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Abstract 

While the Standard Model (SM) of Particle Physics describes with exceptional ac-
curacy a vast amount of natural phenomena, it fails to explain certain experimental obser-
vations and theoretical challenges. Thus, extensions of the model are required to address 
these limitations. This thesis focuses on the exploration of Axion-Like Particles (ALPs) as 
a suitable extension of the SM. Given the ubiquity of ALPs in several beyond SM models, 
we employ a model-independent efective feld theory framework to investigate the potential 
interactions between ALPs and the SM particles. Subsequently, the results presented in this 
thesis can be categorized into two main parts. 

On one hand, as the experimental searches for ALPs have become increasingly diverse 
and precise, they call for the necessity to take into account radiative corrections to the ALP 
efective theory. In this thesis, the full set of one-loop corrections for the dimension-5 ALP 
Lagrangian is derived, manifesting their signifcant impact on experimental ALP searches. 
Notably, these corrections ofer an approach to probe ALP couplings that may be challenging 
to test directly but induce a sizeable impact on other interactions that are highly constrained 
by experimental data. 

On the other hand, this thesis investigates the phenomenological implications of 
ALPs in experimental high-energy searches. Specifcally, we explore the contributions of 
ALPs to rare processes within collider searches. For instance, a novel search targeting 
vector-boson scattering processes is proposed, exploiting the derivative nature of ALPs to 
probe their electroweak couplings to massive gauge bosons. Moreover, we explore the impact 
of ALPs on favor observables, with a particular emphasis on investigating favor anomalies 
associated with the B-meson sector. 

While the experimental detection of ALPs remains fruitless at present, the research 
conducted in this thesis has been productive in systematically exploring the ALP parameter 
space. Through rigorous analysis, new excluded regions within the parameter space have 
been identifed, providing valuable constraints on potential ALP couplings. Furthermore, 
these studies have suggested novel promising avenues and valuable strategies to probe these 
elusive particles in upcoming experiments. 



Resumen 

Aunque el Modelo Estándar (ME) de Física de Partículas describe con una precisión 
excepcional una vasta cantidad de fenómenos naturales, no logra explicar ciertas observa-
ciones experimentales y cuestiones teóricas. Por lo tanto, el modelo requiere de extensiones 
para abordar estas limitaciones. Esta tesis se centra en la exploración de partículas tipo 
axión (PTAs) como una posible extensión del ME. Dada la ubicuidad de las PTAs en varios 
modelos más allá del ME, empleamos el marco teórico de las teorías de campos efectivas, 
que son independientes de los modelos concretos, para investigar las posibles interacciones 
entre PTAs y las partículas del ME. Posteriormente, los resultados presentados en esta tesis 
se pueden categorizar en dos partes principales. 

Por un lado, dado que las búsquedas experimentales de PTAs se han vuelto cada vez 
más diversas y precisas, es necesario tener en cuenta las correcciones radiativas a la teoría 
efectiva de las PTAs. En esta tesis, se deriva el conjunto completo de correcciones a un loop 
para el Lagrangiano de las PTAs de dimensión 5, manifestando su impacto signifcativo en 
las búsquedas experimentales de PTAs. Específcamente, estas correcciones ofrecen un nuevo 
enfoque para investigar acoplos de las PTAs que pueden ser difíciles de testar directamente, 
pero que inducen un impacto considerable en otras interacciones áltamente constreñidas por 
los datos experimentales. 

Por otro lado, esta tesis investiga las implicaciones fenomenológicas de las PTAs en 
búsquedas experimentales de alta energía. Específcamente, exploramos las contribuciones 
de las PTAs a procesos raros en búsquedas de colisionadores. Por ejemplo, proponemos una 
nueva búsqueda centrada en los procesos de dispersión de bosones vectoriales, aprovechando 
la naturaleza derivativa de las PTAs para investigar sus acoplamientos electrodébiles con 
los bosones gauge masivos. Además, exploramos el impacto de las PTAs en observables del 
sabor, con un énfasis particular en investigar las anomalías de sabor asociadas al sector de 
los mesones B. 

Aunque la detección experimental de PTAs sigue siendo infructuosa en la actuali-
dad, la investigación realizada en esta tesis ha sido productiva en la exploración sistemática 
del espacio de parámetros de las PTAs. Mediante un análisis riguroso, se han identifcado 
nuevas regiones excluidas dentro del espacio de parámetros, proporcionando valiosas res-
tricciones sobre posibles acoplamientos de las PTAs. Además, estos estudios han sugerido 
nuevas y prometedoras vías y estrategias para investigar estas elusivas partículas en futuros 
experimentos. 
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Motivations and goals 

The Standard Model (SM) of particle physics [8–13] provides a framework for un-
derstanding three out of the four fundamental forces of nature that govern the interactions 
among the fundamental building blocks of matter of the visible world: the strong interaction, 
the weak interaction and electromagnetism. The SM has been extensively tested in a wide 
variety of experiments and has accurately predicted many observations at collider energy 
scales and below with an extraordinary accuracy. 

Notwithstanding the considerable achievements of the SM, there remain still empir-
ical observations that cannot be satisfactorily explained by this theory (in addition to our 
lack of understanding of gravitation at the quantum level). Among these, the most notable 
are: 

• Dark matter: Cosmological observations have indicated that only 5% of the energy 
density in our universe is composed of ordinary matter. About 26% should be made 
of cold dark matter, which only interacts weakly (if at all aside from gravity) with SM 
particles. Yet, the SM does not supply any suitable fundamental particle candidate for 
this new type of matter. 

• Dark energy: About 69% of the energy density in our universe is in the form of 
“dark energy”. This expression encodes a constant energy density for the vacuum, 
which is responsible of the accelerated expansion of the universe. However, attempts to 
intuitively understand this energy as a vacuum energy of the SM felds lead to a huge 
mismatch with respect to cosmological observations. 

• Neutrino masses: As originally formulated, neutrinos are massless particles in the 
SM. However, the empirical observation of neutrino oscillations implies that at least 
two neutrino masses are diferent from zero. The actual mechanism that gives rise to 
these masses and explains their smallness, as well as the Dirac or Majorana nature of 
neutrinos, is still unknown. 

• Matter-antimatter asymmetry: Astrophysical observations indicate that the uni-
verse is mostly made of matter. However, the SM predicts that matter and antimatter 
should be produced in almost equal amounts in early stages of the universe (assuming 
there is no asymmetry as an initial condition). Despite the fact that SM provides the 
“ingredients” to produce matter-antimatter asymmetry, these have been proven to be 
insufcient to explain the observed amount of asymmetry. 
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In addition to the aforementioned evidences for physics beyond the SM (BSM), some 
experimental observations have indicated deviations in other phenomena. These anomalies 
include, for example, measurements in the neutrino sector, as well as decay rates of heavy 
hadrons, such as B-mesons. However, the statistical signifcance of these anomalies is cur-
rently insufcient to classify them as evidence for new physics. On the other hand, they are 
identifed as potential probes of unexplored hidden sectors of new BSM physics. 

Furthermore, beyond the previously noted experimental questions, the structure of 
the SM itself presents certain concerns. These refer to fne-tuning issues, where certain 
parameters are required to have specifc values without any theoretical justifcation. The 
most notable fne-tuning issues in the SM include the following: 

• The electroweak hierarchy problem: Scalar particles, such as the Higgs boson, do 
not posses any symmetry that protects its mass against sensitivity to higher scales via 
radiative corrections, resulting in a quadratic dependence of the mass on that scale of 
hypothetical new physics. As a consequence, in the presence of physics with higher 
energy scales, the bare mass of the Higgs boson in the SM Lagrangian must be fne-
tuned such that those corrections are partially cancelled, leading to the experimentally 
observed “light” mass of the Higgs boson. 

• The favour puzzle: The masses of the quarks and leptons arise from their Yukawa 
interactions with the Higgs boson. However, the scale of these masses is much smaller 
than the electroweak scale, for no good reason. Strictly speaking, this is not a natural-
ness issue: Yukawa couplings are protected by the chiral symmetry of the Lagrangian 
in the limit of small masses. Yet, the orders of magnitude diferences in the fermion 
masses are puzzling. Furthermore, the remarked hierarchy among the three generations 
of fermions, plus the huge diferences in the quark and lepton mixing matrices suggest 
that there is an underlying structure yet to be discovered. 

• The strong CP problem: Quantum chromodynamics (QCD), the theory that de-
scribes strong interactions, a priori may contain a topological CP-odd term that is 
regulated by a parameter named θ, which characterizes the vacuum of the theory. This 
term should result in a non-zero contribution to the neutron electric dipole moment. 
However, current constraints on the latter require θ to be fne-tuned to an extremely 
small value: θ ≲ 10−10, which results in a restoration of the CP symmetry in the QCD 
sector. This is surprising, as it is not required by gauge invariance and CP-symmetry 
is explicitly violated in other sectors of the SM. 

In my research I have mainly focused on topics that are not directly connected to 
the latter, the strong CP problem of QCD, but are, however, inspired by and related to it. 
As mentioned above, the strong CP problem is a fne-tuning problem: mathematically there 
is no inconsistency with a value of θ equal to 0. However, such a constrained value with no 
theoretical explanation calls for an underlying BSM mechanism. Several models have been 
proposed in the literature as a possible solution to the strong CP problem. One of the most 
appealing proposals are the so-called Peccei-Quinn (PQ) solutions. These try to extend the 
SM by implementing a new global symmetry classically conserved at the Lagrangian level, 
but explicitly broken at the quantum level by a chiral anomaly via QCD instanton efects. 
Thus, a rotation of such symmetry is used to render θ unphysical. Typically, that symmetry 
is referred to as the PQ symmetry. 
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At low-energies, the PQ symmetry is spontaneously broken, originating a new light 
pseudoscalar in the spectrum, as mandated by the Goldstone theorem: the axion. Because of 
the explicit breaking of the PQ symmetry due to the chiral anomaly, the axion is not a true 
Goldstone boson (GB), but rather a pseudo-Goldstone boson (pGB). Because of this nature, 
axions typically exhibit derivative plus anomalous couplings with SM particles and have a 
small mass (induced precisely by the aforementioned chiral anomaly in QCD). Additionally, 
in a large fraction of the parameter space, the axion also turns out to constitute a perfect 
candidate for the explanation of dark matter. This attribute has turned the axion into one 
of the most appealing extensions of the SM. 

Many diferent axion models have been proposed. The most popular ones are the so-
called invisible axion models. In those, the axion energy scale is pushed up to large energies, 
which pushes down the axion mass and suppresses its couplings with SM particles, avoiding 
experimental constraints. On the other hand, in recent years extended models have allowed 
to implement solutions with heavier-than-standard and lighter-than-standard axions. 

Nevertheless, the interest on pGBs extends far beyond true axion models. Theories of 
pGBs appear in many BSM proposals, typically unrelated to the strong CP problem, as SM 
singlets. Generally, these are referred to as axion-like particles (ALPs). Some paradigmatic 
examples include the Majoron, related to the spontaneous breaking of lepton number, as a 
dynamical explanation of the smallness of neutrino masses; or axifavons, from dynamical 
favour theories. Moreover, they are also predicted in theories with extra compact dimen-
sions, for instance string theories, which predict a plethora of U(1) symmetries and ALPs. In 
practice, the main diference between a true axion and an ALP is that the former attempts 
to solve the strong CP problem, which typically imposes strict relations between the axion 
mass and energy scale. Therefore, the exploration of the ALP parameter space does not 
sufer from the stringent constraints that usually apply to the canonical QCD axion. 

Given the current absence of experimental axion and ALP signals, the ALP efective 
feld theory (EFT) ofers a model-independent approach to investigate their interactions with 
SM particles. This framework is characterized by a simple Lagrangian with few parameters, 
including the ALP mass and scale and some Wilson coefcients that encode the dependence 
on the specifc ALP model. While many previous studies have focused on efective interac-
tions with lighter particles like photons or electrons, the gauge invariant formulation of the 
efective ALP theory allows for interactions with heavier particles, such as electroweak (EW) 
bosons. These interactions exhibit a more intriguing phenomenology and can be explored 
across a broader range of energies in comparison with the usual axion low-energy searches. 
Those include, for example, collider ALP searches. These analyses hold a particular signif-
icance for specifc models with pGBs that either do not couple to light particles or possess 
masses too heavy to be probed at low-energies. 

The main goal of this thesis is to enable the discovery an axion or ALP signal at 
high energy searches or, if not detected, to derive the corresponding constraints on the ALP 
parameter space. This goal can be further subdivided into two additional objectives. On one 
hand, ALP searches have reached a level of precision and are so diverse that experimental 
sensitivity requires to compute the radiative corrections to efective ALP couplings. Thus, 
in this thesis I present the one-loop corrected ALP EFT, and explore its phenomenological 
consequences for experiments. On the other hand, I focus on ALP searches at collider 
experiments. For instance, novel searches on ALP interactions are explored. These includes 
a proposal for exploring scattering processes that are potentially mediated by of-shell ALPs, 
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testing their EW couplings. In addition, I study the impact of ALPs on several favour 
anomalies, with special emphasis on the B-meson sector and its semileptonic decays. 

This thesis is organized as follows: in Chapters 1 to 3 I present the state of art of 
the SM, axions and ALPs. Then, Chapters 4 to 6 include the original contribution of the 
thesis. The conclusions are summarized in Chapter 7. 

6 



Motivación y objetivos 

El Modelo Estándar (ME) de la física de partículas [8–13] proporciona un marco 
teórico que permite explicar tres de las cuatro fuerzas fundamentales de la naturaleza que 
rigen las interacciones entre los bloques fundamentales de la materia del mundo visible: la 
interacción fuerte, la interacción débil y el electromagnetismo. El ME ha sido ampliamente 
testado en una vasta variedad de experimentos y ha predicho con extraordinaria precisión 
muchas observaciones en las escalas de energía típicas de los colisionadores de partículas y 
por debajo de estas. 

A pesar de los considerables logros del ME, todavía existen observaciones empíricas 
que no pueden explicarse satisfactoriamente mediante esta teoría (además de nuestra falta 
de comprensión de la gravedad a nivel cuántico). Entre las más notables se encuentran: 

• Materia oscura: Las observaciones cosmológicas han indicado que solo el 5 % de la 
densidad de energía en nuestro universo está compuesta de materia ordinaria. Alrededor 
del 26 % debería estar formado por materia oscura fría, que solo interactuaría débilmente 
(si es que lo hace más allá de la interacción gravitatoria) con las partículas del ME. Sin 
embargo, el ME no comprende ninguna partícula fundamental que sea un candidato 
adecuado para este nuevo tipo de materia. 

• Energía oscura: Alrededor del 69 % de la densidad de energía en nuestro universo 
se encuentra en forma de “energía oscura". Esta expresión se refere a una densidad 
de energía constante para el vacío, que es responsable de la expansión acelerada del 
universo. Sin embargo, los intentos de entender intuitivamente esta energía como una 
energía de vacío de los campos del ME conducen a una gran discrepancia con respecto 
a las observaciones cosmológicas. 

• Masas de los neutrinos: Según se formularon originalmente, los neutrinos no tienen 
masa en el ME. Sin embargo, la observación empírica de las oscilaciones de neutrinos 
implica que al menos dos neutrinos tienen una masa distinta de cero. El mecanismo 
que daría lugar a estas masas y explicaría su ligereza, así como la naturaleza de Dirac 
o Majorana de los neutrinos, todavía se desconoce. 

• Asimetría materia-antimateria: Las observaciones astrofísicas indican que el univer-
so está compuesto principalmente de materia. Sin embargo, el ME predice que la materia 
y la antimateria deberían producirse en cantidades casi iguales en las etapas iniciales del 
universo (asumiendo que como condición inicial no hay asimatería). A pesar de que el 
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ME proporciona los “ingredientes"para producir la asimetría materia-antimateria, se ha 
demostrado que estos son insufcientes para explicar la cantidad de asimetría observada. 

Además de las evidencias previamente mencionadas para la física más allá del ME, 
algunas observaciones experimentales han indicado desviaciones en otros fenómenos. Estas 
anomalías incluyen, por ejemplo, mediciones en el sector de los neutrinos, así como en los ra-
tios de desintegración de hadrones pesados, como los mesones B. Sin embargo, la signifcancia 
estadística de estas anomalías es actualmente insufciente para clasifcarlas como evidencia 
de nueva física. Por otro lado, se identifcan como posibles rastros de sectores inexplorados 
que podrían ocultar nueva física más allá del ME. 

Aparte de las cuestiones experimentales mencionadas anteriormente, la estructura del 
ME en sí misma presenta ciertas preocupaciones. Estas se referen a problemas de ajuste fno, 
donde se requiere que ciertos parámetros tengan valores específcos sin ninguna justifcación 
teórica. Los problemas de ajuste fno más notables en el ME incluyen los siguientes: 

• El problema de la jerarquía electrodébil: Las partículas escalares, como el bosón 
de Higgs, no poseen ninguna simetría que proteja su masa frente a la sensibilidad a 
escalas más altas a través de correcciones radiativas, lo que resulta en una dependencia 
cuadrática de la masa en la escala de nueva física. Como consecuencia, en presencia 
de física con escalas de energía más altas, la masa “desnuda” del bosón de Higgs en el 
Lagrangiano del ME debe ajustarse fnamente para que esas correcciones se cancelen 
parcialmente, lo que conduce a la “ligera” masa que se observa experimentalmente para 
el bosón de Higgs. 

• El puzzle del sabor: Las masas de los quarks y leptones surgen de sus interacciones de 
Yukawa con el bosón de Higgs. Sin embargo, la escala de estas masas es mucho menor 
que la escala electrodébil, sin razón aparente. Estrictamente hablando, esto no es un 
problema de naturalidad: los acoplos de Yukawa están protegidos por la simetría quiral 
del Lagrangiano en el límite de masas pequeñas. Sin embargo, las diferencias en órdenes 
de magnitud en las masas de fermiones son desconcertantes. Además, la destacada 
jerarquía entre las tres generaciones de fermiones, junto con las enormes diferencias en 
las matrices de mezcla de quarks y leptones, sugiere que existe una estructura subyacente 
aún por descubrir. 

• El problema CP fuerte: La cromodinámica cuántica (CDC), la teoría que describe 
las interacciones fuertes, a priori puede contener un término topológico impar bajo CP 
que está regulado por un parámetro llamado θ, que caracteriza el vacío de la teoría. 
Este término debería dar lugar a una contribución no nula al momento dipolar eléctrico 
del neutrón. Sin embargo, las restricciones actuales sobre este último requieren que θ 
esté ajustado fnamente a un valor extremadamente pequeño: θ ≲ 10−10, lo que resulta 
en una restauración de la simetría CP en el sector de CDC. Esto es sorprendente, ya 
que la invariancia gauge no prohibe dicho término y la simetría CP está explícitamente 
rota en otros sectores del ME. 

En mi investigación, me he centrado principalmente en temas que no están direc-
tamente relacionados con este último problema, el problema CP fuerte de CDC, pero que 
están, sin embargo, inspirados y relacionados con él. Como se mencionó anteriormente, el 
problema CP fuerte es un problema de ajuste fno: matemáticamente, el valor θ igual a 0 
no es inconsistente. Sin embargo, un valor tan restringido sin ninguna explicación teórica 
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apunta hacia un mecanismo subyacente de nueva física más allá del ME. Varios modelos 
se han propuesto en la literatura como posible solución al problema CP fuerte. Una de las 
propuestas más atractivas son las llamadas soluciones de Peccei-Quinn (PQ). Estas tratan 
de extender el ME implementando una nueva simetría global conservada a nivel del Lagran-
giano, pero explícitamente rota a nivel cuántico por la anomalía quiral a través del efectos 
de los instantones de CDC. De esta manera, se puede realizar una rotación de dicha simetría 
para hacer que θ se vuelta físicamente irrelevante. Típicamente, esta simetría se conoce como 
simetría de PQ. 

At bajas energías, la simetría de PQ se rompe espontáneamente, originando un nue-
vo pseudoscalar ligero en el espectro, como se deriva del teorema de Goldstone: el axión. 
Debido a la ruptura explícita de la simetría de PQ debido a la anomalía quiral, el axión 
no es un verdadero bosón de Goldstone (BG), sino más bien un pseudo-bosón de Goldstone 
(pBG). Debido a esta naturaleza, los axiones típicamente exhiben acoplamientos derivativos 
y anómalos con las partículas del ME y tienen una masa muy ligera (inducida precisamente 
por la anteriormente mencionada anomalía quiral de CDC). Además, en una gran parte del 
espacio de parámetros, el axión también resulta ser un candidato perfecto para explicar la 
materia oscura. Esta característica ha convertido al axión en una de las extensiones más 
atractivas del ME. 

Se han propuesto muchos modelos diferentes de axiones. Los más populares son los 
llamados modelos de axiones invisibles. En estos, la escala de energía del axión toma un 
valor muy elevado, lo que reduce su masa y suprime sus acoplos con las partículas del ME, 
evitando los límites experimentales. Por otro lado, en los últimos años, se han propuesto 
modelos extendidos que implementan soluciones con axiones más pesados o más ligeros que 
el axion estándar. 

No obstante, el interés en los pBGs se extiende mucho más allá de los modelos de 
axiones. Teorías de pBGs aparecen en muchas propuestas de física más allá del ME, típi-
camente no relacionadas con el problema CP fuerte, como singletes del ME. Generalmente, 
estos se conocen como “partículas tipo axión” (PTAs). Algunos ejemplos paradigmáticos 
incluyen el Majorón, relacionado con la ruptura espontánea del número leptónico, como una 
explicación dinámica de la ligereza de las masas de neutrinos; o los axifavones, en teorías 
dinámicas del sabor. Además, también se predicen en teorías con dimensiones extra com-
pactifcadas, por ejemplo, en teorías de cuerdas, que predicen una plétora de simetrías U(1) 
y PTAs. En la práctica, la principal diferencia entre un verdadero axión y una PTA es que 
el primero intenta resolver el problema CP fuerte, lo que típicamente impone una relación 
estricta entre la masa y la escala de energía del axión. Por lo tanto, la exploración del espacio 
de parámetros de las PTAs no sufre las estrictas restricciones que normalmente se aplican al 
axión canónico de CDC. 

Dada la actual ausencia de señales experimentales de axiones y PTAs, la teoría 
efectiva de PTAs nos permite investigar sus interacciones con partículas del ME de forma 
independiente de los modelos concretos de PTAs. Este marco teórico se caracteriza por un 
Lagrangiano simple con pocos parámetros, que incluyen la masa y la escala de la PTA, así 
como algunos coefcientes de Wilson que codifcan la dependencia en los modelos específcos 
de PTAs. Si bien muchos estudios anteriores se han centrado en las interacciones efectivas 
con las partículas más ligeras, como fotones o electrones, la formulación invariante gauge de 
la teoría efectiva de las PTAs permite interacciones con partículas más pesadas, como los 
bosones electrodébiles (ED). Estas interacciones exhiben una fenomenología más interesante 
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y pueden ser exploradas en un rango de energías más amplio en comparación con las bús-
quedas usuales de axiones a bajas energías. Esto incluye, por ejemplo, búsquedas de PTAs 
en colisionadores. Estos análisis tienen una importancia particular para modelos específcos 
con pBGs que o bien no se acoplan a partículas ligeras o poseen masas demasiado pesadas 
como para ser producidos a bajas energías. 

El objetivo principal de esta tesis es posibilitar el descubrimiento de una señal de 
axiones o PTAs en búsquedas de alta energía o, de no ser detectadas, derivar las corres-
pondientes restricciones en el espacio de parámetros de las PTAs. Este objetivo se puede 
subdividir en dos objetivos adicionales. Por un lado, las búsquedas de PTAs han alcanzado 
un nivel de precisión y son tan diversas que la sensibilidad experimental requiere calcular las 
correcciones radiativas a los acoplos efectivos de las PTAs. Por lo tanto, en esta tesis pre-
sento la teoría efectiva de las PTAs corregida a nivel de un loop y exploro sus consecuencias 
fenomenológicas para los experimentos. Por otro lado, me enfoco en las búsquedas de PTAs 
en experimentos de colisionadores. Por ejemplo, se estudian posibles nuevas búsquedas de 
PTAs, incluida una propuesta para explorar procesos de dispersión potencialmente mediados 
por PTAs fuera de su capa de masas, testando sus acoplamientos ED. Además, estudio el 
impacto de las PTAs en varias anomalías de sabor, con especial énfasis en el sector de los 
mesones B y sus desintegraciones semileptónicas. 

Esta tesis está organizada de la siguiente manera: en los Capítulos 1 al 3 presento 
el estado del arte del ME, los axiones y las PTAs. Luego, los Capítulos 4 al 6 incluyen la 
contribución original de la tesis. Las conclusiones se resumen en el Capítulo 7. 
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Chapter 1 
The Standard Model of Particle 
Physics 

Multiple experimental tests of the SM have been carried out, yielding to a remarkable 
accuracy in predicting a wide variety of phenomena at energy scales below the TeV. The basic 
structure of the SM can be condensed in a very elegant way in the following Lagrangian 

LSM = Lgauge + LDirac + LYukawa + LΦ + Lθ , (1.0.1) 

with 
1 

µν G
µν,α − 

1 
µν W µν,i − 

1 
Lgauge = −4G

α 
4W i 4Bµν B

µν , 

LDirac = iQLDQ/ L + iURDU/ R + iDR / DLL + iER /DDR + iLL / DER , 
eLYukawa = −QLYuΦUR − QLYdΦDR − LLYeΦER + h.c. , (1.0.2) 

LΦ = (DµΦ)† DµΦ − µ 2Φ†Φ − λ Φ†Φ 
2 
, 

αS 
Gα Geµν,α Lθ = θ .8π µν 

In the next sections I will provide an explanation for each of the felds and terms 
that constitute this Lagrangian, discussing their meaning and properties. Additionally, I will 
explore the fundamental aspects of the SM and I will present the most stringent experimental 
measurements of its constituent parameters. 

1.1 SM symmetries & particle content 
The SM is a Quantum Field Theory (QFT) that has been formulated based on the 

basic principles of special relativity, locality and causality. Those principles are enforced by 
imposing Lorentz symmetry [14]. As a consequence, particles are interpreted as excitations 
of fundamental felds that correspond to distinct representations of the Lorentz symmetry 
group: (spin-0 ) scalars, (spin-1/2 ) fermions and (spin-1 ) gauge bosons. 

Another essential ingredient of the SM is gauge symmetries, which are local symme-
tries that govern the interactions among the SM felds. The gauge group of the SM plays a 
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crucial role in the theory, as it determines the properties and behavior of the fundamental 
particles and in particular of the force mediators. Its symmetry group is 

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1.3) 

where each separated symmetry group in GSM corresponds to a distinct fundamental in-
teraction. For instance, SU(3)c corresponds to quantum chromodynamics (QCD), which is 
the theory that describes the strong interactions among quarks and gluons. On the other 
hand, SU(2)L and U(1)Y depict electroweak (EW) interactions, namely weak isospin and 
weak hypercharge, respectively. After electroweak symmetry breaking (EWSB), which will 
be discussed in the next section, a combination of these last two groups results in U(1)em, 
which describes quantum electrodynamics (QED), the QFT corresponding to electromag-
netic interactions among charged particles and photons. 

The gauge bosons are the mediators of the interactions in the SM. Each of them is 
associated to the generators of its corresponding gauge group. In consequence, the SM has 
in total 12 gauge bosons: 8 gluons, represented as Gα

µ (with α = 1, . . . , 8), and 4 EW gauge 
bosons: 3 bosons Wµ

i (with i = 1, 2, 3) for weak isospin and Bµ for weak hypercharge. In 
the SM Lagrangian, the kinetic terms that correspond to these gauge felds are represented 
in Eq. (1.0.2) as 

1 1 1 
Gµν,α − W µν,i −Lgauge = −4G

α 
4W i 4Bµν B

µν , (1.1.4)µν µν 

where Gα and Bµν are respectively the feld strength tensors of SU(3)c, SU(2)L andµν , Wµν
i 

U(1)Y , which can be written as 

Gα = ∂µGα − ∂ν G
α Gγ

ν ,µν ν µ + gS fαβγ Gµ
β 

W i = ∂µW i − ∂ν W i + g ϵijkW j W k , (1.1.5)µν ν µ µ ν 

Bµν = ∂µBν − ∂ν Bµ , 

with fαβγ and ϵijk being respectively the structure constants of the SU(3) and SU(2) non-
abelian Lie groups, and gS and g the strong and weak gauge group coupling constants. In 

′addition we also defne a g coupling constant that is the corresponding to U(1)Y . 

The frst two terms in Eq. (1.1.5) correspond to the kinetic energy of a massless gauge 
boson. The last term describes the gauge boson self-interactions, which are only present for 
non-abelian groups, i.e. SU(3)c and SU(2)L. 

Here it should be noted that experimental evidence shows that among the 12 physics 
gauge bosons that have been discovered, only 9 of them (8 gluons and 1 photon) are massless. 
The other 3 EW bosons (the two W ± bosons and the Z boson) are indeed massive. A tree-
level (Lagrangian level) mass for gauge bosons is however not possible, as it would imply 
a direct violation of gauge symmetry. In the SM, the mechanism that provides a mass 
for these bosons, namely the Higgs mechanism, is implemented via spontaneous symmetry 
breaking [12,13], by means of a complex scalar feld. The gist of the mechanism is that, while 
the Lagrangian is exactly symmetric, the lowest-energy spectrum does not need to exhibit 
the symmetry: the symmetry is thus exact but “hidden”. More details will be discussed in 
Sec. 1.2. 

While the gauge group determines the number of gauge bosons and their properties, 
the representation of the matter felds under such group is arbitrary, taken from the empirical 
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SU(3)c SU(2)L U(1)Y 

QL 3 2 1/6 
UR 3 1 2/3 
DR 3 1 -1/3 
LL 1 2 -1/2 
ER 1 1 -1 
Φ 1 2 1/2 

Table 1.1: Transformation properties of the SM fermions and Higgs feld under the SM gauge 
group GSM = SU(3)c × SU(2)L × U(1)Y . 

observation of natural processes, with only a single restriction: gauge anomaly cancellation 
as a consequence of gauge symmetry preservation. Experimental evidence has led to the 
classifcation of observed fermions into three distinct “generations” (sometimes also referred 
as “families” or “favours”). Particles in diferent families share the same gauge charges but 
exhibit diferent masses and mixings. 

Each family of fermions contains a total of fve fermion felds, which are usually 
distinguished according to their gauge charges. On the one hand, there are 3 quark felds, 
which are charged under both the strong and EW interactions. In addition, these felds can 
also be classifed according to their representation under SU(2)L. For instance, there are 
two right-handed (RH) SU(2)L singlet felds, UR and DR, and a left-handed (LH) doublet 
quark feld QL. On the other hand, leptons are only charge under the EW gauge groups and 
do not experience the strong force. In the lepton sector there is only one RH SU(2)L singlet, 
ER, and one LH doublet LL. 

It is customary to express these felds as a multiplet representation of the three 
diferent favours, so that the Lagrangian for the three families can be written in a compact 
way. Making explicit the components we can write them as 

νe νµ ντ L L L• Leptons: LL = , , , ER = {eR, µR, τR} , eL µL τL (1.1.6) 
uL cL tL UR = {uR, cR, tR} ,• Quarks: QL = , , ,
dL sL bL DR = {dR, sR, bR} . 

Notice that the SM does not contain a feld corresponding to right-handed neutrinos, as at 
the time of its construction they were not necessary in the absence of evidence for neutrino 
masses. 

The transformation properties of the fermions felds under the SM gauge group GSM 
is determined by how these particles interact: under SU(3)c quarks transform as the fun-
damental representation of the group (triplets) while leptons are in a singlet representation. 
Regarding the weak interactions, it has been observed that fermion felds of diferent chi-
ralities, left-handed (LH) or right-handed (RH) chirality, undergo diferent transformations. 
For instance, as said before, under SU(2)L only LH felds transform (as doublets), while RH 
felds are singlets, showing explicitly the V − A Lorentz structure of SU(2)L. On the other 
hand, both LH and RH felds transform under U(1)Y , but again diferent chiral multiplets 
in Eq. (1.1.6) possess diferent EW hypercharges. Further details on the SM fermion charges 
under GSM are shown in Tab. 1.1. 
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18 Chapter 1. The Standard Model of Particle Physics 

The interaction terms of the SM fermions are located in the LDirac term of the SM 
Lagrangian in Eq. (1.0.2). The principle of gauge invariance imposes that, for LSM to be 
invariant under a gauge transformation, the usual derivative ∂µ in the fermion kinetic terms 
must be replaced by a “covariant derivative” Dµ which depends on the gauge felds. Then, 
LDirac takes the form 

LDirac = iQL / DUR + iDR / DLL + iER / (1.1.7)DQL + iUR / DDR + iLL / DER , 

where D/ = Dµγ
µ, and γµ are the Dirac gamma matrices. Furthermore, the explicit depen-

dence of Dµ on the gauge felds for each fermion can be written as: 

gs g g ′ 
DµQL = ∂µ + i 2 

λαGα
µ + i 2σ

iWµ
i + i 6 

Bµ QL , 

′ gs 2g
DµUR = ∂µ + i 2 

λαGµ
α + i 3 

Bµ UR , 

gs g ′ 
DµDR = ∂µ + i 2 

λαGµ
α − i 3 

Bµ DR , (1.1.8) 

g g ′ 
DµLL = ∂µ + i 2σ

iWµ
i − i 2 

Bµ LL , 

DµEL = ∂µ − i g ′ Bµ ER , 

where λα and σi denote the Gell-Mann and Pauli matrices, respectively. 

Finally, the SM also contains a complex scalar particle, the Higgs feld, denoted as 
Φ. This scalar boson is a singlet under QCD gauge group, but, in contrast, it is charged 
under the EW gauge group (see Tab 1.1). Higgs interactions with other bosons are encoded 
in LΦ in Eq. (1.0.2): 

LΦ = (DµΦ)† DµΦ − V (Φ) = (DµΦ)† DµΦ − µ 2Φ†Φ − λ Φ†Φ 
2 
, (1.1.9) 

where 
g g ′ 

DµΦ = ∂µ + i 2σ
iWµ

i + i 2 
Bµ Φ , (1.1.10) 

and µ and λ are two constants that characterize the Higgs feld self-interactions in the scalar 
potential V (Φ). Notice that, being a complex SU(2)L doublet, Φ comprises a total of four 
independent degrees of freedom (dofs). 

Within the SM, the “purpose” of the Higgs feld is to trigger EWSB. That is, the 
minimum value of Φ is not zero. The potential V (Φ) induces a “vacuum expectation value” 
(vev) for Φ which breaks the EW group SU(2)L ×U(1)Y down to U(1)em: the electromagnetic 
(EM) interactions (See Sec. 1.2). 

1.2 Electroweak symmetry breaking 
The EW interaction is satisfactorily described in the SM by the SU(2)L×U(1)Y gauge 

group. In this scenario, fermions are split in chiral multiplets in such a way that LH felds 
are SU(2)L doublets while RH felds are singlets. However, this picture is incomplete, as it 



� �

� �

19 1.2. Electroweak symmetry breaking 

would imply that both EW gauge bosons and SM fermions are all massless particles, under 
the assumption that the SM Lagrangian must be invariant under a gauge transformation. 
However, experimental evidence shows that the EW gauge bosons (W and Z) and the 
physical fermions are massive. 1 The piece that is missing is precisely the Higgs feld Φ. 
Within the EW sector, the purpose of the Higgs is to trigger EWSB: the Higgs feld induces 
spontaneous breaking of the EW gauge symmetry down to EM. Therefore, even though 
the Lagrangian is exactly invariant under a gauge transformation, the spectrum of particles 
does not constitute a representation of the local EW gauge group, and then masses for gauge 
bosons and fermions can arise. 

In order to understand the general lines of the Higgs mechanism, let us consider the 
most general renormalizable Lagrangian for the Higgs doublet, which was already defned 
on Eq. (1.1.9). The latter includes a potential for the Higgs of the form 

V (Φ) = µ 2Φ†Φ + λ Φ†Φ 
2 
. (1.2.11) 

If the quadratic term in the previous potential is negative2, that is µ2 < 0, then the feld 
confguration of Φ minimizes the potential is not invariant under the EW gauge group. In 
other words, the vev v of the Higgs feld is diferent from zero and can be defned as 

2 2 
⟨Φ†Φ⟩ ≡ 

v 
2 = −µ

λ 
. (1.2.12) 

According to the Goldstone theorem [15, 16], whenever a global symmetry is spon-
taneously broken in a quantum feld theory, a spin-0 massless particle must appear in the 
low-energy spectrum for each broken symmetry generator. These particles are named Gold-
stone bosons (GB). Within EWSB, the Higgs vev spontaneously breaks a total of three 
generators encoded in the EW gauge group. However, such symmetries are not global, but 
local (gauge) symmetries. As a consequence, the Goldstone felds (corresponding to three 
out of the four dofs of Φ) are not realized as independent GB, but are “eaten” by the massless 
EW gauge bosons (each of them comprising two independent dofs). Therefore, after EWSB, 
the physical spectrum of particles contains three massive EW gauge bosons (each of them 
depicted by three dofs): the two W bosons and the Z boson. Thus, at low-energies EW 
gauge symmetry is still exact, but “hidden”. 

After EWSB, the remaining dof of the Higgs doublet Φ (out of the original four dofs) 
can be parametrized around the minimum energy confguration as 

1 0Φ = √ , (1.2.13)
2 v + h 

where h is identifed as the physical Higgs boson, which was discovered at LHC in 2012 [17, 
18]. Thus, the kinetic term in LΦ is rewritten as 

1 g2(v + h)2 
W +W µ,− + (g2 + g ′2)(v + h)2 

Zµ(DµΦ)† DµΦ = 2∂µh∂
µh + µ Zµ . (1.2.14)4 8 

1Physical neutrinos are a special case, as their masses, evidenced by neutrino oscillations measure-
ments, might not only arise from the Higgs mechanism, but they could also present contributions 
from additional sources depending on their Dirac or Majorana nature. 

2Notice that λ > 0 is always a requirement so that the Higgs potential is bounded by below. 
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The physical gauge bosons can be expressed in terms of Wµ
i and Bµ as 

Wµ 
1   iWµ 

2 

Wµ 
± = √

2 
, (1.2.15) 

Aµ = cos θwBµ + sin θwWµ 
3 , (1.2.16) 

Zµ = − sin θwBµ + cos θwWµ 
3 , (1.2.17) 

where Wµ 
± corresponds the physical W bosons, Zµ is the weak Z boson and Aµ is the photon 

′feld, and θw is the so-called weak angle, which is a function of g and g , and at tree level it 
reads 

tan θw = 
g ′ 
. (1.2.18) 

g 
Its experimental value has been measured with exceptional precision. The most recent world 
average value can be found in Ref [19]: s2 

w = 0.22339(10). 

From Eq. (1.2.14) we can read the masses for Z and W bosons that arise from the 
Higgs mechanism: 

vg v 
√ 
g2 + g ′2 

MW = , MZ = , (1.2.19)2 2 
whose world average measurements read [19] 

MW = 80.377 ± 0.012 GeV , MZ = 91.1876 ± 0.0021 GeV , (1.2.20) 

while the photon feld remains massless. This can be understood as the fact that the Higgs 
mechanism does not break completely the whole EW gauge group. Instead, the breaking 
pattern is SU(2)L × U(1)Y → U(1)em. In other words, EM is the residual gauge symmetry 
that “survives” EWSB, as an explicit symmetry of the spectrum. As a result, there is no mass 
term for the photon. Additionally, the electromagnetic coupling constant can be computed 

′in terms of g and g at tree level as 

e = g sin θw = g ′ cos θw . (1.2.21) 

1.3 Flavour structure in the fermion sector 
As stated in the previous sectors, a priori there are no mass terms for the SM fermions 

in the Lagrangian due to gauge invariance. However, gauge symmetry allows for interaction 
terms between fermions and the Higgs doublet, which are encoded in LYukawa in Eq. (1.0.2) 
and read: 

eLYukawa = −QLYuΦUR − QLYdΦDR − LLYeΦER + h.c. , (1.3.22) 
ewhere Yu,d,e are 3 × 3 matrices in favour space and Φ = iσ2Φ∗ . 

From this equation, it can be verifed that upon expanding the Higgs doublet around 
the minimum of its potential, additional mass terms for the fermions emerge in the La-
grangian. The Dirac mass matrices for the physical fermions are computed in terms of the 
Yukawa matrices and the Higgs vev as 

Yf vMf ≡ √ , (1.3.23)
2 
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In other words, in the same way that the Higgs vev allows for EW gauge bosons to have 
mass without an explicit breaking of gauge invariance (only an spontaneous breaking), it 
is also responsible of the masses of the fermions. Moreover, it should be noted that, as a 
consequence of this mechanism, the interactions between the physical Higgs h and fermions 
are proportional to the fermions masses. 

In all generality, Mf are non-diagonal complex matrices in favour space. Never-
theless, they can be transform into a diagonal form via redefnitions of the fermion felds. 
For instance, a real and diagonal form can be found by implementing the following redefni-

V† = MdiagMuUu = diagonal(mu, mc, mt) , 

tions 
UL → VuUL , 
UR → UuUR , 

DL → VdDL , 
DR → UdDR , 

LL → VeLL , 
ER → UeER , 

(1.3.24) 

in such a way that 
u u 

V† = Mdiag 
dMdUd d = diagonal(md, ms, mb) , (1.3.25) 

= MdiagV† 
eMeUe e = diagonal(me, mµ, mτ ) , 

where mf are the masses of the physical fermions, and the matrices V and U are unitary 
matrices: Vf 

† Vf = 1 and Uf 
† Uf = 1. 

After the change of basis in Eq. (1.3.25), fermion mass matrices are now diagonal 
and represent the masses of the physical fermions of the SM. The most recent world average 
values of the charged lepton and quark mass measurements are provided by the Particle Data 
Group collaboration in their 2022 report [19], which provides the following results 

= 2.16+0.49 = 4.67+0.48 mu −0.26 MeV , md −0.17 MeV me = 510.99895000(15) keV , 
mc = 1.27 ± 0.02 GeV , ms = 93.4+8 

−3 
.
. 
6
4 MeV , mµ = 105.6583755(23) MeV , 

= 4.18+0.03 mt = 172.69 ± 0.30 GeV , mb −0.02 GeV , mτ = 1776.86 ± 0.12 MeV . 
(1.3.26) 

The transformations in Eq. (1.3.24) are not a symmetry of other terms pf the SM 
Lagrangian. For instance, due to the unitarity of the U and V matrices the interaction 
terms between fermions and photons, gluons and Z bosons, which are coupled to neutral 
currents of fermions, remain invariant. However, the interaction between LH quarks and 
W bosons are modifed. Thus, the favour-changing charged current interactions of the SM 
quark sector read 

√g ULγ
µW +LSM ⊃ − µ VCKMDL + h.c. , (1.3.27)

2 

where VCKM is an unitary matrix given by VCKM = VuVd 
† , known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [20, 21] which encodes the resulting favour-mixing in the quark 
sector [19]:  

Vud Vus Vub 
VCKM =   . (1.3.28)Vcd Vcs Vcb 

Vtd Vts Vtb 

As an unitary 3 × 3 matrix, VCKM comprises four independent dofs, which allow for 
several distinct parametrizations. A simple choice in terms of three mixing angles (θ12, θ23 

https://4.18+0.03
https://4.67+0.48
https://2.16+0.49
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and θ13) and a CP-violating complex phase (δ) reads 
   

1 0 0 c13 0 s13e c12 s12 0−iδ 
     VCKM = 0 c23 s23 0 1 0 −s12 c12 0 

iδ0 −s23 c23 −s13e 0 c13 0 0 1 
−iδc12c13 s12c13 s13e 

(1.3.29)  

 iδ iδ−s12c23 − c12s23s13e c12c23 − s12s23s13e s23c13= , 
iδ iδs12s23 − c12c23s13e −c12s23 − s12c23s13e c23c13 

where cij = cos θij and sij = sin θij . The angles θij can be chosen to lie in the frst quadrant, 
and thus cij , sij ≥ 0. 

As stated before, the quark mass matrices Mu and Md, being general 3 × 3 complex 
matrices, contain several CP-odd phases. Some of them are just unphysical phases which 
are be removed away via feld redefnitions form Eq. (1.3.25), but others may survive as 
potential physical CP-odd measurable parameters. Within the EW sector of the SM, the 
CKM matrix is the only source of favour mixing and CP-breaking. It is responsible of all 
favour transitions that are measured in meson decays and scattering processes, an all CP-
violating transitions observed up to now. However, some other phases from Mu and Md, 
which are independent of δ, may reappear within the QCD sector of the SM and mix with 
the θ-parameter from Lθ. This would result into another source of CP-violation within the 
SM. However, when measured, it seems to be absent from the QCD Lagrangian, originating 
the so-called Strong CP problem that is widely explained within this Thesis in Ch. 2. 

The diferent elements of the CKM matrix have been measured by a variety of 
experiments. The last global ft obtained by Particle Data Group collaboration in 2022 [19] 
gives the following result for the absolute value of the CKM matrix elements: 

 
0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011 
0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085 

−0.00074 
 |VCKM| = , (1.3.30) 

0.00857+0.00020 0.04110+0.00083 0.999118+0.000031 
−0.00018 −0.00072 −0.000036 

and the complex phase of the CKM matrix is also measured to be: δ = 1.144 ± 0.02. In 
addition, its unitarity has also been tested with excellent accuracy. 

On the other hand, at this point it should be noticed that the SM predicts no 
favour-mixing in the lepton sector. This can be derived from the fermion feld redefnitions 
in Eq. (1.3.24): since Eq. (1.3.22) lacks a mass term for neutrinos, the LH lepton doublet 
LL can be rotated as a whole and as a result LDirac remains invariant. In other words, any 
unitary rotation of the LH charged leptons EL can be compensated by the same rotation for 
the LH neutrino felds νL in the interaction terms with W bosons. Therefore, favour-mixing 
charged current interactions are not induced in the lepton sector within the SM. 

Nevertheless, mixing in the leptonic sector has been measured in the last two decades 
in the phenomenon known as “neutrino oscillations”, best explained in terms of neutrinos 
with diferent masses. The origin of neutrino masses is still uncertain. One simple option is 
to enlarge the SM fermion sector with a RH neutrino feld, NR, singlet of the whole SM gauge 
group, which allows for a Dirac mass for neutrinos, analogously to the other SM fermions. 
Given they gauge charges of the LH lepton doublet LL, a more interesting scenario is possible 
though: neutrinos may be “Majorana” particles. In simple terms, a Majorana particle is a 
fermion which is its own antiparticle. Majorana fermions present additional mass terms 
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beyond the standard Dirac masses. For the LH neutrinos, such “Majorana masses” would 
arise from the efective 5-dimensional operator known as the Weinberg operator [22] 

Lc L Φ∗ Φ†LL 
Lefective ⊃ ,Λ 

ee 
(1.3.31) 

where Λ is the energy scale of the BSM sector from which the operator would arise and 
LcL = iγ0γ2LL

T . After Φ takes a non-zero vev, the former describes a Majorana mass term 
for νL. In addition, it also provides an explanation for the smallness of neutrino masses with 
respect to other SM fermions: neutrino masses are predicted to be proportional to ∼ v2/Λ, 
where typically Λ ≫ v is assumed. Thus, the heavier the exotic sector is with respect to 
the SM, the lighter neutrinos are expected to be. That is the reason why this mechanism 
for the generation of neutrino masses is commonly known as the seesaw mechanism [23]. In 
contrast, in the Dirac case light neutrino masses are explained in terms of small Yukawa 
couplings. The true nature of neutrino masses is a question which is still unresolved and 
object of strong experimental searches. 

Even though the origin of these masses is still uncertain, favour-mixing has been 
measured within the neutrino sector in a similar way as it is present for the quark interaction 
with W bosons. In particular, for leptons the mixing matrix is known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [24,25] UPMNS. It can be parametrized in a similar 
way than the CKM matrix in Eq. (1.3.29), by three mixing angles and a CP complex phase. 
In addition the PMNS matrix could also present two extra CP complex phases depending 
on whether neutrinos are Dirac or Majorana particles. 

A recent global ft for the PMNS parameters by the NuFit collaboration can be 
found in Ref. [26]. For instance, the following 3σ regions for the absolute value of its matrix 
elements are measured 

 
0.801 → 0.845 0.513 → 0.579 0.143 → 0.155 

|UPMNS| = 0.234 → 0.500 0.471 → 0.689 0.637 → 0.776 , (1.3.32) 
0.271 → 0.525 0.477 → 0.694 0.613 → 0.756 

= 195◦ +51◦ and δ = 286◦ +27◦ 

−25◦ −32◦and the PMNS CP phase is measured to be δ for normal 
neutrino ordering (NO) and inverted ordering (IO) respectively. These two situations refer 
to the diferent arrangements of neutrinos masses that are allowed experimentally with the 
current data. The former corresponds to the case in which the mass eigenstates {ν1, ν2, ν3} 
are arranged in ascending order in mass: (m1 < m2 < m3). These eigenstates are defned 
as those states primarily composed of the favor eigenstates νe, νµ and ντ respectively. In 
contrast, inverted ordering describes the case in which ν3 corresponds to the lightest state 
(m3 < m1 < m2). On the other hand, the possible Majorana CP-odd phases, if there are 
any, are far from being within the experimental reach. 

Finally, it is noteworthy the substantial diferences between the CKM and PMNS 
matrices. On one hand, the CKM matrix is almost equal to the identity matrix, which 
means that quark-favour mixing is strongly suppressed within the SM. On the other hand, the 
PMNS matrix signifcantly departs from the identity matrix, inducing a large efect in lepton 
favour mixing observables such as neutrino oscillations experiments. These huge diferences, 
in addition with the family structure of the SM, for which there is no underlying explanation, 
is part of the so-called favour puzzle of the SM, which is still an open question. 
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Chapter 2 
The Strong CP problem and axions 

In the previous chapter I have discussed the fundamental components of the SM. 
These includes the gauge symmetry which originates the fundamental interactions, the 
fermion content and the Higgs mechanism that is responsible for all fundamental parti-
cle masses in the SM. Nevertheless, there is a last piece of the SM Lagrangian in Eq. (1.0.2) 
which I did not address: Lθ. In this chapter I will show how such term induces a fne-tunning 
problem in the QCD sector of the SM: the so-called “Strong CP problem”. Solutions could 
lead to the presence of a new fundamental particle within the SM particle spectrum at 
low-energies, namely the “axion”. 

2.1 CP violation in QCD 
Let us consider the QCD sector Lagrangian below EWSB, LQCD, within the total 

SM Lagrangian in Eq. (1.0.2) 

Gµν,α + θ Gα Geµν,α + iQ /LQCD = − 
1
4G

α
µν 

αS 
µν DQ − QLMQQR + h.c. , (2.1.1)8π Q=U,D 

where Q = QR + QL and Mu and Md are the 3 × 3 complex quark mass matrices defned in 
Eq. (1.3.23). The second term in Eq. (2.1.1), which corresponds to Lθ in Eq. (1.0.2), is the 
so-called θ-term, since it is parametrized by a dimensionless parameter θ. It can be shown 

ethat the interaction term Gα Gµν,α is odd under a CP transformation. For instance, in the µν 
eclassical limit Gα

µν G
µν,α can be written in terms of the chromoelectric E⃗ and chromomagnetic 

felds B⃗ as −4E⃗ · B⃗ , which is odd under P and a T transformations. Moreover, the CPT 
theorem [27] states that a combined simultaneous transformation of C, P and T must be a 
fundamental symmetry of nature under the only assumption of Lorentz invariance for any 

elocal QFT. Therefore, the quantity Gα Gµν,α must also be CP-odd. In contrast, the gluon 
feld kinetic term in Eq. (2.1.1) can be

µν

written in the classical limit as ∼ (E2 − B2) which is 
even under P and CP. 

On the other hand, a priori one could think that the θ-term can be disregarded from 
the QCD Lagrangian since it can be proven to be a total derivative. For instance, let us 

25 
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defne a vector Kµ in terms of the gluon felds as 

Kµ ≡ 2ϵµνρσAα 
ν 

2g
∂ρA

α Aγ−σ 3 
fαβγ A

β 
ρ σ = ϵµνρσAα 

ν 
2g

Gα Aγ+ρσ 3 
fαβγ A

β 
ρ σ , (2.1.2) 

which satisfes 

Kµ∂µ = ∂µ 
2gS

ϵµνρσAα Gα Aγ+ν ρσ fαβγ A
β 
ρ σ3 

Gµν,α = Gα e .µν (2.1.3) 

The expression above would suggest that the θ-term does not contribute to the ⎞
equations of motion (EOMs), but only to the action (S = d4x L) as a boundary term. 
Therefore, it could be set to zero by setting the boundary condition for the gluon felds: 
Aaµ ∼ O (1/r1+ϵ), with ϵ > 0, in the limit r →∞. 

However, the last statement is not true. For QCD (and, in general, for interactions 
described by non-abelian gauge groups) there are some gauge-feld confgurations that do not 
decay fast enough at large distances (r →∞), and they thus add a fnite contribution to the 
action S. These confgurations are called instantons [28–30]. Instantons are classical fnite-
action solutions of the EOM of the gluon-felds in Euclidean space. Euclidean spacetime is 
a reparametrization of Minkovski spacetime, where we defne the Euclidean time as τ ≡ it, 
so that the metric turns into an Euclidean metric (+, +, +, +) in four dimensions. In this 
space, the Yang-Mills Lagrangian Lgauge in Eq. (1.0.2) is written as 

SE ⊃ − 
1 d4 x Tr [Gµν G

µν ] , (2.1.4)2 

where SE is the Euclidean action and Gµν ≡ Gα λα/2. In order for this term to have a fnite 
action, we require that in the limit r →∞, Gµν

µν 
Gµν decrease at a higher rate than r4 (where 

here r ≡ (τ 2 + ⃗x2)1/2): 

1 1 
Gµν G

µν ∼ O , ⇒ Gµν ∼ O . (2.1.5)4+ϵ 2+ϵr r 

Nevertheless, the previous condition does not directly imply that the gluon-felds 
Aµ ≡ Aαµλα/2 themselves behave as O(1/r1+ϵ) at large distances. In particular, at r → ∞ 
the confguration of these felds can be any gauge transformation of the null feld state 
Aµ = 0. These confgurations are called pure gauge confgurations. For any feld Aµ, the 
gauge-transformed feld A(Ω) 

µ is computed as 

A(Ω) i 
µ = ΩAµΩ−1 + Ω∂µΩ−1 , (2.1.6) 

gS 

where Ω is an element of the QCD gauge group: SU(3)c. Thus, a pure gauge confguration 
of Aµ can be written at large distances as 

Aµ = 
i Ω∂µΩ−1 + O 

1 
. (2.1.7)1+ϵgS r 

Notice that at large distances, Ω(x) is evaluated in the “surface” of a (infnite-radius) 
3-sphere (S3). Thus, Ω(x) are functions of only the 3 angles that defne each point in S3 in 
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the four-dimensional Euclidean space. Therefore, pure gauge confgurations are determined 
by a map from S3 to the elements of the gauge group: Ω(x) : S3 → SU(3)c. 

It can be shown [28–30] that for SU(3)c (and in general for all SU(N) Lie groups) all 
these maps can be characterized by an integer ν, that is commonly named winding number 
or Pontryagin index. In particular, every map is homotopic to one of the so-called standard 
maps: 

τ + iσ⃗ · ⃗x ν 

Ω(ν)(x) = , (2.1.8) 
r 

where σ⃗ are the Pauli matrices. This statement means that any possible map from S3 to 
SU(3)c can be continuously deformed into one of the maps described by Eq. (2.1.8), for some 
particular ν. However, maps with diferent winding numbers are not connected through a 
continuous deformation. In particular, if the vector feld Aµ is a confguration with ν ≠ 0, 
it can never be continuously deformed to reach the confguration Aµ = 0, that actually has 
winding number ν = 0. 

Moreover, given the above expressions for Ω(ν)(x) in Eq. (2.1.8), the pure gauge 
piece of Aµ in Eq. (2.1.7) behaves exactly as O (1/r) at high distances. Then, the θ-term, 

Geµν,α ∼ θGα , does provide a fnite contribution to the action. Using Eq. (2.1.3), it follows µν

that 

Geµν,α SE ⊃ d4xGα = d4x ∂µK
µ ,µν 

Kµ= d3σµ , (2.1.9) 
r→∞ 

ϵµνρσAα 2gS= d3σµ Gα + fαβγ A
βAγ ,ν ρσ ρ σ 

r→∞ 3 

where we have applied the Gauss theorem, with d3σµ denoting the diferential area element 
in the surface of the (infnite-radius) 3-sphere. As the feld-strength tensor Gα behaves asρσ 
O(1/r2+ϵ) at high distances, the frst term in the integral vanishes in the limit r → ∞. 
Therefore, only the second term remains: 

Gaµν 2gS 
ϵµνρσAαd4xGa ˜ = d3σµ Aβ Aγ 

µν ν ρ σfαβγ ,3 r→∞ 
4gS= d3σµ ϵ

µνρσTr [Aν AρAσ] , (2.1.10)3 r→∞ 

= − 
4i d3σµ ϵ

µνρσTr Ω∂ν Ω−1Ω∂ρΩ−1Ω∂σΩ−1 .3g2 
r→∞S 

Finally, given the expression of the maps Ω(ν) from Eq. 2.1.8, it follows that 

32π2ν 8πν 
Gaµνd4xGa ˜ = = , (2.1.11)µν 2gS αS 

which is obviously non-zero for ν ̸= 0. 

Summing up, even though the θ-term of the QCD Lagrangian is a total derivative, 
it gives a fnite non-zero contribution to the action, that is proportional to the winding 
number. Therefore, it can have a physical impact: it is measurable experimentally. Also, 
since the θ-term is a source of CP-violation, a priori CP-violating processes are expected to 
be measured within the realm of strong interactions. 
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On the other hand, this is not the only source of CP-violation in the QCD Lagrangian 
in Eq. (2.1.1). As discussed in Sec. 1.3, the quark mass matrices Mu and Md comprise several 
CP-odd phases, which may potentially source CP-violation within the QCD sector (beyond 
the complex phase δ of the CKM matrix in the EW sector). In order to illustrate this, let 
us assume Mu and Md are written as diagonal matrices with complex eigenvalues denoted 
by mψe

iδψ , where mψ is the physical mass of the quarks ψ and δψ are generic phases (which 
are independent of the δ), for ψ = {u, d, c, s, t, b}. Therefore, the mass term in Eq. (2.1.1) 
can be rewritten as the sum of individual mass terms for each quark favour as follows 

iδψ ψR + ψRmψe −iδψ ψL− QLMQQR + h.c. = − ψLmψe , 
Q ψ (2.1.12) 

= − mψ cos δψψψ + imψ sin δψψγ5ψ . 
ψ 

Moreover, if we work under the assumption that the complex phases are small (δψ ≪ 1), we 
can further approximate the previous expression as 

− QLMQQR + h.c. ≈ − mψψψ + imψδψψγ
5ψ . (2.1.13) 

Q ψ 

The frst term in the previous equation is just the ordinary mass term for the quarks, 
which is CP -even: ∼ ψψ = ψLψR + ψRψL. The second term (∼ ψγ5ψ = ψLψR − ψRψL) 
is instead odd under a CP transformation, though. Thus, a priori it comprises another 
source of CP-violation within QCD. Moreover, the latter is also proportional to the com-
plex phases δψ. This means that if the mass matrix of the quarks were real, as the usual 
consideration, the mass term must preserve CP symmetry. Later, it will be shown that an 
axial U(1) transformation (U(1)A) of the ψ quark felds can be used to rotate away all these 
CP phases in Eq. (2.1.13) from the mass matrices. However, by doing so the δψ phases are 
instead reabsorbed into the θ-parameter. Thus, all the QCD sources of CP-violation become 
concentrated in a new parameter, θ, which we will defne in the next section. 

2.2 The missing meson problem 
In this section we will expound the relevance of QCD instantons in hadronic physics, 

and their relation with the θ-parameter, by explaining their implications in the solution 
of the so-called “missing meson problem” [31] also referred as “the U(1)A problem”. The 
latter is related to the understanding of the mass of the η ′ meson, which, from symmetry 
arguments, was expected to be as light as pions or kaons. However, when measured, it was 
turned to be as heavy as the proton. 

In order to illustrate this problem let us consider the fermionic Lagrangian for the 
three lightest quark favours of the SM: u, d and s: 

L = q iD/ − mq q . (2.2.14) 
q=u,d,s 

Since the confnement scale of QCD, ΛQCD, is of the order of ∼ 300 MeV, it is indeed a good 
approximation to neglect the quark masses in the Lagrangian above in comparison with the 
physical scale of the theory: mq ≪ ΛQCD. Thus, if we further disregard other interactions 
than QCD (i.e. electroweak interactions), the Lagrangian presents an approximate (classical) 
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symmetry under the favour group U(3)L × U(3)R, under which the light quarks transform 
as  

uL uL uR uR dL 
→ UL 

dL 
 , dR 

→ UR 
dR 

 , (2.2.15) 
sL sL sR sR 

with UL and UR an element of the symmetry groups U(3)L and U(3)R respectively. 

