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Abstract
We present a covariant description of non-vacuum static spherically symmetric
spacetimes in f (R) gravity applying the (1+1+2) covariant formalism. The
propagation equations are then used to derive a covariant and dimensionless
form of the Tolman–Oppenheimer–Volkoff equations. We then give a solution
strategy to these equations and obtain some new exact solutions for the par-
ticular case f(R) = R+αR2, which have the correct thermodynamic properties
for standard matter.
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1. Introduction

The remarkable discovery of the late-time accelerated expansion of the Universe has, over the
past two decades, led to numerous studies of different models of the Dark Universe aimed at
overcoming the limitations of the standard ΛCDM cosmological model.

One of the most popular alternatives to the standard model is based on gravitational actions,
which are nonlinear in the Ricci scalar R — the so-called f (R) theories of gravity. This is
because the non-linear corrections to the Hilbert–Einstein action can be recast as effective fluid
quantities, which naturally lead to violations of the strong energy condition and consequently
accelerated expansion without introducing additional fields. Such models first became popular
in the 1980 s because it was shown that they can be derived from fundamental physical theories
(for example, M-theory) and naturally admit a phase of accelerated expansion associated with
inflation in the Early Universe [1, 2]. The fact that Dark Energy requires the presence of a
similar phase of accelerated expansion at late times has revived interest in these theories and
led to a considerable amount of work, both in cosmological and astrophysical applications [3].

Because the number of potential f (R) candidate theories is large, there needs to be a system-
atic comparison between all theoretical predictions of a given theory with the available cos-
mological data sets (Cosmic Microwave Background, Large Scale Structure, Baryon Acoustic
Oscillations, Type Ia Supernova, etc). A somewhat better approach is not to assume the form
of the gravitational action but rather attempt to constrain it from cosmological data, assum-
ing that the Copernican principle holds. Such a cosmographic approach has the advantage of
being model-independent. Unfortunately, all of these procedures suffer to some degree from
the so-called degeneracy problem, i.e. several competitive gravitational theories are consistent
with the available data at the same statistical precision.

One way to address this problem and further constrain the number of experimentally viable
f (R) theories is to improve our understanding of their phenomenology and limitations in other
contexts, like, e.g. astrophysics. This provides a way of probing the high-energy (or strong
gravitational) limit of these theories, which is complementary and perhaps even more strongly
motivated than the picture obtained from the low-curvature, late-time cosmological evolution.
Of particular interest are investigations of the existence and properties of relativistic com-
pact objects, such as white dwarfs and neutron stars, and gravitational collapse (see [4] as an
example of its application in f (R) gravity).

In particular, the development of a description of relativistic stars involves a detailed study
of the Tolman–Oppenheimer–Volkoff (TOV) equation. Introduced in 1939 [5], these equations
provide a way of determining the pressure profile of a static, spherically symmetric object
in General Relativity (GR). Although obtaining exact solutions of the TOV equations is a
formidable task, some solutions do exist; see, e.g. in [6].

The situation becomes considerably more complicated in f (R) gravity because the field
equations are fourth order. Until now, all studies of relativistic stars in these theories involve
numerical integration of the governing equations. As far as we know, no non-vacuum exact
solutions for stars exist [7]. An extensive review of compact stellar objects in extended theories
of gravity is covered in [8].

Recently, a new approach to the treatment of the TOV equations has been proposed using
covariant semi-tetrad methods called the (1+1+2) approach. Developed by Clarkson and
Barrett [9], this approach has been recently applied to study Schwarzschild black holes, such
as their linear perturbations [9] and the production of a stream of electromagnetic radiation that
mirrors the black hole ring-down when gravitational waves around a vibrating Schwarzschild
black hole interact with a magnetic field [10].
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Applications of this formalism to the problem of modeling the interior of isotropic relativ-
istic stars in GR were proposed in [14, 16] and extended to a two-fluid framework by [20].
However, more realistic modeling requires the introduction of anisotropies. Indeed, anisotrop-
ies arise naturally in astrophysical systems, for e.g. gravitational collapse, and rotating stars
such as pulsars [24–26] including high-density compact objects [27]. Compact anisotropic
stars that describe realistic astrophysical phenomena, such as neutron stars, have been explored
in GR [28]. The consequence of local anisotropy in self-gravitating systems in Newtonian and
general relativistic cases causes a non-negligible effect on the critical mass of a stellar object,
whereby it is more or less stable compared to the local isotropic case [30]. Anisotropic com-
pact objects have also been analyzed in covariant frameworks by [15, 17–19, 29], and extended
to a two-fluid system in GR [21], making it well-suited to extended models of GR. In partic-
ular, it was shown how to generate two fluid solutions either through direct resolution or by
reconstructing them from known single fluid solutions [20, 21].

Our study focuses on compact objects within f (R) theories of gravity. It is well known that
anisotropies play an important role in these theories. As an example, De Felice and Tsujikawa,
and Sotiriou and Faraoni [1], discuss how anisotropy arises in charged and/or rotating black
holes in f (R) gravity, and Nashed and Capozziello show how anisotropic compact stars in
f (R) gravity can describe realistic systems such as pulsars [31]. Since f (R) gravity naturally
introduces anisotropy we will assume that also the fluid sources are anisotropic. This choice
is motivated by generality but also by the fact it is comparatively easier to obtain a solution
sourced by a more general form of matter.

To exploit the symmetry of our problem, the (1+1+2) covariant formalism is employed, and
in the context of f (R) gravity, this approach has been used to describe a spherically symmetric
vacuum solution in f (R) gravity [11]. The same authors also studied the gravitational lensing
properties of spherically symmetric spacetimes in f (R) gravity [12]. Another example of the
advantages of working in this formalism is the study [13] where the authors could easily show,
in a coordinate independent way, that no scalar-tensor theory of gravity admits a Schwarzschild
solution unless one considers a trivial scalar field.

In this paper, we formulate and solve exactly the TOV equations for f (R) gravity. More
specifically, we use the fact that f (R) theories can be written as GR plus baryonic matter and
an effective ‘curvature fluid’. This allows us to use the methods developed in [20, 21] to gen-
erate exact solutions of the TOV equation in f (R) gravity. Adopting the (1+1+2) covariant
formalism [9] and the methods used in [20, 21], for the first time, we are able to write down
analytical solutions to the TOV equations in the context of f (R) gravity.

The outline of this paper is as follows. In section 2, we present the field equations of f (R)
gravity. In section 3, we review the (1+1+2) covariant semi-tetrad formalism and specialize
the equations to locally rotationally symmetric (LRS) type II spacetimes. We then apply this
formalism to f (R) gravity in section 4. In section 5, we derive the TOV equations for a two-
fluid system, which is well suited to the study of spherically symmetric non-vacuum solutions
in f (R) gravity. In section 6, we turn to the important issues of thermodynamical constraints for
matter sources and junction conditions. These conditions will be needed to properly match our
solutions to the exterior vacuum Schwarzschild geometry. At this point, we are ready to use
our formalism to generate new solutions. In section 8, we define the reconstruction algorithm
needed to obtain the exact solutions, and in section 9, we construct and examine some new
solutions for a quadratic f (R) model. Finally, we present our conclusions in section 10 and
discuss possible future work.

