these tree-level ex-

pressions. These corrections are listed in Appendix C.

(d) It will be otherwise assumed that the weak-scale structure and strong

gauge couplings are assumed to be similar to their SM counterparts

in our universe through stringy dynamics, ignoring contributions from

the variable Higgs VEV. Gauge and Yukawa couplings can then be

determined in the appropriate renormalization scheme from dynamics

based on this construction. It must be noted that variations in tan(β)

within the landscape to ensure minimization also will shift Yukawa

couplings at tree-level.

Next, we construct an algorithm to accomplish these requirements and produce a
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measure for evaluating stringy naturalness on a point-by-point basis.

5.3 Numerical precision and statistical considerations

Depending on the level of statistical rigor we would like to apply to this density

measure, different approximations of the stringy naturalness value can be employed.

The level of accuracy of these approximations are directly proportional to their

levels of robustness for the corresponding statistical analyses of the landscape, and

hence, the level of computational complexity. In brief, we present an approximate

expression (à la Pµ) for computing the density of ABDS-compliant vacua emerging

from the landscape around some initial vacuum. In the future, a more robust

and specialized Monte-Carlo simulation algorithm for computing the density of

ABDS-compliant vacua randomly emerging from the landscape can be produced.

The landscape is assumed to be parameterized by the Minimally Supersymmetric

Standard Model (MSSM) parameter space, in some local neighborhood surrounding

one user-specified possible vacuum with the MSSM and Standard Model (SM)

(with potentially different Higgs VEV and, by extension, Z boson mass) as its

low-energy effective field theories (EFTs). The specific requirements are outlined

in the previous section.

Many supersymmetric spectrum generators today (e.g., SoftSUSY, Isajet/Isas-

ugra, SPheno, etc.) can provide predictions of the MSSM that are potentially

testable at a collider. Often, the user is able to save their results to a standardized

format, the SUSY Les Houches Accord (SLHA) [23, 24]. From this format, one
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can compute various naturalness measures such as the electroweak naturalness

measure ∆EW , the high-scale naturalness measure ∆HS, and the Barbieri-Giudice

naturalness measure ∆BG as described in the preceding Chapters. These can all

be calculated from a user-submitted SLHA-format file, from the user’s choice

of spectrum generator, using the program natLHA, developed by D. Martinez

[202]. In a similar sense, we have developed a program to compute a proposed

stringy naturalness measure. In an approximate form, we can write this stringy

naturalness measure as an analytic expression.

However, before introducing these expressions and algorithms, we must ensure

we have a concrete method for determining the density of vacua. Included in this

is the requirement of understanding the parameter space in which our parameters

are distributed. For this reason, we parameterize some “friendly” neighborhood

of the landscape surrounding an initial vacuum with the MSSM parameters as

mentioned above. The MSSM in itself contains a vast parameter space, though, so

we specifically restrict ourselves to the real -valued MSSM, but still maintain some

generality by relaxing universality conditions, neglecting off-diagonal CP-violating

effects. We also assume the relevant gauge-eigenstate mass matrices are diagonal.

In our proposed parameter space here, we assume there are 30 fundamental soft

supersymmetry-breaking (SSB) parameters (15 SSB squark/slepton masses, two

SSB Higgs masses, nine SSB trilinear couplings, three SSB gaugino masses, and

one SSB bilinear parameter) along with one SUSY-conserving parameter, µ, which

is important for weak-scale physics. This full parameter space can then be written

as the set:
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
m2

Q̃1
,m2

Ũ1
,m2

D̃1
,m2

L̃1
,m2

Ẽ1
,m2

Q̃2
,m2

Ũ2
,m2

D̃2
,m2

L̃2
,m2

Ẽ2
,

m2
Q̃3
,m2

Ũ3
,m2

D̃3
,m2

L̃3
,m2

Ẽ3
, at, ac, au, ab, as, ad, aτ , aµ, ae,

m2
Hu
,m2

Hd
,M1,M2,M3, B = b/µ, µ


.

An important note to consider here is that we are working in the regime of

weak-scale physics and its minimization conditions, whereas these parameters

are renormalization-scale dependent (see Appendix B). Thus, to approximately

account for renormalization effects in a consistent manner, our parameterization

of the landscape in terms of MSSM parameters is specifically through their

weak-scale values. These weak-scale values will be coupled (within the regime of

perturbativity) to GUT-scale parameters through the renormalization group flow,

which then is assumed to be the consequence set by some stringy dynamics on

the number and configuration of F - and D-type SUSY-breaking fields. No further

assumptions are made in regards to the stringy aspects of the theory, as this is

outside the regime of the EFT.

However, in regards to practical naturalness, we should compare contributions

to the density of vacua that have ABDS-compliant weak scales. Thus, the stringy

naturalness measure we construct will share more similarities with ∆EW in Eq.

(2.10) than ∆BG or ∆HS in Eqs. (2.6-2.7)

Vacua in the landscape can be selected for analysis according to a well-defined

set of selection criteria, which we will denote generally here as an indicator function
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θ. θ is defined as

θ = θ(conditions) =


1 if conditions are true,

0 otherwise.

(5.9)

According to Douglas and others [199], these soft-supersymmetry breaking terms

may be distributed in the string landscape according to the numbers nF and

nD of F - and D-type SUSY breaking fields, where these fields may lie in some

hidden sector or potentially within a more UV-complete theory that breaks

down to the MSSM as an EFT somewhere below mP , the reduced Planck scale.

This can be expressed approximately as a density of vacua, scaled by the power

law distribution provided by the number of SUSY-breaking fields on the soft

supersymmetry breaking scale:

dNvac, soft ∼ fSUSY (msoft) · θ · dmsoft

∼ m2nF+nD−1
soft · θ · dmsoft,

(5.10)

msoft here denotes the scale of the soft supersymmetry breaking terms and is

typically expected ∼ 1011 GeV such that this scale is given by msoft ∼ m2
SUSY/mP

with mP ∼ 2.4 · 1018 GeV the reduced Planck mass. Douglas and others [199, 198]

mention that the SUSY-breaking scale is on the order of the distance from the

origin in SUSY-breaking field space, which is expressed in terms of the magnitudes
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of the F− and D−type SUSY breaking fields.

m4
SUSY =

∑
nF

|Fi|2 +
1

2

∑
nD

|Dj|2

Since we are parameterizing this space in terms of the MSSM EFT parameters,

we can construct a similar L2 (Euclidean) norm measure computing the distance

of a vacuum, parameterized by its parameter vector p, from the origin of this

parameter space. For this parameter vector p, the L2 norm takes the form

|p|2 =
∑
i

|pi|2,

where a sum is taken over the magnitude squared of the components of p.

In other words, m2
SUSY can be set using the L2 norm (specifically L2(C))

of mass-dimension 1 parameters in the soft SUSY-breaking sector. For mass-

dimension 2 parameters, since we are just interested in the distance from the origin

of parameter space, we only need the magnitude of a parameter pi =
√
|p2i |. Note

that µ is not a soft term and is not included in this measure, and so its effect on

the b = Bµ soft parameter must be carefully split into independent components B

and µ, each of mass dimension 1. This leaves 30 soft SUSY breaking parameters

with dimension-1 magnitude pi in our parameter space. Hence,

msoft ∼
m2

SUSY

mp

∼ 1

mp

30∑
i=1

|pi|2
(5.11)
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We then cast our density of vacua due to the soft parameters of the theory as

fSUSY ∼ m2nF+nD−1
soft

∼ 1

mn
p

(
30∑
i=1

|pi|2
)n (5.12)

where n = 2nF + nD − 1.

To turn this into a calculable expression that can be integrated, we convert

the differential dmsoft to differentials dpi in various directions of soft parameter

space, based on the definitions above.

dmsoft ∼
2

mp

[
30∑
i=1

|pi|d|pi|

]
(5.13)

The full differential density of vacua in terms of the soft parameters in Eq.

(5.10) may then be expanded and subsequently integrated to give the parametric

dependence of the density as below.

dNvac, soft ∼
2

mn+1
p

(
m2

SUSY

)n [ 30∑
i=1

|pi|d|pi|

]
(5.14)

In integrating, consider the possibility that m2
Hu,d

< 0, meaning |mHu,d
| =√

|m2
Hu,d

|. Squark and slepton squared masses should not run negative to avoid

CCB minima, but the integration method in the d|mHu,d
| directions must be

addressed. This is the reason for the L2(C) norm in our expressions for m2
SUSY.

Since we care about the “distance from the origin” of SUSY-breaking parameter

space, and the solution will only depend on the magnitude of parameters |pi|, then
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if p2i < 0, we may take pj = ib (where i =
√
−1) purely imaginary, with b > 0.

The integration in this direction then proceeds along the positive imaginary axis

d|pi| = db, until the origin (or edge of the indicator θ) is encountered. If pi = 0 is

reached, the integration direction switches to run along the real axis, away from

the origin – such that p2i > 0 – until integration conditions are met according to

the indicator function θ.

On the other hand, for parameters such that p2i = 0, then integration with

|pi|d|pi| towards and away from the origin of parameter space can proceed along

the real axis. Proceeding with this integration, we get the density of ABDS vacua

below.

Nvac,soft ∼

c 30∑
j=1

(m2n+2
SUSY

) ∣∣∣∣∣
pj,+

pj,−

 (5.15)

Here we adopt the general notation that p± denotes the left and right ends of the

integration over dp, which in general depend on the satisfaction of the indicator

function θ. The coefficients c are introduced here and serve to locally eliminate

the mass dimension of the probability density within the available ABDS window.

This follows from the idea that since

dNvac ∼ mn
softdmsoft,

then after introducing a term c to account for the correct mass dimension, inte-

grating both sides of this dependence shows that

Nvac ∼
c

n+ 1
mn+1

soft .
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Since Nvac accounts for a number of a vacua (a dimensionless quantity), this

expression can be inverted to find the coefficient c parametrically as

c ∼ n+ 1

mn+1
soft

.

Expanded in terms of msoft in Eq. (5.11) and simplifying against factors of mp

gives the following calculable expression for c.

c =
n+ 1

(m2
SUSY)

n+1
(5.16)

Including this normalization factor is consistent with the idea of finding the

vacuum density (relative to the SUSY scale) within ABDS-compliant parameter

space near a user-supplied vacuum, within different directions of parameter space.

In other words, we can compute on average within a model how the vacuum

density shifts in the ABDS window relative to the distance scale of the user-

supplied vacuum, serving as a representative point for the weak-scale model

being tested. This provides a broader understanding of the shape of the ABDS-

compliant landscape and incorporating values for models with an MSSM EFT

while remaining consistent with the ideas motivating stringy naturalness.

To be consistent with the distribution of Standard Model fermion masses, then

we suppose that the distribution of µ on the landscape can be expressed as a
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log10-uniform distribution (simultaneously allowing for µ < 0 solutions):

dNvac, µ ∼ fµ(µ) · θ · dµ

∼ θ

ln(10)|µ|
· dµ.

(5.17)

The factor of ln(10) serves to change the base of the logarithm obtained after

integration to base 10, such that the probability associated with the µ parameter

on the landscape is uniform across the decades. Note that integrating Eq. (5.17)

then leads to the expression for Pµ in Eq. (5.2) (potentially with more appro-

priate integration bounds induced by θ). A similar idea, together with certain

assumptions, allows us to come up with an explicit, but approximate evaluation

of the desired ABDS density of vacua surrounding some initial point at which we

can begin this integration process.

5.3.1 Pµ-esque expression

For deriving the approximate expression, we started with some assumptions on

our statistical distributions. First, we assume each of the 30 specified soft terms

and µ are all distributed independently of one another. Care must be taken

particularly with the bilinear soft SUSY breaking term b = Bµ. The independent

soft distribution must be assumed to be on the soft linear parameter B to ensure

independence from the otherwise-distributed µ.

As a technical aside, varying the values of µ or B in turn affects the predicted

value of tan(β), according to Eq. (5.6). In fact, variations in m2
Hu,d

at tree-level
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and the other soft terms at loop level alter this prediction as well, if we are indeed

ensuring a minimized vacuum within the scalar potential and not a dangerous

metastable or unstable state in the high-dimensional parameter space. Variations

in this value of tan(β) then affects Yukawa couplings, which in turn affects the

minimization conditions further. This is a glimpse “under the hood” into the

dynamics governing the gauge and Yukawa couplings under our assumptions

set forth here, though the effect on gauge couplings is lessened, as these effects

would appear in the threshold corrections to the SM values, which are at loop

level. The induced changes in these general directions of parameter space become

strongly constrained by perturbativity bounds on tan(β). As a general rule of

thumb, tan(β) ≲ 2.5 leads to a non-perturbative top Yukawa coupling, whereas

tan(β) ≳ 60 leads to a non-perturbative bottom and/or τ Yukawa coupling. In

both cases, predictivity is lost, so vacua violating these bounds will be subject

to one of our selection criteria, thus constraining these directions of parameter

space further. This ties in closely with electroweak stability conditions, which are

expanded upon in Appendix C.

For a given set of selection and integration criteria θ, the statistical inde-

pendence assumption causes our selection criteria to select a hyperrectangular

region in this 31-dimensional parameter space (30 dimensions of soft parame-

ters, one dimension for the µ parameter, and within this space lies the original,

user-supplied vacuum). In particular, the independence assumption specifies that

the boundaries of the region defined by our indicator function θ are rectangular.

In general, this is not the case. This is particularly important due to the high
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dimensionality of this parameter space and the indicated region: it is a well known

fact in geometry that in higher dimensional shapes and regions, the significant

majority of the hypervolume of that shape lies near its boundary. In the context

of the landscape, this would mean that the majority of vacua geometrically live

near the boundaries of our selected region of parameter space. This distribution

of vacua is then shifted further by the probability distributions of our parameters.

Thus, an algorithm will follow that will attempt to maximize the ability to probe

large regions of weak-scale parameter space surrounding an initial vacuum. This

will provide a systematic probe on the string landscape “near” some user-supplied

vacuum (USV) in addition to an “ABDS integrated density” near the USV.

Since we are counting vacua in the string landscape by parameterizing them in

this high-dimensional parameter space, counting ABDS-compliant vacua is similar

to finding a weighted hypervolume of the region of parameter space containing

these ABDS-compliant vacua. Due to the high dimensionality, subtle variations

in region boundaries can result in significant deviations in the evaluation of

this weighted hypervolume, where the weights come from the known probability

densities of each parameter. When the boundary of a statistically indicated region

(such as the one indicated by θ) is nonrectangular, this implies that the boundary

is inducing some correlations between the random variables at that boundary.

So, despite the relative independence of statistical distributions in the bulk of

the indicated region of parameter space, potentially important correlations are

introduced at this region’s boundaries, in direct contradiction with the assumption

of (global) independence.
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In other words, rectangular boundaries on our ABDS, CCB, and EWSB

selection criteria, as imposed by the global assumption of statistical independence

of randomly distributed variables, may provide an inaccurate vacuum density

estimate due to boundary effects in our selection criteria. However, it can provide

a rough, leading order idea of the magnitude of stringy naturalness for a vacuum.

