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Searching for topological insulators/superconductors is a central subject in recent condensed
matter physics. As a theoretical aspect, various classification methods of symmetry-protected
topological phases have been developed, where the topology of a gapped Hamiltonian is investi-
gated from the viewpoint of its onsite/crystal symmetry. On the other hand, topological physics
also appears in semimetals, whose gapless points can be characterized by topological invariants.
Stimulated by this background, we shed light on the topology of nodal superconductors. In this
paper, we review our modern topological classification theory of superconducting gap nodes in
terms of symmetry. The classification method elucidates nontrivial gap structures arising from
nonsymmorphic symmetry or angular momentum, which cannot be predicted by a conventional
theory.
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1. Introduction

In recent condensed matter physics, topological phases of matter have attracted much attention [1–3].
So far many researchers have energetically proposed various topological materials, where the wave-
function has nontrivial topology characterized by a topological invariant. A topological invariant
is well-defined for a gapped Hamiltonian, i.e., an insulator or a fully gapped superconductor. Over
the past decade, theoretical studies have shown that topological numbers can be classified by the
symmetry and dimensionality of the system. In the early stages of the studies, classification theory
based on onsite symmetries, namely time-reversal symmetry (TRS), particle–hole symmetry (PHS),
and chiral symmetry (CS), was developed [4–6]. The three symmetries categorize any system into
ten types, which are known as Altland–Zirnbauer (AZ) classes [7,8]. Based on the categorization,
Refs. [4–6] have suggested a topological periodic table. One can identify, by using the table, a topo-
logical number for a (gapped) system of interest, when the AZ class and dimension of the system
are determined. On the other hand, more recent studies have intensively investigated a classification
problem under crystal symmetry as well as onsite symmetry. The first trigger for such studies was
a suggestion of topological crystalline insulators by Fu [9].1 Since then, many researchers have
challenged the exhaustive classification of topological invariants, based on (magnetic) point/space
group symmetry, by developing various methods: band structure combinatorics [11–13], topological

1 It has been revealed that Fu’s model represents a kind of fragile topological insulator [10].
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quantum chemistry [14–19], symmetry-based indicators [20–26], Atiyah–Hirzebruch spectral
sequence [27–29], etc.

Although the topology of a wavefunction can be defined only for a gapped Hamiltonian, topological
invariants are useful even for gapless systems. Indeed, Weyl semimetals possess gapless points
(Weyl points) characterized by a 2D invariant called a Chern number. In other words, when the
Chern number on a certain 2D slice in the 3D Brillouin zone (BZ) is different from that on another
slice, there must be Weyl point(s) between the slices. Furthermore, Refs. [30,31] have suggested an
additional topological number accompanied by the presence of rotation symmetry, which protects a
Dirac point on the rotation axis in the BZ. The Dirac point is stable as long as the relevant rotation
symmetry is preserved. These findings provide the following two insights. First, almost all gapless
points in semimetals are characterized by (weak) topological invariants. Second, the presence or
absence of the invariants determines the stability of the gapless points against fluctuations.

On the other hand, some superconductors also have gapless points, called superconducting nodes.
Since the momentum dependence of the superconducting gap is closely related to the symmetry
of superconductivity and the pairing mechanism, it is important to investigate the structure and
the stability of superconducting nodes. Although previous theories have pointed out some exam-
ples of topologically protected superconducting nodes [32–42], comprehensive understanding of
the relationships between topology and nodes has not been obtained. Moreover, recently developed
group-theoretical classification theories of superconducting gap structures have discovered unusual
nodes due to nonsymmorphic crystal symmetry in multi-sublattice superconductors [42–51], or
higher-spin states in multi-orbital ones [51–60]. The nontrivial nodal structures cannot be predicted
by a conventional classification theory of order parameters based on point-group symmetry [61–66],
for the following two reasons: (1) the order-parameter classification is sometimes incompatible
with the superconducting gap structure (i.e., an excitation energy in the Bogoliubov spectrum), and
(2) the theory does not take into account space group symmetry and higher-spin states character-
istic of superconductors with multi-degrees of freedom. Therefore, a new classification theory of
superconducting nodes, relevant to topology and resolving the above two problems, was needed.

Because of the above background, we have actually constructed such a modern classification
theory and discovered unconventional superconducting nodes protected by crystal symmetry and
topology [67–70]. In this paper, we review the method (Sect. 2) and the result of the topological
crystalline superconducting nodes (Sect. 3). Finally, a brief summary and related topics are given in
Sect. 4. The content in the paper overlaps with the Japanese review article [69] written by one of the
authors and Shingo Kobayashi.

2. Method

In this section, we explain the modern classification method of superconducting gap nodes, using
group theory and topological arguments. First, for the avoidance of confusion, in Sect. 2.1 we
introduce many terminologies and notations that are used throughout the paper. Next, in Sect. 2.2,
we construct the topological classification theory of nodes on the high-symmetry points by using the
Wigner criteria and the orthogonality test [45,67–71].

2.1. Preliminary

In this section, we define many terminologies and notations of finite-group representation theory,
in preparation for the main topological classification (Sect. 2.2). In all the discussions below, we
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focus on centrosymmetric superconductors that possess inversion symmetry (IS) I = {I |0}.2 When
a superconductor of interest is paramagnetic (PM) and antiferromagnetic (AFM), it has TRS T =
{T |tT }, while the TRS is broken for a ferromagnetic (FM) superconductor. Note that tT represents
a nonprimitive translation for AFM superconductors,3 while it is zero for PM superconductors.
Furthermore, we restrict our target to spin–orbit-coupled superconductors, although the classification
theory introduced below is straightforwardly applicable to spinless systems.