To close off this section, we provide a few standard definitions and conventions that will be
used throughout this paper. Natural units will be used (ℏ= c= kB = 8πG= 1). The covariant
derivative and partial differentiation are denoted by the symbols ∇ and ∂, respectively, and
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Latin indices are used for space (1-3 indices) and time (0 index) components. The metric
signature −,+,+,+ is used. The Riemann tensor is defined by

Rabcd = Γabd,c−Γabc,d+ΓebdΓ
a
ce−ΓebcΓ

a
de , (1)

where the metric connection Γabd is the Christoffel symbols, given by

Γabd =
1
2
gae (gbe,d+ ged,b− gbd,e) . (2)

The Ricci tensor is defined as the contraction of the first and the third indices of the Riemann
tensor

Rab = gcdRacbd . (3)

A tensor that is symmetric and antisymmetric on the indices is defined as

T(ab) =
1
2
(Tab+Tba) , T[ab] =

1
2
(Tab−Tba) , (4)

respectively. Finally, in standard GR, including a matter field, the Einstein–Hilbert action is

A=
1
2

ˆ
d4x

√
−g [R+ 2Lm] . (5)

2. The field equations

A general description of a fourth-order theory of gravity includes the introduction of additional
curvature invariants, such as R, RabRab and RabcdRabcd, to (5). One of the simplest possible
generalizations of this kind of theories, which turns out to be fairly general in four dimensional
spacetimes with high symmetry, [32, 33], is given by the action

A=
1
2

ˆ
d4x

√
−g [f(R)+ 2Lm] , (6)

where Lm describes the matter field.
The general modified field equations are obtained by varying (6) with respect to the metric

gab:

f ′Rab−
1
2
fgab−∇b∇af

′ + gab∇c∇cf ′ = Tmab, (7)

where Tmab represents the stress-energy tensor of the matter sources, f≡ f(R), and f ′ ≡ df/dR.
The above equation can be recast as

Gab = Teffab = T̃mab+TRab, (8)

where

TRab ≡
1
f ′

[
1
2
( f−Rf ′)gab+∇b∇af

′ − gab∇c∇cf ′
]
, (9)
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and

T̃mab ≡ Tmab/f
′. (10)

Expressing the field equations, equation (7), in the form of equation (8) allows us to consider
higher order corrections to the Einstein field equations as an effective fluid, thus providing a
way to employ some of the results in GR (and of [20, 21]) to find analytical two-fluid interior
solutions to compact objects.

In f (R) gravity, the trace of the field equations, equation (8),

R=
1
f ′
(3pm−µm)+

2f
f ′

− 3
f ′ ′ ′

f ′
∇aR∇aR− 3

f ′ ′

f ′
∇2R+ 3ΘṘ

f ′ ′

f ′

+ 3
f ′ ′

f ′
R̈+ 3

f ′ ′ ′

f ′
Ṙ2 − 3u̇c

(∇cf ′)
f ′

, (11)

will prove to be particularly important in writing down themodified TOV equations. It captures
the dynamics of the additional scalar degree of freedom that characterizes f (R) theories.

The twice contracted Bianchi identities tell us that the divergence of the left-hand-side of
equation (8) is identically zero. Hence, the right-hand-side will be zero resulting in Teffab being
conserved. This leads to an important consequence: if baryonic matter is conserved, the total
fluid is also conserved. However, it should be noted that this consequence does not imply that
the individual fluids are conserved, i.e.

∇b

(
Tmab
f ′

)
=−∇bTRab =− f ′ ′

f ′2
Tmab∇bR. (12)

We would also like to emphasize that TRab and T̃
m
ab in equation (8) both represent an effect-

ive fluid. This means it could present unphysical properties for a fluid composed of baryonic
matter. In analyzing the solutions presented in the proceeding sections, we will make sure that
Tmab satisfy several conditions that guarantee that the source fluid is physical, but allow for TRab
and T̃mab to have unphysical values.

Among all the possible forms of the function f, a particularly interesting choice is a quadratic
polynomial. In this case, we have a gravitational action in which a quadratic Ricci scalar term
is added to the Einstein–Hilbert action:

A=
1
2

ˆ
d4x

√
−g
[
R+αR2 + 2Lm

]
. (13)

If the constant α is positive, this model is called the Starobinsky model. Initially, this model
was proposed as an effective action, representing quantum corrections in the matter content
of spacetime. In a cosmological setting, Starobinsky showed that his model could induce an
inflationary phase without the need to introduce a scalar field [2]. This theory is also proven
to be ghost-free when deriving the particle spectrum of the theory, a feature that is rare in
f (R) gravity (see [44] for an introduction to this specific issue). For our purposes, an important
property of this model is that the only static spherically symmetric asymptotically flat solu-
tion with a regular horizon for this model is the Schwarzschild solution [45]. Consequently,
such a model naturally contains an ideal representation of the exterior of a compact object,
and, also for this reason, it has been extensively studied in spherically symmetric spacetimes
in modified theories of gravity [46]. In the next sections, we will use a quadratic model of
gravity, equation (13), where α is a free parameter. This will allow us to explicitly explore the
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corrections induced by unique structures that arise in these models of gravity, called double
layers.

Astrophysical tests of gravitational interactions place constraints on df/dR for a general f (R)
theory. Currently, the galactic halo sets the strongest bound |f ′|⩽ 10−6 [47]. Solar System
tests, like the geodetic precession of an orbiting gyroscope around Earth, place an upper
bound on the scalar curvature R⩽ 10−22 m−2 [48], and Mercury’s precession rate bounds
the parameter α as |α|⩽ 1018 m2 [49]. The bounds on the parameter α remain inconclus-
ive since the Gravity Probe B experiment and the binary pulsar system PSR J0737-3039 set
a constraint on the parameter α as 5× 1011m2 [50] and 2.3× 1015m2 [48, 51] respectively.
Still, the Eöt–Wash laboratory experiment gives an upper bound on α as α⩽ 10−10m2 [52].
Therefore, when considering quadratic models of f (R), these constraints do not limit the para-
meterα since 1+ 2|α|R⩽ 10−6. In addition to these limits, [53] place a bound on the quadratic
model parameter |α| ∼ 109 cm2 by considering realistic equations of state for neutron stars.
Frameworks for discriminating between extended models of gravity using gravitational waves
have been investigated by [56]. However, the parameter constraint on quadratic gravity remains
contentious since studies on gravitational wave emissions from inspiralling black holes find
α∼ 1031 m2 [54] and α⩽ 1.1× 1013 m2 [55].

3. The (1+1+2) covariant formalism

The (1+3) covariant approach, developed by Ehlers and Ellis [34], has been instrumental in
cosmological applications such as studying perturbation theory [35] and CMB anisotropies
[36]. This approach is well suited to investigate cosmological spacetimes. For example, it can
describe fully anisotropic but spatially homogeneous spacetimes (Bianchi models) via a set
of ordinary differential equations comprised of scalar variables. The (1+3) approach relies on
a threading of the spacetime with the introduction of a time-like vector field ua. This vector
allows to define of a set of three-dimensional hypersurfaces (orthogonal to ua) whose geometry
is described by

hab = gab+ uaub. (14)

One can also define a derivative operator along ua, which is given, for a generic tensor ψa...b,
by

ψ̇a...b ≡ ud∇dψa...b, (15)

and a derivative on the 3-surfaces

Dcψa...b ≡ hc
dha

e. . .hb
f∇dψe...f. (16)

All the physical and geometrical descriptions are captured in kinematic and dynamic variables,
which satisfy evolution and constraint equations derived from the Bianchi and Ricci identities
[34].