Therefore, for some selection criteria represented as an indicator function

θ(criteria) and a joint probability density function f(x⃗) for a vector of random

variables x⃗, a reasonable density measure can be expressed as

N ∼
∫
θ(ABDS, EWSB, no CCB)f(x⃗) dx⃗. (5.18)

Then, in keeping with the tradition of smaller naturalness values corresponding to

greater levels of “naturalness”, a clear choice for the stringy naturalness measure

is

∆SN =
1

N
. (5.19)

By scanning the parameter space in one direction at a time, starting at the

user-supplied vacuum, one can find “endpoints” in each direction of the parameter

space, akin to the “width” of the ABDS window computed in the Pµ measure. In

general, this collection of endpoints on our parameters creates an approximately

bounding hyperrectangle in the parameter space, approximately containing our

subregion of interest. Consider the 2D example in Fig. 5.2 to illustrate this.

Fig. 5.2 demonstrates the idea that this method of computing independent

probabilities is akin to computing the weighted area of the blue rectangle (weighted
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Figure 5.2: A 2D conceptual example showing the approximately
bounding hyperrectangle (blue) mostly containing the desired subre-
gion of the plane (red). The intersection of the vertical and horizontal
dark blue lines represents the location of the user-submitted vacuum
in this parameter space.

by the appropriate probability densities), whereas the “true” probability may be

more like the weighted area of the red region. As such, since the blue region is

usually at least as large as the red space, this could potentially overestimate the

probability. The exception is when long “legs” of the red region leaving the blue

bounding rectangle contribute significantly to the size of the red region as in Fig.

5.2, which may be less significant given an appropriate bounding rectangle or

scanning regime. Moreover, the boundaries of the EWSB and no-CCB conditions

are generally non-rectangular in this space. These approximation issues can be

addressed with a more rigorous Monte-Carlo method, for example, but these

differences will be considered sub-leading order.

Then, utilizing the probability density functions in Eqs. (5.10, 5.17) to count

the relative abundance of ABDS-compliant vacua, we can write the following
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approximate expression for ∆SN . Here, we denote the number of soft terms in our

parameter space by nsoft (in practice, we will use nsoft = 30). We will denote the

probability density of a random variable x with fx(x). The bounds of integration

obtained from the one-dimensional scans over points satisfying ABDS, EWSB

and no-CCB conditions are generally denoted as pi,± and µ±.

∆SN =
1

Nvac, soft ·Nvac,µ

≈


 30∑

j=1

c (m2n+2
SUSY

) ∣∣∣∣∣
pj,+

pj,−

 · log10

(∣∣∣∣∣µ+

µ−

∣∣∣∣∣
)

−1 (5.20)

Lastly, if one wished to just look at the differential vacuum density at the

user-supplied vacuum point, the contribution to dNvac will be as below, where one

can construct a simpler measure δSN = 1/dNvac. The dimensional normalization

gives units consistent with the previous results by normalizing relative to the

SUSY scale at the USV point.

δSN = log10

(
1

dNvac

)

= log10

( 2(n+ 1)

log(10)|µ|m2
SUSY

30∑
j=1

|pj|

)−1
 (5.21)

Thus, a change of ϵ in the measure δSN from

δSN → δSN + ϵ
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approximately corresponds to a change in the differential vacuum density of

dNvac → dNvac + 10−δSN10−ϵ · (1− 10ϵ).

The term in parentheses shows that if δSN increases (less stringy natural), the

differential vacuum density dNvac decreases. On the other hand, if δSN decreases

(more stringy natural), then dNvac increases.

Conceptually, dNvac consists of the products of the joint probabilities from dµ

and dmsoft, which then connect to each dpj . Here it is assumed that all differentials

dµ, dpj are of the same small order, and we seek to model the functional dependence

of the coefficients for these differentials in its relationship to vacuum density on

the landscape. Hence, in computing dNvac, the results are O(dµ dpj). The log for

δSN is used to tame the large numbers produced by dividing by a small dNvac.

5.3.2 Numerical method for ∆SN

When implementing this result numerically, we need to know the stopping points

of integration in each direction of parameter space. Here, we provide a conceptual

approach to performing this task, though full numerical results are saved for a

future work. If the user provides the program with an initial point potentially

describing our universe, where EWSB conditions are satisfied at the weak scale,

there are no CCB minima, and mZ = mOU
Z , then we can gradually vary away from

this initial point through small increments in mZ and solve for the corresponding

changes in the scanned soft parameter pi and ratio of Higgs vev’s tan(β). After

150



each small increment in mZ , the scalar potential is re-minimized at loop-level

through a Newton-Raphson method iterator, producing an updated tuple of

parameters (m′
Z , p

′
i, tan(β

′), pi ̸=j) that (hopefully) satisfy the indicator conditions

in θ and the minimization conditions. More robustly, since tan(β) and mZ both

arise from the Higgs VEVs vu,d, one could vary the parameter pi from the initial

point and determine its effect on vu,d through a similar iterative solver. In doing so,

we are making a more direct connection with minimization of the scalar potential

via the non-zero Higgs VEVs, and then extracting information on mZ and tan(β)

as a result.

Newton’s method may be sensitive to the initial guesses provided to the system.

This is accounted for on an as-needed basis through linearization of the system

due to a small shift of pi → pi + δ, where δ ∈ R is small. The minimization

conditions are then assumed to be satisfied at a close point (vu + dvu, vd + dvd)

for “small” (a subjective term here) dvu, dvd. Other sub-leading terms in this

linearization will be O(dv2u,d) and will be neglected in this approximation.

However, hypersensitivity (or even insensitivity) of these Higgs VEVs on spe-

cific parameters pi may prove to have a convergence basin in Newton’s method

with width much smaller than floating-point precision can allow, or the minimiza-

tion conditions can even prove too sensitive to extremely tuned parameters, again

due to float-point precision. Both of these have been addressed by using the C++

library Boost’s MPFR multiprecision backend to use extended precision floating

point variables to 50 decimal places.

Recall that the large dimension of this problem, such as in the MSSM parameter
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space, greatly exacerbates boundary effects seen in the bounds of the integrals

above. Therefore, a more sophisticated method for efficiently approximating

the integrals in ∆SN while obeying the correct bounds may use a Monte Carlo

integrator with a Monte Carlo semi-stratified importance sampler to select points

for the integration. The idea is outlined in the bullet points below:

• We know one point within the region of desired integration: the user-

submitted vacuum specified by an SLHA file.

• Akin to the hyperrectangle formulation of Eq. (5.20), we can find one-

dimensional boundaries to our integration region, relative to our initial

point. We save these one-dimensional bounds for future use.

• We partition the 31-dimensional parameter space into two-dimensional

slices containing the “origin” (the original SLHA-supplied vacuum). There

are
(
31
2

)
= 465 such slices, and each of these slices are bounded in each

perpendicular direction by the respective one-dimensional bounds of that

slice, obtained previously. We then sample from the appropriate distributions

within these slices or within the whole parameter space to refine the Monte

Carlo integration estimate of ∆SN.

– In practice, for some points of the Monte Carlo integration routine, we

can start by randomly sampling two integers uniformly between 1 and

31, including these endpoints. These will index two of the 31 parameters

in our space, allowing us to select a random two-dimensional slice of

our large parameter space. From this random slice, a planar region
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exists that is roughly bounded by the individual one-dimensional limits

obtained from the user-submitted file and contains the user-supplied

vacuum. This two-dimensional region then can be sampled uniformly to

find a new vacuum to test for inclusion in the Monte Carlo integrator.

If the relevant conditions are satisfied (EWSB, CCB, and ABDS),

then the value is added into the Monte Carlo integrator – otherwise,

the Monte Carlo integrator effectively adapts the integration region,

refining it according to this conditional sampled failure.

– The sampled region contains the original vacuum by construction and

approximately contains the desired region of integration within the

random slice.

• This process is iterated until some specified level of convergence in the

integral between successive iterations is reached.

We perform this integration with a Monte Carlo integration technique using

a “semi-stratified” importance sampling mechanism, where semi-stratified refers

to an alternation between sampling the entire parameter space and sampling

slices, as described above. In practice, this means we sample points from each

of the slices of our parameter space according to the probability densities of the

points in these planes, which are easily computable since the parameters are

independently distributed with known densities. Since the sampling distribution

matches the integrand we are approximating the integral of, this is an example of

ideal importance sampling, or self-normalized importance sampling. The integral
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approximation for a scalar-valued vector function fS(x⃗) over a region S contained

in a larger region R involves N sample points x⃗1, . . . , x⃗N , each drawn from R with

the selection distribution f(x⃗). But the target probability density fS(x⃗) simply

consists of a probability density function very similar to f(x⃗) convolved with a

binary indicator function θ indicating the region S within R. With this nearly

optimal choice in selection distribution, the integral is approximated as

I =

∫
S

fS(x⃗) dx⃗ ≈ 1

N

N∑
i=1

fS(x⃗i)

f(x⃗i)

≈ 1

N

N∑
i=1



1 if x⃗i ∈ S

0 otherwise


=
nS

N
.

(5.22)

In other words, with this choice of Monte Carlo integrator, we can approximate

the integrals of the densities in ∆SN as a the number of vacua nS satisfying the

conditions of θ, divided by the total number of vacua, N , scanned in the scanning

region. This is in alignment with the definition of stringy naturalness we began

with, so this lends credence to this selection of a Monte Carlo integrator while

simultaneously approximately minimizing the variance of our approximation.

Thus, using this careful Monte Carlo simulation and integrator, we approximate

∆SN more rigorously than in Eq. (5.20) as

∆SN ≈ nθ,A

NA

=
nθ,totNA

nθ,ANtot

,

(5.23)
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where NA is the total number of vacua scanned in a hyperrectangle approximately

bounding the ABDS region, and nθ,A is the number of vacua scanned in NA

satisfying EWSB, no-CCB, and ABDS conditions.

To assist with stability of the Monte Carlo integrator’s convergence on a

solution, as well as protecting its sensitivity to outliers in the limit of large N , a

smooth relative error cutoff may be used involving a simple moving average of the

integral approximation across the iterations {N − k,N − k + 1, . . . , N − 1, N},

where this moving average is represented by the function M(IN−k, . . . , IN , k):

ϵ >
|M(IN−k, . . . , IN−1, IN , k)− IN |

IN
. (5.24)

This condition determines the convergence and termination of the iterative ap-

proximation. Good choices for ϵ may be ϵ = 10−3 or ϵ = 10−6, though exact

analyses with these are left for a future work. Smaller values of epsilon would

require a (potentially significantly) greater number of sample points N for an

accurate evaluation. In practice, we take k = 100 to ensure adequate smoothing

of data based on empirical observation obtained during the simulation.

5.3.3 Yukawa and gauge couplings

Note that so far, little has been mentioned regarding Yukawa and gauge couplings

in our systematic landscape scans. One might näıvely think that the Yukawas

and gauge couplings could be held invariant between different vacua. However,

since the MSSM parameter B is considered fundamental in regards to the soft
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parameter distributions, b = Bµ is no longer a free parameter to be solved for

from the second Higgs minimization condition, Eq. (5.6). Instead b(weak) is fixed

by its GUT scale value and corresponding RGE running, meaning tan(β) must no

longer be fixed for consistency, but instead must be solved for on a point-by-point

basis along with mZ . Thus, part of the routine in checking the conditions in θ

entails finding a simultaneous solution (mZ , β) to Eqs. (5.5, 5.6). Special care will

be taken in a future version of the natLHA software to account for this continual

minimization of the scalar potential while we gradually search for the integral

bounds appearing in ∆SN.

5.4 An algorithm for stringy naturalness from SLHA out-

puts

Below is a series of flowcharts demonstrating the algorithm, code-named DSN4SLHA,

presented here. For formatting purposes, the algorithm has been split into

three flowcharts below. The full flowchart may be seen in the README file at

https://github.com/Dmartinez-96/DSN4SLHA.

Though we leave these evaluations of the full integrated ∆SN measure to a

future work and instead just present the mathematical ideas here, in the next

chapter we will demonstrate these ideas through the differential stringy naturalness

measure δSN.
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The user obtains an SLHA file containing the MSSM
spectrum and soft parameters at an input scale Q.

The user supplies DSN4SLHA with this SLHA file.

The user-input parameters are evolved w/ 2-loop MSSM RGEs to the weak scale at the
geometric mean of the squark and slepton masses. µ(weak) is then tuned so mZ = 91.1876 GeV

for this initial point, including radiative corrections. To preserve the initial point’s value of tan(β),
as supplied by the user’s SLHA file, b(weak) is also tuned to satisfy Higgs minimization conditions.

Choose one of the 31 relevant weak-scale RGE parameters not bounded yet.

Increment only the chosen parameter
in the positive direction, fixing others
and recording newly incremented value.

Increment only the chosen parameter
in the negative direction, fixing others
and recording newly incremented value.

Increment in
both dir’s
in parallel.

Solve for vu, vd, extract the corresponding mZ , tan(β) values, and adjust Yukawa couplings.
Eval. mass spectrum, check CCB, EWSB, & ABDS conditions.

All relevant
selection criteria θ

satisfied?

Yes, in “+” direction. Yes, in “−” direction.

Both directions
failed θ?

No.

N
o,

“+
”
p
as
se
d
.

N
o,

“−
”
p
as
se
d
.

Record maximal values
of current parameter.

Yes.

All parameter
scans done?

No.

Use recorded maximal values for conditions θ
to evaluate ∆SN approximately.

Yes.

Continue to high-precision flowchart if desired.

Figure 5.3: A flowchart describing the approximate, Pµ-esque deriva-
tion of ∆SN as in Eq. (5.20).
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With the one-dimensional bounds for the selection region established,
we begin the Monte Carlo integration of ∆SN .

The user supplies a desired relative error tolerance level ϵ for convergence
(recommended values for ϵ are between 10−3 and 10−6).

By generating ABDS and CCB/EWSB bounds, we have automatically generated
NA = nθ,A = 63 vacua from boundary terms and the initial point, “seeding” the probability.

465 two-dimensional slices of parameter space containing the initial vacuum
are possible to roughly partition our parameter space and make it more manageable.

These slices are bounded by the one-dimensional bounds found in the basic DSN4SLHA flowchart.
Uniformly but randomly select one of these slices if NA is odd.

A random point is generated for the selected slice according to the slice’s 2D joint probability density.
If NA is even, generate a random point within the whole

bounding hyperrectangle according to the proper, 31-dimensional sampling distributions.

For each randomly generated point, find Yukawa couplings, mZ and β.

θ(EWSB, no CCB) = 1?

θ(ABDS) = 1?

Yes.

Increment NA and nθ,A each by 1.

Increment NA by 1.

ϵ > relative error?