First, let G and M be unitary and magnetic space groups of the system of interest, respectively. M
and G include a translation group T, which is determined by the Bravais lattice. Due to the above
assumption, the space group includes the IS I. When we consider PM and AFM superconductors, M
is equal to G+T G, while M = G for FM superconductors. In order to construct the new classification
theory resolving the problems listed in the introduction, we need to fix a specific k point in the BZ.
Since we are particularly interested in a classification problem of the superconducting gap structure
on high-symmetry k points (mirror planes and rotation axes), we focus on the operations in G (M )
leaving the k points invariant modulo a reciprocal lattice vector, generating a subgroup of G (M ). The
subgroup Gk < G (Mk < M ) is called a (magnetic) little group. The factor group of the (magnetic)
little group by the translation group Ḡk = Gk/T (M̄k = Mk/T) is called a (magnetic) little cogroup.
The (magnetic) little cogroup is isomorphic to a certain (magnetic) point group. Indeed, the little
cogroup satisfies

Ḡk ∼= Cs, (1)

for mirror planes, and

Ḡk ∼= Cn or Cnv, (2)

for n-fold rotation axes (n = 2, 3, 4, and 6). Symmetry operations in the point groups Cs and Cn are
explicitly represented by

Cs = {E, Mz}, (3)

Cn = {E, (Cn)
1, . . . , (Cn)

n−1}, (4)

where E, Mz, and Cn are an identity operator, a mirror operator (perpendicular to the z axis), and
an n-fold rotation operator, respectively. The point group Cnv is generated by the rotation Cn and a
vertical mirror operator, whose mirror plane includes the rotation axis. In each case, the magnetic
little cogroup is given by

M̄k ∼=
{

Cs, in FM superconductors,

Cs + T ICs, in PM or AFM superconductors,
(5)

2 The notation g = {pg|tg} is a conventional Seitz space group symbol with a point-group operation pg and
a translation tg .

3 Even when tT is nonzero, we treat the symmetry {T |tT } as a kind of TRS, although one often calls it a
magnetic translation symmetry.
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for mirror planes, and

M̄k ∼=
{

Cn(v), in FM superconductors,

Cn(v) + T ICn(v), in PM or AFM superconductors,
(6)

for n-fold rotation axes (n = 2, 3, 4, and 6).
Next, let λk

α be a double-valued irreducible representation (IR) of the magnetic little group Mk ,
which represents a normal Bloch state with the crystal momentum k:

mc†
αi(k)m

−1 =
∑

j

c†
αj(k)[λk

α(m)]ji, m ∈ Mk . (7)

c†
αi(k) is a creation operator of the Bloch state with a crystal momentum k. α is a label of the

(double-valued) IR, which corresponds to the total angular momentum of the Bloch state jz =
±1/2, ±3/2, . . . in spin–orbit coupled systems.4 λk

α is called a small corepresentation. When we
consider the momentum k on a twofold rotation axis in a PM superconductor, for instance, M̄k is
given by {E, C2, T I, T Mz} [see Eq. (6)]. Equation (7) for m = C2 is then represented by

C2c†
1/2,i(k)(C2)

−1 =
∑
j=1,2

c†
1/2,j(k)(−iσz)ji, (8)

where σz is a Pauli matrix. c†
1/2,i(k) for i = 1, 2 describes the pseudo-spin-up and -down Bloch

states, respectively.
Since Mk is a semidirect product between the magnetic little cogroup M̄k and the translation

group T, the small corepresentation satisfies

λk
α(TR) = e−ik·R, TR = {E|R} ∈ T, (9)

where R is a Bravais lattice vector. Furthermore, the algebra ofλk
α obeys a factor system {ωin(l1, l2)} ∈

H 2(M , U(1)φ),
5 which arises from internal degrees of freedom (e.g., a half-integer spin of electrons):6

ωin(m1, m2)λ
k
α(m1m2) =

{
λk
α(m1)λ

k
α(m2), φ(m1) = 1,

λk
α(m1)λ

k
α(m2)

∗, φ(m1) = −1,
(10)

where φ : M → Z2 is defined by

φ(m) =
{

+1, m : unitary,

−1, m : antiunitary.
(11)

4 Strictly speaking, α is an IR of the finite group M̄k = Mk/T, while jz is a basis of the continuous
(rotation) group. Therefore there is no one-to-one correspondence between α and jz. For example, an IR
α = 1/2 of a point group C2v includes all normal Bloch states with half-integer total angular momentum
jz = ±1/2, ±3/2, ±5/2, . . ..

5 H 2(M , U(1)φ) stands for the second cohomology class of the group M .
6 In spin-1/2 systems, for instance, a phase factor −1 accompanies two-time operations of TRS (T ), which

means a factor system ωin(T , T ) = −1. Supposing that k0 is a time-reversal invariant momentum, therefore,
the representation matrix obeys the algebra λk0(T )λk0(T )∗ = −λk0(E).
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Since the projective representation λk
α complies with the associativity law, the factor system satisfies

the following 2-cocycle condition:

ωin(m1, m2)ωin(m1m2, m3) = ωin(m1, m2m3)ωin(m2, m3)
φ(m1). (12)

For easy treatment of the small corepresentation λk
α of the magnetic little group Mk with an

infinite number of elements, we instead consider the finite group (magnetic little cogroup) M̄k . A
representation matrix λ̄k

α on M̄k corresponding to λk
α of Mk is introduced by

λk
α(m) = e−ik·τm λ̄k

α(m̄), (13)

where m̄ is a representative in M̄k for m ∈ Mk , and

τm = tm − tm̄ ∈ T (14)

is a Bravais lattice translation corresponding to m. Substituting Eq. (13) into Eq. (10), we obtain