Our study will employ an extension of the (1+3) formalism, called (1+1+2) covariant
approach [9], which is obtained by a further threading of the 3-space defined by hab. In partic-
ular, a unit vector ea that is orthogonal to the 4-velocity ua is introduced, such that

eau
a = 0 , eae

a = 1. (17)
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Then, the 2-surfaces geometry is characterized by

Nab ≡ hab− eaeb = gab+ uaub− eaeb , N
a
a = 2 , (18)

which is orthogonal to ea and ua.
For the study of non rotating relativistic stars, it is sufficient to focus on the use of this

approach in LRS spacetimes and, more specifically, to the static LRS-II subclass, which is
rotation-free. This class of spacetimes has the remarkable property that all the (1+1+2) quant-
ities necessary for their description are scalars.

In particular, given a 3-vector va and a projected symmetric trace free (PSTF) 3-tensor ψab,
we have

va = Vea , V≡ vaea , (19)

ψab = ψ⟨ab⟩ =Ψ

(
eaeb−

1
2
Nab

)
. (20)

In order to fully describe the propagation of the (1+1+2) quantities, we need to define,
other than the derivative along ua, the derivatives along ea and on the 2-surface:

ψ̂a..b
c..d ≡ efDfψa..b

c..d , (21)

δfψa..b
c..d ≡ Na

f. . .Nb
gNh

c..Ni
dNf

jDjψf..g
i..j . (22)

In static LRSII spacetimes, the key quantities needed to describe the geometry are

A≡ eau̇a, (23)

ϕ ≡ δae
a , (24)

E ≡ Cacbdu
cudeaeb, (25)

where A represent the acceleration of the observers that move with velocity ua, ϕ describes
the 2-surfaces expansion and E the electric part of is the Weyl tensor Cacbd.

In addition to the (1+1+2) variables above, the complete set includes the variables resulting
from the thermodynamics of the source fluid. These variables are obtained by the decomposi-
tion of the energy-momentum tensor of the matter fields, whose most general form, compatible
with LRS-II spacetimes, is:

Ttotab = µtotuaub+
(
ptot +Πtot)eaeb+(ptot − 1

2
Πtot

)
Nab+ 2Qtote(aub), (26)

where µtot is the total energy density of baryonic matter, ptot is the total isotropic pressure
of baryonic matter, qtota is the total energy flux of baryonic matter, and πtot

ab is the total PSTF
anistropic stress. The apex ‘tot’ in the above formula represents the fact that in the presence
of more than one matter source, those quantities can be written as the sum of the individual
fluids, i.e. in the case of two fluids µtot = µ1 +µ2, ptot = p1 + p2, and Πtot =Π1 +Π2.

We now have all the fundamental quantities that describe our spacetime in the (1+1+2)
formalism. Restricting our study to the case of static spherically symmetric LRS-II spacetimes,
the two-fluid propagation equations are [21]

ϕ̂ =−1
2
ϕ2 − 2

3
µtot − 1

2
Πtot −E , (27)

7
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Ê − 1
3
µ̂tot +

1
2
Π̂tot =−3

2
ϕ

(
E +

1
2
Πtot

)
, (28)

0=−Aϕ +
1
3

(
µtot + 3ptot

)
−E +

1
2
Πtot , (29)

p̂tot +Π̂tot =−
(
3
2
ϕ+A

)
Πtot −

(
µtot + ptot

)
A , (30)

Â=−(A+ϕ)A+
1
2

(
µtot + 3ptot

)
, (31)

together with the Gaussian curvature constraint

K=
1
3
µtot −E − 1

2
Πtot +

1
4
ϕ2. (32)

We will now apply the formalism above to the case of f (R) gravity.

4. Static, spherically symmetric f(R) equations

As previously mentioned, an advantageous feature of f (R) theories of gravity is that one can
express the field equations in such a way that it resembles GR with a two-fluid source com-
prised of non-minimally coupled matter and an effective curvature fluid [3]. Therefore, our
set-up is analogous to the two-fluid construction of the previous section, and therefore, the
(1+1+2) equations in this case can be obtained by simply setting

Ttotab = Teffab (33)

in equations (27)–(31), or, equivalently, by choosing

µtot = Teffabu
aub =

µm

f ′
+µR, (34)

ptot =
1
3
Teffab
(
eaeb+ 2Nab

)
=
pm

f ′
+ pR, (35)

Πtot =
2
3
Teffab
(
eaeb−Nab

)
=

Πm
ab

f ′
+ΠR

ab, (36)

Qtot =−1
2
Teffbc u

ceb =−Qm

f ′
+QR, (37)

where the curvature quantities are defined as

µR =
1
f ′

(
1
2
(Rf ′ − f)+ f ′ ′X̂+ f ′ ′Xϕ+ f ′ ′ ′X2

)
, (38)

pR =
1
f ′

(
1
2
(f −Rf ′)− 2

3
f ′ ′X̂− 2

3
f ′ ′Xϕ − 2

3
f ′ ′ ′X2 −Af ′ ′X

)
, (39)

ΠR =
1
f ′

(
2
3
f ′ ′X̂+

2
3
f ′ ′ ′X2 − 1

3
f ′ ′Xϕ

)
, (40)

QR =− 1
f ′
(
f ′ ′ ′ṘX+ f ′ ′

(
Ẋ−AṘ

))
= 0, (41)
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and R̂≡ X. Using the covariant formalism and the variables above, the trace equation,
equation (11), can be written as Rf = 3peff −µeff or

Rf ′ − 2f = 3pm−µm− 3f ′ ′X̂− 3f ′ ′Xϕ +−3f ′ ′ ′X2 − 3Af ′ ′X . (42)

For our purposes, a more useful form of the trace equation is

X̂=
pm

f ′ ′
− 1

3
µm

f ′ ′
− 1

3
f ′

f ′ ′
R+

2
3
f
f ′ ′

− f ′ ′ ′

f ′ ′
X2 −X(ϕ +A) . (43)

When f(R) = R, we recover the GR description of the field equations, fluid quantities, and
propagation equations.

5. The TOV equations in the (1+1+2) covariant formalism

We will now derive the key equations that describe a compact stellar object in the context of
f (R) in the language of the covariant formalism summarized above. These equations will be
equivalent to the so-called TOV equations in [37, 38]. We will write them in terms of dimen-
sionless variables, which will simplify the understanding of the mathematical structure of the
equations and the resolution strategies we will employ.

We start with the definition of a dimensionless radial parameter.We introduce the parameter,
ρ, such that

X̂= ϕX,ρ. (44)

To aid in the physical interpretation of our results, we can connect the parameter ρ to the area
radius r,

ρ= 2ln

(
r
r0

)
, (45)

where r0 is an integration constant and it is set to r0 = 1. In the following, we will use ρ for
the calculations, but the results will be reported in terms of r so that it connects more easily
with the existing literature.