Evaluate ∆SN numerically.

Yes.

No.

No.

Yes.

Figure 5.4: A flowchart describing the Monte Carlo integration with
stratified importance sampling to approximate ∆SN as Eq. (5.23).
This method is amenable to parallelization, adding the results for
the n’s and N ’s from independent Monte Carlo integrators running
in parallel to speed up computations. A combination of stratified
importance sampling from the 2D slices with full-space importance
sampling helps adequately cover this high-dimensional space.
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Chapter 6

Results and discussion

6.1 Surveying δSN for SUSY models on the landscape

Below we survey some SUSY models on the string landscape and their respective

δSN values, as determined by Eq. (5.21). The results are presented for an example

BM point of each model, as generated by SoftSUSY v4.1.17 [119, 203, 204, 205].

Model ∆EW δSN dNvac/dNvac(RNS)
CMSSM 2367.4 7.2174 6.912 · 10−2

G2-MSSM 17045 8.3578 5.003 · 10−3

Mini-Split (w̃LSP) 2.4210 · 106 10.056 1.002 · 10−4

PeV SUSY 6.1433 · 106 10.920 1.371 · 10−5

Spread (w̃LSP) 3.5753 · 106 11.140 8.260 · 10−6

Mini-Split (h̃LSP) 5.9054 · 108 12.727 2.138 · 10−7

Spread (h̃LSP) 5.2311 · 1010 14.889 1.472 · 10−9

HS-SUSY 2.42100 · 106 10.058 9.977 · 10−9

Split SUSY 4.6581 · 1012 16.866 1.552× 10−11

RNS 15.761 6.057 1

Table 6.1: A survey of some unnatural and natural SUSY models
along with some examples of the stringy naturalness measure ∆SN

and electroweak naturalness measure ∆EW from an example BM point
in the model. The stringy naturalness measures are calculated using
Eq. (5.20). It is assumed in this calculation of ∆SN that there is a
single F -type SUSY-breaking field, leading to a total linear power-law
draw on the soft terms. As predicted by our Pµ hypothesis, it is clear
that RNS models provide the most stringy natural model amongst our
selection of SUSY models.

A robust method for computing the integrated vacuum density, which con-

tributes to what we have termed ∆SN, is currently under development. The final

version will be released in a future version of natLHA.

However, from just looking at the differential vacuum density contributions
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Figure 6.1: Bar chart of ∆SN contributions for the CMSSM model BM
point in Table 6.1 with m0 = 5 TeV, m1/2 = 1 TeV, A0 = −8 TeV,
and tan(β) = 10 at the input GUT scale of MG ≃ 1.4 · 1016 GeV.
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Figure 6.2: Bar chart of ∆SN contributions for the G2-MSSM model
BM point in Table 6.1 with m0 = 50 TeV, m1/2 = 1 TeV, A0 = 0 TeV,
µ = 1 TeV, mA(pole) = 50 TeV, and tan(β) = 10 at the input GUT
scale of MG ≃ 1.5 · 1016 GeV.
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Figure 6.3: Bar chart of ∆SN contributions for the PeV-SUSY model
BM point in Table 6.1 with m0 = 1 PeV, m1/2 = 1 TeV, A0 = 0 TeV,
µ = 1 TeV, mA(pole) = 1 PeV, and tan(β) = 10 at the input SUSY
scale of Ms = 1 PeV.
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Figure 6.4: Bar chart of ∆SN contributions for the Split SUSY model
BM point in Table 6.1 with m0 = 100 PeV, m1/2 = 1 TeV, A0 = 0
TeV, µ = 1 TeV, mA(pole) = 100 PeV, and tan(β) = 10 at the input
SUSY scale of Ms = 100 PeV.
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Figure 6.5: Bar chart of ∆SN contributions for the HS-SUSY model
BM point in Table 6.1 with m0 = 100 TeV, m1/2 = 100 TeV, A0 = 0
TeV, µ = 100 TeV, mA(pole) = 100 TeV, and tan(β) = 10 at the
input GUT scale of MG ≃ 4.1 · 1017 GeV.
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Figure 6.6: Bar chart of ∆SN contributions for the Spread SUSY
model with higgsino LSP BM point in Table 6.1 with m0 = 100 PeV,
m1/2 = 100 TeV, A0 = 0 TeV, µ = 100 TeV, mA(pole) = 100 PeV,
and tan(β) = 10 at the input SUSY scale of Ms = 100 PeV.
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Figure 6.7: Bar chart of ∆SN contributions for the Spread SUSY model
with wino LSP BM point in Table 6.1 with m0 = 1 PeV, m1/2 = 1
TeV, A0 = 0 TeV, µ = 100 TeV, mA(pole) = 1 PeV, and tan(β) = 10
at the input SUSY scale of Ms = 1 PeV.

166



Figure 6.8: Bar chart of ∆SN contributions for the Mini-Split SUSY
model with higgsino LSP BM point in Table 6.1 with m0 = 100 TeV,
m1/2 = 10 TeV, A0 = 0 TeV, µ = 1 TeV, mA(pole) = 100 TeV, and
tan(β) = 10 at the input GUT scale of MG ≃ 4.4 · 1017 GeV.

167



Figure 6.9: Bar chart of ∆SN contributions for the Mini-Split SUSY
model with wino LSP BM point in Table 6.1 with m0 = 100 TeV,
m1/2 = 1 TeV, A0 = 0 TeV, µ = 100 TeV, mA(pole) = 100 TeV, and
tan(β) = 10 at the input GUT scale of MG ≃ 3.0 · 1017 GeV.

168



Figure 6.10: Bar chart of ∆SN contributions for the RNS (NUHM2)
model BM point in Table 6.1 with m0 = 5 TeV, m1/2 = 1 TeV,
A0 = −8 TeV, µ = 200 GeV, mA(pole) = 2 TeV, and tan(β) = 10 at
the input GUT scale of MG ≃ 1.7 · 1016 GeV.
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Figure 6.11: Bar charts summarizing the contributions to (a) the
differential stringy naturalness measure δSN and (b) the differential
vacuum density measure dNvac, exemplified in Figs. (6.1 - 6.10).
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Figure 6.12: Stringy naturalness plane scans from m0 = 100 GeV to 20
TeV and m1/2 = 100 GeV to 10 TeV for the NUHM2 parameter space,
where µ = 200 GeV, mA(pole) = 2 TeV, A0 = −1.6m0, and tan(β) =
10. In subfigure a), the differential stringy naturalness measure δSN
(Eq. (5.21)) is plotted. In subfigure b), the differential vacuum density
dNvac (Eqs. (5.14,5.17)) is plotted. Note the significantly larger
densities (lower δSN) when compared to an unnatural model, like the
CMSSM, in Fig. 6.13 or Table 6.1.
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Figure 6.13: Stringy naturalness plane scans from m0 = 100 GeV to
20 TeV and m1/2 = 100 GeV to 10 TeV for the CMSSM parameter
space, where A0 = 0 and tan(β) = 10. In subfigure a), the differential
stringy naturalness measure δSN (Eq. (5.21)) is plotted. In subfigure
b), the differential vacuum density dNvac (Eqs. (5.14, 5.17)) is plotted.
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above, our hypothesis of RNS stringy naturalness is strongly supported. First,

consider the µ contributions to these measures. With our Pµ analysis, we noted

that due to the intense fine-tuning of µ against mPU
Z within the ABDS window,

then larger values of µ result in smaller values of Pµ. Similarly, here we see that

smaller values of µ give a larger contribution to the differential vacuum density

measure. Conversely, larger values of µ suppress the differential vacuum density

measure. So, combined with our knowledge that finetuning constrains the volume

of our µ parameter space in order to produce vacua in the ABDS window, it is

immediately clear that for finetuned models, integrating the differential vacuum

density will produce smaller density measures than in the case of RNS, where

finetuning is low. This comes from two factors:

• In integrating a given point within the domain of integration, the size of the

individual contribution (δSN(µ)) from that point is inversely proportional to

the finetuning of the µ parameter.

• The “width” of the domain of integration is also inversely proportional to

this level of finetuning.

Hence, adding up tiny numbers over a tiny interval (as in finetuned models) results

in a lower integration value compared to adding up larger numbers over a larger

interval (as in RNS).

Similarly, as the scale of SUSY parameters (and thus the scale of SUSY

breaking) rises, the same idea arises. If a given soft parameter p has high

finetuning at the weak scale, then it does not afford much “wiggle room” in
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parameter space to accomodate ABDS vacua. Additionally, since

dNvac, soft ∼
2(n+ 1)

m2
SUSY

[
30∑
i=1

|pi|d|pi|

]
,

then clearly larger values of m2
SUSY also suppress the differential density. Thus,

the same logic applies in this sector: in finetuned models, we are adding up tiny

numbers over a tiny interval, giving a tiny result (few vacua). In RNS, we are

adding up larger numbers over a larger interval, giving a larger result (more vacua).

Thus, these results seem consistent with our hypothesis on stringy naturalness

and RNS.
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Chapter 7

Conclusions

To conclude this dissertation, we offer some summarizing remarks from the

preceding chapters. As bounds for supersymmetric masses increase from LHC

findings (or lack thereof), the Little Hierarchy Problem describing the burgeoning

gap between the known weak scale and the unknown SUSY scale has become

a thorny issue in the side of the particle physics frontier community. It is a

commonly held belief that if supersymmetry exists, then it must be extremely

finetuned to accommodate these experimental bounds.

Here, we have presented many arguments on why this is truly not an issue,

and how radiative natural supersymmetry with practical naturalness is not only

consistent with our current understanding of experimental data, but also predicts

supersymmetry to lie just beyond the reach of current colliders. Many alternative

hypotheses have been proposed in the literature to attempt to address this Little

Hierarchy Problem in alternative ways, as in Chapter 3. However, these often

require mathematical gymnastics to remain consistent with current experimental

data, and each come with their own slew of issues that remain to be explained,

such as charged LSPs, difficulty accommodating the correct Higgs mass, or vacuum

instability.

If we forego the concept of practical naturalness, then there are still many

different realizable but highly finetuned versions of supersymmetry are still exper-

imentally viable, as were outlined in Chapter 2. Even the Standard Model alone
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may still be a sufficient EFT model, if we permit an extreme degree of finetuning.

However, when put into the context of the string landscape, we demonstrated in

the preceding section and in Chapters 4, 5 that this is extremely unlikely to be

the case, and in fact, that RNS is exponentially more probable to emerge from

the string landscape and describe a universe with chemistry such as our own,

compared to these finetuned supersymmetric or SM theories.

Some tasks for future work are listed below:

• For stringy naturalness, the differential vacuum density measures provided

in Chapter 5 should be integrated carefully. This entails constructing a

numerical routine that dynamically searches for the bounds of integration in

each parameter p while ensuring proper vacuum minimization at loop-level.

• The integration region will generally be non-rectangular, introducing nonlin-

ear correlations between variables at the boundaries of the EWSB-compliant,

no CCB, and ABDS-compliant regions of parameter space. This should be

addressed for accuracy in the future. For example, after rectangular bounds

are obtained as in the previous point, one may perform a Monte-Carlo

simulation and sampling on the hyperrectangle of parameter space selected

to obtain a more accurate measure of the integrated vacuum density.

• In each step of integrating the differential vacuum density, threshold correc-

tions may shift gauge and Yukawa coupling values. The threshold corrections

involve the evaluation of various Passarino-Veltman functions that depend

on the soft SUSY breaking parameters, as well as the value of mZ and
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mW , which are shifting from vacuum to vacuum in our scans here. These

effects should be incorporated, but are in general higher-order effects that,

within the regime of perturbativity, should be smalller than the leading-order

analyses presented here. This enhancement should be carefully balanced

against the idea of “predictivity” to ensure the results are mathematically

sound but also physically viable.

• Further efforts can be made to reduce the effect of the renormalization scale

(not a physical observable, but rather a parameter introduced to handle

infinities arising from loop calculations) on the predicted values of mPU
Z .

• Higher order stabilization conditions – particularly 1-loop conditions for

CCB and 2-loop conditions for EWSB – are still lacking from natLHA and

may provide some additional “width” to the ABDS windows tested.

• The analyses provided above should be performed on other realizations of

supersymmetry, such as GMSB and nAMSB.

• In the SM, we provided an approximate evaluation of the Pµ measure. It

may be possible to incorporate other parameters of the SM theory (such

as quark and lepton masses) and our ABDS analysis to provide a more

thorough evaluation of the relative abundance of SM vacua on the string

landscape. This can then be compared to the values obtained from SUSY

vacua.

• Connections between our Euclidean interpretation of the SUSY scale and the
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original Euclidean interpretation relating to the number of F - and D-type

SUSY-breaking fields within a larger theory should be expanded upon.

The next several decades of experimental data will prove to be invaluable in

the discovery or elimination of supersymmetry as a viable theory. The arguments

presented here are favorable towards its discovery within the context of RNS.
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Appendix A

Radiative corrections in the MSSM

A.1 The Higgs scalar potential: an EFT approach

In the effective field theory approach, one may minimize the Higgs field VEV-

dependent scalar potential to get constraints and requirements on electroweak

symmetry breaking in the MSSM. This effective scalar potential can be subject to

loop corrections above its tree-level expression, and generally is written as follows.

V (vu, vd) = Vtree(vu, vd) + ∆V (vu, vd) (A.1)

In the minimized vacuum, the tree-level potential Vtree can be written in terms

of the neutral Higgs fields h0u,d that obtain non-zero VEVs vu,d, soft SUSY-breaking

parameters m2
Hu,d

and b, the superpotential parameter µ, and the SU(2) and U(1)

gauge couplings g and g′.

Vtree =
(
m2

Hu
+ µ2

) ∣∣h0u∣∣2 + (m2
Hd

+ µ2
) ∣∣h0d∣∣2

− b(h0uh
0
d + c.c.) +

g′2 + g2

8

(∣∣h0u∣∣2 − ∣∣h0d∣∣2)2 (A.2)

In the remainder of these appendices, we work in the DR’ renormalization scheme.

At tree-level, the Higgs minimization conditions correspond to when the deriva-

tives of Vtree are equal to zero, together with appropriate stability conditions from

Appendix C. At the minimum where these conditions are satisfied appropriately,
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the values of the fields h0u and |h0d| determine the values of the Higgs VEVs.

Through definitions of mass parameters, angles, and with algebraic manipulation,

one arrives at the following tree-level minimization conditions.