The symmetry group U(3)L × U(3)R, that transforms separately fermions with dif-
ferent chiralities, can be here reparametrized in terms of vector and axial transformations as 
U(3)L ×U(3)R = SU(3)V ×SU(3)A ×U(1)V ×U(1)A, where vector refers to a transformation 
of LH and RH quarks with the same angle (V = R + L), and axial refers to a transformation 
with opposite angle (A = R −L). The currents associated to these transformations are given 
by the following expressions 

λa 
jµ jµ 
V = qγµq , V, a = qγµ q , (2.2.16)2 

for the U(1)V and SU(3)V vectorial transformations respectively, and 

λa 
jµ jµ 
A = qγµγ5 q , A, a = qγµγ5 

2 
q , (2.2.17) 

for the U(1)A and SU(3)A axial transformations. Notice that here the Gell-Mann matrices 
λa (with a = 1, ... , 8) are matrices in favour space defned by the {u, d, s} favours and not 
in colour space. Also, q here represents the 3-component favour vector q = (u, d, s)T . 

Among the symmetry groups above, the axial transformations U(1)A and SU(3)A are 
explicitly broken in the Lagrangian by the mass term of the quarks, that we have neglected 
in the previous paragraphs. On the other hand, the SU(3)V vectorial transformation is 
only broken by the mass diferences between quarks, 1 and fnally, U(1)V is conserved at 
Lagrangian level even if all quark masses are kept. 

Notwithstanding, not all the symmetries depicted above are manifestly realized in 
nature in the low-energy hadron spectrum. For instance, only the vectorial groups are 
manifestly realized. Indeed, after QCD confnement, the axial symmetries U(1)A × SU(3)A 
are spontaneously broken by the non-zero value of the quark condensate ⟨qq⟩ ̸= 0. According 
to the Goldstone theorem [15,16], in the QCD confnement scenario, one would naively expect 
to fnd 9 massless GBs in the hadron spectrum: 8 corresponding to the spontaneously broken 
SU(3)A symmetry, plus 1 corresponding to U(1)A. Nevertheless, as the spontaneously broken 
symmetries are not exact but approximate (due to quark masses), these particles are not 
massless but gain a small mass, and are referred to as pseudo-Goldstone bosons (pGB). 

However, only 8 light pGBs are found in the QCD hadron spectrum. Those are [19]: 
three pions, π0 (mπ0 ≈ 135 MeV) and π± (mπ± ≈ 139 MeV); four kaons, K0, K 0 (mK0 ≈ 
m 0 ≈ 498 MeV) and K± ≈ 494 MeV); and the η meson (mη ≈ 548 MeV), which 
K (mK± 

1In the full SM, a favour SU(3)V vectorial transformation is not only broken by the quark mass 
diferences, but also by the diferent EW hypercharges. 
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∂µj
µ
A

g

g
Figure 2.1: One-loop triangle diagram corresponding to the chiral anomaly of the axial 
current jA

µ = ψγµγ5ψ at quantum level, where the fermions ψ run in the loop. 

correspond to the SU(3)A generators. Notice that those pGB mesons containing a s quark 
in their composition tend to be more massive. The reason is that the strange quark mass 
(ms), which is the symmetry breaking parameter for SU(3)A, is larger than mu and md. 
However, the ninth meson, the η ′ meson, corresponding to U(1)A is much heavier than the 
others, as heavy as a proton, (mη ′ ≈ 958 MeV) and thus cannot be classifed as a pGB. The 
lack of an explanation for the large value of mη ′ in comparison with the other light mesons 
is the so-called “missing meson problem” or “U(1)A problem” [31]. 

A dynamical explanation to the U(1)A problem was found by ’tHooft [29, 32, 33], 
who pointed out that the U(1)A is explicitly broken due to the Adler-Bell-Jackiw (ABJ) 
anomaly [34, 35] (sometimes also referred as the “axial” or “chiral” anomaly) due to QCD. 
Ergo, the natural scale of this symmetry breaking is the QCD scale. It follows that, even in 
the massless quark scenario, U(1)A is never a good symmetry of the QCD Lagrangian, and 
thus the η ′ meson gets additional contributions to its mass, resulting in a fnal value as large 
as the proton mass. 

To gain an understanding of the ABJ anomaly’s implications with respect to the 
U(1)A transformation of the SM quarks, let us frst examine a concrete scenario involving 
the axial rotation of a quark ψ, with mass mψ, by an angle β, which transforms the quark 
feld as  

 −iβψR ,−iβγ5 e 
U(1)A : ψ → e ψ = (2.2.18) +iβψL ,e 

and whose associated axial current reads jA
µ = ψγµγ5ψ. Since U(1)A is explicitly broken by 

the mass terms, the divergence of the current is diferent from zero by a term proportional to 
mψ already at the classical level. Nevertheless, due to the chiral anomaly extra (anomalous) 
terms appear in the expression for the divergence of jA

µ , so that the full divergence reads 

αS 
Geα,µν∂µjA

µ = −i2mψψγ
5ψ + Gµν

α , (2.2.19)4π 

where the second one corresponds to the ABJ anomaly and can be obtained by computing 
the triangle Feynman diagram in Fig. 2.1 or via the path integral Fujikawa method [36]. 
Thus, it is clear that even if the case where quark ψ were exactly massless, U(1)A would 
be classically conserved (that is, no term in the Lagrangian breaks the symmetry), but still 
explicitly broken at quantum level due to the chiral anomaly. In consequence, given the 
expression in Eq. (2.2.19), if an infnitesimal axial rotation U(1)A of angle β is performed 
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the resulting variation in the Lagrangian reads 
U(1)A −iβγ5 

jµ αS 
Geα,µνψ −−−→ e ψ , → δL = β∂µ = −i2mψβψγ

5ψ + β Gα , (2.2.20)A 4π µν 

where, as we discussed in the previous section, the second term must be kept even though it 
is indeed a total derivative, as instanton feld confgurations lead to a non-zero contribution 
to the action. 

Returning to Eqs. (2.1.1) and (2.1.13), if an axial rotation U(1)A is performed on 
each of the Standard Model quark felds ψ by angles β = δψ/2, then the QCD Lagrangian 
undergoes a transformation resulting in a new form that reads 

  
1 

Gµν,α + 
αS 

Gµν,α +LQCD = −4G
α θ + δψ Gα e ψ iD/ − mψ ψ . (2.2.21)µν µν 

ψ 8π ψ 

Here we defne the θ-parameter as 

θ ≡ θ + arg det(MQ) , (2.2.22) 
where in our case arg det(MQ) = ψ δψ. 

To summarize, θ, the combination of the θ-parameter and the complex phases of 
the quark mass matrix in Eq. (2.2.22), is the only parameter source of CP-violation within 
the QCD sector once we consider all possible quark-feld redefnitions. Thus, the latter is 
the only combination that has physical sense and can be measured experimentally. Within 
the QCD Lagrangian, θ can be written as a global coefcient of the GGe CP-odd term, in 
the basis with real quark masses, or it can be rotated to the quark mass matrix via axial 
transformation of the quark felds. 

It is now obvious from Eq. (2.2.19) that, if at least one quark were massless, a chiral 
rotation of its feld would be conserved at the classical level, but still broken at the quantum 
level by the anomaly. Therefore, by performing a chiral rotation of that massless quark feld 
of angle β = −θ/2, the θ parameter would be rotated away from the Lagrangian and, in 
consequence, it would not have physical implications at experiments. In other words, that 
would be a sufcient condition to turn θ unphysical and erase all source of CP-violation 
within QCD. 

2.3 Neutron electric dipole moment 
The θ-parameter has a substantial impact on numerous observables in the domains 

of nuclear and hadronic physics. Specifcally, a non-zero value of the θ-parameter induces 
contributions to the values of hadron masses and couplings, and may even modify the rate of 
synthesis of various heavy elements in the early universe [37]. Among diferent experimental 
approaches, the most sensitive probe of the θ parameter is the measurement of the neutron 
electric dipole moment (nEDM). This quantity is strongly suppressed in the Standard Model, 
making it one of the best avenues for seeking new BSM physics. At the efective QED + 
QCD Lagrangian level, 2 the EDM interaction between neutrons and the electromagnetic 

2When the whole gauge group of the SM is considered, the lowest dimensional efective operator that 
generates an EDM for the fermions arises instead at dimension-6: iΨLσµν ΨRΦF µν /Λ2 + h.c.. 
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feld can be written as 

i ⃗LnEDM = −2dnnσµν γ
5nF µν ⊃ −idnn σ⃗ · E n , (2.3.23) 

where n is the neutron feld spinor, dn denotes the nEDM and E⃗ is the electric feld. The 
vertex above is a mass-dimension fve coupling between the neutron and the photon feld, 
and in consequence, it can not be present in the SM Lagrangian or in any renormalizable 
Lagrangian. It is induced at loop-level as an efective interaction though. 

In contrast with magnetic dipole moments, EDMs change their direction under P 
and T transformations, and thus under CP. This is obvious from the σ⃗ · E⃗ dependence shown 
above. Therefore, in order to produce an efective EDM interaction it is required from the 
beginning the presence of one or several P and CP-odd couplings in the Lagrangian. As 
stated in the previous sections, this is exactly the case of the QCD θ-term. However, the SM 
comprises other sources of CP-violation within the EW interactions (see Sec. 1.3). Therefore, 
it is convenient to ask ourselves what would be the SM prediction for the nEDM, generated 
by the weak interactions, in the extreme case in which no source of CP-violation is present 
within QCD; θ = 0. 

Setting aside the complex phase of the PMNS matrix for neutrino mixing, the other 
SM source of violation of CP is the complex phase of the CKM matrix defned in Eq. (1.3.29): 
δ. However, SM CP violating processes require the simultaneous presence of quarks from 
the three generations and non-vanishing favour-mixing. Therefore, a non-zero value for the 
nEDM cannot be generated by one-loop processes. A simple way to illustrate this statement 
is that in any one-loop diagram originating an EDM for the quarks, for each CKM matrix 
element (VCKM)ij in a W -boson vertex there is a second vertex with the conjugate element 
(VCKM)∗ 

ij . Then, the complex phase δ cancels and the total amplitude must preserve CP. See 
illustration in Fig. 2.2. This means that the amplitude of this diagram must be proportional 
to the following factor 

2Mone−loop ∝ (VCKM)uq(VCKM)∗ = |(VCKM)uq| , (2.3.24)uq 

where q is the favour of the internal down-like quark in Fig. 2.2, and thus the amplitude will 
always correspond to a CP-conserving process (e.g. magnetic moment for chirality fipping 
transitions). Thus, the one-loop diagram in Fig. 2.2 will never originate an EDM for the 
quarks. The next step in the perturbative expansion is to look for EDM contributions at 
two-loop order. An example of these diagrams is shown in Fig. 2.3. 

The amplitude of the two-loop diagram in Fig. 2.3 must be proportional to the 
following product of CKM matrix elements 

Mtwo−loop ∝ (VCKM)uq(VCKM)q ∗ 
′ q(VCKM)q ′ q ′′ (VCKM)∗ 

uq ′′ , (2.3.25) 

′ ′′where q, q and q are the internal quark favours running in the loop. This combination is 
a priori complex, so we would expect a non-zero contribution to the quark EDM (and then, 
to the nEDM) from the sum of these two-diagrams. However, it was shown in Ref. [38] that 
the imaginary part of the sum of all two-loop contributions vanishes once we sum over all 
internal quarks favours. As a consequence, in the SM the leading order contribution to the 
quark EDM is given at least at three-loop loop order in perturbation theory. An example of 
a three-loop diagram contributing to the quark EDM is shown in Fig. 2.4. 
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u
(VCKM)uq (VCKM)

∗
uq

u

γ

q
u

W+

Figure 2.2: Example of hypothetical one-loop diagram for the SM EW contribution to the 
up-quark EDM. The photon external leg could be attached to any charged-particle leg. 

u u

γ

(VCKM)uq (VCKM)
∗
q′q (VCKM)q′q′′ (VCKM)

∗
uq′′

uq′′q′q

W−

W+

Figure 2.3: Example of hypothetical two-loop diagram for the SM EW contribution to the 
up-quark EDM. The photon external leg could be attached to any charged-particle leg. 

u u

γ

uq′′q′q

W−

W+

g

Figure 2.4: Example of a three-loop diagram for the SM EW contribution to the up-quark 
EDM. The photon external leg could be attached to any charged-particle leg. 

Finally, when we consider the neutron as a whole particle beyond its individual va-
lence quarks, other diagrams at the same order in perturbation theory are possible involving 
simultaneous interactions between valence quarks [39, 40]. An example of these diagrams is 
drawn in Fig. 2.5. These lead to the leading order contribution from the EW sector of the 
SM. Overall, considering the experimental value of the complex phase of the CKM matrix, 
the SM induced nEDM is expected to be of the following order of magnitude [41, 42] 

dEW ∼ 10−31 
n e · cm . (2.3.26) 
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d u

u d

d d

q′ q

W−

u

W

g

Figure 2.5: Example of a leading order diagram contributing to the nEDM from EW inter-
actions in the SM. The photon external leg could be attached to any charged-particle leg. 

Once we have estimated the numerical value of the EW contribution to the nEDM 
in Eq. (2.3.26), now we must compare this result to the contribution from the θ-term. A 
common approach is to perform a series of U(1)A rotations in order to trade the θ-term 
by a CP-violating operator iθmψψγ

5ψ ⊂ δLCP in the mass terms of the quarks. It can be 
shown that such operators induce an asymmetry in the charge distribution inside the neutron 
which results in a non-zero nEDM which depends on the value of the θ-parameter. Numerous 
estimations of this contribution can be found [43–49], yielding the following range 

dθn ∼ (0.8 − 2) × 10−15 θ e · cm . (2.3.27) 

This is the point at which the Strong CP problem arises: when measured at experi-
ments, no nEDM signal has been found. It seems that experimentally the θ contribution is 
completely absent. According to Particle Data Group (2022) [50], the world average upper 
bound on the nEDM for the time being reads 

dexp < 1.8 × 10−26 
n e · cm , (2.3.28) 

at 90% C.L. Then, given Eq. (2.3.27), the latter translates into the following experimental 
constraint for the θ-parameter 

θ ≲ 10−11 . (2.3.29) 

Note that θ was defned in Eq. (2.2.22) as the sum of two quantities (the original 
QCD θ-parameter and the complex phases of the quark mass matrices), which a priori are 
completely unrelated. Moreover, both quantities are angles, which means they are expected 
to take arbitrary values between 0 and 2π. These facts make the upper bound in Eq. (2.3.29) 
completely puzzling: even though θ, as an angle, may take any value between 0 and 2π, the 
experimental value turns out to be extremely suppressed with no underlying theoretical 
explanation within the SM framework. 

This is what is called a fne-tuning problem: an experimental value of θ ≲ 10−11 is a 
priori mathematically possible and consistent with the theory. However, from the theoretical 
perspective, we would expect θ ∼ O(1). Thus, such bound on θ suggests for an explanation 
from BSM physics. This is what is called the Strong CP problem of QCD. 
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Future prospects on the nEDM are expected to reach an experimental sensitivity 
of 10−29 e·cm [51]. Also, proton EDM in coming into play with the same expected sen-
sitivity, using storage rings [52]. Therefore, in the next years we would be able to probe 
experimentally the EW contribution in Eq. (2.3.26) for the nEDM. 

2.4 Solutions to the Strong CP problem 
Numerous attempts have been made in the literature to extend the SM in order to 

provide a theoretical basis for the unexpectedly suppressed value of θ. Broadly speaking, 
these eforts can be classifed into three distinct solution types, which will be elaborated in 
next sections. 

2.4.1 Massless quark solution 
In Sec. 2.2 we explored the consequences of the ABJ anomaly with respect to per-

forming chiral U(1)A of the SM quark felds. Additionally, we discussed that if one of the 
quarks of the SM were massless θ would be rendered unphysical. For example, if the up 
quark, which is the lightest quark in the SM, were massless, an axial U(1)A rotation of the u 
feld would be a classical symmetry of the QCD Lagrangian, but it would be explicitly broken 
at quantum level due to the ABJ anomaly. Thus, the divergence of the current associated 
to this symmetry would read 

−iβγ5 mu=0 αS 
Geα,µνU(1)A : u → e u , −−−→ ∂µj

µ = Gα . (2.4.30)A 4π µν 

Therefore, a rotation of this kind with an angle β = −θ/2 would rotate away θ-term from 
the QCD Lagrangian and the Strong CP problem would be solved. However, the hypothesis 
that any of the quarks of the SM is massless have been ruled out by many results from lattice 
QCD simulations and chiral perturbation theory [53–58]. 

Yet another option is to consider new exotic massless quarks, charged under SU(3)c. 
However, if those exist, a mechanism must be provided in order to “hide” them experimen-
tally. The idea explored by some works in the literature is to “enlarge” the strong sector of 
the SM by extra gauge groups, under which the exotic quarks are also charged. Thus, assum-
ing that the new confning scale is much larger than that of QCD, the exotic “hadrons” of 
the new group would be much heavier than the usual QCD hadrons, and then not accessible 
experimentally (excluding some possible new pGBs). 

2.4.2 Nelson-Barr Mechanism 
The Nelson-Barr mechanism [59–61] is a solution to the strong CP problem in which 

CP is assumed to be an exact symmetry of nature and only spontaneously broken. If CP 
is a fundamental symmetry, the θ-term would be absent from the QCD Lagrangian, as it 
would break CP explicitly. On the other hand, CP violation in the EW sector have been 
confrmed with great precision in the complex phase δ of the CKM matrix. This seems a 
priori incompatible with the assumption that CP is a fundamental symmetry. The solution 
within these models is simple: new scalar singlets are added, which develop a non-zero 
complex vevs, breaking spontaneously CP. Furthermore, the exotic sector is arranged in a 
way that the complex vevs only induces CP-violation within the EW sector, in the CKM 
matrix, but not in QCD, so θ remains exactly zero at tree-level. 
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In order to do so, new vector-like quarks are introduced, which interact with the SM 
quarks through new scalars. Those scalars develop complex vevs, breaking spontaneously 
CP. However, charges and symmetries are imposed in such a way that, after EWSB, the 
total mass matrices of the quarks (SM + exotics) reads [62] 

µ BfMQ = , (2.4.31)0 MQ 

where MQ (with Q = u, d) the usual 3 × 3 matrix of the SM quarks, µ is the n × n mass 
matrix of the new n exotics quarks and B is a n × 3 interaction matrix between the SM 
and exotic sector. Notice that the 0 in one of the of-diagonal elements is enforced by the 
symmetries and/or charges of the models. Also, since CP is assumed, µ and MQ are here 
real matrices, while B is complex since it is generated by the complex vevs of the extra scalar 
felds. 

fNotice that the structure of f always guarantees that arg det MQ = 0.MQ Since 
θ = 0 at the Lagrangian level due to the CP-conservation, then also θ = 0 (at tree level) 
even though B is complex. On the other hand, the CKM phase in the SM is generated by 
integrating out the heavy exotic quarks. 

However, it is important to note a potential limitation of Nelson-Barr-like models, 
that are based on the absence of a θ-term at tree level. θ is not a technically natural 
parameter in the ‘tHooft sense [63]. Since θ is not protected by any symmetry, it may 
get contributions from the CP-violating CKM phase δ. These contributions may require 
sophisticated matter content in order to keep the induced value of θ under control. The 
point is that, even if θ is set to 0 at UV energies, the renormalization group equations may 
induce a non-zero sizable value at low-energies. For the SM matter content, the estimate of 
such loop contributions was already computed by Ellis and Gaillard in Ref. [64]. Here they 
found that the frst infnite contribution to θ from the CKM complex phase must arise at 
7-loop in the perturbation theory. Therefore, even if θ is set to 0 at the Planck scale, its 
running is so suppressed that at low-energies we would measure θ ∼ 10−16, that is negligible 
in comparison with nEDM upper bounds on θ. 

2.4.3 Peccei-Quinn Mechanism 
The basic ingredient behind the mechanism proposed by Roberto Peccei and Helen 

Quinn [65, 66] is to require that the Lagrangian has a classical symmetry analogous to 
the U(1)A discussed for massless quarks, but with all SM quarks massive. However, such 
symmetry is not present in the SM Lagrangian at low energies. 

The idea is simple: Roberto Peccei and Helen Quinn’s proposal is to enlarge the SM 
matter sector with an additional Higgs doublet, in such a way that Yukawa sector of the 
SM Lagrangian presents a new U(1)PQ (Peccei-Quinn) global symmetry under which SM 
fermions transform axially. Thus, U(1)PQ would be classically exact but explicitly broken at 
quantum level due to the ABJ anomaly, which allows us to rotate away θ. Phenomenolog-
ically, in order to “hide” the new symmetry at low energies (since it has not been observed 
experimentally), U(1)PQ undergoes spontaneous symmetry breaking, originating a new light 
pGB in the low-energy spectrum, namely the axion. 

Unfortunately, the original PQ model has been ruled out for the time being. However, 
a plethora of diferent axion models have been studied in the past decades. The basic axion 
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is called “canonical” QCD or invisible axion [65–73]. In such models the axion energy scale 
is much larger than the EW scale, suppressing interactions with SM particles and eluding 
experimental bounds. In addition to the former, recently several axion models have been 
proposed in which the axion is made heavier [74–90] or lighter [91–94] than the QCD axion. 
For example, in some of those the axion gets extra contributions to its mass by enlarging 
the gauge sector of the SM. 

As of today, the axion solution remains a viable option, and an extensive experimen-
tal program is underway to search for these elusive particles. In the next section we explore 
the most relevant axion models proposed in the literature, as well as we review its basic 
properties. 

2.5 Axion models 
In this section, we provide a review of the paradigmatic axion models. The frst axion 

model, the PQWW model, is discussed in detail. Subsequently, “invisible” axion models are 
reviewed. For instance, we explore the two most relevant invisible axion models, the KSVZ 
and DFSZ models, and the Kim-Choi composite axion. Finally, we comment on recent 
attempts to construct heavy axion models in which the axion mass is higher than that of 
the invisible axion. 

2.5.1 Peccei-Quinn-Weinberg-Wilczek axion 
In Sec. 1.2 we reviewed the Higgs mechanism, responsible for the SM quark masses 

via Yukawa couplings with the Higgs doublet. Later, in Sec. 2.2, it was stated that such 
couplings break explicitly at the classical level an axial transformation of the quark felds. 
Thus, θ is a physical parameter that cannot be rotated away from the QCD Lagrangian, 
originating the Strong CP problem. However, given Eq. (1.3.22) it is worth to attempt to 
implement a symmetry U(1)PQ on the SM Lagrangian by considering that the Higgs doublet 
Φ could also be rotated in order to render the quark mass terms invariant. 

For instance, let us take the frst term in the equation above try to implement an 
−iβUR 

+iβQL.axial U(1) symmetry for the up-like quarks: UR → e and QL → e The, the 
e +i2β eΦ Higgs doublet must transform under this U(1) symmetry as Φ → e Φ: So that, the 

up-like quarks mass term by itself would be U (1) invariant. However, in the down-like quarks 
mass term the Higgs doublet Φ necessarily transforms with the opposite phase: Φ → e−i2β Φ. 
Therefore, in order to make the latter invariant DR must transform as: DR → e+i3βDR. 
Unfortunately, even though the U(1) symmetry we just defned is a good symmetry of the 
Lagrangian at classical level, given the charge assignment of the quarks, the QCD chiral 
anomaly induced by the up-like and down-like quarks cancels. In other words, this U(1) 
does not present a chiral anomaly for QCD and there is no way to implement a Peccei-
Quinn symmetry in the SM Yukawa Lagrangian. 3 

3Indeed, any U(1) symmetry of the SM Yukawa Lagrangian at classical level is just a combination of 
baryon number U(1)B, lepton number U(1)L and hypercharge U(1)Y (or the corresponding rotations 
for the diferent fermion families). All of them are QCD anomaly-free, so no U(1)PQ is present in 
the SM. 
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In 1977, Roberto Peccei and Helen Quinn overcame this situation in their proposal 
in Refs. [65, 66] by extending the Yukawa sector of the SM by one extra Higgs doublet: 
Φ1 and Φ2. In this picture, it is possible to rotate independently Φ1 and Φ2. Thus, we 
can identify a U(1)PQ transformation, that is a classical symmetry of the Lagrangian, but 
is broken at quantum level by the ABJ anomaly in the QCD sector. Thus, rendering θ 
unphysical and solving the Strong CP problem. Later, it was Weinberg and Wilczek [67,68] 
who noticed the PQ model included the presence of an “axion”, a light pGB a low-energies 
due to the spontaneous breaking of U(1)PQ: the Peccei-Quinn-Weinberg-Wilczek (PQWW) 
axion. 

In the PQ model, the charges of the two Higgs doublet under the SM gauge group 
are the same as the original Higgs doublet: Φ1(1, 2, 1/2) and Φ2(1, 2, 1/2) under SU(3)c × 
SU(2)L × U(1)Y . The Higgs sector of the Lagrangian is now extended as follows 

LΦ1,Φ2 = (DµΦi)† DµΦi − V (Φ1, Φ2) , (2.5.32) 
i 

q where V (Φ1, Φ2) is the scalar potential, which triggers EWSB by making Φ1 and Φ2 take 
1
2 + v2

2.non-zero vevs: v1 and v2. The original EW scale v is related to v1 and v2 as v = v 

e 

Moreover, the four independent degrees of freedom of each doublet can be parametrized as 
follows in terms of these vevs as 

1 ϕ1
+ 1 ϕ2

+ 
Φ1 = √ exp (iη1/v1) , Φ2 = √ exp (iη2/v2) . (2.5.33)

2 v1 + ϕ1
0 2 v2 + ϕ2

0 

Regarding the Yukawa Lagrangian, for the quarks felds it can be written as 

Φ2UR − QLYdΦ1DR + h.c. ,LYukawa ⊃ −QLYu (2.5.34) 

while for the lepton sector there is a choice whether to couple them to Φ1 or Φ2. Let us 
denote the two diferent possibilities by PQ-I and PQ-II respectively: 

PQ-I: LYukawa ⊃ −LLYeΦ1ER + h.c. , PQ-II: LYukawa ⊃ −LLYeΦ2ER + h.c. . (2.5.35) 

Given the two Higgs doublets on this model, there are several global U(1) transfor-
mations that are symmetries of the Lagrangian. For instance, among these symmetries we 
fnd baryon number (U(1)B ), lepton number (U(1)L) and a global version of hypercharge 
(U(1)Y ), which are also present in the SM, but also the Peccei-Quinn symmetry U(1)PQ can 
be identifed. 

In general, a generic transformation of U(1)PQ by an angle β would correspond to 
the following feld redefnitions 

 

 

 

−iχuβ UR ,UR → e 
−iχdβ DR ,DR → e 
−iχeβ ER ,ER → e 
−iχQβ QL ,U(1)PQ = QL → e (2.5.36) 
−iχLβ LL ,LL → e 
−i(χQ−χd)βΦ1 ,Φ1 → e 
−i(χu−χQ)β Φ2 ,Φ2 → e 
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where χu, χd, χe, χQ and χL are the PQ charges under U(1)PQ of UR, DR, ER, QL and LL, 
respectively. For the PQ-I model χe = χL −χQ +χd, while for PQ-II χe = χL +χQ −χu. 

Notice here that U(1)PQ is not uniquely defned, since there are four independent 
parameters {χu, χd, χQ, χL} which up to this point are free. A common choice here is to fx 
the PQ charges of LH fermions to 0: χQ = χL = 0. This can be done by combining U(1)PQ 
with U(1)B and U(1)L, which are vectorial rotation of the fermions felds. The axion physical 
couplings to fermions only depend on the axial combination of PQ charges (χψR −χψL ), where 
ψR and ψL denote the RH and LH chiralities of the fermion ψ respectively. Thus, this choice 
leaves such couplings unafected. 4 Thus, after this choice, the PQ symmetry only depend 
on two free parameters: the PQ charges of RH quarks {χu, χd}. 

Yet another condition on the PQ charges {χu, χd} can be inferred by imposing that 
U(1)PQ is orthogonal to U(1)Y . Let us consider the axial dofs of the two Higgs doublets: η1 
and η2. Under U(1)PQ and U(1)Y , those felds transform in a shift-symmetric way as 


 


η1 → η1 − β 

2 v1 ,η1 → η1 + βv1χd ,
U(1)PQ = U(1)Y = (2.5.37)

η2 → η2 − β 
2 v2 .  η2 → η2 − βv2χu , 

After EWSB, η1 and η2 encode the physical feld of the axion plus the would-be GB 
of U(1)Y (that is “eaten” by the Z boson in order to become massive), here denoted by 
G. The explicit expression of a and G in terms of η1 and η2 can be found by imposing the 
following shift-symmetric transformation rules 


 


a → a − βfPQ , a → a , 

U(1)PQ = U(1)Y = (2.5.38)
G → G − β 

2 v ,  G → G , 

where fPQ is the so-called “Peccei-Quinn energy scale” which is yet to be identifed. After 
comparing Eqs. (2.5.37) and (2.5.38) it follows that 

v1η2 − v2η1 v1η1 + v2η2 
a = , G = , (2.5.39) 

v v 
and 

2vχu 1 v1v2= 2 , U(1)PQ : a → a − β (χu + χd) . (2.5.40)
χd v v2 

Thus, fPQ is identifed in terms of v1, v2 and the PQ charges as 

fPQ = 
v1v2 (χu + χd) . (2.5.41) 
v 

Notice χu and χd are now related so that there is only one free parameter in the PQ charge 
assignment, which corresponds to a global normalization of the PQ charges. A common 
choice is to fx them to the following values 

1 
χu = x , χd = , (2.5.42) 

x 

4Physical couplings couplings of the PQWW axion to gluons and photons are also unafected, as 
the anomalous coefcients of QCD and QED (as vectorial gauge interactions) only depend on the 
axial combination of PQ charges. On the other hand, the axion anomalous interaction to Z and W 
bosons may be modifed. 
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a

Figure 2.6: One-loop triangle diagram corresponding to the aX anomalous interactions fofX 

f 

the axion with gauge bosons. The wavy legs denotes any pair of gauge bosons to which the 
axion couples to. 

with x = v1/v2. Then, the PQ scale is computed as 

v1v2 1 
fPQ = x + = v , (2.5.43) 

v x 

which corresponds exactly with the EW scale for such PQ charge assignment. It can be 
proved that for diferent PQ charges the same order of magnitude for fPQ is maintained. 

The PQWW axion couplings 

Physical couplings between the PQWW axion and SM fermions can be easily deduced 
from Eqs. (2.5.34) and (2.5.35). Under EWSB, the Yukawa interactions of the PQ Lagrangian 
result in the following terms 

−ia(χψR −χψLLPQ ⊃ − mψψLe )/fPQ ψR + h.c. , 
ψ 

X , 
(2.5.44)∂µa a = − mψψψ + (χψR − χψL )ψγµγ5ψ + O(α) X2fPQ fPQψ ψ 

where the sum runs over ψ = {u, c, t, d, s, c, e, µ, τ }. The second line in the equation above is 
obtained by expanding the exponential up to order O(1/fPQ) and then applying the EOMs 
of the SM fermions felds. 5 Notice that, as was anticipated before, the physical couplings 
of the axion with the SM fermions only depend on the axial combination of PQ charges. 
Additionally, such couplings depend on the derivative of a, i.e. are shift-symmetric under 
U(1)PQ. 

The last term in Eq. (2.5.44) corresponds to the anomalous couplings of the axion to 
SM gauge bosons. Those are generated by the axial rotation of the fermions, that is implicitly 
performed when the fermion EOMs are applied. Alternatively, anomalous couplings can be 
understood as arising from the triangle diagram in Fig. 2.6, where the way legs in the fnal 

5An alternative way to rewrite the axion interaction in their derivative shape is to perform an axion-
dependent feld redefnition of the SM fermions to the axion felds is removed from the Yukawa piece 
of the Lagrangian. Thus, the axion interaction terms are obtained from the fermions kinetic terms, 
yielding to the same relation as in Eq. (2.5.44). 
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state denote any pair of gauge bosons to which the axion couples to. At low-energy, this 
diagram induces interactions to and gluons and photons, which are given by the following 
terms in the Lagrangian 

αS a αem a 
Geα,µν + E FeµνLPQ ⊃ N Gµν

α Fµν , (2.5.45)8π fPQ 8π fPQ 

where N and E are respectively the QCD and QED anomalous coefcients of the fermions 
running in the loop. In terms of the PQ charges, those are computed as 

N = 2 (χψR − χψL )T (Rψ) , E = 2 (χψR − χψL )qψ 
2 , (2.5.46) 

ψ ψ 

where qψ is the EM charge of ψ, Rψ is the representation under QCD gauge group and T (Rψ) 
is the Dynkin index of such representation, defned as Tr(T aT b) = T (Rψ)δab, begin T a the 
generators of SU(3)c for the representation Rψ. In particular, for the choice of PQ charges 
that we presented in the previous section, we fnd 

 
1 1 8/3 for PQ-I ,

N = Nf x + , E = Nf x + × (2.5.47)x x 2/3 for PQ-II , 

with Nf = 3 is the number of fermions families. 

At this point it is customary to defned the “axion energy scale”, fa, as the original 
PQ scale over N 

fPQ
fa ≡ , (2.5.48)

N 
which is the physical variable measured in any axion GGe test. In addition, it suppresses all 
the axion couplings to SM particles. Thus, the coupling to GGe is normalized to fa and do 
not depends explicitly on the PQ charges: 

αS a E αem a 
Geα,µν + FeµνLPQ ⊃ Gµν

α Fµν , (2.5.49)8π fa N 8π fa 

while the axion-photon coupling now depends on the quotient E/N . From Eq. (2.5.47), this 
ratio equals 8/3 for the PQ-I model, and 2/3 for PQ-II. 

The QCD axion mass 

The exact dependence of the axion mass on the axion scale fa is one of the most 
robust predictions of the axion models, and is a direct consequence of the a GGe coupling 
depicted in Eq. (2.5.49): after QCD confnement, the instanton feld confgurations generate 
a potential for the axion as a consequence of the non-perturbative QCD dynamics. All axion 
models possessing this common origin for their masses are collectively referred to as “QCD 
axions”, including the original PQWW axion. 

The QCD axion, alike to the η ′ meson, couples to GGe. However, typically it is 
expected to be much lighter than mη ′ ∼ ΛQCD, which seems contradictory. In other words, 
should not the axion get a mass of the order of mη ′ ∼ ΛQCD given that it couples to GGe 

as well? The answer is precisely that there is only one source of breaking due to the QCD 
instanton felds, the GGe anomalous term, while there are two diferent pseudoscalars with 
anomalous couplings to QCD. As a consequence, below the QCD confnement scale there 
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is a mixing between both pseudoscalars and one combination will acquire a mass ∼ ΛQCD, 
while the other would remain much lighter [95–98]. The frst eigenstate is the one that is 
identifed experimentally as the physical η ′ meson. On the other hand, the latter is identifed 
as the physical QCD axion. In order to compute the explicit expressions of the pseudoscalar 
masses it is pertinent to construct the combined mass matrix in chiral perturbation theory 
(χPT), which describes the QCD mesons as the dynamical degrees of freedom bellow QCD 
confnement. 

Following Refs. [95–98], let us consider an extension of the chiral theory that includes 
the QCD pseudoscalar mesons plus the axion as dynamical degrees of freedom. For the 
moment, let us denote here the original neutral pion, η and η ′ mesons and the axion as: 
{π3, η8, η0, a0} and disregard the mixing corrections from heavier pseudoscalars (i.e. ηc). 
Thus, under QCD confnement, the mass terms induces a mixing among these pseudoscalars 
which results, after diagonalizing the mass matrix, into the physical mesons and the physical 
QCD axion, that we denote as: {π0, η, η ′ , a}. At leading order in the chiral expansion, the 
chiral Lagrangian includes the following terms 

 √ √ 
π3 η8 2η0 π3 η8 2η0√ √L χPT ⊃ 2v 3 + + + md cosmu √ √− −cosχ 3fπ 3fη 3fπ 3fηfπ fπ 

(2.5.50)√ √
2η8√
3fπ 

+ 
2η0 6η0 a0+ ms  + K cos +√cos − ,
3fη fη fa 

3where vχ is the QCD quark chiral condensate (⟨qq⟩ ), fπ and fη are respectively the = vχ 

3 
χ 

pion and η decay constants and K denotes the QCD anomaly contribution to the η0 and a0 
felds from the instanton confgurations. 

By expanding the Lagrangian in Eq (2.5.50) we fnd the following mass matrix for 
the set {π3, η8, η0, a0}: 

4v √
6fπ fη 

  
(m2 u 

π 

3 
χ 

3 
χ 

2 
π 

3 
χ2v √

3f 
2v 
f + md) (mu − md) (mu − md) 0 

 

3 
χ 

3 
χ4v √

3 2fπ fη 

2v √
3f 

2v(mu − md) (mu + md + 4ms) (mu + md − 2ms) 02 
π
3 
χ 

M2 = 3f2 
π3 
χ4v √

6fπ fη 

√3 
χ 
2 
η 

.4v √
3 2fπ fη 

+ 4v 
3f 

6K 6K(mu − md) (mu + md − 2ms) (mu + md + ms) √
6K 

2 
ηf fη fa 

0 0 K 
2 
afη fa f 

(2.5.51) 

After diagonalizing the matrix above, the following expression for the mass of the 
physical QCD axion a is found: 

2 1 K 
ma = K , (2.5.52)

fa 
2 TrMQ 

−11 + 3 
χ2v 

with MQ = diag(mu,md,ms). 

Additionally, if we work under the assumption that fa is much larger that any other 
scale (fa ≫ fπ, fη, K, vχ) and disregard the mass of the lightest quarks with respect to 
O(ΛQCD) scales (mu,md ≪ vχ, K1/4), we can fnd an expression for vχ 

3 and K in terms of 
the pion mass and energy scale, and the quark masses that reads [95] 

8 m2 f 2 
3 3 π πK ≈ χms , vχ ≈ (2.5.53)9v + md) 

.2(mu 
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So that, the expression for ma can be related to mπ and fπ as 

2f 2 2 mumd 
ma a ≈ mπfπ 

2 
(mu + md)2 . (2.5.54) 

When the expression above is extended to include corrections from the mass of the strange 
quark, it becomes 

2 mπ 
2 fπ 

2 4mumdms 
ma ≈ (2.5.55)

fa 
2 (mu + md)(4mums + 4mdms + 13mumd) 

. 

The Eq. (2.5.54) is one of the most robust predictions for the QCD axion. In partic-
ular, it tells us that for the PQWW axion, whose scale fa ≈ v = 246 GeV, ma is expected to 
be of order O(100) keV, which is incompatible with the particle spectrum observed at exper-
iments [69]. Therefore, excluding the frst Peccei and Quinn’s proposal. On the other hand, 
if fa would be of the order of 109 − 1012 GeV, the ma would be much lighter, 10−5 − 10−2 eV, 
and its couplings to SM particles would be so suppressed that it would elude experimental 
bounds. This is the case of the so-called invisible axion models, which are discussed in the 
next section. 

After diagonalizing the M2 mass matrix, we fnd that the physical QCD axion feld 
corresponds to the state 

a ≈ a0 + θaππ3 + θaηη8 + θaη0η0 , (2.5.56) 
where the mixing angles, working under the assumptions depicted above, reads 

fπ md − mu fπ −fη
θaπ ≈ − , θaη ≈ − √ , θaη ′ ≈ −√ , (2.5.57)2fa mu + md 2 3fa 6fa 

plus some corrections O(mu,d/ms). 

The QCD axion-photon coupling 

The mixing between the QCD axion and pseudoscalar mesons does not only fxes 
the axion mass but also has a large impact on the axion phenomenology. As an example, 
this mixing induces an efective interaction between the QCD axion and photons which 
combines with the original FFe coupling in Eq. (2.5.49). A customary parametrization of 
the axion-photon interaction is given by the following operator 

FeµνLaγγ = − 
1
4gaγγ aFµν , (2.5.58) 

where gaγγ is an efective coupling constant O(1/fa). For the QCD axion, such coupling con-
stant is not only given by the anomalous EM coefcient of the U(1)PQ symmetry depicted in 
Eq. (2.5.47), but it also gets contribution from the other pseudoscalar mesons. For instance, 
gaγγ could be computed as 

0 gaγγ = gaγγ + θaπgπγγ + θaηgηγγ + θaη ′ gη ′ γγ , (2.5.59) 

where the frst term correspond to the original coupling in Eq. (2.5.49), while the other are 
due to the mixing. Given the expression of the mixing angles in Eq. (2.5.57), the physical 
gaγγ reads 

αem E 2 mu + 4md= − − , (2.5.60)gaγγ 2πfa N 3 mu + md 
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at leading order of the chiral expansion, where the frst term corresponds to the original 
axion coupling, while the latter is originated from the mixing. When taking into account 
the NLO corrections from the χPT, a more accurate expression is found [99] 

αem E 
gaγγ = − − 1.92(4) . (2.5.61)2πfa N 

Summing up, the physical couplings to photon of the PQWW axion (and, in general, 
of any QCD axion), as that in Eq. (2.5.61), comprises two diferent contributions: frst, the 
model-dependent contribution, that is originally present in the Lagrangian, and second, the 
contribution from the axion-meson mixing. The latter is model independent: it is exactly 

2f 2the same for all QCD models and, as the expression for ma a in Eq. (2.5.54), it is a robust 
prediction that only relies under the assumption that the PQ symmetry is only broken by 
the QCD instantons. 

As a fnal remark, mixing-induced couplings, such as that in Eq. (2.5.61), are not 
a particularity of the axion-photon interaction. Other model-independent components of 
couplings can be computed for the efective axion interaction with leptons, nucleons or EW 
bosons [100, 101]. 

2.5.2 Invisible axion models 
Since the PQ original model can not be an accurate description of nature as a solution 

to the Strong CP problem, a natural question is whether the exotic matter sector can allow 
for much larger efective scales fa. 

We will review next the so-called invisible axion models. Those introduce new parti-
cles that raise the axion energy scale fa to values much higher than the EW scale: fa ≫ v. 
The point is that all axion couplings to SM felds are proportional to 1/fa, and thus for very 
large fa values the experimental constraints on axion couplings can be eluded. Additionally, 
due to the relation between the mass of the axion ma and the scale in Eq. (2.5.54), these 
invisible axions are expected to be much lighter than the original PQWW axion. Typically, 
for such models an scale fa ∼ O(109) − O(1012) GeV is phenomenologically viable, which 
implies an axion mass of ma ∼ O(10−5) −O(10−2) eV. 

In this section we present the two most relevant invisible axion models: the DFSZ 
axion and the KSVZ axion. Both models raise the scale via the addition of an extra scalar 
singlet under the SM gauge group, but carrying PQ charges, whose vev ∼ fa ≫ v. Addi-
tionally we also discuss the Kim-Choi axion, that is a composite axion model that increases 
the value of fa via a new confning gauge group at high energies. 

DFSZ axion 

The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model [71, 72], can be under-
stood as an extension of the original PQ solution, enlarging only the matter sector of the 
SM with extra scalar particles. This model enlarges the SM Higgs sector by introducing a 
second Higgs doublet Φ2. On the other hand, it also requires a new complex scalar S that 
would be a singlet of the SM gauge group SU(3) × SU(2) × U(1), and serves to raise the 
overall axion scale. This feld S would be charged under U(1)PQ, as well as the SM quarks 
and the two Higgs doublets. 
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The Yukawa Lagrangian in this model is identical to the one of the PQ model, 
depicted in Eq. (2.5.34): the SM fermion masses are generated by the non-zero vevs of the 
two Higgs doublets Φ1 and Φ2. However, the scalar potential, V (Φ1, Φ2, S), now also depends 
on the new scalar singlet S. In particular, the following interaction terms is introduced in 
the Lagrangian 

V (Φ1, Φ2, S) ⊃ λΦ1Φe 
2S

2 + h.c. , (2.5.62) 
where λ is a dimensionless parameter. Given the PQ charge assignment in Eq. (2.5.36), such 
term imposes that S transforms as 

−i(χu+χd)/2S ,U(1)PQ : S → e (2.5.63) 
where we have also imposed χQ = 0 as in the previous section. Moreover, the scalar potential 
forces S to take a non-zero vev which is assumed to be much larger than the EW scale 

vS 2 2⟨S⟩ = √ ≫ v = 
q 
v1 + v2 . (2.5.64)

2 
Then, we can parameterize S as follows 

1 iηS /vSS = √ (vS + ρ)e , (2.5.65)
2 

where ρ corresponds to the massive radial excitations of S while ηS is the feld that charac-
terizes the axial component. 

The DFSZ axion, a, appears in this model as a linear combination of the previous 
PQWW axion from Eq. (2.5.39) and ηS . In order to fnd the exact expression for the true 
axion, we impose that a is only shifted under U(1)PQ, while it remains invariant under the 
orthogonal transformations. Thus, we fnd the following expression 

1 vS v1v2
2 v1

2v2 
a = 2 

ηS − η1 + η2 ≈ ηS , (2.5.66)
2 2 v2 v2 

vS v1v2+2 v 

plus some correction terms O(v/vS). Also, by imposing that under U(1)PQ a transforms as 
Eq. (2.5.38), it follows 

s 
2 2vS v1v2 vS

fPQ = + (χu + χd) ≈ (χu + χd) ≫ v . (2.5.67)2 v 2 

Summing up, due to the large hierarchy among the vevs of the scalars (vs ≫ v1, v2), 
the energy scale of the PQ sector is of the same order as the vev of the singlet S, fPQ ∼ vS , 
and the DFSZ axion is mostly given by its axial component: a ≈ ηS . 

Finally, since the PQ charges of the SM fermions are exactly the same as in the 
original PQ model, the DFSZ axion couplings would correspond to those of the original 
PQWW. The only subtlety is that such couplings are now suppressed by the new large PQ 
scale. Thus, in the DFSZ model the axion couplings are suppressed by a factor ∼ v/vS with 
respect to those of the PQWW axion. Since vS is not determined by any experimental search 
and is a free parameter of the DFSZ model, those interactions can be arbitrarily suppressed, 
eluding all experimental bounds on axion searches. In addition, since the PQ symmetry is 
only broken by the QCD instantons, all the properties derived in previous section (for QCD 
axions) also apply here. In particular, QCD keeps being the only source of axion mass ma, 
and the relation between ma and fa in Eq. (2.5.54) holds. Then the mass of the DFSZ axion 
is expected to be much lighter than that of the PQWW axion, by a factor ∼ v/vS . 
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KSVZ axion 

The Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion model [69, 70] is slightly dif-
ferent in comparison with the previous axion models. It still maintains the SM gauge sector, 
while it enlarges the SM matter content, but by exotic QCD colored fermions in this case. 
All the SM fermions and Higgs sector here are singlets of U(1)PQ, while the PQ symmetry is 
solely implemented via an exotic vector-like quark Q, charged (at least) under SU(3)c, and 
a new singlet complex scalar S. The total Lagrangian of the KSVZ model reads 

L = LSM + LKSVZ , (2.5.68) 

where 

LKSVZ = iQ / yQSQRQL + h.c. + 
1
2∂µ Φ†Φ |S|2 , (2.5.69)DQ− S ∗ ∂µS −µ 2|S|2 −λ|S|4 −λ ′ 

where D/ is the QCD covariant derivative, yQ is the Yukawa coupling constant of Q and µ, λ 
and λ ′ are the parameters that characterize the scalar potential. This Lagrangian comprises 
two U(1) symmetries. One of them is just a vectorial rotation of the Q quark, which is 
exact. On the other hand, the second one is an axial symmetry under which both Q and S 
must transform. The latter can be identifed as the PQ symmetry, under which the felds 
are rotated as 

−iβ/2QR , +iβ/2QL , −iβ S ,U(1)PQ : QR → e QL → e S → e (2.5.70) 

where, without loss of generality, we have chosen the following assignment of PQ charges: 
χQR = −χQL = 1/2, while the SM fermions are not charged under U(1)PQ. This symme-
try is QCD anomalous due to the SU(3)c charge of Q, so that the Strong CP problem is 
solved. 

At low energies, the scalar potential induces a non-zero vev for the S singlet, which 
breaks spontaneously the PQ symmetry. It can be directly identifed as the energy scale 
associated to the PQ sector: fPQ. Thus, S can be parameterized as follows 

1 ia/fPQS = √ (fPQ + ρ)e , (2.5.71)
2 

where ρ corresponds to the radial excitations of S, while the axial feld can be directly 
identifed as the KSVZ axion. Notice that given this expression and the PQ charges in 
Eq. (2.5.70), the shift transformation of a defned in Eq. (2.5.38) is trivially satisfed. Again, 
the KSVZ axion is a QCD axion. Thus, the relations for ma in Eq. (2.5.54) and and the 
photon coupling in Eq. (2.5.61) also hold. 

Additionally, ρ gains a mass of order fPQ, that is assumed to be much larger than 
the EW scale (fPQ ≫ v). Thus, no low-energy impact is expected from ρ. The mass of 
Q is generated from the Yukawa interaction with S. After S takes a vev, we fnd mQ = 
yQfPQ/ 

√
2 ≫ v. Therefore, both particles get decoupled, leaving the KSVZ axion as the 

only dynamical dof at low energies. 

Regarding the a couplings to SM particles, in the KSVZ model a priori there are 
no tree-level interactions with SM fermions, since those are not charged under U(1)PQ. The 
axion anomalous couplings to gluons and photon are now determined by the PQ charges of 
Q. From Eq. (2.5.47), it follows 

NKSVZ = 1 , EKSVZ = 6 qQ 
2 . (2.5.72) 
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Therefore, we identify the axion scale as fa = fPQ. On the other hand, the model dependent 
piece of the axion-photon coupling in Eq. (2.5.61) depends on the EM charge of Q: qQ. 

It is worth to highlight that some extensions of the KSVZ model can be easily found 
by adding more exotic vector-like quarks Qi, which may transform non-trivially under the 
EW gauge group of the SM. By doing so, the anomalous NKSVZ and EKSVZ gets contributions 
from all exotic vector-like quarks. Indeed, this would solve one of the issues of the original 
KSVZ model: heavy cosmological stable relics [102]. In simple words, it was discussed that 
the KSVZ Lagrangian encodes two U(1) symmetries: the PQ symmetry and a vectorial 
transformation of Q, which is analogous to baryon number but for the exotic sector. The 
latter ensures the cosmological stability of Q, giving rise to fractionally charged baryons 
after QCD confnement. Such hadrons are strongly constrained [103, 104] experimentally. 
A viable solution is to provide the exotic quarks with EW charges. Thus, gauge invariance 
allows for renormalizable mixing terms between the exotic and the SM quarks, breaking the 
exotic and SM baryon number down to a single U(1)B under which all quarks (exotic plus 
SM) are charged. Therefore, fractionally charged baryons are rendered unstable. 

Kim-Choi composite axion 

The Kim-Choi (KC) axion model [73] constitutes a PQ solution to the Strong CP 
problem in which the axion is not a fundamental feld of the new physics sector, but a 
composite particle instead. It inherits the basic ideas of the massless quark solution: new 
exotic massless quarks are introduced, so θ becomes unphysical and can be safely removed 
away. However, it requires to enlarge the gauge sector of the SM. Indeed, in order to “hide” 
such exotic quarks at low-energies, a new non-abelian gauge group SU(N)a is assumed, 
usually referred as “axicolor” interaction, under which the new quarks are charged. SU(N)a 
is assumed to undergo confnement at an energy scale Λa ≫ ΛQCD. Therefore, new exotic 
hadrons (axihadrons) acquire a large mass ∼ Λa and decouple from low-energy physics. 
Notwithstanding, the confnement of the axicolor group leads to the spontaneous breaking 
of global axial favour symmetries in the exotic quark sector. Thus, light pseudoscalar mesons 
may appear in the spectrum as pGB of such symmetries, in a similar way as we discuss the 
case of the pions in Sec. 2.2. That is precisely the case of the Kim-Choi axion, which is now 
a bound state of the exotic massless quarks. 

Even though one single massless quark is necessary in order to remove the θ-term 
from the Lagrangian, in their original proposal Kim and Choi postulated two exotic massless 
vector-like quarks, namely Q and ψ. The former is charged under both confning groups, 
QCD and axicolor, while the latter only has axicolor charge. The reason behind this idea is 
that the new confning axicolor group SU(N)a may present also an axicolor θa-term which 
also induces CP violation. While an axial rotation of Q rotates away the θ-term from the 
QCD Lagrangian, an independent rotation of ψ is used to also render θa unphysical. 

Therefore the Lagrangian for the KC model is simply written as 

L = LSM + LKC , = iQ / Dψ , (2.5.73)LKC DQ + iψ / 

where D/ now includes both the QCD and axicolor couplings. The QCD and axicolor charges 
of Q and ψ can be inferred from Tab. 2.1. 

Let us know consider the confning process of the axicolor group. Assuming SU(N)a 
undergoes confnement at an arbitrarily high energy scale Λa, with Λa ≫ ΛQCD, it is a good 
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SU(3)c SU(N)a 
Q 3 N 
ψ 1 N 

Table 2.1: QCD and axicolor charges of the quark sector of the Kim-Choi axion model. 
The felds Q and ψ represent massless vector-like fermions. N denotes the fundamental 
representation SU(N)a. 

πa πa

g

Figure 2.7: Gluon exchange loop diagram that originates the axipion mass from QCD in the 
Kim-Choi axion model. The internal fermionic lines corresponds to the quark components 
on the axipion πa. 

approximation to work in the limit of vanishing QCD coupling: αS → 0. 6 In such limit, the 
diferent color charges of Q can be understood as diferent favours. Thus, the Lagrangian in 
Eq. (2.5.73) comprises an approximate U(4)L × U(4)R = SU(4)A × SU(4)V × U(1)A × U(1)V 
favour symmetry, that is broken at low energies by QCD. 

Analogously to the discussion in Sec. 2.2, after axicolor confnement the chiral con-
densate of the exotic quarks, given by 

D D 
QQ = ψψ ∼ Λ3 

a , (2.5.74) 

breaks spontaneously the axial symmetries: SU(4)A × U(1)A, giving rise to potential light 
degrees of freedoms at low energies in the form of pseudo-Goldstone bosons. Let us call 
them axipions as an analogy of QCD confnement. Since U(1)A is anomalous under the 
axicolor group, its corresponding pGB, a singlet under all SM gauge groups, gains a mass of 
order ∼ Λa. This is the equivalent of the η ′ meson in SU(N)a. On the other hand, SU(4)A 
generates 42 − 1 = 15 axipions, which are expected to have masses ≪ Λa. 

As stated before, SU(4)A is explicitly broken by QCD, so they become pseudo-GB 
instead of true GB. Notice that axipions are, all but one, colored particles. Therefore, they 
can acquire mass from gluon exchange diagrams, that are shown in Fig. 2.7. This is the 
analogous of the mechanism that originates diferent masses to the neutral pion π0 and the 
charged pions π± through a photon exchange: m2 − m2 ≈ (35.6)2 MeV2 [19]. A naive π± π0 

6Due to the QCD β-function, αS turns to be extremely suppressed at high energies. Thus, it is a 
good approximation to considering the decoupling of QCD interactions at UV energy scales. 
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estimation of the mass of the axipions can be found by scaling up the EM contribution to the 
mass of π±. Then, the colored axipion masses are of order Mπa ∼ αS Λ2 

a. A more intricate 
computation of these masses leads to following expression [73] 

C2(Ra)αS 
1/2 

Fa
Mπa ≈ (35.6 MeV) , (2.5.75)

αem fπ 

where C2(Ra) is the quadratic Casimir operator of the representation Ra under QCD of the 
axipion πa, and Fa = Λa/4π is the axipion decay constant, the equivalent to the PQ scale for 
the previous models. Assuming Fa ∼ 1010 GeV, the diferent axipion masses are estimated to 
be of order O(109) −O(1010) GeV, depending on the diferent QCD representations. Thus, 
the axipions are not accessible at collider energies, eluding experimental searches on exotic 
colored scalars. 

Notwithstanding, among the 15 axipions, there is only one corresponding to a sin-
glet representation of QCD, which does not get its mass from the diagram in Fig. 2.7. It 
corresponds to the color-singlet current 

jµ = Qγµγ5Q − 3ψγµγ5ψ , (2.5.76) 

which is classically conserved, but it anomalous under QCD. Its divergence is given by the 
expression 

αS 
Geα,µν∂µj

µ = N Gα (2.5.77)4π µν 

where N here denotes the degree of the SU(N)a axicolor group. Instead, this pGB obtains 
its mass via the color anomaly and the QCD instanton efects. Therefore, it can be identifed 
as a QCD axion: the KC axion. 

Given the axion efective interactions induced by the quark current above, 

Geα,µνL ⊃ N
αS 

aGα , (2.5.78)4πFa 
µν 

the KC axion is identifed as a (composite) invisible axion model, where the axion energy 
scale is computed as 

fa = 
Fa 

. (2.5.79)
N 

2.5.3 Heavy axion models 
In the sections above, we have discussed the predominant models of axions in the 

literature: the invisible axion models. These models predict that axion are very light pGBs 
that couple extremely weakly to SM particles. Indeed, the relation between the axion mass 
ma and scale fa in Eq. (2.5.54) is one of the most robust predictions of the QCD axion, for 
which QCD instantons are the only source of breaking of the Peccei-Quinn symmetry. 

Nevertheless, recently new diferent kinds of models have been proposed, in which 
new sources of PQ breaking are being to be considered. The essential ingredient is to extend 
the strong interacting sector of the SM, so that the axion potential receives supplementary 
contributions which make larger the right-hand side of Eq. (2.5.54). Thus, the extra contri-
bution turn the axion into a much heavier particle in comparison with invisible axion models. 
These new models are commonly called heavy axion models [74–90]. 
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Typically, such models enlarge the strong interactions sector by adding new confning 
groups, which confne at a scale Λ′ 

QCD ≫ ΛQCD. Therefore, the axion mass gets contributions, 
for instance, from two confning sources 

2f 2 2 f 2 mumd 
ma ≈ mπ QCD ,a π + Λ′4 (2.5.80)(mu + md)2 

as an example. 

On the other hand, heavy axion models have to deal with additional problems. For 
instance, in order to cancel all sources of CP breaking in the enlarged strong interacting 
sector, they have to impose some condition so that the extra θ ′-terms become unphysical as 
well as θ. As an example, some authors have considered imposing extra discrete symmetries, 
in such a way that both θ-parameters are forced to be equal and can be rotated away simul-
taneously by the same PQ transformation [75,77,82,83]. Other authors have proposed that 
QCD is actually contained into a larger group, that is spontaneously broken into SU(3)c. 
In these models only the original θ-parameter is to be removed, but the “constrained” in-
stantons from the broken group present an extra source of PQ-violation, raising the axion 
mass [84, 85]. 

Summing up, heavy axion models constitute a proof of concept that the PQ mech-
anism does not necessarily imply the existence of a light axion at low-energies. As a con-
sequence, a larger region of the parameter-space, that typically was considered to belong 
to axion-like particles, may also provide a solution a solution to the Strong CP and be 
populated by true axions. 

2.6 Experimental constraints on axions 
The search for axions has predominantly focused on the exploration of invisible axion 

models, which are characterized by the robust relationship between ma and fa as described 
in Eq. (2.5.54), as discussed in the previous sections. Additionally, another robust prediction 
of such models is that all axion couplings to SM particles, including photons, nucleons, and 
electrons, are inversely proportional to fa times some model-dependent coefcients of order 
unity. 

The constraints on invisible axion models are typically derived from a wide range 
of astrophysical, cosmological, and laboratory-based observations, incorporating axion cou-
plings to several particles. While it is challenging to establish an absolute lower bound for the 
axion scale fa (an upper bound on the axion mass ma) due to the model dependence of some 
of these searches, an approximate estimate can be extracted from data on the supernova 
SN1987a [92] of order 

fa ≳ 109 GeV , ma ≲ 10−2 eV . (2.6.81) 

In addition, we briefy mentioned in the introductory section of this chapter that 
axions were subsequently identifed as excellent candidates for Dark Matter [100, 105–108]. 
In the early stages of the universe, axions can be generated through non-thermal processes, 
contributing signifcantly to the energy density of the universe. The most popular mechanism 
responsible for this phenomenon, known as the misalignment mechanism, arises from the 
invisible axion potential induced by QCD instantons. The underlying principle is simple: 
during the early universe, the axion can be understood as a classical oscillating feld around 
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the minima of its potential. The energy density associated with these oscillations behaves as 
Cold Dark Matter with respect to the expansion rate of the universe. Therefore, to prevent 
the axion energy-density from exceeding the DM critical density, an upper bound on the 
axion scale fa (a lower bound on the axion mass ma) is required [100, 105–108] 

fa ≲ 1012 GeV , ma ≳ 10−6 eV . (2.6.82) 

However, the constraints above present a large variability with the universe history. In other 
words, those may change whether the PQ phase transition occurs before of after infation. 
For instance, if the PQ symmetry undergoes spontaneous breaking right after infation, DM 
axions could also be produced as the decay of topological defects, i.e. domain walls and 
strings, whose exact contribution is still uncertain. 

Regarding experimental bounds on specifc, model-dependent, axion efective cou-
plings to SM particles, those will be discussed in Sec. 3.2 in association with experimental 
bounds on axion-like particles (pGBs with some shared properties with axions). See the 
plots in Figs. 3.1 and 3.2. 