Next, we introduce the following normalized variables:

Ξ =
ϕ,ρ
ϕ
, Y=

A
ϕ
, (46)

X
ϕ
≡ X , K =

K
ϕ2

, E=
ε

ϕ2
, (47)

M̃m =
µ̃m

ϕ2
, P̃m =

p̃m

ϕ2
, P̃m =

Π̃m

ϕ2
, (48)

MR =
µR

ϕ2
, PR =

pR

ϕ2
, PR =

ΠR

ϕ2
. (49)

Employing the general equations (27)–(31), the TOV equations for a general f (R) gravity
model with a baryonic matter source in the (1+1+2) covariant formalism read

X,ρ +XΞ =
Pm

f ′ ′
− Mm

3f ′ ′
− f ′

3f ′ ′
R
ϕ2

+
2
3

f
f ′ ′ϕ2

− f ′ ′ ′

f ′ ′
X−X(1+Y) , (50)

9
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Ptot
,ρ +Ptot

,ρ =−Y
(
Mtot +Ptot

)
−Ptot

(
2Ξ + Y+

3
2

)
− 2ΞPtot, (51)

Y,ρ =−Y(Ξ + Y+ 1)+
1
2

(
M̃m+MR

)
+

3
2

(
P̃m+PR

)
, (52)

K,ρ =−K (1+ 2Ξ) , (53)

with the following constraints

1+ 4Y− 4K− 4
(
P̃m+PR

)
− 4
(
P̃m+PR

)
= 0, (54)

1+ 2Ξ − 2Y+ 2
(
M̃m+MR

)
+ 2
(
P̃m+PR

)
+ 2
(
P̃m+PR

)
= 0, (55)

2
(
M̃m+MR

)
− 6Y− 6E+ 6

(
P̃m+PR

)
+ 3
(
P̃m+PR

)
= 0. (56)

A general solution to the TOV equations may be given by the line element [20]

ds2 =−k1 (ρ)dt2 + k2 (ρ)dρ
2 + k3 (ρ)dΩ

2, (57)

where

k3 (ρ) = K0e
ρ, (58)

dΩ2 = dθ2 + sin2 θdϕ2, (59)

and K0 is a constant. The variables describing a static LRS-II spacetime in terms of the metric
in (57) and the parameter ρ are

ϕ=
1√
k2
, Y=

k1,ρ
2k1

, (60)

Ξ =−k2,ρ
k2

, A=
k1,ρ

2k1
√
k2
, (61)

K =
k2
K0eρ

. (62)

The metric coefficients of (57) are written in terms of the area radius, r, as

k1 (ρ) = k1 (r) , k2 (ρ) =
r2

4
k2 (r) , r2 (ρ) = K0e

ρ. (63)

To find realistic solutions to the TOV equations, we will need to define and impose the
physical and boundary conditions of our two-fluid compact stellar object. We address this in
the next section.

6. Physical and boundary conditions

Not all solutions to the TOV equations represent physical relativistic stars. In fact, majority
of the TOV solutions cannot correspond to any meaningful matter spacetime configuration.
Despite this drawback, we can still define someminimum conditions that can be used to recog-
nize more realistic solutions. To aid in this task, we define two additional thermodynamical
potentials: radial pressure and tangential pressure, which are defined as

pr = p+Π, p⊥ = p− 1
2
Π. (64)

10
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With these definitions, we can formulate the two types of constraints needed to describe a
realistic relativistic compact object: thermodynamical constraints and junction conditions.

6.1. Thermodynamical constraints

We start with the constraint on the thermodynamical quantities. A solution to the TOV
equations can represent a physical relativistic star if the energy density, radial pressure, and
the tangential pressure are positive inside the star, i.e.

µm ⩾ 0, pmr ⩾ 0, pm⊥ ⩾ 0. (65)

In GR it is often also required that the gradients of these quantities are negative within the
relativistic star. However, as we shall see, this is not necessarily true in our context. The con-
ditions above imply that the weak energy condition,

µm+ pmr ⩾ 0, (66)

is always satisfied. The speed of sound of the matter sources has to obey the causal limits:

0⩽ c2m,r =
∂pm,r
∂µm

⩽ 1, 0⩽ c2m,⊥ =
∂pm,⊥
∂µm

⩽ 1, (67)

so that no sound wave can travel faster than the speed of light.
Note that the above conditions apply only to the standard matter quantities. The curvature

fluid and the effective fluid associated with matter in f (R) gravity can violate these conditions
without compromising the physical interpretation of the solutions.

6.2. Junction conditions

It is customary in relativistic astrophysics to assume that compact stellar objects have a ‘hard’
boundary, i.e. matter is confined in a well-defined volume surrounded by a vacuum. The most
convenient way to describe this configuration is to simply join the interior spacetime with
a vacuum exterior spacetime. A set of general, covariant conditions that allow joining two
different spacetimes are due to Israel [39]. Assuming, as in our case, that the normal na of the
boundary coincides with ea, the junction conditions read as:

[γab]
+
− = 0 , (68)

[Kab]
+
− − γab [K]

+
− =−Sab , (69)

where γab = Nab+ uaub is the induced metric on the separation surface, Kab is the extrinsic
curvature, Sab represents the stress-energy tensor of a possible shell within the boundary sur-
face S . We have employed the notation [χ]+− = χ+ −χ− which, for simplicity, will be denoted
as jump of χ. For later convenience, we also define

{χ}= 1
2

(
χ+ +χ−) . (70)

The above conditions, which are purely geometric, can be converted into simple conditions
on the baryonic matter’s thermodynamical potentials. In particular, using the Einstein field
equations, one obtains that

Sab
{
Kab
}
+
[
Tabe

aeb
]+
− = 0, (71)

11
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which in the case of the soldering of static spherically symmetric metrics, implies

[pr]
+
− = 0. (72)

In the case of f (R) gravity, the Israel junction conditions must be extended to account for
the additional degree of freedom carried by the higher-order terms. These conditions were first
presented in [40] and successively expanded in [41, 42], where some peculiar aspects of the
junction in these theories are presented7. In four dimensions, we have

[γab]
+
− = 0 , (73)

[K]+− = 0 , (74)

[R]+− = 0 , (75)

f ′ (R) [K∗
ab]

+
− =−S∗ab , (76)

3f ′ ′ (R) [ea∇aR]
+
− = S , (77)

where

K∗
ab = Kab−

1
3
γabK, (78)

S∗ab = Sab−
1
3
γabS. (79)

As we are adopting the effective fluid perspective and in line with what is usually done in GR,
it will be useful to translate the above equations into constraints on the effective thermody-
namical quantities. For the case of a two-fluid system in GR, which is equivalent to our case,
the Israel conditions amount to

Sab
{
Kab
}
+
[
Ttotabe

aeb
]+
− = 0, (80)

which, in our case and supposing the absence of a shell, implies[
Teffabe

aeb
]+
− =

[
peffr
]+
− = 0, (81)

and therefore, form the definition of peffr ,[
pmr
f ′

+ pRr

]+
−
=

[
pmr
f ′

]+
−
+
[
pRr
]+
− = 0. (82)

Assuming that the function f does not contain a different cosmological constant term in the
interior and exterior, equation (75) implies that the jump of f and its derivatives with respect
to R are zero. As a consequence, we can write[

pRr
]+
− =

[
pR+ΠR

]+
−

=

[
f
2f ′

]+
−
−
[
f ′ ′

f ′

]+
−
{X}{ϕ}−

[
f ′ ′

f ′

]+
−
{X}{A} , (83)

7 See also [43] for a general review on junction conditions for modified theories of gravity.

12
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where we have used the properties

[a+ b]+− =[a]+− + [b]+− , (84)

[a · b]+− ={a} [b]+− + {b} [a]+−

=
1
2

(
a+ + a−

)(
b+ − b−

)
+

1
2

(
b+ + b−

)(
a+ − a−

)
. (85)

Hence, we can conclude that equations (73)–(77), imply [pRr ]
+
− = 0 and that a smooth junction

requires

[pmr ]
+
− = [pm+Πm]

+
− = 0. (86)

This is consistent with the results of [41, 42]. However, as opposed to GR, this is not the only
condition on the matter thermodynamics. In fact, since the gravitational field equations can be
written as

R= 3ptot −µtot. (87)

Equation (75) implies

0= [R]+− =

[
3pm−µm

f ′
− f ′ ′

f ′
X̂

]+
−

= [3pm−µm]
+
− − f ′ ′

f ′

[
X̂
]+
−
, (88)

must hold at the boundary. As a result, this relation implies a constraint on the energy density
and isotropic pressure at the boundary.