ωin(m1, m2)e
−ik·ν(m1,m2)λ̄k

α(m1m2) =
{
λ̄k
α(m1)λ̄

k
α(m2), φ(m1) = 1,

λ̄k
α(m1)λ̄

k
α(m2)

∗, φ(m1) = −1,
(15)

ν(m1, m2) = τm1m2 − τm1 − pm1τm2 = −[tm1m2 − tm1 − pm1 tm2], (16)

where pm1 is the point-group part of the operator m1. In Eq. (15), the nonsymmorphic part of the
factor system7 is described by a Bravais lattice translation ν(m1, m2), namely

ωk
ns(m1, m2) = ωk

ns(m1, m2) = e−ik·ν(m1,m2). (17)

Thus, the small corepresentation λk
α of the infinite group Mk falls into the representation

λ̄k
α of the finite group M̄k , by introducing an appropriate factor system {ωk(m1, m2) =
ωin(m1, m2)ω

k
ns(m1, m2)}.

In a similar way, a projective representation γ̄ k
α of the unitary little cogroup Ḡk , which corresponds

to a small representation γ k
α of the little group Gk , is naturally introduced. Supposing that the

representation γ̄ k
α is concretely given, we can construct the corresponding corepresentation λ̄k

α .
For FM superconductors, λ̄k

α is same as γ̄ k
α since M̄k = Ḡk due to TRS breaking. When the

superconductor is PM or AFM, on the other hand, we need to consider whether the degeneracy
(dimension) of the representation increases for the nonunitary group M̄k = Ḡk +TḠk . Here T ≡ T I
is a pseudo-TRS operator preserved on any k point. We can systematically solve the problem with
the appropriate factor system [72,73], by using a Wigner criterion (Herring test) [27,73–76]:8

W T
α ≡ 1

|Ḡk|
∑
ḡ∈Ḡk

ωk(Tḡ, Tḡ)χ [γ̄ k
α ((Tg)2)] =

⎧⎪⎪⎨
⎪⎪⎩

1, (a),

−1, (b),

0, (c),

(18)

7 The factor system also satisfies the 2-cocycle condition:

ωk
ns(m1, m2)ω

k
ns(m1m2, m3) = ωk

ns(m1, m2m3)ω
k
ns(m2, m3)

φ(m1).

8 The Wigner criterion for the pure TRS indicates the presence or absence of a so-called Kramers degeneracy.
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Table 1. Terminologies and notations with respect to group theory used in the paper. The first and second
columns are associated with unitary groups, the third and fourth columns with nonunitary groups including
antiunitary operators. In the table, we adopt the terminologies of Ref. [73]. Adapted with permission from
Ref. [68]. Copyright © 2019 by the American Physical Society.

Terminology Notation Terminology Notation Definition

Space group G Magnetic space group M Whole crystal symmetry of the system
Little group Gk Magnetic little group Mk Stabilizer of k
Small representation γ k

α Small corepresentation λk
α IR of (magnetic) little group

Little cogroup Ḡk Magnetic little cogroup M̄k Factor group of (magnetic) little group by T

N/A γ̄ k
α N/A λ̄k

α IR of (magnetic) little cogroup

where χ is a character of the representation. In the (b) and (c) cases, the degeneracy (dimension) of
λ̄k
α is twice that of γ̄ k

α , while λ̄k
α(ḡ) gives the same representation as γ̄ k

α (ḡ) for ḡ ∈ Ḡk in the (a) case.
For details, see Appendix A.

In the above discussion, we have introduced a lot of notations for groups and representations. For
the avoidance of confusion, we summarize the notations in Table 1.

2.2. Topological classification of the superconducting gap

In this section, we consider a topological classification method of the superconducting gap on high-
symmetry points (mirror planes or rotation axes) in the BZ. Before going into the details of the theory,
let us give an overview of the general framework of the topological classification. Our theory is based
on the earlier classification method of topological insulators/superconductors [4–6]. Note that, in
the usual sense, a topological insulator (superconductor) is an insulator (superconductor) where the
wavefunctions of electrons (Bogoliubov quasiparticles) below the bandgap have nontrivial topology.
The topological invariant is defined for the (Bogoliubov–de Gennes, BdG) Hamiltonian on the BZ,
which is represented by a d-dimensional torus. As mentioned in the introduction, the topological
periodic table (Table 2), which shows classification of the invariant based on the onsite symmetries,
namely TRS (T ), PHS (C), and CS (	), is widespread in current condensed matter physics [4–6].
Table 2 includes the tenfoldAZ classes [7,8], which are classified by four types of algebraic structure:
0, Z, 2Z, and Z2.

Now we apply the above classification theory of topological insulators/superconductors [4–6] to
the superconducting gap classification [67,71]. However, a bandgap cannot exist in the whole d-
dimensional BZ in nodal superconductors. Therefore, we instead consider a p-dimensional sphere
(p < d) surrounding the node. p + 1 is called a codimension, which shows a difference between the
dimension of the BZ and that of the node. For example, when a (1D) line node exists in a 3D BZ,
the codimension is 3 − 1 = 2, which results in p = 1.