Chapter 3 
Axion-like particles 

In the previous sections we have reviewed in detail the Strong CP problem and the 
PQ mechanism as one of its most appealing solutions. Such solutions predicts predicts the 
presence of light pGBs at low-energies: axions. However, the motivation to consider pGBs as 
potential BSM particles extends beyond their role in addressing the strong CP problem and 
axion models. In general, pGBs can arise from diverse theoretical frameworks, which can 
be classifed based on the global symmetry from which they originate. Several paradigmatic 
examples in physics are as follows: i) theories involving extra dimensions exhibit pGBs as a 
consequence of the behavior of the Wilson line encircling a compact dimension, which mimics 
a 4-dimensional axion; ii) dynamical explanations for the smallness of neutrino masses incor-
porate the Majoron, a pGB arising from a hidden U(1)L lepton symmetry [109] (the Majoron 
and the axion could even be identifed [110,111]); iii) string theory models, characterized by 
their rich structure, often possess a plethora of hidden U(1) symmetries and axions [112]; iv) 
the Higgs boson itself which can have a pGB nature as in Composite-Higgs models [113] ; v) 
dynamical favor theories encompass the concept of “axifavons” as pGBs [114–116], among 
other relevant studies. 

Due to their shared properties with axions as pGBs, these particles are commonly 
referred to as axion-like particles (ALPs). It is important to note, however, that ALPs 
feature an extended parameter space and do not address the Strong CP problem, which is 
the primary objective of the QCD axion. As a consequence, they do not gain its mass from 
QCD instantons efects, and therefore the relation in Eq. (2.5.54) does not apply. In other 
words, their mass ma and the ALP energy scale of the exotic sector from which they are 
originated, fa, are independent parameters. 

In this Chapter we will explore the basic features of ALPs, as well as their experimen-
tal status. In Sec. 3.1 we present the efective feld theory (EFT) describing the interactions 
between axion and ALPs and SM particles, while in Sec. 3.2 we review the experimental 
bounds on such couplings and other ALP theory parameters. 
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3.1 ALP linear efective Lagrangian 

3.1.1 ALP EFT above EWSB 
The formulation of the ALP efective Lagrangian dates back to the late 1980s, where 

signifcant contributions were made in the original works in Refs. [95, 96]. More recently, 
there have been a growing interest [1, 117–119] in such efective theory, associated with an 
intense efort to investigate in detail the ALP parameter space [2, 117, 120–133]. 

There is a certain arbitrariness in the defnition of what an ALP is. The most com-
mon approach is based on the case of the QCD axion: they are defned as pGBs of classical 
symmetries of the Lagrangian, that are spontaneously realized, but explicitly broken at quan-
tum level by chiral anomalies. Thus, in the ALP EFT, a is assumed to be a pseudoscalar 
boson, singlet of the SM gauge group, and described by a Lagrangian invariant under the 
shift symmetry a → a+constant (remnant of the global symmetry from which is originated), 
plus anomalous couplings which may break the shift invariance, together with a small mass 
term ma ≪ fa. 1 At next-to-leading order (NLO) of the linear expansion on the ALP scale, 
that is up to O(1/fa) suppression, this corresponds to operators with mass-dimension up to 
fve. The complete Lagrangian can be written as 

L = LSM + La , (3.1.1) 

where the ALP sector is encoded in 

1 ma 
2 

XLa = 2∂µa∂
µa − a 2 + La

X e + La 
Ψ . (3.1.2)2 

XThe La
X e piece of the ALP Lagrangian comprises ALP anomalous interactions with SM 

gauge bosons, 
a a a 

L XXe 
Gα Geµν,α − c W i Wf µν,i − c Beµν 

a = −c
Ge µν We µν Be Bµν , (3.1.3)
fa fa fa 

where c
G

, c
W and c

B are (real) anomalous Wilson coefcients, 2. On the other hand, L Ψ e e e a 
describes the interaction with SM fermions, 

∂µa 
La 

Ψ = QLγ
µĉQQL + URγ

µĉuUR + DRγ
µĉdDR + LLγµĉLLL + ERγ

µĉeER , (3.1.4)
fa 

where ̂cΨ are 3×3 hermitian matrices in favour space that contains the Wilson coefcients for 
the ALP-fermion interactions. Notice that, being a a pseudoscalar, the bosonic Lagrangian 
L XXe 
a in Eq. (3.1.3) preserves CP, while in the fermion sector in Eq. (3.1.4), the complex 

1In fact, as discussed in Sec. 2.5.1, in true axion models that mass is a byproduct of the anomalous 
couplings of ALP to the strong gauge sector of the theory [67, 68, 74–93]). Such couplings source a 
potential for the axion, and thus a mass. The ALP mass is usually represented by a more general 
explicit mass term in the Lagrangian. Therefore, breaking the typical relation between ma and fa 
for true axions from Eq. (2.5.54). 

2The coefcients of gauge anomalous terms are often defned with a suppression factor with respect 
to the notation used here: c → αX /(4π)c . 

Xe Xe 
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phases of ĉΨ are a source of CP-breaking. Thus, if we further required CP-conservation, the 
condition ĉΨ = ĉΨ 

T would be imposed, so all the ALP couplings become real. 

Before moving any further, let us recall for a moment how the Yukawa matrices 
are given a diagonal shape in the SM from Sec. 1.3. By applying the feld redefnitions in 
Eq. (1.3.24), the SM fermion felds are rotated by unitary matrices in such a way that the 
mass matrices become diagonal. The other terms from the SM Lagrangian are left invariant, 
except for the quark interaction with W boson, for which the CKM mixing matrix introduced 
as the product of the rotation matrix of the LH quark felds: VCKM = VuVd 

† , as explained 
earlier. Moving back to the ALP EFT, it is worth to highlight that the fermion operators 
in Eq. (3.1.4) are not invariant under such feld rotations by unitary matrices. Indeed, after 
applying the transformation in Eq. (1.3.24), the La 

Ψ can be written as 

∂µa 
L Ψ = ULγ

µcU UL + DLγ
µcDDL + URγ

µcuUR + DRγ
µcdDRa fa (3.1.5) 

+LLγµcLLL + ERγ
µceER , 

where the cΨ are defned as follows 

cu = U† ̂cuUu , cd = U† ĉdUd , cQ = V† ̂cQVu ,u d u (3.1.6)
ce = U† 

eĉeUe , cL = V† 
eĉLVe . 

Notice that, due to these feld redefnition, the ALP now couple with diferent strength to 
LH up-like and down-like quarks. Actually, both matrices are related via the CKM mixing 
matrix as 3 

cU ≡ cQ , cD ≡ VCKM 
† cQVCKM . (3.1.7) 

It is noteworthy that, in order to avoid redundancies in the ALP basis presented in 
Eq. (3.1.2), up to four Wilson coefcient are not independent, as they can be removed by 
applying the conservation of baryon and lepton number. Classically, with neutrino masses 
disregarded, lepton number Lk (k = e, µ, τ) is separately conserved for each fermion gen-
eration, while for quarks, due to CKM mixing, only the total baryon number B is. In 
consequence, Nf = 3 couplings become redundant due to lepton number, in contrast to just 
one for baryon number. Indeed, the ALP coupling to the baryonic and leptonic currents 
reads 

∂µa ∂µa UγµU + DγµD Nf a
Wf µν,i − g ′2 

BeµνJµ 2W i B = = − g µν Bµν , (3.1.8)
fa fa 3 32π2 fa 

∂µa
Jµ ∂µa k 

γµEk 1 a 2W i Wf µν,i − g ′2 
Beµν= E = − g Bµν , (3.1.9)Lk µνfa fa 32π2 fa 

where in the last equation there is no sum over the k favour index, and the right-hand side of 
these equations stems from the chiral anomalies of baryon and lepton number currents. 

3Identifying the cQ matrix as the physical couplings to LH up-like quarks or down-like quarks is a 
choice. Some works in the literature [3] has made the opposite identifcation (cD ≡ cQ), so that the 
CKM matrix appears instead in the coupling to LH up-like quarks. 
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Given the four identities in Eqs. (3.1.8)–(3.1.9), it is easy to see that among the 
set of couplings {c , c , (cΨ)ii} (namely, among the two anomalous ALP couplings to EW 

We Be 
bosons and the favour-diagonal couplings to fermions) we can remove from the ALP EFT 
Lagrangian: i) four diagonal entries of fermion couplings; or ii) three diagonal entries of the 
fermions couplings plus one anomalous coupling to EW gauge bosons. Notice that, however, 
it is not possible to trade simultaneously both c

W and c
B by derivative fermionic operators. e e 

The reason is that the four expressions in Eqs. (3.1.8)–(3.1.9) only relates derivative operators 
to exactly the same combination of anomalous couplings in the right-hand side: (g2WWf − 
g ′2BBe). Thus, once one of the two EW anomalous couplings is removed, then the other is 
fxed and only fermionic degrees of freedom can be reabsorbed. 

3.1.2 Additional ALP operators and operator basis reduction 
Purely bosonic basis 

In some contexts, it may be pertinent to focus exclusively on the bosonic Lagrangian. 
The most general and complete purely bosonic efective ALP Lagrangian describing ALP 
couplings at NLO is extraordinarily simple, as it contains just four linearly independent 
efective operators [95, 96, 117, 134]. Those correspond to the three anomalous couplings 

Xto SM gauge bosons from Eq. (3.1.3) in La
X e plus an extra mass-dimension 5 derivative 

operator that involves the Higgs doublet Φ, 

L boson a
Gα Geµν,α − c 

a
W i Wf µν,i − c

a 
Beµν + caΦ 

∂µa Φ†i 
←→ 

a = −c
Ge µν We µν Be Bµν DµΦ , (3.1.10)
fa fa fa fa 

where caΦ is a real constant and Φ†i 
← 
D 
→ 

µΦ = iΦ†(DµΦ) − i(DµΦ†)Φ. The latter is usually 
disregarded from the whole ALP Lagrangian, as it can be rewritten as a linear combination 
of fermionic operators. Therefore, it will be redundant to add it to the complete set in 
Eq. (3.1.2). 

The main impact of such operator is to induce a kinetic mixing between a and the 
would-be GB eaten by the Z boson after EWSB. It is customary to undo this mixing by 

icaΦa/faperforming an ALP-dependent Higgs feld redefnition of the form Φ → Φ e [1,96,117, 
135], which is equivalent to the application of the Higgs EOM. This delivers the following 
expression in terms of fermionic chirality-fipping operators up to order O(1/fa) 

∂µa ←→ a ecaΦ Φ†iDµΦ = icaΦ QLYuΦUR − QLYdΦDR − LLYeΦER + h.c. . (3.1.11)
fa fa 

←→In general, the expression above for caΦ 
∂
f 
µ

a 

a Φ†iDµΦ can be rewritten in terms of 
derivative fermionic operators from Eq. (3.1.4) using the fermionic EOMs. It is important 
to note that there is not a unique way of performing this rewriting, and diferent choices 
can lead to equivalent expressions. The most general expression in terms of derivative, 
chirality-conserving operators reads 

∂µa ←→ ∂µa 
caΦ Φ†iDµΦ = βQQLγ

µQL + βuURγ
µUR + βdDRγ

µDR
fa fa (3.1.12) 

+βLLLγµLL + βeERγ
µER , 

where the parameters {βQ, βu, βd, βL, βe} must satisfy 

βu − βQ = −caΦ , βd − βQ = caΦ , βe − βL = caΦ , 3βQ + βL = 0 . (3.1.13) 



� �

� � � �

� �

57 3.1. ALP linear efective Lagrangian 

The frst three conditions are imposed so that the derivative operators match the chirality-
fipping operators from Eq. (3.1.11). However, the last condition is imposed so that the 
fermionic current which replaces the ALP-Φ operator is anomaly free, as expected for a ←→bosonic operator. 4 A common option is to replace ∂

f 
µ

a 

a Φ†iDµΦ by only RH currents [1,119], 
so 

∂µa 
caΦ 

fa 

←→ ∂µaΦ†iDµΦ = caΦ 
fa 

DRγ
µDR + ERγ

µER − URγ
µUR . (3.1.14) 

while other options include replacing it by a current proportional to hypercharge [96, 136], 
which is anomaly free. 

It worth mentioning that some works include an additional purely bosonic 5-dimensional 
efective operator which is CP-odd. It reads: ∂2a Φ†Φ. However, when applying the EOMs 
of the ALP, it can be traded by m2 

aa Φ†Φ, which is suppressed by the mass of the ALP. Thus, 
it customary to neglect such operator. 

Chirality-fipping fermionic operators 

Chirality-fip fermion currents are sometimes used to describe the ALP Lagrangian, 
together with the three anomalous gauge couplings from Eq. (3.1.3). That is, some or all of 
the chirality-conserving fermionic structures in La 

Ψ from Eq. (3.1.4) are traded by chirality-
fip ones, i.e 

a 
L Ψ f e f f 
a ⊃ i QLYuΦUR + QLYdΦDR + LLYeΦER + h.c. , (3.1.15)

fa 

fwhere Yf 
u, Yd and Yf 

e are, a priori, completely general complex 3×3 matrices in favour space 
containing the Wilson coefcient in the chirality-fipping basis. Although this is possible 
if done with care via fermionic EOMs, it could be misleading. The point is that, in all 
generality, the operators in Eq. (3.1.15) do not belong to the ALP Lagrangian in the sense 
that they are not invariant per se under the required shift symmetry a → a+constant (which 
in the ALP paradigm is assumed to be broken only by gauge anomalous currents). 

Only in some particular cases the chirality-fip couplings are tradable for generic 
derivative (chirality-preserving) fermionic operators (plus redefnitions of the {c

G
, c
W , cB}e e e 

anomalous coefcients). It should be noted here that the number of degrees of freedom 
of a hermitian coefcient matrix (as for chirality-preserving operators) difers in general 
from that of a general complex matrix (as for chirality-fip ones). In the general case, any 
complete and non-redundant basis made out of purely shift-invariant fermionic operators 
spans 5Nf 

2 −(Nf +1) = 41 degrees of freedom 5, which difers from the 6Nf 
2 = 54 independent 

4It is noteworthy that the last condition is a priori not strictly necessary in order to match the a − Φ 
operator into the ALP basis. However, if it is not imposed this operator cannot be completely 
replaced by only derivative fermionic operators, but also anomalous ALP couplings to gauge bosons 
are needed. The reason is that, if the chosen fermionic current is anomalous, the latter would 
generate anomalous couplings at one-loop level by a triangle diagram. Therefore, extra anomalous 
operators at tree-level are needed in order to cancel such contribution, so that the a − Φ operator 
remains anomaly-free as expected for a bosonic operator. 

5This counting corresponds to the degrees of freedom of the fve hermitian matrices cΨ, minus those 
1 + Nf redundant degrees of freedom that are removed via baryon and lepton number rotations. 
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parameters of the chirality-fip set in Eq. (3.1.15). The precise combinations of chirality-fip 
structures which are equivalent to shift-invariant ALP couplings (plus anomalous gauge 
couplings) are identifed in the next section. See also Ref. [118]. 

Basis reduction via equations of motion 

One method for determining the relationship among redundant operators within a 
given set is to apply the EOMs of the involved felds and analyzing their transformations. In 
this case, we aim to establish the explicit relation between the operators in the ALP basis 
(chirality-conserving and anomalous operators), as defned in Eqs.(3.1.3)–(3.1.4), and the 
chirality-fipping operators introduced in the previous section, as defned in Eq.(3.1.15). 

In the SM, the EOMs for the chiral fermions read 

Φe †Y† = Φ†Y†i / = ΦYdDR + e UR , DUR uQL , DDR d (3.1.16)DQL ΦYu i / = i / QL , 
iDL/ L = ΦYe i / = Φ†Ye 

†LL , (3.1.17)ER , DER 

where favor index contractions are implicit. For the conjugate felds they imply 
←− ←− ←− 

−iQL D/ = DRYd 
† Φ† + URYu 

† Φ̃† , −iUR D/ = QLYuΦ̃ , −iDR D/ = QLYdΦ , (3.1.18) 
←− ←− 

−iLL D/ = ERYe 
†Φ† , −iER D/ = LLYeΦ . (3.1.19) 

The use of fermion EOM is tantamount to chiral rotations of fermion felds, at the 
classical level. When considering loop efects, they must be supplemented by the contribu-
tions of the SM anomalous global currents, i.e. 

′2 2 2 
k 
γµQk g

Beµν + 3g
Wf µν,i + 

gs Geµν,α ∂µ Q ⊃ , (3.1.20)L L µν µν96π2 Bµν 32π2 W i 16π2 G
α 

′2 2 
k 
γµUk g

Beµν − 
gs Geµν,α ∂µ UR R ⊃ −12π2 Bµν µν , (3.1.21)32π2 G

α 

′2 2 
k g

Beµν − 
gs Geµν,α ∂µ DRγ

µDR
k ⊃ −48π2 Bµν µν , (3.1.22)32π2 G

α 

k 
γµLk g ′2 

Beµν + 
g2 

W̃ αµν∂µ L ⊃ , (3.1.23)L L µν32π2 Bµν 32π2 W α 

′2 
k g

Beµν∂µ ERγ
µER

k ⊃ −16π2 Bµν , (3.1.24) 

where we are not summing over the index k. 

Finally, applying Eqs. (3.1.16)–(3.1.24), we can express the chirality-preserving op-
erators in terms of chirality-fipping operators and anomalous operators. This rewriting can 
be expressed as follows 

∂µa a eQLγ
µcQQL = i QLcQYuΦUR + QLcQYdΦDR + h.c. (3.1.25)

fa fa 
′2 

− 
1 a g 

3 
Bµν Beµν + 3g 2W i Wf µν,i + 2g 2 Gα Geµν,α Tr(cQ) ,µν S µν32π2 fa 
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∂µa a eURγ
µcuUR = −i QLYucuΦUR + h.c. (3.1.26)

fa fa 
′2 

e Gα e+ 1 a 8g
Bµν B

µν + g 2 Gµν,α Tr(cu) ,32π2 fa 3 S µν 

∂µa 
fa 

DRγ
µcdDR = 

a − i QLYdcdΦDR + h.c. 
fa 

(3.1.27) 

+ 
1 

32π2 
a 
fa 

′22g eBµν + g 2 eGµν,α 
SG

αBµν µν3 
Tr(cd) , 

∂µa 
fa 

LLγ
µcLLL = 

a 
i LLcLYeΦER + h.c. 
fa 

(3.1.28) 

− 
1 

32π2 
a 
fa 

eBµν + g 2W i fW µν,i g ′2Bµν µν Tr(cL) , 

∂µa 
fa 

ERγ
µceER = 

a −i LLYeceΦER + h.c. 
fa 

+ 
′2g 

16π2 
a eBµν B

µν Tr(ce) . 
fa 

(3.1.29) 

Therefore, by combining the previous expressions, we can establish that the chirality-
fipping operators from Eq. (3.1.15) can be rewritten in terms of chirality-preserving op-
erators and anomalous operators only if their coupling matrices Yf 

ψ satisfy the following 
condition 

f cLYψ − YψcRYψ = ψ ψ , (3.1.30) 

where cRψ and cLψ are the hermitian coupling matrices to RH and LH fermions in the chirality-
preserving basis, and Yψ is the Yukawa matrix. 

Basis reduction via feld redefnitions 

An alternative approach to establish relationships among redundant operators is 
through feld redefnitions. It is expected that physical observables remain invariant under 
feld redefnitions. Consequently, any variations observed in the efective Lagrangian result-
ing from a feld redefnition can be interpreted as an equivalence between diferent operators. 
This property of EFTs is commonly known as the equivalence theorem [137, 138]. In this 
case, we will consider the ALP-dependent feld redefnitions of the Higgs and fermion felds, 
which are necessary to establish connections and simplify the operator basis. These feld 
redefnitions can be expressed as 

a aΦ → exp ixΦ Φ , Ψ → exp ixΨ Ψ (3.1.31)
fa fa 

where Ψ = {QL, UR, DR, LL, ER}, xΨ are hermitian matrices in favour space and xΦ is a 
real constant. 6 Discussing the basis reduction in terms of feld redefnitions rather than via 

6A priori there is nothing preventing us from considering xΨ as arbitrary complex matrices and xΦ 
as a complex number. However, due to the hermicity of the Lagrangian, it is only the hermitian 
component of the matrices xΨ and the real part of xΦ that contributes to a variation in it. 
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the direct use of EOMs renders their impact on the anomalous operators more transparent: 
because the fermion rotations are chiral, contributions to the latter are generated through 
the axial anomaly. 

The general procedure for reducing the operator basis is as follows. The rotations in 
Eq. (3.1.31) are frst applied to the SM Lagrangian in Eq. (1.0.2). Then, an expansion up 
to order O(1/fa) is performed next. The net shift resulting from the most general rotation 
reads [1, 117] 

∂µa ←→ ∂µa∆L = − xΦ Φ†iDµΦ − ΨγµxΨΨ 
fa fa Ψ 

a+ i QL (xQYu − Yuxu + xΦYu) Φe UR
fa 
a+ i QL (xQYd − Ydxd − xΦYd) ΦDR
fa 

a+ i LL (xLYe − Yexe − xΦYe) ΦER + h.c. (3.1.32)
fa 

g ′2 a 1 8 2 − Bµν Beµν Tr 3xQ − 3xu − 3xd + xL − 2xe32π2 fa 
2 

W i f− 
g a 

W µν,i Tr (3xQ + xL)32π2 fa 
µν 

2 
S Gα e− 
g a 

Gµν,α Tr (2xQ − xu − xd) .32π2 fa 
µν 

At this point, one is free for instance to choose xΦ and xΨ so that the terms in 
∆L cancel of against redundant operators in La. Or to choose values for a combination of 
indices so as to remove one or all of the anomalous coefcients c

X , for example. It is not hard e 
to verify that each feld transformation is equivalent, up to shifts to the anomalous bosonic 
operators, to the application of the EOM of the corresponding feld in Eqs. (3.1.16)–(3.1.19), 
as shown in the previous section. 

For instance, the relation in Eq. (3.1.14) can be easily proven by choosing xΦ = caΦ 
and xu = −xd = −xe = caΦ1, while xQ = xL = 0. Alternatively. the identities in 
Eqs. (3.1.25)–(3.1.29) can be demonstrated via fermionic feld redefnitions under the choice 
xΨ = cΨ. 

Summing up, feld redefnitions ofer an alternative approach for reducing the oper-
ator basis. By performing appropriate feld transformations, one can establish equivalence 
relations among diferent ALP efective operators that are identical to the relations derived 
from EOMs up to order O(1/fa). 

Nevertheless, it should be noted that EOMs do not generally lead to equivalence 
theorems beyond frst order in the perturbative expansion [137–139]. While EOMs establish 
equivalence relations at order O(1/fa), they fail to provide the correct equivalence relations 
among efective operators at higher orders. In contrast, feld redefnitions ofer an approach 
that remains valid at all orders in the 1/fa expansion. By considering the fermionic feld 
redefnitions presented in Eq. (3.1.31), we can establish relations that holds to all orders in 
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1/fa. As an example, for the UR we fnd 

∂µa icua/fa eURγ
µcuUR = QL 1 − e YuΦUR + h.c. + O(α)aXXf , (3.1.33)

fa 

where the last term stands for the anomalous interaction terms from Eq. (3.1.25), which are 
exact at all orders. The exponential of the matrix cQ must be understood here as the Taylor 
expansion of the exponential function. Thus, if we wish to make a computation at higher 
order than O(1/fa), the expression above is the equivalence relation we must use to trade 
the chirality-preserving operator by chirality-fipping ones, instead than the one obtained 
via EOMs. 7 

3.1.3 ALP EFT below EWSB 
The ALP EFT presented above in terms of gauge invariant operators leads to mul-

tiple experimental signals. The ultimate goal is to detect or constraint from data the set 
of fundamental independent variables {c , c , c , cΨ} which are to be treated as free La-

Ge We Be 
grangian parameters. 

After EWSB, the three anomalous gauge couplings from Eq. (3.1.3) induce fve dis-
tinct phenomenological interactions with the physical gauge bosons: gluons, photons, W and 
Z bosons. Customarily, these couplings are codifed as 

1 1 
Geµν,α − FeµνLa ⊃ − 4gaggaGµν

α 
4gaγγ aFµν 

(3.1.34)1 1 1 
Zeµν − Zeµν − Wf µν,−− 4gaγZ aFµν 4gaZZ aZµν µν ,2gaW W aW + 

where Zµν and Wµν 
± are respectively the felds strength of Z and W ± bosons, and 

4 4 2 2 gagg = ce , gaγγ = cwce + swc e ,
G B Wfa fa (3.1.35)4 4 2 2 8 

gaW W = c , gaZZ = s c + c c , gaγZ = cwsw c − c ,e w e w e e eW B W W Bfa fa fa 

where cw(sw) is the cosine (sine) of the weak mixing angle. 

It is noteworthy that in the two independent EW ALP couplings spawn four diferent 
interactions with the physical EW bosons after EWSB, 

{c
W , cB } → {gaγγ , gaγZ , gaZZ , gaW W } , (3.1.36)e e 

which allows to overconstrain the electroweak gauge sector of the parameter space. In other 
words, the four phenomenological EW couplings are correlated, and, from the experimental 

7At higher orders in the 1/fa expansion, the chirality-preserving operator, which is of O(1/fa), is 
efectively replaced by a tower of higher-order chirality-fipping operators that appear at all orders 
in 1/fa and involve several ALPs felds in each efective vertex. However, despite the diferences 
in the operator basis, both the chirality-preserving and chirality-fipping operator bases lead to the 
same physical observables. This equivalence between the two bases is consistent with the expected 
outcome based on the equivalence theorem. 
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point of view, this can be used to set constraints on one coupling based on the constraints 
on other couplings, barring fne-tuned cancellations. 

Regarding the fermion sector, in order to discuss the phenomenological ALP cou-
plings to the physical fermions it is more convenient to rewrite the fermion couplings using 
the chirality-fipping couplings depicted in Eq. (3.1.15), where the YfΨ matrices are computed 
in terms of the chirality-preserving couplings cΨ as in Eq. (3.1.30). Therefore, after EWSB, 
the couplings are expressed in the fermion mass basis and the interaction terms read 

a 
La ⊃ −i

fa 
(mΨk − mΨl ) KΨ 

S ΨkΨl + (mΨk + mΨl ) KΨ 
P Ψkγ5Ψl , (3.1.37)

kl kl 
Ψ k,l 

where Ψ = {U, D, E}, k and l are favour indices, mΨk denotes the mass of the favour 
component Ψk and the matrices KS and KP are defned as 

KS,P 1 
Ψ ≡ 2 

cΨ 
R ± cΨ 

L , (3.1.38) 

with the sum (diference) of the operator coefcients cR,L 
Ψ corresponding to the scalar (pseu-

doscalar) components of KS,P 
Ψ . 

It should be noted also that Eq. (3.1.37) shows then that only pseudoscalar couplings 
contribute at tree-level of the EFT to favour-diagonal interactions, while both scalar and 
pseudoscalar contributions are present for the of-diagonal ones. Moreover, all tree-level 
ALP-fermion interactions are proportional to the masses of the fermions involved, which 
is not obvious in the chirality-preserving basis. Therefore, the naive expectation is that 
phenomenological couplings with light fermions are subdominant with respect to couplings 
with heavier fermions. 

3.2 Experimental constraints on ALPs 
Experimental searches for ALPs are closely linked to searches for axions. The main 

reason is that axion searches encompass regions of parameter space that are not exclusive to 
invisible axions, in particular where the relation between fa and ma from Eq. (2.5.54) does 
not hold, and then have the potential to discover ALPs as well. Therefore, the constraints 
presented below in this section can be interpreted in terms of both invisible axions and 
ALPs. 8 

We present experimental bounds on diferent axion and ALPs couplings to SM par-
ticles from the ALP Linear EFT. These includes the predominant bound on photons and 
gluons, as well as bounds on fermions or massive gauge bosons. The bounds are presented in 
Figs. 3.1, 3.2, where we show the excluded regions on the {ma, gaV V } or {ma, cΨ} parameter 
plane, where gaV V denotes a generic anomalous coupling between a and gauge bosons, by 
several experimental searches. 

8In addition, heavy axion models address the strong CP problem but predicts a value of the axion 
the mass shifted by large confning scales (see Sec. 2.5). Then, those are expected to be found on 
regions of the parameter space typically associated to ALPs. 
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Figure 3.1: Constraints on the axion coupling to photons gaγγ as a function of the axion 
mass ma. Figure adapted from [140]. 

3.2.1 ALP coupling to photons 
XThe interaction between ALPs and photons is encoded in the aF Fe term in La

X e 

from Eq. (3.1.34). For the QCD axion, the gaγγ coupling constant comprises two independent 
contributions: a frst term that depends on the axion model and a second model-independent 
term from the mixing with light mesons from Eq. (2.5.61). On the other hand, for ALPs it is 
a free parameter of the Efective Lagrangian. Experimental bounds on gaγγ are represented 
in Fig. 3.1 for a wide range of ALP masses and couplings. 

First of all, in yellow we present the “QCD axion” band, that encompass the predic-
tion for the QCD axion for several invisible axion models. 

Among the searches represented here, many of them are based on the Primakof 
conversion efect [141, 142]: in the presence of an external magnetic feld B⃗ , the axion cou-
pling to photons in Eq. (3.1.34) may generate an axion-photon conversion process. For 
instance, that is the case of bounds represented in red, which comprise experiments aiming 
to measure a direct ALP signal. Those include helioscopes searching for solar axions, such 
as CAST [143, 144] and haloscopes aiming to detect DM axions/ALPs via resonant cavi-
ties: here we include ADMX [145–148], ADMX SLIC [149], CAPP [150–155], RBF [156], 
HAYSTAC [157–159], QUAX [160–162] and ORGAN [163, 164]. 

On the other hand, bounds stemming from astrophysics are represented in green 
color. Those include searches for ALPs produced in strong magnetic felds at pulsars [165], 
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bounds based on stellar evolution at globular clusters [166, 167], bounds form supernovae 
(SNe) [168], the limit form the gas temperature of Leo-T galaxy [169] and the efect of 
ALPs on SN1987A. The latter includes the cooling efect [168] or ALPs decaying into 
photons, contributing to the supernova explosion energy [170]. In addition we fnd tele-
scopes searches, that aim to measure DM ALPs decaying into pairs of photons, such as 
MUSE [171], VIMOS [172], HTS [173, 174], XMM-Newton [175], NuSTAR [176–178] and 
INTEGRAL [179]. 

In blue color we show bounds arising from cosmological observables. Typically, these 
assume that ALPs are the main constituent of DM and has a role on the cosmological evo-
lution of the universe. Among these, we fnd searches for distortions on the CMB [180,181], 
searches on X-ray backgrounds [182], ALP contributions to the extragalactic background 
light (EBL) spectrum [182], limits from Plack [183] based on Big Bang Nucleosynthesis 
(BBN) and ∆Nef , and the irreducible freeze-in ALP abundance [184]. 

Finally, in purple we represent bounds stemming from collider and high-energy ex-
periments. Here we fnd results from beam dump experiments [185–189], limits from light-
by-light scattering in Pb-Pb nuclei collisions at CMS [190] and ATLAS [191] and bounds 
from pp collisions at LHC [192], among others [122,192–195]. Additionally, we also show our 
plot derived from nonresonant Vector-Boson scattering (NR VBS) in Ref. [2]. In this work 
we use CMS data on the production of pairs of massive vector bosons in VBS processes to 
establish a new experimental bound on ALPs. Working under the assumption that of-shell 
ALPs can mediate such processes, new bound can be extracted, that have the property of 
being independent on the ALP mass and decat width. On Chapter 5 we discuss in detail 
these experimental limits and Ref [2]. 

3.2.2 ALP coupling to gluons 
The coupling between axions/ALPs and gluons is determined by the aGGe term in 

Xthe Lagrangian LXa 
e , described in Eq.(3.1.34). In the case of ALPs, the coupling constant 

gagg is a free parameter of the Lagrangian, allowing for the possibility that ALPs may not 
couple to gluons at all. However, for true axions, the coupling to gluons is mandatory in 
order to solve the Strong CP problem. 

Certain QCD axion models have been developed in which the ratio of the QED 
and QCD anomalous coefcients, denoted as E/N , approximately equals 1.92. This feature 
allows for partial cancellation between the model-dependent and model-independent contri-
butions to the photon coupling in Eq. (2.5.61). Such axion models are often referred to as 
photophobic axion models, since the interaction to photons is strongly suppressed. In the 
context of these models, the bounds on the photon coupling presented in Fig. 3.1 may be 
eluded, allowing for true axions in a range of masses that a priori seems to be excluded. Con-
sidering this perspective, it becomes necessary to investigate the bounds in the parameter 
space for the gluon interactions. 

One of the best experimental observables to test this coupling is the branching ratio 
for the rare kaon decay process K+ → π+ + invisible. In the SM the main contribution 
to such branching factor is due to neutrinos (which are not detected in the decay process): 
K+ → π+νν. However, if a is assumed to be light and stable at collider distances, the process 
K+ → π+a, where a goes undetected, can contribute to measurement of the previous kaon 
branching fraction. Recent measurements [196] of the latter leads to the following limit on 
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gagg [133]: 
|gagg| ≲ 3 × 10−6 GeV−1 for ma ≲ 100 MeV . (3.2.39) 

In addition, the ALP-gluon coupling can be tested as well in collider experiments. 
For instance, mono-jet and di-jet searches at the LHC have established robust limits on gagg 
for high values of ma [121, 197–199]. In those processes, an ALP is produced in association 
with one or two gluons and/or quarks, which later are measured as jets, while a escapes 
detection. By combining the results for those searches, the limits on gagg that we obtained 
read  

3 × 10−5 GeV−1 for ma ≲ 1 GeV ,|gagg| ≲  (3.2.40)
7 × 10−5 GeV−1 for 1 GeV ≲ ma ≲ 1 TeV . 

3.2.3 ALP coupling to electrons 
ALP couplings to fermions can also be tested. In particular, couplings to electrons 

are of special interested, due to their impact on experimental and astrophysical observables. 
From Eq. (3.1.37) we deduced that favour-diagonal couplings to fermions only depend on the 
axial combination of ALP-fermionic couplings. Therefore, we can defned the ALP coupling 
to physical electrons as follows 

cee
La ⊃ ∂µa 

fa 
eγµγ5 e 

cee= −2ime a 
fa 

eγ5 e + O(αem) , (3.2.41) 

with 
cee ≡ (ce − cL)ee . (3.2.42) 

In Fig. 3.2 we represent experimental bounds on the quotient cee/fa for a wide range of 
values of the ALP mass and coupling to electrons. 

First, analogously to Fig. 3.1, we have represented the predictions for the QCD axion 
couplings as a band in yellow for diferent invisible axion models. 

In red, we show direct detection experiments aiming to detect DM ALPs/axions. 
Those include searches at GERDA [201], XENON1T [202–204] and XENONnT [205]. 

Bounds in green are those arising from astrophysics observables. Among these we fnd 
measurement of the brightness of Red Giant stars, which set bounds on cee/fa from energy 
loss arguments [206] and bounds from SN1987A. The latter are originally those bounds on 
the ALP-photon interactions that we presented in Fig. 3.1. However, they can be recasted 
into new limits on the ALP-electron couplings by taking into account the loop-impact of the 
latter on the photon interaction [200]. The same argument can be used to obtained bounds 
from cosmological observations, represented here in blue color, such as the irreducible freeze-
in ALP abundance [184] or efects on BBN [200, 207]. 

Finally, bounds stemming from electron beam dump experiments are shown in pur-
ple. The latter are taken from Ref. [208] and encompass ALP searches at NA64 [209–211], 
SLAC-E137 [212], SLAC-E141 [186], Fermilab-E774 [213] and Orsay [214]. 
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Figure 3.2: Constraints on the axion coupling to electrons as a function of the axion mass 
ma. Figure adapted from [140, 200]. 

3.2.4 ALP coupling to massive vector bosons 
The principle of gauge invariance imposes that if an ALP exhibits couplings to pho-

tons, it must also possess interactions with other heavy EW bosons. 9 While the ALP-
photons couplings are subject to signifcant constraints from low-energy experiments, such 
as helioscopes and haloscopes, as well as astrophysical observations, the couplings to heavy 
EW bosons can be explored more efectively in high-energy collider experiments, where the 
bounds arising from photon couplings are less stringent. Consequently, collider experiments 
play a critical role in examining the anomalous interactions of ALPs with EW bosons, com-
plementing the constraints derived from low-energy ALP searches. 

Chapter 5, which contains our work from Ref. [2], provides an extensive analysis of 
the constraints imposed on the ALP couplings to EW heavy bosons: {gaγZ , gaZZ , gaW W }. 
Here we investigate the ALP interactions by focusing on nonresonant VBS searches per-
formed at the CMS experiment at the LHC. The chapter comprises a detailed comparison 
with the prior constraints on ALP EW couplings found in existing literature. Consequently, 
the present section just provides a concise overview of the experimental limits outlined in 

9Among the set of the four phenomenological electroweak couplings {gaγγ , gaγZ , gaZZ , gaW W }, only 
one of them, at maximum, can be fxed to 0 given their expressions in terms of c and c from 

Be We
Eq. (3.1.35). 
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Ch. 5. 

ALP-γZ interaction 
XThe ALP-γZ interaction arises from the aF Ze term in the La

X e Lagrangian from 
Eq. (3.1.34). The most stringent constraints on this coupling originate from precise mea-
surements of Z-boson observables obtained at LEP. Specifcally, ALPs with masses lighter 
than the Z-boson mass are expected to contribute to the decay process Z → γ + a. 

For instance, if ALPs are assumed to be stable at collider distances, stringent bounds 
on gaγZ are established from the non-observation of exotic Z → γ + invisible decays at 
LEP [101, 125]: 

|gaγZ | ≲ 6 × 10−5 GeV−1 for ma ≲ 400 MeV . (3.2.43) 

If the assumption of a stable ALP is relaxed, the latter constraint can be replaced by the 
more conservative bound due to the measurement of the total Z-decay width at LEP, that 
extends up to ma ≲ MZ [117, 125]: 

|gaγZ | ≲ 2 × 10−3 GeV−1 for ma ≲ MZ . (3.2.44) 

For higher values of ma the bounds are dominated by LHC measurements. In par-
ticular our work in Ref. [2] imposes 

|gaγZ | ≲ 5 × 10−3 GeV−1 for ma ≲ 100 GeV , (3.2.45) 

from the non-observation of exotic events in nonresonant VBS processes at CMS. 

Finally, for masses above 100 GeV the dominant bounds stem from resonant triboson 
searches [125]: 

|gaγZ | ≲ 5 × 10−2 GeV−1 for 100 GeV ≲ ma ≲ 500 GeV . (3.2.46) 

ALP-ZZ interaction 

The ALP interaction with Z-bosons arises from the term aZZe from Eq. (3.1.34). 
Unlike the case of gaγZ , it cannot be inferred from Z-boson decay processes, which make it 
much harder to test experimentally. Best constraints on gaZZ stem from LHC measurements. 
In particular, LHC searches for exotic mono-Z processes give rise to the following limit 

|gaZZ | ≲ 8 × 10−4 GeV−1 for ma ≲ 400 MeV . (3.2.47) 

At higher masses, we derive in our work in Ref. [2] the following bound from non-
resonant VBS processes at CMS: 

|gaZZ | ≲ 3 × 10−3 GeV−1 for ma ≲ 100 GeV . (3.2.48) 

ALP-W W interaction 

ALP couplings to W -bosons stem from the aW Wf term from Eq. (3.1.34). At one-
loop order, gaW W contributes to rare meson decay process (e.g. K+ → π+a) if a is assumed 
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to be light. Analogously to the case of the ALP-gluon coupling, recent measurements [196] 
of the Kaon branching fraction for the charged kaon decay process into pions and neutrinos 
(K+ → π+νν) set the following bound on gaW W [133]: 

|gagg| ≲ 3 × 10−6 GeV−1 for ma ≲ 400 MeV . (3.2.49) 

Again, for larger values of the ALP mass, we derive in our work in Ref. [2] the a 
bound from nonresonant VBS processes at CMS that reads 

|gaW W | ≲ 3 × 10−3 GeV−1 for ma ≲ 100 GeV . (3.2.50) 

Finally, above 100 GeV, the best constraint is derived from triboson searches at the 
CMS experiment [215]: 

|gaW W | ≲ 2 × 10−2 GeV−1 for 200 GeV ≲ ma ≲ 600 GeV . (3.2.51) 

3.2.5 ALP coupling to nucleons 
At low energies, below QCD confnement, the couplings between ALPs and fermions 

lead to an efective interaction with nucleons. This interaction can be described by a La-
grangian that incorporates nucleons as the dynamic degrees of freedom. Analogously to the 
fermionic ALP Lagrangian presented in Eq. (3.1.4), we can express this interaction using an 
efective operator 

La ⊃ 
CaN 

∂µa ΨN γ
µγ5ΨN , (3.2.52)2fa 

where CaN denotes the ALP-nucleon coupling constant and N = {p, n} denotes the nucleon 
(proton or neutron) represented by the spinor feld ΨN . This efective Lagrangian captures 
the net interaction between ALPs and nucleons at low energies, considering the fermionic 
nature of nucleons and the derivative nature of ALPs. 

The efective interaction described above is subject to strong constraints from as-
trophysical observations, particularly related to the cooling of celestial objects due to ALP 
emission. The most stringent bound on these couplings arises from measurements of the 
luminosities of nearby isolated neutron stars, as reported in Ref. [216]. These measurements 
have led to the derivation of the following upper limits on the ALP-nucleon interactions: 

|Cap/fa| ≲ 1.6 × 10−9 GeV−1 , |Can/fa| ≲ 1.4 × 10−9 GeV−1 , (3.2.53) 

for ALP masses ma ≲ 16 meV. 
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Raiders of the Lost ALP 



Chapter 4 
One-loop corrections to ALP 
couplings 

This chapter contains the publication in Ref. [1]. The main goal of this work is to 
compute and quantify the complete set of one-loop corrections to interactions between ALPs 
and SM particles, which is needed from the experimental point of view to explore the ALP 
parameter space optimally. Indeed, the present experimental accuracy calls for taking into 
account radiative corrections in some channels. For simplicity, CP-symmetry is assumed in 
the ALP sector. Neutrino masses are disregarded, and no RH neutrino feld is considered. 
In addition, CKM mixing is also neglected. 

In Sec. 2, the mass dimension d = 5 ALP linear efective Lagrangian is presented, 
clarifying the relations among alternative (complete and non-redundant) operator bases. 
The precise combinations of ALP anomalous couplings to gauge bosons involved in trading 
diferent bases are identifed. This includes the relations stemming from the anomalous global 
baryon and lepton number currents. Additionally, in Sec. 3 we discuss non-renormalization 
theorems, which ensure that in some particular choices of the ALP operator basis, anomalous 
couplings are not renormalized at any loop order in perturbation theory, and only get fnite 
corrections. 

The complete one-loop corrections are presented in Sec. 4, including all divergent and 
fnite terms, to all possible CP-even couplings of an ALP to SM gauge felds and fermions, 
but restricted to favour diagonal external channels. The computation is performed for a 
generic of-shell ALP and on-shell SM particles, in the covariant Rξ gauge. As a byproduct, 
the UV divergent terms of the computations allow to obtain the ALP renormalization group 
equations straightforwardly. In addition, diferent kinematic limits for the ALP mass vs. 
fermion and gauge boson masses are presented, which may be relevant for several experi-
mental searches. 

In Sec. 5 the impact of one-loop corrections on gauge-invariance relations is discussed. 
EW gauge invariance imposes fxed relations among ALP efective couplings to photons, Z 
bosons and W bosons at tree-level. One-loop corrections demonstrate that these tree-level 
relations are modifed at the loop order. The results are interpreted here in terms of higher 
dimensional operators that, when the Higgs doublet Φ is considered, render gauge invariance 
explicit again. 

73 
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Finally, a phenomenological study is contained in Sec. 6. As an illustrative example, 
we explore how experimental ALP searches can take advantage of one-loop corrections in 
order to establish new upper limits on the parameter space. The ALP-top couplings are 
analyzed in two regimes: heavy and light ALPs. We study how the ALP-top coupling 
interaction (ctt/fa)∂µa(tγµγ5t) can be constrained by LHC measurements of top-pair fnal 
state processes for heavy ALPs. These channels are enhanced by gluon fusion at one-loop 
via a top loop, with a sizeable cross-section even when the tree-level coupling ALP-gluon 
would be zero. Derived bounds can be found in Fig. 10. Additionally, ALP-top efective 
interaction is also constrained for light ALPs by computing its loop impact on ALP-electron 
interactions. Constraints from astrophysical observations and DM direct detection searches 
on the ALP-electron coupling are thus recasted on the efective ALP-top interaction, leading 
to new upper limits for previously unexplored areas of the parameter space. These limits 
are shown in Fig. 11. 
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Abstract: The plethora of increasingly precise experiments which hunt for axion-like
particles (ALPs), as well as their widely different energy reach, call for the theoretical
understanding of ALP couplings at loop-level. We derive the one-loop contributions to
ALP-SM effective couplings, including finite corrections. The complete leading-order —
dimension five — effective linear Lagrangian is considered. The ALP is left off-shell, which
is of particular impact on LHC and accelerator searches of ALP couplings to γγ, ZZ,
Zγ, WW , gluons and fermions. All results are obtained in the covariant Rξ gauge. A
few phenomenological consequences are also explored as illustration, with flavour diagonal
channels in the case of fermions: in particular, we explore constraints on the coupling of
the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources
and from Dark Matter direct detection experiments such as PandaX, LUX and XENON1T.
Furthermore, we clarify the relation between alternative ALP bases, the role of gauge
anomalous couplings and their interface with chirality-conserving and chirality-flip fermion
interactions, and we briefly discuss renormalization group aspects.
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1 Introduction

The field of axions and axion-like particles (ALPs) is undergoing a phase of spectacular
development, both theoretical and experimental. This should come as no surprise. No
firm signal of new physics has shown up yet at colliders or elsewhere, which transforms the
fine-tuning issues of the Standard Model of particle physics (SM) in most pressing ones, and
also impacts on the dark matter (DM) quest. The silence of data is calling for a rerouting
guided by fundamental issues such as the strong CP problem, as well as for an open-minded
approach to hunt for the generic tell-tale of global hidden symmetries: derivative couplings,
as in the case of axions and ALPs.

Indeed, axions appear in dynamical solutions to the strong CP problem as the pseudo
Goldstone-bosons (pGB) of a global chiral U(1) symmetry [1–4]. Theories of pGBs extend
well beyond those true axions, though. They appear in a plethora of beyond the SM (BSM)
constructions, typically as SM scalar singlets, and often receive the generic name of ALPs (in
particular when gauge anomalous couplings are present in addition to pure derivative ones).
Paradigmatic examples of pGBs physics include: i) theories with extra dimensions, because
the Wilson line around a compact dimension behaves as a 4-dimensional axion; ii) dynamical
explanations to the smallness of neutrino masses, with the Majoron [5] as a pGB of a hidden
U(1) lepton symmetry (the Majoron and the axion could even be identified [6, 7]); iv) string
theory models, which tend to have a plethora of hidden U(1)’s and axions [8]; iv) dynamical
flavour theories (“axiflavons” [9–11]), to cite just a few examples. As a wonderful byproduct,
axions and a variety of ALPs are often excellent candidates to account for DM.

The landscape of experimental searches for axions and/or ALPs is undergoing a
flourishing period, covering orders of magnitude in energy scale and using very different
techniques. In particular, the couplings of ALPs to heavy SM bosons are under increasing
experimental scrutiny [12–20]. Indeed, because of electroweak gauge invariance they are
generically expected at the same level as the photonic interactions. Through the ensemble of
ALP bosonic couplings, ALP scales ranging from hundreds of GeV to several TeV are within
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the reach of the LHC and of future collider experiments, favored by the prospects of increasing
energy and precision. In addition, the impact of ALP electroweak couplings on flavour rare
decays is already setting impressive constraints on the ALP parameter space [21, 22] (for
ALP masses below 5GeV), offering a complementary window of high-precision.

A model-independent approach to the search for a true axion or an ALP — both
denoted here as a — is that of effective Lagrangians, with the tower of effective operators
weighted down by its BSM scale fa. The parameter space is then simply defined by the
mass vs. scale {ma, fa} plane, with ma � fa and the model-dependence encoded in the
arbitrary operator coefficients. The couplings are mainly derivative — proportional to
the ALP momentum — as befits pGBs, plus anomalous couplings to gauge field strengths.
The practical difference between a canonical QCD axion [3, 4] which solves the strong CP
problem and generic ALPs is that for the latter fa and ma are treated as independent
parameters. The exploration of the ALP parameter space is thus free from the stringent
phenomenological constraints which hold for the canonical QCD axion.1 For the purpose of
this work, the difference between a true axion and an ALP is of no consequence and the
name ALP will be used indistinctly.

We explore at one-loop order all possible CP-even operators coupling one pseudoscalar
ALP to SM fields: to the gluon, the photon, W±, Z, the Higgs particle and to fermions,
at next-to leading order (NLO) of the linear effective field theory (EFT) formulation, i.e.
mass dimension five operators. The approach is in the same spirit as the usual SMEFT
theory, but including the ALP a as an additional low-energy active field. The necessity
to address these interactions at loop-level stems, on one side, from the high precision
experimentally achieved in certain channels, and on the other from the very different energy
scales explored by different experiments. Motivated by the latter, updated studies of the
renormalization group evolution of the ALP effective Lagrangian have already appeared
very recently [43, 44].

We provide here the complete one-loop corrections, i.e. divergent and finite contribu-
tions, for an off-shell ALP and on-shell SM fields. Previously, those corrections had been
worked out only for the contributions to the axion-photon-photon coupling gaγγ and to the
axion leptonic coupling (in certain limits), for an on-shell ALP [14]. Recently, fermionic
contributions to gaγZ have also appeared [44] for an on-shell ALP. The physical impact of
our results will be presented as contributions to the set of measurable CP-even interactions
{gaγγ , gaWW , gaZZ , gaγZ , gagg , cf}, where the first five denote ALP anomalous couplings
to gauge bosons and f denotes a generic fermion, with the SM fields on-shell. All our
computations are performed in the covariant Rξ gauge. The only restriction on fermions
is that flavour diagonal channels are computed, disregarding generation mixing. Neutrino
masses are disregarded as well.

Furthermore, the constraints that gauge invariance imposes on the complete set of ALP
couplings will be discussed, showing how the one-loop corrections modify the tree-level

1The anomalous coupling to gluons is necessarily present for axions that solve the strong CP problem. For
true axions, the precise relation between ma and fa depends on the characteristics of the strong interacting
sector of the theory: QCD in the case of the canonical axion, and an enlarged confining sector for true
axions which are either heavier [23–39] or lighter [40–42] than the canonical QCD axion.
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gauge invariance relations which relate physical channels. The results impact in particular
the variety of LHC and collider ALP searches.

We will also clarify the one-loop impact of ALP-fermion couplings on gauge anomalous
ALP interactions. This will allow to elucidate ongoing discussions in the literature on the
relation between different types of complete and non-redundant bases of operators. Some
aspects of the RG running above the electroweak scale will be briefly discussed as well.

The structure of the paper can be easily inferred from the Table of Contents.

2 Effective Lagrangian

The formulation of the CP-even ALP effective Lagrangian at next-to-leading order (NLO)
of the linear expansion, i.e. up to O(1/fa) couplings of mass dimension five, is discussed
next assuming the field a to be a pseudoscalar. A complete basis of independent ALP
operators — bosonic plus fermionic — is considered, and its relation to other complete
bases and to the purely bosonic one is also clarified.

In addition to ALP kinetic energy and mass terms, any ALP EFT is defined by an
ensemble of effective operators which are invariant under the shift symmetry a → a + c

where c is a constant (i.e. purely derivative ALP couplings, as it would befit Goldstone
bosons) plus ALP-gauge couplings resulting from the axial anomaly of the form aXµνX̃

µν ,
where Xµν denotes a generic SM gauge field strength and X̃µν its dual X̃µν ≡ 1

2ε
µνρσXρσ

with ε0123 = 1.2

2.1 Complete and non-redundant bases

A complete and non-redundant ALP effective Lagrangian is given at O(1/fa) by

LALP = LSM + L total
a , (2.1)

where LSM denotes the SM Lagrangian,

LSM = −1
4W

α
µνW

αµν − 1
4BµνB

µν − 1
4G

a
µνG

aµν +DµΦ†DµΦ +
∑

f
f̄ i /D f

−
[
Q̄LYdΦdR + Q̄LYuΦ̃uR + L̄LYeΦeR + h.c.

]
− V (Φ†Φ) .

(2.2)

Here, the index f runs over the chiral fermion fields f = {QL, uR, dR, LL, eR} which are
vectors in three-dimensional flavour space, Yf denote ng × ng Yukawa matrices in flavour
space, where ng denotes the number of fermion generations, Φ is the Higgs doublet with
Φ̃ = iσ2Φ∗, and V (Φ†Φ) is the Higgs potential. In this equation, Gµν , Wµν and Bµν denote
respectively the SU(3)c, SU(2)L and U(1)Y gauge field strengths. Neutrino masses are
disregarded here and all through this work; no right-handed neutrino fields will be considered.

2We do not consider other shift-invariant ALP couplings to gauge fields which have been recently argued
to be independent in some BSM theories [45].
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All possible shift-invariant fermionic coupling of mass dimension five are contained in
the set

Ou ≡
∂µa

fa
(ūRγµuR) , Od ≡

∂µa

fa

(
d̄Rγ

µdR
)
, OQ ≡

∂µa

fa

(
Q̄Lγ

µQL
)
, (2.3)

OL ≡
∂µa

fa

(
Q̄Lγ

µQL
)
, Oe ≡

∂µa

fa
(ēRγµeR) (2.4)

in a compact notation in which each of these terms is a ng × ng matrix in flavour space,
with flavour indices {i, j} left implicit, e.g. Ou ≡ {Oij

u = ∂µa/fa
(
ūiRγµu

j
R

)}. The question
is how many of those fermionic couplings can be included in a complete and non-redundant
basis of ALP operators.

The most general CP-conserving ALP effective Lagrangian L total
a , including bosonic

and fermionic ALP couplings [46, 47], admits many possible choices of basis. A complete
and non-redundant basis — to be used in this paper — is that defined by the Lagrangian

L total
a = 1

2∂µa∂
µa+m2

a

2 a2+cW̃OW̃ +cB̃OB̃+cG̃OG̃+
∑

f=u,d,e
cfOf+

∑

f=Q,L
cf /Of , (2.5)

where the effective operators are as given in table 1, and the coefficients cf are ng × ng
hermitian tensors; in addition, because of the assumption of CP conservation, they will
obey cf = cTf . The convention to be used for the c O products is the popular one in which
their implicit flavour indices {i, j} are not contracted as a matrix product, but as follows:

c O ≡
∑

i,j

(c)ij Oij . (2.6)

Note that the fermionic basis is chosen here to include all possible right-handed currents,
while — in order to avoid redundancies — one of the quark operators made out of left-handed
currents has been excluded (see /OQ) together with all diagonal elements of the leptonic
operators made out of left-handed currents ( /OL), as indicated in short-hand notation, i.e.

/OQ ≡
{

Oij
Q = ∂µa

fa

(
Q̄iLγµQ

j
L

)
where i, j 6= 1, 1

}
(2.7)

/OL ≡
{

Oij
L = ∂µa

fa

(
L̄iLγµL

j
L

)
where i 6= j

}
. (2.8)

The exclusion of the ( /OQ)11 element can be replaced by that of any other of the diagonal
elements of /OQ.

It follows that the most general CP-conserving ALP Lagrangian is described by a total of

3(bosonic) + [ng(5ng + 3)/2− 1](fermionic) = 2 + ng(5ng + 3)/2 (2.9)

independent couplings, i.e. 6 couplings in the case of just one generation, and 29 couplings
for ng = 3.

The key point to identify redundancies, and the origin of the different number of degrees
of freedom for quarks and leptons, is related to baryon and lepton number conservation.
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OW̃ = − a

fa
Wα
µνW̃

αµν OB̃ = − a

fa
BµνB̃

µν OG̃ = − a

fa
GaµνG̃

aµν

Ou = ∂µa

fa
(ūRγµuR) Od = ∂µa

fa

(
d̄Rγ

µdR
)

Oe = ∂µa

fa
(ēRγµeR)

/OQ = ∂µa

fa

(
Q̄Lγ

µQL
)
i,j 6=1,1

/OL = ∂µa

fa

(
L̄Lγ

µLL
)
i 6=j

Table 1. A complete and non-redundant basis of bosonic+fermionic operators, in the presence of
quark mixing. Each fermionic structure is a ng × ng matrix in flavour space, with flavour indices
{i, j} left implicit except in the operators on the last row (which become redundant — for ng = 1).
For the anomalous terms, a “hatted” renaming will be used when convenient, ÔX̃ ≡ αX/4πOX̃ ,
see text.

Classically, with neutrino masses disregarded (only the SM left-handed neutrino fields are
considered), lepton number Li is separately conserved for each generation i (i.e. Le, Lµ and
Lτ for ng = 3), while for quarks with all generations mixed only the total baryon number
B is. In consequence, ng leptonic diagonal couplings become redundant, in contrast to just
one for quarks. Indeed, the ALP coupling to the baryonic and leptonic currents reads (see
appendix B.2)

∂µa

fa
JµB = Tr

[OQ + Ou + Od

3

]
= ng

32π2

(
g2OW̃ − g′2OB̃

)
, (2.10)

∂µa

fa
JµLi = [OL + Oe]ii = 1

32π2

(
g2OW̃ − g′2OB̃

)
, (2.11)

where in the last equation there is no sum over the i index, and the right-hand side of
these equations stems from the fermion rotations involved. These relations provide one
constraint on diagonal quark operators and ng constraints on diagonal leptonic operators,
which reduce in consequence the number of independent degrees of freedom.

Eqs. (2.10) and (2.11) also illustrate that the ALP coupling to the B +L current JµB+L
is anomalous, where L denotes total lepton number L = ∑

i Li, which is precisely why that
coupling can be traded by purely derivative operators.3 The B −L current JµB−L is instead
exactly conserved,

∂µa

fa
JµB+L = Tr

[OQ + Ou + Od

3 + OL + Oe

]
= ng

16π2

(
g2OW̃ − g′2OB̃

)
, (2.12)

∂µa

fa
JµB−L = Tr

[OQ + Ou + Od

3 −OL −Oe

]
= 0 . (2.13)

The role of the left-handed and right-handed ALP operators in table 1. can be exchanged.
For completeness, we discuss in the next subsection other fair choices of shift-invariant
fermionic operators — e.g. containing all possible left-handed currents.

3This is analogous to how the Peccei-Quinn current, precisely because it is anomalous, allows to rotate
away the θ̄ terms which combine fermion mass and anomalous gauge terms.
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A frequent redefinition. Often in the literature [14, 15, 44, 48–50] the normalization
used for the ALP coupling to gauge anomalous currents differs slightly from that in table 1.
We will denote with a hat (“hat basis”) that variant:

ÔB̃ ≡
α1
4πOB̃ , ÔW̃ ≡

α2
4πOW̃ , ÔG̃ ≡

αs
4πOG̃ , (2.14)

where α1 = g′2/4π, α2 = g2/4π and αs = g2
s/4π denote respectively the SU(3)c, SU(2)L and

U(1) fine structure constants. The corresponding Wilson coefficients of the ALP anomalous
gauge couplings are simply related by

cB̃ = ĉB̃
α1
4π , cW̃ = ĉW̃

α2
4π , cG̃ = ĉG̃

αs
4π . (2.15)

2.2 Alternative complete basis

Many choices of complete basis other than that in eq. (2.5) and table 1 are possible, as far
as the total number of independent couplings is consistently maintained. Several examples
have been proposed in the literature.

Chirality-conserving fermionic alternatives. A valid option is to include in the basis
all possible operators made out of left-handed fields, including all diagonal couplings, i.e.
all ng × (ng + 1)/2 operators OQ and all ng × (ng + 1)/2 operators OL, see eqs. (2.3)
and (2.4). With respect to the choice in table 1, and still maintaining in the basis the three
anomalous couplings, this would require — to avoid redundancies — to drop all flavour
diagonal leptonic operators in Oe (i.e. replace Oe → /Oe ≡ ∂µa/fa (ēRγµeR)i 6=j , plus one of
the flavour-diagonal ones in Of=u or Of=d. Several other intermediate exchange patterns
are legitimate as far as the number of degrees of freedom is consistently maintained.

It is also valid to omit from the basis some of the anomalous bosonic operators,
substituting them for flavour-diagonal fermionic couplings. Indeed, eqs. (2.10) and (2.11)
show that a complete and non-redundant basis would result for instance from substituting
/OQ in table 1 by the whole set OQ together with the omission of either OW̃ or OB̃, or
other similar tradings involving the lepton sector.