The junction conditions mentioned above indicate that one can compensate for a mismatch
in the extrinsic curvature or in the derivative of the Ricci scalar along the normal by assuming
the boundary S is represented by a specific matter distribution given by the tensor Sab. We can
calculate the components of this tensor by recognizing that the extrinsic curvature of S is

Kab = γa
cγb

d∇ced

= (Na
c+ uau

c)
(
Nb

d+ ubu
d
)
∇ced. (89)

In the spherically symmetric case, the jump of the extrinsic curvature is then given by

[Kab]
+
− =

[
1
2
ϕNab− uaubA

]+
−
. (90)

Then equations (76) and (77) imply that the stress-energy tensor on the boundary is given by

Sab = (Nab+ uaub) f
′ ′ [X]+− − f ′ [Kab]

+
−

=
(
f ′ [A]

+
− + f ′ ′ [X]+−

)
uaub+

(
f ′ ′ [X]+− − f ′

2
[ϕ]

+
−

)
Nab. (91)

The shell will have energy density and orthogonal pressure

µS = Sabu
aub, (92)

13



Class. Quantum Grav. 42 (2025) 085014 M Campbell et al

pS⊥ =
1
2
SabN

ab. (93)

In this case the standard requirement for µS and pS⊥ is to be non negative. However, one can
still consider negative values of this last quantity taking into account that the shell matter still
satisfy the weak energy condition. If this is the case then the condition pS⊥ < 0 simply implies
that the shell matter presents a tension. Notice that the radial pressure at the surface S is zero,
i.e. pSr = Sabeaeb = 0, as expected.

Finally, it was shown in [41, 42] that shells in f (R)-gravity can have a more complex stress-
energy tensor than the shells in GR. Although not immediately clear from the junction condi-
tions, equations (73)–(77), these shells can present a so-called double layer. In the context of
f (R) theories, structures of this kind can appear when the condition equation (75) is violated
in theories where f ′ ′ ′(R) = 0. For these theories, the stress-energy tensor on the boundary
acquires several additional components along the normal, which are related to the value of
[R]+−. Indeed, the total stress-energy tensor of the shell will be given by

S̄ab+ ς̄ab = Sab+ ςab+ 2ς(aeb) + ςeaeb+ ς̄ab, (94)

where

ςab = f ′ ′ {Kab} [R]+− , (95)

ςa = f ′ ′
(
Nba+ ubua

)
∇b [R]

+
− , (96)

ς = f ′ ′ {K} [R]+− , (97)

and ς̄ab represents the energy-momentum content of the double layer. This is akin to a dipole
distribution, and it is given by

ς̄ab = f ′ ′∇ρ

[
[R]+− γabe

ρδ
]
= f ′ ′∆ab, (98)

where δ represents Dirac’s delta, ∆ab is the double layer distribution and f ′′ is a constant.
Notice that the presence of ςa and ς also requires the presence of ς̄ab, but the converse is not

necessarily true.
Decomposing S̄ab along ua, ea and Nab leads to

S̄ab = µ̄Suaub+ p̄Sreaeb+ p̄S⊥Nab+ 2Q̄Su(aeb) + Q̄S
(aeb), (99)

where

µ̄S = f ′ [A]
+
− + f ′ ′ [X]+− − f ′ ′ {A} [R]+− , (100)

p̄Sr = f ′ ′ {K} [R]+− , (101)

p̄S⊥ =−1
2
f ′ [ϕ]+− + f ′ ′ [X]+− + f ′ ′ {ϕ} [R]+− , (102)

Q̄S = f ′ ′
(
ub∇b [R]

+
−

)
ua, (103)

Q̄S
a = f ′ ′δa [R]

+
− . (104)

Instead for ς̄ab we can write

ς̄ab = f ′ ′
(
∆uuaub+

1
2
∆NNab

)
, (105)

where ∆u =∆abuaub and ∆N =∆abNab.
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7. Reconstruction of exact solutions

In this section, on the basis of the results obtained in [20, 21] and using the f (R) TOV equations,
equations (51)–(56), we will develop a reconstruction technique that will allow us to generate
several exact solutions describing compact stellar objects.

We start by assuming a form for the metric tensor. This determines the quantities Y and
K, as they are related to the metric coefficients with equations (60)–(62), and we can com-
pute the Ricci scalar in terms of these quantities as well. By specifying our f (R) function, we
can determine the thermodynamical description of our curvature fluid in terms of the metric
coefficients.

If we consider equations (52)–(55), we can find new solutions to the matter fluid from
quantities that are constructed from the metric alone:

R=
ϕ2 (K (4K− 4Y,ρ − 2Y(2Y+ 1)− 1)+ 2(Y+ 1)K,ρ)

2K
, (106)

M̃m =−−2K,ρ − 4K2 +K+ 4KMR

4K
, (107)

P̃m =−2K,ρ + 4K2 −K+ 12KPR− 8KY,ρ + 4YK,ρ − 8KY2 − 4KY
12K

, (108)

P̃m =−6PRK−K,ρ + 4K2 −K+ 4KY,ρ − 2YK,ρ + 4KY2 − 4KY
6K

, (109)

where

MR =
R
2ϕ2

+
f ′ ′

f ′
(R,ρρ +R,ρ +ΞR,ρ)−

1
2ϕ2

f
f ′
, (110)

PR =− R
2ϕ2

− 2
3
f ′ ′

f ′

(
R,ρρ +R,ρ +ΞR,ρ +

3
2
YR,ρ

)
+

1
2ϕ2

f
f ′
, (111)

PR =
2
3
f ′ ′

f ′

(
R,ρρ −

1
2
R,ρ +ΞR,ρ

)
. (112)

Equations (107)–(109) satisfy the constraints, equations (54)–(56), and therefore, naturally
satisfy the TOV equations. Although equations (107)–(109) would represent an infinite number
of solutions, not all of these solutions have physical value. More specifically, it is imperative
that the boundary (junction) and physical conditions, discussed in section 6, are satisfied in
order to describe realistic relativistic stars in the context of f (R) gravity.

The reconstruction approach described above requires choosing a specific form for the func-
tion f. In the following, we consider the quadratic model (13) mentioned in section 2. Our
choice is motivated by three considerations: (i) its relevance in cosmology and quantum field
theory in curved spacetime, (ii) its simplicity, which, as we will see, will be an important issue
in the derivation of exact solutions, and (iii) the fact that this model is the simplest f (R) gravity
model that allows the exploration of double layers.

Once f is fixed, we need to choose the base metric for the reconstruction algorithm. The
obvious initial choice is to consider the metric coefficients of two well-known single fluid
solutions in GR and combine them to obtain a new solution. The advantage of this approach
is that it is more likely to obtain physically meaningful solutions, including the fact that the
mismatch will naturally generate the anisotropic pressure needed in the fluid representation of
f (R) gravity. However, this choice is not always the most convenient, and for this reason, we
will also consider a completely general starting metric.
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8. Resconstruction of quadratic models with Interior Schwarzschild–Tolman
IV metric

Let us combine two of the simplest descriptions of the interior of a relativistic star: the Interior
Schwarzschild and the Tolman IV solutions. In particular, we choose the component k1 of the
solution metric corresponding to the one of interior Schwarzschild metric and the component
k2 as corresponding to the Tolman IV solution in terms of the area radius

k1 (r) = a0 (c1 + z)2 , k2 (r) =
R2
(
A2 + 2r2

)
(R2 − r2)(A2 + r2)

, (113)

where z=
√
3−µ1r2 and a0, c1, µ1, A and R are constants. Note that µ1 is a constant in the

original solution and is related to the (constant) density of the source. However, in this context,
it is simply an additional parameter.

