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Abstract

Indirect detection strategies of Dark Matter (DM) entail searching for signals of DM annihilation or decay, typically in the
form of excess positrons or high-energy photons above the astrophysical background, originating from (inferred) DM-rich
environments. Due to their characteristics, dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are considered
very promising targets for indirect particle DM identification. To compare model predictions with the observed fluxes of
product particles, most analyses of astrophysical data - which are generally performed via frequentist statistics - rely on
estimating the abundance of DM by calculating the so-called J-factor. This quantity is usually inferred from the kinematic
properties of the stellar population of a dSph, performing a Jeans analysis by means of Bayesian techniques. Previous
works have, therefore, combined different statistical methods when analysing astrophysical data from dSphs. This thesis
describes the development of a new, fully frequentist approach for constructing the profile likelihood curve for J-factors
of dSphs, which can be implemented in indirect DM searches. This method improves upon previous ones by producing
data-driven expressions of the likelihood of J, thereby allowing a statistically consistent treatment of the astroparticle and
astrometric data from dSphs. Using kinematic data from twenty one satellites of the Milky Way, we derive estimates of
their maximum likelihood J-factor and its confidence intervals. The analyses are performed in two different frameworks:
the standard scenario of a collisionless DM candidate and the possibility of a self-interacting DM species. In the former
case, the obtained J-factors and their uncertainties are consistent with previous, Bayesian-derived values. In the latter, we
present prior-less estimates for the Sommerfeld enhanced J-factor of dSphs. In agreement with earlier studies, we find J to
be overestimated by several orders of magnitude when DM is allowed is attractively self-interact. In both cases we provide
the profile likelihood curves obtained. This technique is validated on a publicly available simulation suite, released by Gaia
Challenge, by evaluating its coverage and bias. The results of these tests indicate that the method possesses good statistical
properties. Lastly, we discuss the implications of these findings for DM searches, together with future improvements and
extensions of this technique.

Keywords: dark matter, dwarf galaxies, kinematics and dynamics of galaxies.

Stockholm 2019
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-165273

ISBN 978-91-7797-560-1
ISBN 978-91-7797-561-8
“

ww 12
W=

RS,
NERS e
)

0~

N
Orp

Vo & s
Stockholm
Department of Physics University

Stockholm University, 106 91 Stockholm






DARK MATTER SIGNAL NORMALISATION
FOR DWARF SPHEROIDAL GALAXIES

Andrea Chiappo






@)
R =
)

N

7/"’/7. R
Stockholm
University

Dark matter signal
normalisation
for dwarf spheroidal galaxies

A frequentist analysis of stellar kinematics
for indirect Dark Matter searches

Andrea Chiappo



©Andrea Chiappo, Stockholm University 2019

ISBN print 978-91-7797-560-1
ISBN PDF 978-91-7797-561-8

Cover image: artistic interpretation of inferring the Dark Matter halo of a galaxy from stellar kinematics.
Courtesy of Lorenzo D'Andrea

The figures listed below have been reproduced with permission from copyright holders:

Fig. 2.1 © The Caterpillar Project

Fig. 2.2 © AAS

Fig. 4.2 and 4.6 © Oxford University Press
Fig. 6.3 © American Physical Society

Fig. 7.4 © SISSA Medialab Srl.

Printed in Sweden by Universitetsservice US-AB, Stockholm 2019



To my parents
A gno pari e me mari






Contents

List of Papers IX
Author’s contribution XI
Licentiate overlap XIII
Abbreviations XV
List of Figures Xvil
List of Tables XIX
I J-factors of Dwarf Spheroidal Satellite Galaxies 21
1 Introduction 23
2 Dwarf spheroidal satellite galaxies 27
2.1 Dwarf galaxies in the ACDM model and its limitations . . . . 29
2.2 Influence of baryons in dwarf galaxies . . . . ... ... ... 33
2.3 Self-interacting Dark Matter in dwarf galaxies . . . . . . . . . 34
2.4 Applicability of the Jeans equation and caveats . . . . .. .. 35
3 Jeans equation method 37
3.1 Jeans equation: formulation. . . . . ... ... ... ... 37
3.2 Jeans equation: application on dwarf satellite galaxies . . . . . 41
4 Fitting Scheme 45
4.1 Gaussian likelihood . . . . . . ... ... ... 0oL, 46
4.2 Maximum likelihood treatmentof J . . . . . . ... ... .. 48
4.3 MCMC as a likelihood samplingtool . . . . . . ... ... .. 50
4.4 Characterising generalised profile likelihoodsof J . . . . . . . 53
4.5 Approximating generalised profile likelihoodsof J . . . . . . 56



4.6 Frequentist analysis Via FRESKA . . . . . . . . . . ... .... 57

5 Tests on simulations 59
5.1 Expectations from validation . . . . .. ... ... ... ... 59

5.2 Validation I: Low dimensionality likelihood . . . . . . .. .. 61

5.3 Validation II: Generalised likelihood . . . . . . ... ... .. 64

6 Results 71
6.1 First frequentist J-factors of dwarf satellite galaxies . . . . . . 71

6.2 Generalised profile likelihoodsof J . . . . . ... ... ... 73

6.3 Frequentist J-factors: the case of Sagittarius . . . . . ... .. 75

6.4 J-factor likelihoods in dark matter searches . . . . . ... .. 75
6.4.1 Joint likelihood analysis . . . . ... ... ... ... 75

6.4.2 Dark matter annihilation cross-section upper limits . . 76

6.4.3 Influence of priors on {ov) upper limits . . . . .. .. 77

6.4.4  Stellar velocity anisotropy effects on (ov) upper limits 79

7 J-factors for self-interacting Dark Matter models 81
7.1 Generalised J-factor . . . ... ... ... ... .. 81
7.2  Sommerfeld enhancement . . . . ... ... L 83
7.2.1 General formulation . . ... ... ... ... ... 83

7.2.2 YukawaPotential . . . . . ... ... L. 84

7.3 Relative velocity distribution . . . . . ... ... ... .. 87
7.4 Sommerfeld-enhanced J-factor likelihoods . . . . . . . .. .. 91

8 Outlook 97
8.1 Towards an observable velocity distribution of stars . . . . . . 97
8.1.1  Stellar velocity distribution of spherical systems . . . . 97

8.1.2  Isotropic velocity distributions: example on simulations 100

8.1.3  Projected velocity distribution function: foundations 102

8.2 Extensions of the technique and further investigations . . . . . 102

9 Conclusion 105
Svensk Sammanfattning 107
Sunt par Furlan 109
Acknowledgements 111
References 113
Abel transform 125

VI



Generalised profile likelihoods of J

II Papers
Paper I
Paper 11

Paper 111

127

133
135
145

159

VII



VIII



List of Papers

The following papers, referred to in the text by their Roman numerals, are
included in this thesis.

Paper I:

Paper II:

Paper I11:

Dwarf spheroidal J-factors without priors: A likelihood-based anal-
ysis for indirect dark matter searches

A. Chiappo, J.Cohen-Tanugi, J. Conrad, L. E. Strigari,

B. Anderson, M.A. Sanchez-Conde

Mon Not R Astron Soc, 466 (1), page 669-676 (2017).

DOI: doi.org/10.1093/mnras/stw3079

J-factors for self-interacting dark matter in 20 dwarf spheroidal
galaxies

S. Bergstrom, R. Catena, A. Chiappo, J. Conrad,

B. Eurenius, M. Eriksson, M. Hogberg, S. Larsson,

E. Olsson, A. Unger, R. Wadman

Phys Rev D, Vol. 98, Iss. 4 (2018).

DOI: doi.org/10.1103/PhysRevD.98.043017

Dwarf spheroidal J-factors without priors: approximate likelihoods
for generalised NFW profiles

A. Chiappo, J.Cohen-Tanugi, J. Conrad, L. E. Strigari

manuscript submitted to Mon Not R Astron Soc
https://arxiv.org/abs/1810.09917

Reprints were made with permission from the publishers.

IX






Author’s contribution

Paper I

For this publication, I performed all the validation tests and the analysis of the
kinematic data. The scripts that have been developed for this project, both for
the analysis and the plotting, are also largely my creation. I wrote the paper in
consultation with my co-authors. Finally, it has been my responsibility for its
submission to the journal and the interaction with the referee.

Paper 11

In this project, I provided my collaborators with the stellar kinematic data, pre-
viously reduced and organised, ready to be utilised. Additionally, I performed
cross-checks of both the analytical calculations and the numerical results ob-
tained by the other team. I contributed with the corresponding author in writing
the manuscript and in addressing the queries of the referees.

Paper 111

This work represents a continuation of Paper I and my duties resembled closely
those I had in the first publication. Thus, I performed the analysis of real
data and repeated the validation on simulations. I drafted the manuscript of
the paper, which was later reviewed by my collaborators. Last, it has been
my responsibility for its submission to the journal and the interaction with the
referee.

FRESKA

For the analysis of real and mock stellar data in Paper III, a new, general-purpose
code has been developed. This effort resulted in a (publicly released) pyTHON
package called FREskA *, where I contributed substantially to the development
and testing phases.

kavailable at https://github.com/achiappo/FRESKA

XI



XII



Licentiate overlap

The following list clarifies which parts of each chapter contained in this thesis
mirror the content of the licentiate thesis written by the author and defended at
the Department of Physics of Stockholm University on November 9th, 2017.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

The introduction was taken from the first chapter of the licentiate and
has been expanded to include updates.

This chapter replicates the second one of the licentiate, with some im-
portant modifications. Sections 2.1 and 2.2 of the licentiate have been
expanded and constitute the current Sections 2.1 and 2.4, respectively.
Sections 2.2 and 2.3 of this document represent new material.

The corresponding chapter of the licentiate has been divided into two
sections, separated below its Eq. 3.13 . Furthermore, both parts have
been expanded to include the expression of a generalised Jeans formula
and a discussion thereon.

The introductory paragraph of this chapter has been expanded with re-
spect to the licentiate. The first section has been split before Fig. 4.2,
each part resulting in Sections 4.1 and 4.2 of this document. The latter
has been marginally modified to include updates. Section 4.2 of the
licentiate has been expanded and is now labelled Section 4.3. Sections
4.4, 4.5 and 4.6 constitute entirely new material.

The introduction of this chapter and its Section 5.2 have been expanded
with respect to the licentiate, in order to include recent updates. Section
5.1 and 5.3 represent entirely new material.

The introduction of this chapter has been partially expanded with respect
to the licentiate. Section 6.1 mimics closely the same section of the
licentiate. Section 6.2 of this document represents entirely new material.
Section 6.2 of the licentiate has undergone careful revision and extension,
and has been split into the various subsections constituting the present
Section 6.3. Section 6.3 of the licentiate does not appear in this work.

This chapter contains entirely new material with respect to the licentiate.

XIII



Chapter 8 The vast majority of the material contained in this chapter is new.

Chapter 9 The conclusion of this thesis does not appear in the licentiate and thus
represents new material.

XIV



Abbreviations

ACDM
los

CB

DM
DMH
dSph
GAIASIM
GC
IACT
ISO
LAT
MCMC
MLE
MLM
MW
NFW
OM
pdf
SIDM
UL

A Cold Dark Matter

line-of-sight

constant-£3 velocity anisotropy profile
Dark Matter

Dark matter halo

Dwarf Spheroidal satellite galaxy

Gaia Challenge simulation suite

Galactic Centre

Imagining Atmospheric Cherenkov Telescope
Isotropic stellar velocity profile

Large Area Telescope

Markov Chain Monte Carlo

Maximum Likelihood Estimate

MultiLevel Modelling

Milky Way

Navarro Frenk White

Osipkov-Merritt velocity anisotropy profile
probability density function
Self-Interacting Dark Matter

Upper limit

XV



XVI



List of Figures

1.1

2.1
22
23

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52
53
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

Schematic illustration of the J-factor evaluation . . . . . . . . 24

Location of dwarf spheroidal galaxies in Galactic coordinates . 29

Survey map of the DES instrument . . . . . . ... ... ... 31
J-factors for cuspy and cored dark matter profiles. . . . . . . . 32
Schematic representation of stellar observations in dSphs . . . 39
Distribution of observed stellar velocities for three dSphs . . . 45
Marginalised posterior probability density of log;qJ . . . . . . 47

Profile likelihood of J for Draco obtained in a simplified model 49
Profile likelihood of J for Draco obtained in a generalised model 51

Study on the constrainability of J based on simulated data . . 54
Velocity dispersion profile of classical dwarfs . . . . . .. .. 55
Profile likelihood of J from fitting a mock isotropic model . . 63

Profile likelihood of J from fitting a mock anisotropic model . 63
Bias estimates of the frequentist scheme in a simplified model 65
1o coverage of the frequentist scheme in a simplified model . 66
Bias estimates of the frequentist scheme in a generalised model 68
1,2,30 coverage of the frequentist scheme in a generalised model 69

Results on data of the frequentist scheme in a simplified model 72
Results on data of the frequentist scheme in a generalised model 74
Published constraints on the DM annihilation cross-section . . 77
Cross-section constraints from different statistical approaches . 78
Cross-section constraints from various velocity anisotropy models 79

Sommerfeld enhancement for the Arkani-Hamed parameters . 86
Sommerfeld enhancement for the Silk-Lattanzi parameters . . 86
Dependence of Js on Sommerfeld enhancement parameters . . 88

Relative velocity distribution of DM particles in a NFW profile 91
Likelihood topography of Fornax kinematics for SIDM particles 93

XVII



7.6

8.1
8.2
8.3

XVIII

Js log-likelihood ratio of Fornax for SIDM particles . . . . . . 94

Velocity distribution of stars in a spherically symmetric system 99
Simulated and predicted distribution of stellar velocities . . . . 101
Detailed geometry of observations of stars in dwarf galaxies . 103



List of Tables

2.1 Properties of forty five known MW dSphs. . . . . . . ... .. 28
5.1 Gaia Challenge stellar kinematics models utilised for validation 61

7.1 Canonical and generalised J-factors . . . . ... ... .... 95

XIX



XX



Part 1

J-tactors of Dwarf Spheroidal
Satellite Galaxies

21






1. Introduction

The current cosmological paradigm indicates that only a mere 5% of the total
energy budget of the Universe consists of baryons, what we consider “ordi-
nary matter”. This is a striking conclusion which is supported by the most
recent analysis of the Cosmic Microwave Background [1], along with other
astrophysical observations [2]. The same study also concludes that the re-
maining 95% comprises 26% of non-baryonic dark matter (DM) and 69%
of “dark energy”. Whereas the nature of the latter remains largely a mystery,
compelling indications of the former have been available for approximately a
century. Indeed, the first hint of the existence of an abundant, yet invisible
(hence the epithet “dark’) massive component in the Universe is attributed to
Zwicky’s observations of galaxy clusters in 1933 [3]. By now there exists
a plethora of astrophysical indications suggesting the existence of DM, from
rotation curves of spiral galaxies [4] to gravitational lensing [5; 6]. Over the
years, many particle physics theories have been elaborated to explain the na-
ture of this additional massive component. Many models are extensions of the
Standard Model of particle physics and are motivated to address some of its
shortcomings. Some commonly considered candidates are weakly interacting
massive particles (WIMPs), axions and sterile neutrinos (see [7] and [8] for
reviews on DM candidates). *

Despite the existence of robust astrophysical evidence for DM and the avail-
ability of concrete particle physics models which could account for it, what the
scientific community still lacks is an incontrovertible link between an obser-
vation and a model prediction. To this end, many experiments and detection
strategies have been devised or proposed to directly or indirectly detect the
traces of particle DM (see [7-9] and references therein). Since the most com-
pelling evidence for the existence of DM is currently provided by astrophysical
observations on a wide range of scales, perhaps the most promising approach
to pursue is that of indirect detection. This technique involves measuring
distinctive signatures of DM annihilation or decay, originating in DM dense
environments. Kinematic and energetic arguments lead to a prediction for the
(differential) flux of particles resulting from DM annihilation and detectable

+Alternative theories of gravity or modified versions of Newton’s law have also been con-
sidered in the literature. However, an excursus on these is beyond the scope of this work.
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Dark Matter —_
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Figure 1.1: Schematic illustration of the J-factor evaluation. The shaded area
indicates a region of high DM concentration, progressively denser towards the
inner part — the sphericity is merely a simplifying choice.

from Earth [7], which reads

d®(D,AQ)  {(ov)
E o,

dn;
ZBidEli(D,AQ) [Nem2s7'Gev™'] . (1.1
i

In this equation, (ov) is the DM particle velocity-averaged annihilation cross-
section, D is the distance to the centre of the high DM concentration region
where the annihilation events take place, myp,, is the candidate DM mass and
dN;/dE is the particle spectrum (per annihilation event) for a given channel i,
scaled by its branching ratio B;. Together, these elements constitute what is
generally referred to as the particle physics term. The final part of the equation
is the so-called astrophysical term and it quantifies the amount of DM present
within the cone of observation, defined by AQ = 27(1 — cosfpax). In the case
of DM annihilation, this is more commonly known as the J-factor and it is
defined as [10]

1 lmux
J(D,AQ):E /A QdQ /l di 3, (r(1))  [GeViem™] (1.2)

where [ is the line-of-sight (/os) variable and pp,(r) is the DM density distribu-
tion; the latter has units of GeVem™3. Fig. 1.1 illustrates the physical meaning
of the integration in Eq. 1.2. From geometrical arguments (Fig. 1.1), we can
infer the expressions of lax/min and 7(I), which are given by

Inax/min = D cos @ + [r? — D? sin? @

r()=VI2+D2-2Dlcosd
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where 6 is the aperture of the cone AQ and r, represents a cut-off radius,
usually approximated with the tidal radius of the system [11]; throughout
this document, we assume O = 0.5 and r, — co. Whereas the former is a
commonly adopted value, since it is expected to encompass the bulk of the DM
distribution in most scenarios, the latter limit allows to reformulate Eq. 1.2 in
a more numerically stable format.

We see that J acts as a normalisation term in Eq. 1.1 and thus has a central
role when producing predictions for the expected DM annihilation signal. In
the case of decay, the DM density in Eq. 1.2 is elevated to the first power
and the resulting quantity gets the name of D-factor. Given the quadratic de-
pendence of J on ppy in Eq. 1.2, we conclude that regions of (inferred) high
DM density are expected to yield a strong signal of DM annihilation prod-
ucts. This consideration implies that the Galactic Centre (GC) should produce
the highest predicted flux of particles. Indeed, typical values for the GC are
J ~ 10?> —103GeVZem™, while J ~ 10'° — 10'°GeVZem™ for dwarf galaxies
and J ~ 10" — 10'°GeVZem™ for galaxy clusters (for recent reviews on poten-
tial targets for indirect DM detection see [9] and [12]). However, the presence
of strong, yet largely uncertain fore- and background emission from the GC
renders it a very observationally challenging target [13]. In contrast, the dwarf
spheroidal satellite galaxies (dSphs) of the Milky Way (MW) present features
which render them ideal targets for indirect DM searches. In recent years,
many groups have used the ground-based Imaging Atmospheric Cherenkov
Telescopes (IACTs) MAGIC [14], HESS [15] and VERITAS [16; 17] or the
space-bourne Fermi Large Area Telescope (LAT) [18] to investigate the dSphs
for possible hints of annihilating DM [19-26]. In all these analyses, J repre-
sented the main source of systematic uncertainty, since the true expression of
Pom(7) is still unknown. Moreover, the J-factors and their uncertainties that
have been adopted in the above-listed works were obtained using Bayesian sta-
tistical techniques, which subjected the results to the effects of priors. The fact
that now-standard gamma-ray analyses are performed in a frequentist setting,
highlights the importance of having a self-consistent treatment of the results
and their uncertainties.