The case ng = 1. In the simplified case of one generation, the operators /O{Q,L} in the
basis in table 1 are absent and pure right-handed operators suffice in addition to the three
anomalous ones. That is, for just one generation the set of operators {OW̃ ,OB̃,OG̃,Ou,
Od Oe} in table 1 suffices to form a complete basis of linearly independent operators, unlike
for ng > 1. Indeed, in the one-generation case the following relations hold

OQ = − [Ou + Od] + 3
32π2

(
g2OW̃ − g′2OB̃

)
, (2.16)

OL = −Oe + 1
32π2

(
g2OW̃ − g′2OB̃

)
, (2.17)

which demonstrate that it would be redundant to consider any element of OQ and OL

in addition to all possible operators made out of right-handed currents plus the three
anomalous couplings.
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No flavour mixing, CKM = 1. When ng > 1 but CKM flavour mixing is disregarded,
the quark sector mirrors what is described above for the lepton sector. There will be then
ng quark baryon charges independently conserved, each of them obeying separately an
equation alike to eq. (2.11), instead of only the combined one eq. (2.10). In consequence, ng
constraints follow on the diagonal elements of the quark sector, and all diagonal elements of
OQ become redundant (assuming that the complete set of right-handed quark currents is
retained in the basis together with the anomalous operators). In other words, when CKM
mixing is disregarded, a complete and non-redundant basis is given by that in table 1 albeit
with the redefinition

/OQ ≡
{

Oij
Q = ∂µa

fa

(
Q̄iLγµQ

j
L

)
where i 6= j

}
(2.18)

We will use this simplified framework in the one-loop computations in section 4.

On the use of chirality-flip fermionic operators. Chirality-flip fermion currents are
sometimes used to describe the ALP Lagrangian, together with the three anomalous gauge
couplings. That is, some or all of the chirality-conserving fermionic structures in table 1
are traded by chirality-flip ones, i.e.

OuΦ ≡ i
a

fa
Q̄L Φ̃uR , OdΦ ≡ i

a

fa
Q̄L Φ dR , OeΦ ≡ i

a

fa
L̄L Φ eR . (2.19)

Although this is possible if done with care, it could be misleading. The point is that, in all
generality, the operators in eq. (2.19) do not belong to the ALP Lagrangian in the sense
that they are not invariant per se under the required shift symmetry a→ a+ c (which in
the ALP paradigm is assumed to be broken only by gauge anomalous currents).

Only in some particular cases the chirality-flip couplings are tradable for generic
chirality-preserving ones (plus redefinitions of the cX̃ anomalous coefficients). For instance,
this is the case for just one fermion generation or when the EFT respects Minimal Flavour
Violation (MFV).4 Otherwise, it suffices to note here that the number of degrees of freedom
of a hermitian coefficient matrix (as for chirality-preserving operators) differs in general
from that of a general ng × ng matrix (as for chirality-flip ones). In the CP-even case, any
complete and non-redundant basis made out of purely shift-invariant fermionic operators
spans ng(5ng + 3)/2 − 1 degrees of freedom — see eq. (2.9), which differs from the 3n2

g

independent parameters of the chirality-flip set {OuΦ,OdΦ,OeΦ} in eq. (2.19). The precise
combinations of chirality-flip structures which are equivalent to shift-invariant ALP couplings
(plus anomalous gauge couplings) are identified in appendix B.2, see also ref. [43].

Trading anomalous operators by fermionic ones. Anomalous gauge couplings are
intrinsically non shift-invariant. Chirality-flip structures will thus necessarily appear if
anomalous operators were to be traded by purely fermionic ones. It is shown in appendix B.3
how each of the operators OB̃, OW̃ and OG̃ can be traded by a combination of purely
fermionic structures which necessarily includes chirality-flip terms.

4This requires the coefficients of the chirality-flip operators to be proportional to the corresponding
Yukawa matrices.
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Let us consider here as illustration the situation when only one anomalous gauge
coupling is removed from the complete Lagrangian. Eq. (2.12) showed that OW̃ can be
removed without introducing any chirality-flip operator if OB̃ is maintained, and viceversa,
as a consequence of B + L being an anomalous global symmetry of the SM. For instance,
in our basis in table 1 it would suffice to replace either OW̃ or OB̃ by a trace of chirality-
conserving fermionic structures defined in eqs. (2.3) and (2.4). In contrast, the combination
of OB̃ and OW̃ with opposite sign to that in eq. (2.12) does not correspond to an anomalous
current, and thus requires chirality-flip structures when traded by fermionic currents, namely

ng
16π2

(
g′2OB̃ + g2OW̃

)
= 2 Tr OL − 2(YeOeΦ + h.c.)

= 2
3 Tr (OQ − 2Ou + 4Od) + 2 (YdOdΦ − YuOuΦ + h.c.) . (2.20)

Analogously, and as expected from the non-perturbative nature of aGµνG̃µν and the
fact that this term may induce a potential for the ALP field,5 it is not possible to remove
OG̃ altogether in favour of another anomalous coupling plus purely chirality-conserving
(and thus shift-invariant) terms. For instance, some alternative equivalences of interest are

OG̃ = −32π2

ngg2
s

[Tr Od + (YdOdΦ + h.c.)]− 2
3
g′2

g2
s

OB̃ , (2.21)

OG̃ = −32π2

ngg2
s

[Tr Ou + (YuOuΦ + h.c.)]− 8
3
g′2

g2
s

OB̃ , (2.22)

OG̃ = 32π2

3ngg2
s

[Tr (Ou − 4Od) + (YuOuΦ − 4YdOdΦ + h.c.)] . (2.23)

An interesting question in the chirality-flip vs. chirality conserving arena is that of
the one-loop (O(αX)) impact of fermionic operators on anomalous ALP-couplings. The
results allow to understand which combinations of chirality-flip operators discussed are
exactly equivalent to purely derivative fermionic ones. That this happens at all could seem
paradoxical from the quantum loop perspective, as chirality-flip operators will exclusively
induce at one-loop corrections proportional to fermion masses squared, while derivative
chirality-conserving operators contribute in addition a finite and mass independent term,
which is the contribution from the chiral anomaly of the fermionic currents. Nevertheless,
the relations above among both type of fermionic structures — see also appendix B.2 —
are precisely such that the matching holds at any order. An illustrative example of the
one-loop matching of chirality flip and chirality conserving contributions can be found at
the end of section B.1.

2.3 Purely bosonic basis

The addition of an ALP to the SM interactions is an enlargement of the scalar sector of
the low-energy theory. In some contexts, it may be pertinent to focus exclusively on the
bosonic Lagrangian.

5In fact, it is well-known that OG̃ generates a scalar potential for the QCD axion [3, 4].
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OW̃ = − a

fa
Wα
µνW̃

αµν OB̃ = − a

fa
BµνB̃

µν OG̃ = − a

fa
GaµνG̃

aµν

OaΦ = ∂µa

fa

(
Φ†i←→DµΦ

)

Table 2. Purely bosonic operator basis.

The most general and complete purely bosonic effective ALP Lagrangian describing CP-
even couplings at NLO is extraordinarily simple. It contains just four linearly independent
effective operators [17, 46, 47, 51]:

L bosonic
a = cW̃OW̃ + cB̃OB̃ + cG̃OG̃ + caΦOaΦ , (2.24)

where caΦ is a real constant and

OaΦ ≡
∂µa

fa

(
Φ†i←→DµΦ

)
, (2.25)

being Φ†i←→D µΦ = iΦ†(DµΦ)− i(DµΦ†)Φ. The purely bosonic basis is summarized in table 2.
The operator OaΦ is equivalent to a precise linear combination of the fermionic operators
in table 1:

OaΦ = Tr (Oe + Od −Ou) , (2.26)

and it would have thus been redundant to add it to the set in table 1. The direct impact
of OaΦ is to induce a kinetic mixing between a and the would-be Goldstone boson eaten
by the Z boson. This mixing is cumbersome to work with, and it can be removed via a
Higgs field redefinition of the form Φ→ Φ eicaΦa/fa [17, 46, 52], which is equivalent to the
application of the Higgs EOM. This delivers chirality-flip operators that can next be turned
via the fermionic EOM into the chirality-conserving combination in eq. (2.26). Note that
no trace of anomalous gauge couplings remains in the final expression eq. (2.26) in spite
of the fermion rotations involved, as expected for a purely bosonic ALP interaction. A
comprehensive discussion of how the anomalous terms that a priori could be induced by
fermion rotations cancel each other for this operator can be found in appendix B.1.

Finally, note that OaΦ could be kept as one of the operators of a complete and non-
redundant basis at the expense of some other coupling. Eq. (2.26) shows that it could
be included at the price of omitting any of the diagonal operators of the right-handed
set {Oe, Od, Ou}. Another possibility — among many — is for OaΦ to replace certain
flavour-diagonal fermionic couplings of the left-handed set {OQ,OL}, as indicated by the
identity (see appendix B.1)

OaΦ = −Tr (OL + OQ + 2Ou) + 1
8π2

(
g2OW̃ − g′2OB̃

)
ng . (2.27)

This equation also suggests yet another alternative: to include OaΦ in the complete and non-
redundant basis at the expense of omitting either OW̃ or OB̃. The exact expression of the
degrees of freedom which may be replaced by OaΦ is to be analyzed for each possible basis.
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2.4 Phenomenological parameters

The ALP EFT presented above in terms of SU(3)c × SU(2)L × U(1)Y gauge invariant
operators leads to multiple experimental signals. The ultimate goal is to detect or constraint
from data the set of fundamental independent variables

{cW̃ , cB̃ , cG̃ , cf} , (2.28)

which are to be treated as free Lagrangian parameters.
The three anomalous gauge couplings, OG̃, OW̃ and OB̃, induce five distinct physical

interactions with gluons, photons, W and Z bosons, which are customarily codified as

La ⊃ −
1
4gagg aGµνG̃

µν − 1
4gaγγaFµνF̃

µν − 1
4gaγZaFµνZ̃

µν − 1
4gaZZaZµνZ̃

µν − 1
2gaWWaW

+
µνW̃

−µν ,

(2.29)
where

gagg ≡
4
fa
cG̃ , gaγγ ≡

4
fa

(
s2
w cW̃ + c2

w cB̃
)
, (2.30)

gaWW ≡
4
fa
cW̃ , gaZZ ≡

4
fa

(c2
w cW̃ + s2

w cB̃) , (2.31)

gaγZ ≡
8
fa
swcw(cW̃ − cB̃) , (2.32)

where sw and cw denote respectively the sine and cosine of the Weinberg mixing angle,
given at tree-level by

cw ≡
MW

MZ
. (2.33)

It follows that the two independent electroweak anomalous couplings may source four
independent measurable quantities,

{cW̃ , cB̃} −→ {gaγγ , gaWW , gaZZ , gaγZ} , (2.34)

a fact that allows to overconstrain the electroweak gauge sector of the parameter space. In
other words, electroweak gauge invariance imposes at tree-level the constraints

gaWW = gaγγ + cw
2sw

gaγZ ,

gaZZ = gaγγ + c2
w − s2

w

2cwsw
gaγZ .

(2.35)

From the experimental point of view these two expressions are quite useful, since they can
be used to set constraints on one coupling based on the constraints on other couplings,
barring fine-tuned cancellations. For example, gaγγ is strongly constrained from multiple
experiments, while gaZZ is harder to measure directly. Nevertheless, applying eq. (2.35) one
can translate the constraints on gaγγ into constraints on gaZZ that are stronger than those
extracted from direct searches of the latter. This approach has already led to cross-relations
among different measurements, resulting in a noticeable reduction of parameter space
allowed by present data [14, 53]. It is thus relevant from the phenomenological point of
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view to determine how the relations in eq. (2.35) are modified when one-loop corrections
are taken into account. We will address this task in section 5.

It is also convenient for later use to consider the following combination of the couplings
in eq. (2.31) and (2.32), which corresponds to the aBµνB̃µν coupling:

gaBB ≡
4
fa
cB̃ = gaWW −

1
2swcw

gaγZ . (2.36)

Furthermore, in the cases in which the hatted basis of gauge invariant operators in eq. (2.15)
is preferred as description, the corresponding phenomenological parameters ĝiXX follow
trivially form the substitution {ci −→ ĉi , giXX −→ ĝiXX} in eqs. (2.30)–(2.32), i.e.

ĝaGG ≡
4
fa
ĉG̃ , ĝaWW ≡

4
fa
ĉW̃ , ĝaBB ≡

4
fa
ĉB̃ , (2.37)

with the relation between ci and ĉi as discussed in eq. (2.15).
In all cases, the data on fermion EFT couplings can be directly expressed in terms of

the EFT Lagrangian parameter matrix cf corresponding to the complete basis in table 1.
For practical purposes, a simplified notation can be useful when considering flavour-diagonal
transitions. The latter are proportional only to the axial part of the fermionic derivative
couplings, i.e. the coupling has Lorentz structure R−L. For instance, a general — basis
independent — definition of phenomenological flavour-diagonal couplings can be written as

cu ≡ (cu − cQ)11 , cc ≡ (cu − cQ)22 , ct ≡ (cu − cQ)33 , (2.38)
cd ≡ (cd − U †cQU)11 , cs ≡ (cd − U †cQU)22 , cb ≡ (cd − U †cQU)33 , (2.39)
ce ≡ (ce − cL)11 , cµ ≡ (ce − cL)22 , cτ ≡ (ce − cL)33 , (2.40)

where U = UCKM is the CKM mixing matrix. This notation simplifies further in the
particular complete basis in table 1 in which de facto (cQ)11 = 0 and (cL)i=j = 0, e.g.

cu = (cu)11 , ce = (ce)11 , cµ = (ce)22 , cτ = (ce)33 . (2.41)

3 Non-renormalization theorems

The renormalization group (RG) properties of the ALP effective coupling have received
considerable attention lately.

Above the electroweak scale. CP-odd anomalous gauge couplings within the SM, i.e.
Lagrangian terms of the generic form αXXµνX̃

µν where Xµν denotes a generic gauge field
strength and αX its fine structure coupling, are not multiplicatively renormalized at any
order in perturbation theory. The reason is their topological character, which ensures
anomaly matching conditions [54]. Indeed the combinations α1/2πBB̃ , α2/2πWW̃ and
αs/2πGG̃ appear in the Lagrangian multiplied by “θ” angles which are periodic variables
with periodicity 2π, and cannot thus be multiplicatively renormalized [55, 56]. This can be
inferred from the fact that a chiral rotation induces a contribution to the divergence of the
axial current Jµ precisely of the form

∂µJµ ⊃
αX
2π XµνX̃

µν . (3.1)
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a

g

g

a g

g

g

a

g

g

a

g

g

g

g

g

g
g

g

Figure 1. One-loop diagrams which renormalize the effective aGG̃ interaction. The blob in the
last diagram stands for one-loop gluon and quark contributions (a similar contribution holds for the
other external gauge leg).

a

W

W

a W

W

W

a

W

W

a

g

g

W

W

W

W
W

W

Figure 2. One-loop diagrams which renormalize the effective aWW̃ interaction. The blob in the
last diagram stands for one-loopW and SU(2)L charged fermion contributions (a similar contribution
holds for the other external gauge leg).

Now, when considering ALP-SM anomalous couplings, the ratio a/fa plays the role of an
effective angle. The non-renormalization theorems thus apply as well to ALP couplings of
the form αX/(2πf) aXµνX̃

µν , where 2πf is the periodicity of a [57]. In consequence, no
UV divergent terms can result from corrections to the combinations α1/2πOW̃ , α2/2πOB̃

and αs/2πOG̃. In other words, in the hat basis of effective ALP operators — see eqs. (2.14)
and (2.15) — the β functions for the electroweak anomalous couplings must vanish,

βĉB̃ = d
d logµĉB̃ = 0 , βĉW̃ = d

d logµĉW̃ = 0 , βĉG̃ = d
d logµĉG̃ = 0 . (3.2)

It is easy to check these results at one-loop, from the contributions of the Feynman diagrams
in figures 1, 2 and 3. Correspondingly, the RG evolution of the {cG̃, cW̃ , cB̃} coefficients for
the basis in table 1 reflects that of the αi couplings, see eq. (2.15),

βcB̃ = d
d logµcB̃ = βα1 =

( 1
12 + 10

9 ng
)
α1
π
cB̃ = 41

12
α1
π
cB̃ , (3.3)

βcW̃ = d
d logµcW̃ = βα2 = −

(43
12 −

2
3ng

)
α2
π
cW̃ = −19

12
α2
π
cW̃ , (3.4)

βcG̃ = d
d logµcG̃ = βαs = −

(11
2 −

2
3ng

)
αs
π
cG̃ = −7

2
αs
π
cG̃ , (3.5)

where ng is the number of generations of fermions, and ng = 3 has been taken on the last
equalities of these equations. This results had been previously derived in ref. [43].

The beta functions for the ALP-fermion couplings have been previously obtained as
well, using a variety of fermionic bases, and we refer the reader to the corresponding
literature [43, 44, 49]. The beta function for the bosonic operator OaΦ can be found In
ref. [49], in a redundant basis which contemplates all possible operators.
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a

B

B

a

g

g

B

W

Figure 3. One-loop diagrams which renormalize the effective aBB̃ interaction. The blob in the
last diagram stands for one-loop fermion contributions (a similar contribution holds for the other
external gauge leg).

4 Complete one-loop contributions to ALP couplings

We present here the one-loop contributions to the phenomenological ALP couplings, including
all finite corrections. The ALP field will be left off-shell (which is of practical interest
for collider and other searches away from the ALP resonance, besides adapting trivially
to ALP on-shell searches), while the external SM fields will be considered on-shell. For
channels with external fermions, we only provide corrections to the flavour diagonal ones.
Furthermore, CKM mixing is disregarded in the loop corrections to all couplings, which
means the framework depicted in section 2.2 for CKM= 1. That is, the complete and
non-redundant basis corresponds to that in table 1 with the proviso in eq. (2.18).

The operator basis used is that defined in eq. (2.5) and table 1. We will trade the
set of two linearly independent electroweak anomalous couplings {cW̃ , cB̃} for the set of
four phenomenological couplings {gaγγ , gaWW , gaZZ , gaγZ} in eqs. (2.29)–(2.32), which are
in consequence linked by gauge invariance (as shown at tree-level in eq. (2.35)). The latter
means that the final one-loop results for a given effective electroweak coupling geffaXX can
be expressed in terms of just two tree-level phenomenological couplings of choice, e.g. in
terms of the set {gaXX , gaWW }. These can be easily transcribed back in terms of the set
{cW̃ , cB̃} if wished, using eqs. (2.30)–(2.32) and (2.36).

All computations have been carried out in the covariant Rξ-gauge, with the help of
Mathematica packages FeynCalc and Package-X [58, 59]. The individual one-loop diagrams
are in general ξ-dependent. The same applies to each of the one-loop corrected amplitudes in
the ensemble {geffaγγ , geffaWW , g

eff
aZZ , g

eff
aγZ} resulting from directly inserting all possible tree-level

phenomenological couplings {gaγγ , gaWW , gaZZ , gaγZ}. Their ξ-independence (with external
SM fields on-shell) becomes explicit only when the gauge invariance relations in eq. (2.35)
are applied to the electroweak radiative results, so as to reduce the parameter space. Details
of ξ-dependent intermediate steps are provided in NotebookArchive.

Renormalization and measurable parameters. We will use as renormalization frame-
work of the electroweak sector the scheme in which its four linearly independent parameters
(other than fermion Yukawa couplings), i.e. the SU(2)L and U(1)Y coupling constants (g
and g′ respectively), the Higgs vev v and Higgs self-coupling denoted here λ̃, are to be
traded by precisely measured input parameters as follows

{g, g′, v, λ̃} −→ {αem,MZ ,MW ,MH}|exp (4.1)
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where the experimental value of αem is extracted from Thompson scattering (e.g. Q2 = 0)
and the values of MW , MZ and MH are determined from their resonant peaks.6 The ALP
effective operators do not contribute to these observables at one-loop and O(1/fa). In
consequence, the relation between the Lagrangian parameters and those four observables is
not modified with respect to the SM case. In other words, at tree-level it holds that

αem = e2

4π = g2g′2

4π(g2 + g′2) = α1α2
α1 + α2

, MW = 1
2 gv ,

MZ = 1
2

√
g2 + g′2v , M2

H = λ̃v2 ,

(4.2)

a set of relations that can be easily inverted. All other SM observable quantities to be
predicted can be expressed in terms of those four input observables plus fermion masses.
While the fermion masses of leptons have a direct physical meaning which allows simple
renormalization procedures, in QCD due to confinement such a natural scale does not exist.
Alike considerations apply to the QCD coupling strength αs. The renormalization scale and
scheme must be chosen with other criteria, based on simplicity and convergence. There are
many alternative ways proposed to deal with the infrarred behaviour of the QCD coupling
constant, that is, on how to extract from observables the strength of αs at a variety of
scales, see for instance ref. [60] and section 4.2.

One-loop corrections. Let us briefly rename with a bar the one-loop renormalized
parameters whose values are to be identified with the experimentally inputs mentioned
above, i.e. {αem,MZ ,MW ,MH}. Their relation with the (unbarred) tree-level quantities
can be written as

αem = αem + δαem , M
2
Z = M2

Z + δM2
Z ,

M
2
W = M2

W + δM2
W , M

2
H = M2

H + δM2
H .

(4.3)

While the symbol δ is used here for the corrections involved in the definition of the input
parameters, we will use the symbol ∆ for the physical predictions, that is, for the measurable
deviations with respect to the SM, that follow for any other observable. Of particular
practical interest is the Weinberg angle, defined at tree-level in eq. (2.33). Let us define a
ratio c̄w as

c̄w ≡
MW

MZ
= cw

(
1 + ∆cw

cw

)
, (4.4)

where
∆cw
cw

= −1
2

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
, (4.5)

and δM2
V=Z,W are computed in terms of the Z and W transverse self-energies as δM2

V =
ΣV (q2 = M2

V ), see whose exact expressions can be found in appendix D. The tree-level

6αem = 1/137.035999139(31) at Q2 = 0, MZ = 91.1876(21)GeV, MW = 80.379(12) and
MH = 125.25(17)GeV.
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a

V

V ′

A
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V

V ′

C

a

V

V ′

B

a

V

V ′

D

a

W/Z

W/Z

E

h

Figure 4. One-loop diagrams contributing to gagg, gaγγ , gaγZ , gaZZ and gaWW at one-loop (the
corresponding diagrams with Goldstone bosons and the diagrams exchanging the gauge boson legs
are left implicit), where V and V ′ are either a gluon, a photon, a Z boson or a W boson. The last
diagram only corrects insertions of the gaZZ and gaWW couplings.

variables {gaγγ , gaγZ , gaZZ} can now be written as a combination of the set {cB̃, cW̃ } and
physical boson masses,

gaγγ = 4
fa

(c2
wcB̃ + s2

wcW̃ ) = 4
fa

(c̄2
wcB̃ + s̄2

wcW̃ ) + 8
fa
c̄2
w(cW̃ − cB̃)∆cw

cw
, (4.6)

gaγZ = 8
fa
cwsw(cW̃ − cB̃) = 8

fa
c̄ws̄w(cW̃ − cB̃)

(
1 + c̄2

w − s̄2
w

s̄2
w

∆cw
cw

)
, (4.7)

gaZZ = 4
fa

(s2
wcB̃ + c2

wcW̃ ) = 4
fa

(s̄2
wcB̃ + c̄2

wcW̃ )− 8
fa
c̄2
w(cW̃ − cB̃)∆cw

cw
. (4.8)

We will denote below by {geffagg, geffaγγ , geffaγZ , geffaZZ , geffaWW , c
eff
f } the physical amplitudes

computed at one loop, which are to be compared with data. They will be expressed in terms
of the tree-level variables {gagg, gaγγ , gaγZ , gaZZ , gaWW , cf} and SM quantities. The ∆cw
corrections shown above are to be taken into account whenever a fit to the fundamental
electroweak ALP variables {cB̃, cW̃ } is attempted from data, i.e. the equalities to the right
in eqs. (4.6)–(4.8) must be used in the transcription. Aside from taking into account this
proviso, the bars will be omitted from now on in all expressions.

4.1 ALP anomalous coupling to photons

The Feynman diagrams which induce one loop corrections to the effective anomalous ALP
coupling to photons, gaγγ , are depicted in figure 4 A, B, C and D, with V = V ′ = γ (which
implies that W is the gauge boson running in the closed gauge loops, while the virtual
gauge boson coupled to a in diagram D is either a photon or a Z boson). Among the four
effective electroweak couplings, insertions of the set {gaγγ , gaWW , gaγZ} contribute to the
one-loop corrected effective coupling geffaγγ . Using the gauge-invariance relations eq. (2.35),
we choose to express the final result in terms of just two of them, e.g. the set {gaγγ , gaWW },
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a

V

V ′

D

= a

V

V ′

D1

+

a

W/Z

V ′

D3

h

+

a

V

V ′

D2

a

W/Z

V ′

D4

h

a

V

V ′

D5

+

Figure 5. One-loop diagrams contributing to the correction to the external gauge boson legs.
Diagrams with Goldstone bosons and Higgs tadpole diagrams are included. Notice that diagrams
D3 and D4 are only present for a Z or W boson external legs.

plus fermionic couplings:

geffaγγ = gaγγ

{
1 + αem

6π AZ/γ→γ
}

+ 2αem
π

gaWWB2

(
4M2

W

p2

)
− αem
πfa

∑

f
cfQ

2
fNCB1

(
4m2

f
p2

)
,

(4.9)
where here and all through the rest of the paper (unless stated otherwise) the sum over
fermions denotes all possible individual fermion flavours, f = u, c, t, d, s, b, e, µ, τ , and p

denotes the 4-momentum of the ALP, NC is the number of colours for a given fermion f
(i.e. 3 for quarks and 1 for leptons), Qf is its electric charge. The functions B1 and B2 have
already been defined in ref. [14] as:

B1(τ) = 1−τf2(τ) , B2(τ) = 1−(τ−1)f2(τ) , with f(τ) =





arcsin 1√
τ

for τ ≥ 1
π
2 + i

2 ln 1+
√

1−τ
1−√1−τ for τ < 1

.

(4.10)
The function AZ/γ→γ encodes pure leg radiative corrections stemming from diagramas D1,
D2 and D5 in figure 5 (with the virtual gauge boson attached to a being either a photon
or a Z boson, while the W boson runs in the closed gauge loops),

AZ/γ→γ =1− 2
∑

f
Q2

fNC log
(

Λ2

m2
f

)
+ 21

2 log
(

Λ2

M2
W

)
. (4.11)

This computation has been carried out in dimensional regularization, trading next the 1/ε
UV-divergent terms for an energy cutoff Λ via the MS prescription 1/ε− γE + log

(
4πµ2)→

log Λ2. This leg correction correspond to the SM one-loop redefinition of αem. Indeed, were
the hatted basis of gauge operators to be used — in which α1 and α2 enter explicitly in the
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operators definition (see eqs. (2.15) and (2.37)), the one-loop corrections would read

ĝeffaγγ = ĝaγγ + 2αem
πs2

w

ĝaWWB2

(
4M2

W

p2

)
− 4
fa

∑

f
cfQ

2
fNCB1

(
4m2

f
p2

)
, (4.12)

a result which in the on-shell ALP limit reduces straightforwardly to that in ref. [14].
Eq. (4.9) could be rewritten if wished in terms of {cB̃, cW̃ } (and cf) applying eq. (2.31)

for gaWW and the last equality in eq. (4.6) for gaγγ (and analogously for eq. (4.12)).
For an on-shell ALP (p2 = m2

a) the one-loop corrected decay width is simply given by

Γ(a→ γγ) =
m3
a|geffaγγ |2
64π , (4.13)

or the equivalent expression in the hat basis with the replacement geffaγγ → αem/4π ĝeffaγγ .
We show next some limits of the exact results above for the functions B1 and B2, for an
off-shell ALP, which are of interest in particular experimental contexts.

4.1.1 geffaγγ for high, intermediate and low ALP p2

• For p2 → ∞ (p2 � (m2
f ,M

2
Z ,M

2
W )), only the anomaly contribution remains from

fermion coupling insertions. These contributions and those from gaWW insertions
reduce to, respectively,

B1 = 1 , B2 = −1
4

(
log

(
M2
W

p2

)
+ iπ

)2

. (4.14)

• For intermediate values of p2 (m2
f � p2 � (M2

Z ,M
2
W ) � m2

t ), i.e. smaller than the
top and all gauge bosons masses but larger than all other fermion masses, it results

B1 =





1 , for light fermion insertions: m2
f � p2 �M2

Z ,

0 , for top quark insertion: p2 �M2
Z � m2

t ,
B2 = 0 . (4.15)

• For p2 → 0, i.e. smaller than all fermion masses, both functions vanish B1 = B2 = 0.

4.2 ALP anomalous coupling to gluons

The Feynman diagrams which induce one loop corrections to the effective anomalous
coupling of an ALP to two gluons, gagg, are depicted by diagrams A, B, C and D of figure 4
with V = V ′ = g (which implies that all virtual gauge bosons are also gluons). Only the
ALP-quark couplings cf, and gagg itself, can contribute at one-loop to the geffgaa amplitude,

geffagg =gagg
{

1 + αs
12π G

gg
}
− αs

2πfa
∑

f=u,c,t,
d,s,b

cfB1

(
4m2

f
p2

)
, (4.16)

where B1 was defined in eq. (4.10), and the function Ggg encodes the corrections stemming
from the vertex diagram A in figure 4 plus those from external leg corrections in diagrams
D1, D2 and D5 of figure 5.
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We have performed the computation of geffagg in the Rξ gauge and using dimensional
regularization. The latter respects gauge invariance and regulates both ultraviolet (UV) and
infrared (IR) divergences when present, portraying both as poles in 1/ε and thus mixing
them. It is possible to separate UV and IR divergences, though, via the implementation as
a previous step of any IR regularization procedure [61] — e.g. setting the external gluons off-
shell or using an effective gluon “mass”7 — so as to identify first the UV divergences, and then
using this information on the complete pure dimensional regularization result. We obtain,

Ggg = −2
∑

f=u,c,t,
d,s,b

(
1
εUV
− γE + log

(
4πµ2

UV
m2

f

))
+ 33

(
1
εUV
− γE + log

(
4πµ2

UV
p2

))

− 9
(

1
εIR
− γE + log

(
−4πµ2

IR
p2

))2

− 33
(

1
εIR
− γE + log

(
4πµ2

IR
p2

))
+ 36 + 3π2

2 ,

(4.17)

where εUV (εIR) and µ2
UV (µ2

IR) account respectively for the UV (IR) divergence and renor-
malization scale. This result can be rewritten in terms of UV and IR cutoffs via the MS
prescription

1
εUV
− γE + log

(
4πµ2

UV
)
→ log Λ2 , (4.18)

1
εIR
− γE + log

(
4πµ2

IR
)
→ log λ2 , (4.19)

where Λ and λ denote respectively the UV and IR energy cut-offs, leading to

Ggg = 33 log
(

Λ2

p2

)
− 2

∑

f=u,c,t,
d,s,b

log
(

Λ2

m2
f

)
− 33 log

(
λ2

p2

)
− 9

(
log

(
λ2

p2

)
+ iπ

)2

+ 36 + 3π2

2 .

(4.20)
When computing the probability for a given physical processes, the unphysical depen-
dence on IR divergences will cancel with that stemming from soft and/or collinear gluon
bremsstrahlung. In turn, the UV-divergent terms in this equation lead to the beta function
for cG̃ in eq. (3.5).

4.3 ALP anomalous coupling to Z plus photon

The effective gaγZ coupling receives one-loop corrections from the fermion-ALP couplings cf
and from the complete set of electroweak couplings {gaγγ , gaWW , gaZZ , gaγZ}. The relevant

7It is meant here to simply replace the gluon propagator by a massive one. This is not a gauge invariant
procedure and it thus leaves finite terms which are ξ-dependent and in consequence physically meaningless,
but it allows to identify properly the UV divergences (and with this information restart the whole procedure
using only dimensional regularization). It is of course possible to give a mass to the gluon in a gauge invariant
way by “Higgsing” QCD: this would add the contribution of the would-be gluonic Goldstone bosons, and we
checked that all the ξ-dependence would cancel then. Nevertheless, this Higgsed theory does not recuperate
QCD in the massless gluon limit: for instance, the beta function is modified by the contribution of the extra
scalar degrees of freedom present.
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Feynman diagrams are those in figures 4 and 5 (except diagram E), with the external
vector bosons being either photon or Z, and with V 6= V ′. In consequence, the gauge boson
running in closed gauge loops can only be the W boson, while the virtual boson attached
to a in diagrams D1, D2 and D5 is either Z or γ, and V ′ = γ in diagrams D3 and D4.

The results are shown to become ξ-independent — as they must — only when the
gauge-electroweak parameter space is reduced to three couplings, using eq. (2.35). Applying
the latter again, the electroweak set can be further reduced to two anomalous electroweak
operators, that we choose to be the set {gaγZ , gaWW }. The total result can be summarized as

geffaγZ = gaγZ

{
1+αem

12π

(
AZ/γ→γ+ 1

c2
ws

2
w

AZ/γ→Z
)}

+αem
π

cw
sw
gaWW AWW + αem

πcwsw

∑

f

cf
fa
Af ,

(4.21)
where the exact expressions for all the functions in this equation can be found in appendix C.1,
for an off-shell ALP and on-shell external SM particles. They are defined as follows:

• AZ/γ→γ gathers the external leg corrections with a photon as final particle, (figure 5
D1-D5 with V = γ and V ′ = Z). Its expression was given in eq. (4.11).

• AZ/γ→Z encodes the external leg corrections with Z as final particle (figure 5 D1-D5
with V = Z and V ′ = γ). It can be expanded as

AZ/γ→Z = A
Z/γ→Z
ferm +AZ→ZHiggs +AZ/γ→Zgauge , (4.22)

where

– A
Z/γ→Z
ferm accounts for the SM fermion loop corrections, figure 5 D5, see eq. (C.1).

– AZ→ZHiggs encodes Higgs corrections to external legs in figure 5 D3 and D4, see
eq. (C.2).

– A
Z/γ→Z
gauge gathers the gauge boson corrections to external legs in figure 5 D1

and D2 (with W bosons running in the loop), plus the gaγZ component of the
corrections stemming from gaγγ and gaZZ insertions in figure 5 D1-D5, projected
on the parameter space {gaγZ , gaWW }, see eq. (C.3).

• AWW contains the contributions from direct vertex insertions of gaWW in diagrams A
and B of figure 4, plus the gaWW component of the corrections stemming from gaγγ and
gaZZ insertions in figure 5 D1-D5 projected on the parameter space {gaγZ , gaWW },
see eq. (C.4).

• Af encodes the fermion triangle correction from diagram C in figure 4, see eq. (C.5).

Eq. (4.21) can be rewritten in terms of {cB̃, cW̃ } (and cf) applying eq. (2.31) for gaWW and
the last equality in eq. (4.7) for gaγZ .

An example of physical process to which the exact results can be directly applied in
case ma < MZ is given by the decay width of a Z boson to photon plus ALP,

Γ(Z → aγ) =
M3
Z |geffaγZ |2
384π

(
1− m2

a

M2
Z

)3

, (4.23)
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while for ma > MZ , the ALP decay width into Z plus photon reads

Γ(a→ γZ) =
m3
a|geffaγZ |2
128π

(
1− M2

Z

m2
a

)3

. (4.24)

We illustrate next the results obtained above for a generic off-shell ALP in some
particular limits of practical interest.

4.3.1 geffaγZ for high ALP p2

For p2 →∞, (p2 � (m2
f ,M

2
Z ,M

2
W )), the anomaly contribution yields:

Af = 2NCQ
2
f s

2
w , (4.25)

while the correction proportional to gaWW is given by

AWW = 42M2
W +M2

Z

12M2
W

log
(

Λ2

M2
W

)
−
∑

f

NCQf(T3,f−2Qfs
2
w)

3c2
w

log
(

Λ2

m2
f

)
−
(

log
(
M2
W

p2

)
+iπ

)2

,

(4.26)

where the terms proportional to log Λ are kept, because consistency of the EFT expansion
requires p2 < Λ2.

4.3.2 geffaγZ for intermediate and low ALP p2

Both for m2
f � p2 � (M2

Z ,M
2
W )� m2

t , where f refers to all fermion mass but the top one,
and for p2 → 0 (p2 � (m2

f ,M
2
Z)), i.e. smaller than all fermion masses (which can apply for

instance to Z decay to ALP + photon), the contribution of fermionic ALP couplings to
geffaγZ is well approached by

Af =





2NCQ
2
f s

2
w , for light fermions: m2

f �M2
Z ,

3Qt
2 , for the top quark: m2

t �M2
Z ,

(4.27)

while the correction proportional to gaWW reads

AWW = 42M2
W +M2

Z

12M2
W

log
(

Λ2

M2
W

)
−
∑

f

NCQf(T3,f − 2Qfs
2
w)

3c2
w

log
(

Λ2

m2
f

)
+ . . . , (4.28)

where dots stand for constant terms.

4.4 ALP anomalous coupling to ZZ

The effective gaZZ coupling receives corrections induced by three of the four electroweak
gauge couplings: the set {gaWW , gaZZ , gaγZ}, plus cf fermion corrections. All Feynman
diagrams in figures 4 and 5 contribute with V = V ′ = Z. Using eq. (2.35), the contributions
resulting from electroweak gauge insertions can be projected on a two-dimensional space of
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couplings, which we choose to be here {gaZZ , gaWW }. The total effective coupling gaZZ can
then be expressed as

geffaZZ = gaZZ

{
1 + αem

6πc2
ws

2
w

(
AZ/γ→Z +BHiggs

)}
+ αem

π

c2
w

s2
w

gaWWB
WW + αem

πc2
ws

2
w

∑

f

cf
fa
Bf ,

(4.29)
where the complete expressions for the functions in this expression can be found in ap-
pendix C.2. They correspond to:

• AZ/γ→Z encodes corrections to the external legs (diagrams D1-D5 in figure 5), see
eq. (C.1) for the exact result.

• BHiggs stems from the vertex insertion of gaZZ with a Higgs particle exchanged between
the two Z bosons (diagram E in figure 4), see eq. (C.10).

• BWW collects the contributions proportional to gaWW resulting from direct vertex
insertions of gaWW in figure 4A and B, plus the gaWW component of the contributions
seeded by the insertion of gaγZ in the external legs and then projected onto the
parameter space {gaZZ , gaWW }, see eq. (C.11).

• Finally, the function Bf encodes the contributions from vertex insertions of the
fermionic couplings cf (figure 4 C), see eq. (C.12).

Eq. (4.29) can be rewritten in terms of {cB̃, cW̃ } (and cf) applying eq. (2.31) for gaWW and
the last equality in eq. (4.8) for gaZZ .

The results in this subsection can be applied to a variety of transitions in which the
ALP may be on-shell or off-shell. For instance, for ma > 2MZ the one-loop corrected ALP
decay width into two Z bosons is simply given by

Γ(a→ ZZ) = m3
a|geffaZZ |2
64π

(
1− 4M2

Z

m2
a

)3/2

. (4.30)

We present next for illustration the limit of the complete results in appendix C.2 in the
particular case of high ALP four-momentum squared, which can be of interest for instance
for non-resonant collider ALP searches.8

4.4.1 geffaZZ for high ALP p2

For p2 → ∞ (p2 � (m2
f ,M

2
Z ,M

2
W )), only the anomaly contribution remains from the

insertion of ALP-fermions couplings,

Bf = −NCQ
2
f s

4
w , (4.31)

while the contribution proportional to gaWW simplifies to

BWW = 42M2
W +M2

Z

12M2
W

log
(

Λ2

M2
W

)
−
∑

f

NCQf(T3,f−2Qfs
2
w)

3c2
w

log
(

Λ2

m2
f

)
− 1

2

(
log
(
M2
W

p2

)
+iπ

)2

,

(4.32)
8For intermediate ALP momentum (m2

f � p2 � (M2
Z ,M

2
W ) � m2

t ) and low four-momentum (p2 �
(m2

f ,M
2
Z)) the transition is not kinematically possible with the gauge bosons on-shell.
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and that proportional to gaZZ corrected by Higgs boson exchange between external legs
vanishes, BHiggs = 0.

4.5 ALP anomalous coupling to W+W−

All four couplings in the ensemble {gaγγ , gaWW , gaZZ , gaγZ} induce one-loop corrections to
the effective geffaWW coupling. All Feynman diagrams in figures 4 and 5 contribute. The
complete results can be found in appendix C.3. Using eq. (2.35), the total result can be
expressed for instance as a function of {gaWW , gaγγ} plus fermionic couplings,

geffaWW = gaWW

{
1 + αem

24πs2
w

(
AW→W + CWW + CHiggs

)}
+ αem

2π gaγγ C
γγ + αem

πs2
w

∑

f

cf
fa
C f ,

(4.33)
where:

• AW→W contains two sources of one-loop external-leg SM corrections to the insertion
of gaWW itself: fermionic and Higgs corrections,

AW→W = AW→Wferm +AW→WHiggs , (4.34)

with only fermion doublets contributing to AW→Wferm , see diagram D5 in figure 5 and
eq. (C.17), and the Higgs-dependent term AW→WHiggs stemming from diagrams D3 and
D4 in figure 5, see eq. (C.18).

• CWW accounts for corrections proportional to gaWW , and gathers one-loop SM
corrections on the external legs (figure 5 D1 and D2) together with vertex ones
(figure 4 A and B) (see eq. (C.19) for the complete expression):

– The leg corrections and those from the vertex diagram B are directly seeded by
the insertion of gaWW .

– The contributions originated from diagram A correspond to the combination of
direct vertex insertions of gaWW , plus the gaWW component of the contributions
seeded by {gaZZ , gaγZ} insertions projected onto the {gaγγ , gaWW } parameter
space.

• CHiggs is a pure vertex correction resulting from the direct insertion of gaWW with
the Higgs boson exchanged between the two W legs (diagram E in figure 4), see
eq. (C.20).

• The vertex function Cγγ corresponds to figure 4 A, combining the results from
the direct insertion of gaγγ and the gaγγ component of the contributions seeded
by {gaγZ , gaZZ} insertions projected onto the {gγγ , gaWW } parameter space, see
eq. (C.21).

• Finally, the vertex function C f accounts for the fermionic triangle contributions
(figure 4 C), induced by fermionic couplings cf insertions, see eq. (C.22).
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Eq. (4.33) can be rewritten in terms of {cB̃, cW̃ } (and cf) applying eq. (2.31) for gaWW and
the last equality in eq. (4.6) for gaγγ .

We present next for illustration the high ALP four-momentum squared limit of the
functions in eq. (4.33).

4.5.1 geffaWW for high ALP p2

In the limit p2 → ∞ (p2 � (m2
f ,M

2
Z ,M

2
W )), the fermionic contribution to the anomaly

vanishes. The same holds in this limit for the correction proportional to gaγγ as well as
that stemming from Higgs boson-exchange between the external W bosons,

C f = Cγγ = CHiggs = 0 . (4.35)

The only non-vanishing contributions in this limit are those proportional to gaWW itself
and stemming from AW→W and CWW . The function AW→W is independent of p2: in
consequence, it is not further simplifed from the relatively cumbersome complete expressions
in eqs. (C.17) and eq. (C.18), see eq. (4.34). The function CWW simplifies to

CWW = 43log
(

Λ2

M2
W

)
−12

(
log
(
M2
W

p2

)
+iπ

)2

−12s2
w log

(
λ2

M2
W

)(
1+iπ+log

(
M2
W

p2

))
. . . ,

(4.36)

where Λ is the UV cutoff (this logarithmic dependence cannot be disregarded in front of that
in p2 for EFT consistency), and λ denotes the IR cutoff. The computation has been carried
out entirely in dimensional regularization, with the 1/ε terms traded next for energy cutoffs
via a protocol alike to that used for geffagg — eq. (4.17) — and the prescription in eq. (4.18).
The log Λ dependence contained in CWW combined with that in the leg correction AW→W
determines the beta function for cW̃ in eq. (3.4).

The two first terms in eq. (4.36) are the leading contributions for large enough p2. The
third term exhibits a logarithimic dependence on the IR cutoff which is instead physically
irrelevant and can be disregarded, as it will exactly cancel for any physical observable against
the contributions from soft and/or collinear photon brehmsstrahlung. The latter may also
contribute additional finite terms to be combined with the finite and p2 independent terms
in CWW (see the exact expression in eq. (C.19) in appendix C.3), encoded here by dots.

For intermediate (m2
f � p2 � (M2

Z ,M
2
W ) � m2

t ) and low (p2 � (m2
f ,M

2
Z)) ALP

four-momentum, the ALP-WW transition is again not kinematically possible for gauge
bosons on-shell.

4.6 ALP fermionic couplings

The one-loop corrections to the effective ALP-fermion-fermion couplings are depicted in
figures 6 and 7, where the internal wavy lines denote either the gluon in the case of
the gluon-ALP coupling gagg (only possible for quark final states) or electroweak gauge
bosons. Contrary to the case for all previous effective couplings described, the individual
contributions seeded by each of the electroweak couplings in the set {gaγγ , gaWW , gaZZ , gaγZ}
are separately gauge invariant. In other words, the ξ-independence of the results holds
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a

f

f
A

a

f

f
C

a

f

f
B

a

f

f
D

a

f

f
E

h

Z

ψ

Figure 6. One-loop diagrams contributing to cf at one-loop (plus the corresponding diagrams with
Goldstone bosons). The wavy lines denote gauge bosons: gluons, photons, W and Z bosons.

already at the level of each one of those contributions, that is, prior to their projection
onto a reduced parameter space of electroweak gauge couplings. For this reason, we will
present those contributions individually. If wished, the reader can trivially project those
results in the two-coupling {cW̃ , cB̃} parameter space, or on any other parameter space (e.g.
{gaγγ , gaWW }), using the gauge-invariance relations in eq. (2.35).

The results can be summarized as

cefff
fa

= cf
fa

{
1+αem

2π Dcf + αs
3π D

cf
g

}
+ αem

2πfa



cf’D

cf’ +
∑

ψ

cψ D
cψ
mix





+αem
2π

{
gaγγD

γγ+gaγZDγZ+gaZZDZZ+gaWW DWW
}

+ αs
3π {gaggD

gg} ,
(4.37)

where the sum over fermions runs over all possible flavours, ψ = u, c, t, d, s, b, e, µ, τ , and
the terms in the second line account — respectively — for vertex insertions of the phe-
nomenological ALP electroweak couplings {gaγγ , gaγZ , gaZZ , gaWW } plus the anomalous
gluon coupling gagg: they all stem from diagram A in figure 6, and each term is separately
gauge invariant. The complete expressions for the functions Dγγ , DγZ , DZZ and DWW can
be found in eqs. (C.23)–(C.27) of appendix C.4. The first line in eq. (4.37) encodes instead
insertions of:

• The fermionic coupling cf itself accompanied by one-loop exchange of a gluon, encoded
in Dcf

g , or by the one-loop exchange of either a photon, a Z, a W or a Higgs boson, i.e.

Dcf = Dcf
γ +Dcf

Z +Dcf
W +Dcf

h , (4.38)

where Dcf
W is a pure leg correction from W exchange (figure 7 D1), and it is ξ-

independent by itself, see eq. (C.31). In contrast, in to order get results in an explicitly
gauge invariant formulation, the one-loop corrections due to photon or Z exchange —
encoded respectively in Dcf

γ and Dcf
Z — require the combination of the vertex diagram

B in figure 6 and the leg correction in figure 7 D1, see eqs. (C.29) and (C.30).
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a

a

f

f
D

= a

f

f
D1

+ a

f

f
D2

a

f

f

D1

+

h

Figure 7. One-loop diagrams contributing to the correction to the external fermion legs. Diagrams
with Goldstone bosons are included.

Similarly, manifest gauge invariance of the Higgs-exchange corrections — encoded
in Dcf

h — results after combining the vertex correction in figure 6 C and the leg
corrections in figure 7 D2, see eq. (C.33).

• The contribution from cf’, where f’ denotes the SU(2)L flavour partner of fermion
f, encoded in the function Dcf’ given in eq. (C.32). It corresponds to the vertex
correction due to W exchange in figure 6 B, which is gauge invariant by itself.

• All possible fermionic contributions to the mixed a-Z correction in figure 6 E, which
are encoded through the functions Dcψ

mix, which are also separately gauge-invariant,
see the complete result in eq. (C.34).

The results can be applied to a variety of physical transitions with an ALP on- or off-shell.
For instance, for ALP decay into a fermionic f̄f channel when ma > 2mf, the one-loop
corrected width is simply obtained from

Γ(a→ f f̄) = NCmam
2
f |cefff |2

8πf2
a

√
1− 4m2

f
m2
a

. (4.39)

For simplicity and for illustration purposes, we present next in this subsection some
useful limits of the exact functions in appendix C.4, for a generic off-shell ALP.

4.7 cefff for high ALP p2

For non-resonant searches at the LHC and other colliders, and/or for very heavy ALPs,
the limit m2

f � (M2
Z ,M

2
W ,M

2
H)� m2

t � p2 is of physical interest, where mf refers to all
fermion masses but the top one. In this subsection we set mf = 0 except in divergent terms.

4.7.1 Limit of light external fermions for f = u, d, s, b, e, µ

Let us first consider the contribution of gauge-anomalous couplings to cefff . For instance,
Dgg encodes the gagg contribution with gluons running in the internal loop of diagram A in
figure 6, which in this limit reduces to

Dgg =
{

3 log
(

Λ2

m2
f

)
− 4− 2π2

3 − 1
2

(
log

(
m2

f
p2

)
+ iπ

)2}
. (4.40)
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Analogously, Dγγ accounts for the gaγγ insertion with two photons running in the internal
loop of diagram A in figure 6, with an expression very close to that of Dgg which in this
limit reduces to

Dγγ = Q2
f

2 Dgg , (4.41)

while the DγZ term stems from that same diagram with one photon and one Z boson in
the internal loop,

DγZ = Qf (T3,f − 2Qfs
2
w)

16cwsw

{
12 log

(
Λ2

M2
Z

)
− 19− 2π2

3 − 2
(

log
(
M2
Z

p2

)
+ iπ

)2

− log
(
m2

f
M2
Z

)[
6 + 4iπ + 4 log

(
M2
Z

p2

)]}
. (4.42)

Similarly, the same diagram in figure 6 A although with two internal Z bosons results in

DZZ = 1
8c2
ws

2
w

{(
T 2

3,f−2T3,fQfs
2
w+2Qts4

w

)(
6log

(
Λ2

M2
Z

)
−11

)

+4T 2
3,f

(
1+log

(
M2
Z

p2

)
+iπ

)
+4Q2

f s
2
w(T3,f−Qfs

2
w)
(

log
(
M2
Z

p2

)
+iπ

)2}
, (4.43)

while DWW corresponds to that same diagram, albeit with internal W bosons,

DWW =





1
16s2w

{
6 log

(
Λ2

p2

)
− 2 log

(
M2
W
p2

)
− 7 + 4iπ

}
,

for leptons and quarks
except top and bottom ,

1
16s2w

{
6 log

(
Λ2

p2

)
− 2 log

(
m2
t

p2

)
− 9 + 4iπ

}
, for the bottom quark .

(4.44)

For the contributions resulting from the insertions of ALP fermionic couplings, the
one-loop gluon corrections (vertex plus legs), and the analogous one-loop photon corrections
lead in this limit to, respectively,

Dcf
g =−2

{
1−π

2

6 +log
(
λ2

m2
f

)(
1+iπ+log

(
m2

f
p2

))
+ 1

2

(
log
(
m2

f
p2

)
+iπ

)2}
, (4.45)

Dcf
γ = Q2

f
2 Dcf

g , (4.46)

where λ is an infrared cutoff which encodes the IR-divergent contributions to the 1/ε
dimensional regularization terms via the prescription in eq. (4.18), following the same
protocol used for the gluonic IR divergences in eq. (4.17). and the photonic ones in
eq. (4.36). Those unphysical IR logarithmic dependences will again exactly cancel in
physical transitions against those from the phase space integral terms stemming from
tree-level soft and/or collinear gluon and photon bremsstrahlung.
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In turn, Z exchange (vertex plus legs) is free from IR divergences and leads to

Dcf
Z = −Qfs

2
w(T3,f −Qfs

2
w)

2c2
ws

2
w

{
2π2

3 +
(

log
(
M2
Z

p2

)
+ iπ

)2}
. (4.47)

The cefff component resulting from one-loop W -exchange corrections to ALP fermion-
coupling insertions unfolds as explained as two ξ-independent contributions: i) the leg
correction from the insertion of cf in figure 7 D1, encoded in Dcf

W , which in this particular
limit vanishes, and ii) the vertex correction induced by the insertion of the SU(2) flavour-
partner coupling cf′ in figure 6 B, encoded in Dcf’ :

Dcf’ =





0 , for leptons and quarks
except top and bottom ,

− m2
t

8M2
W s2w

{
log
(

Λ2

p2

)
+log

(
M2
W
p2

)
+ 7

2 +2iπ
}
, for the bottom quark .

. (4.48)

The one-loop Higgs corrections to cf insertions also vanish in this limit, Dcf
h = 0. Finally,

the mixed one-loop contribution to cefff from diagram E in figure 6 receives contributions
from all possible ALP fermionic couplings — quarks and leptons, and it is also ξ-independent
by itself. Its expression is particularly simple even in the exact case (see eq. (C.34) in
appendix C), while in the present limit all contributions vanish but for that with the top
quark running in the loop,

Dct
mix = −3T3,fm

2
t

2s2
wM

2
W

{
log

(
Λ2

p2

)
+ 2 + iπ

}
, (4.49)

where T3,f denotes the third component of weak isospin for the external flavour f. The
logarithimic dependence was already obtained in ref. [62]. This result shows that, in the
limit under study, the top-coupling contribution can be the dominant one on the quest for
signals of ALP couplings to light fermions, because the contributions are proportional to
the mass of the fermion running in the loop and independent of the external flavour. In
fact, this conclusion extends as well to the exact result in eq. (C.34). This may be very
relevant for instance on the searches for ALP couplings to electrons in XENON and other
experiments, see section 6.

4.7.2 Limit of light internal fermions for external f = t

The analogous high ALP p2 results when the external fermion is the top, i.e. the contributions
to cefft neglecting light fermion masses, are reported next.

Let us consider first the impact of the insertions of ALP gauge anomalous couplings.
In the case of the ALP-photon and ALP-gluon couplings, gagg and gaγγ , the corresponding
functions Dgg and Dγγ are exactly as those in eqs. (4.40) and (4.41) albeit with the
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replacement mf → mt. For the other anomalous couplings, the results simplify to

DγZ = Qt (T3,t−2Qts2
w)

4cwsw

{
3log

(
Λ2

m2
t

)
−4
}
, (4.50)

DZZ = 1
4c2
ws

2
w

{
(T 2

3,t−2T3,tQts
2
w+2Qts4

w)
(

3log
(

Λ2

m2
t

)
−4
)

+2Q2
t s

2
w(T3,t−Qts2

w)
[

2π2

3 + 1
2

(
log
(
m2
t

p2

)
+iπ

)2]
+2T 2

3,t

(
log
(
m2
t

p2

)
+iπ

)}
,

(4.51)

DWW = 1
8s2
w

{
3log

(
Λ2

p2

)
−log

(
m2
t

p2

)
−3+3iπ

}
. (4.52)

In turn, the one-loop gluon and photon contributions to cefft stemming from ALP-fermion
couplings, i.e. Dcf

g and Dcf
γ , are respectively identical to those found above for the light

external fermion limit in eqs. (4.45) and (4.46). The rest of the one-loop boson corrections
to insertions of ALP-fermion couplings reads in this limit:

Dct
Z = 1

2c2
ws

2
w



−

m2
tT

2
3,t

M2
Z

(
log
(

Λ2

p2

)
+2+iπ

)
−(T 2

3,t+4T3,tQts
2
w−4Q2

t s
4
w) log

(
m2
t

M2
Z

)

−Qts2
w(T3,t−Qts2

w)


π

2

3 +2log
(
m2
t

M2
Z

)(
log
(
m2
t

p2

)
+iπ

)
−
(

log
(
m2
t

p2

)
+iπ

)2




 ,

(4.53)

Dct
W =− m2

t

8M2
W s

2
w

{
log
(

Λ2

m2
t

)
+1+iπ

}
, (4.54)

Dct
h =− m2

t

8πs2
wM

2
W

{
log
(

Λ2

M2
H

)
+log

(
p2

M2
H

)
−2−iπ

}
, (4.55)

D
cψ
mix =− 3m2

t

4s2
wM

2
W

{
log
(

Λ2

m2
t

)
+2+iπ

}
, (4.56)

while Dcf’
W = 0 with f’ = b in this particular case.

4.8 cefff for intermediate ALP p2 and light fermions

We explicit now the limits for an ALP with a low p2, smaller or equal than all SM
boson gauge boson masses but larger than the mass squared of all light fermions m2

f �
p2 �M2

Z ,M
2
W ,M

2
H with f = u, d, c, s, b, e, µ, τ . This limit is of interest for instance when

considering decays of a light ALP to leptons or light fermions, such as those searched for in
rare decays.

The contribution stemming from the insertions of gagg and gaγγ , i.e. the functions Dgg

and Dγγ , are again exactly as those in eqs. (4.40) and (4.41). For the other anomalous
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couplings, the results simplify in this limit to

DγZ = Qf (T3,f − 2Qfs
2
w)

8cwsw

{
6 log

(
Λ2

M2
Z

)
− 13

}
, (4.57)

DZZ =
(T 2

3,f − T3,f2Qfs
2
w + 2Qfs

4
w)

8c2
ws

2
w

{
6 log

(
Λ2

M2
Z

)
− 19

}
, (4.58)

DWW = 1
16s2

w

{
6 log

(
Λ2

M2
Z

)
− 19

}
. (4.59)

The results for Dγγ and eqs. (4.57)–(4.59) have been addressed previously in ref. [14] for an
on-shell ALP (p2 = m2

a); our results are in agreement with those, except for a minor factor
in Dγγ , eq. (4.41).

We consider next the impact of inserting ALP fermionic couplings. Their contributions
vanish in this particular limit for the following functions:

Dcf
Z = Dcf

W = D
c′

f
W = Dcf

h = 0 , (4.60)

while the gluon and photon corrections Dcf
g and Dcf

γ coincide with those in eqs. (4.45)
and (4.46). Finally, the a-Z mixing corrections read in this limit [62]

Dct
mix = −3T3,fm

2
t

2s2
wM

2
W

{
log

(
Λ2

m2
t

)}
. (4.61)

5 Gauge invariance at one-loop level

This section analyzes the modifications to the tree-level gauge invariance relations in
eq. (2.35) and (2.36), which result from rewriting the only two independent parameters of
the electroweak sector gaWW and gaBB (i.e. cW̃ and cB̃ , see eqs. (2.31) and (2.36)) in terms
of the measured phenomenological couplings, e.g.

gaWW = gaγγ + cw
2sw

gaγZ ,

gaBB = c2
wgaγγ + s2

wgaZZ − cwswgaγZ .
(5.1)

Radiative corrections which include mass effects (spontaneously) break the explicit
gauge invariance of the original Lagrangian in eq. (2.5) and table 1. In other words,
corrections proportional to the Higgs vev v are to be expected, which can be summarized
as contributions to both the original SU(2)L ×U(1)Y -invariant operators and to additional
effective couplings which are not invariant under the electroweak (and custodial) symmetry.
The results can then be encoded as the strength of the following set of four effective couplings

{
aBµνB̃µν , aW

µνW̃µν , aB
µνW̃ 3

µν , aW
µν
3 W̃3µν

}
, (5.2)

where the last two are new and do not respect electroweak and custodial symmetries, while
the first two were already present in the original gauge-invariant Lagrangian eq. (2.5). The
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radiative corrections to the aW 1
µνW̃

1µν coupling must equal exactly those for the aW 2
µνW̃

2µν

coefficient because of electric charge conservation: geffaWW will encode them as well as the
identical ones for the aW 3

µνW̃
3µν interaction, while the “excess” will be accounted for in the

coefficient for a aWµν
3 W̃3 interaction denoted ∆WW . In turn, ∆BW will encode corrections

of the form aBµνW̃ 3
µν , i.e.

δLtotala ⊃ 1
4∆BWaBµνW̃

3µν + 1
4∆WWaW

3
µνW̃

3µν . (5.3)

The two new effective couplings can be expressed as the following combinations of radiatively-
corrected phenomenological parameters:

∆WW = s̄2
w g

eff
aγγ + c̄2

w g
eff
aZZ + c̄ws̄w g

eff
aγZ − geffaWW ,

∆BW = 2c̄ws̄w(geffaγγ − geffaZZ) + (c̄2
w − s̄2

w)geffaγZ .
(5.4)

It is straightforward to compute the exact values of ∆WW and ∆BW from the results for the
effective couplings in section 4 and appendix C and the expression for c̄w in eq. (4.4). The
tree-level closed gauge-invariance relations in eq. (2.35) will be modified in consequence.

Gauge invariant ancestors of radiatively corrected couplings. As stated above,
the operators aBµνW̃ 3µν and aW 3

µνW̃
3µν are neither custodial nor SU(2)L invariant. Nev-

ertheless, there must be a fully gauge-invariant formulation of any possible correction to the
effective Lagrangian and its corrections, because electroweak gauge symmetry is unbroken in
nature. Indeed, in generic EFTs, one-loop corrections are expected to give contributions to
higher order terms in the EFT expansion. Both in the SMEFT and in the linear ALP EFT,
these contributions are always finite, i.e. all UV-divergences are reabsorbed order-by-order
in the EFT expansion. Well-known examples in the SM are the magnetic and electric dipole
moments in the SM, whose gauge invariant version corresponds to operators with mass
dimension six and above.