In terms of the parameter ρ and the variables (46)–(49), these correspond to

YIS =
µ1eρ

2µ1eρ − 2c1
√
3−µ1eρ − 6

, (114)

KTIV =
−R2

(
A2 + 2eρ

)
4(A2 + eρ)(eρ −R2)

, (115)

ϕ =
e−

ρ
2

√
KTIV

. (116)

As mentioned, the real challenge in finding physical solutions is that strict boundary and
thermodynamical conditions must be satisfied. In particular, we will need to ensure that sets
of parameters exist for which the conditions outlined in section 6.1 are satisfied. In addition,
we choose to match this solution with an exterior Schwarzschild solution. With the anzats,
equations (114), (115), the expression for the Ricci scalar R, equation (106) is independent of
the Starobinsky parameter α, and we could only find a solution that satisfies the physical con-
straints when α= 0.001. In natural units, this corresponds to α∼ 107 cm2 which is compatible
with the constraint found in [53].

However, our solution with these chosen parameters presents a shell with a double layer.
This is due to the fact that the Ricci scalar, R, and the matter radial pressure do not go simul-
taneously to zero at the boundary of the star. We can then calculate the properties of the matter
that compose the shell using the results of section 6. The total fluid thermodynamics on the
surface S, which includes the shell and the double layer strength, in this case, are

µ̄S = 2α [X]+− +(1+ 2αR) [A]
+
− − 2α{A} [R]+− , (117)

p̄Sr = 2α({ϕ}+ {A}) [R]+− , (118)

p̄S⊥ = 2α [X]+− − 1
2
(1+ 2αR) [ϕ]+− + f ′ ′ {ϕ} [R]+− , (119)

Using the parameter values in figures 1–5 the energy density along the surface S is µ̄S > 0.
However, the orthogonal pressure along the surface S, is negative, i.e. p̄S⊥ < 0, while p̄Sr > 0.
As, µ̄S + p̄Sr > 0 the weak energy condition is satisfied and we can conclude that the shell
presents a tension within the boundary surface. The full expressions of the jump quantities are
in A.1.

Naturally, a single set of parameters that satisfies the physical requirements of section 6 is
not necessarily sufficient to validate the solution we have found. We also need to prove that
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Figure 1. Solutions to the quadratic f (R) model with α= 0.001 for the interior
Schwarzschild-Tolman IV (IS-TIV) geometry in section 8. The parameter values are:
µ1 =−1.25, R= 7.3, c1 = 0.3, and A= 1.5. Here, r is the normalized area radius, i.e.
r/r0 with r0 = 1.

sets of parameters exist for which the physical and boundary conditions are satisfied. In order
to achieve this goal, we employed computational methods and, more specifically, a parameter
space analysis that we will briefly discuss here.

We generated a list of 500 random numbers from a normal Gaussian distribution for each
parameter constant in the interval {−10,10} for µ, A and R and c1. Combinations of these
lists are iterated through our analytical expressions for the radial pressures for the matter and
curvature fluids for a fixed value of α. Since the strictest physical constraint is the causal con-
dition for the matter source, we implement a conditional statement that tests this condition for
an iterated combination of the parameter values. We plot the combination of parameter values
that satisfies this causal condition. Performing this routine, we look for regions of clustering
of points in the parameter space. This narrows our parameter-space intervals and improves
our chances of finding a solution that satisfies conditions (65). This methodological approach
proved much more helpful in finding physical solutions than a trial-and-error approach. We
present solutions in figures 1–3 where the physical conditions in section 6 are satisfied.

As we have emphasized before, the curvature fluid is effective. Thus, its physical inter-
pretation is not bounded by the constraints of baryonic matter. However, we can comment on
its influence on the thermodynamics of the baryonic matter. We notice, immediately, that the
energy density, radial and tangential pressures of the curvature fluid (see figure 4) are small
in comparison to the matter fluid solutions (see figure 2). This effect, which in principle could
be ascribed to the value of the parameter α (we have chosen to be α= 0.001), is not strictly
related to it. In fact, in the proceeding section, we will deal with an even smaller value of this
parameter that still leads to comparable thermodynamical potentials for standard matter and
the curvature fluid. This should not be surprising as it is a consequence of the nonlinearity
of the theory: small corrections to the Hilbert-Einstein action do not always lead to solutions
close to GR ones.

In figure 5, we illustrate the likelihood of finding a set of parameters that satisfies the causal
condition for the radial matter fluid alone by performing a ‘perturbation’ away from the values
of the parameters for a solution satisfying the physical conditions. In figures 6–9, we present
the fluid descriptions of the matter and effective curvature fluid for various values of α. We
notice that α affects the slope of the energy density (figure 6) and pressures, particularly of
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Figure 2. The matter fluid solutions for the (IS-TIV) geometry in section 8. The energy
density, radial and tangential pressure satisfy the physical conditions in section 6. The
parameter values are: α= 0.001, µ1 =−1.25, R= 7.3, c1 = 0.3, and A= 1.5. Here, r
is the normalized area radius, i.e. r/r0 with r0 = 1.

Figure 3. The radial and tangential speed of sound of the matter fluid, and the speed
of sound for the total radial and orthogonal fluid quantities for the (IS-TIV) geometry
in section 8. The causal conditions in section 6 are satisfied. The parameter values are:
α= 0.001, µ1 =−1.25,R= 7.3, c1 = 0.3, and A= 1.5. Here, r is the normalized area
radius, i.e. r/r0 with r0 = 1.

the matter fluid, near the center of the stellar object (figure 7). Therefore, we see that for an
increasing value of α, c2m,r and c

2
⊥,r, shifts towards being negative around the center of the

stellar object. Interestingly, the matter energy density converges to the same value towards the
boundary of the stellar object for various values of α.

9. Reconstruction with a generic interior metric

In this section, we will apply the reconstruction technique by considering a generic metric
anzats. We chose the component k1 as a generalization of the anzats of the corresponding term
of the Tolman IV solution obtained by adding a quartic term. We choose the component k2 of
the metric as a rational function, and we keep it as general as possible. More specifically, we
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Figure 4. The curvature fluid solutions for the (IS-TIV) geometry in section 8. The
parameter values are: α= 0.001, µ1 =−1.25, R= 7.3, c1 = 0.3, and A= 1.5. Here, r
is the normalized area radius, i.e. r/r0 with r0 = 1.

assume a line element of the form (57) with

k1 (r) = 1+D1r
2 +D2r

4, k2 (r) =
1+D3r2

1+D4r2 +D5r4
. (120)

The total fluid quantities, in terms of the general metric coefficients, are

µtot =
rk ′2 (r)+ k2 (r)2− k2 (r)

r2k2 (r)
2 , (121)

ptotr =
rk ′1 (r)− k1 (r)k2 (r)+ k1 (r)

r2k1 (r)k2 (r)
, (122)

ptot⊥ =
k ′ ′1 (r)

2k1 (r)k2 (r)
− k ′1 (r)k

′
2 (r)

4k1 (r)k2 (r)
2 −

k ′1 (r)
2

4k1 (r)
2 k2 (r)

− k ′2 (r)

2rk2 (r)
2

+
k ′1 (r)

2rk1 (r)k2 (r)
. (123)

The complete expressions in terms of the parameters is in the appendix B.
In order to find realistic solutions, the junction conditions are implemented by setting

R(rb) = R̂(rb) = pmr (rb) = 0, where rb is where we set the boundary of the star. This allows us
to eliminate and constrain parameter dependencies.