In this thesis I report the development of a new, frequentist method for
building the likelihood of the J-factor of a given dSph, using a maximum
likelihood approach, thereby producing prior-free estimates of J and its uncer-
tainty. This effort led to the publication of three articles in scientific journals,
a copy of which is included in Part II of this document. The three manuscripts
will be hereafter referred to as Paper I, Paper Il and Paper I1I; their labelling fol-
lows the chronological order of their publication. This document is organised
as follows. The next chapter will briefly introduce dSphs, highlighting their
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centrality in indirect DM searches. Chapter 3 will present the key ingredients
in modelling the internal structure of a dSph, starting from the collisionless
Boltzmann equation. The method for obtaining maximum likelihood estimates
of J, using the kinematic properties of the stellar population observed in each
dSph, is described in Chapter 4. Chapter 5 details the validation of the frequen-
tist approach using a publicly available simulation suite. The results reported
in Paper I and Paper III, which are based on stellar data from twenty one dSphs
and were derived in the canonical scenario of collisionless DM, are summarised
in Chapter 6. The case of a self-interacting DM particle has been considered in
Paper II and the corresponding, expanded discussion is contained in Chapter 7.
In Chapter 8 we outline possible venues of improvement of the method, with
special focus on a physically motivated velocity distribution of the observed
stellar motions. We conclude recapitulating and summarising our findings.
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2. Dwarf spheroidal satellite
galaxies

As the name suggests, dwarf spheroidal satellite galaxies are small, approxi-
mately spherical ensembles of stars orbiting a parent galaxy, like the MW. Char-
acterised by very low absolute magnitudes, of the order of M, ~ [-9,—13.5]
[27], and a very low surface brightness, with poy ~ [-22.5,-27] mag arcsec 2,
dSphs are among the faintest galaxies ever observed. Importantly, dSphs are
gas-poor objects, essentially devoid of astrophysical bodies normally responsi-
ble for the emission of high energy radiation [28; 29]. Moreover, these galaxies
are quite close to us (in a cosmological sense), with typical heliocentric dis-
tances ranging from tens up to few hundreds of kpc [30]. Their proximity
implies that individual stars are observable within these systems. Using them
as tracers of the gravitational potential, the kinematics of stars within a galaxy
provides an indication of its mass. The first measurements of the /os velocity
of stars residing in Draco dSph yielded a los velocity dispersion suggesting
a very high mass-to-light ratio, roughly one order of magnitude higher than
that of globular clusters [31]. Subsequent observations of ~ 30 stars in Fornax
dSph produced a very flat velocity dispersion profile [32]; a spatially extended
DM halo (DMH) is required to explain such feature of the stellar kinematics.

In the early years 2000, a series of observational campaigns performed
photometric and spectroscopic surveys of a relatively bright group of galaxies,
now known as classical dSphs. More recently, much fainter systems have been
discovered, now commonly referred to as ultra-faint dSphs. Combined, the
two samples contain forty five objects, whose characteristics are summarised
in Table 2.1. Analysis of the stellar kinematics attributes to these systems
the highest mass-to-light ratios (M /L) known to date in the local Universe,
with M /L as high as 3400 My/Le * [34] (see [35] for a detailed review
on kinematic samples acquisition from MW dSphs). Together with the flat
velocity dispersion profiles, the M /L ratios indicate the dSphs as the most
DM-dominated objects in the near Universe.

*Mo and Lg refer to the mass and luminosity of the Sun; see [33] for more details.

27



Name Lb Distance ry2 My
(deg, deg) (kpe)  (pc)  (mag)

Kinematically Confirmed Galaxies

Bootes I 358.08, 69.62 66 189  -6.3
Bootes 1T 353.69, 68.87 42 46 2.7
Bodotes 11T 35.41,75.35 47 -5.8
Canes Venatici 1 74.31,79.82 218 441 -8.6
Canes Venatici IT 113.58, 82.70 160 52 -4.9
Carina 260.11,-22.22 105 205 9.1
Coma Berenices 241.89, 83.61 44 60 -4.1
Draco 86.37,34.72 76 184  -8.8
Draco II 98.29, 42.88 24 16 29
Fornax 237.10, -65.65 147 594  -134
Hercules 28.73,36.87 132 187  -6.6
Horologium I 271.38, -54.74 87 61 -3.5
Hydra I 295.62, 30.46 134 66 -4.8
Leol 225.99,49.11 254 223 -120
Leo Il 220.17, 67.23 233 164 9.8
Leo IV 265.44,56.51 154 147  -5.8
Leo V 261.86, 58.54 178 95 5.2
Pisces 1T 79.21, -47.11 182 45 -5.0
Reticulum IT 266.30, -49.74 32 35 -3.6
Sculptor 287.53,-83.16 86 233 -11.1
Segue 1 220.48, 50.43 23 21 -1.5
Sextans 243.50, 42.27 86 561 93
Triangulum II 140.90, -23.82 30 30 -1.8
Tucana II 328.04, -52.35 58 120 -39
Ursa Major I 159.43, 54.41 97 143 -55
Ursa Major 11 152.46, 37.44 32 91 4.2
Ursa Minor 104.97, 44.80 76 120 -8.8
Willman 1 158.58, 56.78 38 19 2.7
Likely Galaxies

Columba I 231.62,-28.88 182 101 45
Eridanus 1T 249.78, -51.65 331 156 -74
Grus I 338.68, -58.25 120 60 -34
Grus IT 351.14,-51.94 53 93 -3.9
Horologium II 262.48,-54.14 78 33 -2.6
Indus IT 354.00, -37.40 214 181 43
Pegasus III 69.85, -41.81 205 57 -4.1
Phoenix II 323.69, -59.74 96 33 -3.7
Pictor I 257.29, -40.64 126 44 -3.7
Reticulum IIT 273.88, -45.65 92 64 -33
Sagittarius II 18.94, -22.90 67 34 -5.2
Tucana IIT 315.38,-56.18 25 44 24
Tucana IV 313.29, -55.29 48 128 -35
Ambiguous Systems

Cetus 1T 156.47, -78.53 30 17 0.0
Eridanus IIT 274.95, -59.60 96 12 24
Kim 2 347.16, -42.07 105 12 -1.5
Tucana V 316.31,-51.89 55 16 -1.6

Table 2.1: Properties of forty five known MW dSphs. Table credit [26].
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100,000 light years

Figure 2.1: Location of some known MW dSphs in Galactic coordinates. The
solar system is situated on one of the spiral arms of the MW. Figure credit [38].

The position of some of these dSphs is shown in Galactic coordinates in
Fig. 2.1. The fact that most objects are located at high Galactic latitudes
is of great relevance: in these regions the contamination from astrophysical
processes originating in the Galactic plane is smallest [36; 37]. Altogether, the
implied high DM content, the lack of astrophysical sources of spurious radiation
and the location in an observationally clean environment render dSphs ideal
targets for indirect DM searches.

2.1 Dwarf galaxies in the ACDM model and its limitations

The existence of dSphs, in particular of a DMH containing each of them, is
also implied by the currently favoured cosmological model. The cosmological
constant and cold DM paradigm (referred to as ACDM) gives a very accurate
description of the dynamics of the Universe, from the largest, extragalactic
scales down to galactic scales [39]. However, at smaller cosmological scales,
a series of observations are in tension with predictions of the ACDM model,
stemming from DM-only cosmological simulations [40]. Specifically, such
discrepancies are related to the nature and the abundance of dSph-hosting DM
subhalos, which are predicted to reside in a MW-sized halo [41].

+We note that ACDM simulations also predict the presence of a population of smaller
subhalos inhabiting the dSphs-hosting halos, thus representing sub-subhalos. The existence and
properties of DM substructure is subject of active research [42—44] but the inclusion of its effects
in the present study is beyond the scope of this thesis.
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The most notorious problems are briefly described below.

cusp-core problem DM-only N-body simulations [45] indicate that the den-
sity distribution of DM in halos follows the Navarro Frenk White (NFW) profile
[46], which is given by

P
2
(%) (1+%)
ro ro
where pg and ry are the characteristic density and radius. Since real DM halos

could differ significantly from Eq. 2.1, a generalised NFW is usually adopted
[47], which reads

pDM(r) = ’ (21)

Po

Pom(r) = o
C a a
(&) 1+ (5))

where the parameter a controls the sharpness of the transition between the

inner slope, ¢, and outer one, b. Eq. 2.2 can also be used to describe the stellar

density, and the formula is referred to as Zhao profile [47]. Clearly, in this case

the characteristic quantities, i.e. the scale radius and density, refer to the stellar

component of the dSph, which can be indicated by replacing the subscript ‘0’
with “x’.

Eq. 2.1 implies that the central logarithmic slope is equal to Inp/Inr =
—1, meaning that the density diverges at the centre of the halo, forming the
cusp. However, some observations of isolated dSphs or low surface brightness
galaxies produce rotation curves which favour cored rather than cuspy profiles
(see [48] and references therein). The former is described by Eq. 2.2 with
(a,b,c) =(1,3,0) and, indeed, we see that ppy — po as r — 0, corresponding
to the constant density core. Which profile best describes the DM profile of
dSph is still debated within the community.

(2.2)

c

diversity problem In the ACDM model, the hierarchical structure formation
produces self-similar halos, whose density distribution is well described by the
NFW profile (Eq. 2.1) [49]. This scenario implies that DMHs with comparable
mass should produce similar motions of the baryonic matter residing within
them. On the contrary, dSphs-containing halos of the same mass (obtained by
matching their observed properties to simulated halos) present very different
kinematics of stars and HI (atomic hydrogen) clouds [50]. The analysis of
these tracers yields a wide variety of characteristic densities of the host DMH.
This observation is in net contrast with the strong correlation between halo
parameters in the ACDM cosmology [46].
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Figure 2.2: Survey map of the DES instrument. The grey region in the northern
hemisphere represents the coverage of the SDSS survey [51] and the blue points
correspond to the locations of twenty eight confirmed dSphs. The red contour
indicates the region of the sky probed by the DES survey, which discovered eight
new systems (red points) during its first year of operation. Figure credit [52].

too big to fail problem According to the ACDM model, the brightest dSphs
are expected to inhabit the most massive subhalos of the parent MW DMH
[53]. However, such subhalos are predicted to manifest stellar kinematics with
large velocity dispersion, in contrast with observations of classical dSphs [54].
In other words, the analyses of stellar motions in the brightest dSphs of the
MW imply DMH densities which are smaller than those of the most massive
DM subhalos which are expects to host them, according to DM-only N-body
simulations. The conclusion from this discrepancy is that classical dSphs
do not inhabit the most massive subhalos, which, therefore, are not observed
because they fail to produce a stellar population. However, the massiveness
of these DMHs is such that their deep potential wells should contain enough
baryonic matter and win the processes which hinder star formation. A similar
inconsistency between the stellar kinematics of the brightest dSphs and the
inferred mass of their host subhalo has been reported also for M31 (Andromeda)
[55] and the Local Group field galaxies [56]. This observation indicates that
this is a common problem in ACDM cosmology.

missing satellite problem According to numerical simulations [57], the MW
halo should contain several hundred subhalos, each potentially hosting a vis-
ible galaxy [58]. This prediction clearly disagrees with the scant number of
satellites reported in Table 2.1. A similar scarcity has also been noted in field
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Figure 2.3: Comparison of the J-factor value as a function of Oy for two
possible DM distributions. The curves are evaluated for a cuspy (blue) and a
cored (orange) profile, assuming the same underlying DMH mass, equivalent to
M =108Mg =~ 10% GeV.

galaxies of the Local Group [59]. A possible explanation of this discrepancy
could be due to observational limitations. The recent discovery of ultra-faint
dSphs in SDSS [60] data has suggested that a factor ~ 5-20 systems might
be present but lie below the detection threshold due to their faintness and the
luminosity bias [61-63]. In addition, Fig. 2.2 shows the location in Galactic
coordinates of 28 confirmed MW dSphs (blue points [30]). The grey region
in the northern hemisphere represents the coverage of the SDSS survey [51].
This figure indicates that there are still large portions of the sky that remain
unexplored, where (perhaps many) more dSphs could be present. One of these
uncharted regions is indicated with the red contour in Fig. 2.2 and corresponds
to the area probed by the DES telescope [64]. Very recent observations per-
formed by DES have, indeed, led to the discovery of 16 new systems [52; 65],
indicated as red points in the same figure. As observations continue, new po-
tential dSphs might be discovered, thereby increasing the total sample. This,
in turn, would translate in a larger number of targets to indirectly search for the
evidence of annihilating particle DM.

The existence of these and other issues in the ACDM paradigm indicates the
importance of DM characterisation in dSphs not only for particle physics but
also for cosmology. The cusp-core problem is particularly relevant in indirect
DM searches. To understand this, recall the dependence of the expected particle
flux resulting from DM annihilation (Eq. 1.1) on the ppy, via the J-factor
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(Eq. 1.2). The strong relation is portrayed in Fig. 2.3, where J is shown as a
function of 6p,x, evaluated assuming either a cuspy (blue) or a cored (orange)
profile. The striking difference between the two curves, which were obtained
using the same underlying DMH mass (M = 103 M =~ 109 GeV), indicates the
importance of determining the correct DM distribution profile within a dSph
halo.

2.2 Influence of baryons in dwarf galaxies

The problems outlined in the previous section can be solved or largely mitigated
once the effects of baryons in the evolution of dSphs are considered. In very
recent years, developments in cosmological N-body simulations have shed light
on the role of baryons in shaping the underlying DM content of halos. The
influence of baryons stems from the variety of processes they experience, which
lead to gravitational feedback on the total matter content of a galaxy. In the
case of dSphs, two phenomena are particularly relevant: star formation activity
and consequent supernovae explosions.

In a realistic scenario — not encompassed by DM-only simulations — as
galaxies form, gas sinks in the (DM-dominated) gravitational well, thereby
increasing the central density and velocity dispersion of DM via adiabatic
contraction [66]. However, once star formation ignites, energy is released
in the inner regions of a DMH, whose density decreases as matter is pushed
towards outer orbits. [67]. Moreover, the presence of stars implies consequent
supernovae explosions, which lead to non-adiabatic injections of energy in the
medium, which further deplete central high densities [68; 69].

The influence of feedback effects is supported by the recent FIRE sim-
ulations, which indicate a strong link between the formation of cores at the
centre of DMHs and the star formation history in low-mass galaxies [70-72].
A similar conclusion is reached from the analysis of the NIHAO [73] simula-
tions, which produce HI rotation curves [74] in agreement with observations
by THINGS [75] and LITTLE THINGS [76] surveys.

The gravitational feedback, which mitigates the cusp-core problem, could
also alleviate the too-big-to-fail problem. The reduction of the central density
of simulated halos would rectify the comparison between the low densities
implied by the cold stellar kinematics observed in the most massive dSphs
and the predicted ones [77]. Furthermore, these feedback effects could also
explain the missing-satellite problem. The presence of cores at the centre
of subhalos renders them more susceptible to tidal stripping by the host halo
potential [78]. Studies have shown [79; 80] that, in this situation, MW-like
halos contain a significantly reduced number of subhalos, in better agreement
with observations.
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An alternative or complementary explanation for the lack of observed satel-
lites in the MW regards the effect of the photo-ionising background produced
during the re-ionisation epoch [81-83]. This phenomenon is expected to ham-
per star formation on smaller halos, by heating the baryonic gas and reducing
its cooling rate, which therefore remain cuspy and dark [84].

Despite alleviating many small-scale problems, some studies have argued
that baryonic processes alone cannot solve such issues. The main concerns
relate to the modelling of feedback effects. Since baryonic physics occurs
at scales below the resolution of current hydrodynamical simulations, several
assumptions must be made on the magnitude of the feedback produced. For
example, the density threshold for star formation must be adequately modelled
and different choices result in different magnitudes of feedback [72; 79; 85].
Another issue relates to the formation of cores at the centre of subhalos. Some
studies [50; 86] suggest that feedback effects are insufficient to generate large
cores inferred from observations [75]. Additionally, other works disagree on
the possible formation history of DMH cores [70; 72].

An alternative explanation of the ACDM small-scale problems (Sec. 2.1)
entails the possibility of DM self-interacting at the particle level. This scenario
is introduced in the next section.

2.3 Self-interacting Dark Matter in dwarf galaxies

The phenomena illustrated in the previous section, invoked to address the
mismatch between ACDM predictions and observations of dSphs, relied on the
assumption of a purely collisionless DM particle. Spergel & Steinhardt first
proposed a model of self-interacting DM (SIDM) [87] to simultaneously solve
the cusp-core and missing-satellite problems (Sec. 2.2). In this theory, the DM
particles scatter elastically with each other via 2 — 2 interactions, resulting in
significant deviations from the predictions of DM-only simulations. Besides
thermalising the inner halo, by transporting heat inward from outer regions, and
isotropising it, by erasing ellipticity, DM collisions would reduce the central
density by turning cusps into cores [88; 89]. In turn, shallower density profiles
render DM subhalos more prone to tidal disruption and evaporation, due to ram
pressure stripping, by the host halo [87]. Similarly to the feedback effect of
baryons (Sec. 2.2), the reduction of the inner density of dSphs-like halos would
also solve the too-big-to-fail problem. Importantly, since the self-interactions
rate is proportional to the DM density, SIDM cosmologies are indistinguishable
from the standard ACDM scenario at large scales, where the scattering rate
becomes negligible. Thus SIDM models agree with observations on all scales.
These conclusions are supported by recent N-body simulations involving SIDM
particles [90-93].
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Throughout most of this thesis we will assume the standard, collisionless
DM scenario. The possibility of SIDM will be examined in Chapter 7.

2.4 Applicability of the Jeans equation and caveats

Over the years, several techniques have been devised to reconstruct the DM
profile of dSphs (see [27] for a brief review on possible modelling approaches
of dSphs), but the preferred one by far involves the use of Jeans equations.
However, this formalism (which will be introduced in the next chapter) relies
on a crucial assumption: the dynamical equilibrium of dSphs. It is well
established that this is not the case for Sagittarius, which shows clear signs
of ongoing tidal disruption by the MW potential [94]. Other candidate dSphs
potentially undergoing tidal disruption are Carina [95], Leo I [96] and Ursa
Minor [97]. However, some authors [98] showed with their simulations that
the innermost stars of a dSph are very resilient to tidal disruption. Today there
is a general consensus within the astronomical community that the central
stellar velocity dispersion of a dSph — i.e. up to roughly the half-light radius
(rn) [11] — is a good indicator of the present maximum circular velocity and
the bound mass [98—101]. Moreover, N-body simulations of tidally disrupted
dSphs predict rising los velocity dispersion profiles, which are only observed
in Carina and perhaps Draco [35]. Therefore, since most classical dSphs show
no sign of significant ongoing tidal streams, this indicates that the outer parts
of the stellar populations of dSphs are not being considerably affected by tides.

As their name suggests, dSphs are typically not exactly spherical, because
their stellar population possesses minor-to-major axes ratio ~ 0.3 [102; 103].
However, recent hydrodynamical simulations, which include the effect of
baryons [104] (see Sec. 2.2), produce spherical DMHs. Although non-spherical
[105] or axisymmetric [106] Jeans analyses are possible, in this thesis we pos-
tulate that both the DM and the stellar components are spherically distributed,
leaving the investigation of departures from this assumption to future work.

Other possible caveats in the application of the Jeans formalism regard
observational limitations of the measured stellar velocities: both instrumental
systematics and the presence of binary systems [107-109] can produce spu-
rious deviations from the predictions. Moreover, whereas high-quality data
from bright systems robustly confirms them as dSphs, fainter objects might be
globular clusters misinterpreted as dSphs [110; 111].