Higher order radiative corrections, and in particular mass dependent ones (which are
equivalent to multiple Higgs insertions that then take a vev) can imply that a full tower
of operators may be needed to formulate those corrections in a gauge invariant way. The
putative SU(2)L × U(1)Y -invariant ancestors of the four gauge anomalous couplings in the
Lagrangian Ltotala + δLtotala , i.e. eqs. (2.5) and eq. (5.3), can be formulated alike to those
in ref. [63] for CP-conserving Higgs couplings. For our ALP set, we expect v-dependent
radiative corrections encoded in the gauge invariant operators

(5 + 2n) : a (Φ†Φ)nBµνB̃µν , (5.5)
(5 + 2n) : a (Φ†Φ)nWµνW̃µν , (5.6)
(7 + 2n) : a (Φ†Φ)n (Φ†~σΦ) ~WµνB̃µν −→ aBµνW̃ 3

µν , (5.7)

(9 + 2n) : a (Φ†Φ)n (Φ† ~σaΦ) (Φ† ~σbΦ) ~Wµν
a W̃b µν −→ aWµν

3 W̃ 3
µν , (5.8)

where n is integer, n ≥ 0. In the last two lines it is indicated that those two towers of
operators lead — after spontaneously symmetry breaking — to the custodial and SU(2)L
non-invariant couplings aBµνW̃ 3

µν and aWµν
3 W̃ 3

µν postulated earlier: note that their mass
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a

B

W 3

Figure 8. Illustration of fermionic one-loop contributions which induce an effective coupling
aBµνW̃ 3

µν .

dimension is at least seven and nine, respectively, and that they vanish for v = 0. In contrast,
the couplings in the first two lines can receive mass-independent one-loop corrections even
for n = 0, as computed in the previous section. An important consequence of this is that
loops induced by dimension-5 ALP operators can give UV-divergent contributions to the
structures in (5.5) and (5.6) for n = 0, while contributions to all other structures must be
finite. We find that this is indeed the case for ∆WW and ∆BW .

A pertinent question is the scale that would weight down those higher-dimension
operators. Only one inverse power of fa is possible, because ALP insertions must enter
as powers of a/fa, and only one ALP insertion is considered here. The remaining scale
dependence must then correspond to either another BSM scale (not considered here) or
simply to SM mass parameters when only SM radiative corrections are present as in the
present work, i.e. to powers of the electroweak scale. These SM corrections should generate
coefficient contributions proportional in addition to the SM sources of custodial breaking.

5.1 Gauge invariance relations among effective electroweak couplings at
one-loop

It is easy to verify that ∆WW = ∆BW = 0 in the massless limit, i.e. for v = 0,9 and the
one-loop corrections to the anomalous gauge couplings satisfy the tree-level gauge invariance
relations eq. (2.35). Instead, when mass corrections are taken into account, non-zero values
for ∆WW and ∆BW do emerge. As an example, our results show that the contributions
stemming from ALP-fermion coupling insertions — see figure 8 — are finite and take the
general form

∆BW = YL (FL(m1)− FL(m2)) + YR1 FR(m1)− YR2 FR(m2) , (5.9)

wheremi=1,2 denote fermion masses of SU(2)L fermion partners and the functions FR(m) and
FL(m) cancel in the massless fermion limit, FL,R(0) = 0. In other words, a non-vanishing
∆BW coupling requires as expected that the sources of custodial breaking be at play:
different fermion hypercharges and non-degenerate fermion partners running in the loop.

More in general, it follows from the analysis above that the tree-level gauge invariance
relations in eq. (2.35) are to be substituted by the one-loop corrected ones, which we choose

9Moreover, the radiative correction to gaBB is proportional as expected to
∑

ψ
y2
ψ, where yψ denote the

fermion hypercharges.
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to parametrize as:

geffaWW = geffaγγ + c̄w
2s̄w

geffaγZ −
c̄w
2s̄w

∆BW −∆WW ,

geffaZZ = geffaγγ + c̄2
w − s̄2

w

2c̄ws̄w
geffaγZ −

1
2c̄ws̄w

∆BW ,

(5.10)

where c̄w was defined in eq. (4.4). These one-loop corrections gauge invariance relations
may impact on the limits inferred for a given coupling from the experimental bounds on
another couplings known at present with higher precision (e.g. the bounds on the ALP-ZZ
anomalous coupling obtained from the experimental limits on the ALP-γγ coupling in
certain mass regimes [14, 53, 64]).

Limit m2
f ,M

2
Z ,M

2
W ,M

2
H � p2 ≤ m2

t . Because ∆WW and ∆BW vanish for v = 0,
they vanish in the limit p2 →∞. The contribution of the top quark may thus dominate for
large p2 close to m2

t . That is, the contribution of the top-ALP coupling ct may dominate in
the limit in which all SM particle masses but the top one are neglected with respect to the
ALP p2:

∆BW ∼ −ct
αem
πcwsw

m2
t

p2

{
6 + 6i

√
1− 4m2

t

p2 f

(
4m2

t

p2

)
− 4f

(
4m2

t

p2

)2}
, (5.11)

∆WW ∼ ct
3αem
2πs2

w

m2
t

p2

{
1 +m2

tC
(
0, 0, p2,mt, 0,mt

)}
, (5.12)

where the function f(τ) was defined in eq. (4.10) and C is defined in eqs. (C.13)–(C.16) of
appendix C.2. Notice that these expressions vanish in the limit p2 →∞, as they must.

6 Some phenomenological consequences of loop-induced ALP couplings

High-precision measurements may be increasingly able to probe loop corrections to tree-
level effective couplings. Currently, sensitivity to loop-induced couplings is particularly
interesting when a tree-level coupling is suppressed and the loop contributions dominate.

In this section we are going to explore two examples of such situations: high-energy
gluon-initiated production of an electroweak ALP, and very precise low-energy searches for
ALPs which rely on couplings to electron-positron. In both cases, we focus on the loop
effects of the ALP coupling to top quarks.

6.1 LHC probes for heavy ALPs

In the Lagrangian eq. (2.5), we provided the ALP with couplings to the whole SM: the
electroweak bosons, gluons and fermions. This is a rather general coupling structure, yet
ALPs may have restrictions on how they communicate at tree-level to the SM. For example,
ALPs could originate from a UV sector participating in the mechanism of electroweak
symmetry breaking, coupled to the SU(2)L ×U(1)Y sector and not to the SU(3)c one, e.g.
in Composite Higgs models where an additional heavy CP-odd state arises as a partner to
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t

t

t

t

t a

Figure 9. One-loop contribution to ALP production via gluon-fusion, and its decay to a pair
of tops.

the Composite Higgs [65, 66]. This is just an example of theories with vanishing or very
suppressed tree-level effective ALP-gluon coupling (gagg in eq. (2.30)): an electroweak ALP.

These models of electroweak ALPs would be hard to probe at the LHC, as protons are
mainly made of light quarks and gluons. Then, the leading contribution to gluon-fusion
cross-section could correspond to integrating out tops. For definiteness, let us consider
exclusively the ALP-top diagonal coupling ct defined in eq. (2.38),

L ⊃ ct
∂µa

2fa
(
t̄γµγ5t

)
. (6.1)

The ALP production would then be mediated by a top running in the gluon loop and could
be constrained, for instance, in gg → a → tt̄ processes, as illustrated in figure 9. In this
process, the ALP could be either resonant or non-resonant [19], depending on its mass.10

For definiteness, here we consider ALPs with ma > 2mt, such that the top-antitop pair
can be resonant. This allows us to derive constraints from existing searches for resonances
in tt̄ final states, that are at a very mature stage in the LHC collaborations. This is true
in particular at high-mass, where the fully hadronic topology can be accessed using jet
substructure techniques. As an illustration of how LHC probes could be used to search for
heavy ALPs, we re-interpret the recent ATLAS analysis [67] to set bounds on ct/fa.

We simulate separately the pure gg → a→ tt̄ signal and the component stemming from
the interference of this process with SM gg → tt̄ production. Expressing geffagg as a function
of ct as in eq. (4.16), the former scales with (ct/fa)4 and the latter with (ct/fa)2. The
simulation is performed generating 105 events in each channel with MadGraph5_aMC@NLO [68],
using an in-house UFO implementation of the Lagrangian in eq. (2.5). Variations of geffagg
with p2 are neglected, as they only induce a few % correction to the numerical value of the
gluon coupling. The imaginary part stemming from expanding the B1 loop function is also
subdominant and can be safely neglected in the simulation.

We perform a very simple analysis at parton level, without decaying the top quarks and
without performing full parton shower and detector simulations. To partially compensate for
this, a gaussian smearing with a 6% width is applied to the simulated top-antitop invariant
mass (mtt̄) distribution, and the latter is multiplied by a mtt̄-dependent suppression factor

10A competing channel, that takes place at tree level, is pp→ tt̄a with a→ tt̄. However, the phase-space
suppression for this channel is stronger than the loop suppression in gg → tt̄. For example, for ma = 1TeV,
σ(gg → a)/σ(pp→ tt̄a) ' 2× 104.
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estimated from figure 2 in ref. [67], that accounts for the tagging efficiencies.11 The
acceptance correction is implemented by applying, at the generator level, the cuts reported
in ref. [67] on the top quarks pseudo-rapidities ηt,t̄ and transverse momenta pT (t, t̄), and on
their rapidity and azimuthal-angle separations, ∆ytt̄ and ∆φtt̄ respectively.

The distribution obtained (summing signal and interference components) is compared
to the difference between measured and predicted number of events in the mtt̄ spectra
reported in ref. [67], that is available on HEPdata. We implement a basic test statistics
constructing a χ2 as

χ2(ct/fa) =
∑

k

1
σ2
k

[
c4
t

f4
a

ak + c2
t

f2
a

ik + bk − dk
]
, (6.2)

where the index k runs over the bins of the mtt̄ distributions for the 1- and 2-b-tagged
signal regions, ak (ik) is the number of events estimated for the pure ALP signal (ALP-SM
interference) in the k-th bin with ct/fa = 1 TeV−1. In this equation, bk (dk) is the number
of expected background events (observed events) reported by the ATLAS Collaboration.
Finally, the uncertainty σk is estimated by summing in quadrature the total systematic
uncertainty reported by ATLAS, the statistical error

√
dk on the measured data points and

the statistical uncertainty associated to our Monte Carlo simulation. As a conservative
choice, bins with 0 observed events are removed from the analysis, as in this case a χ2

statistics cannot be applied. We repeat this analysis for various values of ma in the range
from 1.6 to 4.6 TeV and extract, for each value, a 95%CL upper limit on ct/fa.

The results of this naive re-interpretation are shown in figure 10. The limits on fa
obtained lie at the boundaries of a good effective description of the ALP Lagrangian as, for
|ct| = 1, the bound on fa is mostly below ma. On the other hand, in a strongly interacting
regime where |ct| ' 4π (as could be the case of a Composite Higgs model), the limits on
fa improve by an order of magnitude and result well above ma. A dedicated analysis,
potentially extended to the leptonic and semi-leptonic channels, could improve these bounds
significantly.

6.2 Limits on the couplings to top quarks for light ALPs

Another interesting use of loop-induced ALP couplings appears when a tree-level coupling is
very well measured and can provide a good constraint on loop-induced couplings, assuming
no substantial cancellations happen between tree and loop-induced couplings. Among these,
the loop-induced ALP-electron diagonal coupling ce (defined in eq. (2.40)),

L ⊃ ce
∂µa

2fa
(ēγµγ5e) , (6.3)

is particularly interesting as electrons are found in stable matter. Astrophysical objects
like red giants or precise non-collider experiments such as Dark Matter Direct Detection

11We assume that the efficiency for the ALP detection does not differ significantly from that for a Z′.
A more detailed analysis would require simulating both particles and comparing how the fat-jet tagging
efficiency varies depending on the coupling properties of the resonance. This dependence has been often
found to be subdominant in previous studies, see e.g. refs. [69, 70].
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95%CL excluded region from gg → a→ tt̄

Figure 10. Limits on fa/|ct|, as a function of the ALP mass, extracted from the all-hadronic tt̄
resonance search by ATLAS of ref. [67].

experiments provide an excellent handle on that coupling. Here we consider the current
limits on the axion-electron coupling collected in ref. [71], that include results from Red
Giants [72], Solar neutrinos [73] and LUX [74], which are derived for solar axions and extend
to very low ALP masses, as well as from Edelweiss [75], PandaX [76], SuperCDMS [77] and
XENON-1T [78–80], that cover the region 100 eV . ma . 100 keV assuming the ALP to be
the main DM constituent.12 The most stringent bounds are those from red giants and from
DM direct detection at XENON-1T, and give |ceffe | (me/fa) . 10−13.

These limits can be translated into limits on the diagonal ALP-top coupling, using the
one-loop contributions computed in section 4.6, corresponding to diagram E in figure 6, see
also refs. [62, 81]. Note that in DM direct detection experiments the typical energy range is
the keV, hence our expressions must be taken in the limit of low-momentum exchange in
the detector between the ALP and the electron, i.e. below the electron mass. In this case
one finds the log-enhanced expression found in eq. (4.61), namely:

ceffe ' 2.48 ct αem log
(

Λ2

m2
t

)
. (6.4)

For consistency, the cutoff of the loop integrals Λ should be of the same order as fa. As
the Λ dependence is logarithmic we will use Λ = 106 TeV in this equation, to extract the
bounds on fa/ct shown in figure 11,13 from which it follows

fa/|ct| > 2.2× 106 TeV (6.5)

12Note that — strictly speaking — the bounds extracted from DM searches only apply in scenarios where
the ALP is stable and can be produced with the correct relic abundance. Verifying the latter condition for
the particular ALP scenario considered here is beyond the scope of this work.

13The value 106 TeV was chosen a posteriori, so as to match the limits on fa.
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XENON1T excess

red giants

solar ν

Figure 11. Limits on fa/|ct| as a function of the ALP mass, extracted rescaling existing constraints
on the ALP-electron coupling, taken from ref. [71]. The grey hatched box marks the region roughly
compatible with the excess observed by XENON1T [79].

in the entire range considered. If the ALP is assumed to be DM, XENON1T bounds apply,
leading to the stronger constraint

fa/|ct| > 1.4× 107 TeV . (6.6)

XENON1T recently observed an excess in their data, which could have been explained
by solar axions coupled to electrons and/or photons in the mass range ma ∼ 0.1− 100 eV
for the QCD axion [79, 82]. Thus, instead of a limit, in this case XENON1T would identify
a finite preferred region in the plane (gaγγ , ce/fa). Unfortunately, this interpretation of a
QCD axion is in conflict with the data from red giants. Nevertheless and for the sake of the
exercise, one can consider what would be the preferred value for fa/ct if that XENON1T
excess was taken at face value. Using then eq. (6.4), and the one-loop corrections to
gaγγ computed in section 4.1 which correspond to diagram C in figure 4, it follows that
the induced value of gaγγ is strongly suppressed for the ALP mass range considered here
(p2 = m2

a � m2
t ): geffaγγ . 10−8αemct/fa � ceffe /fa. In this limit, the results from XENON1T

could be interpreted as a preferred range for ceffe independent of gaγγ . This broadly includes
values 2 × 10−12 . |ceffe |(me/fa) . 4 × 10−12. The projection of this interval in terms of
fa/ct is shown as a grey-hatched region in figure 11.

Finally, note that the type of analysis carried out in this subsection can be also applied
to the flavour-diagonal ALP-bottom coupling cb (defined in eq. (2.39)). Numerically, limits
on fa/cb can be approximately estimated rescaling by m2

b/m
2
t [81] those on fa/ct in eqs. (6.5)

and (6.6) above, leading respectively to fa/|cb| > 1.0× 103 TeV and fa/|cb| > 6.5× 103 TeV,
for Λ = 103 TeV.
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7 Conclusions

The search for axions and ALPs is intensifying in both the energy and the precision frontiers.
The vastly different energy regions explored range from those typical of astrophysics and low-
energy laboratory experiments to collider energies. At the same time, increasingly precise
probes are targeted e.g. photon and/or invisible channels in rare hadron decays and other
low-energy channels. The point is well past in which the estimation of one-loop effects in the
couplings of ALPs to SM particles is needed to explore optimally BSM physics through the
detection of pseudo-Goldstone bosons signals. From the theoretical point of view, effective
Lagrangian formulations allow to pursue this quest in a very model-independent way.

In this work, we have first clarified the relations among alternative — complete and non-
redundant — CP-even bases for the d = 5 ALP linear effective Lagrangian. In doing so, we
derived the exact relations between bases which differ in their choices of fermionic operators
constructed with left-handed and right-handed currents and/or chirality-flip couplings.
We identified the precise combinations of gauge anomalous couplings involved in trading
different bases. This includes the relations stemming from the anomalous global B + L

current and the conserved B − L one. Although we then chose to work on a complete and
non-redundant basis containing gauge anomalous operators plus all possible right-handed
fermionic currents and certain couplings made out of left-handed currents, the relations
obtained will allow easy translation of the results to other bases.

Furthermore, illustrative practical checks of bases equivalences were as well performed.
For instance, the purely bosonic operator OaΦ can be written either as a combination of
right-handed fermion currents or as a combination of left-handed fermion currents, right-
handed ones and gauge anomalous couplings: it is explicitly shown how all anomalous
corrections vanish at one-loop level, as they should.

In a second step, we have computed the complete one-loop corrections — thus including
all divergent and finite terms — to all possible CP-even couplings of an ALP to SM fields,
for a generic off-shell ALP and on-shell SM particles. Our results are formulated in the
form of the effective one-loop interactions {geffagg , geffaγγ , geffaWW , g

eff
aZZ , g

eff
aγZ , c

eff
f }, where the

latter is computed for all SM fermions — light and heavy — but restricted to flavour
diagonal external channels. Moreover three-generation CKM mixing is disregarded in the
loop corrections. Neutrino masses are disregarded as well. Our computations thus carry
to novel territory previous studies restricted to on-shell ALPs and to certain channels and
limits. All our computations have been performed in the covariant Rξ gauge, and the
intermediate ξ-dependent steps made publicly available at NotebookArchive, together with
the exact final gauge-invariant results. The latter are shown as well in appendix C, while
in the main text limits relevant for high, intermediate and low energy experiments are
extracted. Particular attention has been dedicated to the isolation of infrared divergences
when present. As a byproduct, the UV divergent terms of our computations also allowed to
do a straightforward check of recent RG results in the literature in different bases.

An illustration of the reach of our results is the impact that any putative ALP coupling
induces at one-loop on any other ALP interaction. For instance, we explored how, for heavy
ALPs, the ALP-top coupling can be constrained by LHC measurements of top-pair final
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states, processes which are induced at one-loop by this coupling. These channels, pumped
up by gluon fusion via a top loop, open up the possibility of studying many ALP final
states with a sizeable cross-section, even when the tree-level coupling ALP-gluon would be
zero. We also explored constraints on ALP-top interactions for light ALPs. In this case,
the strictest limits are those derived from bounds on the ALP-electron coupling, extracted
from astrophysical constraints and from DM Direct Detection searches [62].

An interesting point also clarified in this work is the one-loop modification of the
electroweak tree-level gauge invariance relations. These are relevant as far as custodial
symmetry breaking, i.e. mass and hypercharge differences, are relevant. We have deter-
mined these corrections, which will impact future one-loop extractions at LHC and other
experiments of the sensitivity to a given ALP coupling from more precise data on another
ALP coupling (e.g. gaWW from data on geffaγγ or geffaγZ , and similar analyses).

A plethora of experimental channels should be explored using the results of this paper.
Future directions include the one-loop complete results with all external particles off-shell
and also flavour non-diagonal channels. A related interesting task is the computation of
box and other diagrams for certain physical processes, which is mandatory to cancel all
infrared divergences in processes involving gagg, gaWW and cefff . Finally, the analysis of the
ALP bases should be extended to include CP violation in the ALP couplings. These and
other exciting developments lie ahead in the BSM path to uncover novel pseudo-Goldstone
boson physics.
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A Standard Model equations of motion

In this appendix we report the SM EOM for the fermion and Higgs fields, that are relevant
for the discussion in section 2 and appendix B. For chiral fermions, the EOM read

i /DQL = ΦYddR + Φ̃YuuR , i /DuR = Φ̃†Y †uQL , i /DdR = Φ†Y †dQL , (A.1)
i /DLL = ΦYeeR , i /DeR = Φ†Y †e LL , (A.2)
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where flavor index contractions are implicit. For the conjugate fields they imply

−iQ̄L
←−
/D = d̄RY

†
d Φ† + ūRY

†
u Φ̃† , −iūR

←−
/D = Q̄LYuΦ̃ , −id̄R

←−
/D = Q̄LYdΦ , (A.3)

−iL̄L
←−
/D = ēRY

†
e Φ† , −iēR

←−
/D = L̄LYeΦ . (A.4)

The EOM for the Higgs field reads

�Φi = −
[
d̄RY

†
d (QL)i + (Q̄Liσ2)iYuuR + ēRY

†
e (LL)i

]
+ m2

h

2 Φi − 2λ(Φ†Φ)Φi , (A.5)

�Φ†i = −
[
(Q̄L)iYddR + ūRY

†
u (iσ2QL)i + (L̄L)iYeeR

]
+ m2

h

2 Φ†i − 2λ(Φ†Φ)Φ†i , (A.6)

where i is a free SU(2)L index and we have taken V (Φ†Φ) = −(m2
H/2)Φ†Φ + λ(Φ†Φ)2,

where mH and λ denote respectively the Higgs mass and self-coupling.
The use of fermion EOM is tantamount to chiral rotations of fermion fields, at the

classical level. When considering loop effects as in this work, they must be supplemented
by the contributions of the SM anomalous global currents, i.e.

∂µ(Q̄iLγµQiL) ⊃ g′2

96π2BµνB̃
µν + 3g2

32π2W
α
µνW̃

αµν + g2
s

16π2G
a
µνG̃

aµν , (A.7)

∂µ(ūiRγµuiR) ⊃ − g′2

12π2BµνB̃
µν − g2

s

32π2G
a
µνG̃

aµν , (A.8)

∂µ(d̄iRγµdiR) ⊃ − g′2

48π2BµνB̃
µν − g2

s

32π2G
a
µνG̃

aµν , (A.9)

∂µ(L̄iLγµLiL) ⊃ g′2

32π2BµνB̃
µν + g2

32π2W
α
µνW̃

αµν , (A.10)

∂µ(ēiRγµeiR) ⊃ − g′2

16π2BµνB̃
µν , (A.11)

where we are not summing over the index i.

B Field redefinitions and operator basis reduction

In this appendix we consider the ALP-dependent field redefinitions that are required in
order to relate and reduce the operator basis:

Φ 7→ exp
[
ixΦ

a

fa

]
Φ , f 7→ exp

[
ixf

a

fa

]
f , (B.1)

where in flavour space f = {QL, uR, dR, LL, eR} are vectors and xf = xijf are tensors. For
notation simplicity, the subindices {L,R} will be omitted, i.e. f = {QL, uR, dR, LL, eR} ≡
{Q, u,d,L, e}. We take all rotation parameters xΦ and xf to be real, consistent with the
assumption of CP conservation of the ALP couplings (the only CP-violation present is that
of the SM contained in CKM, i.e. in the Yukawa matrices). Moreover, due to the hermicity
of the Lagrangian it is only the symmetric component of the matrices xf that contributes
to a variation in it. Then, from now on we assume xf to be symmetric, i.e. xijf = xjif , so
(xf + xTf )/2 = xf. Discussing the basis reduction in terms of field redefinitions rather than
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via the direct use of EOMs makes their impact on the OX̃ operators more transparent:
because the fermion rotations are chiral, contributions to the latter are generated through
the axial anomaly.

The general procedure for reducing the operator basis is as follows. The rotations
in (B.1) are first applied to LSM (eq. (2.2)), and an expansion at O(1/fa) is performed
next. The net shift resulting from the most general rotation reads [17]

∆LSM = −xΦ OaΦ −
∑

f=Q,u,d,L,e
xfOf +

[
(xLYe − Yexe − xΦYe) OeΦ

+ (xQYd − Ydxd − xΦYd) OdΦ + (xQYu − Yuxu + xΦYu) OuΦ + h.c.
]

+ g′2

32π2 OB̃ Tr
[1

3xQ −
8
3xu −

2
3xd + xL − 2xe

]
+ g2

32π2 OW̃ Tr [3xQ + xL]

+ g2
s

32π2 OG̃ Tr [2xQ − xu − xd] ,

(B.2)

where the anomalous operators OX̃ are defined in table 1, Of are the chirality-conserving
fermionic operators defined in eqs. (2.3) (2.4), OfΦ are the chirality-flip ones defined in
eq. (2.19), and finally OaΦ is defined in table 2. The trace in the last two lines of eq. (B.2)
is over flavor indices, while in the first two lines the implicit contraction of flavour index of
the effective coefficients and operators respects the convention in eq. (2.6), e.g.

(xLYe − Yexe − xΦYe) OeΦ =
∑

i,j

(xLYe − Yexe − xΦYe)ij Oij
eΦ , etc. ,

while the expressions inside parenthesis are matrix products, i.e. (xLYe)ij = ∑
k(xL)ik(Ye)kj .

At this point, one is free for instance to choose xΦ and xf so that the terms in ∆LSM
cancel off against redundant operators in L total

a . Or to choose values for combination
of indices so as to remove one or all of the anomalous coefficients cX̃ . It is not hard
to verify that each field transformation is equivalent — up to shifts to the anomalous
bosonic operators — to the application of the EOM of the corresponding field, provided in
appendix A. In what follows, some specific applications of eq. (B.2) are developed.

B.1 Relation between OaΦ and fermionic operators

Eq. (B.2) indicates that in order to remove OaΦ one needs to fix xΦ = caΦ. This Φ rotation
comes at the price of introducing a set of chirality-flip operators [17, 46, 52], i.e.

OaΦ = YuOuΦ − YdOdΦ − YeOeΦ + h.c. . (B.3)

As OaΦ is a purely bosonic operator, the flavor structure of the fermionic operators in this
equation necessarily reflects the SM flavour structure. In other words, it follows the MFV
ansatz [83–85], where a U(3)5 global flavor symmetry is present in the Lagrangian but for
the Yukawa couplings, which are treated as spurions.

The combination of chirality-flip operators obtained can be traded next for chirality-
preserving ones (plus in some cases shifts in the OX̃ operator coefficients) by fixing the
quantities xf such that the coefficients of OeΦ,OuΦ,OdΦ in eq. (B.2) cancel. This is
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equivalent to applying the transformations of the fermion fields in eqs. (B.5)–(B.9) be-
low. For instance, it is possible to map OaΦ onto just 3 operators out of the whole
set {Ou,Od,Oe,OQ,OL}, plus OX̃ operators. For example, the mapping onto the set
{Ou,Od,Oe} is achived choosing xije = xijd = −xiju = δij caΦ, and leads to eq. (2.26), that
is a combination of only right-handed fermionic currents. As it can be easily checked from
eq. (B.2), the contributions to gauge anomalous operators OX̃ cancel exactly in this case,
which does not necessarily generalize to other choices.

For instance, one could alternatively map onto the set {OQ,Ou,OL} by choosing
xijL = xijQ = xiju /2 = δij caΦ, which leads to

OaΦ = −Tr (OL + OQ + 2Ou) + 1
8π2

(
g2OW̃ − g′2OB̃

)
ng . (B.4)

This result does not mean that OaΦ is anomalous! In fact, we have explicitly checked that
when the product caΦOaΦ is considered at O(α), the contribution from the OX̃ terms on
the last bracket are compensated exactly by the anomalous contributions stemming from
the insertion in figure 4 diagram C of the operators in the first bracket (Ou, OQ and OL),
and only O(m2

f ) finite terms of remain from the loop contribution. When instead the same
computation is performed using the expression for OaΦ in eq. (2.26), i.e. as combination of
the right-handed set {Ou,Od,Oe}, the anomalous contributions they induce cancel each
other and only the same O(m2

f ) terms are present, as they should.

B.2 Relations among fermionic operators

Collecting the terms proportional to xf in eq. (B.2) one can infer relations among the
fermionic operators. Writing explicitly the flavor indices i, j, it follows that the relations
between chirality preserving and chirality-flip operators (plus anomalous couplings) read
fermion structures can be

Oij
Q =

[
Oik
dΦ (Yd)jk + Oik

uΦ (Yu)jk + (O†dΦ)kj (Y †d )ki + (O†uΦ)kj (Y †u )ki
]

+
[
g′2

96π2 OB̃ + 3g2

32π2 OW̃ + g2
s

16π2 OG̃

]
δij , (B.5)

Oij
u =

[
−Okj

uΦ (Yu)ki − (O†uΦ)ik (Y †u )jk
]
−
[
g′2

12π2 OB̃ + g2
s

32π2 OG̃

]
δij , (B.6)

Oij
d =

[
−Okj

dΦ (Yd)ki − (O†dΦ)ik (Y †d )jk
]
−
[
g′2

48π2 OB̃ + g2
s

32π2 OG̃

]
δij , (B.7)

Oij
L =

[
Oik
eΦ (Ye)jk + (O†eΦ)kj (Y †e )ki

]
+
[
g′2

32π2 OB̃ + g2

32π2 OW̃

]
δij , (B.8)

Oij
e =

[
−Okj

eΦ (Ye)ki − (O†eΦ)ik (Y †e )jk
]
− g′2

16π2 OB̃ δ
ij , (B.9)

where a sum over k is understood. Combining them, the relations between chirality-
conserving operators and chirality-flip ones are determined.

The equations above showed how to express the chirality-conserving couplings as
combinations of chirality-flip ones. What about the inverse relation? It is clear from the
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counting of degrees of freedom shown earlier that the latter cannot be achieved in all
generality. Indeed, only very particular combinations — relatively weighed by Yukawa
factors — of a given chirality-flip operator can be extracted from eqs. (B.5)–(B.9), and
written in terms of chirality-conserving plus anomalous couplings: this reduces in practice
their n2

g degrees of freedom per fermionic operator (which sums to a total of 3n2
g fermionic

parameters in the ALP Lagrangian) to an active number of ng(5ng + 3)/2− 1 fermionic
parameters in total.

B.3 Purely fermionic bases: removing anomalous operators

Finally, one could ask whether the anomalous operators OX̃ could be removed altogether
from the basis, trading them for fermionic structures. In order to do this, one needs to impose

g′2

32π2 Tr
[1

3xQ −
8
3xu −

2
3xd + xL − 2xe

]
= −cB̃ , (B.10)

g2

32π2 Tr [3xQ + xL] = −cW̃ . (B.11)

g2
s

32π2 Tr [2xQ − xu − xd] = −cG̃ . (B.12)

It is not difficult to show explicitly that the anomalous bosonic operators cannot be com-
pletely replaced by purely chirality-conserving fermionic ones.14 Indeed, it follows from
eq. (B.2) that the conditions to remove all chirality-flip terms are

xQYu − Yuxu = 0 ,
xQYd − Ydxd = 0 ,
xLYe − Yexe = 0 ,

(B.13)

and it is not possible to satisfy simultaneously these equations and the conditions in
eqs. (B.10)–(B.12). Nevertheless, it is sufficient to relax two of the conditions in (B.13)
in order for the system to be solvable. This implies that any solution of eqs. (B.5)–(B.9)
always involve chirality-flip terms. One example is:

OB̃ = − 16π2

g′2ng
[Tr Oe + (YeOeΦ + h.c.)] , (B.14)

OW̃ = 32π2

g2ng

[
Tr
(

OL + 1
2Oe

)
−
(
Ye
2 OeΦ + h.c.

)]
, (B.15)

OG̃ = 32π2

g2
sng

[
Tr
(
−Od + Oe

3

)
−
(
YdOdΦ −

Ye
3 OeΦ + h.c.

)]
. (B.16)

A final comment on the non-equivalence of anomalous couplings and shift-invariant
fermionic ones is pertinent in the case of the gauge hypercharge, i.e. the operator OB̃ . As it
is well known, the pure gauge anomalous couplings can be written as total derivatives of non-
gauge invariant quantities, XµνX̃

µν = ∂µK
µ
X , a term that for pure U(1) gauge Lagrangians

14This is as expected on physical grounds, given the non-invariance of anomalous gauge couplings under
the shift symmetry.
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does not contribute to the action because the gauge configurations die sufficiently fast at
infinity, unlike for non-abelian groups. In this sense, it can appear at first sight surprising
that the equations above show that the fermionic equivalent of OB̃ does include chirality-
flip (and thus not-shift invariant) terms. Nevertheless, in the presence of fermions it is
the combination of OB̃ and OW̃ in eq. (2.12) the one which is shift-invariant, because
it corresponds to the non-conservation of the anomalous B + L global U(1), while the
combination of OB̃ and OW̃ with opposite sign is endowed with a non shift-invariant nature,
see eq. (2.20).

C Complete — finite and divergent — corrections to effective couplings

We gather here the exact expressions for the one-loop corrections to the set of ALP-SM
couplings {gaγZ , gaZZ , gaWW } at O(1/fa), for a generic off-shell ALP and on-shell external
SM fields. These couplings were introduced and developed only in certain limits in section 4,
while the complete expressions are presented below.

C.1 ALP-Z-photon anomalous coupling
The results for the one-loop corrected geffaγZ have been introduced in section 4.3, where
the results were also presented in certain limits. We collect in this appendix the exact
expressions for the functions defined in that section (the complete expression for AZ/γ→γ
was already given in eq. (4.11)). All descriptions presented there for the origin of each
term apply here as well. The intermediate ξ-dependent steps, together with the final
ξ-independent expressions, can be found in NotebookArchive. The gauge invariant complete
results are as follows:

A
Z/γ→Z
ferm = −2

∑

f
NC

{(
T 2

3,f
2 − T3,fQfs

2
w +Q2

f s
4
w

)
×

×
(

log
(

Λ2

m2
f

)
+ 2

3 + M2
Z − 2m2

f
M2
Z − 4m2

f
DB(M2

Z ,mf,mf)
)

+ m2
f

M2
Z

(
T 2

3,f
2 + 2T3,fQfs

2
w − 2Q2

f s
4
w

)(
1− 2m2

f
M2
Z − 4m2

f
DB(M2

Z ,mf,mf)
)

− c2
wQf(T3,f − 2Qfs

2
w)
[

log
(

Λ2

m2
f

)

+ 12m2
f + 5M2

Z

3M2
Z

+ 2m2
f +M2

Z

M2
Z

DB(M2
Z ,mf,mf)

]}
, (C.1)

where T3,f denotes the weak isospin of fermion f .
The function AZ→ZHiggs for the Higgs corrections to external legs is given by

AZ→ZHiggs = 1
4

{
M4
Z − 3M2

ZM
2
H +M4

H

M4
Z

+ 12M6
Z − 18M4

ZM
2
H + 9M2

ZM
4
H − 2M6

H

4M6
Z

log
(
M2
H

M2
Z

)

− 36M6
Z − 32M4

ZM
2
H + 13M2

ZM
4
H − 2M6

H

2M4
Z(M2

H − 4M2
Z) DB(M2

Z ,MZ ,MH)
}
, (C.2)
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while the gauge corrections to external legs proportional to gaγZ are gathered in

AZ/γ→Zgauge = −1
2

{
42M4

W +M4
Z

2M4
Z

log
(

Λ2

M2
W

)
+ M4

W

4M4
Z

log
(
M2
W

M2
Z

)

+ 180M6
W + 153M4

WM
2
Z − 12M2

WM
4
Z − 5M6

Z

3M6
Z

+120M6
W + 108M4

WM
2
Z + 2M2

WM
4
Z +M6

Z

4M6
Z

DB(M2
Z ,MW ,MW )

}
.

(C.3)

The function contributions AWW which encodes the contributions proportional to gaWW

reads

AWW ≡
{

42M2
W +M2

Z

12M2
W

log
(

Λ2

M2
W

)
+ 36M4

W + 93M2
WM

2
Z + 2M4

Z

9M2
WM

2
Z

+ 24M4
W + 38M2

WM
2
Z +M4

Z

12M2
WM

2
Z

DB(M2
Z ,MW ,MW )

− 4(4M2
W − p2)

p2 −M2
Z

(
f2
(

4M2
W

p2

)
− f2

(
4M2

W

M2
Z

))
(C.4)

− 1
3c2
w

∑

f
NCQf(T3,f − 2Qfs

2
w)
[

log
(

Λ2

m2
f

)

+ 12m2
f + 5M2

Z

3M2
Z

+ 2m2
f +M2

Z

M2
Z

DB(M2
Z ,mf,mf)

]}
,

while the complete result for the function Af which encodes the fermion triangle correction
is given by

Af = QfNC



2Qfs

2
w + 4

(
T3,f − 2Qfs

2
w

)
m2

f
p2 −M2

Z


f

(
4m2

f
p2

)2

− f
(

4m2
f

M2
Z

)2




 , (C.5)

where the function f(τ) has been defined in eq. (4.10) and the function DB(p2,m1,m2)
corresponds to function DiscB in Package-X and is defined as

DB(p2,m1,m2) ≡

√
ρ(p2,m2

1,m
2
2)

p2 log


m

2
1 +m2

2 − p2 +
√
ρ(p2,m2

1,m
2
2)

2m1m2


 , (C.6)

which is symmetric under m1 ↔ m2 and can be simplified in some specific cases:

DB(M2,M,m) = m2

M2

√

1− 4M2

m2 log
(
m2 +

√
m4 − 4M2m2

2Mm

)
, (C.7)

DB(p2,m,m) = 2i
√

1− 4m2

p2 f

(
4m2

p2

)
, (C.8)

and the function ρ is the Källén function, that is defined as

ρ(a, b, c) ≡ a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2 . (C.9)
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C.2 ALP-ZZ anomalous coupling

The results for the one-loop corrected geffaZZ have been introduced in section 4.4, where
the results were also presented in certain limits. We collect in this appendix the exact
expressions for the functions defined in that section. All descriptions presented there for
the origin of each term apply here as well. The intermediate ξ-dependent steps, as well
as the complete ξ-independent final expressions, can be found in NotebookArchive. The
gauge invariant complete results, presented in the {gaZZ , gaWW } subspace of anomalous
electroweak couplings, are as follows:

The function AZ/γ→Z which encodes corrections to the external legs were given in
eq. (4.22) and (C.1)–(C.3). The function BHiggs accounting for the vertex insertion of gaZZ
corrected at one-loop by Higgs exchange between the two Z bosons reads

BHiggs = 3
{
− 2M2

Z

4M2
Z − p2DB(M2

Z ,MZ ,MH) + 2M2
Z

4M2
Z − p2DB(p2,MZ ,MZ)

+M2
Z

(
2M2

H

4M2
Z − p2 − 1

)
C(M2

Z ,M
2
Z , p

2,MZ ,MH ,MZ) + M2
H

4M2
Z − p2 log

(
M2
H

M2
Z

)}
.

(C.10)

The contributions proportional to gaWW encoded in BWW are given by

BWW =
({

42M2
W +M2

Z

12M2
W

log
(

Λ2

M2
W

)
+ 36M4

W + 75M2
WM

2
Z + 2M4

Z

9M2
WM

2
Z

+ 24M4
W + 38M2

WM
2
Z +M4

Z

12M2
WM

2
Z

DB(M2
Z ,MW ,MW )

− M4
Z

M2
W (p2 − 4M2

Z)
(
DB(p2,MW ,MW )−DB(M2

Z ,MW ,MW )
)

+
(

(4M2
W − p2) + M4

Z(p2 − 2M2
Z)

2M2
W (p2 − 4M2

Z)

)
C(M2

Z ,M
2
Z , p

2,MW ,MW ,MW )
}

− 1
3c2
w

∑

f
NCQf(T3,f − 2Qfs

2
w)
{

log
(

Λ2

m2
f

)

+ 12m2
f + 5M2

Z

3M2
Z

+ 2m2
f +M2

Z

M2
Z

DB(M2
Z ,mf,mf)

})
.

(C.11)

Finally, the function Bf which encodes vertex insertions of fermionic couplings cf reads

Bf =−NC

{
Q2

f s
4
w+T 2

3,f
2m2

f
(4M2

Z−p2)
(
DB(p2,mf,mf)−DB(M2

Z ,mf,mf)
)

+

+ 2m2
f

(4M2
Z−p2)

[
M2
Z(T3,f−2Qfs

2
w)2+p2Qfs

2
w(T3,f−Qfs

2
w)
]
C
(
M2
Z ,M

2
Z ,p

2,mf,mf,mf
)}

,

(C.12)

– 45 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
8

where the function C(q2
1, q

2
2, p

2,m1,m2,m3) is the C0 Passarino-Veltman function [86] and
is defined by:

C(q2
1, q

2
2, p

2,m1,m2,m3) ≡
∫ 1

0
dx
∫ x

0
dy 1

(x− y)yq2
1 − (x− y)(x− 1)q2

2 − y(x− 1)p2 − ym2
1 − (x− y)m2

2 + (x− 1)m2
3
,

(C.13)
which can be reduced to a combination of f(τ) and DB functions (see eq. (4.10) and
eqs. (C.6)–(C.8)) in the following cases:

C(0, 0, p2,m,m,m) = − 2
p2 f

(
4m2

p2

)2

, (C.14)

C(0,M2, p2,m,m,m) = − 2
p2 −M2


f
(

4m2

p2

)2

− f
(

4m2

M2

)2

 , (C.15)

C(M2,M2, 0,m,m,m) = 1
4m2 −M2DB(M2,m,m) . (C.16)

C.3 ALP-WW anomalous coupling

The results for the one-loop corrected geffaWW have been introduced in section 4.5, where the
results were also presented in the high ALP p2 limit. We collect in this appendix the exact
expressions for the functions defined in that section. All descriptions presented there for the
origin of each term apply here as well. The intermediate ξ-dependent steps, as well as the
final ξ-independent results, can be found in NotebookArchive. The gauge invariant complete
results, projected on the {gaγγ , gaWW } subspace of anomalous electroweak couplings are
detailed next.

The function AW→W results from the combination of fermionic and Higgs corrections,
see eq. (4.34). Only fermion doublets can contribute to AW→Wferm (figure 5 D5):

AW→Wferm = 2
∑

f=u,c,t,
νe,νµ,ντ

NC

{
−log

(
Λ2

m2
f

)
− 3M3

W (m2
f +m2

f’)+6(m2
f −m2

f’)2+4M4
W

6M2
W

+ (m2
f −m2

f’)3−M6
W

2M6
W

log
(
m2

f
m2

f’

)
+DB(Mw2,mf,mf’)×

×M
6
W (m2

f +m2
f’)+2M4

Wm
2
fm

2
f’+M2

W (m4
f −m4

f’)+(m2
f −m2

f’)4+M8
W

M4
W ρ(M2

W ,m
2
f ,m

2
f’)

}
,

(C.17)

where Λ is an UV cutoff (see eq. (4.18), mf and mf’ denote the masses of the two fermion
mass eigenstates.

The Higgs corrections to external legs gathered in AW→WHiggs (figure 5 D3 and D4) read

AW→WHiggs = M4
W − 3M2

WM
2
H +M4

H

M4
W

+ 12M6
W − 18M4

WM
2
H + 9M2

WM
4
H − 2M6

H

4M6
W

log
(
M2
H

M2
W

)

− 36M6
W − 32M4

WM
2
H + 13M2

WM
4
H − 2M6

H

2M4
W (M2

H − 4M2
W ) DB(M2

W ,MW ,MH) . (C.18)
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The gauge corrections proportional to gaWW encoded by CWW are given by

CWW =
{

43log
(

Λ2

M2
W

)
+ 236M4

W +33M2
WM

2
Z+3M4

Z

3M4
W

+
(

36M6
W−34M4

WM
2
Z−M2

WM
4
Z+8M6

Z

2M4
WM

2
Z

− (24M6
W−30M4

WM
2
Z+24M2

WM
4
Z−6M6

Z)p2

2M4
WM

2
Z(4M2

W−p2)

)
×

×DB(M2
W ,MW ,MZ)+

(
48M8

W +108M6
WM

2
Z−60M4

WM
4
Z

4M6
WM

2
Z

+−17M2
WM

6
Z+8M8

Z

4M6
WM

2
Z

− (24M6
W−54M4

WM
2
Z+36M2

WM
4
Z−6M6

Z)p2M2
Z

4M6
WM

2
Z(4M2

W−p2)

)
log
(
M2
W

M2
Z

)

+12s2
w(2M2

W−p2)C(M2
W ,M

2
W ,p

2,MW ,λ,MW )−12s2
w log

(
λ2

M2
W

)

+6c2
w

16M4
W +20M2

WM
2
Z−6M4

W−3p2(4M2
W +M2

Z)+2p4

(4M2
W−p2) C(M2

W ,M
2
W ,p

2,MW ,MZ ,MW )
}

+6(c2
w−s2

w)
{

2M2
Z

c2
w(4M2

W−p2)DB(p2,MZ ,MZ)

+
(

2(4M2
Z−p2)−M

2
Z(2M2

Z−p2)
c2
w(4M2

W−p2)

)
C(M2

W ,M
2
W ,p

2,MZ ,MW ,MZ)
}

+24s2
w

{
4M2

Z

M2
W p

2(4M2
W−p2)DB(M2

W ,MW ,MZ)

+ 2M4
Z

p2(4M2
W−p2) log

(
M2
W

M2
Z

)
− (p2−M2

Z)2

p2 C(M2
W ,M

2
W ,p

2,0,MW ,MZ)
}
, (C.19)

where λ is again an IR cutoff, which encodes the IR contribution to the 1/ε terms obtained
in dimensional regularization via the prescription in eq. (4.18), with a protocol alike to that
for gluon corrections in eq. (4.17).

The vertex function CHiggs results from the direct vertex insertion of gaWW , with the
Higgs particle exchanged between the two W legs (diagram E in figure 4):

CHiggs = 6
{
− 2M2

W

4M2
W−p2DB(M2

W ,MW ,MH)+ 2M2
W

4M2
W−p2DB(p2,MW ,MW ) (C.20)

+M2
W

(
2M2

H

4M2
W−p2−1

)
C(M2

W ,M
2
W ,p

2,MW ,MH ,MW )+ M2
H

4M2
W−p2 log

(
M2
H

M2
W

)}
.

The vertex function Cγγ is given by

Cγγ =−p2C(M2
W ,M

2
W ,p

2,0,MW ,0)+ M2
Z

c2
w(4M2

W−p2)DB(p2,MZ ,MZ) (C.21)

+
(

(4M2
Z−p2)−M

2
Z(2M2

Z−p2)
2c2
w(4M2

W−p2)

)
C(M2

W ,M
2
W ,p

2,MZ ,MW ,MZ)

−
(

2M2
Z

p2 + M2
Z

c2
w(4M2

W−p2)

)
DB(M2

W ,MW ,MZ)

−
(
M2
Z

c2
wp

2−
2M2

W−M2
Z

2c4
w(4M2

W−p2)

)
log
(
M2
W

M2
Z

)
+ 2(p2−M2

Z)2

p2 C(M2
W ,M

2
W ,p

2,0,MW ,MZ) .
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Finally, the fermionic triangle contributions induced by cf insertions (figure 4 C) lead to

C f = −NC

{
m2

f
4(4M2

W − p2)

(
m2

f −m2
f’

M2
W

− 1
)

log
(
m2

f
m2

f’

)

+ m2
f

2(4M2
W − p2)

(
DB(p2,mf,mf)−DB(M2

W ,mf,mf’)
)

(C.22)

+ m2
f (M2

W −m2
f +m2

f’)
2(4M2

W − p2) C
(
M2
W ,M

2
W , p

2,mf,mf’,mf
)}

.

C.4 ALP-fermion couplings

The results for the one-loop corrected cefff have been introduced and presented in section 4.6
in certain limits of interest. We collect in this appendix the exact expressions for the
functions defined in that section. All descriptions presented there for the origin of each term
apply here as well. The intermediate ξ-dependent steps can be found in NotebookArchive.
The gauge invariant complete results are as follows:

Dgg =
{

3 log
(

Λ2

m2
f

)
− 4− p2C

(
m2

f ,m
2
f , p

2, 0,mf, 0
)}

. (C.23)

Dγγ = Q2
f

2 Dgg , (C.24)

where the function C was defined in eqs. (C.13)–(C.16), and

DγZ = Qf (T3,f−2Qfs
2
w)

16cwsw

{
12log

(
Λ2

M2
Z

)
+2M

2
Z−8m2

f
m2

f

+22m2
f (M2

Z+p2)+M2
Zp

2

m2
f p

2 DB(m2
f ,mf,MZ)

− 12m4
f p

2−2m2
fM

4
Z−M4

Zp
2

m4
f p

2 log
(
m2

f
M2
Z

)
−4(M2

Z−p2)2

p2 C(m2
f ,m

2
f ,p

2,0,mf,MZ)
}
.

(C.25)

DZZ = 1
8c2
ws

2
w

{
2
(
T 2

3,f−2T3,fQfs
2
w+2Q2

f s
4
w

)(
3log

(
Λ2

M2
Z

)
+M2

Z−4m2
f

m2
f

)

−
(

2(T 2
3,f−6T3,fQfs

2
w+6Q2

f s
4
w)+

2M2
ZT

2
3,f

m2
f
−M

4
Z

m4
f

(T 2
3,f−2T3,fQfs

2
w+2Q2

f s
4
w)
)
×

×log
(
m2

f
M2
Z

)
+4T 2

3,fDB(p2,MZ ,MZ)

+
2M2

Z(T 2
3,f−2T3,fQfs

2
w+2Q2

f s
4
w)−8m2

fQfs
2
w(T3,f−Qfs

2
w)

m2
f

DB(m2
f ,mf,MZ)

+4
[
M2
Z(T3,f−2Qfs

2
w)2+p2Qfs

2
w(T3,f−Qfs

2
w)
]
C(m2

f ,m
2
f ,p

2,MZ ,mf,MZ)
}
,

(C.26)

– 48 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
8

DWW = 1
16s2

w

{
6log

(
Λ2

M2
W

)
− 2(3m2

f +m2
f’−M2

W )
m2

f

+4DB(p2,MW ,MW )−m
4
f +2m2

fm
2
f’−(m2

f’−M2
W )2

m4
f

log
(
m2

f’
M2
W

)

+ 2(m2
f −m2

f’+M2
W )

m2
f

DB(m2
f ,mf’,MW )

−4
(
m2

f −m2
f’−M2

W

)
C(m2

f ,m
2
f ,p

2,MW ,mf’,MW )
}
,

(C.27)

where the function DB was defined in eqs. (C.6)-(C.8).
The contributions to cefff from insertions of ALP fermionic couplings are given by

Dcf
g =−2

{
1+log

(
λ2

m2
f

)
+(p2−2m2

f )C
(
m2

f ,m
2
f ,p

2,mf,λ,mf
)}

, (C.28)

Dcf
γ = Q2

f
2 Dcf

g , (C.29)

Dcf
Z = 1

4c2
ws

2
w

{
−

2m2
f T

2
3,f

M2
Z

log
(

Λ2

M2
Z

)
+4(T 2

3,f+T3,fQfs
2
w−Q2

f s
4
w)−

4m2
f T

2
3,f

M2
Z

− 4M2
Z

m2
f

(T 2
3,f−2T3,fQfs

2
w+2Q2

f s
4
w)+ 1

m4
fM

2
Z

[
T 2

3,f(2m6
f −m4

fM
2
Z+5m2

fM
4
Z−2M6

Z)

−4Qfs
2
w(T3,f−Qfs

2
w)M2

Z(m4
f +m2

fM
2
Z−M4

Z)
]
log
(
m2

f
M2
Z

)

+ 2
m2

f (M2
Z−4m2

f )
[
T 2

3,f(−7m4
f +9m2

fM
2
Z−2M4

Z)

−4Qfs
2
w(T3,f−Qfs

2
w)(m4

f +3m2
fM

2
Z−M4

Z)
]
DB(m2

f ,mf,MZ)

−
2m2

f T
2
3,f

M2
Z

DB(p2,mf,mf)

+2
[
m2

f (T3,f−2Qfs
2
w)2+2p2Qfs

2
w(T3,f−Qfs

2
w)
]
C(m2

f ,m
2
f ,p

2,mf,MZ ,mf)
}
. (C.30)

Dcf
W = − 1

16s2
w

{
2m2

f
M2
W

log
(

Λ2

M2
W

)
+ 2(m4

f +2m2
fm

2
f’−2m4

f’−m2
fM

2
W−2m2

f’M
2
W +4M4

W )
m2

fM
2
W

−m
6
f +3m2

f (m′2f +M2
W )−2(m6

f’−3m2
f’M

4
W +2M6

W )
m4

fM
2
W

log
(
m2

f’
M2
W

)

+ 2
m2

fM
2
W ρ(m2

f ,m
2
f’,M

2
W )

[
m8

f −m6
f (m2

f’+M2
W )−m4

f (3m4
f’+2m2

f’M
2
W−3M4

W )

+m2
f (5m6

f’+m4
f’M

2
W +m2

f’M
4
W−7M6

W )−2(m2
f’−M2

W )3(m2
f’+2M2

W )
]
DB(m2

f ,mf’,MW )
}
,

(C.31)
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Dcf’ =− m2
f’

16s2
w

{
2

M2
W

log
(

Λ2

M2
W

)
− 3m4

f −2m2
fm

2
f’+(m2

f’−M2
W )2

m4
fM

2
W

log
(
m2

f’
M2
W

)

+ 2(2m2
f +m2

f’−M2
W )

m2
fM

2
W

− 2(m2
f −m2

f’+M2
W )

m2
fM

2
W

DB(m2
f ,mf’,MW )

+ 2
M2
W

DB(p2,mf,mf)+4C(m2
f ,m

2
f ,p

2,mf’,MW ,mf’)
}
.

(C.32)

Dcf
h = 1

16πs2
w

{
− 2m2

f
M2
W

log
(

Λ2

M2
H

)
+ 2(2m2

f −M2
H)

M2
W

− 2m4
f −3m2

fM
2
H+M4

H

m2
fM

2
W

log
(
m2

f
M2
H

)
+ 2(m2

f −M2
H)

M2
W

DB(m2
f ,mf,MH)

+ 2m2
f

M2
W

DB(p2,mf,mf)+ 2m2
f (M2

H−4m2
f )

M2
W

C(m2
f ,m

2
f ,p

2,mf,MH ,mf)
}
.

(C.33)

D
cψ
mix =− T3,f

s2
wM

2
W

NCT3,ψm
2
ψ

{
log
(

Λ2

m2
ψ

)
+2+DB(p2,mψ,mψ)

}
. (C.34)

D One-loop corrections to the weak angle

In eq. (4.4) we defined a quantity c̄w as the ratio of two input observables: the W and
Z masses, whose renormalized formulation was expressed in terms of ∆cw, see eqs. (4.4),
and (4.5). The exact ∆cw expression can be split in three parts,

∆cw
cw

= ∆cgaugew

cw
+ ∆cHiggsw

cw
+ ∆cfermw

cw
, (D.1)

which correspond respectively to the gauge boson corrections to the self-energies, the Higgs
corrections and the fermions corrections:
∆cgaugew

cw
= αem

π

{
42M2

W +M2
Z

48M2
W

log
(

Λ2

M2
W

)
+ 288M6

W +696M4
WM

2
Z−74M2

WM
4
Z−3M6

Z

288M4
WM

2
Z

+ 80M4
W−14M2

WM
2
Z−M4

Z

192s2
wc

2
wM

4
W

log
(
M2
W

M2
Z

)
+ 48M6

W +68M4
WM

2
Z−16M2

WM
4
Z−M6

Z

96s2
wc

2
wM

2
WM

6
Z

×

×
[
M2
ZDB(M2

W ,MW ,MZ)−M2
WDB(M2

Z ,MW ,MW )
]}

, (D.2)

∆cHiggsw

cw
= αem

π

{
M4
H−24M2

WM
2
Z

96M4
W

+M4
H [M2

H(M2
W +M2

Z)−6M2
WM

2
Z ]

192M6
WM

2
Z

log
(
M2
W

M2
H

)

−M
6
H−6M4

HM
2
Z+18M2

HM
4
Z−24M4

Z

192s2
wM

2
WM

4
Z

log
(
M2
W

M2
Z

)

+M4
H−4M2

HM
2
Z+12M4

Z

96s2
wM

2
WM

2
Z

DB(M2
Z ,MZ ,MH)

−M
4
H−4M2

HM
2
W +12M4

W

96s2
wM

4
W

DB(M2
W ,MW ,MH)

}
,

(D.3)
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∆cfermw

cw
= αem

π

∑

f=u,c,t,
νe,νµ,ντ

{
4(Q2

f +Q2
f’)s2

w−1
24c2

w

log
(

Λ2

m2
f

)

+ (m2
f −m2

f’)2

48s2
wM

4
W

+ 24m2
fQf(2Qfs

2
w−1)+24m2

f’Qf’(2Qf’s
2
w+1)+5M2

Z(4s2
w(Q2

f +Q2
f’)−1)

72M2
W

− (m2
f −m2

f’−M2
W )2(m2

f −m2
f’+2M2

W )−2M4
WM

2
Z(8Q2

f’s
4
w+4Qf’s

2
w+1)

96s2
wM

6
W

log
(
m2

f
m2

f’

)
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, (D.4)

where the funcions f(τ) and DB(p2,m1,m2) were defined in eq. (4.10) and eqs. (C.6)–(C.8).
These ∆cw corrections allow to express the tree-level phenomenological couplings

{gaγγ , gaγZ , gaZZ} as a combination of the two fundamental Lagrangian parameters {cB̃, cW̃ }
and observable quantities, see eqs. (4.6)–(4.8).
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Chapter 5 
Nonresonant Searches for Axion-Like 
Particles in Vector Boson Scattering 
Processes at the LHC 

This chapter contains the publication in Ref. [2]. In this work a new experimen-
tal search for ALPs at collider experiments is proposed. Vector Boson Scattering (VBS) 
processes are targeted, aiming to detect a contribution from of-shell ALP-mediated chan-
nels. Such contribution occurs whenever the ALP is too light to be produced resonantly 
and takes advantage of the derivative nature of ALP couplings. In particular, this work 
considers the CMS searches for the EW production of ZZ, Zγ, W ±γ, W ±Z and same-sign 
W ±W ± pairs with large diboson invariant mass in association with two forward jets in VBS 
processes [217–220]. Nonresonant ALPs are expected to contribute to this processes leading 
to a distortion of the shape of the event distribution for large values of the invariant mass. 
Since no ALP signal is measured within the current data, bounds on the ALP parameter 
space are derived for masses ma ≲ 100 GeV. Projections of these limits are derived for Run 
3 and HL-LHC. 

The ALP Lagrangian is discussed in Sec. 2. ALP anomalous couplings to EW gauge 
bosons are considered. ALP interactions with fermions are shown to be negligible, as they 
lead to amplitudes proportional to fermion masses, that are unimportant in VBS processes. 
The interaction with gluons is disregarded but it is shown that, if considered, it would only 
contribute to a small enhancement of the ALP VBS cross sections, resulting in slightly better 
limits on the ALP couplings. 

Sec. 3 analyzes the main characteristic properties of the ALP contribution to VBS 
processes. The functional dependence of the pure ALP processes and the ALP-SM inter-
ference on the anomalous coupling constants is discussed. Also, the most relevant region in 
order to distinguish between ALP and SM mediated VBS processes is identifed, correspond-
ing to the region of larger values for the diboson invariant mass. ALP-mediated channels 
tend to produce larger values of this parameter, due to the derivative enhancement of the 
cross sections. Moreover, the validity of the EFT expansion is discussed. 

Details on the simulation of the ALP signal and interference, and the subsequent sta-
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Processes at the LHC 
tistical analysis, are depicted in Sec. 4. The signal region defned for each channel is taken 
from the original CMS reference. The ALP signal is generated with the software Mad-
Graph5_aMC@NLO 2.8.2 [221] employing the ALP_linear UFO model from [117, 222]. 
Parton showering, hadronization and decays are simulated with PYTHIA 8 [223]. Finally, 
the CMS detector simulation and reconstruction of the experimental objects is done with 
DELPHES 3 [224], including FastJet [225]. The expected ALP events at the CMS de-
tector are obtained and characterized as a function of the EW ALP efective couplings. 
Finally, for the statistical analysis a log-likelihood is constructed based on a Poisson dis-
tribution. Systematic errors are described by nuisance parameters that are taken to be 
Gaussian-distributed, and we assign it a total size of 20% from adding diferent sources of 
uncertainty. 

Finally Sec. 5 comprises the experimental limits on the EW ALP couplings derived 
in this work. These are presented in Tab. 5 in terms of the phenomenological couplings 
{gaγγ , gaγZ , gaZZ , gaW W } and they are valid for ALP masses up to ma ≲ 100 GeV. Fig. 5 
shows the allowed regions of the {c /fa, c /fa} plane for each individual channel and for the 

Be We 
combined analysis. Additionally, projections for Run 3 LHC and HL-LHC are shown in Fig. 6. 
Finally, Sec. 6 shows the comparison between these bounds and other experimental limits on 
the four ALP phenomenological couplings to EW gauge bosons. Such comparison shows that 
our limits are competitive with respect to other experimental ALP searches, specially for the 
couplings to Z bosons and W bosons, gaZZ and gaW W , which are otherwise unconstrained 
for the region of large ALP masses. Our results have the advantage of being independent 
of any assumption on the existence of ALP-gluon and/or ALP-fermion couplings, unlike 
previous ordinary resonant searches, which typically rely on those interactions for the ALP 
production channel (i.e. gluon fusion) or impose restrictions on the ALP decay width. 