2b = sin(2β)
(
m2

Hu
+m2

Hd
+ 2µ2

)
(A.3)

m2
Z =

(m2
Hu

−m2
Hd
)

cos(2β)
− (m2

Hu
+m2

Hd
+ 2µ2) (A.4)

Often in the literature, one may see Eq. (A.4) instead expressed in terms of

the ratio of the Higgs VEVs, tan(β) = vu
vd
:

m2
Z

2
=
m2

Hd
−m2

Hu
tan2(β)

tan2(β)− 1
− µ2. (A.5)

Alternatively, one can solve for tan(β) > 0 in terms of SSB and superpotential

parameters as in Eq. (A.6) below.

tan(β) =
m2

Hu
+m2

Hd
+ 2µ2 +

√
(m2

Hu
+m2

Hd
+ 2µ2)2 − 4b2

2b
(A.6)

A.2 One-loop corrections to the scalar potential

Radiative corrections to the Higgs potential may be particularly important in

regards to practical naturalness and proper electroweak symmetry breaking,

especially those arising from the stop sector in the MSSM. The tree-level VEV-

dependent scalar potential is given in Eq. (A.2). The total, loop-corrected effective
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potential may then be expressed as

Veff = Vtree +∆V,

with ∆V containing loop corrections to the tree-level potential. These loop

corrections come from the VEV-dependent masses of the MSSM spectrum at

tree-level, in the one-loop case. Higher order corrections typically involve more

complicated expressions.

The one-loop correction to the effective potential is given as

∆V1-loop(vu, vd) =
1

64π2

∑
i

[
qiCim

4
i (vu, vd)(−1)2si

× (2si + 1)

(
log

(
m2

i (vu, vd)

Q2

)
− 3

2

)]
,

(A.7)

where the sum runs over all SUSY and SM particles whose (tree-level) squared

masses m2
i (vu, vd) are a function of the Higgs VEVs vu and vd. The scalar

potential is evaluated at the renormalization scale Q, as are many of the terms in

the expressions in the entirety of the Appendices. Each particle contributes an

electric charge factor qi = 1 for uncharged species i and qi = 2 for charged species

i. Similarly, each particle contributes a color charge factor Ci = 1 for uncolored

particles and Ci = 3 for colored particles. The spin of particle i is represented by

si. In the literature, the sum over the spins and masses is called a “supertrace”,

denoted as

STr(Mn) =
∑
i

(−1)2si(2si + 1)mn
i . (A.8)
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Corrections to the Higgs minimization conditions are calculated from deriva-

tives of the loop-corrected Higgs scalar potential. In practice, this amounts to the

following replacements in Eqs. (A.3 - A.6):

m2
Hu

→ m2
Hu

+
1

2vu

∂∆V

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂∆V

∂vd
. (A.9)

We denote the correction derivative terms as 1
2vi

∂∆V
∂vi

≡ Σi for i = u, d. Note that

in some instances of the literature, the radiative corrections are instead expressed

as Σu,d
u,d, which exploit the SU(2) symmetry for the derivatives and are defined as

Σu,d
u,d =

∂∆V

∂v2u,d
.

These can be obtained from the expressions presented below through reorganization

via the chain rule in calculus. However, it must be noted that for the loop

corrections to the second Higgs minimization condition presented in Eq. (A.3),

then there exist other corrections of the form

Σd
u =

∂∆V

∂vu∂vd
.

These must be included to obtain the correct loop-level expressions in this mini-

mization condition, and thus minimize the Higgs potential with the correct value

of tan(β). This is not an issue if instead the derivatives are computed with the

linear Higgs VEVs, as in our definition of the Σu,d terms.
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Differentiating Eq. (A.7) yields the expression

Σu,d =
1

32π2

∑
i

[
qiCi(−1)2si(2si + 1)

×m2
i

(
1

2vu,d

∂m2
i

∂vu,d

)(
log

(
m2

i

Q2

)
− 1

)] (A.10)

The individual contributions

δu,d(i) ≡
1

2vu,d

∂m2
i

∂vu,d
(A.11)

are listed in the following subsections. The full radiative corrections are then

obtained by substituting in the appropriate derivatives to Eq. (A.10) above.

A.2.1 Obtaining the tree-level mass (squared) spectrum

The tree-level mass matrices in the MSSM can be determined using the MSSM

Lagrangian, in particular, the soft SUSY breaking sector of the Lagrangian. The

parameters herein are numerically determined mostly through the use of the

Renormalization Group Equation parameters listed in Appendix B, at a scale

where higher order logarithmic corrections may be reduced or minimized. In

practice, we often find ourselves obtaining the eigenvalues of a 2 × 2 matrix

M†M ≡ M2. For each particle in the SM and MSSM spectra, we assume the

entries in these mass squared matrices are real. For a general 2× 2 square matrix

of the form

M2 =

a b

c d

 ,
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then M2 will have eigenvalues of the form

m2
1,2 =

1

2

(
a+ d±

√
(a− d)2 + 4bc

)
. (A.12)

In the remainder of this Appendix, we will denote the lighter mass eigenvalue (the

“−” expression above) with the subscript index “1”, as in m2
1, whereas the heavier

mass eigenvalue (the “+” expression above) will be denoted by the subscript index

“2”, as in m2
2.

A.2.2 SM particles

Gauge bosons

In the Standard Model sector, we can write the electroweak gauge boson squared

masses m2
Z,W in terms of the Higgs VEVs vu,d. The Z boson squared mass is given

at tree-level as

m2
Z =

(g2 + g′2) v2

2
(A.13)

and the tree-level W boson squared mass is

m2
W =

g2v2

2
. (A.14)

The derivatives of these masses entering into Eq. (A.10) are listed below.

δu(Z) = δd(Z) =
g2 + g′2

2
(A.15)
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δu(W ) = δd(W ) =
g2

2
(A.16)

Quarks and leptons

At tree-level, the quarks and leptons depend on Yukawa couplings and the Higgs

VEVs vu,d. For up-type quarks, denoted here as Ug where g = 1, 2, 3 indexes the

generation of the quark, the tree-level squared mass is given by

m2
Ug

= y2Ug
v2u. (A.17)

For example, m2
U3

corresponds to the tree-level squared mass of the top quark.

For down-type quarks, denoted here as Dg with generation index g, the tree-level

squared mass is given by

m2
Dg

= y2Dg
v2d. (A.18)

Lastly, for Standard Model charged leptons, denoted here as Eg with generation

index g, the tree-level squared mass is

m2
Eg

= y2Eg
v2d. (A.19)

The derivatives of the Standard Model quark and lepton sector in Eq. (A.10)

are listed below.

δu(Ug) = y2Ug
(A.20)
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δd(Ug) = 0 (A.21)

δu(Dg) = 0 (A.22)

δd(Dg) = y2Dg
(A.23)

δu(Eg) = 0 (A.24)

δd(Eg) = y2Eg
(A.25)

A.2.3 SUSY particles

Higgs bosons

The Higgs masses can be obtained by expressing the gauge-eigenstate Higgs fields

(h0u, h
0
d) and (h+u , h

−∗
d ) in terms of the fields (h0, H0, G0, A0) and (G±, H±) as well

as the Higgs VEVs (vu, vd). These fields form the Higgs mass eigenstate basis. By

minimizing the tree-level potential, one obtains

m2
A0 = m2

Hu
+m2

Hd
+ 2µ2, (A.26)

m2
h0,H0 =

1

2

(
m2

A0 +m2
Z ∓

√
(m2

A0 −m2
Z)

2 + 4m2
Zm

2
A0 sin

2(2β)

)
, (A.27)
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and

m2
H± = m2

A0 +m2
W . (A.28)

The Nambu-Goldstone bosons G0,± are shown to be massless after minimization

of the tree-level potential. In Eq. (A.27), we use the convention that the h0 state

is the lighter neutral Higgs mass eigenstate.

The derivatives in Eq. (A.10) are listed below.

δu(H
±) = δd(H

±) =
g2

2
(A.29)

δu(h
0, H0) =

g2 + g′2

4

(
1∓

[
m2

Z +m2
A0 (2 + 4 cos(2β) + cos(4β))

]
m2

H0 −m2
h0

)
(A.30)

δd(h
0, H0) =

g2 + g′2

4

(
1∓

[
m2

Z +m2
A0 (2− 4 cos(2β) + cos(4β))

]
m2

H0 −m2
h0

)
(A.31)

The “-” (“+”) terms correspond to the derivatives of m2
h0(H0).

Neutralinos

The term in the MSSM Lagrangian leading to the neutralino masses is given in

terms of the gauge-eigenstate fields ψ0 by

LZ̃0 ∋ −1

2

[(
ψ0
)T MZ̃0ψ

0 + c.c.
]

(A.32)
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The unsquared neutralino mass matrix is given by

MZ̃0 =



M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0


(A.33)

One may diagonalize this matrix to obtain the mass eigenvalues, which are the

square roots of the squared mass eigenvalues. Explicit expressions are attainable

here, though it involves solving quartic polynomials, leading to unintuitive and

unwieldy solutions. Hence, the expressions for the neutralino squared masses

will not be reproduced here, though it is simple to solve for them on a modern

computer. The complexity lies in then taking the derivatives of these unwieldy

expressions. This complexity can be reduced using features of basic calculus and

linear algebra.

Since the neutralino squared masses come from the eigenvalues of the square of

Eq. (A.33), we can obtain derivatives of these squared masses through derivatives

on the characteristic polynomial of the unsquared mass matrix. Denoting an

eigenvalue of the squared mass matrix as λ, the characteristic polynomial reads

p(λ) = 0 = λ4 + aλ3 + bλ2 + cλ+ d. (A.34)

The coefficients a, b, c, d are all functions of the Higgs VEVs vu, vd, and so are the
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eigenvalues λ(vu, vd). Then, by a careful application of the chain rule, one obtains

δu,d(Z̃
0
i ) =

1

2vu,d

∂m2
Z̃0,i

∂vu,d

=

[
−
(

λ

vu,d

) ∂a
∂vu,d

λ3 + ∂b
∂vu,d

λ2 + ∂c
∂vu,d

λ+ ∂d
∂vu,d

4λ3 + 3aλ2 + 2bλ+ c

]
λ=m

Z̃0,i

(A.35)

with i = 1, 2, 3, 4. The characteristic polynomial for the neutralino mass matrix

gives terms we list below.

a = − (M1 +M2) (A.36)

b =M1M2 −m2
Z − µ2 (A.37)

c =
v2

2

(
g2M1 + g′2M2

)
+ (M1 +M2)µ

2 −m2
Zµ sin(2β) (A.38)

d =
v2

2

(
g2M1 + g′2M2

)
µ sin(2β)−M1M2µ

2 (A.39)

Differentiating these expressions gives the following terms, which then allow

us to compute radiative corrections from the neutralino sector.

∂a

∂vu
=

∂a

∂vd
= 0 (A.40)

∂b

∂vu
= −(g2 + g′2)vu (A.41)

∂b

∂vd
= −(g2 + g′2)vd (A.42)

∂c

∂vu
=
(
g2M1 + g′2M2

)
vu −

(
g2 + g′2

)
µvd (A.43)

∂c

∂vd
=
(
g2M1 + g′2M2

)
vd −

(
g2 + g′2

)
µvu (A.44)
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∂d

∂vu
=
(
g2M1 + g′2M2

)
µvd (A.45)

∂d

∂vd
=
(
g2M1 + g′2M2

)
µvu (A.46)

Charginos

The term in the MSSM Lagrangian leading to the chargino masses is given in

terms of the gauge-eigenstate fields ψ± by

LC̃± ∋ −1

2

[(
ψ±)T MC̃±ψ

± + c.c.
]

(A.47)

The chargino unsquared mass matrix MC̃± takes the form

MC̃± =

0 X T

X 0



=



0 0 M2 gvd

0 0 gvu µ

M2 gvu 0 0

gvd µ 0 0



(A.48)

The two distinct eigenvalues of the squared mass matrix M†
C̃±MC̃± , each with

degeneracy of two are given as

m2
C̃±

1,2
=

1

2

(
M2

2 + µ2 + 2m2
W

±
√
(M2

2 + µ2 + 2m2
W )

2 − 4 (µM2 −m2
W sin(2β))

2

)
.

(A.49)
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This leads to derivatives in the radiative corrections in Eq. (A.10) of the form

δu(C̃
±
1,2) =

g2

2

(
1± [M2

2 + µ2 − g2v2 cos(2β) + 2M2µ cot(β)]

m2
C̃±

2

−m2
C̃±

1

)
(A.50)

and

δd(C̃
±
1,2) =

g2

2

(
1± [M2

2 + µ2 + g2v2 cos(2β) + 2M2µ tan(β)]

m2
C̃±

2

−m2
C̃±

1

)
, (A.51)

where the “-” (“+”) terms correspond to the derivatives of m2
C̃±

1(2)

.

Squarks

The squarks and sleptons have masses that depend on gauge-eigenstate contri-

butions, as well as hyperfine splitting contributions coming from the particle’s

isospin, hypercharge, the gauge couplings g and g′, and the Higgs VEVs. These

hyperfine splitting contributions arise from D-term quartic interactions in the

MSSM Lagrangian. For a squark or slepton field f̃ , the splitting function takes

the form

∆f̃ =
(v2u − v2d)

2

(
Yf̃g

′2 − I3f̃g
2
)

(A.52)

where I3f̃ is the third component of the weak isospin of field f̃ , and Yf̃ is its

hypercharge. The squark hyperfine splitting functions are listed in Table A.1

below.

The squarks obtain masses from the following form of terms in the Lagrangian
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f̃ ∆f̃

ŨL (v2u − v2d)
(

g′2

6
− g2

4

)
ŨR −(v2u − v2d)

(
4g′2

3

)
D̃L (v2u − v2d)

(
g2

4
+ g′2

6

)
D̃R (v2u − v2d)

g′2

3

Table A.1: Hyperfine splitting functions as in Eq. (A.52) of left- and
right-handed squark fields. Up-type squark fields are denoted as Ũ
and down-type squark fields are denoted as D̃. These contributions
are generation-independent.

Lq̃g ∋ −
[
q̃∗g,L q̃∗g,R

]
M2

q̃g

q̃g,L
q̃g,R

 . (A.53)

The fields q̃g denote up-type squarks Ũg or down-type squarks D̃g generation

g = 1, 2, 3. For example,

Ũ3 =

t̃L
t̃R


corresponds to the stop gauge-eigenstate fields. The squared mass matrix of

the up-type squarks then will be written for each generation g in terms of the

left- and right-handed running squark masses m2
Q̃g

and m2

Ũg

(determined via

RGE running, described in Appendix B), the Standard Model quark squared

masses m2
Ug

(found in Eq. (A.17)), the up-type soft trilinear couplings aUg , the

superpotential parameter µ, the hyperfine splitting functions above in Table A.1,
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and the Higgs VEVs.

M2
Ũg

=

m2
Q̃g

+m2
Ug

+∆ŨL
aUgvu − µyUgvd

aUgvu − µyUgvd m2

Ũg

+m2
Ug

+∆ŨR

 (A.54)

This leads to the mass eigenvalues listed below.

m2
Ũg,1,2

=
1

2

(
m2

Q̃g
+m2

Ũg

+ 2m2
Ug

+∆ŨL
+∆ŨR

±
√
(m2

Q̃g
+∆ŨL

−m2

Ũg

−∆ŨR
)2 + 4(aUgvu − µyUgvd)

2

) (A.55)

The lighter (heavier) mass eigenvalue m2
Ũg ,1(2)

corresponds to the “-” (“+”) term

above.