By implementing the junction conditions for a smooth matching, the number of parameter
dependencies is reduced to only three : D1, D2, and α. We follow the same procedure to
finding solutions to the TOV equations, outlined in section 8. The full expressions for the
thermodynamical quantities in terms of the metric coefficients are given in appendix B.

Figures 10 and 11 show the radial behavior of the baryonicmatter for particular values of the
parameters. This case admits a solution that satisfies the physical conditions in section 6.1 and
that a smooth matching to the surfaces is possible for quadratic f (R) models with a positive
value of its model parameter, α= 0.0001 (i.e. α∼ 106 cm2, which is compatible with the
constraint found in [53]).
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Figure 5. shows a perturbation in the parameter space from the central point which
corresponds to the parameter values in figure 1. The faint points are a generation of 500
random sets of parameter values with a radial shift of 0.05 and constrained to a sphere
of radius 1. The darker points away from the center, which are 21% of the total points
on the sphere, satisfy the causal condition 0< c2m,r ⩽ 1. This analysis is performed for
the (IS-TIV) geometry in section 8. Figure 5(b) illustrates the general envelope of the
solutions c2m,r, for the parameters that satisfy the causal conditions in figure 5(a).

10. Discussion and conclusion

We presented a study on the extension of the TOV equations to the case of theories of gravity
of order four, which are characterized by a non-linear action in the Ricci scalar: the so-called
f (R) theories of gravity.

By employing the (1+1+2) formalism, we have rewritten the TOV equations in a covariant
and dimensionless form, valid for any function f. This result was achieved by recognizing that
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Figure 6. Energy density of the matter fluid for different values of α, using the same
parameter values as in figure 1, for the (IS-TIV) geometry in section 8. Here, r is the
normalized area radius, i.e. r/r0 with r0 = 1.

f (R) gravity can always be recast as GR plus two effective, non-interacting fluids, one of which
is not a perfect fluid.

The generalized TOV equations can then be used as a framework for finding exact, analyt-
ical solutions to static spherically symmetric spacetimes, which can describe relativistic stars
for f (R) gravity. In this context, the work developed in [20, 21] can be applied to the search for
new exact solutions of the TOV equations. In particular, we have used the so-called reconstruc-
tion algorithm of [20, 21], in which a solution to the matter fluid can be found by making an
ansatz of the description of the metric tensor. As noted in the previous section, not all solutions
found this way are physical since the fluid sources must satisfy specific physical requirements
such as energy conditions, causality, etc.

Another important issue in constructing meaningful interior solutions is the solution’s
boundary connection with an exterior spacetime. It is well known that in f (R) gravity Israel’s
junction conditions are modified, and additional constraints are required to join two space-
times. These constraints are connected to the degree of freedom carried by the curvature scalar
and this makes the search for exact solutions to relativistic stars in f (R) gravity much harder
than in GR. In addition, when there is a mismatch in the geometry, quadratic models, like the
ones we considered, can present a double layer. This structure, whose physics is not yet well
understood, is similar to the dipole layer that forms at the interface between two charged fluids.
Our exact solutions allow us to characterize double layers exactly and, as such, can be used to
improve the understanding of their physics.

As a first example, in section 8, we choose k1 to be described by the (0, 0) interior
Schwarzschild metric coefficient, and k2 to be represented by the (1, 1) Tolman IVmetric coef-
ficient (the same reasoning is applied in section 9). This choice was motivated by the attempt
to preserve the physically relevant features of these metrics in terms of the Newtonian limit
and simplicity. In addition, as shown in [20, 21], this hybrid metric describes an anisotropic
fluid, thereby offering an ideal framework for f (R) gravity.

Our analysis shows that there are sets of parameters for which the metric equation (57)
with coefficients equation (113) satisfies the physical conditions of section 6.1 and therefore
corresponds to a physical relativistic star. However, this solution does not match smoothly
with a Schwarzschild exterior, and a shell with double layer has to be introduced to regularize
the spacetime. We have determined that this is the case for the solution we have found, and
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Figure 7. Matter fluid solutions for varied values of α using the same parameter values
as in figure 1. These are generated for the (IS-TIV) geometry in section 8. Here, r is the
normalized area radius, i.e. r/r0 with r0 = 1.

therefore we had the chance to explore in detail the working of the double layer. Analysis of
the properties of the tensor Sab shows that the solution requires a shell with a tension to be
stable. The different correction introduced by the double layer change the situation is a small
but intricate way. In fact, the tensor S̄ab, contains a positive radial pressure components and a
positive correction to the orthogonal pressure, which tend to reduce the tension necessary for
stability. On the other hand the double layer contributes with a energy density and orthogonal
pressure which are proportional to each other and to the parameter α. Notice that the sign of
α regulates the double layer contribution, so that for a double layer that has standard fluid
properties αmust be positive. This is the same condition which is known to guarantee that the
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Figure 8. The radial and tangential speed of sound of the matter fluid for varied values
ofα using the same parameter values as in figure 1. These are generated for the (IS-TIV)
geometry in section 8. Here, r is the normalized area radius, i.e. r/r0 with r0 = 1.

mass of the scalaron, the additional gravitational scalar degree of freedom of Starobinsky’s
model, is positive and leaves us to wonder if these two aspects of the physics of this theory are
indeed connected.

We found it worth exploring the behavior of the solutions as the parameters change. For
example, in the case of a coupling constant α≪ 1 with respect to the gravitational action,
comparing the behavior of the tangential and radial pressures, we see that with these paramet-
ers, this solution represents a ‘quasi-isotropic object’, similar to the ones found in [15] for the
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Figure 9. Curvature fluid solutions for varied values of α using the same parameter
values as in figure 1. These are generated for the (IS-TIV) geometry in section 8. Here,
r is the normalized area radius, i.e. r/r0 with r0 = 1.

single fluid case(see figure 2). This type of object occurs when the radial and tangential pres-
sures behave similarly. Still, anisotropies influence the behavior of other physical parameters.
For example, in our solution, the radial and orthogonal sound speeds differ in behavior. The
tangential speed of sound, in particular, has a minimum around the center of the stellar object,
corresponding to a maximum of the anisotropy. Note that the effective fluid generated by the
curvature invariants appears to have an energy density and pressure considerably smaller than
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Figure 10. Fluid solutions to baryonic matter for a quartic f (R) model with α= 0.0001,
D1 = 6.8 and D2 = 10. The boundary of the star is at r= rb = 1, where r is the nor-
malized area radius (i.e. r/r0 with r0 = 1). This solution shows a smooth matching as
outlined in section 6.2, and corresponds to the generic interior metric case considered
in section 9.

Figure 11. The radial and orthogonal speeds of sound of baryonic matter for the solu-
tion with a generic interior metric in section 9. Then this solution represents a stellar
object that is highly compact at the core (r= 0) since c2m,r ≃ 0.8. We include a small
incremental change to α to illustrate how sensitive the speed of sound is to a change in
the α parameter, as we have seen in section 8. For α> 0.00015, we find c2m,⊥ > 1 at the
center of the stellar object.

the ones of baryonic matter. Therefore, the new solution represents an object mostly made of
baryonic matter whose structure would differ from a corresponding GR object. The curvature
fluid also presents a positive energy density and pressure (see figure 4).