It is necessary to reconsider symmetry since the domain of a topological number is changed from
the d-dimensional BZ to the p-dimensional sphere. On the sphere, only symmetries preserving the
position of the node are allowed. In particular, the node should be fixed to a high-symmetry k
point (mirror plane or rotational axis) in crystalline superconductors. As mentioned in Sect. 2.1, a
unitary little cogroup on the high-symmetry k point is denoted by Ḡk , and an IR of Ḡk by γ̄ k

α , which
corresponds to the normal Bloch state with the momentum k. Furthermore, although the TRS T , the
PHS C, and the IS I themselves do not preserve the position of the node, the combined symmetries
of them are allowed on any k point. Therefore, important symmetries for our classification theory
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Table 2. Correspondence between the AZ classes and the onsite symmetries: TRS (T ), PHS (C), and CS
(	) [4–6]. The first–third columns represent the presence or absence of the three symmetries. The absence of
symmetries is denoted by “0”, while the presence is denoted by either “+1” or “−1”, depending on whether
the antiunitary operator squares to +1 or −1. The fifth–eighth columns show topological classification results
for a Hamiltonian defined on a d-dimensional torus for each AZ class. Classifications in the complex classes
(A, AIII) and those in the real classes (AI, . . ., CI) are respectively periodic (Bott periodicity).

T C 	 AZ class d = 0 d = 1 d = 2 d = 3

0 0 0 A Z 0 Z 0
0 0 1 AIII 0 Z 0 Z

+1 0 0 AI Z 0 0 0
+1 +1 1 BDI Z2 Z 0 0
0 +1 0 D Z2 Z2 Z 0
−1 +1 1 DIII 0 Z2 Z2 Z

−1 0 0 AII 2Z 0 Z2 Z2

−1 −1 1 CII 0 2Z 0 Z2

0 −1 0 C 0 0 2Z 0
+1 −1 1 CI 0 0 0 2Z

are pseudo-TRS T ≡ T I, pseudo-PHS C ≡ CI, and CS 	 ≡ T C, all of which are preserved on any
k point. The stabilizer of the high-symmetry k point is thus represented by the following group:

Ḡk = Ḡk + TḠk + CḠk + 	Ḡk . (19)

A topological number on the high-symmetry point is defined by using the BdG Hamiltonian with
the symmetry Ḡk . Although the classification theory of topological insulators/superconductors [4–6]
is not directly applicable to the gap classification under the symmetry Ḡk , an effective AZ (EAZ)
class is instead defined for the BdG Hamiltonian on the p-dimensional sphere. For this purpose, we
execute the Wigner criteria [27,73–76] for T and C,

W T
α ≡ 1

|Ḡk|
∑
ḡ∈Ḡk

ωk(Tḡ, Tḡ)χ [γ̄ k
α ((Tḡ)2)] =

⎧⎪⎪⎨
⎪⎪⎩

1,

−1,

0,

(18 revisited)

W C
α ≡ 1

|Ḡk|
∑
ḡ∈Ḡk

ωk(Cḡ, Cḡ)χ [γ̄ k
α ((Cḡ)2)] =

⎧⎪⎪⎨
⎪⎪⎩

1,

−1,

0,

(20)

and the orthogonality test [27,76] for 	:

W	
α ≡ 1

|Ḡk|
∑
ḡ∈Ḡk

ωk(ḡ,	)∗

ωk(	,	−1ḡ	)∗
χ [γ̄ k

α (	
−1g	)∗]χ [γ̄ k

α (ḡ)] =
{

1,

0.
(21)

In the above tests, we investigate orthogonality between a basis set {c†
αi(k)} of the normal Bloch

states and another one {ac†
αi(k)a

−1} transformed by the symmetry a (= T, C, or 	). From Eqs. (18),
(20), and (21), we obtain a set of three numbers (W T

α , W C
α , W	

α ), which identifies the EAZ symmetry
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Table 3. Correspondence table between the set of (W T
α , W C

α , W 	
α ) and EAZ symmetry classes in centrosym-

metric systems [68,71,77,78]. The fifth–seventh columns show topological classification results for the IR at
the k point with the codimension p + 1. Note that the Bott periodicity of the real classes is reversed from that
in Table 2, since T and C do not flip the momentum, unlike T and C. Adapted with permission from Ref. [68].
Copyright © 2019 by the American Physical Society.

T (W T
α ) C (W C

α ) 	 (W 	
α ) EAZ class p = 0 p = 1 p = 2

0 0 0 A Z 0 Z

0 0 1 AIII 0 Z 0

+1 0 0 AI Z Z2 Z2

+1 +1 1 BDI Z2 Z2 0
0 +1 0 D Z2 0 2Z

−1 +1 1 DIII 0 2Z 0
−1 0 0 AII 2Z 0 0
−1 −1 1 CII 0 0 0
0 −1 0 C 0 0 Z

+1 −1 1 CI 0 Z Z2

class of the BdG Hamiltonian on the sphere by using the knowledge of K theory [7,8,27]. Table 3
shows the correspondence between the set of (W T

α , W C
α , W	

α ) and the EAZ symmetry class.9

Furthermore, from the EAZ symmetry class, we can classify the IR at the (high-symmetry) k point
into an algebra 0, Z, 2Z, or Z2 (Table 3). In this context, (W T

α , W C
α , W	

α ) gives a symmetry-based
topological classification of the Hamiltonian at each k point on the plane (line). When the plane
(line) intersects a normal-state Fermi surface, a node composed of the intersection line (point) on
the plane (line) hosts a codimension 1, and therefore it is surrounded by a 0D sphere. In other words,
superconducting gap nodes on the plane (line) are classified by a 0D topological number (see p = 0
in Table 3). When the classification is nontrivial (Z, 2Z, or Z2), the intersection leads to a node
characterized by the topological invariant. Otherwise, a gap opens at the intersection line (point).