To conclude, we assume hereafter that all systems analysed in this work are
genuine dSphs, in equilibrium, whose kinematic samples are reliable tracers of
the total gravitational potential. Hence, the use of a spherical Jeans analysis in
modelling dSphs is warranted and will be presented in the next chapter.
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3. Jeans equation method

This chapter briefly introduces the reader to one of the key tools employed in
astrophysics to study the dynamics of galaxies: the Jeans equation [112; 113].
This formula represents an indispensable alternative to estimate the mass of
those dissipationless systems where gravitational lensing techniques cannot be
utilised. This criterion applies to those small galaxies whose scarce and com-
plex gaseous distribution and kinematics hinder different mass determination
methods (see [114] for a recent review on galactic mass estimation strategies).
In these systems the total mass distribution can be inferred by modelling the
kinematics of the (visible) tracers of the potential, such as old stars, globular
clusters, planetary nebulae or satellite galaxies. Given their characteristics,
dSphs of the MW delineate good candidates for implementing the Jeans equa-
tion. The derivation of this formula is presented in the next section; for a
detailed excursus over its properties, we refer the reader to textbooks like [11].
In the second section of this chapter we describe an application to dSphs.

3.1 Jeans equation: formulation

To a good approximation, dSphs can be regarded as collisionless systems, and
if the assumption of internal equilibrium holds, the dynamical properties of the
particles residing within them — in this case, principally stars — are determined
by the Collisionless Boltzmann equation, which reads

af af

—+4v-Vf-VOD
v-Vf Jv

Y =0 . (3.1)

In this formula, ® corresponds to the total gravitational potential of the system,
which is related to the density, hence its mass, via the Poisson equation V>® =
4np; f(x,v,t) represents the phase-space distribution and thus quantifies the
probability of the galaxy containing a star at position x, moving with velocity
v, at time ¢.

Assuming spherical symmetry, multiplying Eq. 3.1 by the radial velocity,
vr, and integrating over all velocities, it is possible to show that the enclosed
mass profile, M(r), of a galaxy relates to the radial component of the 2"
moment of the velocity distribution, a'r2 (see [11] for the detailed derivation).
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The relation is known as the Jeans equation and is given by

d(vo?) +2ﬂv0'r2 _ _GMy , (3.2)
dr r r2

where v(r) is the stellar density and B(r) =1 — ug Jv? describes the velocity
anisotropy profile. In the latter, vy and v, correspond, respectively, to the
tangential and radial components of the velocity of a star at a distance r from
the centre of the system, as illustrated in Fig. 3.1. Strictly speaking, the mass
term M(r) in Eq. 3.2 is given by the sum of all possible massive components of
a dSph, including stars, diffuse gas and DM. However, since dSphs are gas-poor
systems, to a good approximation DM dominated [34], this quantity reduces to

M(r) =4n / rszpDM(s)ds [GeV] . (3.3)
0

We note that Eq. 3.2 is an ordinary differential equation with variable
coeflicients of the form

ih(x) + A(x)h(x) = B(x)
dx

where
A(x) = 2@
B(x) = - GM(;cz)v(x)

h(x) = v(x)o (x)

and its solution reads [115]
h(x) = e~ AC [ / B(x)e/ A" gy | (3.4)

Inserting the expressions of A, B and 4 into 3.4, we obtain the more familiar
form of the Jeans equation

v(r)cTE(r):ﬁ / s s (3.5)

g(ry=-exp (/r 2ﬁT(t)dt)

In practice, v(r) and o->(r) cannot be observed directly, but only their
projected counterparts. This situation is illustrated in Fig. 3.1, where we see that

where

38



Figure 3.1: Schematic representation of a dSph. This figure illustrates the
geometry of observations of the stellar kinematics in dSphs.

an observer situated in O cannot determine the exact location r of a star along
the [os, but only its projection R. Moreover, current ground-based observations
are not sensitive enough to measure the proper motion of stars, i.e. vg and v;.
The only kinematic measurements accessible are the /os component of a star’s
velocity, v;,s, at the projected radial distance R. These limitations imply that
the only predictions which can be extracted from Eq 3.5 and tested against
the observations regard the /os velocity dispersion o lm (R) = UIOS —Tigs>. This
last expression can be simplified if assuming no net rotation of the dSph. In
this case, the mean /os velocity of the stars (at every R) will equal the velocity

of the dSph itself. Therefore, setting v;,5 = 0, we get o- J(r) = v (r). Now,
noting from the geometry in Fig. 3.1 that v;,s(r) = v, cos a —vg sma it follows
that

O'IOY(V) —vlos(r)

=(v, cosa — vg sina)?

=Ecosza+v_§sin2a
R2 J—

:(1—,8—2)1)3 , 3.6)
r

where the third line is a consequence of v,v9 = 0 and where 3 is the velocity
anisotropy defined previously.

At this point, what is needed is arelation between the [os velocity dispersion
at an undefined point r, 0' (1), with the (measured) los velocity dispersion
at the projected radial dlstance R, o lm(R) The connection between the two
quantities is derived by integrating the former along the /os, multiplied by the
probability that a star present along the los is at a distance r from the dSph’s
centre. This probability can be found from the stellar density, v(r), and is
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expressed as
v(r) v(r)
P* = o0 = . 37
BT S Az R) IR G-D

where z represents the [os coordinate (see Fig. 3.1) and where we introduced
the intensity or surface brightness of the dSph, I(R). Using Eq. 3.7, we arrive
at the needed relation, which reads

op (R) = [ ) Purop (r)dz = %R) [ ] v(r)op (r)dz . (3.8)

We can now perform a change of integration variable, by noting that z =
+Vr2 — R? (Fig. 3.1) leads to the following identity

d
dg=t—0nt (3.9)
r2_R2

Moreover, given the (assumed) spherical symmetry and the integration ranges,
both integrals in Eq. 3.7 and 3.8 are symmetric about z = 0. Hence, these
integrals are equal to twice their value in the z € [0, c0) range. This modification
gives

3 < rv(r)dr
I(R)=2 . —m (3.10)

for the surface brightness and

2 < rdr 2
= 3.11
R e G
for the [os velocity dispersion, where Eq. 3.10 is an example of Abel transform
of v(r) (see Appendix on Abel transform). Now, inserting Eq. 3.6 into Eq. 3.11,
we get

2 =2 [T\ LY o2
O—los(R)_I(R) ( ﬂrz)mv(r)vr . (312)

At this point, identifying vy (r) with o2(r), we note that the final terms in
Eq. 3.12 correspond to Eq. 3.5. Performing this substitution yields

GM(s)v(s)
o= f, (1007 ) i [ 0™ -

Recalling that M(r) entails an additional integration (Eq. 3.3), we see that the
evaluation of Eq. 3.13 requires calculating three successive integrals. However,
Mamon & Lokas [116] noticed that this rather cumbersome expression can be
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greatly simplified by swapping the integration order. It is straightforward to
show that fRoo dr /r “ds = fRoo ds /RS dr, which allows to simplify Eq. 3.13 to

2G [ d )
ffi,s(R)=m /R K(s,R)M(s)v(s)?s [em?s™?| (3.14)

The term K(r, R) appearing in Eq. 3.14 corresponds to a kernel function which
encodes information on the velocity anisotropy profile B(r), as it is given by

$ R? rdr 1
K(s,R):g(s)/ (l—ﬁ(r)—)—— . (3.15)
R r2 ) 2 _Rrzg(r)
Eq. 3.14 represents a compact formulation of the Jeans equation and it consti-
tutes a general result of galactic dynamics.

3.2 Jeans equation: application on dwarf satellite galaxies

Since the stellar profile is not directly measurable, it is customary to determine /
empirically by fitting the photometric observations with a parametric function.
Two commonly adopted parameterisations of the surface brightness are the
King [117] and the Plummer [118] profiles. In this thesis, as well as all
publication herein included, we uniquely adopt the latter, which is also the
most commonly used profile in the literature regarding DM searches in dSphs,
and it is given by

I(R) = 5 [mag cm_z] , (3.16)
JTVE [1 + %2]
with L the stellar luminosity. The mass density corresponding to Eq. 3.16 is
calculated via the inverse Abel transform (Eq. A.2) and reads

3L 1

47rr,3( [

v(r) = [magcm’3] , (3.17)

[S%3

2
1+5

T

The characteristic radius of the stellar component entering Eq. 3.16 and 3.17
(r%) is usually approximated with the half-light radius of the system, ry. Strictly
speaking, Eq. 3.17 represents the luminosity distribution. However, when eval-
uating this formula, all stars are assumed to have equal luminosity L, implying
that this equation approximates the stellar number density. Furthermore, noting
that Eq. 3.14 depends on L/I(R), we see that the quantity L exits the Jeans
equation and has no effect on o2 (R).

los
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The key link between observables, such as I(R) and O'IZOS(R), and the
quantity of interest, ppy incorporated in M(s), is provided by Eq. 3.14. Un-
fortunately, the anisotropy profile cannot be determined experimentally either.
* The simultaneous indeterminacy of 8 and M leads to the well-known mass-
anisotropy degeneracy [124; 125]. A possible way to circumvent this is by
measuring the mass from independent observations. In the case of galaxy
clusters, it is possible to obtain a mass estimate from either the X-ray emission
[126] or from gravitational lensing effects [127]. However, given the lack of
X-ray emitters in dSphs and their proximity, neither of the above methods can
be exploited to break the mass-anisotropy degeneracy. In spite of this, it has
been shown [124] that projection effects imply the existence of a specific radial
distance (from the centre of the dSph) at which the degeneracy is minimised.
For a distance D to the centre of the object, this translates into a preferred angle
up to which the J-factor should be evaluated, which is equivalent to @ =~ 2r,/D.
An alternative solution relies on extracting further information from the kine-
matic data of the tracer population, such as higher moments of the velocity
distribution. Some authors [128] have shown that the mass-anisotropy degen-
eracy can be broken by studying simultaneously the 2"¢ and 4" moments of the
velocity distribution, the latter corresponding to the kurtosis. A shortcoming
of this approach is that very large data-sets are necessary in order to derive
reliable results, of the order of 1000 or more stars [129]. Such copious samples
have only been registered for a handful of dSphs, while for others the number
of spectroscopically measured velocities ranges from tens to hundreds of stars.

Despite the limitations, many groups have attempted to determine the DM
density profile of dSphs from the available kinematic data [21; 130-132]. These
studies assume either isotropic stellar velocities, whereby 8 = 0 (ISO), or a low
complexity anisotropy profile, involving one free parameter only. Examples
of the latter are the constant-8 case, obtained by simply setting 8(r) = B (CB)
where B is a constant, or the Osipkov-Merritt (OM) profile [133; 134], which
reads

r2

Br) = , (3.18)

r2+r?

where r, is a scale radius indicating the transition from centrally isotropic to
purely radial stellar velocities in the outskirts of the system.

+Some groups have measured the proper motions of stars in dSphs, thereby inferring
B(r). These studies have employed either multi-epoch observations of dSphs with Hubble Space
Telescope [119—121] or the recent release of data by the Gaia collaboration [122; 123]. However,
the former contained samples too scant to derive robust conclusions, while the latter appeared
shortly before the presentation of our latest results and the writing of this thesis.
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For each of anisotropy scenario listed above, Eq. 3.15 can be evaluated
analytically, resulting in closed forms. The corresponding expressions of K are
listed below

1—% ,1SO (3.19a)
u
w?>+1/2 (u*+w? _ u? -1 1/2
K(u,w,B) = (w2+1)3/2( - )tan l( w2+1)—w2+1\/1—1/u2 ,OM (3.19b)
VI=1/u2 P \rT(B-1/2) 11 1
T T TG (3/2—5)1(1—ﬁ,§,ﬁ+§),CB (3.19¢)

where I is the Incomplete Beta function.

With all terms in Eq. 3.14 specified, it is possible to use this formula to fit the
measurements to get estimates on the various parameters involved. A common
denominator of all previous analyses mentioned above is that, in each of them,
the fit was performed in a Bayesian statistical set-up. In Paper I we proposed
the first frequentist analysis of kinematic data via Eq. 3.13, though with low
number of free parameters in the model. The reason for such choice was the
envisaged purpose of the publication, which served as a proof-of-concept of the
feasibility of our method. Successively, in Paper III, we explored more complex
scenarios by re-analysing the stellar data but allowing for more general models.
The two different approaches, that have been devised to fit the observations in
either publication, are described in the following chapter.
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4. Fitting Scheme

Using the Jeans equation to fit the stellar data entails, firstly, choosing a model
by specifying the functional expressions of the terms entering Eq. 3.14. Sub-
sequently, a procedure must be designed to determine the corresponding (free)
parameters. The most commonly adopted approach involves fitting the mea-
sured velocity distribution with a Gaussian. This choice is justified by the
observation that the los velocities are Gaussian-distributed to a satisfactory
degree. As an example, Fig. 4.1 shows the histograms of the velocities of stars
observed in the dSphs Hercules, Draco, and Sculptor; we notice how they all
resemble sufficiently well a Gaussian distribution.

This chapter is central in this work, as it introduces the reader to the
properties of the frequentist approach that has been devised for parameter
inference. After describing the Gaussian likelihood and the problematics of its
previous implementations, we present two alternative schemes for performing a
prior-less Jeans analysis. Additionally, we show how a common tool employed
in Bayesian analyses, Markov Chain Monte Carlo (MCMC), can be exploited
within a frequentist framework when optimising a likelihood function. We
also present a characterisation of the results obtained in a generalised dSphs
model and propose a viable regularisation thereof via an empirical function.
In conclusion, we briefly describe the features of the numerical package that
has been developed to perform frequentist Jeans analyses of stellar kinematics.
Despite being inherently frequentist, the fitting approach implemented in Paper
II differs substantially from the ones presented here and we refer the reader to
Chapter 7 for more information.

Hercules Draco Sculptor
140 A
. N, 30 . N, 353 . N, 1352
120 4

100 -
80

[\

60 4
40 4
204

0 o
-320 -310 -300 -290 —280 -270 80 100 120 140

40 50
Vios [km/s] Vios [km/s] Vios [km/s]

Figure 4.1: Distribution of observed /os stellar velocities for three MW dSphs.
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4.1 Gaussian likelihood

For a given kinematic data-set — usually consisting, for each star, of the pro-
jected distance from the dSph’s centre, the [os velocity and its uncertainty —
one modelling possibility is to construct a binned likelihood of the velocity
dispersion. To do so, one should group the stars in radial bins and evaluate the
dispersion of the velocities entering each bin, of. This term is then compared
with the prediction given by Eq. 3.14, evaluated at the central radius of each
annulus, (R)y, into the following Gaussian function [135]

(0= ({R),18))
Nbins eXp - 250’5

L(O|Data) = ]_[

b=1 A /2#50’3

where © represents the free parameters array and 60’5 is the uncertainty on the
velocity dispersion in each bin, which can be evaluated with Eq. (9) of [136].

An alternative to Eq. 4.1 is to consider an unbinned Gaussian likelihood of
the stars’ velocities, which reads

, 4.1

(vs—(v))?
2(6v2+02. _(Rs|©))

N, €Xp

2
los

L(®|Data) = 4.2)

s=1 \[27(602 + 02, (Rs|9))

O—ZOS

The advantage of this notation is that it allows a direct comparison of the
observed velocities with the assumed distribution function. The uncertainty
of each measurement entering Eq.4.2 is expressed as the squared sum of the
experimentally estimated error, dvg, and an intrinsic dispersion stemming from
the Jeans equation, O-lzos (RSI(:)). For the purpose of optimisation, it is customary
to consider the negative logarithm of Eq. 4.2, that is to say the following function

N
- - 1 &
L(®) = ~InL(B]Data) = 5 Z

s=1

(Us - <U>)2 .
o 5 (e e, (R16)

los

4.3)

Maximisation of either Eq. 4.1 or 4.2 with respect to 0 - corresponding

to the minimisation of L (Eq. 4.3) — produces the maximum likelihood esti-
mate (MLE) of these quantities. Undesirably, the mass-anisotropy degeneracy,
introduced in Chapter 3, implies an indeterminacy of the parameters in the cor-
responding functional profiles. In light of this, a common approach in fitting
the observed velocity distribution involves Bayesian techniques. Introducing
prior probability densities for the degenerate parameters produces a regular
posterior distribution, from which inference can be drawn. These priors are
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Figure 4.2: Marginalised posterior probability density of log;,J. The curves
shown were obtained via Bayesian techniques, assuming various prior probability
distributions. Specifically, using flat priors on the varied parameters (dotted red
line), priors extracted from cold dark matter cosmological simulations (cdm —
dot-dashed red line) and two possible implementations of the Multilevel Bayesian
modelling technique (mlm — dashed and solid black lines). Figure credit [137].

often chosen to be non-informative, with a range of allowed values usually sug-
gested by N-body simulations [45]. The now-standard way to implement this
statistical analysis is by means of a MCMC. From the posterior distribution of
the parameters, the uncertainties on J are propagated. This approach, however,
does not lead to a functional expression for the likelihood of J. This curve is
typically approximated by a log-normal [20], an assumption which stems from
the observation that the marginalised posterior resembles such function. The
mean and the spread of this likelihood are calculated with Eq.1.2 using the
maximum-a-posteriori parameter values and the 15" and 84™ percentiles of
the posterior distribution, respectively.

The results of a MCMC scan are expected to be robust for large data-sets.
However, when only small samples are available, the priors could significantly
bias the results [137], as depicted in Fig. 4.2. It is clear from this figure
how the (marginal) posterior distribution of J shifts for different choices of
priors. In contrast, this shortcoming is not present in a frequentist analysis
since no prior information is used. Moreover, no assumption on the shape of
the likelihood of J enters such statistical treatment. A prior-free approach to
obtain the likelihood of J is feasible and will be described in the next section.
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4.2 Maximum likelihood treatment of J

A direct likelihood treatment of the J-factor, when fitting kinematic data,
is possible. This is based on the observation that the Gaussian likelihood
introduced in the previous section, in both binned and unbinned versions,
depends on the model parameters array e) only through the intrinsic velocity
dispersion term predicted by Jeans equation. Furthermore, we recall from
Eq. 3.14 that 0' (R) depends on the DM density profile, ppy, which is usually
parameterised as

oou(r; ) = pof (:—0;5) , 4.4)

for some function f and with ¥ the subset of parameters in ) describing Powu-
For example, for the generalised NFW profile (Eq. 2.2), we have f(x; 19) =
x7¢(1+ x®)(e=b)/a which is obtained by defining x = r/rg, with 9= (a,b,c,rp).
Typically, the evaluation of J follows the estimation of the DM parameters
from the fit of the stellar kinematic data using Jeans equation. However, fitting
lm(R) and calculating J need not be two separate operations. The J-factor
definition (Eq. 1.2) can be written as

J = 02 j(D,0max¥) (4.5)

where the last term reads

Omax Xmax N
j(D,Hmax;ﬂ):27rro / sinfdo / fz(x;ﬁ) dx . (4.6)
0 Xmin

Manipulating Eq. 4.5, we derive the following expression of the DM scale
density

J

———— [GeVem™| 4.7)
J (D2 Omani )

PO =

Inserting Eq. 4.7 into Eq. 3.3, we render J explicit in O—lzos(R)' Hence, when
fitting the likelihood in Eq. 4.3 to the data, we achieve a direct statistical
treatment of J. Starting from this observation, we can build a straightforward
way to manually construct the likelihood curve of J. This can be schematically
summarised in the following steps:

* build a grid in J spanning a likely range of values
« for each J, optimise the likelihood L; = L(C:)) holding J fixed

* interpolate between the pairs (J,Ly)

48



¢ e =1879 (N.=353)

--- 10[-0.16,0.09]
20[-0.27,0.17]

--- 30[-0.34,0.23]

18.4 18.6 18.8 19.0
J

Figure 4.3: Profile likelihood of J obtained from the analysis of the kinematic
data of Draco dSph. The solid curve is calculated with the manual-profiling
MLE scheme (see text) assuming isotropic stellar velocities, a Plummer profile
for the luminous component and a NFW profile for DM. The coloured dashed
lines indicate fixed levels of £ from its minimum, nominally corresponding to the
68% (green), 95% (yellow) and 99% (red) confidence intervals of Jy;g. Figure
reproduced from Paper I.