As the value of α increases, we see that the pressure of the curvature fluid increases together
with the energy density of baryonic matter. Still, the pressures of the matter fluid generally
decreases (see figures 6 and 7). Interestingly, the speeds of sound ofmatter change dramatically
close to the center, becoming quickly negative (see figure 8).

In section 9, we performed the reconstruction starting from a completely general metric
expressed in terms of polynomial and rational functions. These functions have the advantage
of offering a sufficient number of parameters and also reducing the growth in complexity of the
TOV equations. For the (0,0) component of the metric, we considered a quadratic polynomial
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Figure 12. Solutions to the curvature fluid for a quartic metric, f (R) model with
α= 0.0001, D1 = 6.8, and D2 = 10. The boundary of the star is at r= rb = 1, where
r is the normalized area radius (i.e. r/r0 with r0 = 1). This solution corresponds to the
solution with a generic interior metric in section 9.

that is related by the constant density-Tolman IVmetric solution with a fourth-order correction
to the (0,0) component of the metric.

With this extension, we found a solutionwith a smoothmatching of the boundary surface for
α= 0.0001, and its baryonic matter profile seems fairly standard with respect to other known
solutions of the TOV equations. Its pressures, energy density and speeds of sound profile have
a monotonically decreasing profile. However, compared to the solution in section 8, figure 11
shows a stellar object that has more of a compact core, i.e. c2m,r(r= 0)≃ 0.8.

It is interesting to compare the relative magnitude between the matter quantities and the
effective curvature fluid quantities. The effective curvature quantities in section 9, figure 12,
are less but comparable to the baryonic matter solutions as opposed to the solution in section 8
where the effective curvature quantities are considerably smaller. This feature reminds us that
a small fourth-order perturbation in the action does not necessarily translate into a small devi-
ation from the properties of analogous gravitational systems in GR.

Figure 13 shows that a small deviation from the solution results in 1% of the parameter
value sets satisfying the causal condition of c2m,r. Of these 1% parameter value sets, we notice,
in figure 14, oscillatory behavior in the speeds of sound. The presence of these oscillations
could be an indicator of the existence of a potential instability of this solution, which could
only be confirmed through a detailed analysis of the perturbations. On the other hand, the
tangential speed of sound is not always well-defined. For example, in figure 11, we see that
there are value of the parameters in which this quantity would violate causality.

The results above suggest that the structure of a relativistic star in f (R) gravity and its
response to parameter variations can be very different from those in the GR case. These res-
ults suggest that modifying GR might cause important physical structures and composition
differences that might one day become measurable.

Overall, our work shows that analytical approaches can describe astrophysical phenomena
in f (R) gravity and that these solutions possess the correct physical features for a quadratic
model of f (R) Future work will be dedicated to improving our understanding of the proper-
ties of these solutions, with particular emphasis on the observable features that might consti-
tute a signature to test higher-order corrections to the gravitational action of relativistic stars.
Specifically, the mass-radius relation of our solution and its maximum mass limit deserves
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Figure 13. Parameter space plot for the radial, squared speed of sound of baryonic mat-
ter for the generic interior metric in section 9. The faint points are the random para-
meter values generated and the darker, shades of green points are the ones satisfying
0⩽ c2m,r ⩽ 1. Compared to the case of figure 5, the number of random sets of parameter
values are doubled and only 1% of them satisfy the causal condition c2m,r.

Figure 14. This shows the radial speed of sound squared of baryonic matter, using the
set of parameter values in figure 13 that satisfies the causal condition. The boundary of
the star is at r= rb = 1, where r is the normalized area radius (i.e. r/r0 with r0 = 1).

particular attention. Investigating other functional forms of f (R) would also be worthwhile, in
particular the Hu-Sawicki model [57] and the Rn model where perturbative effects on R can
be studied by considering n= 1+ δ [58].
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Appendix A. Interior Schwarzschild-Tolman IV spacetime

Here, we give the full expressions for the solution given in section 8 and the quantities
expressed on the surface S describing the shell and the double layer.

A.1. Full expressions for the quantities evaluated at the junction

[ϕ]
+
− ≡ ϕS =

√
A2 + r2b

√
R2 − r2b

R
√
A2 + 2r2b

, (A.1)

[A]
+
− =AS =

µ1r2b

√
A2 + r2b

√
R2 − r2b

R
√
A2 + 2r2b

(
−2c1

√
3−µ1r2b+ 2µ1r2b− 6

) , (A.2)

[X]+− = XS =−
2rb
√
R2 − r2b

√
A2 + r2b

(
−2x11 + 2x12 − c21

√
3− r2bµ1x13 + c1x10

)
R3
(
A2 + 2r2b

)
7/2
(
3− r2bµ1

)
3/2
(
µ1r2b− c1

√
3− r2bµ1 − 3

)
3

, (A.3)

where

x1 = 2R2A6 + 12R2r2bA
4 +
(
4R2 − 6A2

)
r6b+

(
6A2R2 − 9A4

)
r4b, (A.4)

x2 = 8r8b− 2
(
A2 − 2R2

)
r6b+

(
6A2R2 − 15A4

)
r4b+ 2

(
A6 + 13R2A4

)
r2b+ 4A6R2, (A.5)

x3 = 16r6b+ 6
(
3A2 − 2R2

)
r4b−

(
A4 + 26R2A2

)
r2b+ 4A4

(
A2 +R2

)
, (A.6)

x4 = 32r8b+ 2
(
A2 − 26R2

)
r6b−

(
71A4 + 130R2A2

)
r4b+

(
8A6 + 38R2A4

)
r2b+ 5A6R2,

(A.7)

x5 = 16r6b+ 6
(
A2 − 6R2

)
r4b−

(
31A4 + 86R2A2

)
r2b+ 4A4

(
A2 +R2

)
, (A.8)

x6 = 12r8b− 6A2r6b− 2
(
16A4 + 5R2A2

)
r4b+ 3

(
A6 + 13R2A4

)
r2b+ 6A6R2, (A.9)

x7 = 60r8b+ 4
(
A2 − 5R2

)
r6b−

(
103A4 + 68R2A2

)
r4b+ 3

(
5A6 + 43R2A4

)
r2b+ 19A6R2,

(A.10)
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x8 = 112r8b+
(
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)
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(
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(
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(
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)(
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3, (A.15)

x13 = r2b
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The expression for the Ricci scalar along the surface S is equation (A.17) evaluated at rb
and the parameter values used in the figures 1–5.

A.2. Ricci scalar

R(r) =
1
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where z=
√
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A.3. Total energy density
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)
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A.4. Total radial pressure
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A.5. Total isotropic pressure
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A.6. Total orthogonal pressure
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Appendix B. Generic Interior Metric

Here, we give the full expressions for the solution given in section 9.

B.1. Relation among the parameters induced by the junction conditions
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B.2. Ricci scalar

R(r) =
2
(
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where

b1 =D2D3 (D3 − 7D4)− 3(5D2 + 6D1D3)D5, (B.6)
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B.3. Total energy density
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B.4. Total radial pressure
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B.5. Total orthogonal pressure
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where
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B.6. Total isotropic pressure
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where

h1 =D2 (5D5 (6D1D3 + 5D2)−D2D3 (D3 − 13D4)) , (B.20)
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2 − 2D1 (D3 − 7D4)+ 20D2 +D3 (D4 −D3)+ 5D5. (B.24)
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