3. Results

In Sect. 2, the topological classification theory of superconducting gap nodes was introduced.
Although the conventional classification of order parameters can speculate on the presence or absence
of nodes from the momentum dependence of basis functions [61–66], it sometimes fails to describe
the correct gap structures [42–60]. On the other hand, our modern theory can exactly classify the gap
structures by taking into account nonsymmorphic symmetry and higher-spin states. Indeed, we have
performed comprehensive classification of gap structures on high-symmetry planes [45,51,67,69,70]
and lines [51,68–70] in the BZ. In this section, we explain various nontrivial results of topological
crystalline nodes, whose topological protection is characteristic of crystalline systems, as elucidated
by the studies.

3.1. Classification on high-symmetry planes: nontrivial gap structures due to
nonsymmorphic symmetry

First, we introduce classification results on high-symmetry planes, where the factor system ωk
ns

accompanied by nonsymmorphic symmetry induces nontrivial gap structures. In the following, for

9 W T
α = W 	

α = 0 in FM superconductors, since both the pseudo-TRS (T) and the CS (	) are broken.
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instance, let us consider a magnetic space group M = P63/mmc1′, which is one of the hexagonal
and PM space groups including nonsymmorphic screw symmetry.10 The PM space group represents
the symmetry of the odd-parity superconductor UPt3, which is known to possess unconventional line
nodes protected by nonsymmorphic symmetry [42–46,48,51].

3.1.1. Preliminary
Since the magnetic space group M includes a mirror operator Mz = {Mz| ẑ

2}, we focus on mirror-
invariant planes kz = 0 and kz = π in the BZ. The (magnetic) little groups on the planes are given
by

Gk = T + MzT, (22)

Mk = Gk + TGk = T + MzT + TT + MzTT, (23)

from which the (magnetic) little cogroups are obtained:

Ḡk = Gk/T = {E, Mz}, (24)

M̄k = Mk/T = {E, Mz, T, MzT}. (25)

The factor system taking into account spin–orbit coupling and nonsymmorphic symmetry is as
follows:

ωin(Mz, Mz) = −1, ωin(T, T) = −1, ωin(Mz, T) = ωin(T, Mz) = 1, (26a)

ωk
ns(Mz, Mz) = 1, ωk

ns(TMz, TMz) = eikz , (26b)

where we note that ωk
ns depends on kz due to the existence of nonsymmorphic symmetry.

Considering ωk(Mz, Mz) = −1, we obtain projective IRs γ̄ k±1/2 of the little cogroup Ḡk ,

γ̄ k±1/2(E) = 1, γ̄ k±1/2(Mz) = ∓i, (27)

which correspond to (half-integer) spin-up and spin-down states, respectively. For the spin-up one,
a Wigner criterion [27,73–76] for the pseudo-TRS (18) is calculated as

W T+1/2 = 1

2

∑
ḡ∈{E,Mz}

ωk(Tḡ, Tḡ)χ [γ̄ k+1/2((Tḡ)2)]

= 1

2
(−1 + eikz) =

{
0, kz = 0,

−1, kz = π .
(28)

Therefore, a representation λ̄k+1/2 of the magnetic little cogroup M̄k can be constructed as follows
(see also Appendix A):

m̄ E Mz T MzT

λ̄k+1/2(m̄)

(
1 0
0 1

) (
−i 0
0 +ieikz

) (
0 −1
1 0

) (
0 i

ieikz 0

)
(29)

10 The space group is represented by Hermann–Mauguin notation. For details, see Refs. [76,79].
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The dimension two of λ̄k+1/2 physically indicates degeneracy between the spin-up and spin-down
states because of the pseudo-TRS. Even when we start from the spin-down state, therefore, a projec-
tive representation equivalent to Eq. (29) is obtained. From the above result, a small corepresentation
for an element m ∈ Mk is given by

λk
1/2(m) = e−ik·Rλ̄k

1/2(m̄), (30)

where m = m̄TR, m̄ ∈ M̄k , and TR = {E|R} ∈ T.

3.1.2. Topological gap classification
Now let us consider the topological classification of the superconducting gap structures (Sect. 2.2)
in this system. Before going to the main issue, we revisit a general result obtained by classification
under IS; we temporarily forget the presence of the mirror symmetry in the paragraph. A set of
symmetries protecting a superconducting node, namely the pseudo-TRS T, the pseudo-PHS C, and
the CS 	, is classified by the ten EAZ classes in Table 3. The class on a general k point is D or
DIII for even-parity superconductivity, and C or CII for odd-parity. In particular, let us focus on the
classification of line nodes (p = 1) in 3D odd-parity superconductors, which shows no topological
protection of the nodes for both classes C and CII. This fact is known as Blount’s theorem, claiming
the absence of line nodes in (spin–orbit-coupled) odd-parity superconductors [64,71].11 According
to p = 0 for the EAZ class D in Table 3, furthermore, we can predict the existence of a surface node
characterized by a Z2 invariant in 3D even-parity chiral superconductors. The node is nothing but a
Bogoliubov Fermi surface suggested by recent theoretical studies [55,56,80].

From the above general results, an additional symmetry is essential for a stable line node in odd-
parity superconductivity. As mentioned above, indeed, Refs. [42–46,48,51] have proposed a counter-
example of Blount’s theorem, i.e., the existence of line nodes in the odd-parity superconductor UPt3,
by taking into account the effect of nonsymmorphic symmetry. In the following, we reproduce the
counter-example from the viewpoint of the topological classification theory [45,67]. For this purpose,
let us identify the EAZ class on the mirror-invariant planes kz = 0 and kz = π , supposing a Cooper
pair wavefunction belonging to the Au IR of the point group C2h.12 The Au pairing symmetry results
in the following factor systems:

ωin(C, C) = −1, ωin(C, Mz) = −ωin(Mz, C) = 1, (31a)

ωk
ns(CMz, CMz) = eikz , (31b)

and therefore

ωin(	, Mz) = −ωin(Mz,	), (32a)

ωk
ns(	, Mz) = ωk

ns(Mz,	) = 1. (32b)

Using Eqs. (31) and (32), we apply the topological classification to the representation γ̄ k+1/2 of the
normal Bloch state. The Wigner criteria for T and C (18), (20) and an orthogonality test for 	 (21)

11 As shown in the later discussions, Blount’s theorem breaks down in some nonsymmorphic superconduc-
tors, since only point-group symmetry is considered in his theory.