The final point of the above scheme effectively produces the profile likelihood
of J, which is a conceptually allowed method for inferring the MLE value of
J (Jue) and its confidence intervals, as discussed in [138]. This conclusion
holds in the presence of statistically dominated uncertainties on the parame-
ters. Moreover, if this procedure yields a parabolic curve, there exists some
transformation which maps it to a Gaussian likelihood [139]. This property
warrants the use of the AL = 0.5 step in the likelihood as a determinant of the
1o confidence interval on the parameter estimates (corresponding to the 68%
probability containment region).

Given the J range suggested by previous analyses (see Chapter 1), it is
more convenient (both practically and numerically) to cast it in logarithmic

units, thus fitting
J
F10 GeVZemS
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The likelihood optimisation can then be performed by means of any of the
commonly adopted function minimisers, such as minurt [140] — as done in
Paper I — or any other minimisation tool available, for example, in the scipy
[141] package of pyTHON. An example of this process is shown in Fig. 4.3,
where the solid blue line represents the profiled negative log-likelihood ratio.
We call this quantity £ which, recalling the arguments above, is defined as

£(7) =1L(J) - L) - (4.8)

In the remainder of this work we will refer to this term when discussing
the profile likelihood. The curve shown in Fig. 4.3 is obtained from the
analysis of the kinematic data of Draco dSph, where the modelling assumptions
implemented are: a NFW for ppy, a Plummer profile for v and /, and isotropic
stellar velocities (8 = 0). The result shows how the above criteria apply to
the outcome of this procedure, which will be hereafter referred to as manual-
profiling scheme.

In principle, interpolating the pairs (d, pg), with ps any one of the free
(nuisance) parameters derived when optimising Ly at a given d, and evaluating
the resulting curve at Jyg, returns the MLE of the parameter p. However,
this calculation is not expected to give reliable results as the dimensionality of
L grows and when multiple, degenerate parameters are fitted simultaneously.
Verifying this claim would entail studying the statistical properties of this
method for every parameter independently, something which we did not attempt
in Paper I. This investigation was performed during the production of Paper III,
using a different parameter estimation scheme, which is presented in the next
section.

4.3 MCMC as a likelihood sampling tool

Given its efficiency in sampling high dimensional spaces, even in the presence
of strong degeneracies, a MCMC can also be used for likelihood optimisation.
The only proviso in this approach is that the likelihood values (L), rather
than the posterior (P), should be retained. This is possible when casting the
calculation into logarithmic units, so that

InP(®) = InL(®|Data) + InII() - C ,

for some normalisation constant C. We now see that, for uniform priors (IT)
in C:), the InII term can be absorbed into the constant C and the In P sampled
by the MCMC engine corresponds to In P shifted by some quantity. Since in
statistical inference the relevant features of the likelihood are the position of
its peak and the locations of relative decrease from it, we conclude that we can
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Figure 4.4: Profile likelihood of J obtained from the analysis of the kinematic data
of Draco dSph. The black (pink) curve was calculated with the manual-profiling
(J-sampling) MLE scheme (see text) assuming isotropic stellar velocities, a Plum-
mer profile for the luminous component and a generalised NFW profile for DM.
The blue line indicates the approximation of the pink curve with Eq. 4.10. The
dashed grey (dot-dashed brown) line represents the result from a previous frequen-
tist (Bayesian) study, extracted from Fig. 4.3 (presented in [20]). The coloured
dotted lines indicate fixed levels of £ from its minimum, nominally corresponding
to the 68% (green), 95% (yellow) and 99% (red) confidence intervals of Jyy k-
Figure reproduced from Paper III.

arbitrarily set this shifting quantity to zero. We thus achieve an equivalence
between InP and InL which permits to exploit the MCMC in a frequentist
setting. Furthermore, noting that InL = —LL defined in Eq. 4.3, we see that
the above expedient allows us to use the MCMC to perform the likelihood
optimisation in the manual-profiling scheme (introduced above) for a fixed J.
Moreover, we can complement that approach with an alternative one where J
varies freely in the likelihood, as schematically described below

e sample L with a MCMC over the parameter space (J, (:))
* retain the likelihood evaluations of the sampled points

* build the lower envelope of L along J
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The final point, the J-envelope, is obtained by ordering in J the multidi-
mensional ensemble of likelihood evaluations (resulting from the first step).
Starting from the smallest probed J and retaining the successive, lowermost
estimates of L, provides a curve which maps the trough of the likelihood along
this dimension — within the sampling uncertainty (due to limited number of
MCMC iterations). Thus, the last step of the list above is equivalent to the
likelihood profiling described in the previous section and is equally suitable for
performing parameter inference.

The scheme outlined above, which we dubbed J-sampling, has been im-
plemented in Paper III to fit the stellar kinematics in a generalised dSphs model.
An example is shown in Fig. 4.4, which displays the profile likelihood curve of
J for Draco dSph, derived with the MCMC used in the J-sampling mode (pink
points) and in the manual-profiling one (black points). Similarly to Fig. 4.3, to
obtain these curves we assume isotropic stellar velocities, with spatial distribu-
tion following a Plummer model (Eqgs. 3.16 and 3.17). For the DM component
we use a generalised NFW profile (Eq.2.2), where we fit its shape parameters
(a, b, c) and the scale radius (rg), whose allowed ranges are listed below

J €[10,30]
log,o(ro/kpe) €[-3,2]
a €(0,8] 4.9)
b €[0.5,10]
c €[0,1.5)

For reference, Fig. 4.4 also displays the curve of Fig. 4.3 (dashed grey line)
and the parameterisation adopted by Ackermann et al. [20] (brown dot-dashed
line). The latter corresponds to a log-normal approximation of the posterior
probability, obtained with the Bayesian method developed by Martinez [137].
Comparison of all curves shown in the figure highlights several aspects: the
presence of priors in the optimisation process reduces the uncertainty in J,
on one hand, and regularises the likelihood at large J values when a more
general model of the DM spatial distribution is implemented, on the other. The
disagreement between the pink and black curves at J ~ 20 reveals a limitation
of the J-sampling scheme: the upturn in the J-envelope is an artefact due to the
MCMC exploring preferentially high-density regions of the parameter space.
Nevertheless, both likelihood-building approaches agree to a very good degree
over the J-range of interested, i.e. in the vicinity of JyLg-
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4.4 Characterising generalised profile likelihoods of J

We find the flattening at large { of the likelihoods derived in the generalised
scenario — the pink and black curves shown in Fig. 4.4 — to be a characteristic
of the model, which originates in the monotonic dependence of o-lzos on J.
Recalling Eq. 4.7, we see that the intrinsic component of the velocity dispersion
of L can be expressed as o-lzos =\7/j é'lzos. From this reparameterisation, we
deduce that +/7 must be able to increase considerably in order to compensate the
rising 0'1205 values, implied by the progressively larger J probed by the sampler
or fixed in the manual-profiling scheme. However, while the expression of
v/j can easily produce small values, it fails to grow efficiently. This issue
originates, on one side, in the mathematical properties of j — when a generalised
NFW is implemented, and, on the other, in the limited allowed ranges for 5,
beyond which the evaluation of j becomes numerically unstable. Therefore, the
present formulation consents to easily compute intrinsic velocity dispersions
compatible with observations for small J-factors, but strives to do so when J
grows. In the latter situation, the MCMC explores indiscriminately the allowed
parameter space for values which produce small (rfos /4[] ratios. We stress that
this is the essence of a frequentist analysis, where no region of parameter space
is preferred a priori.

When the flattening commences, the likelihood scales roughly as ln(\/g),
which indicates that v/j saturates to the largest attainable value. Recalling
Eq. 4.6, we deduce that this situation is achieved when pp,), produces the widest
and steepest inner cusps allowed (for fixed O« and D). In this regime, the
flat likelihood can be interpreted as an indication that the data cannot constrain
J beyond the flattening inset point. On the other hand, this flat behaviour is
not expected in a Bayesian framework, where the influence of priors disfavours
certain extreme regions of parameter space.

Studying simulations (which will be introduced in the next chapter), we find
indications that this flattening tendency of the likelihood is less pronounced
for observations resulting in rising velocity dispersion profiles. An illustrative
example of this situation is shown in Fig. 4.5. The rightmost panels in this
figure display the J-envelope resulting from the analysis of two mock kinematic
data-sets containing N = 500, whose properties are reported in the first two
panels. Specifically, the leftmost panels illustrate the distribution in R of the
(simulated) data, while the central ones contain the velocity dispersion profile,
obtained after binning the stars in annuli. Despite the pair having similar
radial distributions, we observe how the rising velocity dispersion profile of the
sample on the top row allows a (rather) parabolic J-envelope to be recovered, up
to large J beyond the MLE. On the contrary, the decreasing oy, of the data in
the bottom row produces an interruption in the parabolic likelihood curve soon
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Figure 4.5: Study on the constrainability of J based on the analysis of simulated
data-sets containing N, = 500. The columns display, from left to right, the stellar
(projected) radial distribution, the velocity dispersion profile and the J-envelope.
The top (bottom) row represents a case where a parabolic likelihood curve can
(cannot) be recovered well beyond the Jy;s. The vertical black dashed (dotted)
line in the first (last) column corresponds to the true rg (J). The blue dashed curve
in the central column results from fitting a straight line through the points. The
data used belongs to an isotropic model of the GAIASIM suite (see Chapter 5).

after the minimum is reached. To visualise the trend in the velocity dispersion
more clearly, we fit the points in the central column with a straight line using
least squares regression, accounting for the uncertainties. From the discussion
above, a possible interpretation of this situation is that, as observed velocities
further extend to outer radii and steadily deviate from the mean, increasingly
larger values of J can be constrained by data. However, recalling the arguments
exposed in Sec. 2.4, we restate that a rising velocity dispersion with radius is
indicative of tidal disruption. Hence, this scenario is likely a less favourable one
in practice, since the applicability of Jeans formalism is strongly undermined.

We acknowledge that this interpretation is still incomplete and a deeper
exploration is necessary to fully characterise the behaviour of £. However
interesting the conclusions might be, this investigation is likely not a profitable
route to pursue. To motivate this claim, we stress that this flattening anomaly is
intrinsically related to the use of a Gaussian likelihood (Eq. 4.3). Despite being
a good approximation of the observed stellar kinematics, we anticipate that
recent efforts are directed to amend this assumption. In a later chapter we will
introduce the elements for the correct definition of the velocity distribution,
stemming from the dynamical modelling of dSphs.
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Figure 4.6: Observed velocity dispersion profile (points) of five classical dwarfs.
The red line corresponds to the best fit model obtained from the analysis of the
stellar kinematics in each dSphs. Figure credit [136].

Generally we observe that the abundance of observations compensates for
a non-optimal stellar data. In particular, we find the recovery of reliable — i.e.
parabolic — profile likelihoods of J to be seriously hindered for data-sets with
N, < 100. This and the above observations have important implications for
the applicability of this generalised frequentist method, since most dSphs are
(typically) characterised by a flat velocity dispersion profile [27]. An example
is displayed in Fig. 4.6, which depicts the observed velocity dispersion profile
of five luminous and well-studied systems (see [136] for more information).
Given the paucity of measurements for the majority of known dSphs and the in-
completeness of the stellar kinematics, we opt to apply our generalised method
only on a restricted group of galaxies. Such ensemble corresponds to classical
dwarfs, for which we have hundreds to thousands of measured stellar motions,
as opposed to ultra-faint dwarfs, for which only tens down to a handful of
observations are available.
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To summarise, we identify three main issues which hamper the recovery
of parabolic £ curves for a broad range of { values, in a generalised dSphs
model. Firstly, numerical instabilities which arise when exploring regions of
parameter space beyond the allowed ranges (Eq. 4.9). Secondly, the (general)
scarcity of data and its characteristics (Fig. 4.6). Lastly, the close connection
between the log(VJ) behaviour of the profile likelihood of J and the Gaussian
model adopted (Eq. 4.3). In the next section we propose a way to remedy the
flattening by regularising £(J).

4.5 Approximating generalised profile likelihoods of J

The anomalous behaviour of the profile likelihood of J, examined in the pre-
vious section, has an important repercussion for its usability. Specifically, the
flatness of £(dJ) might complicate the application of Wilks theorem [139; 142],
which, in turn, provides a clear way to translate specific variations of the likeli-
hood to a measure of the uncertainty on the MLE. Motivated by this observation,
we propose an approximation of the likelihood curves of J obtained in this gen-
eralised DM model scenario, that we apply under the condition that our ansatz
improves the statistical properties. In particular, we demand that regularising
the profile likelihoods (obtained via either schemes introduced above) amelio-
rates the bias on Jy g and the coverage of its confidence intervals. We amend
the flatness at large J by approximating the profile likelihood with the following
expression

fx:ip,gr)=e P +qx+r . (4.10)

This equation corresponds to a slight modification of the Linex loss function
[143] and it is well suited to reproduce a broad family of asymmetric parabolas.
Hence, using Eq. 4.10 we can approximate the profile likelihoods without losing
all information of the J-envelope at large J. An example of the application of
this equation to the profile likelihood of J for Draco is shown in Fig. 4.4 with the
solid blue line. We note how it resembles very well the pink and black curves,
in the AL < 2 range at least. Moreover, we find that implementing Eq. 4.10 is
beneficial in two regards. First, it produces the requested improvement of the
statistical properties of the method (which will be assessed in the next chap-
ter). Second, it emulates the effect of imposing an exponential cut-off on the
DM distribution, as done in earlier studies (see [144] and reference therein).
Such modification would mimic the tidal stripping by the MW potential [145],
thereby preventing large and steep DM profiles from being accessed. Hence,
this adjustment is expected to avoid the flattening of the profile likelihood.
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From the derivation of parabolic curves when implementing low dimen-
sionality likelihoods, as done in a previous section (Sec. 4.2), to approximating
general ones obtained from MCMC scans of higher-dimensional parameter
spaces, several assumptions are made. In the next chapter we test the robust-
ness of our frequentist approach by validating it on simulations. We do so
exploring its statistical properties after applying the schemes presented in this
chapter on many different mock realisations of dSphs.

4.6 Frequentist analysis via FRESKA

The analysis of stellar kinematic data, whether authentic or synthetic, has
been performed via numerical codes written in the common scripting language
pYTHON 2.7. This programming effort resulted in the creation of a package
which we dubbed rrEska, for FREquentist Stellar Kinematics Analyser. A
rudimentary version of this tool has been utilised for the analyses contained in
Paper I, whose content is presented in Secs. 4.2, 5.2 and 6.1 of this thesis.

When working on the continuation project, which led to the publication
of Paper III, we decided to expand the preliminary version of FRESKA into
a general purpose package, available to the public. Some examples of the
quantities which can be calculated are shortly listed below

» common stellar density and surface brightness profiles, e.g. Plummer,
King, Sersic

* common DM density profiles, such as the generalised NFW or the Einasto
* Jeans formula, as in Eq. 3.14, given kinematic data

* Gaussian likelihood of the los stellar velocities, accounting for their
uncertainties (according to Eq. 4.3).

This package has been utilised for the analyses performed in Paper III, whose
content is included in Secs. 4.3, 5.3 and 6.2 of this thesis.

Future improvements of FREska include: implementing physically moti-
vated los velocity distribution functions — whose derivation is discussed in
Chapter 8 — and possibly combining the various steps entailed by the whole
fitting procedure into an executable.

+For a detailed explanation on the features and the technical characteristics of FREskA, we
refer the interested reader to the online documentation available in the free-access repository
containing the package, found at https://github.com/achiappo/FRESKA.
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5. Tests on simulations

Before application on real data, any numerical method ought to be tested on
simulations. For the problem at hand, the desired simulation suite should
encompass a set of stars’ positions, velocities and the velocity errors. A
publicly available suite of this kind was generated by Walker & Pefiarrubia
[132] and released by the Gaia Challenge consortium [146] — we will hereafter
refer to these simulations with GAIASIM. The scope of these mock data relates
to the Gaia satellite, which is currently mapping the position and motion of
stars within the MW [147], and provide a reference and verification tool for
the dynamical modelling of spherical and elliptical galaxies. Hence, these
simulations are well suited for testing the MLE schemes presented earlier (see
Chapter 4). We want to emphasise that, to our knowledge, the statistical
properties of the Jeans formalism — when implemented to estimate the J-factor
—have never been tested before on simulations. Therefore, the results contained
in this chapter represent an important and novel assessment of the applicability
of this methodology.

We start by describing the general expectations from the validation of the
statistical properties of a numerical method. The second section summarises
the results of the validation tests that are performed in Paper 1. The third
section discusses the results of a similar, though more general, validation that
is contained in Paper III. The analysis presented in Paper II has not been
tested prior to its application on real data. To our knowledge, there is no
publicly available stellar kinematics simulation suite (like GAIASIM) generated
assuming SIDM particles. In the second publication, the reliability of the
profile likelihood method adopted depends (to some extent) on the validation
presented in Paper 1.

5.1 Expectations from validation

Validation of an analysis method entails its repeated application on different
simulations of the physical process examined and the combination of the results,
typically best estimates of some parameters and their uncertainty. Two crucial
statistical properties of a frequentist technique are the bias on the MLE and the
coverage of its confidence intervals. The former is defined as the difference
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between the expected value of an estimator and the true one. When validating
a method in a realistic scenario, the bias is calculated as the deviation of the
mean of the various MLEs from the true value. The coverage is obtained by
counting the number of times the true value of some estimated parameter is
contained within a given confidence interval. For instance, the 1o interval
should contain the true value, in principle, 68% of the times.

In order for the assessment to be most reliable, the model assumed in the
analysis must match as closely as possible the one implemented to generate the
mock data. In the case of exact modelling correspondence, the properties of
the method are uniquely governed by statistics, i.e. by the abundance and size
of the samples analysed. Asymptotically, the bias tends to zero and the 1,2,30
coverage yields 68%,95%,99%, respectively. However, in the regime of low
number of observations, we expect departures from this tendency. Specifically,
Wilks theorem should no longer be applicable, meaning that the mapping
between variations in £ and the corresponding probability level should no
longer hold [142]. As a result, the evaluation of coverage is potentially flawed.
Alongside this issue, the MLE can become biased as the number of observations
decreases.

Another important aspect which should be investigated is the effect of (pos-
sible) nuisance parameters. For instance, additional variables in the analysis
of simulated data can influence the statistical properties of a method. This
eventuality can be particularly relevant in the presence of strong degeneracies.
The expectation in this situation is that the bias should increase, as the determi-
nation of the MLE of the quantity of interest becomes less robust. Moreover,
the coverage of the confidence intervals can also be affected by nuisance pa-
rameters.

Whenever the modelling assumptions entering the analysis do not match
exactly the ones implemented in the production of the mock data, systematic
effects can alter the results of a statistical validation. Undesirably, this is the
situation we experience in this chapter, since the GAIASIM data was generated
from an OM model of the velocity distribution [11]. Recalling Sec. 4.1,
we identify an inconsistency between the true sampling distribution of the
simulations and the likelihood function we adopt to fit the data. While this
incongruity is expected to be less significant when analysing projections of
isotropically oriented velocities, since these are Gaussian distributed to a good
degree, it can have a considerable impact when studying anisotropic stellar
kinematics. Unfortunately, at the present status we still lack a correct definition
of the observable velocity distribution; as previously anticipated, recent efforts
in this direction will be presented in a later chapter.

