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Fig. 1. First measurement of the <312 correlator from
RHIC-STAR experiment around 200921, The thick solid
(Au+Au) and dashed (Cu+Cu) lines represent HIJING cal-
culations of the contributions from three-particle correla-
tions. Collision centrality increases from left to right. 0%

corresponds to the most central collisions.
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STAR Isobar post-blind analysis, snny = 200 GeV, Ru+Ru/Zr+Zr, 20%—50%
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SPECIAL TOPIC—Spin and chiral effects in high energy heavy ion collisions

Progress on the experimental search for
the chiral magnetic effect, the chiral vortical effect,
and the chiral magnetic wave”
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Abstract

In quantum chromodynamics, the interactions of quarks with the topological gluon field can lead to
nonconservation of local parity (P) and conjugated parity (CP) , which provides a solution to the strong CP
problem and a possibility to explain the asymmetry of matter-antimatter in the current universe. Under the
action of a strong magnetic field, the nonconservation of P and CP can lead to the separation of particles
according to their electric charges, which is called the chiral magnetic effect (CME). An observation of the
CME-induced charge separation will confirm several fundamental properties of quantum chromodynamics
(QCD), namely, approximate chiral symmetry restoration, topological charge fluctuation, and local parity
violation. In relativistic heavy-ion collisions, there are other chiral anomalous effects similar to the CME, such
as the chiral vortical effect (CVE) and the chiral magnetic wave (CMW). This review briefly summarizes the

current progress of experimental research on the CME, CVE, and CMW in relativistic heavy-ion collisions.
Keywords: chiral magnetic effect, quantum chromodynamics, heavy-ion collisions, chiral symmetry
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