The limits derived on the ALP couplings to ZZ, Zγ and W ±W ± pairs are very 
competitive for ALP masses up to 100 GeV. In addition, in ALP mass region from 1 to 
100 GeV our results comprise the best limit on the ZZ and W ±W ± couplings, which were 
previously unconstrained. 
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1 Introduction

Axion-Like Particles (ALPs) constitute a particularly attractive class of hypothetical par-
ticles, that are predicted in a variety of Standard Model (SM) extensions, ranging from
invisible axion models [1–8] to string theory [9]. They are defined as the pseudo-Goldstone
bosons of a generic, spontaneously broken global symmetry, that is restored only at energy
scales much higher compared to the electroweak (EW) one. Besides the Peccei-Quinn sym-
metry, typical examples are the lepton number [10–12] or flavor symmetries [13–15]. Being
pseudo-Goldstone bosons, ALPs are pseudo-scalar particles, singlets under the SM gauge
groups, and naturally much lighter than the beyond-SM (BSM) sector they originate from.
As a consequence, they are most conveniently studied in an Effective Field Theory (EFT)
framework, constructed as an expansion in inverse powers of the ALP characteristic scale fa.

At the leading order, the ALP EFT only includes very few parameters (up to flavor
indices). Nevertheless, the ranges allowed a priori for both the ALP mass ma and scale fa
are extremely vast, spanning several orders of magnitude. As a result, the phenomenology
of ALPs is one of the richest in particle and astroparticle physics. This peculiarity, together
with their ubiquity in BSM models, has recently brought this class of particles into the
spotlight, stimulating enormous theoretical and experimental advancements. A plethora
of experiments searching for ALPs in different regimes and exploiting very diversified
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techniques are either already taking data or scheduled to do so in the next decade, see
e.g. [16, 17] for recent reports.

Most of these experiments are sensitive to ALPs coupling to photons, electrons or
gluons. ALP interactions with the massive gauge bosons, on the other hand, are harder to
access: at present, they can only be probed indirectly via loop corrections to low-energy
processes [18–28] or directly at colliders. At the LHC, depending on the ALP mass and
decay width, ALP-gauge interactions can be probed in V+ALP associated production
processes, with V = γ, Z,W± and the ALP either escaping detection [29, 30] or decaying
resonantly [31–33], in resonant ALP decays into diboson pairs [31], or in nonresonant
processes where the ALP enters as an off-shell mediator. The latter were first studied
in the context of inclusive diboson production at the LHC, where the ALP appears in
s-channel, being produced via gluon fusion [34]. These channels are sensitive to the product
of the ALP coupling to gluons with the relevant coupling to dibosons and probe previously
unexplored areas of the ALP parameter space. Moreover, the nonresonant cross sections
and kinematical distributions are found to be independent of the ALP mass from arbitrarily
light masses up to masses of the order of 100 GeV [34]. The experimental strategy is to
look for deviations with respect to SM expectations in the tails of the bosons transverse
momenta or diboson mass distributions. ALP coupling limits derived from reinterpretations
of CMS and ATLAS Run 2 measurements were presented in refs. [34, 35], while the CMS
Collaboration has recently published a dedicated search for nonresonant ALP-mediated ZZ
production in semileptonic final states at the LHC [36].

In this paper we study for the first time nonresonant ALP signals in EW Vector Boson
Scattering (VBS) processes at the LHC (see [37] for a review). We focus on channels
containing massive EW bosons: ALP EW VBS processes with the ALP going to a photon
pair were studied in ref. [38] for the LHC, in ref. [39] for CLIC and in ref. [40] for the EIC.
Figure 1 depicts the leading order Feynman diagrams for ALP-mediated EW production
of q1q2 → q′1q

′
2V1V2. The two jets in the final state, q′1 and q′2, are required to have a

large invariant mass and to be well separated in rapidity. These processes are particularly
convenient for a number of reasons: first, they allow us to access the couplings of the ALP
to EW bosons independently of the coupling to gluons. At the same time, the richness of
VBS in terms of different final states helps constraining the parameter space from multiple
complementary directions.

Searching for signals beyond the SM in VBS final states is a major goal for the ATLAS
and CMS experiments and both collaborations have recently reported Run 2 measurements
of these processes [41–56]. These analyses allow us to perform a first comparison of the
ALP VBS predictions to the data, a calibration of the available simulation tools and a
calculation of educated predictions for higher LHC luminosities. Moreover, nonresonant
searches are generally expected to become more and more competitive during the upcoming
LHC runs. They will benefit, on the one hand, from the large increase in the accumulated
statistics and, on the other, from the technological developments currently driven by
studies of the Standard Model EFT (SMEFT) formalism, that are encouraging a global,
comprehensive approach to new physics searches. Interestingly, while SMEFT analyses rely
on the assumption of new particles being too heavy to be produced on-shell, nonresonant

– 2 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
3

a∗

q2

q1

q′2

V2

V1

q′1

2

a∗

q2

q1

q′2

V2

V1

q′1

a∗

q2

q1

q′2

q′1

V2

V1

3Figure 1. Feynman diagrams for ALP contributions to a generic process q1q2 → q′1q
′
2V1V2. Fermion

lines represent both quarks and antiquarks. In the last diagram, the final state quarks can be
emitted from any of the outgoing bosons.

ALP searches target the opposite limit, i.e. where the ALP is too light to decay resonantly.
In this way, they provide access to parameter space regions complementary to those probed
in other LHC searches. In particular, compared to resonant or large-missing-momentum
processes, they require only very minimal assumptions on the ALP decay width.

The manuscript is organized as follows: the theoretical framework adopted is defined
in section 2. In section 3 we discuss the general characteristics of nonresonant ALP EW
VBS production. The details of the ALP VBS simulation and analysis are explained in
section 4. We first extract current constraints on ALP-gauge interactions from measurements
of differential VBS observables published by the CMS Collaboration, and subsequently
estimate projected limits for the LHC Run 3 and for the High Luminosity (HL-LHC) phase.
The results are presented in section 5. In section 6 we compare them to other existing
constraints. In section 7 we conclude.

2 The ALP effective Lagrangian

We define the ALP a as a pseudo-scalar state whose interactions are either manifestly
invariant under shifts a(x)→ a(x) + c (as befits its Goldstone origin) or generated via the
chiral anomaly. Adopting an EFT approach, all ALP interactions are weighted down by
inverse powers of the characteristic scale fa � ma, that is unknown and naturally close
to the mass scale of the heavy sector the ALP originates from. We implicitly assume
fa � v ' 246 GeV and require all ALP interactions to be invariant under the full SM gauge
group. We neglect CP violating terms and ALP-fermion interactions. The latter only give
highly suppressed contributions at tree-level, as their physical impact is always proportional
to the mass of the fermion itself and only light fermions appear in LO VBS diagrams.

The SM is then extended by the Lagrangian [57, 58]

LALP = 1
4∂µa∂

µa− m2
a

2 a2 − c
B̃

a

fa
BµνB̃

µν − c
W̃

a

fa
W i
µνW̃

iµν − c
G̃

a

fa
GAµνG̃

Aµν , (2.1)

that contains a complete and non-redundant set of dimension-5 bosonic operators.1 Here
Bµ,W

i
µ, G

A
µ denote the bosons associated to the U(1), SU(2) and SU(3) gauge symmetries

1One more bosonic dimension 5 operator could be written down, namely OaΦ = ∂µa(Φ†i←→DµΦ), where Φ
the Higgs doublet. However, this operator can be fully traded for ALP-fermion terms via the Higgs equations
of motion [57]. Therefore, its impact on VBS processes is negligible.
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of the SM, respectively. The associated coupling constants will be denoted by g′, g, gs.
Unless otherwise specified, we will use i, j, k and A,B,C to denote isospin and color
indices. Covariant derivatives are defined with a minus sign convention, such that W i

µν =
∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν and analogously for gluons. Dual field strengths are defined as

X̃µν = 1
2εµνρσX

ρσ.
In the analysis presented below, we only consider EW ALP contributions to the VBS

processes, while we neglect those containing ALP-gluon interactions, which is tantamount
to setting c

G̃
= 0. This is a very good approximation for the W±γ, W±Z and same-sign

W±W± channels where the ALP QCD contribution is absent at tree level. For the ZZ
and Zγ channels, an ALP QCD contribution is present in principle. However, the ALP
QCD component is reduced by requiring consistency with the limits obtained in [34–36],
the rejection of the VBS selection cuts and the large diboson invariant masses involved.
In particular, for values of the EW couplings & 1 TeV−1, the theoretical prediction is
dominated by the pure EW ALP signal, with a smaller contribution from the pure QCD
ALP signal. Here, both the EW and QCD ALP signal components are positive and their
interference is subdominant. This rules out the possibility of cancellations between the
ALP EW and QCD components, and implies that the final bounds for c

W̃
/fa and c

B̃
/fa

for c
G̃

= 0 are conservative.
It is then safe to restrict the parameter space to the four ALP couplings to the

electroweak gauge bosons. In unitary gauge, they are usually parameterized as

LALP,EW =−gaγγ4 aFµνF̃µν−
gaγZ

4 aZµνF̃µν−
gaZZ

4 aZµνZ̃µν−
gaWW

2 aW+µνW̃−µν , (2.2)

with Fµν , Zµν ,W±µν are the field strengths of the photon, Z and W± bosons respectively,

gaγγ = 4
fa

(s2θcW̃ + c2θcB̃) , gaγZ = 4
fa
s2θ(cW̃ − cB̃) , (2.3)

gaZZ = 4
fa

(c2θcW̃ + s2θcB̃) , gaWW = 4
fa
c
W̃
, (2.4)

and sθ, cθ the sine and cosine of the weak mixing angle. For later convenience, we also define

gagg = 4
fa
c
G̃
. (2.5)

3 General characteristics of ALP-mediated EW VBS production

We consider the production of ZZ, Zγ, W±γ, W±Z and same-sign W±W± pairs in
association with two forward jets. These five VBS channels are those for which differential
measurements of the diboson invariant mass (or transverse mass) have been reported by
the CMS Collaboration, using data collected at the LHC Run 2. At parton level we treat
them, for simplicity, as 2→ 4 scatterings, with either photons or weak bosons in the final
state. As described in section 4, the weak bosons are decayed to leptons at a later stage.

ALPs give EW contributions to these processes via the diagram topologies shown
in figure 1. All of them necessarily present two insertions of ALP operators, leading to
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Process c2
B̃

c2
W̃

c
B̃
c
W̃

c4
B̃

c4
W̃

c2
B̃
c2
W̃

c3
B̃
c
W̃

c
B̃
c3
W̃

pp→ jjZZ X X X X X X X X
pp→ jjZγ X X X X X X X X
pp→ jjW±γ X X X X X
pp→ jjW±Z X X X X X
pp→ jjW±W± X X

Table 1. List of VBS processes considered in this work. For each, we indicate which terms in the
polynomial dependence on c

W̃
, c
B̃

(eq. (3.1)) are present in the parameterization of the ALP signal.

amplitudes that scale as f−2a , and cross sections of order f−4a . A generic VBS cross section,
including both SM and EW ALP contributions, has the structure

σALP = σSM + 1
f2a

σinterf. + 1
f4a

σsignal ,

σinterf. = c2
B̃
σB2 + c2

W̃
σW2 + c

B̃
c
W̃
σBW ,

σsignal = c4
B̃
σB4 + c4

W̃
σW4 + c2

B̃
c2
W̃
σB2W2 + c3

B̃
c
W̃
σB3W + c

B̃
c3
W̃
σBW3 ,

(3.1)

where all the σi quantities can be evaluated numerically from the simulations. This structure
holds after selection cuts. Not all processes receive contributions from all terms in this
polynomial expansion: the dependence is summarized in table 1. The pattern observed
can be easily explained: all processes with a W boson in final state require an insertion of
gaWW ∼ cW̃ /fa. Pure cB̃ contributions are then absent, which means that these channels
cannot constrain the ALP parameter space along the c

B̃
axis. Same-signW±W± production

represents an extreme case where c
B̃
does not enter at all. Explicit expressions of σinterf.,

σsignal are given in appendix A for the integrated cross-section of each channel, calculated
after the selection cuts, see section 4.

Among the diagrams shown in figure 1, the first, where the ALP is exchanged in s-
channel, only contributes to VBS with ZZ and Zγ final states.2 The second, with the ALP in
t-channel, is relevant for all VBS processes, and it is the only one contributing to W±γ,W±Z
and W±W±. Finally, the third topology is triboson-like: although these diagrams were
included for consistency in our calculation, we have verified that their contribution is
efficiently suppressed with a cut on the dijet invariant mass Mq′1q

′
2
> 120 GeV.

We take the ALP to be too light for any of the V1V2 pairs to be produced resonantly.
As a consequence, the ALP is always off-shell and its propagator acts as a suppression
of the scattering amplitudes. However, this effect is overcompensated by the momentum
enhancement induced by the ALP interaction vertices. The net result is that the ALP-
mediated cross section falls more slowly with the diboson invariant mass of the boson pair
MV1V2 than the SM backgrounds. Figure 2 shows a parton-level comparison of the dijet
invariant mass Mq′1q

′
2
, jet pseudo-rapidity separation ∆ηq′1q′2 and diboson invariant mass

2The s-channel diagram contributes also to VBS with opposite-sign WW or diphoton final states. However,
these channels are not considered here.
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Figure 2. Normalized parton level distributions of the dijet invariant mass Mq′
1q

′
2
, jet pseudo-

rapidity separation ∆ηq′
1q

′
2
and diboson invariant mass MZγ for ALP EW VBS (green) and SM

EW VBS (red) Zγ production. The ALP curves include the pure signal and ALP-SM interference
contributions, computed for ma = 1 MeV and c

W̃
/fa = c

B̃
/fa = 1 TeV−1.

MZγ distributions for ALP EW VBS and SM EW VBS Zγ production. The ALP curves
include the pure signal and ALP-SM interference contributions, computed for ma = 1 MeV
and c

W̃
/fa = c

B̃
/fa = 1 TeV−1. The dijet distributions are qualitatively similar, and dijet

selection criteria designed to measure the SM EW VBS component should work efficiently
for the ALP case as well. On the other hand, the very different tails of the diboson invariant
mass distributions allow discrimination of the two processes for MZγ & 500 GeV. This
general behavior holds for all ALP EW VBS final states, independently of the presence or
absence of s-channel ALP Feynman diagrams.

3.1 Comments on the EFT power counting

Before discussing the details of the numerical analysis, a few comments on the validity of
the EFT approach are in order. In particular, concerns might be raised about the fact that
an ALP signal of O(f−4a ) is extracted from a Lagrangian defined at O(f−1a ). First of all, it
should be noted that, because two insertions of ALP operators are always required in order
to generate corrections to SM processes, the dimension-5 Lagrangian does provide complete
VBS predictions up to O(f−2a ). However, it is indeed possible for d ≥ 6 ALP operators to
induce further contributions at O(f−3a , f−4a ) that are neglected in this work. Specifically, at
tree-level, these missing terms can be exclusively corrections to σinterf. from ALP diagrams
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containing d = 6 or d = 7 operator insertions, while the expression for σsignal is already
complete to O(f−4a ). Note, in addition, that the parameterization in eq. (3.1) is complete
to quartic order in the parameter space (c

B̃
/fa, cW̃ /fa), i.e. it accounts for all contributions

up to O(f−4a ) generated by the d = 5 Lagrangian.3 These considerations, together with
the fact that the analysis presented in the next sections is numerically dominated by σsignal
(see e.g. table 6), suggest that the final results of this work would not change significantly if
the missing O(f−4a ) terms were restored.4

For these reasons, we deem the Lagrangian in eq. (2.1) adequate for the scope of
this work and we believe that the resulting constraints on (c

B̃
/fa, cW̃ /fa) are quite solid.

We stress that these conclusions are based on considerations made a posteriori, having
evaluated the sensitivity of LHC and HL-LHC VBS searches to d = 5 ALP couplings. They
do not necessarily apply to processes different from VBS or in scenarios with very different
sensitivity. A systematic and more quantitative assessment of the impact of higher-order
ALP operators is left for future work. Note that this would require, among other things,
the definition of a complete and non-redundant ALP operator basis beyond dimension-5,
which has not been constructed to date.

4 ALP-mediated EW VBS simulation and analysis

In order to understand the potential of the LHC experiments, we perform a reinterpretation
of the analyses recently published by the CMS Collaboration studying the production of
ZZ [51], Zγ [54], W±γ [52], W±Z [50] and same-sign W±W± [50] bosons in association
with two jets. All channels use leptonic (electron and muon) decays of the W and Z bosons
in the final state.

The nonresonant ALP-mediated EW VBS diboson signal is simulated with the software
MadGraph5_aMC@NLO 2.8.2 [59]. Employing the ALP_linear UFOmodel from [30, 60],
we generate q1q2 → V1V2q′1q

′
2 events at leading order in the ALP and EW couplings and

at zeroth order in the QCD coupling, using a 4-flavor-scheme. The parton distribution
functions (PDFs) of the colliding protons are given by the NNPDF 3.0 PDF set [61] for all
simulated samples. Kinematical cuts requiring

pT (q′1,2) > 20 GeV , η(q′1,2) < 6 , ∆R(q′1q′2) > 0.1 , Mq′1q
′
2
> 120 GeV ,

pT (γ) > 10 GeV , η(γ) < 2.5 , ∆R(γq′1,2) > 0.4 ,
(4.1)

are imposed at generation level for all VBS processes, except for the ZZ channel where
the Mq′1q

′
2
cut is removed. The angular separation is defined as ∆R =

√
∆η2 + ∆φ2, with

η the parton’s pseudorapidity and φ its azimuthal angle. The ALP EW VBS signals are
generated fixing ma = 1 MeV, fa = 1 TeV and Γa = 0. The specific values of the ALP

3This is at variance e.g. with the SMEFT case, where the square of the d = 6 amplitude does not contain
all O(c26/Λ4) contributions, because certain d = 6 operators can induce extra higher-order corrections, e.g.
via redefinitions of SM fields or parameters, or via double insertions in a given diagram.

4The results could change significantly only if d ≥ 6 ALP operators introduced very large kinematic
enhancements to σinterf., sufficient to make it competitive with σsignal within the region of sensitivity. Very
preliminary considerations about the possible structure of such operators suggest that this is unlikely.
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mass and decay width do not have significant consequences in the nonresonant regime, see
section 5.3. We generate separated samples for pure ALP-mediated production and the
interference between the ALP and the SM EW VBS production. As discussed in section 3,
the ALP EW VBS cross sections have a polynomial dependence on the parameters c

W̃
and

c
B̃
, whose coefficients need to be determined individually. This requires to evaluate the

ALP-SM interference at a minimum of three linearly independent points in the (c
W̃
, c
B̃

)
plane, and the pure ALP signal at a minimum of five points. This is achieved by exploiting
the interaction orders syntax in MadGraph5_aMC@NLO, used both in independent
event generations and with the MadGraph5 reweighting tool [62]. For cross-checking
purposes, we consider a redundant set of points, namely

p0 = (1, 1), p1 = (0, 2), p2 = (1, 0),
p3 = (1,−1), p4 = (1,−0.305), p5 = (1,−3.279) ,

(4.2)

where p0 lies on the c
B̃

= c
W̃

line, where gaγZ = 0; p4 is on the photophobic c
B̃

= −t2θcW̃
line, where gaγγ = 0; and p5 is on the c

B̃
= −c

W̃
/t2θ line, where gaZZ = 0. Here tθ is the

tangent of the Weinberg angle. We use five of these points to determine the polynomials and
verify that the results extrapolated to the sixth point match those from direct simulation.
This operation has been repeated on all possible subsets to verify the robustness of the
predictions. The resulting polynomial expressions for the total cross sections, obtained
after the full simulation and analysis procedure, are reported in appendix A. These can be
employed to estimate the overall normalizations of the ALP signal for all distributions used
in the final fits to the data. The production cross sections at

√
s = 13 TeV for benchmark

points p0 and p4 are summarized in table 2. They have additionally a 11% systematic
uncertainty related to the renormalization and factorization scales and a 4% systematic
uncertainty related to the PDFs.

SM EW VBS diboson background events are generated with MadGraph5 at leading
order in the EW couplings and zeroth order in the QCD coupling. This is an irreducible
source of background for the analysis. Cross sections at

√
s = 13 TeV are presented in table 2.

For all the simulated samples in the analysis, parton showering, hadronization and
decays are described by interfacing the event generators with PYTHIA 8 [63]. Massive EW
bosons V1 and V2 are forced to decay leptonically (electrons and muons). No additional
pileup pp interactions were added. All samples were processed through a simulation of
the CMS detector and reconstruction of the experimental objects using DELPHES 3 [64],
including FastJet [65] for the clustering of anti-kT jets with a distance parameter of 0.4 (AK4
jets). The CMS DELPHES card was modified to improve the lepton isolation requirements
and to reduce the lepton detection transverse momentum threshold to 5 GeV.

For the detector-level analysis, we apply the set of requirements designed to constrain
anomalous quartic gauge couplings in the CMS publications. The most important cuts are
those imposed on the dijet system, and on the photon transverse momentum if relevant,
indicated in table 3. Differences between our generation and simulation procedure and
the ones used by the CMS experiment are taken into account by comparing the predicted
numbers of events after selection cuts for the SM EW VBS processes. In this context,
the expected sources of discrepancy are calibration, efficiency or resolution effects in the
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Process σSM [fb] Point σinterf. [fb] σsignal [fb]
pp→ jjZZ 98± 1 p0 −13.5± 0.1 42.4± 0.2

p4 −9.3± 0.1 18.5± 0.1
pp→ jjZγ 393± 1 p0 0.3± 0.1 11.1± 0.1

p4 −9.1± 0.1 20.9± 0.1
pp→ jjW±γ 994± 3 p0 4.3± 0.1 28.7± 0.1

p4 1.7± 0.1 5.4± 0.1
pp→ jjW±Z 386± 1 p0 1.7± 0.1 18.4± 0.1

p4 0.1± 0.1 23.9± 0.1
pp→ jjW±W± 256± 1 p0, p4 −4.0± 0.1 16.0± 0.1

Table 2. EW VBS SM background and ALP signal partonic cross sections for
√
s = 13 TeV, before

decaying the vector bosons and applying only the selection cuts in eq. (4.1). The ALP signal cross
sections are presented for two benchmark points p0 and p4 defined in eq. (4.2). For same-sign
W±W±, both points give the same results. The reported errors are the statistical errors of the
MadGraph5_aMC@NLO calculation.

Channel Obs. Lum. [fb−1] Selection Criteria ρ

ZZ MZZ 137 Mjj > 100 GeV 0.8± 0.1
Zγ MZγ 137 Mjj > 500 GeV, ∆ηjj > 2.5, pγT > 120 GeV 1.4± 0.2
W±γ MWγ 35.9 Mjj > 800 GeV, ∆ηjj > 2.5, pγT > 100 GeV 3.1± 0.5
W±Z MT

WZ 137 Mjj > 500 GeV, ∆ηjj > 2.5 1.5± 0.4
W±W± MT

WW 137 Mjj > 500 GeV, ∆ηjj > 2.5 1.3± 0.2

Table 3. Summary of the CMS VBS analyses: the diboson mass observable, the integrated
luminosity, the most important selection criteria and the normalization scale factor ρ.

reconstruction of the experimental observables. We observe that all these affect primarily
the normalization and therefore we define a scale factor ρ as the ratio of the number of
expected events delivered by our generation and simulation procedure and the number of
CMS expected events. We have verified that, after applying this rescaling, our simulation
reproduces correctly the relevant kinematic distributions by CMS within the uncertainties.
The same scale factors are then applied to the predictions for pure ALP-mediated EW VBS
and ALP-SM interference simulated samples. For each channel, we assign an uncertainty to
ρ, that stems from the uncertainty on the expected event yield for SM EW VBS production,
reported in the CMS publications. A systematic uncertainty of 16% on the simulated ALP
event yields is assigned, fully correlated across all channels. This is estimated as the average
relative error on the scale factors ρ. A summary of the CMS VBS analyses is presented in
table 3: the diboson mass observable, the integrated luminosity, the selection criteria and
the normalization scale factor ρ.
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As anticipated in section 3, the discrimination between signal and background is based
on the diboson mass distributions shown in appendix A. These include the fully reconstructed
diboson invariant masses MZZ and MZγ ; the diboson invariant mass MW±γ , where the
longitudinal momentum of the neutrino is constrained by the condition M`ν = mW [52];
and the diboson transverse masses MT

W±W± and MT
W±Z , defined as

MT
V1V2 =



(∑

i

Ei

)2

−
(∑

i

pz,i

)2


1/2

, (4.3)

where the index i runs over all the leptons in the final state, and assuming that the neutrinos
longitudinal momenta are zero [50].

In order to provide a handle on possible issues concerning the validity of the ALP EFT
expansion [66] and to estimate the impact of the highest-energy bins, we introduce an upper
cut on MV1V2 , that is applied on the signal simulation only. We consider two benchmark
selections: MV1V2 < 2 TeV and MV1V2 < 4 TeV. These cuts are satisfied, respectively, by
85% and > 99% of the events in the ALP generated samples and mainly impact the signal
predictions in the last bin of each distribution, as shown in figures 7–11.

The log-likelihood is constructed based on a Poisson distribution. For each VBS channel,
it has the form:

logL(c
B̃
, c
W̃

) =
∑

k

[
−
(
Bk + Sk(cB̃, cW̃ )

)
+Dk log

(
Bk + Sk(cB̃, cW̃ )

) ]
(4.4)

where the index k runs over the bins of the relevant distribution. The number of events
for the data (Dk) and for the SM background predictions (Bk) are taken from the CMS
experimental publications. The expected number of signal events (Sk) accounts for both
the pure ALP EW VBS signal and the ALP-SM interference contributions, that are
parameterised as fourth- and second-degree polynomials in (c

W̃
/fa, cB̃/fa) respectively, as

explained in section 3. The combined log-likelihood is simply constructed as the sum of
logL for the individual channels.

Systematic uncertainties affecting the SM background distributions are considered fully
correlated among bins of a distribution, but uncorrelated among different VBS channels.
They are described by one nuisance parameter for each VBS channel, that multiplies both
background and ALP signal yields, and is taken to be Gaussian-distributed. The systematic
uncertainty on the signal prediction is implemented analogously and applied to Sk only. It
is taken to be fully correlated across all channels and bins and we assign it a total size of
20%, obtained adding in quadrature the 16% uncertainty on the signal normalization, the
11% uncertainty on the renormalization and factorization scales choice and the 4% error
related to the PDFs.

5 Results

5.1 Results from LHC Run 2 measurements

Table 4 shows the branching fractions and selection efficiencies for each VBS channel. The
latter are relative to the simulated events in which the bosons are decayed to electrons and
muons. The products of efficiencies and branching fractions range from 0.2% to 0.9%.
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Analysis ZZ Zγ W±γ W±Z W±W±

Branching fraction 0.45% 6.7% 22% 1.5% 4.8%
Efficiency 35.7% 14.0% 1.6% 11.3% 17.0%

Table 4. Summary of branching fractions and selection efficiencies for each VBS channel. The
efficiencies are relative to the simulated events in which the W and Z bosons decay to electrons
or muons.
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95% CL Exclusion Limits:

W±γ

Zγ
ZZ

W±W±

W±
Z
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gaγγ = 0

gaZZ = 0

gaγZ = 0

Figure 3. Observed 95% CL exclusion limits in the (c
W̃
/fa, cB̃/fa) plane using the data of the

Run 2 CMS publications and signal events with MV1V2 < 4 TeV. The limits have been calculated
individually for the five different experimental channels considered and for their combination. The
thin dotted, dashed and dot-dashed lines indicate the directions of vanishing couplings to neutral
gauge bosons.

Results are extracted from a maximum likelihood fit of signal and background to
the diboson invariant mass (ZZ, Zγ and W±γ) or transverse mass (W±Z and W±W±)
distributions, individually and simultaneously in all the experimental channels used in the
analysis. The likelihood is defined as described in the previous section and the background-
only hypothesis is tested against the combined background and signal hypothesis.

No significant excess was observed by CMS with respect to the SM expectations. ALP
couplings c

W̃
/fa and c

B̃
/fa are considered excluded at 95% confidence level (CL) when the

negative log likelihood (NLL) (− logL) of the combined signal and background hypothesis
exceeds 3.84/2 units the NLL of the background-only hypothesis.

Figure 3 shows the observed 95% CL exclusion limits in the (c
W̃
/fa, cB̃/fa) plane using

the data of the Run 2 CMS publications and signal events with MV1V2 < 4 TeV. The limits
have been calculated individually for the five different experimental channels considered and
for their combination. Table 5 reports the upper bounds obtained projecting the combined
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Coupling Run 2 Observed (Expected) 300 fb−1 3000 fb−1

[TeV−1] MV1V2 < 4 TeV < 2 TeV < 4 TeV < 2 TeV < 4 TeV < 2 TeV
|c
W̃
/fa| 0.75 (0.83) 0.86 (0.94) 0.71 0.80 0.55 0.62

|c
B̃
/fa| 1.59 (1.35) 1.73 (1.47) 1.12 1.23 0.79 0.87

|gaγγ | 4.99 (4.24) 5.45 (4.63) 3.50 3.84 2.43 2.68
|gaγZ | 5.54 (4.74) 6.15 (5.25) 3.98 4.42 2.94 3.30
|gaZZ | 2.84 (3.02) 3.19 (3.38) 2.53 2.81 1.94 2.16
|gaWW | 2.98 (3.33) 3.43 (3.74) 2.84 3.18 2.21 2.49

Table 5. 95% CL upper limits on the absolute value of the Wilson coefficients c
W̃
/fa and c

B̃
/fa and

projected onto the ALP couplings to physical bosons, eq. (2.2). The various columns report current
bounds extracted from CMS Run 2 measurements and projected sensitivities for

√
s = 14 TeV and

LHC higher luminosities, for signal events with MV1V2 below 4TeV or 2TeV.

95% CL allowed region onto different directions in the (c
W̃
/fa, cB̃/fa) plane, namely the

two axes and the combinations corresponding to the ALP couplings to physical bosons
defined in eq. (2.2), which are orthogonal to the dotted, dashed and dot-dashed lines in
figure 3. Table 5 also presents the 95% CL limits obtained with the more conservative cut
MV1V2 < 2 TeV, which are about 10–15% weaker than the ones in figure 3. The modest
impact of this additional cut indicates that the ALP VBS cross section does not grow
indefinitely with energy (see also figure 2). Instead, only a small number of signal events
populate the very high MV1V2 region.

In most of the parameter space, the limits are dominated by the Zγ measurement,
that is the most stringent along the c

B̃
direction. The only other measurement capable of

bounding this parameter is ZZ, which however pays the price of the small Br(Z → ``) and
the current loose selection cuts on the dijet system. The sensitivity of the W±γ channel is
reduced by the smaller integrated luminosity of the published CMS analysis. A measurement
of the γγ VBS final state at large diphoton invariant masses, that has not been performed
by ATLAS or CMS to date, would bring additional sensitivity to c

B̃
, with a great potential

for improving the current bounds [38].

5.2 Prospects for LHC Run 3 and HL-LHC

In this section we investigate the sensitivity of the nonresonant ALP VBS searches at
the LHC Run 3 and HL-LHC. For simplicity, we apply the same selection criteria as the
CMS Run 2 analyses, and rescale the integrated luminosities to 300 fb−1 and 3000 fb−1,
respectively. An additional scaling factor κ is applied to account for an increase in the
proton collision center-of-mass energy from 13 to 14TeV. In our approximation, κ is
taken to be constant over all distribution bins and identical for all VBS channels. Using
MadGraph5_aMC@NLO and the cuts in eq. (4.1), we obtain κ-factors of 1.14, 1.26 and
1.20 for the SM background, the ALP EW VBS signal and their interference, respectively.

Figure 4 shows the projected 95% CL upper limits in the (c
W̃
/fa, cB̃/fa) plane for√

s = 14 TeV, MV1V2 < 4 TeV and integrated luminosities 300 fb−1 and 3000 fb−1. For
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Figure 4. Projected 95% CL upper limits on the couplings (c
W̃
/fa, cB̃/fa) for

√
s = 14 TeV,

MV1V2 < 4 TeV and integrated luminosities of 300 (green) and 3000 fb−1 (orange), obtained combining
all VBS channels. The blue and light blue lines show, for comparison, the observed and expected
limits with Run 2 luminosities. The dashed orange line marks the 5σ-discovery limit for the HL-LHC.

comparison, the observed and expected Run 2 limits have been included as well. The
interplay between the individual channels is not shown in figure 4 as it remains qualitatively
unchanged compared to figure 3. As expected, the largest individual improvement is found
for the W±γ channel. However, the combined limits are still dominated by the Zγ channel
and with a significant contribution of W±W± for the highest values of c

W̃
/fa. We find that

the bounds on c
B̃
can improve by roughly a factor 2 at the HL-LHC compared to current

constraints, while those on c
W̃

by a factor ∼ 1.4.
Figure 4 also shows, for reference, the curve corresponding to the expected discovery

limit for
√
s = 14 TeV, MV1V2 < 4 TeV and an integrated luminosity of 3000 fb−1, defined as

the set of (c
W̃
/fa, cB̃/fa) values for which the SM point is excluded by 5 standard deviations,

assuming that the measurement matches the predicted ALP EW VBS signal. The fact that
it is fully contained inside the projected exclusion limits for current and Run 3 luminosities
indicates that null results at previous LHC Runs will not exclude a priori the possibility of
a discovery at the HL-LHC.

5.3 Dependence on the ALP mass and decay width

Our results were derived assuming that the ALP gives only off-shell contributions to all VBS
processes considered. Specifically, in the simulations we fixed the ALP mass and decay width
to ma = 1 MeV,Γa = 0, which satisfy

√
|p2a| � ma, Γa, being pa the momentum flowing
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Figure 5. Total cross sections at
√
s = 13 TeV for the ALP contributions to the different VBS

channels as a function of the ALP mass. All lines are evaluated at c
W̃
/fa = c

B̃
/fa = 1 TeV−1, that

corresponds to the benchmark point p0 in eq. (4.2). The exception is the “Zγ photophobic” case,
that is evaluated at p4 instead. At each point in the plot, the ALP decay width was re-computed as
a function of ma, cW̃ and c

B̃
.

through the ALP propagator. As long as this kinematic condition is verified, the bounds are
essentially independent of the specific ma and Γa assumed. This is an important difference
with respect to resonant searches, that only apply for limited mass and width windows.

Figure 5 provides a basic check of the validity of the off-shell approximation, showing the
cross section for the ALP signal at

√
s = 13 TeV with the cuts in eq. (4.1), as a function of

ma for fixed values of c
W̃
, c

B̃
and fa. The width Γa was implicitly computed at every point

as a function of ma and of the ALP couplings, and it scales as Γa ∝ m3
a(ci/fa)2. The lines in

figure 5 extend indefinitely to the left, confirming that the simulations apply to arbitrarily
small ma. In the direction of larger ma the cross sections for W±Z,W±γ,W±W± start
falling once the t-channel propagator becomes kinematically dominated by the ALP mass.
For the Zγ and ZZ channels, the resonant behavior is visible for (c

W̃
, c
B̃

) benchmark points
that allow the ALP exchange in s-channel. As gaγZ = 0 is enforced at p0, we evaluate the
Zγ channel also at the “photophobic” point p4 in order to test the resonant case.

Based on these indications, our results can be safely taken to hold up to ma . 100 GeV.
At this mass, the ZZ and W±V cross sections have deviated by about 10% from their
asymptotic values for ma → 0. At the same time, the Zγ resonance is present but not
visible in the CMS measurement, that requires MZγ > 160 GeV [54].

6 Comparison to existing bounds

Figure 6 shows the observed bounds obtained in this work as a function of the EW gaV V
couplings defined in eq. (2.2), and of ma, compared to previously derived bounds. The
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Figure 6. Summary of current constraints on ALP couplings to EW gauge bosons defined in
eq. (2.2), as a function of the ALP mass ma. Limits derived in this work are labeled “Nonresonant
VBS” and shown in red. Previous constraints are shown with a color coding that indicates different
underlying theory assumptions. Orange indicates a Br(a → γγ) = 1 assumption, dark blue
indicates an assumed gluon dominance gagg � gaV1V2 , while bounds in light blue scale with 1/gagg
and are given for gagg = 1 TeV−1. Grey indicates more complex assumptions on the ALP EW
couplings. Genuine bounds, that hold without further assumptions, are in green. See the main text
for more details.
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numerical results of our study are also reported in table 5 for observed, expected and
projected limits.

Most of the constraints shown in the figure are taken from the compilation in ref. [20]
and updated to include more recent results. For ALP masses in the MeV-GeV window
and within the range shown, the ALP coupling to photons is constrained by beam-dump
experiments [67–70], by new physics searches in e+e− → 2γ, 3γ at LEP [29, 71] and
by explosion energy arguments in supernovae [72, 73] (labeled “SN”). At higher ALP
masses, all constraints on gaγγ are due to searches at colliders, where the ALP decays
resonantly either to hadrons or to photon pairs. In the first case, the relevant processes are
Υ→ γ + hadrons at BaBar [74] and e+e− → γ + hadrons at L3 [75], that also constrains
gaγZ . In the second case, the leading bounds stem from photon pair production at the
LHC, both in proton-proton collisions [76, 77] (labeled “LHC” for those from ATLAS and
CMS measurements and “LHCb” for those from LHCb searches [78]) and in light-by-light
scattering γγ → a → γγ measured in Pb-Pb collisions [79, 80] (labeled “Light-by-light
(LHC)”). Most constraints on the couplings of the ALP to massive gauge bosons assume
a stable ALP and cover the sub-GeV mass region. In this case, limits are inferred from
mono-W and mono-Z [30] at the LHC and, for gaγZ , from the non-observation of exotic
Z → γ + invisible decays at LEP [31] and at the LHC [81] (labeled “Z → γ + inv. (LHC)”).
If the assumption of a stable ALP is relaxed, the latter constraint can be replaced by the
more conservative bound due to the measurement of the total Z decay width at LEP, that
extends up to ma . mZ [30, 31]. In the region where the ALP can decay to hadrons, the
same process leads to Z → γ + hadrons [75]. The ALP coupling to W bosons is the only
one contributing to rare meson decays at 1-loop, which allow to set very stringent limits
for light ALPs [18, 82]. For ALP masses above 100GeV, the dominant bounds stem from
resonant triboson searches [31]. Finally, nonresonant searches in diboson production via
gluon fusion at the LHC (labeled “Nonresonant ggF”) allow to constrain all four ALP
interactions. Each nonresonant bound is extracted from a single process gg → a∗ → V1V2:
the constraint on gaγγ was derived in ref. [34], those on gaWW , gaγZ in ref. [35], and the
constraint on gaZZ in ref. [36].

An important aspect to consider is that, in general, any given measurement can
depend on several ALP couplings. In order to represent the corresponding bound in the 2D
(ma, gaV V ) plane, it is then necessary to define a projection rationale or introduce theoretical
assumptions, which can vary significantly from constraint to constraint. These differences
should be taken into account for a proper comparison. In figure 6, the bounds derived in
this work (red dashed) are those corresponding to the 95% C.L. limits in table 5. As they
are derived from the allowed region in the (c

W̃
/fa, cB̃/fa) plane, they automatically take

into account gauge invariance relations. Because of the arguments laid down in section 2,
they also have limited sensitivity to the coupling to gluons. The remaining bounds are
derived with alternative strategies, that we highlight with color coding in figure 6. Bounds
that apply without extra assumptions, are reported in green. The bounds drawn in light
blue, that include nonresonant gg → a∗ → V1V2 processes, scale with 1/gagg and for c

G̃
→ 0

are lifted completely. In the figure, they are normalized to gagg = 1 TeV−1. Bounds drawn
in dark blue assume gluon-dominance, i.e. gagg � gaV1V2 , and in this limit they are largely
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independent of c
G̃
, see ref. [20]. Among these, bounds on gaγγ labeled as “LHC” additionally

assume negligible branching fractions to fermions and heavy EW bosons in the mass region
where they are kinematically allowed. The limit from light-by-light scattering, shown in
orange, assumes Br(a→ γγ) = 1, which corresponds to vanishing couplings to gluons and
light fermions. Bounds that make more elaborate assumptions about the ALP parameter
space or assumptions on the EW sector itself are shown in grey. Among these, triboson
constraints on gaWW and gaγZ assume a photophobic ALP scenario [31]. All searches for a
stable ALP (mono-W , mono-Z, Z → γ + inv.) implicitly assume a small enough ALP decay
width, which, in the relevant mass range, translates into assumptions on the coupling to
photons, electrons and muons. The LEP constraints assume negligible branching fractions
to leptons. Note also that this bound is truncated to ma ≤ 3mπ ' 0.5 GeV because,
beyond this threshold, hadronic ALP decay channels are kinematically open. This would
introduce a further dependence on c

G̃
whose modeling would require a dedicated analysis [20].

Constraints derived with assumptions that explicitly violate the gauge invariance relations,
e.g. by explicitly requiring only one non-zero EW coupling, are omitted.

Overall, we find that the main value of nonresonant searches in VBS is that they probe
the ALP interactions with EW bosons directly (at tree level) and independently of the
coupling to gluons. In particular, nonresonant VBS constraints are stronger than those
from nonresonant diboson production whenever gagg is smaller than a certain threshold,
that roughly ranges between 0.01 TeV−1 and 0.2 TeV−1 depending on the EW coupling of
interest. For cases where the ALP-gluon coupling is very suppressed, such as Majorons,5
VBS bounds are the most stringent in the 0.5–100GeV mass region for gaWW , gaZZ , and in
the 0.5–4GeV region for gaγγ . In the case of gaγZ , the current best bounds for ma < mZ

come from the total Z width measurement at LEP.

7 Conclusions

We have investigated the possibility of constraining EW ALP interactions via the measure-
ment of EW VBS processes at the LHC, where the ALP can induce nonresonant signals if
it is too light to be produced resonantly. We have studied the production of ZZ, Zγ, W±γ,
W±Z and same-sign W±W± pairs with large diboson invariant masses in association with
two jets. New upper limits on ALP couplings to EW bosons have been derived from a
reinterpretation of Run 2 public CMS VBS analyses. Among the channels considered, the
most constraining ones are currently Zγ and W±W±.

The limits have been calculated both in the plane of the gauge-invariant ALP EW
couplings (c

W̃
/fa, cB̃/fa) and projected onto the 4 mass-eigenstate couplings defined in

eq. (2.2), to facilitate the comparison with other results. The constraints inferred on ALP
couplings to ZZ, W±W± and Zγ pairs are very competitive with other LHC and LEP
limits for ALP masses up to 100 GeV. They probe previously unexplored regions of the
parameter space and have the advantage of being independent of the ALP coupling to

5A priori, the ALP-gluon interaction is not protected by any symmetry. Therefore, technically, it cannot
be assumed to be exactly vanishing, even starting from a c

G̃
= 0 condition. In the Majoron case it is

generated at 2-loops [83] and therefore remains very suppressed.
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gluons and of the ALP decay width. This is important in view of a global analysis of
ALP couplings, where VBS can help disentangling EW from gluon interactions. All the
constraints extracted in this work can be further improved in the future, for instance, by
adopting a finer binning for the kinematic distributions, or by incorporating into the fit
measurements by the ATLAS Collaboration or measurements of other VBS channels (e.g.
opposite-sign W±W± or semileptonic ZV ).

Simple projections for integrated luminosities up to 3000 fb−1 have been calculated,
demonstrating the power of future dedicated analyses. Searches for nonresonant new physics
signals in VBS production at the LHC Run 3 and HL-LHC performed by the ATLAS and
CMS Collaborations will be able to probe the existence of ALPs for relevant values of their
couplings to EW bosons.
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A Expected ALP EW VBS diboson mass distributions

Table 6 reports the expected ALP EW VBS pure signal and interference cross sections
at
√
s = 13 TeV as a function of the Wilson coefficients c

W̃
and c

B̃
for fa = 1 TeV, after

selection cuts and MV1V2 < 4 TeV.
The diboson invariant mass or transverse mass distributions after selection cuts for the

five VBS channels studied are shown in figures 7–11. The data points and the total SM
background (orange line) are taken from the CMS publications. The dashed and solid green
lines represent the total ALP EW VBS signal contributions for c

B̃
/fa = c

W̃
/fa = 1 TeV−1

with a cut of MV1V2 < 2 TeV and 4 TeV, respectively. As discussed in section 4, the total
systematic uncertainty on the signal normalization is 20% (green band). The background
systematics errors are taken bin-by-bin from the CMS publications (orange band).
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Process ALP EW VBS Cross Section [fb]

pp→ jjZZ
σinterf. =

(
0.04 c2

B̃
− 0.55 c

B̃
c
W̃
− 1.80 c2

W̃

)
· 10−2

σsignal =
(
0.05 c4

B̃
+ 0.15 c3

B̃
c
W̃

+ 1.55 c2
B̃
c2
W̃

+ 1.66 c
B̃
c3
W̃

+ 3.39 c4
W̃

)
· 10−2

pp→ jjZγ
σinterf. =

(
0.01 c2

B̃
+ 6.60 c

B̃
c
W̃
− 6.56 c2

W̃

)
· 10−2

σsignal =
(
0.19 c4

B̃
− 0.29 c3

B̃
c
W̃

+ 2.04 c2
B̃
c2
W̃
− 2.07 c

B̃
c3
W̃

+ 1.23 c4
W̃

)
· 10−1

pp→ jjW±γ
σinterf. = c

W̃

(
−1.38 c

B̃
+ 0.29 c

W̃

)
· 10−3

σsignal = c2
W̃

(
5.20 c2

B̃
+ 2.12 c

B̃
c
W̃

+ 2.81 c2
W̃

)
· 10−2

pp→ jjW±Z
σinterf. = c

W̃

(
1.15 c

B̃
− 0.55 c

W̃

)
· 10−3

σsignal = c2
W̃

(
0.90 c2

B̃
− 1.00 c

B̃
c
W̃

+ 3.17 c2
W̃

)
· 10−2

pp→ jjW±W±
σinterf. = −0.0405 c2

W̃

σsignal = 0.135 c4
W̃

Table 6. Expected ALP EW VBS interference and pure signal cross sections at
√
s = 13 TeV as

a function of the Wilson coefficients c
W̃

and c
B̃

for fa = 1 TeV after selection cuts and requiring
MV1V2 < 4 TeV. These expressions can be used to estimate the overall normalizations of the ALP
signal for all distributions used in the final fits to the data.
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Figure 7. MZZ distribution for the pp→ jjZZ → jj`+`−`+`− channel. The data points and the
total SM background (orange) are taken from the measurement in ref. [51]. The last bin contains
the overflow events. The dashed and solid green lines show the total ALP EW VBS signal for
c
B̃
/fa = c

W̃
/fa = 1 TeV−1 with a cut of MZZ < 2 TeV and 4 TeV, respectively.

– 19 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
3

Zγ SM + ALP

Zγ SM (CMS)

CMS Data 137 fb
-1

200 400 600 800 1000 1200 1400

1

10

10
2

MZγ [GeV]

E
v
e
n
ts
/
b
in

Figure 8. MZγ distribution for the pp → jjZγ → jj`+`−γ channel. The data points and the
total SM background (orange) are taken from the measurement in ref. [54]. The last bin contains
the overflow events. The dashed and solid green lines show the total ALP EW VBS signal for
c
B̃
/fa = c

W̃
/fa = 1 TeV−1 with a cut of MZγ < 2 TeV and 4 TeV, respectively.
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Figure 9. MWγ distribution for the pp → jjW±γ → jjγ`±ν channel.The data points and the
total SM background (orange) are taken from the measurement in ref. [52]. The last bin contains
the overflow events. The dashed and solid green lines show the total ALP EW VBS signal for
c
B̃
/fa = c

W̃
/fa = 1 TeV−1 with a cut of MWγ < 2 TeV and 4 TeV, respectively.
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Figure 10. MT
WZ distribution for the pp→ jjW±Z → jj`+`−`′±ν channel.The data points and

the total SM background (orange) are taken from the measurement in ref. [50]. The last bin contains
the overflow events. The dashed and solid green lines show the total ALP EW VBS signal for
c
B̃
/fa = c

W̃
/fa = 1 TeV−1 with a cut of MWZ < 2 TeV and 4 TeV, respectively.
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Figure 11. MT
WW distribution for the pp → jjW±W± → jj`±`±νν channel. The data points

and the total SM background (orange) are taken from the measurement in ref. [50]. The last bin
contains the overflow events. The dashed and solid green lines show the total ALP EW VBS signal
for c

B̃
/fa = c

W̃
/fa = 1 TeV−1 with a cut of MWW < 2 TeV and 4 TeV, respectively.
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Chapter 6 
The cost of an ALP solution to the 
neutral B-anomalies 

This chapter contains the publication in Ref. [3]. The purpose of this work is to 
analyze the neutral B-anomalies in terms of a tree-level exchange of an ALP with favour 
of-diagonal couplings to quarks. The title of this chapter already suggests that the aim of 
the work was to precise the important theoretical stretching of the ALP arena required if 
those anomalies were confrmed. Such anomalies corresponded to a deviation with respect 
to the SM predictions measured in the lepton favour universality (LFU) violating ratios 
RK and RK∗ , which are defned as RK(∗) ≡ B(B→K(∗)µ+µ 

−
− 

)
) for the rare decays of B-mesonsB(B→K(∗) +e e 

into kaons and charged leptons. The SM prediction for these ratios is practically 1 due 
to LFU. The LHCb collaboration had presented several measurements of these quantities: 
RK∗ was measured in two bins of the di-lepton invariant mass squared, q2 ∈ [0.045, 1.1] 
and [1.1, 6.0] GeV2 , as well as RK , measured only in the latter bin. According to the data 
published by the collaboration in Refs. [226,227], RK showed the largest tension with respect 
to the SM prediction, at the level of 3.1σ; while in the low and central bins of RK∗ the 
tension appeared at the 2.3σ and 2.5σ level, exhibiting a preference for the decay channels 
into electrons rather than muons. The total combined deviation for the three measurement 
was at 4.3σ level. 

The ALP Lagrangian is presented in Sec. 2. Of-diagonal ALP couplings to bottom 
and strange quarks were assumed, as well as diagonal couplings to electrons and muons. 
In addition, anomalous couplings to photons were also considered, as they play an impor-
tant role for other favour observables, such as anomalous magnetic moments of muons and 
electrons. 

The phenomenological study is presented in Secs. 3, 4 and 5. Sec. 3 introduced a 
solution to the neutral B-anomalies in terms of a heavy ALP (heavier than the B-meson 
mass). First, we presented the resulting Lagrangian after integrating out the heavy ALP. In 
the fermion sector, scalar and pseudoscalar four-fermion operators are generated. However, 
no viable explanation of the neutral anomalies was found. In particular, numerical solutions 
to RK compatible with other observables (except the muon anomalous magnetic moment) are 
found, but they are in strong confict with the EFT validity conditions: in order to account 
for RK , the very small ALP-quark couplings required by Bs − Bs oscillation data imposes in 
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turn ALP-lepton efective couplings unacceptably large from the theoretical point of view. 
On the other hand, in the case of RK∗ , all ALP mediated solutions were directly excluded by 
the data on the decay Bs → ℓ+ℓ−, irrespective of EFT consistency considerations. Allowed 
regions of the ALP parameter space for this scenario are shown in Figs. 2, 3 and 5. 

The situation of the very light ALP (lighter than twice the muon mass), introduced in 
Sec. 5, is similar to the heavy ALP scenario. Quantitative solutions to the neutral anomalies 
allowed within 2σ and in agreement with the previously mentioned favour observables are 
found. Nevertheless, all solutions are excluded by the experimental bound on the electron 
anomalous magnetic moment and astrophysical bounds. This case is represented in Fig. 13 
and 14. 

The most acceptable solution was found in terms of a light ALP, lighter than the B 
mesons but with a mass value within any of the bin windows measured by the experiments. 
This scenario is presented in Sec. 4. Such ALP could be produced on-shell and enter the 
resonant regime. Thus, the B → K(∗)ℓ+ℓ− processes factorise into ALP on-shell production 
followed by its decay. The ALP coupling to muons must have been much smaller than that 
to electrons to explain the anomalies. Within the allowed parameter space for on-shell ALP 
exchange, a “golden” value of the ALP√mass value was identifed, which lies at the frontier 
between the two energy bins (ma = 1.1 GeV), providing solutions which could a priori 
explain the three anomalies simultaneously. When the loop-level impact of the Lagrangian 
couplings are considered, it is demonstrated that solutions to the neutral B-anomalies are 
compatible with the experimental value of the electron anomalous magnetic moment. Once 
again the muon anomalous magnetic moment cannot be then accounted for, though. The 
allowed parameter space for these solutions is represented in Figs. 6 − 12. 

Nevertheless, since this work was published an update of these measurement by 
the LHCb collaboration was released in Ref. [228, 229]. The new experimental values for 
RK and RK∗ difer from previous LHCb measurements, which they supersede. The new 
values move upwards from the previous results and closer to the SM predictions. Although 
these shifts can be attributed in part to statistical efects, the change is primarily due to 
systematic efects. For instance, in the case of RK , the data sample is the same as in 
the previous publication, but subject to a revised analysis. The combined deviation of the 
current measurement is at 0.2σ level. In other words, the experiments fnd a remarkably good 
agreement with the SM predictions. Although this situation may seem to leave our work in 
Ref. [3] outdated, the truth is that our conclusions can still be used for ALP phenomenology. 
For instance, by implementing the most recent results in our analysis, we could instead 
identify the new excluded regions due to LFU and notably stringent upper limits on ALP 
of-diagonal couplings to quarks would be obtained. 
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explored. The solutions to RK and to the two energy bins of RK∗ are confronted with the
impact of ALP exchange on other observables (meson oscillations, leptonic and semileptonic
decays of B mesons including searches for new resonances, astrophysical constraints), as
well as with the theoretical domain of validity of the effective theory. Solutions based
on ALPs heavier than B mesons, or lighter than twice the muon mass, are shown to be
excluded. In contrast, the exchange of on-shell ALPs provides solutions to RK and/or RK∗
within 2σ sensitivity which are technically compatible with those constraints. Furthermore,
a “golden ALP mass” is identified at the frontier between the two energy bin windows of
RK∗ , which could simultaneously explain these two RK∗ anomalies together with RK ;
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1 Introduction

Despite the huge experimental and theoretical effort in direct searches at colliders and
low-energy facilities, no new particle has been observed since the discovery of the Higgs
boson [1–3] at the LHC [4, 5] a decade ago. Although this discovery constitutes a superb
confirmation of the Standard Model of particle physics (SM), an explanation of the origin
of neutrino masses, the nature of Dark Matter, the baryon asymmetry of the Universe and
a quantum-level description of gravity are lacking.

Furthermore, in recent years anomalies associated with the B mesons have been ob-
served as compared with SM expectations. Those include deviations in both neutral and
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charged current processes. Neutral current anomalous behaviour manifests in the an-
gular distribution of B0 → K0∗µ+µ− decay [6–9], and in the observed Lepton Flavour
Universality (LFU)-violating quotient of the branching ratios for B± → K±µ+µ− vs.
B± → K±e+e− and for B0 → K0∗µ+µ− vs. B0 → K0∗e+e− [10–13]. The LFU ratios
are particularly clean observables theoretically and experimentally [14–16] and therefore
represent an excellent window to new physics (NP). Their generic expression in terms of
the dilepton invariant mass q2 reads

RX ≡

∫ q2
max

q2
min

dΓ
(
B → Xs µ

+µ−
)

dq2 dq2

∫ q2
max

q2
min

dΓ
(
B → Xs e

+e−
)

dq2 dq2
, (1.1)

where Xs stands for either a K or a K∗ meson, and where — here and in what follows
— the meson electric charges are implicit. Their most recent and precise determination
results in

RK = 0.846+0.042
−0.039

+0.013
−0.012 for 1.1 GeV2≤ q2≤ 6.0 GeV2 central bin [13] (1.2)

RK∗ =





0.69+0.11
−0.07±0.05 for 1.1 GeV2≤ q2≤ 6.0 GeV2 central bin

0.66+0.11
−0.07±0.03 for 0.045 GeV2≤ q2≤ 1.1 GeV2 low bin

[11] (1.3)

where RK refers to data from B+ meson decays and RK∗ to data from B0 decays, and
where central/low bin refers to the higher/lower bin in q2 for which experimental data
are available. The SM prediction for RK and RK∗ at the central bin region is 1.00 ±
0.01 [14, 15, 17], while for RK∗ at the low bin region is 0.92 ± 0.02 [18]. The measured
deviations from these values represent the so-called neutral B-anomalies, with a significance
of 3.1σ, 2.5σ and 2.3σ, respectively. Furthermore, anomalies in charged current processes
have appeared in the form of LFU violation in the quotients of B semileptonic decay rates
to τ leptons vs. those to electrons and muons.

The not very high significance of each individual channel/measurement calls for cau-
tion: a purely experimental resolution — statistical fluctuation or systematic effect — is
not excluded. Nevertheless, the different deviations are intriguingly consistent with each
other once treated in an effective field theory description, as first formulated in ref. [19]
and recently updated in refs. [20–25]. Altogether, they could be interpreted as due to
NP with a global statistical significance of 4.3σ [26]. Although no single flavour measure-
ment exhibits a 5σ deviation from the SM, the emerging pattern could point to NP that
violates lepton flavour universality, in particular in what concerns RK(∗) . Other promis-
ing channels to test LFU are associated with Λ0

b → pK−`+`−, B+ → K+π+π−`+`− and
B0 → K+π−`+`− decays, which however are delicate observables as it is not known how
the NP affects the hadronic structure of the final states involved (see ref. [27] for a possible
strategy to overcome this problem).

The neutral LFU ratios are loop-level processes within the SM and the size of the
observed deviations thus opens the possibility to explain those anomalies via tree-level
exchanges of NP particles. The first attempts in this direction in the last decade mainly
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Figure 1. Sketchy illustrations of flavour-changing neutral and charged currents in the SM vs.
those induced by flavour-non-diagonal ALP couplings. The wiggly lines denote SM electroweak
gauge bosons, and all processes depicted are assumed to change flavour.

focused on Z ′ models [19, 28–31] or on lepto-quark scenarios [32–35]. In this paper, we will
instead investigate the possibility that an axion-like-particle (ALP) reduces and eventually
solves these neutral B-anomalies.

Axions have been originally introduced as the pseudo-Goldstone-bosons (pGBs) which
result from the dynamical solution to the SM strong CP problem [36–39] through a global
chiral U(1) symmetry — classically exact but anomalous at the quantum level. However,
pGBs also appear in a plethora of theories that extend the SM even if not linked to a
solution to the strong CP problem. These include among others the Majoron which stems
from dynamical explanations of the lightness of active neutrino masses [40], pGBs from
supersymmetric frameworks [41]; the Higgs boson itself which can have a pGB nature as
in Composite-Higgs models [42]; and pGBs associated to extra-dimensional theories and
string theories, which typically exhibit hidden U(1)’s [43]. Frequently these pGBs have
anomalous couplings to gauge currents and are described by the generic name of ALPs.

In the SM, flavour-changing charged currents appear already as tree-level exchanges
while neutral ones are one-loop suppressed processes. The exchange of ALPs exhibits
generically the opposite pattern: it induces flavour-changing neutral currents already at
tree-level while charged ones require one-loop transitions, see figure 1. We focus below on
whether the tree-level exchange of ALPs can account for the neutral B-anomalies. Although
this question has been previously formulated in ref. [44], we present for the first time the
study of the complete parameter space, determining new solutions.

Both the case of a heavy ALP and of a light ALP are considered (heavy/light as
compared to B meson masses). All the possible ranges for ALP masses will be carefully
explored, and the compatibility of each of the neutral B-anomalies — RK and RK∗ — with
the SM prediction within the 1σ and 2σ levels will be determined, exposing the technical
and theoretical cost of the solutions found. Moreover, we will explore whether there are
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specific values of the ALP mass for which all three neutral B-anomalies — i.e. RK , RK∗
central bin and RK∗ low bin — could be simultaneously explained. The impact of the
systematic errors in the analysis will be discussed, including the survival prospects for
the solutions with the improvement of the experimental sensitivities. Moreover, we will
check the consistency of ALP solutions to the neutral B anomalies with the constraints
from other flavour observables, in particular with the data in the branching ratios for
Bs → `+`− and B → K(∗)`+`− decays, and astrophysical constraints. In addition, the
impact and compatibility of the ALP solutions with the data on the anomalous magnetic
moment of the muon and of the electron will be discussed.

The charged B-anomalies in terms of ALP exchange will not be contemplated in this
work. They would be one-loop processes — see figure 1: consistent solutions would require
assuming flavour-blind ALP-fermion couplings, so that both the neutral and the charged
B-anomalies would be induced only at loop-level. This is a very different setup, outside
the scope of this work.

The structure of the paper can be inferred from the table of Contents.