Because of the aforementioned modelling mismatch, the presence of nui-
sance parameters alongside J and the smallness of some data samples, we
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Model po Mokpe™)  d  ra(kpe) ¢ ry (kpo)

OM CoRE NON-PLUMMER 4%108 19.23 0.25 1 0.25
OM CoORE PLUMMER-LIKE 4x108 19.23 0.25 0.1 0.25
Isotropic CORE NON-PLUMMER 4x108 19.23 ) 1 1
IsoTtropic CORE PLUMMER-LIKE 4x108 19.23 00 0.1 1
OM CuspP NON-PLUMMER 6.4x107 18.83 0.1 1 0.1
OM Cusp PLUMMER-LIKE 6.4x107 18.83 0.1 0.1 0.1
Isotropic CusP NON-PLUMMER 6.4x107 18.83 00 1 0.25
Isotropic CusP PLUMMER-LIKE 6.4x107 18.83 00 0.1 0.25

Table 5.1: Models available in the GAIASIM suite on which the frequentist
schemes presented in Chapter 4 are tested. For each, the method is implemented
on (simulated) data-sets containing various number of stars. All models assume
ro = 1 kpc. The entries in the fifth column (c) refer to the inner slope of the
Hernquist profile (Eq. 2.2).

foresee (possibly) significant deviations from the expectations, when assessing
the statistical properties of our frequentist approach (introduced in the previous
chapter). In particular, we expect a non negligible bias and sub-optimal cover-
age estimates, especially from the analysis of small samples and of stellar data
characterised by velocity anisotropy. Moreover, motivated by the inconsistency
between simulated data and the analysis model, we do not attempt an explo-
ration of the properties of the method in relation to the nuisance parameters
considered. Such study would be undermined by model systematics introduced
by the Gaussian likelihood. Despite these issues, the GAIASIM data represent
a viable tool to test our method, whose validation results are presented in the
following sections.

5.2 Validation I: Low dimensionality likelihood

The GAIASIM mock samples allow for a relatively broad range of model
configurations to be tested, a subset of which is listed in Table 5.1. The un-
derlying assumptions correspond to all possible permutations of two different
modellings of the three keys elements in Eq. 3.14: the DM and stellar density
distributions and the velocity anisotropy profile. The resulting eight choices
thus represent a minimal set of (possibly) very different assumptions on the
true internal kinematic state of a dSph. Since Paper I represented a feasibility
assessment of the frequentist analysis of dSphs stellar data, in that publication
we only assess simplified scenarios — aligned with many earlier Bayesian anal-
yses of real kinematic data. Moreover, we do so on realisations of the eight
GAIASIM models spanning a broad range of sample sizes. In every test, we fix
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the functions in Eq. 3.14 to their true form and let the optimiser determine the
maximum likelihood parameters via the manual-profiling scheme. In particu-
lar, we fit the parameters of M(r) and B(r), while assuming their true functional
expressions. This means, for example, that for ppy entering M and j (Eq. 4.6),
we always fix (a,b,c) to (1,3,1) for Cusp models and to (1,3,0) for the Core
ones; the only fitted parameter in this case is ry. For the surface brightness, 1,
and the stellar density, v, the functional expressions and their parameter ry, are
fixed to the true forms. The reason for this choice is that the former quantity can
be determined independently (from bolometric fits - see Chapter 3), while the
latter can be obtained from the first via inverse Abel transform (see Appendix).

Examples of tests on isotropic and anisotropic models are shown in Fig. 5.1
and Fig. 5.2, respectively. In both figures, the plot on the left is obtained
using a sample containing 100 stars, whereas the one on the right 1000 stars.
As expected, the fit quality improves as the sample size increases: both the
quantity of interest, Jy.e, and the nuisance parameter, here r)"*, approach their
true values (Jrrye and r;~°%). Moreover, the width of the likelihood curves, and
thus the uncertainty on J, decreases for larger data sets. The results shown
in Fig. 5.1 and 5.2 are obtained for one specific realisation of the model,
for both sample sizes considered. Individually, these results provide only an
indication that the method works. To quantify its statistical reliability, many
of such tests should be repeated on different samples and their outputs should
be combined. As mentioned in Sec. 5.1, the bias of the MLE and the coverage
of the confidence intervals are two crucial properties of a frequentist method
which should be assessed.

For each of the eight models considered here (Table 5.1), we perform a
series of analyses using different realisations of three sample sizes, containing
10, 100, 1000 stars. The combined results are shown in Fig. 5.3 and 5.4, which
display, respectively, the bias on the MLE of J and the coverage of its 1o
confidence intervals. In the former, the degree of bias is given by the shift of
the mean of the Jy,x values (red diamonds) from the true value, Jue (vertical
dashed or dotted lines). The error bars here correspond to the uncertainty on
the means. We notice how in most cases the bias is either very small or within
the statistical uncertainty. In the latter plot, the points indicate the percent
coverage of the 1o confidence intervals. For reference, the green band repre-
sents the range of expected 68% coverage of an ideal test, for a given number
of realisations or pseudo-experiments (PE) used *. For most models and for
all sample sizes considered, the analyses reported in this section lead to either
coverage within the expectations or even over-coverage.

+The semi-width of the range of expected coverage p of an ideal experiment, repeated Npg

times, is given by 4/p (1 — p)/NpE.
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A Jyup=1920 A Jyp=1924
8 ®  Jrpp=19.23 8 ®  Jrpyp=19.23
1-¢  [0.19,0.17] 1-0  [-0.06,0.06]
20 [-0.34,0.39] -~ 96 [0.12,0.13]
6 3-¢  [-0.45,0.63] 6 3-¢  [-0.16,0.18]

Figure 5.1: Profile likelihood function of J. The solid curves are produced with
the manual-profiling scheme, using the GAIASIM simulations of the IsoTropiC
CorE PLuMMER-LIKE model. The plot on the left (right) is obtained using a sample
containing 100 (1000) stars. The likelihood curves are derived implementing the
true model in Eq. 3.13 and profiling over the nuisance parameter rp. The coloured
dashed lines indicate fixed levels of £ from its minimum, nominally corresponding
to the 68% (green), 95% (yellow) and 99% (red) confidence intervals of Jy k-
Figure reproduced from Paper I.

10 10 .
A Jyp=1871,7MF =0.05 A ), =18.90, M =0.07
8 ®  Jiup=1883, 7 = 0,10 8 ® e = 1883, 110 = 0.10
-~ 1-¢  [-0.17,022] -~ 1-¢  [-0.07,0.07]
- 2-¢  [-0.31,0.52] -~ 2.0 [-0.14,0.16]
6 30 [0.42,0.67] 6 3.0 [-0.19,0.25]

Figure 5.2: Profile likelihood function of J. The curves are produced with
the manual-profiling scheme, using the GAIASIM simulations of the OM Cusp
NoN-PLuMMER model. The plot on the left (right) is obtained using a sample con-
taining 100 (1000) stars data. The likelihood curves are derived implementing
the true model in Eq. 3.13 and profiling over the nuisance parameters ry and r,.
The coloured dashed lines indicate fixed levels of £ from its minimum, nomi-
nally corresponding to the 68% (green), 95% (yellow) and 99% (red) confidence
intervals of Jyg. Figure reproduced from Paper 1.

Observing Fig. 5.3 and 5.4, we notice that, generally, the cases of largest
bias or under-coverage occur for models implementing an anisotropic stellar
velocity profile, whose parameter (r,) is free in the fit. As argued in Sec. 5.1,
this reduction of performance might by a symptom of the joint effect of the
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mass-anisotropy degeneracy and of the Gaussian likelihood implemented. Of
particular interest is the OM Cusp NoN-PLUMMER model. We note that this case
generally leads to the largest bias and the most pronounced under-coverage, the
latter occurring when only ten samples containing N, = 1000 are available
(rightmost panel of Figs. 5.3 and 5.4). Given the broadness of the expectation
band in Fig. 5.4 —implied by the paucity of PEs, the size of the samples analysed
suggests that the significant under-performance is likely not due to statistics.
A similar conclusion can be drawn from noting that the bias does not reduce
with increasing N, as inferred by comparing the panels of Fig. 5.3. Perhaps,
the anomalous under-coverage and the large bias for most N, cases considered,
are an indication that this model is the most sensitive to the mass-anisotropy
degeneracy, on one hand, and to model systematics, on the other.

Overall, the deviations from the expected regions are minor, with the bias
being smaller than 10% in many cases. To guide the reader in translating the
bias in J into natural units, we include in each panel of Fig. 5.3 a blue band
representing a change in J of +10% from Jygye = 109TRUE | A for the coverage,
this is generally within the expectations or higher. In summary, the results
shown in this section support the conclusion that the statistical properties are
acceptable, in this simplified setup. When exploring more general models
on real data, the validation ought to be repeated for a corresponding model
complexity. The details of the expanded validation are included in the following
section.

5.3 Validation II: Generalised likelihood

In Paper III one of the key assumptions entering our fitting procedure — the
shape of the DM profile — is relaxed. Since this choice implies an enlarged
dimensionality of the parameter space of L (Eq. 4.3), we re-examine the statis-
tical properties of the method via the GAIASIM simulations. Differently from
Paper 1, in this generalised scenario we fit each PE via the J-sampling scheme;
the allowed ranges of the parameters varied are listed in Eq. 4.9, with the addi-
tion of log,o(ra/kpc) € [-3,2]. Moreover, in the third publication we examine
a different set of sample sizes. Recalling the arguments discussed in Sec. 4.4,
we validate the method on mock samples containing N, = 100,200, 500, 1000.
In addition, following the prescription introduced in Sec. 4.5, for each PE we
regularise the output of the sampler (the J-envelope) with the Linex loss func-
tion (Eq. 4.10). The approximating curve is later used to determine Jy, ¢ and
its 1,2,30 intervals. As before (Sec. 5.2), we combine the results to evaluate
the bias on Jy g and the coverage of its confidence intervals. The estimates of
these quantities are shown in Fig. 5.5 and 5.6, respectively.
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Figure 5.4: Coverage of the 10 confidence intervals. The points represent the percent coverage for the eight models of the GAIASIM
suite considered here. The green bands correspond to the range of expected 10 coverage of an ideal test based on Npg pseudo-experiments.
In all tests, a simplified model of the dSph was implemented in the likelihood (see text). Figure reproduced from Paper I.
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Generally, we observe that the bias is small or within statistical errors,
with the latter represented by the error bars in Fig. 5.5 and corresponding
to the uncertainty on the mean of the . values obtained in each PE. This
shows that, under the right model assumptions, this generalised frequentist
method possesses an acceptable degree of bias. The second property that we
check on simulations is the coverage of the confidence intervals, as reported
in Fig. 5.6. Differently from Paper I, in this generalised scenario we extend
the validation to the 2 and 30 intervals. We do this due to the presence of the
likelihood-approximating step with the Linex loss function (Sec. 4.5), as we
require that it does not artificially increase the constraining power of the original
(profile) likelihood. Broadly, we note that the confidence intervals examined
lead to coverage degrees within the expected range or higher; we stress that
the latter aspect implies that the method produces conservative estimates of the
uncertainties. We detect one case of noticeable under-coverage at the 30 level,
for N, = 1000 in the IsoTropic CoRE NON-PLUMMER model (second panel in the
bottom row of Fig.5.6). However, we deem this occurrence as not worrisome
as it represents an isolated and minor deviation from the expectations.

Comparison of Fig. 5.3 with 5.5 and Fig. 5.4 with 5.6 reflects the effect
of modelling choices — specifically those regarding the DM profile shape — on
the statistical properties of the frequentist approach. In principle, the bias and
coverage of a method should not depend on the model freedom selected. In
practice, however, we observe that increasing the number of free parameters
in the fit influences these quantities. Specifically, whereas individual models
might suffer from slightly larger bias with respect to the simplified scenario
examined in Sec. 5.2, the most pronounced deviations observed in Fig. 5.3
have reduced. This is potentially an indication that the increased freedom in
the likelihood compensates for the systematic shift caused by the use of Eq. 4.3.
Similarly, although we did not asses the 2 and 30~ coverage in Sec. 5.2, observ-
ing Fig. 5.6 we note that all models lead to an adequate level coverage at the
1o level. This is arguably also a consequence of the increased model freedom
which mitigates model systematics.

To conclude we repeat that, prior to the investigations included in this
document, no previous work addressed the statistical robustness of the Jeans
analysis, when used to determine the J-factor of dSphs. We have shown here
that the statistical properties of the frequentist approach are acceptable, as
compared to the freedom we have on the model choices. Therefore, in the

next chapter we proceed to applying our technique on kinematic data from real
dSphs of the MW.
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Figure 5.5: Bias estimates of the J-sampling scheme evaluated on all eight models of the GAIASIM suite considered here. The green
points represent the means of Jy; ¢ values obtained in each of the Npg pseudo-experiments analysed and containing N, stars. The green
bands indicate the J-range corresponding to a bias in J of £10%. The vertical dashed (dotted) line corresponds to Jrryr of the Cusp
(Core). In all tests, a generalised model of the dSph was implemented in the likelihood (see text). Figure reproduced from Paper II1.

68



‘111 1odeq woiy

poonpoidar am3r] -syuowrredxa-opnasd ddN U0 paseq 1s9) [BOPI UL JO 9FeIdA0D pajoadxa Jo sa3uer Jurpuodsariod ay) jedIpul spueq
PaInojod Ay, ‘A[eAN0dsaI ‘S[BAIIUL 2OUIPYUOD OE T Y} JO 9FeI2A00 9y} Juasaidar syurod par ‘MO[[aA ‘Ud0I3 Y], "9IdY PAIIPISUOD
s[opow NISVIVD 31 oy Jo sisA[eue oy} ur dmos posijeroudd e ur pajuowd[duwr owoyos Surduwres-, ay) Jo 93e1040) :9°S AN

*N *N *N *N
000T 00S 002 00T 000T 00S 002 00T 000T 00S 002 00T 000T 00S 002 00T
Jawwn|d-uou 210) WO YI[-Iawwin|d 3100 WO Jawwin|d-uou a10) 21do130s| S31|-1lawwin|d 810D 51do130s|
=
= = =
n | |
a B ] n n .
= B8 1
4 =
¥ v Ry v v LA - v Yo o» v v v---¥
r _mEE:_n_.:oc n_ms,u s_,o - wv___.,_mEE:_m ams,u s_,o r LwEE:_n_.,co: dsn) u_a,obow_ ; mv___._wEE:_n_ dsn) u_n.obo.m_
= = =
= =
[ ] - [ ] u L | [ ]
=
n n =
2 4 v v v v v 2 4 v v v v v v v v v
ot 0¢Z 0S 00T OT 0cZ 0S 00T OT 0cZ 0S 00T OT 0¢ 0S 00T
3dN 3dN 3dN 3dy

o ot ~ ©
o o o o
abesanod

<
—

@ @© ~ ©
o o o o
abesanod

<
—

69



70



6. Results

Informed on the statistical properties of the method, as supported by the val-
idation on simulations shown in Chapter 5, we can proceed to applying the
MLE schemes on real kinematic data. The following section summarises the
results of the low model-complexity analysis conducted in Paper I, which repli-
cates the methodology presented in Sec. 4.2 and validated in Sec. 5.2. In the
second section we describe the results of the generalised study which was per-
formed in Paper III, adopting the strategy introduced in Sec. 4.3 and tested in
Sec. 5.3. The third section examines the outcome of the MLE schemes (intro-
duced in previous chapter) applied on kinematic data from Sagittarius dSphs.
The implementation of the frequentist likelihood curves of J in the analysis of
high-energy astrophysical data is given in the last section, which also explores
the properties of the inferred constraints.

6.1 First frequentist J-factors of dwarf satellite galaxies

In Paper I we consider a set of twenty dSphs, comprising most classical and
ultra-faint dSphs. For each system, the manual-profiling scheme is executed on
the available kinematic data, allowing for a restricted number of free parameters
only. Specifically, the NFW profile is assumed always and its parameter ry is
left free in the fit. We restate that the scale density pg is absorbed in the
reparameterisation (via Eq. 4.7) of the intrinsic velocity dispersion predicted
by Jeans equation. For the stellar component a Plummer profile is implemented
throughout, with the characteristic scale radius (ry) taken from bolometric fits
performed independently by astronomers [30]. The biggest model variation that
we attempt here relates to the velocity anisotropy profile. For every dSph, we
repeat the fits three times, using the isotropic (Eq. 3.19a), constant-£3 (Eq. 3.19¢)
or OM (Eq. 3.19b) models. The allowed ranges of the parameters varied is
reported in Eq. 4.9, with the addition of 8 € [-9,0.9] and log,(ra/kpc) € [-3,2].
The total number of free parameters in each fit thus ranges between two and
three, similarly to the validation tests reported in Sec. 5.2. The choice for such
a restricted model freedom is motivated by the envisaged purpose of the first
publication. Indeed, Paper I served as a proof-of-principle of the frequentist
fitting technique, of what had otherwise always been a Bayesian approach.
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Figure 6.1: Results of the manual-profiling scheme applied on kinematic data from twenty dSphs, using three models for the stellar
velocity anisotropy: isotropic (red circles), OM (green squares) and constant-gS (blue diamonds) profiles. In all cases the DM distribution
and the surface brightness correspond to the NFW and Plummer profiles. The black points represent the results reported in [19] (squares),
in [20] (circles) and in [21] (diamonds), which were obtained using Bayesian techniques. Figure reproduced from Paper 1.
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The three sets of results, one for every velocity anisotropy case, are shown
with coloured points in Fig. 6.1. For reference, three other sets of results,
obtained by other groups implementing Bayesian methods, are shown in black.
Comparison of the former with the latter reveals several noteworthy aspects.
Firstly, the frequentist results are consistent at the 1o level with the previous
ones, over most of the sample size range. Secondly, the uncertainties on the
new results correctly scale with the sample size, as opposed to the Bayesian-
derived error bars which appear to be largely insensitive to the number of stars;
in Paper I we conclude that this is likely an effect of priors on the parameters.
Finally, we can also observe that the scatter in the different (frequentist) results
is always within the statistical uncertainties, at least for samples containing
up to =~ 100 stars, after which the effects of model systematics dominate the
uncertainties of the estimates.

Strictly speaking, the comparison between frequentist (coloured) and Baye-
sian (black) estimates in Fig. 6.1 is not entirely appropriate. This assertion is
motivated by the different model freedom implied in the two sets of results:
two to three parameters in the former, as opposed to five to seven in the latter.
In the next section we will rectify this discrepancy by presenting a generalised
frequentist study involving five to six dimensional likelihoods, obtained by
removing any assumption on the DM profile shape parameters (a, b, c).