Differentiating with respect to the Higgs VEVs gives the following contributions

in Eq. (A.10).

δu(Ũg,1,2) = y2Ug
− (g2 + 2g′2)

8

± 1

m2
Ũg,2

−m2
Ũg,1

(
a2Ug

− 1

24
(3g2 − 10g′2)(m2

Q̃g
−m2

Ũg

)

− 1

288
(3g2 − 10g′2)2v2 cos(2β)

− aUgyUgµ cot(β)

)
(A.56)

193



δd(Ũg,1,2) =
(g2 + 2g′2)

8

± 1

m2
Ũg,2

−m2
Ũg,1

(
y2Ug

µ2 +
1

24
(3g2 − 10g′2)(m2

Q̃g
−m2

Ũg

)

+
1

288
(3g2 − 10g′2)2v2 cos(2β)

− aUgyUgµ tan(β)

)
(A.57)

Again, the derivative of the lighter (heavier) mass eigenvalue m2
Ũg ,1(2)

corresponds

to the “-” (“+”) term above.

Analysis of the down-type squarks and their tree-level masses proceeds in a

very similar manner. The squared mass matrix of down-type squarks of generation

g takes the form below.

M2
D̃g

=

m2
Q̃g

+m2
Dg

+∆D̃L
aDgvd − µyDgvu

aDgvd − µyDgvu m2

D̃g

+m2
Dg

+∆D̃R

 (A.58)

The mass eigenvalues are listed here.

m2
D̃g,1,2

=
1

2

(
m2

Q̃g
+m2

D̃g

+ 2m2
Dg

+∆D̃L
+∆D̃R

±
√
(m2

Q̃g
+∆D̃L

−m2

D̃g

−∆D̃R
)2 + 4(aDgvd − µyDgvu)

2

) (A.59)

The lighter (heavier) mass eigenvalue m2
D̃g ,1(2)

corresponds to the “-” (“+”) term.

Differentiating with respect to the Higgs VEVs gives the following contributions
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in Eq. (A.10).

δu(D̃g,1,2) =
(g2 + 2g′2)

8

± 1

m2
D̃g,2

−m2
D̃g,1

(
y2Dg

µ2 +
1

24
(3g2 − 2g′2)(m2

Q̃g
−m2

D̃g

)

− 1

288
(3g2 − 2g′2)2v2 cos(2β)

− aDgyDgµ cot(β)

)
(A.60)

δd(D̃g,1,2) = y2Dg
− (g2 + 2g′2)

8

± 1

m2
D̃g,2

−m2
D̃g,1

(
a2Dg

− 1

24
(3g2 − 2g′2)(m2

Q̃g
−m2

D̃g

)

+
1

288
(3g2 − 2g′2)2v2 cos(2β)

− aDgyDgµ tan(β)

)
(A.61)

The derivative of the lighter (heavier) mass eigenvalue m2
D̃g ,1(2)

corresponds to the

“-” (“+”) term above.

Sleptons

The charged sleptons in the MSSM obtain masses at tree level by the same analysis

as the down-type squarks, with some substitutions. The charged sleptons obtain

masses from the following form of terms in the Lagrangian
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Lℓ̃g
∋ −

[
ℓ̃∗g,L ℓ̃∗g,R

]
M2

ℓ̃g

ℓ̃g,L
ℓ̃g,R

 . (A.62)

The squared mass matrix of the charged slepton of generation g takes the form

below.

M2
ℓ̃g
=

m2
L̃g

+m2
Eg

+∆ẼL
aEgvd − µyEgvu

aEgvd − µyEgvu m2

Ẽg

+m2
Eg

+∆ẼR

 (A.63)

The hyperfine splitting functions of the charged sleptons are listed here in Table

A.2.

ℓ̃ ∆f̃

ẼL (v2u − v2d)
(

g2

4
− g′2

2

)
ẼR (v2u − v2d)g

′2

Table A.2: Hyperfine splitting functions as in Eq. (A.52) of left-
and right-handed charged slepton fields. These contributions are
generation-independent.

The mass eigenvalues are listed here.

m2
Ẽg,1,2

=
1

2

(
m2

L̃g
+m2

Ẽg

+ 2m2
Eg

+∆ẼL
+∆ẼR

±
√

(m2
L̃g

+∆ẼL
−m2

Ẽg

−∆ẼR
)2 + 4(aEgvd − µyEgvu)

2

) (A.64)

The lighter (heavier) mass eigenvalue m2
Ẽg ,1(2)

corresponds to the “-” (“+”) term.

Differentiating with respect to the Higgs VEVs gives the following contributions
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in Eq. (A.10).

δu(Ẽg,1,2) =
(g2 + 2g′2)

8

± 1

m2
Ẽg,2

−m2
Ẽg,1

(
y2Eg

µ2 +
1

8
(g2 − 6g′2)(m2

L̃g
−m2

Ẽg

)

− 1

32
(g2 − 6g′2)2v2 cos(2β)

− aEgyEgµ cot(β)

)
(A.65)

δd(Ẽg,1,2) = y2Eg
− (g2 + 2g′2)

8

± 1

m2
Ẽg,2

−m2
Ẽg,1

(
a2Eg

− 1

8
(g2 − 6g′2)(m2

L̃g
−m2

Ẽg

)

+
1

32
(g2 − 6g′2)2v2 cos(2β)

− aEgyEgµ tan(β)

)
(A.66)

The derivative of the lighter (heavier) mass eigenvalue m2
Ẽg ,1(2)

corresponds to the

“-” (“+”) term above.

Lastly, the neutral sleptons (sneutrinos) have tree-level masses

m2
ν̃g = m2

L̃g
+

(g′2 + g2)

4
(v2d − v2u), (A.67)

where g indexes the generation as before, which lead to the simple derivatives

δu,d(ν̃g) = ∓(g2 + g′2)

4
(A.68)
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The “-” (“+”) derivative corresponds to δu(d).

A.3 Two-loop corrections to the scalar potential

Higher order corrections than those seen in Section A.2 can also be relevant

to radiative electroweak symmetry breaking and in addressing the finetuning

issues seen in the Little Hierarchy Problem and naturalness. For example, the

tree-level gluino mass mg̃ = M3 is just expressed in terms of the soft SUSY

breaking parameterM3 and does not depend on the Higgs VEVs. However, higher

order effects can exist within the scalar potential, particularly dominant effects of

O(αsαt + α2
t ). We focus here on terms of O(αsαt), as the effects of heavy gluinos

can contribute potentially significant corrections to the minimization conditions

through these terms.

The renormalized two-loop effective potential consists of two parts: a finite

part with the renormalization prescription as in CITE HERE, and a part coming

from derivatives of the ϵ-suppressed terms in the unrenormalized one-loop effective

potential with respect to bare parameters pi. ϵ is the regulator of the spacetime

dimension against UV divergences.

∆V2-loop = V
(finite)
2-loop +

∂V
(ϵ)
1-loop

∂pi
δpi (A.69)

δpi denotes the coefficient of the 1
ϵ
term in the one-loop part of the counterterm for

the bare parameter pi. V
(ϵ)
1-loop is the epsilon-suppressed term of the unrenormalized
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one-loop effective potential mentioned above and is reproduced from CITE HERE.

V
(ϵ)
1-loop =

−1

64π2
STr

(
M4

) [π2

12
+

7

4
− 3

2
log

(
M2

Q2

)
+

1

2
log2

(
M2

Q2

)]
(A.70)

For the purposes of radiative corrections to the Higgs potential minimization

conditions Eq. (A.3,A.4), we only need expressions for the derivatives of the two-

loop part of this potential. By considering the “gaugeless limit” of the potential as

in CITE HERE, wherein the strong gauge coupling is the only non-vanishing gauge

coupling, and the top Yukawa is the only non-vanishing Yukawa coupling, we can

construct approximate but analytical formulae for the O(αtαs) contributions to

the Higgs minimization condition loop corrections.

We denote the angle θt̃ that diagonalizes the squared stop mass matrix in Eq.

(A.54) by the tree-level relation

sin(2θt̃) =
2vu

mt̃21−m
t̃22

(at + µyt cot(β)) . (A.71)

In our gaugeless limit, the derivatives of the field-dependent parts of the two-loop

renormalized effective potential can be written in terms of this angle in Eq. (A.71),

the stop squared masses in Eq. (A.55) and the top quark mass.

Σd,2-loop =
yt
vd
µ sin(2θt̃)F2-loop (A.72)

Σu,2-loop =
at
vu
µ sin(2θt̃)F2-loop + 2y2tG2-loop (A.73)
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The formulae for the 2-loop functions F2-loop, G2-loop are computed in the DR

scheme in terms of the gluino mass, the stop masses, the top quark mass, and the

gaugeless limit couplings. The expressions may be found in Appendix B of CITE

HERE and need not be reproduced here.
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Appendix B

Renormalization group equations in the MSSM

The renormalization group equations in the MSSM are listed below. The Yukawa

couplings Yf are 3× 3 real, diagonal matrices in generation space, indexed by the

generation g. In Appendix A, we denoted the diagonal elements of these matrices

as follows: the g-th generation up-type Yukawa couplings by yUg , down-type

Yukawa couplings by yDg , and lepton-type Yukawa coupligns by yEg . It is also

assumed that the soft trilinear couplings af = YfAf are 3 × 3 real, diagonal

matrices in generation space. The superpotential parameter µ is taken to be real

(though µ may be negative), as is the Higgs soft bilinear parameter b = Bµ. All

soft SUSY breaking (SSB) squared masses are required to be real and positive

(the latter being required to avoid charge- and/or color-breaking minima that

may occur in the vacuum with tachyonic squark or sleptons), except the Higgs

parameters m2
Hu,d

which may run negative. Table B.1 describes the renormalized

parameters entering the equations in the proceeding sections.

The general form of the two-loop RGEs for a parameter p will be presented

in terms of the one-loop part β
(1ℓ)
p and the two-loop part β

(2ℓ)
p as in Eq. (B.1),

where Q0 is a reference scale unit and Q is the renormalization scale. Summation

of repeated indices will be ignored here in Appendix B.
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Renormalized parameter Description

gi Gauge coupling for SM gauge group i

Yf Yukawa coupling matrix for f -type fermions

af SSB trilinear coupling matrix for f -type fermions

Mi SSB gaugino mass for SM gauge group i

µ SUSY-preserving superpotential parameter µ

b SSB Higgs bilinear parameter

m2
Hu

Up-type SSB Higgs mass2

m2
Hd

Down-type SSB Higgs mass2

m2
Q̃g

Left SSB squark mass2 of gen. g

m2

Ũg

Right up-type SSB squark mass2 of gen. g

m2

D̃g

Right down-type SSB squark mass2 of gen. g

m2
L̃g

Left SSB slepton mass2 of gen. g

m2

Ẽg

Right SSB slepton mass2 of gen. g

Table B.1: Renormalized parameters and corresponding descriptions of
these parameters. Standard Model gauge groups are indexed according
to i = 1 ↔ U(1), i = 2, 3 ↔ SU(2, 3). Generation indices g run from
g = 1− 3, where generation g = 1 contains the up and down quarks
and the electron in the SM content. Fermions in Yf and af can be
up-type, down-type, or lepton-type.
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βp ≡
dp

d log (Q/Q0)

=
β
(1ℓ)
p

16π2
+

β
(2ℓ)
p

(16π2)2

(B.1)

In numerically solving the two-loop RGEs βp below, we obtain p(Q), or the

parameter p evaluated at the renormalization Q. In practice, this involves evolving

p from some initial scale Λ where the boundary condition for p is defined – such

as the gauge unification (GUT) scale where g1 and g2 unify – to the target scale

Q. Table B.2 lists some typical scales where the different renormalized quantities

discussed here have their boundary conditions and definitions, as well as typical

sources of these boundary values.

For matrix equations below as in the Yukawa and soft trilinear couplings,

traces of a matrix X are denoted Tr(X ). Through an abuse of notation, we use

the notation that, in matrix equations, Tr(X ) implies that the scalar Tr(X ) is

multiplied on the appropriate size of identity matrix, usually 3× 3. Similarly, if a

scalar is being added to a matrix, this should be interpreted as the scaled identity

matrix adding to the second summand matrix.

B.1 One-loop

B.1.1 Gauge couplings and superpotential parameters

Gauge couplings

The one-loop RGEs for the gauge couplings are listed below. i indexes the Standard

Model gauge group as described in Table B.1. GUT-normalized coefficients are
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Parameter Typical BC scale Typical MSSM source

gi Qweak Exp. data + thresholds

Yf Qweak Exp. data + thresholds

af QGUT SSB

Mi QGUT SSB

µ QSUSY Higgs minimization

b QSUSY Higgs minimization

m2
Hu

QGUT or Qint SSB

m2
Hd

QGUT or Qint SSB

m2
Q̃g

QGUT or Qint SSB

m2

Ũg

QGUT or Qint SSB

m2

D̃g

QGUT or Qint SSB

m2
L̃g

QGUT or Qint SSB

m2

Ẽg

QGUT or Qint SSB

Table B.2: Typical scales at which RGE boundary conditions are
defined and where those boundary conditions typically come from
in the MSSM theory. In the MSSM, gauge unification often occurs
around the GUT scale QGUT ∼ 2 × 1016 GeV. Intermediate scales
Qint lie between the weak scale (Qweak ∼ 100 GeV) and a high scale
such as the GUT scale. The SUSY scale is the scale where logarithmic
corrections from Appendix A are minimized. In the MSSM, this is
typically of the order QSUSY ∼ √

mt̃1
mt̃2

.
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given here with columns and rows labeled according to the indices.

bi =




33
5

i = 1

1 i = 2

−3 i = 3

(B.2)

β(1ℓ)
gi

= big
3
i (B.3)

Yukawa couplings

The one-loop Yukawa coupling RGEs are listed below, without ignoring the

Yukawas of the first two generations, but assuming the Yukawas are diagonalized

in generation space. In this generation space, the Yukawa couplings may be

written in the following matrix form.

β
(1ℓ)
YU

= YU

[
3Tr

(
Y2

U

)
+ 3Y2

U + Y2
D − 13g21

15
− 3g22 −

16g23
3

]
(B.4)

β
(1ℓ)
YD

= YD

[
Tr
(
3Y2

D + Y2
L

)
+ 3Y2

D + Y2
U − 7g21

15
− 3g22 −

16g23
3

]
(B.5)

β
(1ℓ)
YL

= YL

[
Tr
(
3Y2

D + Y2
L

)
+ 3Y2

L − 9g21
5

− 3g22

]
(B.6)
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Superpotential parameter µ

The superpotential parameter µ has the one-loop RGE below.