12 A candidate symmetry of a superconducting order parameter in UPt3 is the IR E2u of the point group D6h,
which corresponds to the Au IR of the subgroup C2h.
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are calculated as

W T+1/2 =
{

0, kz = 0,

−1, kz = π ,
(28 revisited)

W C+1/2 = 1

2

{
ωk(C, C)χ [γ̄ k+1/2(C

2)] + ωk(CMz, CMz)χ [γ̄ k+1/2((CMz)2)]
}

= 1

2
(−1 − eikz) =

{
−1, kz = 0,

0, kz = π ,
(33)

W	+1/2 = 1

2

{
ωk(E,	)

ω(	,	−1E	)
χ [γ̄ k+1/2(E)

∗]χ [γ̄ k+1/2(E)]

+ ωk(Mz,	)

ω(	,	−1Mz	)
χ [γ̄ k+1/2(	

−1Mz	)
∗]χ [γ̄ k+1/2(Mz)]

}

= 1

2
(1 − 1) = 0, (kz = 0,π). (34)

According to Table 2, therefore, a classifying space of the BdG Hamiltonian on the kz = 0 (kz = π )
plane is the EAZ class C (AII). Topological classification of a line node on the 2D plane (p = 0)
is 0 for the class C, and 2Z for the class AII. This indicates that superconducting gap structures are
different between the basal plane kz = 0 and the zone face kz = π ; the Au pair wavefunction opens
its gap on kz = 0, while a line node characterized by a 2Z invariant emerges on kz = π . These results
are entirely consistent with those of the group-theoretical arguments [42–46,48,51].

Now we consider the meaning of the classification results by the EAZ classes. Figure 1 schemat-
ically shows the structure of the BdG Hamiltonian with the Au Cooper pair wavefunction. On the
mirror-invariant planes (kz = 0,π ), the Hamiltonian can be block-diagonalized into the two IRs
α = ±1/2, due to the presence of mirror symmetry. Let us first see the classification on the basal
plane kz = 0 [Fig. 1(a)]. In the above discussion, we started from the representation matrix γ̄ k+1/2
of the IR α = +1/2, which corresponds to the spin-up normal Bloch state [the lower left particle
in Fig. 1(a)]. The Wigner criterion for the pseudo-TRS operator, namely W T+1/2 = 0 (28), indicates
that a basis of an IR nonequivalent to α = +1/2 is generated by T. Therefore the lower left particle
in Fig. 1(a) is mapped by T to the lower right particle, which belongs to the other IR α = −1/2.
Similarly, the lower left particle is mapped by 	 to the upper right hole, because of the orthogonality

Fig. 1. Schematic pictures of the BdG Hamiltonian with an Au pair wavefunction on (a) kz = 0 and (b) kz = π .
The red frames in (a) and (b) belong to EAZ classes C and AII, respectively.
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Table 4. Group-theoretical classification of superconducting gaps on high-symmetry planes. The fourth and
fifth columns indicate representations allowed for a gap function on the basal plane kz = 0 and the zone face
kz = π , respectively. The representations are decomposed into the IRs of the point group C2h. A gap function
should be zero, and thus, a node appears, if the corresponding IR does not exist in the reductions [81–86];
otherwise, the superconducting gap opens in general. Adapted with permission from Refs. [51,67]. Copyright
© 2018 by the American Physical Society.

Case TRS exists? Key ingredients kz = 0 kz = π

(A) No [tM]z = 0 Au Au

(B) No [tM]z 	= 0 Au Bu

(C) Yes [tM]z = [tT ]z = 0 Ag + 2Au + Bu Ag + 2Au + Bu

(D) Yes [tM]z = 0, [tT ]z 	= 0 Ag + 2Au + Bu Bg + 3Au

(E) Yes [tM]z 	= 0, [tT ]z = 0 Ag + 2Au + Bu Ag + 3Bu

(F) Yes [tM]z 	= 0, [tT ]z 	= 0 Ag + 2Au + Bu Bg + Au + 2Bu

test W	+1/2 = 0 (34). On the other hand, since the Wigner criterion for the pseudo-PHS operator leads

to W C+1/2 = −1 (33), C gives a basis belonging to the equivalent IR, which is linearly independent
of the original basis. The lower left particle in Fig. 1(a) is thus mapped by C to the upper left hole
in the same IR α = +1/2. For the above reason, the Hamiltonian in the α = +1/2 space [the red
frame in Fig. 1(a)] has only the pseudo-PHS C with C2 = −E, which indicates that the Hamiltonian
block is classified into the AZ class C [7,8].

However, the situation is different on the zone face kz = π [Fig. 1(b)]. In this case, the lower
left particle in Fig. 1(b) is degenerated by T in the equivalent IR α = +1/2, because of the Wigner
criterion W T+1/2 = −1 (28). On the other hand, since W C+1/2 = W	+1/2 = 0 (33), (34), the lower left
particle is mapped to the upper right holes in the nonequivalent IR α = −1/2, by the pseudo-PHS
C and the CS 	. Therefore, the α = +1/2 Hamiltonian block [the red frame in Fig. 1(b)] has the
pseudo-TRS T with T2 = −E, and therefore belongs to the AZ class AII [7,8].