6.2 Generalised profile likelihoods of J

A natural continuation of the investigation introduced in Paper I involves re-
moving certain assumptions entering the Jeans equation and exploring a more
general likelihood function. This is done in Paper III, where we consider a
generalised NFW (Eq. 2.2) and allow its shape parameters to vary freely in
the (-log) likelihood minimisation. In compliance with the validation pre-
sented in Sec. 5.3, the likelihood optimisation is performed via the J-sampling
scheme. Analogously to Sec. 6.1, the ranges of the parameters varied are listed
in Eq. 4.9, with the inclusion of 8 € [-9,0.9] and log,(r./kpc) € [-3,2]. Fol-
lowing the prescription proposed in Sec. 4.5, we approximate the output of the
likelihood sampling with Eq. 4.10. Recalling the considerations in Sec. 4.4, we
analyse only those dSphs with kinematic data sets containing N, > 100. This
requirement results in a subset of ten systems, consisting of: Canes Venatici
I, Carina, Draco, Fornax, Leo I, Leo II, Sagittarius, Sculptor, Sextans, Ursa
Minor. Similarly to Paper I, we repeat the analyses for each of the three velocity
anisotropy models considered in this work (see Eq. 3.19). The new MLEs of J
are shown collectively in Fig. 6.2 with coloured circles, alongside the estimates
from Paper I as coloured squares. Specifically, the red, green, blue symbols
refer to the ISO, OM, CB models, respectively. For comparison, the same
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Figure 6.2: Best-fit J-factors from a generalised profile likelihood analysis of
kinematic data from the ten brightest MW dSphs. The estimates are derived
from the approximation with Eq. 4.10 of the profile likelihood constructed via the
J-sampling scheme (circles - see Sec. 4.5). In all cases we assume a Plummer
profile for the stellar distribution and a generalised NFW for the DM component.
The red, green and blue points refer to analyses were we implement an isotropic,
OM and constant-8 models for the velocity anisotropy, respectively. The results
from Fig. 6.1 are included (squares) using the same colour-coding. The black
points represent the results of previous Bayesian works, reported in [20, upward
triangles] and obtained in [21, downward triangles]. The error bars correspond
to the 10 uncertainties on the estimates. Figure reproduced from Paper II1.

figure also displays, with black markers, the best-fit J-factors from two recent
Bayesian analyses of the stellar kinematic data: the results from Ackermann
et al. [19, upward triangles] and from Geringer-Sameth et al. [21, downward
triangles]. Broadly, the new estimates are in agreement with other published
values, where the uncertainties are represented by the error bars, which reflect
the 10 confidence levels. For reference, the full profile likelihood curves en-
tering Figs. 6.2 are portrayed in the section on Generalised profile likelihoods
of J in the Appendix. As similarly recognised in Sec. 6.1, the uncertainties
on the frequentist results generally scale with the sample size, as opposed to
the Bayesian values whose error bars appear to be rather uncorrelated to N,.
Moreover, we note that the scatter in the new Jy,z estimates for different ve-
locity anisotropy models is comparable with their statistical uncertainty. This
feature is antithetical to the situation reported in Sec. 6.1 and likely indicates
that the generalised models considered here alleviate the model systematics
effects encountered in Fig. 6.1.
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Producing generalised profile likelihoods — having model freedom com-
parable to previous Bayesian analyses — we can utilise them to constrain the
maximum allowed DM annihilation cross-section, using astroparticle data from
dSphs. The details of this calculation are presented in the last section. We will
first make a small excursus on the results obtained for Sagittarius dSph.

6.3 Frequentist J-factors: the case of Sagittarius

Before proceeding, we must stress an important aspect regarding the results
shown in the previous sections. As mentioned earlier (see Sec. 2.4), one of the
base assumptions for the applicability of the Jeans equation is the dynamical
equilibrium of the system. Despite not satisfying this requirement, we perform
the analysis even on kinematic data from Sagittarius. Inclusion of this dSph
can, thus, be interpreted as an alternative way to verify the appropriateness
of the estimates produced by our MLE schemes. Interestingly, our frequentist
method produces for this dSph the highest J-factors of all targets analysed in
this work. Considering that tides enhance the velocity dispersion of stars (see
Sec. 2.4), and recalling the observations in Sec. 4.4, we argue that the large J
values we find for Sagittarius, both in Figs. 6.1 and 6.2, are a manifestation of
the tidal effects.

6.4 J-factor likelihoods in dark matter searches

6.4.1 Joint likelihood analysis

The availability of frequentist likelihood curves for the J-factor of dSphs is a
central aspect when comparing astroparticle data with flux predictions for a
particular DM model (Eq. 1.1). In fact, the inference of particle DM properties
usually proceeds via the optimisation of the following function [20]

L(E={a,J}Dq) = L™ (| D) L(J) . (6.1)

This formula encodes the likelihood of a particular combination of DM param-
eters p — here mpy and (ov) — given astroparticle data, Dy, originating from
a specific dSph. Since the fundamental DM properties, such as its mass and
annihilation cross-section, are expected to be invariant across different dSphs,
it is possible to combine multiple targets into a unique likelihood, which is
given by [19]
_ Nawarfs
L= [] LD , (6.2)

d=1
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where L4 is the likelihood of each individual dSph (Eq. 6.1). Optimising the
joint likelihood in Eq. 6.2 increases the statistical power over individual targets.

Maximisation of Eq. 6.1 entails the evaluation of L, the Poisson like-
lihood of the observed events — for example photons, in the case of the LAT
or IACTs — compared to the predictions of Eq. 1.1. Construction of this term
is typically achieved via the (frequentist) optimisation of the expected signal
over the background, taking into account the instrument characteristics; the
parameters varied in this process are collected in the vector @. Moreover, re-
calling that the particle flux expected from DM annihilation is proportional to J
(Eq. 1.1), including £(J) in Eq. 6.1 and optimising the formula with respect to
this parameter enables the inclusion of its uncertainties. Therefore, the benefit
of using frequentist-derived J-factor likelihoods consists in a statistically con-
sistent way of including astrophysical uncertainties, thereby rendering entirely
prior-free the analysis of y-ray data from dSphs. In contrast, using ad hoc like-
lihood curves, with characteristic values derived with Bayesian methods, can
potentially bias the estimates. This aspect is illustrated in Fig. 4.2, which shows
how different choices of priors in a Bayesian Jeans analysis can significantly
alter the shape and location of the J-factor posterior probability.

6.4.2 Dark matter annihilation cross-section upper limits

The standard procedure for determining the maximum likelihood value of the
annihilation cross-section via Eq. 6.2 involves maximising this formula with
respect to all free parameters, for fixed mpy. At this point, finding the largest
value of (ov) which leads to a decrease in the .2 by 2.71/2 from its peak,
produces a quantity, (ov)*>", which represents the 95% upper limit (UL) on
the DM annihilation cross-section. Repeating this process for a range of masses
leads to a curve in the (mpy, (ov)) plane, like the ones shown in Fig. 6.3. In
this figure, the image on the left (right) was obtained adopting one channel only
in Eq. 1.1, meaning that all DM is assumed to annihilate into bb quark (777~
lepton) pairs. The black solid lines represent (ov)?% ULs for a combination
of gamma-ray data from 15 dSphs. In both images, the exclusion limit must
be compared with the sensitivity estimates, here represented by the green and
yellow bands, which correspond to the 68% and 95% expectations from blank
sky analyses, respectively (for more details, see [20] and references therein). A
potential indication of DM annihilation signals would, thus, coincide with the
exclusion limit exceeding from above the yellow band. Observing the panels
of Fig. 6.3, we notice how in both cases the exclusion limit is well contained in
the sensitivity band, implying that no statistically significant DM annihilation
signal was detected.
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Figure 6.3: Constraints on the DM annihilation cross-section (solid black line)
for the bb (left) and 747~ (right) channels. These limits were derived from a
combined analysis of fifteen dSphs and were calculated with Eq. 6.2 using log-
normal likelihoods for the J-factor, £(J), and six years of Pass 8 data. The
green and yellow bands represent the 68% and 95% expected sensitivity to DM
searches. These regions were obtained by performing analyses of y-ray data from
300 randomly selected, high-Galactic-latitude fields in the LAT data. The blue
curve shows the limits derived from a similar study, based on the same fifteen
dSphs but using only four years of LAT data (see [20] for more details). The
dashed grey curve corresponds to the thermal relic cross section derived in [148].
Figure credit [20].

6.4.3 Influence of priors on {ov) upper limits

For all targets considered in Fig. 6.3 [20], the likelihoods of J were assumed to
be log-normal functions approximating the log-posterior probability of log,, J,
derived via the (Bayesian) Multi-level modelling (MLM). Therefore, the ULs
shown in this figure are influenced by priors stemming from the MLM tech-
nique. Using the same photon data [20], hence the same (prior-less) L' term
appearing in Eq. 6.1, but with the J-factor likelihoods derived in this work,
leads to fully consistent (in a statistical sense) constraints on {ov). An example
of this procedure is shown in Fig. 6.4, where the new, prior-less (o-v)%% UL is
plotted in blue. For comparison, we display also the analogous limit obtained
from the same photon data (i.e. the term L), but implementing the J likeli-
hood resulting from a Bayesian analysis of stellar kinematic data, adopting flat
priors (as in [19], red line) and the MLM priors of [20] (green line). For sim-
plicity, in producing this figure we assume that all DM annihilates into W*W~
bosons pairs. In order to compare constraints with an equivalent or similar
underlying model freedom in the J likelihood determination, we implement
the generalised £(J) curves derived in Sec. 6.2 to calculate the frequentist UL
displayed in Fig. 6.4. Moreover, since both analyses in [19] and [20] assumed
isotropic stellar velocities, we adopt the analogous results from Sec. 6.2. We
caution the reader that the green line in Fig. 6.4 does not correspond to the black
line in Fig. 6.3. The difference is due to non-matching dSphs samples used
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Figure 6.4: Illustration of the effect on the DM annihilation cross-section upper
limits due to different statistical implementations of the J-factor derivation. The
curves are obtained from joint analyses of six dSphs (see figure) via Eq. 6.2,
while implementing the profile likelihoods of J obtained in Sec. 6.2 (blue), the
likelihood parameterisation used in [19, red] and the one adopted in [20, green].
For modelling consistency, the frequentist limit is evaluated with the J likelihoods
determined for isotropic stellar velocities. The curves are derived assuming that
all DM annihilates into W* W~ bosons. The dashed grey curve corresponds to the
thermal relic cross section calculated in [148]. Figure reproduced from Paper III.

to calculate the curves shown in the two figures. To produce the constraints
displayed in Fig. 6.4, we needed to select only those targets simultaneously in-
cluded in both Bayesian works for which J-factor moments are available. Thus,
the dSphs entering Fig. 6.4 are: Carina, Draco, Fornax, Sculptor, Sextans, Ursa
Minor.

The similarity between the frequentist (blue curve) and the flat prior (red
curve) constraints is unsurprising. After all, the J-sampling scheme, used
to derive the generalised profile likelihoods of J implemented in Fig. 6.4,
is essentially a MCMC scan where priors are deprived of their numerical
influence. Furthermore, the targets ensemble contains the brightest satellites
of the MW and Bayesian analyses become insensitive to priors as the data-sets
utilised broaden. In contrast, the stronger constraining power of the green UL,
calculated from the J likelihoods obtained with the MLM technique, possibly
derives from the effect of priors. Importantly, the comparison presented in
Fig. 6.4 highlights the advantage of performing a fully-frequentist analysis:
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Figure 6.5: Comparison of upper limits on (ov) arising from different modellings
of the stellar velocity anisotropy when deriving the J-factor profile likelihoods.
The curves are obtained from a joint analysis of nine dSphs (see figure) via Eq. 6.2,
while considering the case of isotropic velocities (blue line), constant anisotropy
B (red line) and the OM profile (green line). The curves are derived assuming
that all DM annihilates into bb quarks. The dashed grey curve corresponds to the
thermal relic cross section calculated in [148]. Figure reproduced from Paper III.

eliminating the presence of priors, we remove their influence on the UL on
(ov) associated with the arbitrariness of their choice. In other words, our
analysis provides a unique result.

6.4.4 Stellar velocity anisotropy effects on (ov) upper limits

We conclude this chapter investigating the effect on the DM annihilation cross-
section constraints arising from different assumptions on the dSphs stellar
velocity anisotropy. To this end, we perform three new joint likelihood analyses,
whose outcome is shown in Fig. 6.5. The curves appearing in this figure
correspond to the (ov)*>%* ULs obtained by implementing the generalised J-
factor likelihoods derived in Sec. 6.2 in the ISO (blue), CB (red) and OM (green)
models. For illustrative purposes, we assume that all DM annihilates into bb
quark pairs. The targets sample adopted to produce this figure consists of all
dSphs considered in Sec. 6.2, except Sagittarius. Following the prescription of
other works and the arguments presented in the previous section, we neglect
this system when evaluating the (ov) constraints.
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The different height of the curves in Fig. 6.5 is mainly attributable to the
shape of the corresponding profile likelihoods of J and the location of their
MLE. Since the expected flux (Eq. 1.1) scales as d®/dE o« (ov)J, we can
deduce an approximate relation between (ov)*>” and J. To first order, the
(ov) UL is inversely proportional to J, while, to second order, it increases with
6J, the uncertainty on J. From this dependence, we can relate the proximity
of the ULs shown in Fig. 6.5 to the similarity of the generalised likelihood
curves displayed in the Appendix. We conclude that this is a manifestation of
the lack of observational constraints on the anisotropy of the stellar motions.
This assertion implies that, at the present state, the limited information on
the velocity anisotropy has a negligible effect when constraining (ov) in a
frequentist analysis.
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7. J-factors for self-interacting
Dark Matter models

In the previous chapters we adopted the standard assumption of a cold, col-
lisionless DM candidate. Recently, a number of studies have explored the
possibility of DM being embodied by a particle experiencing a new kind of
interaction, mediated by some “dark force” acting upon DM only [149; 150].
This characteristic could have far-reaching implications for cosmology at the
scale of dSphs [93; 151; 152], including the present determination of their
J-factor. A striking consequence of this scenario is that such DM species
would experience, when annihilating, a Sommerfeld enhancement of the cross-
section. In this chapter we investigate the influence of such process when
deriving the likelihoods of J for dSphs. We start the discussion by introducing
the modified J-factor definition applicable in this scenario. A brief derivation
of the Sommerfeld enhancement is summarised in Section 7.2. An important
ingredient in this framework, the relative velocity distribution of DM particles
in the DMH hosting each dSphs, is calculated in the third section. We conclude
by presenting the estimates of the generalised J-factor, which are reported in
Paper II, obtained with a revised version of the frequentist approach introduced
earlier (see Chapter 4).

7.1 Generalised J-factor

The prediction for the expected flux of particles resulting from DM annihila-
tion, introduced in Chapter 1 (Eq. 1.1), is just a special case of a more general
formula. A detailed derivation of the rate of particles of a given species, origi-
nating from DM annihilation within a volume dV situated in r and containing
n(r)dV DM particles, yields the following expression [153]

er
dEdV

dn;
ngm(r)ZBi d_El d3vrel Pr,rel(vrel) OUrel (7.1
i

where vy is the relative velocity of two annihilating DM particles, whose
cross-section is 0. The differential flux toward a generic direction, specified by
some spherical angles 6 and ¢ defining an elementary cone dQ d/, is derived
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from Eq. 7.1 and reads

o dl ! dM
pDM(r( ) Z /dBUrel P, rel(Urel) O Vel (7.2)
i

dEdQ 2 47rm

where we used the definition of the particle number density, a(r) = p ") The
additional factor 1/2 in Eq. 7.2 stems from indistinguishability between target
and incoming DM particles assumed when deriving Eq. 7.1, and thus prevents
double counting the predicted flux.

At this point, to find the total flux (in the infinitesimal energy range dE) we
need to integrate Eq. 7.2 along the [os variable /, in all directions contained in
the cone of observations AQ, centred on the /os. This operation produces the
following result

le
dE T ZB , (71.3)

where Js is the generalisation of the J-factor introduced in Eq. 1.2, which reads

Js=— dQ/ dl/d Urel Pr rel(vrel)o_vrelpDM(r(l)) . (7.4)
los

The summation in Eq. 7.3 is performed over all particle spectra d;/dE which
produce the desired output species, appropriately scaled by the corresponding
branching ratio B;. The term Py e1(vre1) in Eq. 7.4 represents the relative
velocity distribution of two annihilating particles. We note that when DM self-
interacts, the annihilation cross-section depends on the momenta of the initial
and final states. The innermost integral in Eq. 7.4 thus represents an average
over all possible kinematic configurations of the two particles involved in the
process.

In standard cold DM scenarios — which we are adopting in this work —
DM moves at non-relativistic speeds at decoupling and thereafter [154]. In this
regime and in the absence of self-interactions, one can expand the cross-section
in powers of v, giving [155]

ovra+bv+00*) . (7.5)

In the weak gravitational field of the MW, DM particles move at velocities of
the order of v ~ 1073¢ [156]. This observation justifies using a Newtonian
distribution function f * to obtain Py e|(vre1), On one side, and approximating
ov ~ a, on the other. These two aspects imply that the term o vy exits all

+A Newtonian distribution function f is such that f(r,v, t)d3rd3v gives the probability of
finding a particle at the location r, having velocity v, in the phase-space volume d>rd>v at time
t.
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integrals in Eq. 7.4, producing the familiar term {(ov) (see Eq. 1.1), while the
innermost integral (i.e. f d? vre]) becomes trivial, since the velocity distribution

is normalised according to / d3vrelPr,re](vrel) = 1. In this circumstance, Eq. 7.4
simplifies to the common J-factor definition seen previously (Eq. 1.2). Insert-
ing this equation in Eq. 7.3, we arrive at the differential flux expression given in
Chapter 1 (Eq. 1.1) — the standard scenario of Maxwellian velocity distribution
of DM particles.

The assumption that DM self-interacts invalidates the expansion in Eq. 7.5.
In this scenario, the annihilation cross-section is modified by a velocity-
dependent factor known as Sommerfeld enhancement [157]. This aspect
implies that the integral over the relative velocities in Eq. 7.4 cannot be triv-
ially removed from the formula and must be evaluated. The derivation of this
enhancement factor and of the relative velocity distribution is contained in the
next two sections.

7.2 Sommerfeld enhancement

7.2.1 General formulation

The presence of mutual interactions between DM particles is expressed by a
potential V(r), which alters the annihilation cross-section introduced above. In
this situation, an effective o~ can be defined as

o=00S (7.6)

where oy corresponds to the case of no enhancement, i.e. when S =1, and §
quantifies the decrease or increase in the cross-section due to a repulsive or at-
tractive force between particles, respectively. The following analogy, borrowed
from gravitational physics, helps clarifying the meaning of S: when evaluating
the cross-section of an asteroid on course towards a planet, oy is merely the
surface of the planet facing the asteroid, while S gives the magnification of oy
due to the mutual gravitational attraction. For self-interacting DM particles,
the latter term contains the velocity dependence and is given by

S(veet) = (g =0))* (7.7)

where k = mpyre /2 is the wavenumber of the wavefunction ¢ describing the
relative motion of the two annihilating DM particles, having a separation g.
The quantity S(vre;) represents the Sommerfeld enhancement factor.

Given the non-relativistic regime of cold DM particles [154], evaluating
S(vre1) requires a quantum-mechanical treatment of the scattering process. In
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the remainder of this section we will present the key points of the calculation,
referring the reader to the extensive literature on the topic for a detailed deriva-
tion [158; 159]. Considering a spherical coordinate system with z-axis along
the direction of relative motion of the incoming DM particles, the wavefunction
Y can be expressed as

Yi(g,0) = Y ' 21+ 1)e™ Ruy(q)Pi(cost) (7.8)
=0
where 6 is the polar angle, d; is a phase shift and P; are Legendre polynomials.
The term Ry; constitutes the radial part of the wavefunction ¢ and is obtained
by solving the radial Schrédinger equation, which reads

1d>  1(l+1
[_Ed_qz“ (qz )_k2+mDMV(q)] Ru(q)=0 , (7.9)

imposing the following boundary conditions
lim kqRyi(q) =0
q—0

kgR
lim qRi(q)
e Gy sin (kq - ”71 + 51)

-1, (7.10)

where C; is a normalisation constant. In affinity with previous studies, we focus
exclusively on the [ = 0 case, which leads to the so-called s-wave annihilation
cross section [159]. It can be shown [160] that evaluating Eq. 7.7 is equivalent
to calculating

1 2

Co
This last equation encodes the Sommerfeld enhancement of the annihilation

cross-section (Eq. 7.6) for a generic potential V(g) and a specific DM particles
relative velocity .