β(1ℓ)
µ = µ

[
Tr
(
3(Y2

U + Y2
D) + Y2

L

)
− 3

(
1

5
g21 + g22

)]
(B.7)

B.1.2 Soft parameters

Soft trilinear couplings

The one-loop soft trilinear coupling RGEs are listed below. These 3× 3 matrices

in generation space are sometimes referred to as “reduced” trilinear couplings and

are factored as af = YfAf . Here we will use these reduced matrices af , and the

RGEs will be presented in the diagonal, 3× 3 matrix form.

β(1ℓ)
aU

= aU

[
3Tr

(
Y2

U

)
+ 5Y2

U + Y2
D − 13g21

15
− 3g22 −

16

3
g23

]
+ YU

[
6Tr (YUaU) + 4YUaU + 2YDaD

+
26

15
M1g

2
1 + 6M2g

2
2 +

32

3
M3g

2
3

] (B.8)

β(1ℓ)
aD

= aD

[
Tr
(
3Y2

D + Y2
L

)
+ 5Y2

D + Y2
U − 7g21

15
− 3g22 −

16

3
g23

]
+ YD

[
Tr (6YDaD + 2YLaL) + 4YDaD + 2YUaU

+
14

15
M1g

2
1 + 6M2g

2
2 +

32

3
M3g

2
3

] (B.9)
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β(1ℓ)
aL

= aL

[
Tr
(
3Y2

D + Y2
L

)
+ 5Y2

L − 9g21
5

− 3g22

]
+ YL

[
Tr (6YDaD + 2YLaL) + 4YLaL

+
18

5
M1g

2
1 + 6M2g

2
2

] (B.10)

Higgs bilinear parameter

The soft Higgs bilinear parameter b = Bµ has the one-loop RGE below.

β
(1ℓ)
b =

b

µ
β(1ℓ)
µ

+ µ

[
Tr (6(aUYU + aDYD) + 2aLYL) + 6

(
1

5
g21M1 + g22M2

)] (B.11)

B.1.3 Soft masses

Gaugino masses

The one-loop SSB gaugino mass RGEs are listed below. i indexes the Standard

Model gauge group as described in Table B.1. The coefficients bi are given in Eq.

(B.2).

β
(1ℓ)
Mi

= 2big
2
iMi (B.12)

Scalar masses

For the SSB scalar squared mass one-loop RGEs, we utilize the shorthand notation

S̃ = m2
Hu

−m2
Hd

+ Tr
(
M2

Q̃
−M2

L̃
− 2M2

Ũ
+M2

D̃
+M2

Ẽ

)
(B.13)
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with the diagonalized matrices of the squarks and sleptons of the form below in

generation space.

M2
f̃
=


m2

f̃1
0 0

0 m2
f̃2

0

0 0 m2
f̃3


Below we list the Higgs and scalar squared mass RGEs at one-loop order.

Higgs masses

β
(1ℓ)

m2
Hu

= 6Tr
[
(m2

Hu
+M2

Q̃
+M2

Ũ
)Y2

U + a2
U

]
− 3

5
g21

(
2M2

1 − S̃
)
− 6g22M

2
2 (B.14)

β
(1ℓ)

m2
Hd

= 6Tr
[
(m2

Hd
+M2

Q̃
+M2

D̃
)Y2

D + a2
D

]
+ 2Tr

[
(m2

Hd
+M2

L̃
+M2

Ẽ
)Y2

L + a2
L

]
− 3

5
g21

(
2M2

1 + S̃
)

− 6g22M
2
2

(B.15)

Squark masses

The one-loop soft squark squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3× 3 matrix form.

β
(1ℓ)

M2
Q̃

= 2
[
(M2

Q̃
+M2

Ũ
+m2

Hu
)Y2

U + (M2
Q̃
+M2

D̃
+m2

Hd
)Y2

D + a2
U + a2

D

]
− g21

5

(
M2

1 − 2

3
S̃

)
− 6g22M

2
2 − 32

3
g23M

2
3

(B.16)
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β
(1ℓ)

M2

Ũ

= 4
[
(M2

Q̃
+M2

Ũ
+m2

Hu
)Y2

U + a2
U

]
− 4

15
g21

(
8M2

1 + 3S̃
)

− 32

3
g23M

2
3

(B.17)

β
(1ℓ)

M2
D̃

= 4
[
(M2

Q̃
+M2

D̃
+m2

Hd
)Y2

D + a2
D

]
− 2

5
g21

(
4

3
M2

1 − S̃

)
− 32

3
g23M

2
3

(B.18)

Slepton masses

The one-loop soft slepton squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3× 3 matrix form.

β
(1ℓ)

M2
L̃

= 2
[
(M2

L̃
+M2

Ẽ
+m2

Hd
)Y2

L + a2
L

]
− 3

5
g21

(
2M2

1 + S̃
)
− 6g22M

2
2

(B.19)

β
(1ℓ)

M2
Ẽ

= 4
[
(M2

L̃
+M2

Ẽ
+m2

Hd
)Y2

L + a2
L

]
− 6

5
g21

(
4M2

1 − S̃
)

(B.20)
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B.2 Two-loop

B.2.1 Gauge couplings and superpotential parameters

Gauge couplings

The two-loop RGEs for the gauge couplings are listed below. i and j index the

Standard Model gauge group as described in Table B.1. f indexes the fermion type

(up-type, down-type, or lepton-type) being summed over. The GUT-normalized

coefficients are given here with columns and rows labeled according to the indices.

bji =

j = 1 j = 2 j = 3


199
25

27
5

88
5

i = 1

9
5

25 24 i = 2

11
5

9 14 i = 3

(B.21)

Cf
i =

f = U f = D f = L


26
5

14
5

18
5

i = 1

6 6 2 i = 2

4 4 0 i = 3

(B.22)

β(2ℓ)
gi

= g3i

[
3∑

j=1

bjig
2
j −

∑
f=U,D,L

Cf
i Tr

(
Y2

f

)]
(B.23)
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Yukawa couplings

The two-loop Yukawa coupling RGEs are listed below. These equations are

expressed as real, diagonal 3× 3 matrices.

β
(2ℓ)
YU

= YU

[(
4

5
g21 + 16g23 − 9Y2

U

)
Tr
(
Y2

U

)
+ 2

(
1

5
g21 + 3g22 − 2Y2

U

)
Y2

U

+

(
2

5
g21 − 2Y2

U − 2Y2
D − Tr

(
3Y2

D + Y2
L

))
Y2

D

− 3Tr
(
3Y4

U + Y2
UY2

D

)
+ g21

(
2743

450
g21 + g22 +

136

45
g23

)
+ g22

(
15

2
g22 + 8g23

)
− 16

9
g43

]
(B.24)

β
(2ℓ)
YD

= YD

[(
4

5
g21 − 2Y2

U − 3Tr
(
Y2

U

))
Y2

U +
6

5
g21Tr

(
Y2

L

)
+

(
4

5
g21 + 6g22 − 2Y2

U − 4Y2
D − 3Tr

(
3Y2

D + Y2
L

))
Y2

D

− 2

(
1

5
g21 − 8g23

)
Tr
(
Y2

D

)
− 3Tr

(
3Y4

D + Y2
UY2

D + Y4
L

)
+ g21

(
287

90
g21 + g22 +

8

9
g23

)
+ g22

(
15

2
g22 + 8g23

)
− 16

9
g43

]
(B.25)

β
(2ℓ)
YL

= YL

[(
−2

5
g21 + 16g23

)
Tr
(
Y2

D

)
− 3Tr

(
3Y4

D + Y2
UY2

D + Y4
L

)
−
(
4Y2

L − 6g22 + 3Tr
(
3Y2

D + Y2
L

))
Y2

L

+ g21

(
6

5
Tr
(
Y2

L

)
+

9

5
g22 +

27

2
g21

)
+

15

2
g22

] (B.26)
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Superpotential parameter µ

The superpotential parameter µ has the two-loop RGE below.

β(2ℓ)
µ = µ

[
4

(
1

5
g21 + 4g23

)
Tr
(
Y2

U

)
− 2

(
1

5
g21 − 8g23

)
Tr
(
Y2

D

)
+

6

5
g21Tr

(
Y2

L

)
− 3Tr

(
3(Y4

U + Y4
D) + Y4

L + 2Y2
UY2

D

)
+ 9g21

(
23

50
g21 +

1

5
g22

)
+

15

2
g42

]
(B.27)

B.2.2 Soft parameters

Soft trilinear couplings

The two-loop soft trilinear coupling RGEs are listed below. These equations are

expressed as real, diagonal 3× 3 matrices.
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β(2ℓ)
aU

= aU

[ (
12g22 − 4Y2

D − 6Y2
U − 15Tr

(
Y2

U

))
Y2

U

+

(
2

5
g21 − 2Y2

D − Tr
(
3Y2

D + Y2
L

))
Y2

D

− 3Tr
(
3Y4

U + Y2
UY2

D

)
+

(
4

5
g21 + 16g23

)
Tr
(
Y2

U

)
+ g21

(
2743

450
g21 + g22 +

136

45
g23

)
+ g22

(
15

2
g22 + 8g23

)
− 16

9
g43

]

+ YU

[
− 2

(
9Tr(aUYU) + 7aUYU + 2aDYD

+
2

5
g21M1 + 6g22M2

)
Y2

U

−
(
Tr (6aDYD + 2aLYL) + 8aDYD + 2aUYU +

4

5
g21M1

)
Y2

D

+ 6

(
1

5
g21 + g22 − 2Tr

(
Y2

U

))
aUYU

+

(
4

5
g21 − Tr

(
6Y2

D + 2Y2
L

))
aDYD

+ 8

(
1

5
g21 + 4g23

)
Tr (aUYU)− 8

(
1

5
g21M1 + 4g23M3

)
Tr
(
Y2

U

)
− 6Tr

(
6Y3

UaU + YUY2
DaU + YDY2

UaD

)
− 2g21

(
2743

225
g21M1 + g22(M1 +M2) +

136

45
g23(M1 +M3)

)
− 2g22

(
15g22M2 − 8g23(M2 +M3)

)
+

64

9
g43M3

]
(B.28)
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β(2ℓ)
aD

= aD

[(
4

5
g21 − 3Tr

(
Y2

U

)
− 2Y2

U − 4Y2
D

)
Y2

U

+

(
6

5
g21 + 12g22 − 6Y2

D − 5Tr
(
3Y2

D + Y2
L

))
Y2

D

−
(
2

5
g21 − 16g23

)
Tr
(
Y2

D

)
+

6

5
g21Tr(Y2

L)

− 3Tr
(
3Y4

D + Y2
UY2

D + Y2
L

)
+ g21

(
287

90
g21 + g22 +

8

9
g23

)
+ g22

(
15

2
g22 + 8g23

)
− 16

9
g43

]

+ YD

[
− 2

(
4

5
g21M1 + aDYD + 4aUYU + 3Tr(aUYU)

)
Y2

U

− 2

(
4

5
g21M1 + 6g22M2 − 2aUYU − 7aDYD

− 3Tr (3aDYD + aLYL)

)
Y2

D

+ 2

(
4

5
g21 − 3Tr

(
Y2

U

))
aUYU

+ 2

(
3

5
g21 + 3g22 − 2Tr

(
3Y2

D + Y2
L

))
aDYD

− 6Tr
(
6aDY3

D + aUYUY2
D + aDYDY2

U + 2aLY3
L

)
− 4

(
1

5
g21 − 8g23

)
Tr (aDYD) +

12

5
g21Tr (aLYL)

+ 4

(
1

5
g21M1 − 8g23M3

)
Tr
(
Y2

D

)
− 12

5
g21M1Tr

(
Y2

L

)
− 2

(
287

45
g21M1 + g22(M1 +M2) +

16

9
g23(M1 +M3)

)
− 2g22

(
15g22M2 + 8g23(M2 +M3)

)
+

64

9
g43M3

]

(B.29)
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β(2ℓ)
aL

= aL

[(
−2

(
3

5
g21 − 6g22

)
− 6Y2

L − 5Tr
(
3Y2

D + Y2
L

))
Y2

L

+
6

5
g21Tr

(
Y2

L

)
− 2

(
1

5
g21 − 8g23

)
Tr
(
Y2

D

)
− 3Tr

(
3Y4

D + Y4
L + Y2

UY2
D

)
+ 3g21

(
9

2
g21 +

3

5
g22

)
+

15

2
g42

]

+ YL

[
− 2

(
6g22M2 + 7aLYL + 3Tr (3aDYD + aLYL)

)
Y2

L

+ 2

(
3

5
g21 + 3g22 − 2Tr

(
3Y2

D + Y2
L

))
aLYL

− 6Tr
(
6aDY3

D + 2aLY3
L + aUYUY2

D + aDYDY2
U

)
− 12

5
g21M1Tr

(
Y2

L

)
+

12

5
g21Tr (aLYL)

− 4

(
1

5
g21 − 8g23

)
Tr (aDYD)

+ 4

(
1

5
g21M1 − 8g23M3

)
Tr
(
Y2

D

)
− 18

(
3g21M1 +

1

5
g22 (M1 +M2)

)
− 30g42M2

]

(B.30)
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Higgs bilinear parameter

The soft Higgs bilinear parameter b = Bµ has the two-loop RGE below.

β
(2ℓ)
b =

b

µ
β(2ℓ)
µ

+ µ

[
8

(
1

5
g21 + 4g23

)
Tr (aUYU)− 4

(
1

5
g21 − 8g23

)
Tr(aDYD)

+
12

5
g21Tr (aLYL)− 8

(
1

5
g21M1 + 4g23M3

)
Tr
(
Y2

U

)
+ 4

(
1

5
g21M1 − 8g23M3

)
Tr
(
Y2

D

)
− 12

5
g21M1Tr

(
Y2

L

)
− 12Tr

(
3(aUY3

U + aDY3
D) + aUYUY2

D + aDYDY2
U + aLY3

L

)
− 18

5
g21

(
23

5
g21M1 + g22(M1 +M2)

)
− 30g42M2

]

(B.31)

B.2.3 Soft masses

Gaugino masses

The two-loop SSB gaugino mass RGEs are listed below. i and j index the Standard

Model gauge group as described in Table B.1. The coefficients bji and Cf
i are

given in Eqs. (B.21,B.22).

β
(2ℓ)
Mi

= 2g2i

{
3∑

j=1

bjig
2
j (Mi +Mj) +

∑
f=U,D,L

Cf
i

[
Tr (Yfaf )

−MiTr
(
Y2

f

) ]} (B.32)
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Scalar masses

For the SSB scalar squared mass two-loop RGEs, we utilize the shorthand notation

in Eq. (B.13) and the following.