As indicated in the above discussions, the EAZ class represents the property of a Hamiltonian
block with respect to the onsite symmetries, where the block is obtained by block-diagonalizing the
BdG Hamiltonian into eigenspaces (IRs) of the crystal symmetry. In general, therefore, the EAZ
class of a block is different from the AZ class of the whole Hamiltonian.

We have looked at an example of a nontrivial line node on a mirror plane stemming from nonsym-
morphic symmetry in terms of the topological classification. The classification theory is of course
applicable to other various crystal and/or magnetic symmetries. Tables 4 and 5 respectively show
group-theoretical [48,49,51] and topological [67] classifications of gap structures in mirror- or glide-
symmetric superconductors. The classification results are categorized into six types (A)–(F), where
(A) and (B) represent a FM superconductor without TRS, and (C)–(F) indicate a PM orAFM one with
TRS. Key ingredients of the classification are the z components of tM and tT , which are translation
parts of the mirror (glide) operator M and the time-reversal operator T , respectively. A nonzero
[tM]z indicates the presence of screw symmetry along the z axis in the superconductor. When [tT ]z

is nonzero, on the other hand, the superconductor is in an AFM state with a z-directional propagating
vector.13 For example, the magnetic space group M = P63/mmc1′ discussed above is categorized
into the case (E) since it is PM and screw-symmetric. In general, when [tM]z or [tT ]z is nonzero,

13 We note that, even when [tT ]z is zero, an AFM state with an x- or y-directional propagating vector as well
as a PM state is allowed.
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Table 5. Topological classification of superconducting gaps for the time-reversal symmetric superconductors
labeled (C)–(F) in Table 4. The table includes classification for only 0D topological invariants. Adapted with
permission from Ref. [67]. Copyright © 2018 by the American Physical Society.

Ag Bg Au Bu

Case kz = 0 kz = π kz = 0 kz = π kz = 0 kz = π kz = 0 kz = π

(C) AIII, 0 AIII, 0 D, Z2 D, Z2 C, 0 C, 0 AIII, 0 AIII, 0
(D) AIII, 0 AII, 2Z D, Z2 DIII, 0 C, 0 C, 0 AIII, 0 AII, 2Z

(E) AIII, 0 DIII, 0 D, Z2 AII, 2Z C, 0 AII, 2Z AIII, 0 C, 0
(F) AIII, 0 D, Z2 D, Z2 AIII, 0 C, 0 AIII, 0 AIII, 0 C, 0

namely in the cases (B), (D), (E), and (F), superconducting gap structures on the basal plane kz = 0
and the zone face kz = π are different (see Table 4). This is a consequence of nonsymmorphic
symmetry.

Comparing Tables 4 and 5, we find a one-to-one correspondence between the group-theoretical
and topological classification theories; when the presence of a line node is predicted in the group-
theoretical classification, there exists a 0D topological invariant characterizing the node. Furthermore,
we have revealed that a line node in an even-parity superconductor is protected by a 1D winding
number as well as the 0D invariant [67], although this is not shown in the tables. The presence of the
winding number means that the node is more stable against fluctuations, and indicates the emergence
of a Majorana flat band as a surface state. For further details, see Ref. [67].

3.2. Classification on high-symmetry lines: nontrivial gap structures due to angular
momentum

Next, let us move on to classification results on high-symmetry lines in the BZ. In this subsection,
only symmorphic and PM space groups are discussed for simplicity. Nevertheless, unconventional
superconducting gap structures sometimes appear on the rotation-symmetric axes because of angular
momentum of a normal Bloch state.14

Table 6 shows topological gap classification (see Sect. 2.2) on n-fold rotational symmetric lines
in the BZ (n = 2, 3, 4, 6) [68]. We emphasize that representations with higher-angular-momentum
states, such as 3/2 and 5/2 spins, appear for n ≥ 3, while a normal Bloch state on a twofold rotational
axis always complies with spin 1/2. Surprisingly, superconducting gap classification results on
threefold and sixfold lines depend on the angular momentum of the normal Bloch state, although
they are unique for twofold- and fourfold-symmetric cases. The angular-momentum-dependent gap
structures are important findings in our modern classification theory [51,68–70], since they cannot
be predicted by the conventional classification theory of order parameters [61–66].

On C3-symmetric lines, e.g., 1Eu and 2Eu superconducting order parameters become gapless and
gapped for the α = +1/2 normal Bloch state, respectively [Table 6(b1)], while both IRs are gapless
for the α = +3/2 state [Table 6(b2)]. Indeed, we have reproduced the result in an effective model of
the hexagonal chiral superconductor UPt3 [68]. Figures 2(b) and 2(c) show Bogoliubov quasiparticle
spectra on the C3-symmetric K–H line in the BZ for α = 3/2 and α = 1/2, respectively. Both bands
generate point nodes on the line in the α = 3/2 state [Fig. 2(b)], whereas one band is gapless but the
other is gapped for α = 1/2 [Fig. 2(c)]. These results are consistent with the above classification.

14 This does not mean that nonsymmorphic symmetry on the rotational axes is unimportant. Indeed, Ref. [87]
found that gap structures on C2v-symmetric lines sometimes become nontrivial due to glide symmetry.
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Table 6. Topological gap classification on high-symmetry lines in the BZ. Each classification is characterized
by the type of topological number and gap structure: (G) full gap, (P) point nodes, (L) line nodes, and (S)
surface nodes (Bogoliubov Fermi surfaces). For details of point groups and their IRs, see Refs. [76,88]. In
a spontaneous TRS breaking phase, 2D IRs in D3d , D4h, and D6h are the same as those in S6, C4h, and C6h,
respectively, since all the 2D IRs are decomposed into 1D IRs with different eigenvalues of the rotation
symmetry. Therefore we do not show the 2D IRs in tables (f), (g), and (h). Adapted with permission from
Ref. [68]. Copyright © 2019 by the American Physical Society.