S= (7.11)

7.2.2 Yukawa Potential

To recapitulate, the estimation of S requires determining Ry;(g), by solving
Eq. 7.9 for a given potential V, and the extraction of Cyp from the second
boundary condition in Eq. 7.10. Plenty of possible interaction potentials have
been analysed in the literature (for some examples, see [161-164]). In this
work, we consider the general case of a Yukawa attractive potential to be
responsible for the DM self-interactions [165; 166]; its expression is given by

Vig) = ~Zemed (7.12)
q
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where « is the coupling constant and mg is the mass of the force mediator.
Introducing the new variable y(x) = k g Rx1(gq), with x = a g mpy,, we can cast
the (rather cumbersome) Eq. 7.9 into a simpler, one-dimensional Schrodinger
equation, which reads

2

d
T+ [€+UD] X =0, (7.13)
where
—6¢X
UCx) = ==
_ My
= AMpm
— Urel
YT 2a

The use of y(x) greatly simplifies the calculation of the Cp term entering
Eq. 7.11, since the boundary conditions above (Eq. 7.10) reduce to

lin})/\/(x) =0

(%) _ (7.14)
x—00 Cosin(x + 8) ’
from the second of which we obtain
€= lim —XH (7.15)

x—oo sin(x + &)

Finally, the Sommerfeld enhancement for the Yukawa potential, for a specific
DM particles relative velocity v, is given by

. 2
§ = | fim SnG*+9) (7.16)
Typically S is evaluated via the following analytic expression
(126,
x sinh (%)
S(ey) = — (7.17)
€

2
cosh(lzﬁ)—cos (271 5 —(62i) )
€Y TTe€p Te€p

which is known as the Hulthén approximation [167]. In Paper II we did not
adopt this formula but obtained S by numerically solving the radial Schrodinger
equation above (Eq. 7.13).
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Figure 7.1: Sommerfeld enhancement factor evaluated with the Arkani-Hamed
parameters: « = 0.01 and my = 1 GeV. The plot on the left (right) displays the be-
haviour of S as a function of the DM mass (relative velocity). The different curves
correspond to various choices of the relative velocity (mass) of DM particles.
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Figure 7.2: Sommerfeld enhancement factor evaluated with the Silk-Lattanzi
parameters: « = 0.03 and myg = 90 GeV. The plot on the left (right) displays the
behaviour of S as a function of the DM mass (relative velocity). The differ-
ent curves correspond to various choices of the relative velocity (mass) of DM
particles.

The assumed values of the parameters €5 and a can considerably influence
the magnitude of the enhancement factor, along with v of DM particles.
When implementing a Yukawa potential (Eq. 7.12), it is customary to adopt
either the Arkani-Hamed parameters, @ = 0.01 and my = 1GeV/c? [162], or the
Lattanzi-Silk parameters [168], @ = 1/30 and mg = 90GeV/c?. * The effect
of these choices on § is shown in Figs. 7.1 and 7.2, referring to the former and
latter cases, respectively. In each figure, the panel on the left (right) displays
the dependence of S on mpy (ve)) for different values of vy (mpy). In the
Arkani-Hamed scenario (Figs. 7.1), the Sommerfeld enhancement is resonant
at a specific myp,, for DM particles moving slowly relatively to each other, as

*A detailed exploration of the meaning of these quantities is beyond the scope of this work
and we point the reader to the references reported in the text.
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shown in the plot on the left. In contrast, S presents more peaks which depend
on small vy in the Lattanzi-Silk case (Fig. 7.2). The inverse proportionality of
S on the relative velocities is clearly portrayed in the right panels of the figures,
which depict how the enhancement becomes negligible as vy, approaches 0.1c¢
(for these sets of  and my).

Recalling Eq. 7.4, we note that the resonances of S influence the estimation
of Js. This is evident in Fig. 7.3 where the yellow line describes Js as a function
of €4 (a proxy for mg, at a given myy). In producing this figure, we assume
either a NFW DM profile for Fornax dSph (top panel) or a Core profile for
Sextans dSph (bottom panel). The blue curve corresponds to a similar result,
obtained when adopting an approximation on the relative velocities of DM
particles (see figure). The values of ry and pg, used to evaluate Js, derive from
fits to the kinematic data measured in these dSphs, as explained in Sec. 7.4.

7.3 Relative velocity distribution

The last ingredient missing to evaluate the generalised J-factor is the relative
velocity distribution Py re1(vre1). Recalling that Eq. 7.4 involves an average over
all possible kinematic configurations of two incoming particles, we see that
one should evaluate the integral below

//d3vld3v2P,(vl)P,(vz) , (7.18)

where r indicates the annihilation point. Moving to the centre-of-mass frame
simplifies the treatment. Defining vy, = (v +v3)/2 and vy = (v —v3), We can
cast Eq. 7.18 into the following format

/ /d3vcmd3vrel Pr(vem + Urel /2) Pr(Vem — Vrel/2) - (7.19)
The relative velocity distribution mentioned in Sec. 7.1 is then given by
Pr,rel(vrel) = /d3vcm Pr(vcm + Urel/z) Pr(vcm - Urel/z) [(km/ S)_l] . (7.20)

Assuming isotropy of the DM particle kinematics implies that the velocity
distribution function depends only on the modulus of the vectors, hence P, (v) =
P, (v), with r = |r| and v = |v|. In light of this, Eq. 7.20 becomes

1
Pr,rel(”rel) = 27T'/‘dUcm Uczm/ dZPr(Uz*)Pr(UZ’) s (7.21)
-1
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Figure 7.3: Dependence of Js on €y (with @ = 1072) when assuming a NFW
profile in Fornax (top panel) and a Core DM distribution in Sextans (bottom panel).
The yellow line is calculated with Eq. 7.4, while the blue curve corresponds to
the generalised J-factor computed under the approximation S(ve) = S(v*), where
v* = 107¢ is assumed to be a common velocity of all DM particles. The values
of rop and pg, used to evaluate Jg, are obtained from fits to the kinematic data
measured in these dSphs (see Sec. 7.4). Figure reproduced from Paper I1.
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where we introduced the variable z = cos6 = (Ve * Urel)/ (VemUre1). Furthermore,
we defined v,+ = |v| and v,- = |v;|, thus given by

2
v
Vgx = \/vczm + % + UemUrelZ - (7.22)

At this point we need to derive an expression for P.(v). In general, the
velocity distribution of a particle, situated at r, is defined as [11]

_ S f(ro)
Fr(0)= fd3vf(r,v) ~ p(r)

: (7.23)

where in the second equality we used the definition of density distribution.
Furthermore, assuming isotropy, Eq. 7.23 simplifies to

_f(ro)

Po)="0

) (7.24)
where p(r) represents the familiar DM density profile. The distribution function
of DM particles, f, can be calculated from the Eddington formula [11], which
gives

1 ® dr’
,0) = f(E(rv)) = —D(r) , 7.25
s =peean= [ e D) (029)

where

D(r)

2 -2 2 -1
_d_pﬂ(d‘l’) dp(d‘I’) (7.26)

Tdr a2 \dr | a2 \dr
In Eq. 7.25, ¥ and € represent, respectively, the relative gravitational potential
and the relative energy of a particle at distance r, and are defined as

¥(r) = ®(c0) - O(r)
E(r,v)=¥(r)- g ,

where @ is the total gravitational potential. Strictly speaking, @ includes con-
tributions from all massive components of the system partaking in the dynamics
of the DM particles. Since dSphs are DM-dominated, we can approximate this
term with ®(r) ~ @y, (r), which is obtained from pp,, via the Poisson equation,
V2®(r) = 4nGp(r). For example, the potential corresponding to the NFW
function (Eq. 2.1) is given by

In(r/ro+1)

O(r) = —47rGr§p0 Py

(7.27)
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We note that the term @ = 47rGr§p0 is common to all potentials calculated
from DM density profiles of the form of Eq. 4.4. Using this observation and
calling x = r/rp, we can cast ¥ and € into the following dimensionless formats

W(r) = 0y P(x) = Wy D

E(r,v) =¥ é(x, 0) =Y (‘I’(x) - —2) ,

where we introduced 7 = v/vg, with vy = VWy = rop/41Gpg a scale velocity.
Noting that when W(r) = &, it follows that ¥(x) = € and the integration bounds
in Eq. 7.25 transform as

r=¥1&)ex=¥"¢) and rovwo x>0 , (7.28)

we can express Eq. 7.25 as

fEr) = fo fExD) = /fE) (7.29)
where
Jo= % (7.30)
(&)= / —D(x) (7.31)
1) W
with
D(x) = %g (g)_z— g (g)_l : (7.32)

An example of the relative velocity distribution (Eq. 7.21), calculated with
the dimensionless phase-space distribution function in Eq. 7.29, is shown in
Fig. 7.4. In this figure, P;, is evaluated at r = 0.1 kpc, 1 kpc, 10 kpc, displayed
with the solid, dashed and dot-dashed curves, respectively; the dotted lines
represent Maxwell-Boltzmann distributions estimated with the same velocity
dispersion (see figure).

With these final elements, we can proceed to evaluating the generalised J-
factor (Eq. 7.4) when fitting the observed kinematics of dSphs. This calculation
is performed in the next section, which also contains some results presented in
Paper II.
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Figure 7.4: Relative velocity distribution of DM particles with spatial distribution
following a NFW profile. The dotted lines represent a Maxwell-Boltzmann
distribution with the same velocity dispersion, given by 51.8 km/s, 110.1 km/s,
163.2 km/s for the curves with » = 0.1 kpc, 1 kpc, 10 kpc, respectively. All curves
are normalised to unity. Figure credit [153].

7.4 Sommerfeld-enhanced J-factor likelihoods

The evaluation of Eq. 7.4 requires the calculation of Eq. 7.21, which, in turn,
implies the estimation of Eq. 7.29. Therefore, determining Js entails six,
successive integrations, a task which can easily become computationally very
expensive. In addition, the dimensionality factor cannot be entirely extracted
from Eq. 7.4, as was done in Sec. 4.2 with the reparameterisation proposed in
Eq. 4.7. This limitation originates in the dependence of S on vy, from which
vp cannot be factored out. In light of these complications, it is necessary to
devise an alternative approach to fit the likelihood in Eq. 4.3 to the observa-
tions. Specifically, the computation of Js should be separated from that of
L. Moreover, it is advisable to adopt a simplified model entering the Jeans
equation (Eq. 3.14), in order not to further complicate the calculations. We
thus opt to assume isotropic stellar velocities throughout this chapter. In Paper
IT we performed each analysis of real data twice, once adopting a NFW and
once a Core DM distribution; we restate that the two profiles are obtained from
Eq. 2.2 setting (a, b,c) to (1,3,1) and (1,3,0), respectively. As aconsequence, the
free parameters in the Jeans equation, and correspondingly in L (Eq. 4.3), are
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10, Po, 'x. Normally, the scale radius of the stellar distribution, r,, is obtained
by fitting the bolometric observations with a given stellar profile [30]. Instead
of following this practice, in Paper II we left r, free to vary. Additionally, we
replaced po with the scale velocity vg introduced in the previous section. Anal-
ogously to Chapter 4, we reformulate the generalised J-factor in logarithmic

base, thereby evaluating Js = log,, ( ) The scheme devised to fit L to

J—S
GeVZem—S
the observations is summarised below

* build a grid in the (rp, vg) plane and minimise L at each point with respect
to 74, producing 7

* assign to each grid point the corresponding maximum likelihood value,
which we call Lyp(ro, vo) = L(ro, vo, 7x)

« evaluate Jg over the same grid and divide the (7, vp) plane into Jg bins

¢ associate the central value of each bin, J¢, with the smallest value of L,p
entering that bin, labelled L,

* interpolate the pairs (J%, L)

The quantity Lyp(rg,vp) represents the two-dimensional profile likelihood in
the (rp,vo) plane. An example of Lyp is shown in Fig. 7.5, where the global
maximum likelihood is indicated with a red cross. The shaded areas correspond
to the regions of 1,2,30 containment of L,p from the maximum (see figure for
details). The dotted lines represent isocontours of constant Js across the (rg, vg)
plane. This figure was generated assuming a NFW DM profile in Eq. 3.14 when
evaluating L for the kinematics observed in the Fornax dSph. Following the
scheme outlined above, binning the likelihood evaluations in Js and determin-
ing the maximum likelihood value entering each bin, yields the dotted curve
displayed in Fig. 7.6. Similarly to the manual-profiling scheme introduced in
Sec. 4.2, interpolation of these points results in the (one-dimensional) profile
likelihood curve of a generic Jg, which we call Lip(ds). The triangle in this
figure corresponds to the global minimum of L;p, thereby representing the
best-fit generalised J-factor, g%, for the analysed kinematic sample and for
the assumed dSph model. The confidence intervals are calculated with the
log-likelihood ratio:

1 = L(@s)=Lip(@s) -Lin@") . (7.33)
Clearly, when evaluating Jg in this process, some values of the Yukawa param-
eters must be chosen. In producing Figs. 7.5 and 7.6, we assign & = 1072 and
€p = 1074, Application of this scheme to the same twenty dSphs considered

92



0.8 e

213 214 215 216
0.7
0.6 217
L 218
E
-~
=04 219
03 . 220
221
0.2 e e NFW Fornax
et . = 3o
i —— - - Do
- B
13 14 15 16 17

rol[kpc]

Figure 7.5: Topography of Lyp over the (rp,v9) plane. The shaded areas corre-
spond to regions of 1,2,30" containment of the two-dimensional likelihood from
its global minimum, indicated with a red cross. This figure is obtained analysing
kinematic data from Fornax dSph and adopting a NFW DM profile. The dot-
ted curves represent Jg isocontours, which are evaluated setting & = 1072 and
€p = 10™*. Figure reproduced from Paper II.

in Paper I and analysed under the assumption of NFW and Core DM profiles,
results in the best-fit J; values reported in Table 7.1. In this table we also
include two additional sets of results, indicated with g and Jg(,+). The former
correspond to the canonical J-factors obtained via this scheme but implement-
ing Eq. 1.2. The latter utilise a common approximation adopted when studying
self-interacting DM, whereby S(vre1) = S(v*), with v = 1073 ¢ for all DM par-
ticles. Comparing the generalised J-factors with the canonical ones, we find
that accounting for the Sommerfeld enhancement always leads to increased
estimates, up to several orders of magnitude (compare, e.g., columns 3, 4, 5 of
Table 7.1). Furthermore, the S(vee;) = S(v*) approximation overestimates J; by
roughly an order of magnitude.

Noting that Jg o< S(vrer) and recalling Figs. 7.3, one must bear in mind
that the magnification of the generalised J-factor, compared to the canonical
one, strongly depends on the combination of Yukawa parameters. Away from
resonances in S and for large mediator masses (€4 ) or for rapidly moving DM
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Figure 7.6: Log-likelihood ratio (¢/2) as a function of Jg, computed analysing
kinematic data from Fornax dSph and assuming a NFW DM profile. Interpolating
the points yields the profile likelihood £(Js), whose minimum represents the
best-fit generalised J-factor (grey triangle). The dashed lines correspond to the
1,2,30 confidence levels; finding the Js at which £ intersects them, provides the
corresponding confidence intervals (as reported in the figure). When evaluating
the generalised J-factor, we assume a = 1072 and €p = 107, Figure reproduced
from Paper II.

particles, the effect of self-interactions is greatly diminished. This observa-
tion suggests that due care must be taken when comparing results of different
analyses including the Sommerfeld enhancement of the DM annihilation cross-
section.

We conclude this chapter noting two important aspects implied by the re-
sults presented in this section. Firstly, the presence of self-interactions between
DM particles can largely increase the J-factor via the Sommerfeld enhance-
ment. Secondly, the ordering of the dSphs by the magnitude of their Jg is
strongly altered in this scenario. This conclusion has important implications
in indirect DM searches since, as stated in Chapter 1, the expected flux of
(detectable) particles resulting from DM annihilation is proportional to J (see
Egs. 1.1 and 7.3). Hence, if DM were to self-interact, dSphs previously re-
garded as non-promising, due to their small J, would become potential targets
for their larger Js.
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8. Outlook

Several possible venues of continuation of this work have been identified, the
main of which addresses a central assumption of the present and previous
analyses: the Gaussianity of the observed stellar motions. Amending this
choice entails deriving the projected velocity distribution of stars, starting from
physical arguments. This strategy is explored in more detail in the first section
of this chapter. Additional improvements of the method and considerations are
summarised in the second section.

8.1 Towards an observable velocity distribution of stars

An alternative fitting procedure of the stellar kinematics, which does not require
using the Jeans equation (Eq. 3.14) and the Gaussian likelihood (Eq. 4.3), is
possible. This approach entails constructing the distribution function of the
los velocity of stars, observed at some projected radial distance R from a
dSph’s centre. In this section we move the first steps towards the derivation
of this quantity. We start with an analysis of the velocity distribution of
spherical systems in the next subsection, followed by an illustrative application
on simulated data (used in Chapter 5). In the last subsection we present the
ingredients for calculating the projected distribution function of stellar los
velocities.

8.1.1 Stellar velocity distribution of spherical systems

The calculation of the velocity distribution function of stars inhabiting a spher-
ical system, when assuming no degree of anisotropy in the stellar motions,
mimics the derivation of P, j(vre1) encountered in the previous chapter. Dif-
ferently from Sec. 7.3, however, the present focus is not on DM particles.
Therefore, the starting point is a slight modification of Eq. 7.24, i.e. Eq. 4.22
of [11], which reads
f(r,v)
v(r)

with f and v now being the phase-space distribution and the density profile of
the stellar component of a dSph.

Pr(v) = 8.1)
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The formula above literally gives the probability of finding a star at location
r from the origin of the galaxy, moving with velocity v. However, in spherically
symmetric systems the phase-space distribution function and the density profile
only depend on the modulus of the velocity, v, and of the position, represented
by the radial coordinate r, i.e. f(r,v) = f(r,v) and v(r) = v(r). Averaging
over the angular components of the velocity and position vectors, we obtain the
following expression of the velocity distribution

2 f(r,0)
v(r)
Similarly to Sec. 7.3, we can cast f and v into a dimensionless format, using

f=fof and v = vy5. Whereas the terms entering the latter are identical to
those introduced previously (see Sec. 7.3), the former are now given by

P.(v)=4nv

(8.2)

fo= il
V82 r3 (47er())3/2
o ‘D(x s) (8.3)
i®= [ a
P-1(E)

w/é‘ P(x)

The terms & and ¥ appearing in Eq. 8.3 are the same as those defined in
Sec. 7.3, while D now reads

D(x) =

~ 12O 3 2~ 3\ 1
dvd‘I’(d‘I’) d=v (d‘I’) ’ 8.4)

dx dx? \dx dx

indicating that now Eq. 8.3 describes the dynamics of stars (v has replaced
p). We stress that the expression of f entering Eq. 8.3 applies only to the
case of isotropically oriented stellar velocities. When one allows for a degree
of anisotropy, the Eddington formula must be modified. In this situation, f
depends also on the angular momentum of stars, besides the (relative) energy,
€. x For the sake of simplicity, in the remainder of this chapter we will abide
by the assumption of isotropic stellar velocities.