S̃ ′ = Tr
[
(4M2

Ũ
−M2

Q̃
− 3m2

Hu
)Y2

U

]
− Tr

[(
M2

Q̃
+ 2M2

Ũ
− 3m2

Hd

)
Y2

D

]
+ Tr

[(
M2

L̃
− 2M2

Ẽ
+m2

Hd

)
Y2

L

]
+

[
1

30
g21 +

3

2
g22 +

8

3
g23

]
Tr(M2

Q̃
)− 16

3

(
1

5
g21 + g23

)
Tr
(
M2

Ũ

)
+

2

3

(
1

5
g21 + 4g23

)
Tr
(
M2

D̃

)
+ 3

(
1

10
g21 +

1

2
g22

)[
m2

Hu
−m2

Hd
− Tr

(
M2

L̃

)]
+

6

5
g21Tr

(
M2

Ẽ

)

(B.33)

σ1 =
g21
5

[
3(m2

Hu
+m2

Hd
) + Tr

(
M2

Q̃
+ 8M2

Ũ
+ 2M2

D̃
+ 3M2

L̃
+ 6M2

Ẽ

)]
(B.34)

σ2 = g22

[
m2

Hu
+m2

Hd
+ Tr

(
3M2

Q̃
+M2

L̃

)]
(B.35)

σ3 = g23Tr
(
2M2

Q̃
+M2

Ũ
+M2

D̃

)
(B.36)

with the squared mass matrices of the squarks and sleptons real and diagonalized

in generation space. Below we list the Higgs and scalar squared mass RGEs at

one-loop order.
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Higgs masses

β
(2ℓ)

m2
Hu

=− 36Tr
[
(M2

Q̃
+M2

Ũ
+m2

Hu
)Y4

U

]
− 6Tr

[
(2M2

Q̃
+M2

Ũ
+M2

D̃
+m2
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+m2
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)Y2

UY2
D
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[(
12a2
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D
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]
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1

5
g21 + 4g23

)
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[(
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Q̃
+M2

Ũ
+m2

Hu

)
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U + a2
U

]
+

16

5
g21
[
M2

1Tr
(
Y2

U

)
−M1Tr (aUYU)

]
+ 64g23

[
M2

3Tr
(
Y2

U

)
−M3Tr (aUYU)

]
+

3

5
g21

[
207

5
g21M

2
1 + 6g22(M

2
1 +M2

2 +M1M2) + 2S̃ ′ + σ1

]

+ 3g22
(
11g22M

2
2 + σ2

)

(B.37)
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β
(2ℓ)

m2
Hd

=− 36Tr
[
(M2

Q̃
+M2

D̃
+m2
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)Y4

D

]
− 6Tr
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Ũ
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D̃
+m2
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)
Y4

L

]
− 6Tr
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U

)
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D + a2
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]
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1

5
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)
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D̃
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)
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5
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1Tr
(
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D
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(
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[
(M2
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+M2

Ẽ
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Hd
)Y2

L

]
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)
+

3

5
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[
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5
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2
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2
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]

+ 3g22
(
11g22M

2
2 + σ2

)

(B.38)

Squark masses

The two-loop soft squark squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3× 3 matrix form.
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β
(2ℓ)

M2
Q̃

= 2Y2
U

[
4

5
g21

(
M2

Q̃
+M2

Ũ
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Hu
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1

)
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)Y2
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Ũ
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Ũ
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2
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+
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(B.39)
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Ũ
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Ũ
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Ũ
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Ũ
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Ũ
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Ũ
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D
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+
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Ũ
+M2

D̃
+m2

Hd

)
Y2

D + a2
D

]

+ 4Y2
D

[
2

5
g21M

2
1 + 6g22M
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Ũ
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+
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+
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(B.41)

Slepton masses

The two-loop soft slepton squared mass RGEs are listed below. The RGEs are

presented in the real, diagonal 3× 3 matrix form.
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[
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3

(
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5
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Appendix C

Stability conditions for proper EWSB

The conditions for proper electroweak symmetry breaking (EWSB) can provide

strong constraints on the parameter space of the MSSM, especially in the context

of the string landscape and in comparing models of physically realizable super-

symmetry. In this Appendix, we review and formalize the conditions required

to ensure proper electroweak symmetry breaking, based on the nature of critical

points in the field space of the scalar potential Eq. (A.1).

The well-known tree-level conditions and the less well-known loop-level condi-

tions for proper EWSB in the MSSM are listed below, with elaboration on the

notion of vacuum stability, as the literature tends to misrepresent classifications

of vacuum stability with regards to EWSB. Minimization of the scalar potential

occurs as in Appendix A, where the scalar potential V (h0u, h
0
d) is a function of the

neutral Higgs fields, and at some point(s) in field space, critical points occur:

∂V

∂h0u
=
∂V

∂h0d
= 0.

Such a point will satisfy the equations Eq. (A.3-A.5) at tree-level, and then at

loop level with the inclusion of the corrections in Eq. (A.9-A.10).
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C.1 Destabilizing the origin of field space

C.1.1 Tree level

We begin with the tree-level scalar potential Eq. (A.2). Two conditions exist to

guarantee the stability of the vacuum and that EWSB occurs properly. The first

is to check whether the scalar potential fails to develop a minimum at the origin

of neutral scalar field space, where h0u = 0 = h0d. If not, then the Higgs scalars will

fail to develop non-zero VEVs, and EWSB will fail to occur as expected. Two

possibilities arise for an unstable origin of field space, which is naturally a critical

point of the scalar potential: either the origin is a saddle point of field space, or it

is a maximum. In order to accurately classify the stability of these critical points,

we must construct the matrix of derivatives of the tree-level scalar potential Vtree,

called the Hessian. The form of the Hessian is listed below for a general (real)

point (h0u, h
0
d) of field space.

H
[
Vtree(h

0
u, h

0
d)
]
=

 ∂2Vtree

(∂h0
u)

2
∂2Vtree

∂h0
u∂h

0
d

∂2Vtree

∂h0
u∂h

0
d

∂2Vtree

(∂h0
d)

2

 (C.1)

At a critical point of field space, one can perform the multivariable second

derivative test with this Hessian. If a critical point has a Hessian whose eigenvalues

are opposite sign, then the critical point is a saddle point. Since the determinant

is equal to the product of the eigenvalues, then this condition amounts to checking

whether the determinant of the Hessian Eq. (C.1) is negative.

However, if the determinant is instead positive, we must check one more
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condition to test whether the point of field space is a minimum or maximum, as

the determinant alone here is insufficient for proper analysis. The determinant

being positive implies that both of the Hessian’s eigenvalues are the same sign,

which can occur if both values are negative, or if both are positive. Thus, one must

check the signs of one of the diagonal entries of the Hessian here to determine the

nature of the critical point. For example, if at a critical point whose Hessian has

positive determinant, and

∂2V

(∂h0u)
2
< (>) 0,

then that critical point will be a maximum (minimum) by this second derivative

test.

At tree level and at the origin of field space, the Hessian takes the form below.

H [V (0, 0)] =

m2
Hu

+ µ2 −b

−b m2
Hd

+ µ2

 (C.2)

If the origin is a saddle point of field space, then this would mean that

det(H [V (0, 0)]) < 0 =⇒

(m2
Hu

+ µ2)(m2
Hd

+ µ2) < b2
(C.3)

If instead the inequality sign is flipped in Eq. (C.3), but Tr (H [V (0, 0)]) < (>) 0,

then the origin will be a maximum (minimum), and the origin will succeed (fail)

in destabilization. The qualitative effects of these results are summarized in Table

C.1. In the case where the origin is a maximum, extra care must be taken to
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ensure that the CP-odd pseudoscalar Higgs mass remains positive at loop level,

as the tree-level expression here implies that m2
A < 0.

Stability type Hessian determinant sign Hessian diagonal sign

Saddle point − Not needed

Minimum + +

Maximum + −

Table C.1: Summary of the requirements on the scalar potential’s
Hessian for classifying the stability of critical points of field space for
EWSB. Highlighted rows are potentially phenomenologically allowed
cases at the origin of field space, so that this origin is destabilized and
EWSB can occur as expected.

C.1.2 Loop level

At loop level, it is possible that destabilization of a tree-level stable vacuum field

space’s origin can occur. To examine the effects of this, one must consider the

loop-corrected effective potential in Eq. (A.1) and adjust the Hessian in Eq. (C.2)

accordingly. This loop-corrected Hessian is listed below.

H [V (0, 0)] =


m2

Hu
+ µ2 + ∂2∆V

(∂h0
u)

2

∣∣∣∣
h0
u=h0

d=0

−b+ ∂2∆V
∂h0

u∂h
0
d

∣∣∣∣
h0
u=h0

d=0

−b+ ∂2∆V
∂h0

u∂h
0
d

∣∣∣∣
h0
u=h0

d=0

m2
Hd

+ µ2 + ∂2∆V
(∂h0

d)
2

∣∣∣∣
h0
u=h0

d=0

 (C.4)

By taking the determinant of this matrix and utilizing Table C.1, one can determine

the stability of the origin of field space for EWSB at loop level. The second

derivatives in Eq. (C.4) may be computed via derivatives of the expressions in

Appendix A, then limiting vu → 0, vd → 0, while leaving their ratio vu/vd = tan(β)
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fixed, since the field-dependent masses by extension depend somewhat on the

specific value of β. These expressions are listed below.

Second derivatives on the diagonal of the Hessian of the form

∂2∆V(
∂h0u,d

)2 ≡ Σ
(2)
uu,dd

can be expressed as follows.

Σ
(2)
uu,dd =

∑
i

{
1

32π2
qiCi(−1)2si(2si + 1)

×

[(
∂m2

i

∂vu,d

)2

log

(
m2

i

Q2

)

+m2
i

(
∂2m2

i

(∂vu,d)
2

)(
log

(
m2

i

Q2

)
− 1

)]}∣∣∣∣∣
vu=vd=0

(C.5)

Second derivatives on the off-diagonal of the Hessian of the form

∂2∆V

∂h0u∂h
0
d

=
∂2∆V

∂h0d∂h
0
u

≡ Σ
(2)
ud

can be expressed as follows.

Σ
(2)
ud =

∑
i

{
1

32π2
qiCi(−1)2si(2si + 1)

×

[
∂m2

i

∂vu

∂m2
i

∂vd
log

(
m2

i

Q2

)

+m2
i

(
∂2m2

i

∂vu∂vd

)(
log

(
m2

i

Q2

)
− 1

)]}∣∣∣∣∣
vu=vd=0

(C.6)

The individual contributions Σ
(2)
uu,dd,ud are listed in the following subsections, having
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taken vu,d → 0 in such a way that we maintain their ratio vu/vd = tan(β). This

limiting towards the origin of field space is performed after the derivatives with

respect to the appropriate fields are taken.

SM particles

The one-loop contributions to the vacuum stability condition for Standard Model

particles are listed below.

Gauge bosons

The radiative corrections to the vacuum stability conditions vanish upon taking

the limit v → 0 for the W and Z SM gauge bosons.

Σ(2)
uu (Z) = Σ

(2)
dd (Z) = Σ

(2)
ud (Z) = 0 (C.7)

Quarks and leptons

Similar to the gauge bosons, the radiative corrections to the vacuum stability

conditions vanish upon taking the limit v → 0 for the SM fermions fSM (quarks

and leptons).

Σ(2)
uu (fSM) = Σ

(2)
dd (fSM) = Σ

(2)
ud (fSM) = 0 (C.8)
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SUSY particles

The one-loop contributions to the vacuum stability condition for SUSY particles

are listed below.

Higgs bosons

For the neutral Higgs bosons, the diagonal terms of the Hessian are given below.

Σ(2)
uu (h

0) = Σ
(2)
dd (h

0) = 0 (C.9)

Σ(2)
uu (H

0) =
(g2 + g′2)

8π2

[
m2

A0 cos4(β) (2 cos(2β)− 1)

(
log

(
m2

A0

Q2

)
− 1

)]
(C.10)

Σ
(2)
dd (H

0) =
−(g2 + g′2)

8π2

[
m2

A0 sin4(β) (2 cos(2β) + 1)

(
log

(
m2

A0

Q2

)
− 1

)]
(C.11)

The off-diagonal second derivatives take the forms below.

Σ
(2)
ud (h

0) = 0 (C.12)

Σ
(2)
ud (H

0) =
(g2 + g′2)

16π2

[
m2

A0 sin3(2β)

(
log

(
m2

A0

Q2

)
− 1

)]
(C.13)

For the charged Higgs bosons, the diagonal terms of the Hessian are given

below.

Σ(2)
uu (H

±) = Σ
(2)
dd (H

±) =
g2

16π2
m2

A0

[
log

(
m2

A0

Q2

)
− 1

]
(C.14)
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The off-diagonal second derivatives vanish.

Σ
(2)
ud (H

±) = 0 (C.15)

Neutralinos

The neutralino terms are more computationally challenging to obtain due to the

fact that the neutralino mass squared eigenvalues arise from solutions to the fourth

degree characteristic polynomial of the mass matrix squared. Alternatively, as in

Appendix A, we can compute derivatives of the eigenvalues of the unsquared mass

matrix through the chain rule on its characteristic polynomial. A straightforward

application of the chain rule reveals the general form of the second derivative we

desire below.

∂2m2
Z̃0,i

∂y∂x
= 2

[
∂mZ̃0,i

∂y

∂mZ̃0,i

∂x
+mZ̃0,i

∂2mZ̃0

∂x∂y

]
(C.16)

Letting x, y be vu and/or vd then permits us to compute the eigenvalues

with the following formula, obtained via the chain rule from the characteristic

polynomial of the unsquared mass matrix, whose coefficients are given in Eqs.

(A.36 - A.39). First derivatives take the form here. Simplifications have been

made, considering that ∂a/∂vu,d = 0, as seen in Eq. (A.36).

∂mZ̃0,i

∂vu,d
= −

[
∂b

∂vu,d
λ2 + ∂c

∂vu,d
λ+ ∂d

∂vu,d

4λ3 + 3aλ2 + 2bλ+ c

]
λ=m

Z̃0,i

(C.17)

The second derivatives then follow, where x or y can be vu and/or vd, depending

on the derivative in question. We denote the i’th eigenvalue of the neutralino
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mass matrix as λ = mZ̃0,i, where i = 1− 4.

∂2λ

∂y∂x
=

{
(12λ2 + 6aλ+ 2b) ∂λ

∂y
+ 2λ ∂b

∂y
+ ∂c

∂y

(4λ3 + 3aλ2 + 2bλ+ c)2

−

[(
2λ ∂b

∂x
+ ∂c

∂x

)
∂λ
∂y

+
(

∂2b
∂y∂x

λ2
)
+
(

∂2c
∂y∂x

λ
)
+
(

∂2d
∂y∂x

)]
4λ3 + 3aλ2 + 2bλ+ c

} (C.18)

The explicit expressions obtained are long and unwieldy. However, after taking

the limit of vu,d → 0, the result simplifies well. Algebraically, it can be shown that

terms of the form ∂λ
∂vu,d

vanish when we take vu,d = 0 (after the derivative), where

λ = mZ̃0,i and i = 1 − 4. The first derivatives of the characteristic polynomial

coefficients also vanish at the origin of field space. However, some of the second

derivatives of the characteristic polynomial coefficients survive and are listed

below – all others vanish.