2 The ALP Lagrangian

The construction of the ALP effective Lagrangian goes back to the late ′80s with the seminal
works in refs. [45, 46]. It later underwent renewed interest [47–50] associated with an intense
effort to investigate in detail its parameter space [44, 47, 51–64]. The ALP a is defined here
as a pseudoscalar field, singlet of the SM charges, and described by a Lagrangian invariant
under the shift symmetry a→ a+ constant, plus anomalous couplings which may break the
shift invariance together with a small mass term1 ma � fa, where fa is the NP ALP scale.
We focus in this paper on the CP-even ALP Lagrangian at next-to-leading order (NLO) of
the linear expansion, that is up to O(1/fa) terms; this corresponds to operators with mass
dimension up to five. The complete Lagrangian can be written as

L = LSM + La , (2.1)

where LSM denotes the SM Lagrangian,

LSM = −1
4XµνX

µν +
∑

f
f i /D f +DµΦ†DµΦ− V

(
Φ†Φ

)
+

−
[
Q′L Yd Φ d′R +Q′L Yu Φ̃u′R + L′L Ye Φ e′R + h.c.

]
,

(2.2)

1There is a certain arbitrariness in the definition of an ALP. The customary underlying idea is inspired
by the case of true axions: a global symmetry which is classically exact — and spontaneously realised — but
explicitly broken only at the quantum level. This explicit breaking is precisely that given by the presence
of gauge anomalous couplings (in fact, in true axion models that mass is a byproduct of the anomalous
couplings of ALP to the strong gauge sector of the theory [38, 39, 65–84]). In all generality, their presence
is expected to source a potential for the ALP, and thus a mass. The ALP mass is usually represented by
a — more general — explicit mass term in the Lagrangian. Consistent with this underlying idea, all other
shift-breaking operators are customarily expected to be even more suppressed than the mass term, and
disregarded in phenomenological studies of ALP Lagrangians at leading order.
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Xµν denotes the SM field strengths for the strong and electroweak (EW) gauge bosons,
{X ≡ G,W,B} respectively, and the sum over colour and weak gauge indices has been left
implicit. The SM Higgs boson is denoted by Φ with Φ̃ ≡ iσ2Φ∗, and V

(
Φ†Φ

)
is the Higgs

potential. The index f runs over the SM chiral fermion fields f ≡ {Q′L, u′R, d′R, L′L, e′R},
where the primes refer to the flavour basis. In turn, a complete set of independent and
non-redundant ALP-SM couplings is encoded in

La = 1
2∂µ a ∂

µ a− m2
a

2 a2 + L X
a + L ψ

∂a , (2.3)

where L X
a encompasses the couplings of the ALP to anomalous currents,2

L X
a = −c

W̃

a

fa
W i
µνW̃

iµν − c
B̃

a

fa
BµνB̃

µν − c
G̃

a

fa
GaµνG̃

aµν , (2.4)

while the ALP-fermion couplings contained in L ψ
∂a are derivative ones, i.e. invariant under

constant shifts of the a(x) field,

L ψ
∂a = ∂µa

fa

[
Q
′
Lγ

µc′QQ′L + u′Rγ
µc′uu′R + d

′
Rγ

µc′dd′R + L
′
Lγ

µc′LL′L + e′Rγ
µc′ee′R

]
, (2.5)

where c′f are hermitian 3× 3 matrices in flavour space containing the Wilson coefficients of
the corresponding operators: note that four of the couplings contained in these matrices
are not independent, as they can be removed applying the conservation of baryon number
and of the three independent lepton numbers (disregarding neutrino masses)3 [44, 50].
Furthermore, a possible shift-invariant bosonic operator, OaΦ ≡ ∂µa(Φ†i←→DµΦ)/fa, has
not been included in eq. (2.3) as this would also be redundant given the choice made to
consider all possible fermionic couplings (minus four) in L ψ

∂a.4 Finally, the condition of
CP conservation implies that c′f = c′Tf and thus all fermionic couplings are real.

The description above is explicitly invariant under the SM gauge group SU(3)×SU(2)×
U(1) gauge group. At low energies after electroweak symmetry breaking, the total La-
grangian eq. (2.3) can be rewritten in the mass basis, in which L X

a reads

L X
a = −caγγ

a

fa
FµνF̃

µν − caγZ
a

fa
FµνZ̃

µν+

− caZZ
a

fa
ZµνZ̃

µν − 2c
W̃

a

fa
W+
µνW̃

−µν − c
G̃

a

fa
GaµνG̃

aµν .
(2.6)

where {Fµν , Zµν ,Wµν , Gµν} denote respectively the electromagnetic, Z-boson, W -boson
and gluonic field strengths, and

caγγ ≡ c2
wcB̃ + s2

wcW̃ , caγZ ≡ 2cssw
(
c
W̃
− c

B̃

)
, caZZ ≡ s2

wcB̃ + c2
wcW̃ , (2.7)

2The coefficients of gauge anomalous terms are often defined with a suppression factor with respect to
the notation used all throughout this paper, i.e. ci → αi/(4π)ci, where αi denotes the corresponding gauge
field fine structure constant.

3The ALP-neutrino couplings will be argued to be irrelevant for the present tree-level analysis, and
therefore neutrino masses and the PMNS mixing matrix are to be neglected throughout this work without
loss of generality.

4Alternatively, one of the operators in L ψ
∂a could be substituted by OaΦ if wished, see for instance

ref. [50].
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where the sine and cosine of the Weinberg angle are respectively denoted sw and cw. The
chirality-conserving fermionic Lagrangian L ψ

∂a can also be written straightforwardly in
the mass basis. Nevertheless, for practical purposes it is useful to use the equations of
motion (EOM) supplemented with the anomaly contribution, to rewrite L ψ

∂a in terms of
chirality-flip fermion couplings plus anomalous terms, i.e.

L ψ
∂a = L ψ

a −∆caγγ
a

fa
FµνF̃

µν −∆caγZ
a

fa
FµνZ̃

µν+

−∆caZZ
a

fa
ZµνZ̃

µν − 2∆c
aW̃

a

fa
W+
µνW̃

−µν −∆c
aG̃

a

fa
GaµνG̃

aµν ,
(2.8)

where L ψ
a is a chirality-flip fermion Lagrangian that expressed in the mass basis reads

L ψ
a = − ia

fa

∑

ψ=u,d,e

∑

i,j

[
(mψi −mψj )

(
KS
ψ

)
ij
ψi ψj + (mψi +mψj )

(
KP
ψ

)
ij
ψiγ5ψj

]
+ . . .

(2.9)
where dots indicate ALP-fermion-Higgs interactions left implicit as they will not be used
in this paper. In this equation, mψi denotes the mass of the four-component fermion field
ψi, and the Kψ coefficient matrices are defined as combinations of coefficients cψ, possibly
weighted down by the CKM mixing matrix. For instance, choosing a basis in which the
down sector masses are diagonal, it follows that

KS,P
u ≡ cu ± VCKMcQV †CKM

2 , KS,P
d ≡ cd ± cQ

2 , KS,P
e ≡ ce ± cL

2 , (2.10)

with the sum (difference) of the operator coefficients cψ corresponding to the scalar (pseu-
doscalar) components of Kψ. The relation of the various cψ to the coefficient matrices in
the flavour basis — see eq. (2.5) — is given by

V †u c′uVu ≡ cu , V †d c′dVd ≡ cd , V †e c′eVe ≡ ce ,

U †dc
′
QUd ≡ cQ , U †ec′LUe ≡ cL ,

(2.11)

where Uψ and Vψ are the unitary rotations associated to the left- and right-handed fermions,
respectively, which allow to diagonalise the fermion masses,

Mψ ≡
v√
2
U †ψ Yψ Vψ , (2.12)

where v = 246 GeV is the EW vacuum expectation value (vev) andMψ denote real diagonal
fermion mass matrices. In turn, the CKM matrix is given by5

VCKM = U †uUd . (2.13)

The contributions to anomalous couplings which appear in eq. (2.8) (and are a consequence
of the chiral rotation performed) are given by

∆caγγ ≡ c2
wKB + s2

wKW ∆caγZ ≡ 2cwsw (KW −KB)
∆caZZ ≡ s2

wKB + c2
wKW ∆c

aW̃
≡ KW ∆c

aG̃
≡ KG ,

(2.14)

5Unlike for the SM, some combinations of the matrices V that rotate right-handed fields are now a priori
physical.
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with the KX coefficients given by the following combinations of fermionic couplings:

KB ≡
αem
8πc2

w

Tr
(1

3cQ −
8
3cu −

2
3cd + cL − 2ce

)
,

KW ≡
αem
8πs2

w

Tr
(
3cQ + cL

)
,

KG ≡
αs
8πTr

(
2cQ − cu − cd

)
,

(2.15)

where αem = e2/4π and αs = g2
s/4π, e denotes the electric charge and gs the strong gauge

coupling. These ∆ci corrections can be reabsorbed in the arbitrary coefficients in eq. (2.6),
ci → ci + ∆ci (e.g. caγγ → caγγ + ∆caγγ etc.) so that in all generality the complete ALP
Lagrangian in eq. (2.3) can be rewritten as

La = 1
2∂µ a ∂

µ a− m2
a

2 a2 + L X
a + L ψ

a , (2.16)

with arbitrary operator coefficients. Nevertheless, this analysis illustrates that contribu-
tions from anomalous couplings are automatic and unavoidable when relating the ini-
tial chirality-conserving and explicitly shift-invariant ALP fermionic basis to chirality-
flip fermion operators. In practice, for fermionic processes involving only tree-level ALP
exchanges, it is completely equivalent to use either the chirality-conserving fermion La-
grangian L ψ

∂a in eq. (2.5) (or its mass-basis version) or the chirality-flip one L ψ
a in eq. (2.9).

On the contrary, consistency requires to take into account the complete combination of cou-
plings in eq. (2.8) for some loop-level analyses of ALP exchanges involving fermions. For
most of this work we focus only on tree-level exchange of ALPs, and L ψ

a alone will thus
suffice unless otherwise specified.

Eq. (2.9) shows then that only pseudoscalar couplings contribute at tree-level of the
EFT to flavour-diagonal interactions, while both scalar and pseudoscalar contributions
are present for the off-diagonal ones. Moreover, all tree-level ALP-fermion interactions are
proportional to the masses of the fermions involved: the naive expectation is that couplings
with light fermions are subdominant with respect to couplings with heavier fermions. In
particular, the flavour-conserving ALP interactions pertinent to our analysis with electrons
are much smaller than those with muons. It also follows from eq. (2.9) that ALP-mediated
B → K transition amplitudes are proportional to (the 23 element of) the scalar coupling
KS
d , while B → K∗ ones are proportional to the pseudoscalar coupling KP

d .
It is pertinent to stress that the only NP couplings to be considered below — and as

customary in the literature — are the ALP couplings to the quark bilinear b̄s, and the
lepton µ+µ− and e+e− channels, i.e, in the notation of eq. (2.9):

L ψ
a ⊃ −

ia

fa

[
(ms −mb)

(
KS
d

)
sb

(s b− b s) + (ms +mb)
(
KP
d

)
sb

(sγ5b+ bγ5s)+

+ 2me

(
KP
e

)
ee
eγ5e+ 2mµ

(
KP
e

)
µµ
µγ5µ

]
.

(2.17)

Such a specific choice of parameters is part of the theoretical cost required to explain the
neutral B anomalies through tree-level exchange of ALP couplings. Nevertheless, it may
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be natural to disregard ALP interactions with up-type quarks, in spite of fermionic ALP
couplings being proportional to fermion masses, as their contribution to the neutral B
anomalies is loop-suppressed. But the opposite could be argued for, for instance, ALP
coupling to taus, etc. Overall, to suppress all fermionic ALP couplings in eq. (2.9) except
those in eq. (2.17) is technically possible, as there are enough free parameters in the initial
Lagrangian — eq. (2.3) — as to allow for it.

EFT validity. Finally, the question of the validity of the ALP EFT must be addressed.
In order for the ALP Lagrangian to be approximately shift-invariant, the ALP mass ma

must be small compared with the EFT scale fa, ma � fa. Furthermore, as the coupling
dependence is of the form ci/fa, ci < 1 must hold for all Lagrangian coefficients as indicated
by naive dimensional analysis.

The absolute value of the ALP scale is also relevant. The consistency of formulating the
effective field theory in terms of operators which are invariant under the EW symmetry, see
eqs. (2.3)–(2.5), implies to consider in all cases fa values larger than the EW scale, fa & v.
We will adhere throughout this work to this condition, as an ALP scale below the EW scale
is difficult to sustain in view of the non-observation of NP fields expected to accompany
any renormalisable completion of the ALP scenario. Within this setup, we will explore two
regimes: a “heavy ALP” and a “light ALP”, where the denomination heavy/light refers to
the ALP mass size compared to B meson masses.

The next sections are dedicated to the phenomenological analysis of the different possi-
ble ranges for the ALP mass: i) an ALP heavier than the B mesons, ii) an ALP with a mass
within the energy bin windows considered for the neutral-B anomalies, and iii) a light ALP
with mass 1 MeV < ma < 2mµ where mµ denotes the muon mass. In the numerical compu-
tations, the exact values of the input parameters used can be read in table 3 of appendix A.

3 Heavy ALP

3.1 The low-energy Lagrangian

For an ALP heavier than the B mesons, the ALP can be safely integrated out to analyse
its impact on B transitions. The result is an effective Lagrangian valid at energies lower
than ma, which in the mass basis can be decomposed as

L eff
a = L eff-4f

a + Lmixed
a + . . . (3.1)

where the dots encode pure gauge interactions — left implicit as they will have no impact
on the results in this section, Lmixed

a encodes interactions involving two fermions and
anomalous gauge currents, and L eff-4f

a encodes the effective four-fermion couplings, which
are specially significative for the analysis of B-anomalies and read

L eff-4f
a =− 1

2(fama)2

[∑

ψ

∑

i,j

(
(mψi−mψj )

(
KS
ψ

)
ij
ψiψj +(mψi +mψj )

(
KP
ψ

)
ij
ψiγ5ψj

)]2

.

(3.2)
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Among the effective operators in this last equation, only those composed of a s and a b
quark fields together with flavour-diagonal leptonic currents are relevant to the tree-level
phenomenological analysis of the neutral B-anomalies, i.e.

L eff-4f
a ⊃ − 4m`

2(fama)2

[
(ms −mb)

(
KS
d

)
sb
s b+ (ms +mb)

(
KP
d

)
sb
s γ5 b

][ (
KP
e

)
``
` γ5 `

]
.

(3.3)
It follows that only pseudoscalar leptonic interactions remain, while both scalar and pseu-
doscalar contributions will contribute to quark currents. It is useful to re-express this
Lagrangian in a more compact way as

L eff-4f
a ⊃ −4GF√

2
∑

`=e,µ,τ
VtbV

∗
ts

(
C`P+ O`P+ + C`P− O`P−

)
, (3.4)

where GF ≡ 1/(
√

2v2) is the Fermi constant as extracted from muon decay, and the
operators O`P± are defined as

O`P+ ≡
αem
4π (s b)

(
` γ5 `

)
, O`P− ≡

αem
4π (s γ5 b)

(
` γ5 `

)
, (3.5)

where the ± subscripts remind the parity of the quark current component of the operators.
The Wilson coefficients C`P± are then given by

C`P± ≡
2
√

2π
αemGFVtbV

∗
ts

m`

(fama)2 (ms ∓mb)
(
KS,P
d

)
sb

(
KP
e

)
``
. (3.6)

It follows from the parity structure that O`P+ will contribute to B → K`+`− processes,
while O`P− can instead mediate both B → K∗`+`− and Bs → `+`− decays.

Yet another notation for four-fermion couplings is that customarily used in EFT anal-
yses of B-anomalies, in which the combinations of couplings that can result from the
tree-level integration of a heavy ALP read [32, 85, 86]6

L eff
∆B=1 ⊃ −

4GF√
2

∑

`=e,µ,τ
VtbV

∗
ts

(
C`PO`P + C`′PO`′P

)
, (3.7)

with
O`(′)P ≡ αem

4π
(
sPR(L)b

) (
`γ5`

)
. (3.8)

The relation between this formulation and the operators and Wilson coefficients in eq. (3.4)
is simply

O`P± ≡ O`P ±O`′P , C`P± = C`P ± C`′P
2 . (3.9)

6In other words, other dimension-six effective operators mediating LFU violation and encoded in L eff
∆B=1,

such as for example C(′)
9 and C(′)

10 , are disregarded here because they cannot be generated by the tree-level
exchange of a heavy ALP.
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3.2 Phenomenology of a heavy ALP

As shown above, for a given lepton `, the leading four-fermion effective operators induced
by tree-level exchange of an ALP spans a two-parameter space {C`P+ , C

`
P−}. Conversely, the

parity analysis implies that typically these coefficients contribute to different observables,
which can then be easily compared for electrons vs. muons (tau leptons are not considered
here), e.g.

• O`P+ : OeP+ and OµP+
will contribute to RK .

• O`P− : OeP− and OµP− will contribute to RK∗ , as well as to Bs → `+`− decays.

Note that both C`P+ and C`P− are proportional to the coupling combination KP
e ∼ (ce−cL)

in eq. (2.10), while they differ on the dependence on quark couplings, that is KS
d ∼ (cd+cQ)

and KP
d ∼ (cd − cQ), respectively. The proportionality to KP

e will also appear in other
observables to be discussed below, namely the anomalous magnetic moments of the muon
and of the electron, while conversely Bs − Bs oscillations only depend on ALP-quark
couplings.

The different observables of interest to our analysis are discussed next in more detail
in terms of the contributions of the Wilson coefficients.

3.2.1 B → K`+`−, RK , ∆Ms and magnetic moments
The differential decay width for the B → K(∗)`+`− processes can be written as

dΓ(B → K(∗)`+`−) = 1
(2π)3

1
32M3

B

∣∣∣M
∣∣∣
2

dq2dQ2 , (3.10)

whereM is the matrix element of the process summed over the polarisations of the meson
and leptons in the final state and MB is the B meson mass, while the four-momenta are
defined as q2 ≡ (p`+ + p`−)2 ≡ (p− k)2 and Q2 ≡ (p`+ + k)2 = (p− p`−)2, where p denotes
the four-momentum of the initial state B-meson, k that of the K(∗)-meson, and p`± those of
the leptons `±. For m2

a � q2, the q2-dependence can be neglected on the ALP propagator
and a simple integration over q2 remains.

B → K`+`−. As a step previous to the analysis of RK , we discuss next the semileptonic
B decay widths into dilepton pairs, for which the experimental data available are shown
In table 1. We compared the results obtained for the q2 integration over the dilepton
mass regions of interest for the anomaly — 1 GeV2 < q2 < 7 GeV2 — using two popular
softwares, Flavio [87] and EOS [88], with the corresponding expression in ref. [17] — which
is valid up to O(m3

` ) corrections,

B(B → K`+`−)7.0 GeV2

1.0 GeV2 =
(

τB±

1.64ps

)(
1.91 + 0.08C`2P+ −

m`

GeV
C`P+

1.46 −
m2
`

GeV2
C`2P+

5.182

)
,

(3.11)
where τB± is the lifetime of the meson B± and the q2 interval of integration 7.0 GeV2

1.1 GeV2 is
indicated. We found a good agreement, as the numerical differences can be understood as
a consequence of the more recent input data used in the softwares. The analytic expression
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Observable q2 [GeV2] Values Heavy On Bin Light
dB/dq2(B+ → K+e+e−)

(1.1, 6)
(28.6+2.0

−1.7 ± 1.4)× 10−9 [12]
X X X

B(B+ → K+e+e−)
(
14.01+0.98

−0.83 ± 0.69
)
× 10−8

dB/dq2(B+ → K+µ+µ−)
(1.1, 6)

(24.2± 0.7± 1.2)× 10−9 [89]
X X

B(B+ → K+µ+µ−) (11.86± 0.34± 0.59)× 10−8

B(B+ → K+a(µ+µ−)) (0.06, 22.1) < 1× 10−9 [90] X

B(B0 → K0∗e+e−)
(1.1, 6) (1.8± 0.6)× 10−7 [91] X X X
(0.1, 8) (3.7± 1.0)× 10−7 [91] X

B(B0 → K0∗a(e+e−))

(0.0004, 0.05) < 1.344× 10−7 X X
(0.05, 0.15) < 1.22× 10−8 X
(0.25, 0.4) < 1.97× 10−8 X
(0.4, 0.7) < 1.74× 10−8 X
(0.7, 1) < 6.5× 10−9 X

B(B0 → K0∗µ+µ−) (1.1, 6) 1.9+0.7
−0.6 × 10−7 [91] X X

B(B0 → K0∗a(µ+µ−)) (0.05, 18.9) < 3× 10−9 [92] X

Table 1. The checkmarks correspond to the strongest bounds used in each mass regime analysed
in this work. Notice that the second entries in the first two lines have been obtained from the
corresponding first entry simply integrating over the bin window spread. For B(B0 → K0∗a(e+e−)),
no bound can be extracted for q2 ∈ [0.15, 0.25]GeV2 as the data are incompatible with the SM
prediction at more than 2σ.

above makes it easy to understand why the first term in this expression quadratic in the
Wilson coefficients is the same for e and µ in the approximation considered, and it can
even dominate over the linear term. Indeed, using Flavio and EOS (which agree with each
other to very high accuracy), we find for the integration over the q2 range of the central
bin window

B(B → Ke+e−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.5− 3.4× 10−4CeP+ + 7.1× 10−2Ce2P+

)
,

B(B → Kµ+µ−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.5− 7.0× 10−2CµP+

+ 7.1× 10−2Cµ2
P+

)
,

(3.12)

with a theoretical error of O(15)% at 1σ. The corresponding 2σ bounds on the Wilson
coefficients read:

CeP+ ∈ [−2.6, 2.6] and CµP+
∈ [−1.3, 2.3] , (3.13)

taking into account both experimental and theoretical errors. These constraints are de-
picted in grey in figure 2.

RK . It follows from the previous expressions that the LFU ratio RK can be written in
terms of the two coefficients C`P+ :

RK = 1 +
0.21CeP+ − 4.67CµP+

+ 4.73(Cµ2
P+
− Ce2P+)

100− 0.21CeP+
+ 4.73Ce2P+

. (3.14)
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Figure 2. Parameter space for RK , for an ALP heavier than B mesons. In yellow and green are
respectively depicted the 1σ and 2σ solutions to the central bin of RK . The grey regions around the
frame of the figures are excluded at 2σ by data on semileptonic B → Ke+e− (solid black contours)
and B → Kµ+µ− (dashed black contours) decays.

The large theoretical errors reported for the semileptonic decays may be expected to cancel
in this observable in general, and the largest source of uncertainty to determine the Wilson
coefficients are the experimental errors. Given that experimentally RK < 1, the second
term in this equation should be negative.

Some naive conclusions can be obtained when leptonic NP contributions are assumed
only for either the electron or the muon sector. For instance, let us consider the 2σ error
range for RK , RK ∈ [0.768, 0.935] [13]. In the absence of ALP-muon couplings, this would
require the effective Wilson coefficients to lie in the range

CeP+ ∈ [1.2, 2.6] ∨ [−2.6, −1.2] for CµP+
= 0 . (3.15)

On the contrary, if NP in the lepton sector would contribute only to muon couplings, i.e.
CeP+ = 0, there is no value of CµP+

that would solve the RK anomaly at the 2σ level. This
is easily understood noting that such a solution would require the B(B → Kµ+µ−) in
eq. (3.12) to be suppressed with respect to the SM value, which in turns requires the term
linear in CµP+

to dominate over the quadratic one, i.e. |CµP+
| < 1. However, due to the

suppression provided by the numerical prefactor of that linear term, the NP contribution
would not be then large enough to generate a significant shift from the SM prediction.

In summary, it follows that RK could be explained through ALP-electron couplings
alone (in addition to the ALP-bs couplings), but not through ALP-muon couplings alone.

The two-dimensional enlargement of the parameter space as spanned by the variables
{CeP+ , C

µ
P+
} is depicted in figure 2, which illustrates the 2σ region where both parameters

could be simultaneously at play and account for RK . Taking into account the bounds from

– 12 –
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semileptonic decays in eq. (3.13), the allowed area is given by

CeP+ ∈ [1.2, 2.6] ∨ [−2.6, −1.2]
CµP+

∈ [−1.3, 2.3] .
(3.16)

Note that these two independent parameters can be traded by two specific combinations
of the ALP-fermion couplings defined in the mass basis in the Lagrangian eq. (3.6),

CeP+ ≈ −1.3× 104 GeV2
(10 GeV

ma

)2 (cd + cQ)sb
fa

(ce − cL)ee
fa

,

CµP+
≈ −2.7× 106 GeV2

(10 GeV
ma

)2 (cd + cQ)sb
fa

(ce − cL)µµ
fa

.

(3.17)

The limits obtained in eq. (3.16) translate then into the following constraints, for instance
for ma = 10GeV:

(cd + cQ)sb (ce − cL)ee
f2
a

∈ ([0.93, 2.02] ∨ [−2.02, −0.93])× 10−4 GeV−2 ,

(cd + cQ)sb (ce − cL)µµ
f2
a

∈ [−0.87, 0.49]× 10−6 GeV−2 .

(3.18)

This result already implies that (ce − cL)µµ needs to be about two orders of magnitude
smaller than (ce − cL)ee to explain RK via heavy ALP exchange. We consider next other
relevant observables which are not describable in terms of C`P± , but they are sensitive only
to either the quark factor (cd + cQ)sb or the leptonic factors (ce − cL)``. Nevertheless, they
will be shown to provide further restrictions on the ALP explanation of B-anomalies.

∆Ms. The Bs meson mass difference ∆Ms measured in Bs − Bs oscillations can be
defined as

∆Ms = 1
MBs

∣∣∣
〈
Bs

∣∣∣Heff.
∆B=2

∣∣∣Bs
〉∣∣∣ , (3.19)

where MBs is the mass of the Bs meson and Heff.
∆B=2 is the effective Hamiltonian describing

∆B = 2 transitions. The data imply that [93]

∆Ms = (17.7656± 0.0057) ps−1 , (3.20)

to be compared with the SM prediction that we take from ref. [94], ∆MSM
s =

(20.1+1.2
−1.6) ps−1. (Assuming the most recent results for the SM prediction [95] that are

compatible with the SM within 1σ, the following conclusions do not change as the max-
imum NP couplings allowed by data at 2σ are in either case very alike. Neverthe-
less, the 1σ region in figure 3a would be in this case enlarged, constraining couplings
(cd + cQ)sb/fa . 6× 10−5 GeV−1.)

The generic expression for the contribution of the tree-level exchange of a heavy ALP
to ∆Ms has been recently presented in ref. [44], and we thus refrain from repeating that
analysis here. It suffices to mention that the corresponding bound applies to the two ratios

(cd ± cQ)sb
ma fa

. (3.21)
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Figure 3. ALP heavier than B mesons. In figure 3a, (cd±cQ)sb/fa parameter space allowed by Bs
meson oscillation constraints, at 1σ (2σ) in green (yellow). This plot is symmetric with respect to
any of the axes for negative values of the coordinates. In figure 3b, the parameter space for the com-
binations (ce−cL)ee/fa and (ce−cL)µµ/fa that solve the RK anomaly in figure 2 for the maximal
allowed value (cQ + cd)sb/fa = 10−5 GeV−1. The ALP mass is fixed to ma = 10 GeV in both plots.

The values allowed by data for these combinations are illustrated in figure 3a for the
benchmark ALP mass value ma = 10GeV. They agree with those in ref. [44].7 The figure
illustrates that large values of (cd ± cQ)sb/fa up to ∼ 10−4 GeV−1 are allowed on a fine-
tuned region of the parameter space (the spikes in the figure). Otherwise, in the 1σ region
(in green) the solutions constrain |(cd − cQ)sb| /fa, while only an upper bound results for
the orthogonal combination, |(cd + cQ)sb| /fa, which is the one relevant for RK ,

|(cd − cQ)sb| /fa ∼ 10−5 GeV−1 , |(cd + cQ)sb| /fa . 10−5 GeV−1 . (3.22)

At the 2σ level (in yellow) only an upper bound of O(10−5) GeV can be extracted for both
combinations.

A naive estimation of the impact of ∆Ms on RK can now be achieved by comparing
these constraints on ALP-quark couplings with the products of ALP-quark and ALP-lepton
couplings relevant for RK , see eq. (3.17). For the illustrative case (CeP+ , C

µ
P+

) = (2, 0) in
figure 2, ma = 10 GeV and the value |(cd + cQ)sb| /fa = 10−5 GeV−1 which saturates the
bound in eq. (3.22), it would follow

|(ce − cL)ee|
fa

≈ 16 GeV−1 . (3.23)

This result leads right away to a clash with the validity of the EFT, though, as fa is
expected to be at least of the order of the electroweak scale, see eqs. (2.3) and (2.4), and

7Which expressed the result in terms of separate bounds for cd and cQ.
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fa > ma > MBs . This happens even for the smaller possible scale values, e.g.

fa ≈ 100 GeV =⇒ |(ce − cL)ee| ≈ 103 , (3.24)

which are unacceptably large ALP-lepton couplings, well outside the perturbative regime
of the EFT.8

Note that smaller ALP-quark couplings would not soften the issue as they would
require even larger lepton-ALP couplings. The situation improves but is still problematic
for |(cQ + cd)sb| /fa values in the fine-tuned region, e.g. 10−4 GeV−1, which would translate
into |(ce − cL)ee| ≈ 102. To vary the ALP mass does not resolve the issue either, as the
relevant combination of ALP-quark couplings scales with the ALP mass, see eq. (3.21): a
larger ma would lead to larger values of the combination of leptonic couplings involved,
worsening the EFT validity prospects.

The exercise above assumed no NP contribution from the muon sector. Figure 3b
considers the whole parameter space |(ce − cL)ee| vs.

∣∣∣(ce − cL)µµ
∣∣∣ that solves the RK

anomaly, again for ma = 10 GeV and |(cd + cQ)sb| /fa = 10−5 GeV−1. The ∆Ms constraint
in eq. (3.23) falls then within the green band of this plot. The figure shows that, necessarily,

| (ce − cL)ee |
fa

≥ 10 GeV−1 (3.25)

and thus the conclusion described above holds even for a non-vanishing CµP+
: it is possible to

explain the RK anomaly consistently with data from semileptonic decays and Bs-meson os-
cillations, but the corresponding couplings are outside the range of validity of the ALP EFT.

Anomalous magnetic moment of the electron and the muon. The measurement
of the electric dipole moment of the electron with Caesium atoms [97–99] and the mea-
surement with Rubidium atoms [100] show deviations from the SM prediction in opposite
directions. We will focus on the Caesium experimental determination, which is the one
that shows the largest tension with the SM of about ∼ 2.4σ,

∆ae ≡ aexpe − aSMe = −(88± 36)× 10−14 , (3.26)

and consider the 2σ interval as a bound on the range allowed. In turn, for the data on
g − 2 for the muon, a longstanding 4.2σ anomaly [101] indicates

∆aµ = (25.1± 5.9)× 10−10 , (3.27)

with consistent results across different experiments [102, 103].9

8Such large values of the electron coupling can be attained e.g. selectively in electrophilic ALP models [96]
where the electron coupling can be exponentially enhanced without increasing ma or fa.

9The BMW lattice QCD collaboration computed recently the leading hadronic vacuum polarisation
contribution to the muon g − 2 with sub percent precision [104], and using this result the tension would
reduce to only 1.6σ. Recent results from other lattice groups and lattice methodologies [105, 106] are
also converging towards a smaller tension with respect to the SM prediction, at least in the so-called
“intermediate” range, while finding instead tensions in e+e− data. Waiting for further clarification, we will
consider in this work the aforementioned value of ∆aµ in eq. (3.27).
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(a) Double ALP Fermion Coupling.
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(b) Single ALP Fermion Coupling.

Figure 4. One-loop ALP-mediated diagrams contributing to (g − 2) of the fermion ψ.

ALP exchange can contribute to both ∆ae [44] and ∆aµ. The effects appear at one-
loop, as depicted in figure 4. In the chirality-flip basis eq. (2.9), the ALP-fermion couplings
are mass dependent and their insertion in both internal vertices — figure 4a — is ex-
pected to be subdominant with respect to the amplitudes containing one insertion of ALP-
anomalous gauge couplings — figure 4b, and in particular of the ALP-photon anomalous
coupling. In the limit ma � m` it results

∆aALP` ' A`
caγγ + ∆caγγ

fa

(ce − cL)``
fa

, (3.28)

where the constant in front of this expression reads

A` ≡
m2
`

2π2

(
log Λ2

m2
a

− 3
2

)
=





1.02× 10−7 GeV2 for the electron
4.36× 10−3 GeV2 for the muon ,

(3.29)

with Λ assumed to be of O(1 TeV) and Λ = 4πfa by naive dimensional analysis. In the
formula above, caγγ denotes the tree-level arbitrary anomalous gauge coupling in the initial
Lagrangian, eq. (2.3). In contrast, ∆caγγ is the anomalous contribution induced by the
fermion rotation performed to pass to the chirality-flip basis, and it is given by a precise
combination of fermion-ALP couplings, see eqs. (2.14)–(2.16), i.e.

∆caγγ ' −
αem
4π

[
(ce − cL)ee + (ce − cL)µµ

]
, (3.30)

which using eqs. (3.26) and (3.27) leads respectively to the following 2σ constraints:

1
fa

[
(ce − cL)ee

(
(ce − cL)ee + (ce − cL)µµ −

4π
αem

caγγ

)]1/2
∈ [0.05, 0.16] GeV−1 , (3.31)

and

1
fa

[
(ce − cL)µµ

( 4π
αem

caγγ − (ce − cL)ee − (ce − cL)µµ
)]1/2

∈ [0.023, 0.038] GeV−1 ,

(3.32)
Were the bare anomalous coupling caγγ to vanish, an explanation of RK in terms
of heavy ALP exchange would be excluded, because the data on RK and ∆ae can-
not be simultaneously accommodated, given the bound in eq. (3.25) and the fact that
(ce − cL)µµ � (ce − cL)ee — see discussion after eq. (3.18).
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Strictly speaking, though, the possibility to explain through heavy ALP exchange both
RK and ∆a` cannot be completely excluded because caγγ is arbitrary. Its value can be
fine-tuned to fit for instance RK data and the ∆ae bound. Note that the coupling values
then required would not allow to account in addition for the ∆aµ anomaly. Indeed, the
expressions for ∆aALPµ and ∆aALPe would then imply the constraint — at the 2σ level —

(ce − cL)µµ
(ce − cL)ee

' ∆aALPµ

∆aALPe

Ae
Aµ
∈ −[0.02, 0.54] , (3.33)

which is inconsistent with the hierarchy between (ce − cL)ee /fa and (ce − cL)µµ /fa shown
in figure 3b.

Building on the same freedom on the value of the initial caγγ , one may still wonder
whether it is technically possible a solution in which the amplitude of the second diagram
in figure 4 cancels for either ∆ae or ∆aµ, forcing caγγ + ∆caγγ = 0, so as to explain then
the experimental value of that observable in terms of just the first diagram in that figure
(which has been neglected up to now). This option leads to a dead end as well: i) for ∆ae,
because its (me)4/(fama)2 suppression makes it totally negligible;10 ii) for ∆aµ, because
the (mµ)4/(fama)2 contribution is always negative, contrary to the experimental ∆aµ > 0
value, and also the prediction for ∆ae would be incompatible with observation.

In summary, no simultaneous explanation in terms of tree-level heavy ALP exchange is
possible for the three observables in the set {RK ,∆ae,∆aµ}. Furthermore, although such
an explanation is possible for the {RK ,∆ae} set, the data on RK would always require a
strong disregard of the EFT validity condition.

3.2.2 RK∗, B → K∗`+`−, and Bs → `+`−

The analysis of RK∗ can be done in analogy with that for RK and B → K`+`− above,
although the data on Bs → `+`− will add an extra essential ingredient because the purely
leptonic decays share with RK∗ the same dependence on the effective couplings C`P− only.

B → K∗`+`−. Using the EOS software, we obtain

B(B → K∗µ+µ−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.9− 7.4× 10−2CµP− + 7.5× 10−2Cµ2

P−

)
,

B(B → K∗e+e−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.9− 3.6× 10−4CeP− + 7.5× 10−2Ce2P−

)
,

(3.34)

and

B(B → K∗µ+µ−)1.1 GeV2

0.045 GeV2 = 10−7 ×
(
1.2− 9.3× 10−3CµP− + 1.5× 10−3Cµ2

P−

)
,

B(B → K∗e+e−)1.1 GeV2

0.045 GeV2 = 10−7 ×
(
1.3− 4.8× 10−5CeP− + 1.6× 10−3Ce2P−

)
,

(3.35)

respectively for the central and low energy bin regions, see eq. (1.3). The theoretical
errors are estimated to be at the 15% level at 1σ (similarly to those for the semileptonic
B → K decays earlier on). The comparison of these equations with those for B → K

10The same applies if the ∆ae value inferred from Rubidium was considered instead, in spite of its weaker
strength.
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Figure 5. Parameter space for RK∗ , for an ALP heavier than B mesons. In yellow and green
are respectively depicted the 1σ and 2σ solutions to the central bin, while in orange are indicated
the 1σ solutions to the low bin. The grey regions around the frame of the figures are excluded at
2σ by data on semileptonic B → K∗e+e− (solid black contours) and B → K∗µ+µ− (dashed black
contours) decays. The regions excluded by purely leptonic Bs decays reach the central area and are
also depicted in grey (horizontally for the electron channel and vertically for the muon one) leaving
available the narrow white strips.

semileptonic transitions in eqs. (3.12) shows a very similar structure, with in particular the
terms quadratic on the Wilson coefficients being positive, and a very similar pattern for
the prefactors of linear vs. quadratic terms. A comparison with the experimental data in
table 1 results in the following 2σ bounds on the Wilson coefficients,

CeP− ∈ [−4.0, 4.0] and CµP− ∈ [−4.0, 5.0] , (3.36)

which are illustrated in figure 5 as grey shaded regions delimitated by solid (electrons) and
dashed (muons) black contours.

RK∗. Analogous considerations to those for RK will apply then to RK∗ , given the similar-
ity between eqs. (3.12) and those above for the semileptonic RK∗ decays. In consequence,
the experimental tension in RK∗ is expected to allow for an explanation in terms of ALP
tree-level exchange only if the electron sector would receive NP contributions. We expatiate
next on this point. From eqs. (3.34) and (3.35) it follows that

RK∗ =





1 +
0.02CeP− − 3.89CµP− + 3.95(Cµ2

P− − Ce2P−)
100− 0.02CeP− + 3.95Ce2P−

central bin

0.923 +
0.03CeP− − 7.15CµP− + 1.15Cµ2

P− − 1.13Ce2P−
1000− 0.04CeP− + 1.23Ce2P−

low bin,
(3.37)

with theoretical errors that are expected to be negligible with respect to the corresponding
experimental ones.
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Let us first extract the values for Ce,µP− that could solve the tension in RK∗ in case NP
enters only in either the electron sector or the muon sector. For CµP− = 0, the 2σ error
bands for RK∗ , RK∗ ∈ [0.519, 0.911] (central bin) and RK∗ ∈ [0.504, 0.875] [11] (low bin)
lead to

For CµP− = 0:




CeP− ∈ [1.6, 4.8] ∨ [−4.8, −1.6] central bin
CeP− ∈ [6.7, 26.1] ∨ [−26.1, −6.7] low bin.

(3.38)

These two sets of solutions do not overlap even partly and therefore there is no possible
explanation in terms of a heavy ALP for the deviations in both energy bins. Alternatively,
for CeP− = 0, there is no CµP− value that can explain RK∗ with the sensitivity considered.

Let us finally consider the ALP explanations to RK∗ within the two-dimensional pa-
rameter space of couplings {CeP− , C

µ
P−}. The solutions are depicted in figure 5 (in green,

yellow and orange). This figure also shows, though, that when the data on B → K∗e+e−

B → K∗µ+µ− are taken into account, the regions where the low bin anomaly can be
explained are ruled out and those for the central bin one are reduced to

1.6 < |CeP− | < 4 , −3 < |CµP− | < 4 . (3.39)

Bs → `+`−. A second observable that directly depends on the operator O`P− for a given
charged lepton ` is the branching ratio B(Bs → `+`−). The corresponding experimental
measurements are in good agreement with the SM and therefore any NP effect should be at
most marginal. By implementing the Flavio software, and after performing an interpolation
procedure, we obtain the contribution of the SM plus those mediated by tree-level exchange
of a heavy ALP:

B(Bs → µ+µ−) = 10−9 ×
(
3.67− 1.15× 102CµP− + 9.04× 102Cµ2

P−

)
,

B(Bs → e+e−) = 10−14 ×
(
8.58− 5.57× 104CeP− + 9.05× 107Ce2P−

)
,

(3.40)

where the bar over the symbol for the branching ratio denotes untagged decays, that
is, the time-integrated quantities which include the probability for the meson to oscillate
before decaying (the tagged quantity is O(15%) smaller than the results shown). If the EOS
software is used instead of Flavio, the numerical output is 9% smaller than that in eq. (3.40);
this difference is most probably due to some loop contributions considered in Flavio, as
discussed in ref. [107]. The theoretical error on the SM prediction for these quantities is
much smaller than that for semileptonic B decays and it is of O(4%) at the 1σ level.

The size of the numerical factors appearing in front of the Wilson coefficients Ce,µP−
indicates that the latter should not exceed values of about |Ce,µP− | ∼ 0.1. More precisely,
the regions allowed in order to remain within the 2σ confidence level of the Bs → `+`−

measurements, B (Bs → µ+µ−
) ∈ [2.2, 4.1] × 10−9 [108] and B (Bs → e+e−

)
< 11.2 ×

10−9 [109], are
CeP− ∈ [−0.11, 0.11] ,
CµP− ∈ [−0.0033, 0.014] ∨ [0.11, 0.13] .

(3.41)
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These solutions are incompatible with the naive values in eq. (3.39). In summary, the data
from purely leptonic Bs decays precludes an explanation of RK∗ in terms of a heavy ALP,
even when the complete parameter space for ALP-electron and ALP-muon couplings is
considered.11 This is illustrated for RK∗ in figure 5: the bounds from purely leptonic Bs
meson decays only allow very narrow (white) strips in the parameter space; the impact of
Bs → e+e− in particular leaves no region to explain RK∗ , not even for the central energy
bin window.

The comparison of our two-parameter space survey above can be contrasted with those
in the one-parameter analysis in ref. [44]. While we find that an explanation for RK∗ in
terms of a heavy ALP exchange is excluded, RK could be accounted for technically, albeit
at a heavy theoretical cost: to go out of the range of validity of the EFT. If the latter
condition was nevertheless disregarded, it would be possible to accommodate at the same
time the bound on ∆ae, but not the ∆aµ anomaly.

4 Light ALP

This section explores the option of an ALP lighter than the B mesons and whose mass is in
the ballpark of the energy bin windows considered for the neutral B-anomalies. Therefore,
the ALP field cannot be integrated out and resonant effects may become relevant. The anal-
ysis strongly depends on the precise value of ma. We explore below two distinct scenarios:

- ALP mass well within the energy range of the bin under consideration.

- ALP mass outside the bin window but close to it.

4.1 ALP mass within the bin window

For the B → K(∗)`+`− processes, we rely on analytic computations of three body B decays
which use the relativistic Breit-Wigner expression for the ALP propagator under the condi-
tion that the ALP decay width Γa is smaller than its mass, Γa < ma. The matrix elements
as computed in refs. [17, 111] will be used, together with the inputs in table 3 of appendix A
for the SM Wilson coefficients. The form factors — which are the main source of theoretical
uncertainties — are taken from refs. [112] and [111]. A detailed account of our computa-
tions can be found in appendix B, which includes a comparison between our results for the
relevant decay widths with those obtained numerically via the Flavio software: we find a
very accurate agreement in the energy bin regions relevant for the RK and RK∗ anomalies.

Before presenting the numerical results, it is pertinent though to discuss analytically
the validity of the narrow width approximation (NWA), which justifies that the ALP can be
safely taken on-shell. In this approximation, the total branching ratio can be decomposed as

B(B → K(∗)`+`−) = B(B → K(∗)`+`−)SM + B(B → K(∗)a)× B(a→ `+`−) , (4.1)
11A combined analysis of the ATLAS, CMS and LHCb results on B

(
Bs → µ+µ−

)
using data between

2011 and 2016, showed a small tension with the SM predictions at the 2σ level [110]. Was this combined
result included, the conclusions above would not change. In any case, the more recent analysis by the LHCb
collaboration which includes data till 2018 [108] shows a smaller deviation from the SM prediction.
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where the SM contributions can be found in table 4 while the expressions for B(B → Ka)
and B(B → K∗a) are respectively given as a function of ma by

B(B → Ka) = τB
MB [(cd + cQ)sb]2

64π f2
a

f2
0 [m2

a]λ
1/2
BKa

(
1− M2

K

M2
B

)2

,

B(B → K∗a) = τB
[(cd − cQ)sb]2

64π f2
a M

3
B

A2
0[m2

a]λ
3/2
BK∗a ,

(4.2)

where τB and MB denote respectively the lifetime and mass of the B mesons (i.e. B0,±)
and MK(∗) is the neutral or charged kaon mass (see table 3). In turn, f0[m2

a] and A0[m2
a]

are two form factors whose dependence on the ALP mass can be extracted from refs. [112]
and [111], respectively,

f0[m2
a] ≈ 3.45× 10−1 + 2.84× 10−3 m2

a

GeV2 + 6.97× 10−4 m4
a

GeV4 ,

A0[m2
a] ≈ 0.37 + 2.18× 10−2 m2

a

GeV2 + 8.83× 10−4 m4
a

GeV4 ,

(4.3)

where λBK(∗)a are the Källén triangle functions λBK(∗)a ≡ λ(M2
B, M

2
K(∗) , m

2
a) such that

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2bc− 2ca . (4.4)

In turn, the purely leptonic decay width of an ALP reads,

Γ(a→ `+`−) = mam
2
`

8π f2
a

[(ce − cL)``]2
(

1− 4m2
`

m2
a

)1/2

. (4.5)

Given the energy windows of the bins relevant for the RK and RK∗ anomalies, an expla-
nation in terms of the exchange of an on-shell ALP requires

ma ≥ 2mµ , (4.6)

and in consequence, both leptonic decay channels are kinematically open. Nevertheless,
in order to explain the neutral anomalies via an on-shell ALP, the electron-ALP coupling
should dominate. Indeed, it follows from eq. (4.1) that

RK(∗) ' 1 + B(B → K(∗)a)
B(B → K(∗)e+e−)SM

(
m2
µ [(ce − cL)µµ]2 −m2

e [(ce − cL)ee]2
)

(
m2
µ [(ce − cL)µµ]2 +m2

e [(ce − cL)ee]2
) , (4.7)

which requires for RK(∗) < 1 that

|(ce − cL)ee|
|(ce − cL)µµ|

≥ mµ

me
∼ 200 . (4.8)

It is therefore a good approximation to neglect the ALP-muon couplings in the solutions
to the neutral B-anomalies.12 This has a most important consequence: the solutions to

12The hierarchy suggests a UV structure with all lepton couplings vanishing, but the electron one. We
have verified that this condition is RGE stable, with the induced ALP-muon coupling being two-loop
suppressed with respect to the ALP-electron coupling.
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RK and RK∗ in terms of resonant ALP exchange are basically independent of the precise
values of the ALP coupling to leptons, because B(a → e+e−) ∼ 1, see eq. (4.1). This is in
stark contrast to the B anomaly solutions via a heavy ALP discussed earlier on, or a very
light ALP (to be discussed in the next section), for which lepton couplings scale inversely
proportional to quark couplings in the solutions to RK and RK∗ , sourcing strong violations
of the EFT validity conditions once other independent observables are considered.

On the validity of the NWA. As the use of the Breit-Wigner expression for the ALP
propagator is meaningful only as far as the ALP decay rate is smaller than its mass, let
us assume a conservative Γa/ma < 1/5 condition. Given the constraint in eq. (4.8), it is
reasonable as a working hypothesis to neglect the muon sector ALP couplings, (ce−cL)µµ =
0. It then follows from eq. (4.5) the constraint

|(ce − cL)ee|
fa

.
√

8π
5m2

e

' 4.4× 103 GeV−1 . (4.9)

This result is fairly independent of the ALP mass and is only slightly modified when
considering non-vanishing ALP couplings to both electrons and muons. The corresponding
numerical analysis is shown in figure 7b, in which the region excluded by the NWA validity
is depicted in red. Its vertical border corresponds to eq. (4.9). The horizontal border stems
instead from the analogous upper limit that can be set for the ALP-muon couplings by
formally setting to zero those for electrons, (ce − cL)ee = 0,

|(ce − cL)µµ|
fa

.
√

8π
5m2

µ

' 21 GeV−1 . (4.10)

Prompt ALP decay. The final leptons in the semileptonic B-decays are observed to
come from the same point in which the K(∗) meson is produced, and therefore the ALP
needs to have a prompt decay. Considering the typical boost factors at LHCb, this leads
to the requirement [113]

Γa ≥ 0.02 eV . (4.11)

Accordingly to the previous discussion, assuming that the ALP decays only into electrons,
we find a lower bound on the ALP-electron couplings given by:

|(ce − cL)ee|
fa

&
√

0.16π eV
mam2

e

' 4.4× 10−2
(1 GeV

ma

)
GeV−1 . (4.12)

This determines the vertical frontier of the region excluded by the condition of prompt
decay, depicted in grey in figure 7b for the solutions to RK , see further below. The
horizontal frontier in that figure results similarly from the lower bound on muon couplings
that follows by formally disregarding the electron contribution in the ALP total decay rate,

|(ce − cL)µµ|
fa

&
√

0.16π eV
mam2

µ

' 2.1× 10−4
(1 GeV

ma

)
GeV−1 . (4.13)

∆Ms. We will refrain below from determining the impact of the meson oscillation data
on RK and RK∗ in the present case of an on-shell ALP, because the bounds to be obtained
from semileptonic B decays are much stronger.
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Figure 6. ALP mass within the central bin range. Constraints from semileptonic B-decays on
the parameter space of ALP couplings to quarks and leptons. In grey the excluded regions, while
in green (yellow) the solutions to RK at 1σ (2σ). The orange star corresponds to the illustrative
benchmark point ma = 1.2 GeV with (|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1.

4.1.1 B → K`+`−, RK and magnetic moments

B → K`+`−. For the range of ALP masses within the central bin range, the data on
B → Ke+e− determined in the kinematic region of that bin, 1.1 < q2 < 6.0 GeV2 see
table 1, result in the 2σ bound

|(cd + cQ)sb|
fa

√
B(a→ e+e−) . 3.8× 10−10 GeV−1 , (4.14)

This result is fairly independent of the precise value of ma as it enters only through a very
mild dependence in the f0 form factor. In the approximation B(a→ e+e−) ∼ 1, eq. (4.14)
would directly imply |(cd + cQ)sb|/fa . 3.8 × 10−10, a bound that gets slightly relaxed
though as a consequence of the branching ratio of a → e+e− being different from 1. This
can be appreciated in figure 6: the excluded region for |(cd + cQ)sb| as a function of the
ratio of lepton couplings |(ce − cL)ee/(ce − cL)µµ| is shown in grey.

The same combination of ALP-quark couplings can be independently bounded from
analogous data on B → Kµ+µ−, which stem from dedicated searches at LHCb for exotic
resonances as reported in table 1,

|(cd + cQ)sb|
fa

√
B(a→ µ+µ−) . 7.4× 10−11 GeV−1 . (4.15)

This does not translate into stronger bounds on |(cd + cQ)sb| than those stemming from
eq. (4.14), once the values of B(a→ µ+µ−) are taken into account in the ma range under
discussion, except in the region where the ratio of leptonic couplings acquires the smallest
values, see figure 6.
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(b) Lepton couplings for RK .

Figure 7. ALP mass on-shell within the central bin range. In green (yellow) the
1σ (2σ) solutions to RK . The stars correspond to the benchmark ALP-lepton couplings
(|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1, for two different values of the ALP
mass as discussed in the text. On the left: parameter space for ALP-quark couplings vs. ma. In
grey the experimental bounds from B → Kµ+µ− (enclosed by the dashed line) and B → Ke+e−

(enclosed by the solid line). On the right: parameter space |(ce − cL)ee| /fa vs. |(ce − cL)µµ| /fa, for
ma = 1.2 GeV and |(cd + cQ)sb| /fa = 3.8×10−10. The shaded red region corresponds to the exclu-
sion condition Γa < ma/5 in eqs. (4.9) and (4.10), while the dark grey one to the prompt decay con-
dition in eqs. (4.12) and (4.13). The light grey region is excluded by the LHCb search for an exotic
resonance decaying to muons. The blue band shows the parameter space compatible with ∆aµ once
the photon coupling is fixed to comply with the ∆ae bound, both quantities taken at the 2σ level.

RK . The parameter space in which the RK anomaly can be explained through the on-
shell exchange of an ALP within one (two) sigma is depicted in green (yellow) in the plots
that follow. In all of them, the orange star corresponds to the illustrative benchmark
point ma = 1.2 GeV and (|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1. The
parameter space is depicted as a function of:

- Quark couplings vs. lepton couplings in figure 6, for an ALP mass ma = 1.2 GeV.

- Quark couplings vs. ALP mass in figure 7a. The limit on quark couplings obtained
above, eq. (4.14), is depicted as a continuous line.

- Muon couplings vs. electron couplings in figure 7b, also for ma = 1.2 GeV and for
quark coupling values which saturate eq. (4.14). The upper-left half of the parameter
space in this plot (in light grey) is excluded by the constraint in eq. (4.15); this
constraint turns out to be stronger than that in eq. (4.8).

These figures indicate that indeed RK could be explained by the on-shell exchange
of an ALP and furthermore that the validity of the ALP EFT is maintained for those
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Observable m2
a [GeV2] Values |(cd − cQ)sb|

√Ba→`+`−/fa[GeV−1]

B(B0 → K0∗a(e+e−)) (0.0004, 0.05) < 1.344× 10−7 < 7.96× 10−10

(0.05, 0.15) < 1.22× 10−8 < 2.40× 10−10

(0.25, 0.4) < 1.97× 10−8 < 3.05× 10−10

(0.4, 0.7) < 1.74× 10−8 < 2.87× 10−10

(0.7, 1) < 6.5× 10−9 < 1.75× 10−10

B(B0 → K0∗a(µ+µ−)) (0.05, 18.9) < 3× 10−9 [92] < 1.19× 10−10

B(B0 → K0∗e+e−) (1.1, 6) (1.8± 0.6)× 10−7 [91] < 6.46× 10−10

(0.1, 8) (3.7± 1.0)× 10−7 [91] < 8.71× 10−10

Table 2. Constraints on the ALP-quark coupling from B → K∗`+`− and B → K∗a(a → `+`−)
decay processes used in the following figures of this section. The bounds in the last column are
expressed at the 2σ level. For each bound, the value of ma considered lies in the middle of the
corresponding energy bin window. The values presented in the third column are those in table 1
and are copied here for convenience.

solutions which are located towards the lower left corner of figure 7b, an example being
the benchmark point indicated by the orange star.

Anomalous magnetic moment of the electron and the muon. The analysis of
anomalous magnetic moments for a heavy ALP applies as well to the resonant ALP con-
sidered in this section, because ma is still larger than the electron and muon masses, and
in consequence the expression in eq. (3.28) holds. It results that, taking now the value
ma = 1.2GeV, the bounds on the right hand side of eqs. (3.31) and eq. (3.32) are now
multiplied by a factor ∼ 0.8. Once again, it would be possible to remain within the EFT
validity range and account simultaneously for the data in the set {RK ,∆ae} or for those of
the two anomalies, {RK ,∆aµ}, while it would not be possible to account simultaneously
for the data on the three observables {RK ,∆ae,∆aµ}. Indeed, the blue region in figure 7b,
for which the ALP-couplings are required within 2σ to both respect the ∆ae bound and to
account for the aµ anomaly falls outside the parameter space that would explain RK .

4.1.2 B → K∗`+`−, RK∗, Bs → `+`− and magnetic moments

While B → K`+`− offered light on |(cd + cQ)sb|, B → K∗`+`− tests the orthogonal
combination |(cd − cQ)sb|.

The experimental information on the decay B → K∗e+e− is more detailed than for
its B → K counterpart, see table 2. The bounds on NP presented in the first row of
this table and divided in several small-energy bins were not provided by the experimental
collaborations, but are instead a recast from bounds on the differential distribution of the
total number of events N , dN/dq2(B → K∗e+e−), provided by the LHCb collaboration in
their search of resonant new particles [114]; see appendix C for details.

Still regarding the electron channel, the constraints in the third block of table 2 result
form the integration over two large windows in energy-bins [91], and they apply to the total
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(a) Quark couplings vs. ma for RK∗ . (b) Quark couplings vs. lepton coupling ratio for
RK∗ .

Figure 8. Solutions to RK∗ with ALP masses within the bin window ranges. In green (yellow)
the 1σ (2σ) solutions to the central bin. The coloured stars correspond to the benchmark ALP-
lepton couplings (|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1, for different values of
ma. On the left: parameter space of ALP-quark couplings vs. ma excluded by B → K∗µ+µ−

data (enclosed by the dashed line) and by B → K∗e+e− data (enclosed by the solid line). For
ma ∈ [0.39, 0.5] GeV data show a tension of more than 2σ with respect to the SM prediction and
the additional contribution of the ALP could only worsen it (see figure 16). The dark green (dark
yellow) shaded areas indicate ALP solutions to RK∗ low bin at 1σ (2σ). On the right: constraints
from semileptonic B-decays on the parameter space of ALP couplings to quarks and leptons, for
the reference value ma = 1.2 GeV. In grey the regions excluded by B → K(∗)µ+µ− data (enclosed
by the dashed line) and B → K(∗)e+e− data (enclosed by the solid line).

branching ratio which includes both the SM and the NP contributions. The limits involving
the combination of ALP-quark couplings |(cd − cQ)sb| derived from the data and shown
in the table have been extracted using the complete dependence on them. Finally, once
again, the apparently stronger limits on those couplings in the last column which stem from
muon channels turn out to be in fact weaker in a large fraction of the parameter space,
once the true values of Ba→`+`− are taken into account. This is illustrated in figure 8a
for the specific value of the ALP-lepton couplings (|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) =
(10−1, 10−5) GeV−1. Figure 8b focuses on the central energy bin and for the illustrative
case ma = 1.2 GeV: it shows that the constraint due to B → K∗e+e− depends only mildly
on the ratio of ALP-lepton couplings. Once this ratio gets smaller enough, the dominant
bound is provided by the B → K∗a(µ+µ−) decay instead. The plots in figure 8 are the
siblings of those in figures 7a and 6, respectively, and the same colour code has been used.

The bounds obtained from B → K∗e+e− — see table 2 — can be used as conservative
benchmarks for the ALP-quark couplings in our numerical analysis. Specifically, figure 9a
and figure 9b illustrate the parameter space of ALP-couplings to leptons which can explain
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(a) Low bin RK∗ . (b) Central bin RK∗ .

Figure 9. ALP mass within the RK∗ bin windows. Parameter space |(ce − cL)ee| /fa vs.
|(ce − cL)µµ| /fa that solves the RK∗ anomaly, in the low energy-bin on the left and in the central
energy-bin on the right. In green (yellow) the 1σ (2σ) sensitivity. The ALP mass is chosen to
be ma = 0.6 GeV (ma = 1.2 GeV) on the left (right) plot together with, respectively, the values
|(cd − cQ)sb| /fa = 3.05×10−10GeV−1 and |(cd − cQ)sb| /fa = 6.46×10−10GeV−1, chosen to com-
ply with the B → K∗e+e− bounds. The shaded red region corresponds to the exclusion condition
Γa < ma/5, while the dark grey one to the prompt decay condition. The light grey region delimited
by an oblique dashed line is excluded by the LHCb search for an exotic resonance decaying to
muons. The light grey regions delimited by horizontal and vertical dot-dashed lines are excluded
by Bs → µ+µ− and Bs → e+e− data, respectively. The blue band shows the parameter space
compatible with ∆aµ once the photon coupling is fixed to comply with bounds on ∆ae.

RK∗ via resonant ALP exchange, for the benchmark values

|(cd − cQ)sb|
fa

= 3.05× 10−10GeV−1 ,
|(cd − cQ)sb|

fa
= 6.46× 10−10GeV−1 , (4.16)

respectively for the low bin (ma = 0.6 GeV, blue star) and the central bin (ma = 1.2 GeV,
orange star). In both figures, the stars correspond to the (previously used) values of leptonic
couplings (|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1.

These plots in figure 9 for RK∗ are very similar to that for RK in figure 7b, and use the
same colour code. Once again, the limits on ALP leptonic couplings from B → K∗a(`+`−)
severely limit the allowed parameter space, in addition to those resulting from the validity
conditions for the NWA and for prompt ALP decays in eqs. (4.9)–(4.13). On the other hand,
the bounds from Bs → `+`− are at best of the same order of magnitude than the ones just
mentioned. All in all, the lower-left area of the parameter space is the region where possible
explanations to the RK∗ anomaly can be found within the validity range of the ALP EFT.

Finally, the compatibility of the data on leptonic anomalous magnetic moments and
the solutions to the RK∗ anomaly through on-shell ALP exchange parallels the analysis
for RK in the previous subsection: when all data available are taken into account, it is
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(a) Low bin RK∗ . Golden ma. (b) Central bin RK∗ . Golden ma.