In deriving Eq. 8.4, we exploited the fact that the stellar profile can be
written as v(r) = v 7(x), where we separated the dimensionality factor, vy,
from the analytical part, ¥(x). Generally, stellar profiles are expressed as some
function of r/r, (see, for example, Eq. 3.17). Therefore, evaluating ¥ at x
implies that two dimensional quantities inevitably remain in the integrand of
Eq. 8.3. However, the variable x is unaffected by the dimensionless ratio ry/ry,

+For a didactic presentation on the topic, we refer the reader to [11], while for a recent
exploration of the properties of the Eddington formula, in the presence of anisotropies in the
stellar motion, we indicate [169].
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Figure 8.1: Distribution function of isotropically oriented stellar velocities, in-
habiting a spherically symmetric system. The stars are described by a non-
Plummer profile and reside within a NFW DMH, having scale density of
po =6.4x10"Mokpc ™ at the radius of ry = 1 kpc.

which can be conveniently replaced by a new variable s = ry/r,. Moreover,
recalling that /(R) is obtained from v(r) via Abel transform (Eq. A.1), it follows
that in the surface brightness the dimensionality can also be collected into a
pre-factor Iy, giving I = Iy I. Taking the Plummer model introduced in Sec. 3.2
as an example, v(r) and I(R) can be expressed as

I

v(r) =vov(x,5) = — <1+x sz)_

)
" (8.5)
- L
1R) = 1o T(y5) = 5 (149752)
nry,
where we introduced the quantity y = ==, which renders the projected radial
positions R dimensionless.
Putting all together, Eq. 8.2 becomes
4n vg fo % .. L
P.(v) = — f(E) =Py Py(D) (8.6)
V(x,s)
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where we have defined

1

Pp= ———
ro2m3Gpg

B ~2 00 /@ ’ (87)

B.(7) = U dx"D(x’,s)

V(X’ S) q”l(é(x,ﬁ)) ’(’E:(x’ 5) _ ‘i’(x’)

We note that, for commonly adopted DM density profiles, the term ¥ is not an-
alytically invertible. Therefore, the lower integration bound in Eq. 8.7, ¥~1(&),
must be evaluated numerically. Moreover, we also observe that the integrand
diverges at this point. Despite these difficulties, the velocity distribution in
Eq. 8.6 can be calculated, some examples of which are shown in Fig. 8.1. The
various curves displayed in this figure correspond to different choices of r, as
indicated in the legend.

The results shown in Fig. 8.1 represent merely a numerical investigation.
In the following subsection we will present an comparison of the formalism
described here with a Gaussian approximation, using simulated data from one
of the previously employed GAIASIM models (see Chapter 5).

8.1.2 Isotropic velocity distributions: example on simulations

The assessment of the methodology outlined above requires the knowledge of
the position and velocity vectors for a collection of stars or, at least, the moduli
thereof. Luckily, mock data of this kind is available through the simulations
employed in Chapter 5. Since Eq. 8.6 applies only to isotropic stellar kine-
matics, we are forced to focus on any of the first four cases listed in Table 5.1.
For simplicity, we consider the Isorropic Cusp NON-PLUMMER model and we
utilise the entire sample (containing N, = 10000). To visualise the distribution
of (simulated) observations in a format compatible with P, (v), we first bin all
data into concentric annuli. Successively, we bin the data entering a given
annulus — we choose the one having radius » = 0.15 kpc — into ten velocity
bins. The upshot of this grouping is displayed in Fig. 8.2, where the blue points
indicate the histograms of the velocities. The red line in this figure represents
the true velocity distribution, i.e. the function P, (v) evaluated with Eq. 8.6 and
implementing the true expressions of \P, 7 and their parameters. In addition to
this curve, we also report a Gaussian fit to the data points, shown with a dashed
black line. We can see “by eye” how the former provides a better fit to data. *

+Since the example given here represents only an illustration of the formalism introduced
in Sec. 8.1.1, we did not attempt any fit of Eq. 8.6 with free parameters.
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Figure 8.2: Comparison between observed and theoretically predicted distri-
bution of absolute velocities. The data used is taken from the IsoTropic Cusp
NoN-PLUMMER model of the GAIASIM suite utilised in Chapter 5. The blue
points correspond to the histogram of the stellar velocities entering the radial
bin centred at » = 0.15 kpc from the origin of the (simulated) system. The red
line represents the predicted velocity distribution, P,(v), calculated with Eq. 8.6,
implementing the true models for ¥ and #. The dashed line constitutes merely a
Gaussian fit to the data points.

In the hypothetical availability of the entire phase-space information for
each measured star in a real dSphs, there are several strategies to implement
Eq. 8.6 in the statistical inference of model parameters. Being a distribution
function normalised to unity, P.(v) can be directly utilised as a probability
density function (pdf) to calculate the likelihood of observations. However,
this approach does not allow to straightforwardly include the uncertainties on
the velocity in the inference process. For this reason, it is possible to convolve
Eq. 8.6 with the pdf of the observations, which is usually assumed to be a
Gaussian centred on the theoretically predicted velocity and with spread given
by the measurement uncertainty [170]. Alternatively, the moments of P,(v)
can be evaluated with the following expression

Wy, = fdv " P,(v)
/dv P, (v)

whose terms can be compared with the moments of the observed distribution.

(8.8)
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Undesirably, we still lack complete information on the stellar kinematics
in dSphs. To circumvent this shortcoming, several studies have performed
a kinematic modelling based on the action integrals (for a recent review on
the topic see [171]). However, a novel approach could consist in projecting
P, (v) onto the plane of the sky and quantifying the distribution of los stellar
velocities. In the next subsection we present the ingredients for obtaining such
term.

8.1.3 Projected velocity distribution function: foundations

In earlier parts of this section we obtained the distribution function of the
velocity modulus, v, of stars located at some radial distance r from the system’s
centre. However, we reiterate that the sole quantities directly measurable
with current observations are the radial distance R of a star from the dSph’s
centre (projected onto the plane of the sky orthogonal to the los), and the los
component of its velocity, v;,s. To extract a quantity directly comparable with
observations from Eq. (8.1), we need to average it over all possible values of
the [os component of r, r||, and of the perpendicular component of v, v, . This
procedure gives Eq. (4.23) of [11], which reads

fderzvl f(r,v)
[dryv(r)

To evaluate Eq. 8.9, it is useful to consider the geometry of observations of the
stellar kinematics presented in Fig. 3.1 and shown in greater detail in Fig. 8.3.
We have already attempted the evaluation of Eq. 8.9, but the preliminary results
still present flaws. We intend to pursue the solution of this formula in the future.

F(ri,v0s) = (8.9)

8.2 Extensions of the technique and further investigations

We conclude this chapter discussing additional ways to improve the technique,
as well as supplementary studies which can be performed. The first entails
a consistent assessment of the systematic error associated with every model
component entering the analysis of kinematic data. We note that a similar in-
vestigation has already been attempted in [125], although such work adopted an
indirect approach. Specifically, those authors inverted the Jeans equation and
explored the effect on the mass estimate due to different modelling assumptions
on the stellar density distribution, the los velocity dispersion and the anisotropy
profile. Moreover, they examined only real data from Ursa Minor dSph, by
performing Bayesian inference. Considering the correct definition of the stellar
velocity distribution (Eq. 8.6), we can analyse the simulated data used in this

102



plane L to los

R
plane L to ltc

S Hfﬁ <

Observer

Figure 8.3: Detailed geometry of observations of stellar projected position R and
los velocity, vjos-

work (the GAIASIM simulations — see Chapter 5) without modelling inaccu-
racies. In the study that we propose, the quantification of the uncertainties
would be inherently frequentist, on one side, and it would directly reflect model
systematic uncertainties on the J-factor, on the other.

An important aspect of the kinematic data that have been utilised in this
thesis, but not yet mentioned, is the degree of contamination due to foreground
stars. It has been shown that wrongly associating stars with dSphs — like those
belonging to the MW and lying along the los — can increase the observed
velocity dispersion [99; 172]. Consequently, these spurious measurements can
artificially enhance J [27]. A possible way to treat this issue is by modifying
the likelihood function, whether is the Gaussian approximation of Eq. 4.3 or
the correctly defined projected velocity distribution (Eq. 8.9), introducing an
additional factor L,. This term would quantify the likelihood of a star to be-
long to a certain dSph; this information is usually provided in the publications
presenting spectroscopical measurements (for example, see [173]). A similar
analysis has already been performed in [174], although the results reported
there were obtained via Bayesian methods on three dSphs only (Draco I, Draco
II and Ursa Minor). Here we propose extending such analysis to a broader set
of dSphs, adopting our frequentist approach.
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To conclude, we stress the indispensability of broad kinematic samples of
the stellar populations of dSphs for the reliable applicability of the prior-less
method presented in this thesis. Recent studies [175; 176] have proposed an
alternative way of inferring the J-factor of a dSph which is well-suited when
only few spectroscopic measurements are available or are completely missing.
This method exploits a characteristic scaling relation between J and physical
properties of a dSph, such as its (overall) velocity dispersion 07y, its distance D
and its half-light radius r;,. Such approach has been implemented in [26] when
assigning J to recently discovered DES dSphs [52; 65], in an effort to search
for possible indications of DM annihilation via the joint likelihood analysis
presented earlier. However, we identify two limitations of this stratagem.
First, the J-factors adopted when inferring this scaling relation were obtained
via Bayesian methods. Second, this scheme does not provide a functional
expression for the likelihood of J, which, similarly to previous studies, is
assumed to be a log-normal. These considerations highlight the importance of
genuine kinematic measurements for all dSphs. We, therefore, auspicate that
future surveys will focus on these systems, as well as known ultra-faint dSphs.
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9. Conclusion

The satellite galaxies orbiting the MW, in particular the high-energy radiation
originating from them, may hold the key to DM identification, with a potential
discovery entailing an irrefutable detection of the DM annihilation or decay
signature. Undesirably, the analysis of astroparticle data from dSphs is hindered
by the inaccessibility of the true spatial distribution of DM in the halos which
are expected to host these galaxies. The term usually adopted to quantify
the abundance of DM in cosmological halos, which thus has a central role in
DM searches in dSphs, is commonly known as the J-factor. This ignorance
on the DM, and correspondingly on J, has been typically addressed in the
literature by means of Bayesian analyses of the kinematic properties of stars
populating dSphs. However, the use of such statistical framework introduces an
inconsistency which propagates to and affects the inference of possible signals
of annihilating or decaying DM, when studying the radiation concomitant with
dSphs. This incongruity originates in the presence of (often arbitrary) priors in
the Bayesian framework, a feature which conflicts with the (nearly ubiquitous)
frequentist treatment of particle data in astrophysics. Thus, priors inevitably
impact the conclusions in DM searches.

In this thesis we presented a novel approach to remedy this statistical incon-
sistency, by introducing a technique to construct data-driven profile likelihoods
of the J-factor of dSphs. These curves have been utilised to determine the MLE
of J and its uncertainty, under specific modelling assumptions of the system
examined. This approach still relies on the availability of stellar kinematic
data and its interpretation via the Jeans equation, but has been deprived of the
influence of priors.

The strategy that has been adopted in the development of our method
entailed an initial study, performed in a simplified setup and intended to be
a proof-of-concept of the frequentist approach. In this project, which led to
the publication of Paper I, we implemented common, standard assumptions,
such as the NFW distribution of collisionless DM particles. Afterwards, in a
continuation study, we explored a more general scenario, still neglecting the
possibility of self-interactions; the results of this work are contained in Paper
III. Alongside the frequentist analysis of real kinematic data from MW dSphs,
the first and last publication included in this thesis also proposed a validation of
the prior-less approach on a (publicly available) simulation suite. We stress that,
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to our knowledge, never before in the literature had the statistical properties
of the Jeans formalism been tested in the context of J-factor determination
in dSphs, finalised to DM searches. Therefore, the validations performed in
Paper I and Paper III also represent an element of innovation and progress with
respect to past works. Assured of the statistical reliability of our frequentist
method, we applied it on genuine stellar data from dSphs of the MW. In
both aforementioned publications, we obtained estimates of J consistent with
previous, Bayesian-derived results. Additionally, and differently from earlier
studies, we found that the new uncertainties appropriately scale with the size
of the kinematic sample examined. We deemed this feature a reflection of the
expected behaviour of statistical errors. Importantly, combining the product
of our frequentist approach (the J-factor profile likelihoods) with published
astroparticle data, we have been able to produce the first, entirely frequentist
constraints on the DM annihilation cross-section. This result opens the way
to statistically consistent searches for DM signals, not subject to the ambiguity
associated with the choice of priors.

The possibility of self-interactions of the DM particle has been examined in
Paper II. In this second publication we investigated the effect of a Sommerfeld
enhancement, S, on the J-factor determination via a frequentist approach.
Consistently with previous studies, we found the generalised J to be enhanced
by several orders of magnitude, with respect to the values obtained in the
canonical — i.e. non self-interacting — scenario, especially when combinations
of parameters in S yield a resonant enhancement.

The last aspect that we started exploring is the derivation of a physically
motivated velocity distribution of the observed stellar motions. One of the
advantages of using this function is the possibility of amending a central as-
sumption implemented ubiquitously when determining the DM abundance in
dSphs: Gaussian distributed /os stellar velocities. This strategy appears to be
very promising but it must be improved before it can be reliably implemented
in the analysis of genuine stellar kinematic data.

In conclusion, the material contained in this thesis can be viewed as a
starting point for the data-driven characterisation of DM in dSphs. The next
phase entails ameliorating the method by, for example, exploring non-standard
scenarios. Developing a physically motivated and observable stellar velocity
distribution will consent to shed light on the systematics associated with stan-
dard modelling assumptions. This and other investigations are postponed to
further work, with the hope that astronomical surveys will continue producing
kinematic data for dwarf galaxies.
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Svensk Sammanfattning

Det nuvarande kosmologiska paradigmet pavisar att enbart 5% av universums
totala energibudget bestér av baryoner, alltsa det vi kallar vanlig materia. En
analys av den sd kallade kosmiska bakgrundsstrdlningen i mikrovagor visar
att de aterstdende 95 procenten bestdr av 26% icke-baryonisk mork materia
(pa engelska Dark Matter, DM) och 70% av en tredje komponent, det som
kallas mork energi. Medan detaljer kring den morka energin i stort sett ar ett
mysterium, finns det 6vertygande indikationer av existensen av den morka ma-
terickomponenten sedan cirka ett sekel tillbaka. Trots férekomsten av robusta
astrofysikaliska observationer som visar att DM finns, och konkreta modeller
inom partikelfysiken som skulle kunna forklara det, saknas dnnu ett obestridligt
samband mellan iakttagelser och modellforutsdgelser. For att hitta dessa sam-
band, har ménga olika experiment och strategier skapats bade for indirekt och
direkt identifiering av DM-partiklar och deras associerade fysikaliska egenska-
per. En sirskilt lovande metod for att s6ka DM ér sé kallade indirekt detektion.
Denna teknik innebér mitning av distinkta signaturer av DM-forintelse eller
-sonderfall, framfor allt frin DM-téta miljoer, i form av detekterbara subatomi-
ra (vanliga) partiklar, eller energirikt ljus. Prognosen for det beriknade flodet
av dessa beror d& pa den s& kallade J-faktorn, som kvantifierar mdngden av
DM som finns ldngs observationslinjen som pekar fran observatoren till kéllan.
Vintergatans sfiaroidala dvirggalaxer (dwarf spheroidal galaxies, dSphs) repre-
senterar en perfekt mélgrupp for det indirekta DM-sokandet av tva skil. For det
forsta har de ndgra av de storsta J-faktorer i vart narliggande universum, dvs.
de d&r DM-dominerade, och for det andra representerar de en mer eller mindre
ren DM-milj6 som inte dr paverkad av klassiska astrofysikaliska processer som
annars ocksa skulle producera de eftersokta partiklarna. Det vanligaste sittet
att bestimma J-faktorn i en dvérggalax gors med en analys forst foreslagen
av James Jeans. Hér anvinds den uppmitta rorelsen av stjdrnor som kretsar
i dvérggalaxerna i den sé kallade Jeans-ekvationen. Ekvationen kopplar ihop
stjarnornas rorelse och totala gravitationsmassan av systemet (dvs. dSph), och
kan sedan anvéndas for att berdkna J-faktorn. Den hér typen av analys brukar
utforas inom ett Bayesiansk statistiskt ramverk, som dock inte &dr konsistent pa
grund av de ofta godtyckliga s.k. priors i Bayes statistik som paverkar berik-
ningen av J-faktorn, dven om sjilva dataanalysen sker genom frekventistiska
metoder (utan priors). I denna avhandling presenterar vi en ny alternativ ana-
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lys som inte behover priors dver huvud taget, FRESKA (Frequentist Stellar
Kinematics Analyser). Vi anvinde denna alternativa analys i en forsta studie
inom en forenklad modell och fick for forsta gdngen prior-16sa uppskattningar
av J-faktorn for tjugo dvirggalaxer. I ett fortsittningsprojekt undersokte vi ett
generaliserat scenario dér vi endast analyserade de tio ljusaste dSphs. Vi testade
i bada projekten var metod genom att anvinda oss av en offentligt tillgdnglig
simulering och utfallen stérkte dess tillforlitlighet. I dessa tva studier ansatte
vi hypotesen om en icke-sjdlvinteragerande DM-partikel, likt fotoner som pro-
pagerar genom rymden utan att vixelverka med varandra. Senare undersokte
vi aven mojligheten att DM-partiklarna upplever sjélvinteraktioner, analogt till
tva elektroner som repellerar varandra pa grund av deras elektriska laddning. I
bada fallen 6verensstimmer resultaten med det som tidigare har rapporterats i
litteraturen. Sista projektet som beskrivs i denna avhandling &r en forbittring av
var metod, ddr vi har ersatt ett centralt antagande géllande stjédrnornas rorelser
med en biittre, fysikaliskt motiverad definition. Avhandlingen avslutas med en
undersokning av mdjliga forbéttringar av, och fortsittningarna for, var metod.
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Sunt par Furlan

Lis osservazions astrondmichis pontin sul fat che a je un vore di materie tal
univiers che no si rive a viodi ma che a scugne jessi li. Chest alc lu clamin la
materie scure e un dai mior puests dula cjatale son lis piculis galasis tarondis
atdr da nestre galassie (la Via Lattea). Sore dut, si cir la lis che e vares di riva
da materie scure par vie di un proces fisic clamat “anichilazion”. Par savé tropa
las che un al si spiete di viodi, si scugne ve une indicazion di trope materie
scure si cjate dentri di chestis galasis. Par misura la 1Gs si dopre il telescopi
spazidl da NASA claméit Fermi e par misura la quantitat di materie sciire si fas
un cont doprant i moviments da stelis dentri lis galasis. Il fastidi al & che, fin
cumo, atris studids han misturat dos tecnichis da statistiche par fa i conts. Par
fa lis robis par ben e jessi siglirs di fa i conts justs, o ai svilupat une tecniche
gnove che e comede chest problema. Par cumo somee cal sedi dut a puest,
par vie dai controi che o hai fat su simulazions e parce che i mei risultats son
dongje di chei dai atris. Perd a son ancjemo un do robis di comeda.
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Abel transform

In a spherically or axially symmetric system, the projection of a function f(r)
onto F(R) can be calculated with the Abel transform, which reads

< f(r)yrdr

F(R)=2 — (A.1)
R Vr2-R?
The inverse transformation is achieved using the following expression
“dI(R) -dR
f(r)=/ —_ Y (A.2)
» AR pVRZZ,2

which is referred to as the inverse Abel transform.
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Generalised profile likelihoods of J

The ten figures included in this section portray the full, generalised profile
likelihoods of J that have been derived in Sec. 6.2 of this thesis. Each figure is
associated with one of the known dSphs having N, > 100 (see Sec. 6.2). The
curves appearing in each plot refer to one of the three stellar anisotropy models
considered in this thesis. All relevant information is contained in the panels.
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