∂2b

(∂vu)
2

∣∣∣∣∣
vu=vd=0

=
∂2b

(∂vd)
2

∣∣∣∣∣
vu=vd=0

= −
(
g2 + g′2

)
(C.19)

∂2c

(∂vu)
2

∣∣∣∣∣
vu=vd=0

=
∂2b

(∂vd)
2

∣∣∣∣∣
vu=vd=0

=M1g
2 +M2g

′2 (C.20)

∂2c

∂vu∂vd

∣∣∣∣∣
vu=vd=0

= −
(
g2 + g′2

)
µ (C.21)

∂2d

∂vu∂vd

∣∣∣∣∣
vu=vd=0

=
(
M1g

2 +M2g
′2)µ (C.22)

With these evaluations complete, the full form of the second derivatives is

listed below. We denote a neutralino mass mZ̃0,i evaluated at the origin of field

space by λ̃. The expressions for the neutralino masses simplify tremendously at
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the origin of field space. Evaluating the eigenvalues of the neutralino mass matrix

at the origin of field space simply reveals the following eigenvalues.

λ̃ ∈ {µ,−µ,M1,M2} (C.23)

The second derivatives of the neutralino eigenvalues at the origin of field space

are below.

∂2λ

(∂vu,d)
2

∣∣∣∣∣
λ=m

Z̃0,i

vu=vd=0

=
(g2 + g′2)λ̃2 − (M1g

2 +M2g
′2)λ̃

4λ̃3 − 3(M1 +M2)λ̃2 + (2(M1M2 − µ2))λ̃−M1M2µ2
(C.24)

∂2λ

∂vu∂vd

∣∣∣∣∣
λ=m

Z̃0,i

vu=vd=0

=
(g2 + g′2)µλ̃− (M1g

2 +M2g
′2)µ

4λ̃3 − 3(M1 +M2)λ̃2 + (2(M1M2 − µ2))λ̃−M1M2µ2
(C.25)

Finally, the one-loop neutralino contributions to the scalar potential’s Hessian

then take the following forms.

Σ(2)
uu

(
Z̃0

i

)
= Σ

(2)
dd

(
Z̃0

i

)
= − λ̃3

8π2

[
log

(
λ̃2

Q2

)
− 1

] ∂2λ

(∂vu,d)
2

∣∣∣∣∣
λ=m

Z̃0,i

vu=vd=0

 (C.26)

Σ
(2)
ud

(
Z̃0

i

)
= − λ̃3

8π2

[
log

(
λ̃2

Q2

)
− 1

] ∂2λ

∂vu∂vd

∣∣∣∣∣
λ=m

Z̃0,i

vu=vd=0

 (C.27)

Charginos

The one-loop chargino contributions to the scalar potential’s Hessian are listed

below. The lighter eigenstate (index 1) corresponds to the upper signs, and the
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heavier eigenstate (index 2) corresponds to the lower signs.

Σ(2)
uu

(
C̃±

1,2

)
= Σ

(2)
dd

(
C̃±

1,2

)
=

∓g2

16π2

(M2
2 + µ2 ∓ |M2

2 − µ2|)2

|M2
2 − µ2|

×
[
log

(
M2

2 + µ2 ∓ |M2
2 − µ2|

2Q2

)
− 1

] (C.28)

Σ
(2)
ud

(
C̃±

1,2

)
=

±g2M2µ

16π2

(M2
2 + µ2 ∓ |M2

2 − µ2|)
|M2

2 − µ2|

×
[
log

(
M2

2 + µ2 ∓ |M2
2 − µ2|

2Q2

)
− 1

] (C.29)

Squarks

The one-loop up-type squark Ũg of generation g contributions to the scalar

potential’s Hessian are listed below. Here, m2
Ũg

denotes the mass of the right-

handed SSB up-type gauge eigenstate squark running squared mass of generation

g. Σ
(2)
uu

(
Ũg,i

)
with i = 1, 2 denotes the one-loop Hessian contribution from the

i’th up-squark mass eigenstate of generation g (i = 1 for the lighter state or 2 for

the heavier state as usual). The top sign corresponds to the lighter eigenstate,
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and the bottom sign corresponds to the heavier eigenstate.

Σ(2)
uu

(
Ũg,1,2

)
=

±
(
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣)
128π2

∣∣∣m2
Q̃g

−m2
Ũg

∣∣∣
×

log
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣
2Q2

− 1


×

[ (
3g2 − 10g′2

) (
m2

Q̃g
−m2

Ũg

)
− 24a2Ug

∓ 3
(
g2 + 2g′2 − 8y2Ug

) ∣∣∣m2
Q̃g

−m2
Ũg

∣∣∣ ]
(C.30)

Σ
(2)
dd

(
Ũg,1,2

)
=

∓
(
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣)
128π2

∣∣∣m2
Q̃g

−m2
Ũg

∣∣∣
×

log
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣
2Q2

− 1


×

[ (
3g2 − 10g′2

) (
m2

Q̃g
−m2

Ũg

)
+ 24y2Ug

µ2

∓ 3
(
g2 + 2g′2

) ∣∣∣m2
Q̃g

−m2
Ũg

∣∣∣ ]
(C.31)

Σ
(2)
ud

(
Ũg,1,2

)
=

±3aUgyUgµ

16π2

∣∣∣m2
Q̃g

−m2
Ũg

∣∣∣
×

log
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣
2Q2

− 1


×
(
m2

Q̃g
+m2

Ũg
∓
∣∣∣m2

Q̃g
−m2

Ũg

∣∣∣)
(C.32)

The one-loop down-type squark D̃g of generation g contributions to the scalar

potential’s Hessian are listed below. Here, m2
D̃g

denotes the mass of the right-

handed SSB down-type gauge eigenstate squark running squared mass of genera-
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tion g. Σ
(2)
uu

(
D̃g,i

)
with i = 1, 2 denotes the one-loop Hessian contribution from

the i’th down-squark mass eigenstate of generation g (again, i = 1 for the lighter

state or 2 for the heavier state as usual). Once more, the top sign corresponds to

the lighter eigenstate, and the bottom sign corresponds to the heavier eigenstate.

Σ(2)
uu

(
D̃g,1,2

)
=

∓
(
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣)
128π2

∣∣∣m2
Q̃g

−m2
D̃g

∣∣∣
×

log
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣
2Q2

− 1


×

[ (
3g2 − 2g′2

) (
m2

Q̃g
−m2

D̃g

)
+ 24y2Dg

µ2

∓ 3
(
g2 + 2g′2

) ∣∣∣m2
Q̃g

−m2
D̃g

∣∣∣ ]
(C.33)

Σ
(2)
dd

(
D̃g,1,2

)
=

±
(
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣)
128π2

∣∣∣m2
Q̃g

−m2
D̃g

∣∣∣
×

log
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣
2Q2

− 1


×

[ (
3g2 − 2g′2

) (
m2

Q̃g
−m2

D̃g

)
− 24a2Dg

∓ 3
(
g2 + 2g′2 − 8y2Dg

) ∣∣∣m2
Q̃g

−m2
D̃g

∣∣∣ ]
(C.34)

Σ
(2)
ud

(
D̃g,1,2

)
=

±3aDgyDgµ

16π2

∣∣∣m2
Q̃g

−m2
D̃g

∣∣∣
×

log
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣
2Q2

− 1


×
(
m2

Q̃g
+m2

D̃g
∓
∣∣∣m2

Q̃g
−m2

D̃g

∣∣∣)
(C.35)
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Sleptons

The one-loop charged slepton Ẽg of generation g contributions to the scalar

potential’s Hessian are listed below. Here, m2
Ẽg

denotes the mass of the right-

handed SSB gauge eigenstate charged slepton running squared mass of generation

g. Σ
(2)
uu

(
Ẽg,i

)
with i = 1, 2 denotes the one-loop Hessian contribution from the

i’th charged slepton mass eigenstate of generation g (again, i = 1 for the lighter

state or 2 for the heavier state as usual). Once more, the top sign corresponds to

the lighter eigenstate, and the bottom sign corresponds to the heavier eigenstate.

Σ(2)
uu

(
Ẽg,1,2

)
=

∓
(
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣)
128π2

∣∣∣m2
L̃g

−m2
Ẽg

∣∣∣
×

log
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣
2Q2

− 1


×

[ (
g2 − 6g′2

) (
m2

L̃g
−m2

Ẽg

)
+ 8y2Eg

µ2

∓
(
g2 + 2g′2

) ∣∣∣m2
L̃g

−m2
Ẽg

∣∣∣ ]
(C.36)

Σ
(2)
dd

(
Ẽg,1,2

)
=

±
(
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣)
128π2

∣∣∣m2
L̃g

−m2
Ẽg

∣∣∣
×

log
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣
2Q2

− 1


×

[ (
g2 − 6g′2

) (
m2

L̃g
−m2

Ẽg

)
− 8a2Eg

∓
(
g2 + 2g′2 − 8y2Eg

) ∣∣∣m2
L̃g

−m2
Ẽg

∣∣∣ ]
(C.37)
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Σ
(2)
ud

(
Ẽg,1,2

)
=

±aEgyEgµ

16π2

∣∣∣m2
L̃g

−m2
Ẽg

∣∣∣
×

log
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣
2Q2

− 1


×
(
m2

L̃g
+m2

Ẽg
∓
∣∣∣m2

L̃g
−m2

Ẽg

∣∣∣)
(C.38)

Finally, the one-loop neutral slepton (sneutrino) ν̃g of generation g contribu-

tions to the scalar potential’s Hessian are listed below.

Σ(2)
uu (ν̃g) =

− (g2 + g′2)

64π2
m2

L̃g

[
log

(
m2

L̃g

Q2

)
− 1

]
(C.39)

Σ
(2)
dd (ν̃g) =

(g2 + g′2)

64π2
m2

L̃g

[
log

(
m2

L̃g

Q2

)
− 1

]
(C.40)

Σ
(2)
ud (ν̃g) = 0 (C.41)

C.2 Bounding the scalar potential from below

C.2.1 Tree level

In addition to requiring that the origin of field space be destabilized, it is also

important for vacuum stability that the Higgs scalar potential remains bounded

from below and does not precipitously run off to unbounded, large, negative values

for arbitrarily large values of the Higgs fields h0u,d. Due to the form of the scalar

potential at tree level, Eq. (A.2), the risk of being unbounded from below mainly

arises from directions of field space termed D-flat directions, i.e., where |h0u| = |h0d|.

In such directions, the quartic term of Eq. (A.2) will cancel. Then requiring that
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the scalar potential in this direction is positive for arbitary D-flat field values

amounts to the second EWSB condition below.

2b < (m2
Hu

+m2
Hd

+ 2µ2) (C.42)

Should Eq. (C.42) fail to hold, then issues arise at the very least with the

minimization process, as we can no longer find a real mixing angle β in the

half-open interval [π/4, π/2) that satisfies the tree-level minimization condition

Eq. (A.3). It is possible that this is rectified at loop level, but bodes as a very

bad sign for proper EWSB and a stable vacuum to occur.

C.2.2 Loop level

Similar to in Appendix C.1.2, one may obtain a loop-corrected version of Eq.

(C.42) by adding the loop corrections in Eq. (A.1) to the analysis in Appendix

C.2.1. Then, for any arbitrary D-flat value of the Higgs fields |h0u| = |h0d| = γ –

which also implies tan(β) → 1 – one may try to näıvely update Eq. (C.42) to the

expression below.

2b < m2
Hu

+m2
Hd

+ 2µ2 +
1

γ2
∆V

∣∣∣∣
D-flat

∼ m2
Hu

+m2
Hd

+ 2µ2 +
1

γ2
∆V

∣∣∣∣
tan(β)→1,vu→γ,vd→γ

(C.43)

This may seem correct, especially since for very large values of |h0u| = |h0d| = γ,

the loop contributions ∆V are suppressed by γ−2. However, care must still be

taken in ensuring the expected behavior for large field values.
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In the D-flat directions of field space, at tree level, the dominant terms for

large Higgs field values γ in the scalar potential are O(γ2). At the one-loop level,

however, the dominant terms in the scalar potential actually are O(γ2 log(γ)),

which grows faster for large field values than the tree-level expression. This

asymptotic nature of the scalar potential is summarized in Table C.2.

Tree level One-loop level

O(γ2) O(γ2 log(γ))

Table C.2: Order of the dominant terms in the Higgs scalar potential
for arbitrary large Higgs field values γ in the D-flat direction, |h0u| =
|h0d| = γ.

Thus, at the one-loop level, to check boundedness from below of the scalar

potential, it suffices to check whether ∆V → ±∞ as γ → ∞ since either case

will dominate the asymptotic behavior of Vtree. By analyzing the coefficients of

the dominant terms from Table C.2, it turns out that the coefficient is positive

definite, as shown in Eq. (C.44).

∆V1-loop, dom. ∼ g4γ2 log(γ) (C.44)

For this reason, the D-flat direction of tan(β) = 1 can never be a minimum for

arbitrarily large field values at the one-loop level. As such, in this D-flat direction,

then the one-loop level is automatically bounded from below.

At the one-loop level, one must be careful of non-D-flat directions in the

neutral Higgs field space. By keeping ourselves constrained to the standard

parameter space where tan(β) > 1, such directions will be dominated by terms of
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O(γ4u,d log(γu,d)) for large Higgs field values |h0u| = γu and |h0d| = γd. This differs

from (and dominates) the dominant tree-level terms of O(γ4u,d), as summarized

in Table C.3. By analyzing the sign of the coefficients of these dominant terms,

Tree level One-loop level

O(γ4u,d),O(γ2uγ
2
d) O(γ4u,d log(γu,d)),O(γ2uγ

2
d log(γu,d))

Table C.3: Order of the dominant terms in the Higgs scalar potential
for arbitrary large Higgs field values γu,d = |h0u,d| in a generic direction
of field space, with tan(β) = γu

γd
> 1.

one may arrive at the following condition to ensure that the scalar potential is

bounded below in the generic field space direction tan(β) > 1, presented in Eq.

(C.45). This condition should be coupled with the condition in Eq. (C.46), coming

from the loop-corrected version of Eq. (A.6), for numerical stability and to ensure

a real value of tan(β):

ΞL > cos(2β)ΞR, (C.45)

where

ΞL = 8(g2 + 2g′2)
[
3Tr

(
Y2

D − Y2
U

)
+ Tr

(
Y2

L

)]
and

ΞR = 13g4 + 299g′4 − 8
(
2g′2 + g2

) [
3Tr

(
Y2

U + Y2
D

)
+ Tr

(
Y2

L

)]
− 18g2g′2

A real value of tan(β) at loop level is achieved so long as the condition below

holds.

2b < m2
Hu

+ Σu +m2
Hd

+ Σd + 2µ2 (C.46)
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