Figure 10. Parameter space |(ce − cL)ee| /fa vs. |(ce − cL)µµ| /fa interesting to explain the RK∗
anomaly, in the low energy-bin on the left and in the central energy-bin on the right, for the golden
mass ma =

√
1.1 GeV. In green (yellow) the 1σ (2σ) sensitivity. The ALP-quark coupling is fixed

to |(cd − cQ)sb| /fa = 8.71× 10−10GeV−1. The colour code and lines follow the same description
as in figure 9.

possible to account simultaneously for the data in the set {RK∗ ,∆ae} within the theoretical
region of validity of the ALP EFT. In contrast, the ensemble of the three observables
{RK∗ ,∆ae,∆aµ} cannot be simultaneously explained through such an ALP, see figure 9,
and thus the ∆aµ anomaly would remain unexplained.

4.1.3 The golden mass
The analysis above explored whether RK and the central-energy bin of RK∗ could be ex-
plained via ALP exchange, while the low-energy bin of the RK∗ anomaly was analysed sep-
arately. The respective benchmarks points were ma = 1.2 GeV (orange star in figures 6, 7, 8
and 9b) and ma = 0.6 GeV (blue star in figures 8a and 9a). It is a pertinent question,
though, whether there exists some value of the ALP mass which could explain the data on
all three neutral B anomalies, i.e. RK and the two energy bins for RK∗ . We have identified a
“golden mass” solution which could satisfy these three requirements within 2σ sensitivity (in
yellow), located right at the edge of the two energy-bin windows, and which corresponds to

ma =
√

1.1 GeV . (4.17)

This point is indicated by a red star in figures 7a, 8a and 10.
In particular, figure 10 depicts the same plots as those in figure 9 except that ma is

taken to be the golden mass value, indicated by the red star.13 This figure shows that
the exchange of an ALP with the mass given by eq. (4.17) could a priori account for the

13For this ma value, the benchmark quark couplings that saturate the constraints from B → K∗e+e−

data are slightly different than those used previously: |(cd − cQ)sb| /fa = 8.71× 10−10GeV−1.

– 28 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
8

anomalies in both energy bins of RK∗ within 2σ (in yellow). This result is strongly depen-
dent on the value of the ALP-quark couplings, which ultimately regulates the impact of the
on-shell contribution. Indeed, for smaller ALP-quark couplings, the resonant contributions
disappear and no-overlap region is left between the low and central energy-bin anomalies.

The dependence on the ALP mass of the solutions to RK∗ is further scrutinised going
back to figure 8a. It shows that:

• Within 1σ sensitivity (in green), all ALP solutions with masses within the low-energy
bin of the RK∗ anomaly are excluded by other data. This conclusion agrees with that
in ref. [113], where the parameter space of a generic resonance compatible only with
this low bin anomaly was studied.

• The comparison with figure 7a shows that any ALP mass within the central bin
range of RK∗ can accommodate a combined explanation of the two anomalies in
the set {RK , RK∗} within less than 2σ, for cd ≈ 3 × 10−10 (which corresponds to
B(B → Ka) ∼ 10−8). This possible explanation for the two neutral B anomalies via
a resonance on the bin is a novel aspect of our work.

• Finally, the location of the red star in figure 7a and figure 8a illustrates that the
on-shell exchange of a golden mass ALP could simultaneously account for the RK
anomaly and for the two anomalies in the two different RK∗ energy bins. The details
of the mass dependence can be appreciated in the zoom-in view around the golden
mass value depicted in figure 11.

Nevertheless, in spite of this last encouraging result, explanations of physics anomalies
located at the frontier of energy bins are suspicious. The take-away message is that a
different binning of the data is well-motivated and can quickly clarify the issue.

4.2 ALP mass close to the bin window: the smearing function

The aim of this section is twofold: the first is to consider the case in which the ALP
mass is outside, but close to, a given energy-bin window; the second is to include in the
previous analysis the finite experimental sensitivity. Indeed, if the value of the ALP mass
lies outside the energy-bin window, the ALP is technically off-shell and its contribution to
observables gets thus suppressed. On the other side, the experimental resolution in terms
of bin distribution is not infinite and therefore it is possible that certain events with a q2

close to the borders of a chosen window are simply not correctly taken into account.
To take into consideration these two sources of systematic errors, a Gaussian smearing

function is traditionally adopted to modify the NWA expression. For the case of the
semileptonic B-meson decays in eq. (4.1), it reads [113]

B(B → K(∗)a(`+`−)) = B(B → K(∗)a)× B(a→ `+`−)× G(r`)(qmin., qmax.) , (4.18)

where G(r`) is a Gaussian smearing function defined as

G(r`)(qmin., qmax.) ≡
1√

2πr`

qmax.∫

qmin.

d|q| e
− (|q|−ma)2

2r2
` , (4.19)
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(a) Without smearing function. (b) With smearing function.

Figure 11. Golden ALP mass. Impact of the smearing function in (a selected region of) the
parameter space ma vs. |(cd− cQ)sb|/fa for the RK∗ anomaly. On the left (right) the case without
(with) the effect of the smearing function. The benchmark point for the ALP-lepton couplings is
(|(ce − cL)ee| /fa, |(ce − cL)µµ| /fa) = (10−1, 10−5) GeV−1. In green (yellow) the 1σ(2σ) allowed
region for the low and central energy-bin window, with the darker colours corresponding to the
low bin.

where re = 10 MeV [115] and rµ = 2 MeV [116] refer to the di-lepton mass resolution of the
LHCb detector, and the boundaries of the integration range correspond to the extremes
of the considered energy-bin window. The net effect of this function is to broaden the
distributions found in the previous section near the borders of the energy-bin windows.
We will explicitly show the impact of this smearing on the analysis of RK∗ in two mass
ranges corresponding respectively to: the golden mass solution in between the two energy-
bin windows, and the lowest energies within the low-energy bin region.

The golden mass solution. In figure 11 we zoom in the relevant part of the parameter
space for RK∗ showed in figure 8a, for the same benchmark point of the ALP-lepton
couplings. The impact of the smearing function around the golden mass region can be
appreciated in figure 11b, as compared to figure 11a which does not include smearing effects.
The overlap at the 2σ level of the ALP solutions common to the low and central energy-bin
anomalies broadens now to an interval around the precise value ma =

√
1.1 GeV, given by

ma ∈ [1.04 , 1.07] GeV . (4.20)

The kinematic solution to the low-bin anomaly. Let us focus now instead on the
lower boundary of the low-energy bin of RK∗ . This is of particular interest because this
boundary is higher than the di-muon threshold: an ALP with mass ma < 2mµ cannot
decay into muons but only into electrons, which a priori opens the possibility of a kinematic
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(a) Without smearing function. (b) With smearing function.

Figure 12. ALP mass just under the low bin window. Impact of the smearing function in the
parameter space |(ce − cL)ee|/fa vs. |(ce − cL)µµ|/fa of solutions to the low bin RK∗ anomaly;
1σ(2σ) allowed regions depicted in green (yellow), for ma = 210 MeV and |(cd − cQ)sb|/fa =
7.96× 10−10 GeV−1. The figure on the left (right), does not (does) include the smearing function.
The dotted line represents the flavour universal setup for the lepton couplings and the black star
the smallest allowed value. The dark grey regions are excluded by the prompt decay condition,
while the light grey ones are excluded by Bs → `+`− data.

explanation of the low energy-bin RK∗ anomaly [113]. While this is not possible without
the effect of the smearing function, as shown in the previous section, now it appears to be
a viable possibility, see figure 11b.

The kinematic solution is further illustrated in figure 12 for the particular case of an
ALP mass slightly below the di-muon threshold, ma = 210 MeV. The allowed parameter
space for lepton couplings is depicted (the ALP-quark coupling has been fixed to a reference
value that allows us to avoid conflict with the semileptonic B-decay constraints). The
comparison of the left and right plots of this figure shows that the effect of the smearing is
to substantially enlarge the relevant 2σ region that explains the anomaly. Furthermore, an
oblique dotted line in these plots indicates the location of the flavour universal solutions: the
particular case analysed in ref. [44] is represented by a black star and shown to be excluded
without smearing effects and viable once smearing effects are included. The expectation is
that the future experimental improvements in these observables will increase the sensitivity
and thus the effect of the smearing will get progressively reduced; in the absence of a
discovery, the realistic analysis should ultimately converge towards figure 12a as final result.

4.3 Impact of sizeable couplings

We have previously discussed that a large ALP-electron coupling induces a non-negligible
ALP-photon coupling in the context of (g − 2) data. A similar effect occurs for flavour-
violating couplings of the ALP to quarks, which are generated by the ALP-electron coupling
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at the two-loop level.14 Indeed, given the large |(ce − cL)ee| values required to explain the
neutral B-anomalies and the very high precision on some data, these effects might become,
in some cases, relevant for the present study. It is beyond the scope of the present work to
include such effects in the analysis. However, following the discussion in ref. [44], we remark
that the loop induced ALP-bs coupling could become larger than the value in eq. (4.14).
The experimental bound on B(B → Ke+e−) in fact applies to the effective coupling

(cd + cQ)sb
fa

∼ (cd + cQ)tree
sb

fa
+ α2

em

s4
w(4π)2

(cL)ee
fa

log Λ
mB

, (4.21)

as it can be estimated from the renormalization group equations of the ALP EFT. Hence,
as we discussed in the context of magnetic moments, a cancellation between tree and loop
level contributions can become necessary in order to satisfy this experimental constraint.
Note that this type of fine-tuning can be avoided in certain UV models, such as those
producing only right-handed lepton couplings to the ALP, where this loop contribution
can be naturally suppressed.

5 Very light ALP

We address next whether the neutral B anomalies could be mediated by ALPs even lighter
than those discussed in the previous section, that is lighter than twice the muon mass. In
consequence, the ALP cannot decay into two muons but it can decay into two electrons.

Astrophysical constraints on non-negligible ALP-electron couplings [44] exclude ALPs
lighter than 1 MeV, though, and in consequence, the range of masses to be explored in this
section is

1 MeV < ma . 2mµ . (5.1)

For this range of masses, additional bounds from Beam Dump experiments and from su-
pernova data analysis constrain the possible values for the ALP-electron coupling to be
outside of a small interval [44], approximately |(ce − cL)ee|/fa 6∈ [10−4, 10−1] GeV−1 and
[10−6, 10−4] GeV−1, respectively.

Furthermore, for ma < 2mµ, astrophysical upper limits on the ratio between the
effective ALP-photon couplings and the scale fa would be very strong, of the order of
10−11 GeV−1,15 but they can be evaded using the freedom on the value of the tree-level
caγγ coefficient in eq. (2.6).

A peculiar feature of this mass regime is the similarity of the final expressions for
RK and RK∗ with those in the heavy ALP scenario discussed in section 3. Indeed, for
m2
a � q2, the ma dependence in the ALP propagator can be neglected, which leaves only

its q2 dependence. Once the integration over q2 is performed with Flavio and EOS, the
final expressions for the SM plus ALP contributions to B → K(∗)`+`− read, for the central

14We thank the referee for recalling the relevance of the two-loop effects in these couplings.
15Even stronger bounds could follow from cosmological constraints, which however depend on the specific

assumption of the cosmological model considered.
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bin of B → K semileptonic decays,

B(B → Kµ+µ−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.5− 2.4× 10−2 C̃µP+

+ 6.6× 10−3 C̃µ2
P+

)
,

B(B → Ke+e−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.5− 1.2× 10−4 C̃eP+ + 6.7× 10−3 C̃e2P+

)
,

(5.2)

while for the central bin of B → K∗ semileptonic transitions, it results

B(B → K∗µ+µ−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.9− 2.3× 10−2 C̃µP− + 6.2× 10−2 C̃µ2

P−

)
,

B(B → K∗e+e−)6.0 GeV2

1.1 GeV2 = 10−7 ×
(
1.9− 1.1× 10−4 C̃eP− + 6.3× 10−3 C̃e2P−

)
,

(5.3)

and for its low-energy bin they read

B(B → K∗µ+µ−)1.1 GeV2

0.045 GeV2 = 10−7 ×
(
1.2− 2.4× 10−2 C̃µP− + 6.3× 10−3 C̃µ2

P−

)
,

B(B → K∗e+e−)1.1 GeV2

0.045 GeV2 = 10−7 ×
(
1.3− 1.4× 10−4 C̃eP− + 7.7× 10−3 C̃e2P−

)
.

(5.4)

For all these quantities, the theoretical error is estimated to be O(15)%. The compar-
ison of these expressions with their corresponding siblings for the heavy ALP case in
eqs. (3.12), (3.34) and (3.35) shows that the numerical coefficients in front of the NP
Wilson coefficients have a similar order of magnitude, and similar considerations can be
applied to the analysis of both cases. Using the available data on non-resonant searches
presented in table 1, the 2σ bounds on the corresponding Wilson coefficients read:

C̃eP+ ∈ [−8.3, 8.3] , C̃µP+
∈ [−4.2, 7.8] ,

C̃eP− ∈ [−14.0, 14.0] , C̃µP− ∈ [−4.8, 5.1] .
(5.5)

Before proceeding to compare with other observables, it is useful to rewrite these C̃`P±
coefficients in terms of ALP-fermion couplings. They can be expressed in terms of the C`P±
coefficients defined in eq. (3.6) as

C̃`P± ≡ −m2
a

C`P±
GeV2 = − 2

√
2π

αemGFVtbV
∗
ts

m`

(fa GeV)2 (ms ∓mb)
(
KS,P
d

)
sb

(
KP
e

)
``
. (5.6)

which can be simplified to

C̃eP± ≈ ±1.3× 106 GeV2 (cd ± cQ)sb
fa

(ce − cL)ee
fa

,

C̃µP± ≈ ±2.7× 108 GeV2 (cd ± cQ)sb
fa

(ce − cL)µµ
fa

.

(5.7)

Note that these relations are independent of the specific value of the ALP mass, in contrast
with the case of a heavy ALP, see eq. (3.17).

5.1 RK , ∆Ms and magnetic moments

RK . In the illustrative case C̃µP+
= 0, the regions in parameter space which now allow to

explain RK within the 2σ region are C̃eP+ ∈ [−8.2, −3.9] ∨ [4.0, 8.2]. When the complete
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(a) RK . (b) RK∗ .

Figure 13. Parameter space for RK (left) and RK∗(right) for an ALP lighter than 2mµ. In
light yellow and light green are respectively depicted the 1σ and 2σ solutions to the central bin
of RK∗ , while darker shades of those colours on the right plot denote the corresponding solutions
for the low bin of RK∗ . The grey regions around the frame of the figures are excluded at 2σ by
data on semileptonic B → K(∗)µ+µ− (dashed black contours) decays, and on the left plot also by
B → Ke+e− data (solid black contours). On the right plot, regions excluded by purely leptonic Bs
decays reach the central area and are also depicted in grey.

bi-dimensional parameter space {CeP+ , C
µ
P+
} is considered, the allowed regions in parameter

space can be seen in figure 13a, leading to the 2σ allowed range:

C̃eP+ ∈ [−8.3, −3.5] ∨ [3.5, 8.3] ,
C̃µP+

∈ [−4.2, 7.8] ,
(5.8)

where the bounds which stem from the data on semileptonic B → K decays have already
been taken into account. Comparing these results with the expressions in eq. (5.7), a naive
estimation for the ratio between electron-ALP and muon-ALP couplings is obtained:

∣∣∣∣∣
(ce − cL)µµ
(ce − cL)ee

∣∣∣∣∣ ≈ 4.8× 10−3

∣∣∣∣∣∣
C̃µP+

C̃eP+

∣∣∣∣∣∣
. 10−2 . (5.9)

∆Ms. The data on meson oscillations provide bounds on quark-ALP couplings similar
to those previously obtained for the heavy ALP,16

(cd ± cQ)sb
fa

. 10−5 GeV−1 , (5.10)

16Stronger bounds will be obtained further below from semileptonic resonant searches for (cd − cQ)sb in
a particular range of ma, see eq. (5.22).
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Figure 14. Very light ALP (ma ≤ 2mµ). Parameter space (ce− cL)ee/fa vs. (ce− cL)µµ/fa that
solves the RK anomaly assuming (cQ + cd)sb/fa = 10−5 GeV−1. The green (yellow) regions corre-
spond to the allowed parameter space at 1σ (2σ). In grey are represented the experimental bounds
from B → Kµ+µ− (enclosed by the dashed line) and B → Ke+e− (enclosed by the solid line).

which, taking into account eq. (5.7) and the range of solutions for RK in eq. (5.8), implies

| (ce − cL)ee |
fa

& 0.3 GeV−1 ,
| (ce − cL)µµ |

fa
& 1.6× 10−3 GeV−1 , (5.11)

in order to solve RK . At least for the electron case, these large values for ALP-lepton
coupling are borderline with respect to the validity of the EFT.

Anomalous magnetic moment of the electron and the muon. Similarly to the case
of larger ma values explored in previous sections, for the very light ALP the contribution
from the diagram in figure 4a would be largely insufficient by itself to either saturate the
∆ae bound or to account for the ∆aµ anomaly. The dominant contribution would then
stem from the insertion of gauge anomalous ALP-couplings in figure 4b, and in particular
from the photon-photon one.

Given the ALP mass range under consideration, 1 MeV < ma < 2mµ, the expression
in eq. (3.28) and the ensuing bound from ∆ae still applies to this very light ALP case
because ma > me. In contrast, a new analysis is in order for the ALP contribution to ∆aµ,
which results in

∆aALPµ ' Ãµ
caγγ + ∆̃caγγ

fa

(ce − cL)``
fa

, (5.12)
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where
Ãµ ≡

m2
µ

2π2

(
log Λ2

m2
µ

− 1
)

= 1.0× 10−2 GeV2 , (5.13)

for Λ = 4πfa ≈ 1 TeV. In the ma � mµ limit the ∆caγγ coefficient — induced by the
anomalous chiral rotations needed to reach the mass basis — is modified, as the anoma-
lous contribution proportional to (ce − cL)µµ cancels exactly with the one-loop corrections
from the pseudoscalar ALP-muon coupling to the aF F̃ coupling [50]. Thus, a different
coefficient, ∆̃caγγ , is defined, which only contains the anomalous contribution proportional
to the ALP-electron coupling constant (ce − cL)ee, i.e.

∆̃caγγ ≡ −
αem
4π (ce − cL)ee , (5.14)

and replaces ∆caγγ in the ma � mµ limit. This means that the strong astrophysical
bounds apply to the combination

caγγ + ∆̃caγγ ' caγγ −
αem
4π (ce − cL)ee < 10−11 GeV−1 . (5.15)

It follows that an explanation at the 2σ level of the data on g − 2 of the electron and the
muon in terms of the exchange of a very light ALP leads respectively to the requirements

1
fa

[
(ce − cL)ee

(
(ce − cL)ee −

4π
αem

caγγ

)]1/2
∈ [0.03, 0.10] GeV−1 , (5.16)

and
1
fa

[
(ce − cL)µµ

( 4π
αem

caγγ − (ce − cL)ee
)]1/2

∈ [0.02, 0.03] GeV−1 , (5.17)

where ma = 10 MeV has been used as illustration.
Given the constraint in eq. (5.15), the very large values of (ce − cL)ee required to

satisfy ∆ae in eq. (5.16) are incompatible with the possible explanations of RK in terms
of the exchange of a very light ALP; see figure 14. Thus, experimental data exclude by
themselves such a solution to RK . Note that even if this had not been the case, the very
large values of (ce − cL)ee required would have lied outside the regime of validity of the
EFT by several orders of magnitude.

5.2 RK∗, B → K∗a(e+e−), Bs → `+`− and magnetic moments

RK∗. An explanation of the RK∗ anomalies in terms of the exchange of a very light ALP
leads to

for C̃µP− = 0:




C̃eP− ∈ [−14.0, −5.4] ∨ [5.4, 15.3] central bin
C̃eP− ∈ [−14.0, −3.0] ∨ [3.0, 15.3] low bin

(5.18)

while figure 13b illustrates the enlarged range for C̃µP− 6= 0, which translates into a param-
eter space of solutions {C̃eP− , C̃

µ
P−} with

C̃µP− ∈ [−4.8, 5.1] central and low bin (5.19)
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and 


C̃eP− ∈ [−14.0, −5.4] ∨ [5.4, 14.0] central bin
C̃eP− ∈ [−14.0, −2.4] ∨ [2.4, 14.0] low bin

(5.20)

As before, these bounds already take into account the non-resonant semileptonic B → K∗

constraints. It follows from eq. (5.7) that
∣∣∣∣∣
(ce − cL)µµ
(ce − cL)ee

∣∣∣∣∣ ≈ 4.8× 10−3

∣∣∣∣∣∣
C̃µP−

C̃eP−

∣∣∣∣∣∣
.





5× 10−3 central bin
10−2 low bin

(5.21)

which shows the necessity of a moderate hierarchy between the electronic and muonic
couplings of the ALP.

B → K∗a(e+e−). For a light ALP with mass value within the q2 bin
(0.0004, 0.05) GeV2, that is with ma > 10 MeV, data from resonant B → K∗a(e+e−)
searches are available. As the ALP is on-shell, it is possible to use the NWA as in the
previous section. Because B(a→ e+e−) = 1, it is then possible to infer directly from those
data a very strong bound on ALP-quark couplings, given by

(cd − cQ)sb
fa

. 8× 10−10 GeV−1 , (5.22)

which in order to account now for the RK∗ anomaly leads to the following constraints on
ALP-lepton couplings, in that range of ma,

| (ce − cL)µµ |
fa

∈ [−23.8, 22.4] central and low bin , (5.23)

together with




| (ce − cL)ee |
fa

∈ [−13.5, −5.2]× 103 ∨ [5.2, 13.5]× 103 central bin
| (ce − cL)ee |

fa
∈ [−13.5, −2.3]× 103 ∨ [2.3, 13.5]× 103 low bin

(5.24)

again strongly at odds with the range of validity of the EFT.

Bs → `+`−. The contributions of the SM plus ALP exchange to the branching ratios
for the purely leptonic decays of the Bs meson are given by

B(Bs → µ+µ−) = 10−9 ×
(
3.67− 3.99 C̃µP− + 1.09 C̃µ2

P−

)
,

B(Bs → e+e−) = 10−14 ×
(
8.58− 1.93× 103C̃eP− + 1.09× 105 C̃e2P−

)
,

(5.25)

with a theoretical error of 4% at the 1σ level. It follows that the 2σ allowed regions in
parameter space are 



C̃eP− ∈ [−3.2, 3.2] ,
C̃µP− ∈ [−0.095, 0.41] ∨ [3.2, 3.8] .

(5.26)
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This is an interesting point for this very light ALP case, as illustrated in figure 13b. It
shows that — in contrast with the scenario for a heavy ALP — there is 2σ compatibility
between the solutions to the RK∗ anomaly — low bin — and the data on Bs → µ+µ− and
Bs → e+e−: the four small yellow square regions with white background in figure 13b
survive, corresponding to

(
C̃eP− , C̃

µ
P−

)
'
{

(−3, 0), (−3, 3.4), (3, 0), (3, 3.4)
}
. (5.27)

The prize in this case is again theoretical, as these solutions imply ALP-lepton couplings
outside the range of validity of the EFT. Indeed, applying the bounds from dedicated
resonant searches in eq. (5.22), the four points listed above translate into the following
unacceptably large values for ALP-lepton couplings:

(
(ce − cL)ee

fa
,

(ce − cL)µµ
fa

)
'
{

(±3× 103, 0), (±3× 103, 17)
}
GeV−1 . (5.28)

Anomalous magnetic moment of the electron and the muon. The analysis of ALP
exchange on leptonic magnetic moments, compared with the solutions to RK∗ , parallels that
for the solutions to RK above. In particular, the data on the set of observables {RK∗ ,∆ae}
require tree-level photon couplings that are too large to comply with the existent astro-
physical constraints [55] (and are also incompatible with the EFT validity conditions).

6 Conclusions

We have analysed the technical and the theoretical cost required to explain the neutral
anomalies in B-meson decays via the tree-level exchange of an ALP. Within the ALP effec-
tive field theory and assuming ALP-bs couplings, the complete two-dimensional parameter
space for flavour-diagonal ALP couplings to electrons and muons is explored (considering,
in addition, ALP-photon couplings when certain loop-level effects require it). The range
of ALP masses contemplated sweeps from heavy ALPs, i.e. heavier than the B mesons,
to very light ALPs down to 1MeV — which is the lower value allowed by astrophysical
constraints on the ALP-electron coupling.

The predictions for RK and the two bins of RK∗ are confronted with the impact
of ALP exchange on other observables, namely meson oscillations (∆Ms), Bs → `+`−

decays, B → K(∗)`+`− decays — including searches for new resonances — and astrophysical
constraints. The data on these observables severely limit the available parameter space.
Furthermore, we have analysed the impact of the solutions found on the g−2 of the electron
and of the muon.

The solutions allowed are then compared with the theoretical conditions for the validity
of the ALP EFT, requiring to remain within the perturbative domain of the effective theory
on the assumption that the ALP scale is at least of the order of the electroweak scale, and
the ALP mass under it.

For a heavy ALP, no viable explanation of the neutral anomalies in terms of tree-level
ALP exchange survives. Solutions to RK compatible with other observables — except the

– 38 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
8

∆aµ anomaly — are found. Nevertheless, they are in strong conflict with the EFT validity
conditions: in order to account for RK , the very small ALP-quark couplings required
by ∆Ms data require in turn ALP-lepton effective couplings unacceptably large from the
theoretical point of view. In the case of RK∗ , all ALP mediated solutions are directly
excluded by the data on Bs → `+`− irrespective of EFT consistency considerations.

A similar fate applies to the other extreme of the ALP mass range: ALPs with mass
smaller than the energies of the low-energy bin of RK∗ are also excluded. In fact, we do find
solutions to the RK or the RK∗ anomalies allowed within 2σ by the other observables men-
tioned; for instance the explanation of RK∗ and the Bs → `+`− data are in this case compat-
ible within 2σ. From the theoretical point of view, the validity constraints of the EFT are
(in)compatible by themselves with the values required by the RK (RK∗). Nevertheless, all
solutions via these very light ALPs are excluded by the experimental bound on ∆ae, since
in this case, astrophysical bounds set strong constraints on the effective photon coupling.

In contrast to the above, an ALP lighter than the B mesons but with a mass value
within any of the bin windows provides an altogether different perspective. The ALP
exchanged can then be on-shell and enter a resonant regime: B → K(∗)`+`− processes fac-
torise into ALP on-shell production followed by decay. In this situation, the ALP coupling
to muons must be much smaller than that to electrons to explain the neutral B-anomalies
and thus B(a → e+e−) ∼ O(1). The latter implies in turn that RK and/or RK∗ become
rather independent of the precise values of ALP leptonic couplings, and the solutions,
therefore, escape from the theoretical problems with the EFT validity encountered for ei-
ther heavy or extremely light ALPs. In this mass regime, we have also taken into account
the validity requirements for the narrow-width approximation and for prompt ALP de-
cays. The latter defines a minimum electron coupling for the solutions to RK(∗) and hence
the parameter space compatible with the EFT validity constraints is reduced even in this
on-shell regime.

Within the allowed parameter space for on-shell ALP exchange, we have furthermore
identified a golden ALP mass value which lies at the frontier between the two energy
bins for RK∗ , ma =

√
1.1 GeV, and which becomes a broader mass range when smearing

effects — associated to the finite experimental precision — are estimated. These golden
mass values provide solutions which could a priori explain the three anomalies, i.e. RK
together with the two bins of RK∗ , always remaining compatible with the observables
mentioned above and with the EFT validity constraints. While solutions in-between bins
are always suspect, they are technically allowed and prompt the convenience to perform a
slightly different experimental binning, which could easily clean up this avenue.

When the loop-level impact of the Lagrangian couplings are considered for an on-shell
ALP, it is also possible to account simultaneously for the data in the sets {RK(∗) ,∆ae},
while once again the ∆aµ anomaly cannot be then accounted for. Nonetheless, given the
large electron couplings required by the analysis, their loop-level impact becomes relevant
for some set of data. Correspondingly, some level of fine-tuning is called for to comply with
the experimental bounds on ∆ae, as well as those obtained via B → K(∗)a(e+e−) searches.
This adds to the already established theoretical cost of the ALP solution to the neutral
B-anomalies. A complete loop-analysis is beyond the scope of this paper. Along the same
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line, we have not addressed the so-called charged flavour B-anomalies, as they cannot be
explained by tree-level ALP exchanges.

We have exposed the high cost and conditions required to explain the neutral B-
anomalies via tree-level ALP exchange. This is furthermore within the assumption —
customary in the literature — that the only new physics couplings present in Nature are
non-diagonal bs-ALP couplings and diagonal electron and muon ALP couplings as defined
in the mass basis, instead of the most natural flavour basis. Nevertheless, the potential
groundbreaking implications of the flavour B-anomalies, would they turn to be definitely
confirmed by experiment, prompt to let no stone unturned. The broad ALP arena is a
generic and compelling option to explore.
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A The input data and SM predictions

The parameters used for the computations, as well as the SM predictions used to derive
the constraints along this work, are shown in table 3 and table 4, respectively.

B Details of B → K(∗)`` computations

The differential semileptonic decay rates considered in this work depend strongly on the
values of the form factors, which have been calculated using different models and methods
in the literature. The central values of the B → K form factors presented in ref. [112] have
been used in this work, under the standard BCL parameterisation [118]. In the B → K∗

case the central values reported in ref. [111] have been used instead.
We have cross-checked our analytical expressions, used in all figures presented in sec-

tion 4 and to cross-check the results in other sections, by comparing the differential dis-
tributions dB(B → K(∗)`+`−)/dq2 assuming only the SM with the output from Flavio;
see figure 15. The accuracy between the two results is evident. The corresponding error
bands, obtained with the same software, are also shown. Such theoretical uncertainties,
together with the experimental ones, have been included to estimate the bounds on the
new physics couplings. On the other hand, we neglect the theory errors associated to the
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Parameter Value Unit of Measure
αem(mb) 0.007518797 —
GF 1.1663787(6)× 10−5 GeV−2

me 0.000510999 GeV
mµ 0.105658 GeV

m̄s(2 GeV) 0.093+0.011
−0.005 GeV

m̄b(mb) 4.18+0.03
−0.02 GeV

MBs 5.36688± 0.00014 GeV
MB0 5.27965± 0.00012 GeV
MB± 5.27934± 0.00012 GeV
MK± 0.493677± 0.000016 GeV
MK0∗ 0.89555± 0.0008 GeV
τBs (1.516± 0.004)× 10−12 s

τB0 (1.519± 0.004)× 10−12 s

τB± (1.638± 0.004)× 10−12 s

|Vts| 0.04065+0.00040
−0.00055 —

|Vtb| 0.999142+0.000018
−0.000023 —

C7 −0.33726473 —
C9 4.27342842 —
C10 −4.16611761 —

Table 3. Parameters used for the computations. The quark masses are estimates of the MS scheme
at the given renormalisation scale [117]. The values of the WET Wilson coefficients are those used
in EOS [88].

new physics branching ratios, as they are expected to have a negligible impact compared
to the SM ones. In fact, the former are typically O(15%) of the latter.

Using the new form factors presented by the FLAG collaboration [119], the results
from our analytical expressions remain compatible with the Flavio output, although the
central values in figure 15 show variations of O(7%).

C Bounds from binned B → K∗e+e− data

Bounds from the differential distribution of the observed number of events in the
B → K∗e+e− decay, dN/dq2(B → K∗e+e−), measured at LHCb [114] constrain the prod-
uct B(B → K∗a) × B(B → e+e−) for ALP masses within the 6 measured bins of q2. In
order to obtain such constraints, we have estimated the efficiency effects by comparing the
number of events resulting from the Monte Carlo simulation of the SM, reported in the
experimental paper, with the predictions from Flavio [87]; see table 4. In this way, we can
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SM Prediction q2 [GeV]2 Value
B(B → K`+`−) [1.1, 6.0] (1.71± 0.29)× 10−7

B(B → K∗`+`−) [0.0004, 0.05]
e+e−: (1.65± 0.31)× 10−7

µ+µ−: (1.28± 0.24)× 10−9

B(B → K∗`+`−) [0.05, 0.15]
e+e−: (3.94± 0.69)× 10−8

µ+µ−: (3.28± 0.60)× 10−8

B(B → K∗`+`−) [0.15, 0.25]
e+e−: (1.96± 0.34)× 10−8

µ+µ−: (1.92± 0.33)× 10−8

B(B → K∗`+`−) [0.25, 0.4]
e+e−: (1.94± 0.31)× 10−8

µ+µ−: (1.92± 0.30)× 10−8

B(B → K∗`+`−) [0.4, 0.7]
e+e−: (2.62± 0.38)× 10−8

µ+µ−: (2.61± 0.37)× 10−8

B(B → K∗`+`−) [0.7, 1]
e+e−: (1.98± 0.26)× 10−8

µ+µ−: (1.97± 0.29)× 10−8

B(B → K∗`+`−) [1.1, 6.0] (2.53± 0.36)× 10−7

B(B → K∗`+`−) [0.1, 8.0]
e+e−: (4.87± 0.65)× 10−7

µ+µ−: (4.82± 0.68)× 10−7

B(Bs → µ+µ−) — (3.67± 0.15)× 10−9

B(Bs → e+e−) — (8.58± 0.35)× 10−14

Table 4. SM predictions relevant for the analyses discussed in this work, computed directly from
flavio [87].

0 5 10 15 20

1.×10
-8

2.×10
-8

3.×10
-8

4.×10
-8

5.×10
-8

Figure 15. The SM prediction for the differential distributions obtained using Flavio (red dots)
vs. our analytical formulas (blue dots). Error bars include the theoretical uncertainties in the SM
prediction.
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Figure 16. The experimental limits on the differential branching ratio dB/dq2(B → K∗e+e−)
obtained from ref. [114], together with the SM (in black) and the NP (in red) predictions. Both the
continuous and binned distributions, divided in the 6 measured bins of q2, are presented. For the
NP, we have assumed an ALP with ma = 0.6GeV and decaying ≈ 100% into electrons. The quark
coupling is set to |(cd − cQ)sb|/fa = 3.05× 10−10 GeV−1.

relate the two relevant quantities N and B by

N(B → K∗e+e−) = B(B → K∗e+e−)σB L ε , (C.1)

where σB is the production cross-section of a B meson at LHCb, L is the integrated
luminosity and ε is the detector efficiency for a given energy bin. Hence, knowing the SM
predictions for the branching fraction and the expected number of events, the quotient
Ndata/Bdata can be obtained from NSM/BSM.

The resulting bounds, taking into account both experimental and the SM theoretical
errors,17 are reported in table 2 with exception of one interval, q2 ∈ [0.15, 0.25]GeV2, where
a tension of more than 2σ with respect to the SM prediction is observed in data, that would
be worsened by the presence of NP. No beyond SM contributions are therefore considered
in this bin; see figure 8a.

These bounds are represented in figure 16 along with the SM predictions. In addition,
the contribution from a resonant ALP with a mass of 0.6GeV is also shown. For the
fermionic couplings, we have adopted the benchmark defined by (|(ce − cL)ee|/fa, |(ce −
cL)µµ|/fa) = (10−1, 10−5)GeV−1 and |(cd−cQ)bs|/fa| = 3.05×10−10 GeV−1 corresponding
to the blue star in figures 8a and 9a. It becomes clear the potential of these measurements
to probe the ALP parameter space relevant to the B anomalies and, in particular, the
advantages of using a smaller binning in order to resolve the ALP resonant peak.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

17Correlations across bins are ignored in this procedure. The former are taken into account in ref. [113]
where a similar procedure was adopted using only the first two bins of q2 determined in the experimental
analysis; the resulting bounds are very similar to those we have obtained.
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Conclusions 

Axion and ALP interactions can be depicted by the same ALP efective Lagrangian. 
This fact, accompanied by the ubiquity of ALPs in many BSM models, have fomented a 
fourishing period on the theoretical studies and the landscape of experimental searches for 
axions and ALPs, covering orders of magnitude in energy scale and using very diferent tech-
niques. These searches have reached a level of precision and are so diverse that experimental 
sensitivity requires to compute the one-loop impact of efective ALP couplings. These have 
been presented in this thesis in Ch. 4, which contains the work from Ref. [5]. First, an exten-
sive classifcation of the diferent ALP operators was presented. Non-redundant degrees of 
freedom within the ALP EFT were identifed and relations between diferent operators have 
been demonstrated. We introduced the complete set of one-loop corrections to the most 
general non-redundant ALP Lagrangian. The corrections were computed in a covariant Rξ 
gauge for of-shell ALPs and on-shell SM legs. Additionally, several kinematic limits for the 
ALP momentum and SM particle masses were presented, which may be useful for particular 
experimental setups. 

In order to demonstrate the power of one-loop corrections, some phenomenological 
consequences of the computations were discussed. In particular, we studied the implication 
of the loop-impact of the ALP-top interaction in other ALP couplings which are well tested 
experimentally. On one hand, we considered the resonant decay of a heavy ALP into a pair 
of top quarks. In such process, ALPs were assumed to be produced by gluon-gluon fusion via 
a top quark loop. Even though the process is loop-suppressed it still counts with a signifcant 
cross section which may be measured at LHC experiments. For instance, ATLAS experiment 
data for ditop events was used to set new bounds on the ALP-top interaction in the region 
of ma ⊂ [1.5, 4.5] TeV. On the other hand, we also explored the impact of such interaction 
on low-energy ALP searches. For instance, it induces a signifcant one-loop contribution to 
the ALP-electron that is enhanced by the top mass. Therefore, limits on the ALP-electron 
interaction can be recasted into new upper bounds for the ALP-top interaction in the mass 
region ma ≲ 1 MeV, which was previously unconstrained. These results were presented in 
Figs. 10 and 11 from the same chapter. 

Another interesting point is the one-loop modifcation of the electroweak tree-level 
gauge invariance relations. Since all four phenomenological couplings to EW gauge bosons 
{gaγγ , gaγZ , gaZZ , gaW W } are induced by only two independent EW couplings above EWSB 
{c
B , cW }, they cannot be linearly independent. In other words, at tree-level, those couplings e e 

are related by fxed expressions which can be used, for instance, to correlate experimental 
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bounds within the ALP EW sector (see Ref. [101]). It was demonstrated that such relations 
were actually modifed once the one-loop corrected Lagrangian was taken into account. This 
apparent breaking of EW gauge symmetry was however understood and explained in terms of 
higher dimensional ALP efective operators involving the Higgs doublet, which are generated 
at one-loop order from the d = 5 Lagrangian. 

An extensive study of the EW ALP parameters was accomplished in the second work 
included in this thesis, in Ref. [2] and in Ch. 5, which lies closer to the frontier between theory 
and experiment. In this chapter we studied the impact of ALPs in high-energy processes at 
the LHC. A novel search for ALPs was proposed and explored, which focuses on EW diboson 
production in VBS processes. ALPs, given their derivative nature, could contribute to such 
processes with signifcant cross sections which could be measured at the LHC or in future 
collider experiments. 

In particular, and in contrast with most previous works in the literature, we focused 
on processes mediated by nonresonant ALPs (where the ALP is assumed to be too light to 
be produced on-shell). These assumptions have the advantage that cross sections become 
independent on the ALP mass and decay width, which allows to explore huge regions of the 
parameter space at a time. Additionally, again due to the derivative nature of ALP couplings, 
ALP-mediated VBS process tends to produce a higher rate of events for larger values of the 
diboson invariant mass, compared with the SM counterpart. Therefore, instead of looking 
for a resonant peak in the invariant mass distribution of events, nonresonant searches aim 
to see a distortion in the “tails” of the event distributions. 

We employed Run 2 public data by the CMS experiment on the EW production 
of diboson events in VBS processes. The fnal states considered included the production 
of ZZ, Zγ, W ±γ, W ±Z and same-sign W ±W ± pairs with large diboson invariant mass 
in association with two forward jets in VBS processes [217–220]. Additionally, heavy EW 
bosons were required to decay into leptons. No signifcant discrepancy with respect to the 
SM prediction have been measured within such analyses. Thus, new upper limits on the 
ALP parameters were derived. 

The VBS channels considered could get contributions from the phenomenological 
ALP couplings to the EW gauge bosons: {gaγγ , gaγZ , gaZZ , gaW W }. In the analysis, tree-level 
ALP-fermion interactions were demonstrated to be negligible, since their contribution to 
the amplitude is proportional to fermion masses. Furthermore, ALP-gluon interactions are 
disregarded, but it was proven that if those are included in addition, this only leads to an 
enhancement of the ALP signal cross section, which would imply slightly better limits on the 
ALP parameters. This is also a strength with respect to previous analysis which relied on 
ALP-gluon couplings as the dominant ALP production channel. Moreover, the functional 
dependence of the pure ALP processes and the ALP-SM interference was discussed in a 
full gauge invariant way in terms on the EW couplings {c

Be, cWe }, which implies that the 
limits derived were completely general and do not rely on further assumptions on the ALP 
EFT. 

The experimental upper bounds on ALP EW couplings which follow were shown in 
Figs. 3, 4 and 6 of Ch. 4. Fig. 3 represented the limits obtained in the {c

B /fa, cW /fa} planee e 
for the individual VBS channels, and the combined limit. These bounds were proven to be 
valid for ALP masses up to ma ≲ 100 GeV. Additionally, projection limits for the combined 
channel for Run 3 LHC (with an estimated luminosity of L = 300 fb−1) and HL-LHC 
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(L = 3000 fb−1) were estimated and represented in Fig. 4. Finally, a comparison with other 
existing bounds was included in Fig. 6 for the four phenomenological ALP EW couplings. 
Our results were shown to be competitive with other ALP searches and, in particular, they 
comprise the best limit on gaZZ and gaW W in the ALP mass region from 1 to 100 GeV, which 
was previously unconstrained. 

Regarding future improvements of this work, stronger results could be found for 
example by the implementation of a refned binning in the region of large invariant masses for 
the event distribution. They could also be improved by defning a signal region more focused 
on the ALP signal prediction for the diboson production processes. Finally, this work could 
also be extended by incorporating into the ft measurements by the ATLAS Collaboration or 
measurements of other VBS channels, e.g. opposite-sign W ±W ± production or semileptonic 
decays of heavy bosons (WV and ZV production, with V → jj). 

Finally, another phenomenological quest of interest is whether ALP physics can ex-
plain standing experimental anomalies. That was the case of the third work included in this 
thesis in Ch. 6 from Ref. [3]. In this chapter, the neutral B-anomalies within the lepton 
favour universality (LFU) ratios RK and RK∗ were confronted with an explanation in terms 
of ALP interactions. It should be noticed that more recently the statistical signifcance of 
the anomalies have diminished in new measurements by the LHCb collaboration. Although 
this situation may seem to leave Ref. [3] outdated, this work could still be used for ALP 
phenomenology studies. For instance, the best regions of the ALP parameter space for ex-
plaining the anomalies could be identifed now as new excluded regions and notably stringent 
upper limits on ALP of-diagonal couplings to quarks would be established. 

Within the ALP EFT and assuming ALP-bs couplings, the complete two-dimensional 
parameter space for favour-diagonal ALP couplings to electrons and muons was explored. 
Additionally, ALP-photon couplings were also taken into account when certain loop-level ef-
fects required it, since they contribute signifcantly to other favour observables, e.g. charged 
lepton anomalous magnetic moments. Several mass ranges were considered for ALPs, which 
include: i) ma heavier than the B-meson mass, ii) light masses bellow twice the muon mass 
and iii) intermediate masses between those two values. Among these three ranges, only the 
latter could give a resonant contribution to the decay process of B-mesons. 

The predictions for RK and RK∗ were also confronted with the impact of ALPs on 
other observables. These include Bs − Bs meson oscillations, Bs → ℓ+ℓ− decays, B → 
K(∗)ℓ+ℓ− decays and astrophysical observables. The data on these observables severely lim-
ited the available parameter space. Furthermore, the impact of the solutions found on the 
charged lepton anomalous magnetic moments was also explored. Then, the available param-
eter space that could explain the anomalies was compared with the theoretical conditions 
for EFT validity, requiring to remain within the perturbative domain. 

For an ALP heavier than the B-meson, no viable explanation to the anomalies was 
found. Solutions to RK∗ were completely excluded from data on Bs → ℓ+ℓ−. On the other 
hand, numerical solutions to RK were found. However, in order to satisfy constraints from 
meson oscillations, ALP-lepton couplings were required to be excessively large, exceeding 
EFT validity conditions. Analogously, ALPs lighter than twice the muon mass face similar 
outcomes. Quantitative solutions to RK∗ were found but again incompatible with validity 
conditions. On the other hand, solutions to RK were however excluded by data on the 
electron anomalous magnetic moment and astrophysical constraints. 



228 

In contrast to the above, an ALP with an intermediate mass, lighter than the B-
meson but with a mass value within any of the bin windows, was found to provide a viable 
solution to the anomalies. Such ALP could be exchanged on-shell and enter a resonant 
regime: B → K(∗)ℓ+ℓ− processes factorise into ALP on-shell production followed by decay. 
In this situation, the ALP coupling to muons must be much smaller than that to electrons, 
and thus a had to decay mostly into electrons. The latter implies in turn that RK and/or RK∗ 

are rather independent of the precise values of ALP leptonic couplings, and the solutions, 
therefore, avoid the theoretical problems with the EFT validity encountered for either heavy 
or extremely light ALPs. Within the allowed parameter space, a “golden” ALP mass value 
at the frontier between the two energy bins for RK∗ was identifed: ma = 

√
1.1 GeV. Such 

golden mass ofered a simultaneous solution to all the anomalies within the experimental 
limits from the other favour observables taken into consideration and within the EFT validity 
region. When smearing efects associated to the experimental resolution were considered, the 
golden mass becomes a broader mass range. Notwithstanding, it is noteworthy that while 
solutions in-between bins are always suspect, they are technically allowed and prompt the 
convenience to perform a slightly diferent experimental binning, which could easily clean 
up this avenue. 

In resume, in this thesis I have explored axion and ALP phenomenology within the 
EFT framework. The tree and loop-level structure of ALP couplings was studied, together 
with their phenomenological implications in collider experiments, or as a solution to experi-
mental anomalies. The landscape of axions and ALPs is undergoing a fourishing period with 
huge eforts from both the experimental and theoretical point of view. This thesis has both 
sizeably reduced the ALP parameter space open to exploration, and developed ALP-EFT at 
loop level, with direct impact on these searches. The results also suggest new possibilities 
and potential avenues for continuing this discovery quest. 



Conclusiones 

Las interacciones de axiones y PTAs pueden ser representadas por el mismo Lagran-
giano efectivo de las PTAs. Este hecho, junto con la ubicuidad de las PTAs en diferentes 
modelos más allá del ME, ha fomentado un período próspero tanto en los estudios teóricos y 
como en el panorama de las búsquedas experimentales de axiones y PTAs, que abarca órde-
nes de magnitud en las escalas de energía y utiliza técnicas muy diferentes. Estas búsquedas 
han alcanzado un nivel de precisión y son tan diversas que la sensibilidad experimental re-
quiere de calcular el impacto a un loop en los acoplos efectivos de las PTAs. En esta tesis se 
presentan estos cálculos en el Cap. 4, que contiene el trabajo incluido en la Ref. [5]. En pri-
mer lugar, se presentó una extensa clasifcación de los diferentes operadores de las PTAs. Se 
identifcaron los grados de libertad no redundantes presentes en la teoría de campos efectiva 
(TCE) de las PTAs y se derivaron las relaciones entre los diferentes operadores. Introdujimos 
el conjunto completo de correcciones a un loop para el Lagrangiano no redundante de las 
PTAs más general posible. Las correcciones se calcularon en un gauge covariante Rξ para 
PTAs fuera de su capa de masas y para las partículas del ME en su capa de masas. Además, 
se presentaron varios límites cinemáticos para el momento de la PTA y las masas de las 
partículas del ME, que pueden ser útiles para diversos experimentos. 

Con el fn de demostrar el poder de las correcciones a un loop, se discutieron algunas 
consecuencias fenomenológicas de los cálculos. En particular, se estudió la implicación del 
impacto a un loop de la interacción PTA-top en otros acoplamientos de las PTAs que han 
sido testados experimentalmente. Por un lado, consideramos la desintegración resonante de 
una PTA pesada en un par de quarks top. En dicho proceso, se supuso que las PTAs son 
producidas por fusión de gluones a través de un loop de quarks top. Aunque el proceso 
está suprimido por un loop, todavía cuenta con una sección efcaz signifcativa que puede 
medirse en experimentos del LHC. Por ejemplo, se utilizaron los datos del experimento 
ATLAS para eventos con dos tops con el fn de establecer nuevos límites en la interacción 
PTA-top en la región de ma ⊂ [1,5, 4,5] TeV. Por otro lado, también se exploró el impacto 
de dicha interacción en las búsquedas de PTAs a bajas energías. Por ejemplo, esta induce 
una contribución signifcativa a un loop al acoplo PTA-electrón, que es proporcional la masa 
del quark top. Por lo tanto, los límites en la interacción PTA-electrón se pueden reformular 
en términos de nuevas cotas superiores para la interacción PTA-top en la región de masa 
ma ≲ 1 MeV, que anteriormente no estaba constreñida. Estos resultados se presentaron en 
las Figs. 10 y 11 del mismo capítulo. 

Otro punto interesante es la modifcación a un loop de las relaciones a nivel árbol de 
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la invariancia gauge electrodébil. Dado que todos los cuatro acoplamientos fenomenológicos 
a bosones gauge ED {gaγγ , gaγZ , gaZZ , gaW W } son inducidos por solo dos acoplamientos ED 
independientes por encima de la ruptura espontánea de simetría ED {c

Be, cW }, estos no pue-e 
den ser linealmente independientes. En otras palabras, a nivel de árbol, esos acoplamientos 
están relacionados por expresiones fjas que se pueden utilizar, por ejemplo, para correlacio-
nar límites experimentales dentro del sector ED de las PTAs (ver Ref. [101]). Se demostró 
que dichas relaciones se modifcan una vez se tiene en cuenta el Lagrangiano corregido a 
un loop. Sin embargo, esta aparente ruptura de la simetría gauge ED se entendió y explicó 
en términos de operadores efectivos de las PTAs de dimensión superior que involucran al 
doblete de Higgs, que se generan a nivel loop a partir del Lagrangiano d = 5. 

Una extensa investigación de los parámetros ED de las PTAs se llevó a cabo en el 
segundo trabajo incluido en esta tesis, en la Ref. [2] y en el Cap. 5, que se encuentra más cerca 
de la frontera entre la teoría y el experimento. En este capítulo, estudiamos el impacto de las 
PTAs en procesos de alta energía en el LHC. Se propuso y se exploró una nueva búsqueda de 
PTAs, que se enfoca en la producción de dibosones ED en procesos de dispersión de bosones 
vectoriales (DBV). Las PTAs, debido a su naturaleza derivativa, podrían contribuir a tales 
procesos con secciones efcaces signifcativas, que podrían medirse en el LHC o en futuros 
experimentos de colisionadores. 

En particular, y en contraste con la mayoría de los trabajos previos de la literatura, 
nos centramos en procesos mediados por PTAs no resonantes (donde se asume que la PTA 
es demasiado ligera para ser producida en su capa de masas). Estas suposiciones tienen la 
ventaja de que las secciones efcaces se vuelven independientes de la masa y de la anchura 
de desintegración de la PTA, lo que permite explorar grandes regiones del espacio de pa-
rámetros simultameamente. Además, nuevamente debido a la naturaleza derivativa de los 
acoplamientos de las PTAs, el proceso de DBV mediado por PTAs tiende a producir una 
tasa más alta de eventos para valores más grandes de la masa invariante de los dibosones, 
en comparación con el caso del ME. Por lo tanto, en lugar de buscar un pico resonante en 
la distribución de masas invariantes de los eventos, las búsquedas no resonantes buscan ver 
una distorsión en las “colas” de las distribuciones de eventos. 

Utilizamos datos públicos del Run 2 del experimento CMS sobre la producción ED 
de eventos de dibosones en procesos de DBV. Los estados fnales considerados incluyeron 
la producción de pares ZZ, Zγ, W ±γ, W ±Z y W ±W ± con alta masa invariante en asocia-
ción con dos jets no transvesales en procesos de DBV [217–220]. Además, se requirió que 
los bosones ED pesados se desintegren en leptones. No se ha medido ninguna discrepancia 
signifcativa con respecto a la predicción del ME en dichos análisis. Por lo tanto, se derivaron 
nuevos límites superiores para los parámetros de las PTAs. 

Los canales DBV considerados podrían recibir contribuciones de los acoplamientos 
fenomenológicos de las PTAs a los bosones gauge ED: {gaγγ , gaγZ , gaZZ , gaW W }. En el aná-
lisis, se demostró que las interacciones PTA-fermión a nivel de árbol eran despreciables, ya 
que su contribución a la amplitud es proporcional a la masa de los fermiones. Además, no se 
consideraron las interacciones PTA-gluón, pero se demostró que si estas también se incluyen, 
esto solo conduce a una mejora de la sección efcaz de la señal de mediada por PTAs, lo que 
implicaría límites ligeramente mejores en los parámetros de las PTA. Esto también es una 
fortaleza en comparación con los análisis previos que se basaban en los acoplamientos PTA-
gluón como el canal dominante de producción de la PTA. Además, se discutió la dependencia 
funcional de los procesos puros de PTA y la interferencia PTA-ME en un marco completa-
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mente invariante gauge en términos de los acoplamientos ED {c
B , cW }, lo que implica que los e e 

límites derivados eran completamente generales y no se basaban en suposiciones adicionales 
sobre la TCE de las PTAs. 

Los límites superiores experimentales para los acoplamientos ED de las PTA que se 
derivaron se mostraron en las Figs 3, 4 y 6 del Cap. 5. La Fig. 3 representó los límites obteni-
dos en el plano {c

B /fa, cW /fa} para los canales DBC individuales y el límite combinado. Se e e 
demostró que estos límites eran válidos para masas de PTA de hasta ma ≲ 100 GeV. Además, 
se estimaron los límites proyectados para el canal combinado para el Run 3 del LHC (con una 
luminosidad estimada de L = 300 fb−1) y HL-LHC (L = 3000 fb−1) y se representaron en la 
Fig. 4. Finalmente, se incluyó una comparación con otros límites existentes en la Fig. 6 para 
los cuatro acoplamientos ED de la PTA. Se probó que nuestros resultados eran competitivos 
con otras búsquedas de PTAs y, en particular, constituyen el mejor límite en gaZZ y gaW W 
en la región de masa de las PTAs de 1 a 100 GeV, anteriormente no constreñida. 

En cuanto a las mejoras de este trabajo en el futuro, se podrían encontrar resultados 
más sólidos, por ejemplo, mediante la implementación de una separación experimental de 
intervalos de masa más refnada en la región de grandes masas invariantes para la distribución 
de eventos. También podrían mejorarse defniendo una región de la señal más centrada en la 
predicción de la señal de PTA para los procesos de producción de dibosones. Finalmente, este 
trabajo también podría ampliarse incorporando en el análisis medidas de la Colaboración 
ATLAS o medidas de otros canales de DBC, como la producción de W ±W ± de signo opuesto 
o desintegraciones semileptónicas de los bosones pesados (producción de un par WV y ZV , 
con V → jj). 

Finalmente, otro objetivo fenomenológico de interés es si la física de las PTAs puede 
explicar anomalías experimentales. Este fue el caso del tercer trabajo incluido en esta tesis en 
el Cap. 6 que incluye la Ref. [3]. En este capítulo, se tratan de explicar las anomalías neutras 
de los mesones B observadas en los ratios RK y RK∗ de la Universalidad del Sabor Leptónico 
(USL) en términos de las interacciones de las PTAs. Cabe señalar que más recientemente, 
la signifcancia estadística de estas anomalías ha disminuido en las nuevas mediciones de la 
Colaboración LHCb. Aunque esta situación pueda parecer que la Ref. [3] quedaría obsoleta, 
este trabajo aún podría usarse para estudios de la fenomenología de las PTAs. Por ejemplo, 
las regiones del espacio de parámetros de las PTAs que mejor explicaban las anomalías po-
drían identifcarse ahora como nuevas regiones excluidas y se establecerían límites superiores 
notablemente más estrictos en los acoplos no diagonales de las PTAs a los quarks. 

Dentro de la TCE de las PTAs y asumiendo acoplos PTA-bs, se exploró el espacio de 
parámetros bidimensional compuesto por los acoplamientos diagonales de sabor de las PTAs 
a electrones y muones. Además, también se tuvieron en cuenta los acoplamientos PTA-fotón 
cuando ciertos efectos a nivel loop lo requerían, ya que contribuyen signifcativamente a otros 
observables de sabor, como los momentos magnéticos anómalos de los leptones cargados. 
Se consideraron varios rangos de masas para las PTAs, que incluyen: i) ma más pesadas 
que la masa del mesón B, ii) masas ligeras por debajo del doble de la masa del muón y 
iii) masas intermedias entre esos dos valores. Entre estos tres rangos, solo las PTA con 
masas intermedias podrían dar una contribución resonante al proceso de desintegración de 
los mesones B. 

Las predicciones para RK y RK∗ también se compararon con el impacto de las PTAs 
en otros observables. Estos incluyen oscilaciones de los mesones Bs − Bs, desintegraciones 
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Bs → ℓ+ℓ−, desintegraciones B → K(∗)ℓ+ℓ− y observables astrofísicos. El valor de estos 
observables limitó severamente el espacio de parámetros disponible. Además, se exploró el 
impacto de las soluciones encontradas en los momentos magnéticos anómalos de los leptones 
cargados. Posteriormente, se comparó el espacio de parámetros disponible que podría explicar 
las anomalías con las condiciones teóricas sobre la validez de la TCE, imponiendo que las 
soluciones encontradas permanezcan dentro del régimen perturbativo. 

Para una PTA más pesada que el mesón B, no se encontró una explicación viable 
para las anomalías. Las soluciones para RK∗ fueron completamente excluidas por los datos en 
Bs → ℓ+ℓ−. Por otro lado, se encontraron soluciones numéricas para RK . Sin embargo, para 
satisfacer las restricciones de las oscilaciones de mesones, se requería que los acoplamientos 
PTA-leptón fueran excesivamente grandes, superando las condiciones de validez de la TCE. 
De manera análoga, las PTAs más ligeras que el doble de la masa del muón se enfrentan a 
una situación similar. Se encontraron soluciones cuantitativas para RK∗ , pero nuevamente 
estas eran incompatibles con las condiciones de validez. Por otro lado, las soluciones para 
RK fueron excluidas por los datos sobre el momento magnético anómalo del electrón y las 
observaciones astrofísicas. 

En contraste con lo anterior, se encontró que una PTA con una masa intermedia, más 
ligera que el mesón B pero con un valor de masa dentro de alguno de los intervalos de energía, 
proporcionó una solución viable para las anomalías. Esta PTA podría ser producida en su 
capa de masas y entrar en el régimen resonante: los procesos B → K(∗)ℓ+ℓ− se factorizan 
en la producción de la PTA en su capa de masas seguida de su desintegración. En esta 
situación, el acoplamiento de la PTA a los muones debe ser mucho menor que el de los 
electrones, y por lo tanto, a debe desintegrarse principalmente en electrones. Lo anterior 
implica, a su vez, que RK y/o RK∗ son entonces independientes de los valores concretos de 
los acoplamientos leptónicos de la PTA, y las soluciones, por lo tanto, consiguen eludir los 
problemas teóricos sobre la validez de la TCE a los que se enfrentan las PTAs pesadas o 
extremadamente ligeras. Dentro del espacio de parámetros permitido, se identifcó un valor 
de masa√ “dorada” de la PTA en la frontera entre los dos intervalos de energía para RK∗ : 
ma = 1,1 GeV. Dicha masa dorada ofreció una solución simultánea a todas las anomalías 
dentro de los límites experimentales de todos los observables de sabor considerados y dentro 
de la región de validez de la TCE. Cuando se consideraron los efectos de difusión asociados a 
la resolución experimental, la masa dorada se convirtió en un rango de masa más amplio. Sin 
embargo, es importante destacar que, si bien las soluciones entre intervalos de energía siempre 
son sospechosas, técnicamente están permitidas y sugirieren la conveniencia de realizar una 
separación experimental de intervalos de energía ligeramente diferente, lo que podría eliminar 
fácilmente esta posibilidad. 

En resumen, en esta tesis he explorado la fenomenología de los axiones y las PTAs 
dentro del marco de la teoría efectiva. Se ha estudiado la estructura a nivel árbol y loop de 
los acoplamientos de las PTAs, junto con sus implicaciones fenomenológicas en experimentos 
de colisionadores o como solución a anomalías experimentales. El panorama de los axiones 
y las PTAs está experimentando un período próspero con enormes esfuerzos tanto desde 
el punto de vista experimental como teórico. Esta tesis ha reducido considerablemente el 
espacio de parámetros de las PTAs permitido para su exploración y ha desarrollado la teoría 
efectiva de las PTA a nivel loop, con un impacto directo en estas búsquedas. Los resulta-
dos también sugieren nuevas posibilidades y posibles enfoques para continuar esta labor de 
descubrimiento. 
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