(a) Ḡk = C2, α = ±1/2 (b1) Ḡk = C3, α = +[−]1/2 (b2) Ḡk = C3, α = ±3/2

IR of C2h EAZ Classification IR of S6 EAZ Classification IR of S6 EAZ Classification

Ag AIII 0 (G) Ag AIII 0 (G) Ag DIII 0 (G)
Au AIII 0 (G) Au AIII 0 (G) Au CII 0 (G)
Bg D Z2 (L) 2Eg[1Eg] D Z2 (S) 1,2Eg A Z (S)
Bu C 0 (G) 1Eg[2Eg] A Z (S)

2Eu[1Eu] C 0 (G) 1,2Eu A Z (P)
1Eu[2Eu] A Z (P)

(c) Ḡk = C4, α = +[−]1/2, +[−]3/2 (d1) Ḡk = C6, α = +[−]1/2, +[−]5/2 (d2) Ḡk = C6, α = ±3/2

IR of C4h EAZ Classification IR of C6h EAZ Classification IR of C6h EAZ Classification

Ag AIII 0 (G) Ag AIII 0 (G) Ag AIII 0 (G)
Au AIII 0 (G) Au AIII 0 (G) Au AIII 0 (G)
Bg A Z (L) Bg A Z (L) Bg D Z2 (L)
Bu A Z (P) Bu A Z (P) Bu C 0 (G)

2Eg[1Eg] D Z2 (S) 1E1g[2E1g] D Z2 (S) 1,2E1g A Z (S)
1Eg[2Eg] A Z (S) 2E1g[1E1g] A Z (S)
2Eu[1Eu] C 0 (G) 1E1u[2E1u] C 0 (G) 1,2E1u A Z (P)
1Eu[2Eu] A Z (P) 2E1u[1E1u] A Z (P)

1,2E2g A Z (S) 1,2E2g A Z (S)
1,2E2u A Z (P) 1,2E2u A Z (P)

(e) Ḡk = C2v, α = 1/2 (f1) Ḡk = C3v, α = 1/2 (f2) Ḡk = C3v, α = 3/2

IR of D2h EAZ Classification IR of D3d EAZ Classification IR of D3d EAZ Classification

Ag CI 0 (G) A1g CI 0 (G) A1g AIII 0 (G)
Au CI 0 (G) A1u CI 0 (G) A1u C 0 (G)
B1g BDI Z2 (L) A2g BDI Z2 (L) A2g D Z2 (L)
B1u BDI Z2 (P) A2u BDI Z2 (P) A2u AIII 0 (G)
B2g BDI Z2 (L) 2D IRs see (b1) 2D IRs see (b2)
B2u CI 0 (G)
B3g BDI Z2 (L)
B3u CI 0 (G)

(g) Ḡk = C4v, α = 1/2, 3/2 (h1) Ḡk = C6v, α = 1/2, 5/2 (h2) Ḡk = C6v, α = 3/2

IR of D4h EAZ Classification IR of D6h EAZ Classification IR of D6h EAZ Classification

A1g CI 0 (G) A1g CI 0 (G) A1g CI 0 (G)
A1u CI 0 (G) A1u CI 0 (G) A1u CI 0 (G)
A2g BDI Z2 (L) A2g BDI Z2 (L) A2g BDI Z2 (L)
A2u BDI Z2 (P) A2u BDI Z2 (P) A2u BDI Z2 (P)
B1g AI Z (L) B1g AI Z (L) B1g BDI Z2 (L)
B1u AI Z (P) B1u AI Z (P) B1u CI 0 (G)
B2g AI Z (L) B2g AI Z (L) B2g BDI Z2 (L)
B2u AI Z (P) B2u AI Z (P) B2u CI 0 (G)

2D IRs see (c) 2D IRs see (d1) 2D IRs see (d2)
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Fig. 2. (a) A threefold-rotation-invariant axis K–H in a hexagonal BZ. (b), (c) Quasiparticle energy spectra
on the K–H line in the TRS broken superconductor UPt3 [68]. The normal Bloch state at the Fermi level
has angular momenta 3/2 and 1/2 in (b) and (c), respectively. Adapted with permission from Refs. [51,68].
Copyright © 2018-2019 by the American Physical Society.

Furthermore, there are other candidate superconductors for unconventional angular-momentum-
dependent gap structures; for details, see Refs. [51,68–70]. One can identify superconducting gap
structures in various superconductors, by using our modern classification theory.

4. Summary

In this paper, we have reviewed the modern topological classification theory of superconducting gaps,
and introduced various nontrivial nodal structures discovered by the theory. By considering a specific
k point in the BZ, our modern theory can take into account detailed properties such as nonsymmorphic
symmetry and higher-spin states, which are not included in the conventional classification theory
of order parameters [61–66]. Through comprehensive classification on high-symmetry planes and
lines, the following important results are obtained:

◦ difference of gap structures between a basal plane and a zone face attributed to nonsymmorphic
symmetry, and

◦ gap structures depending on the angular momentum of the normal Bloch state.

The classification results are determined only by symmetry, and therefore are universal and applicable
to many candidate superconductors.

Finally, we mention more recent developments concerning the study. The first example is the
uranium-based superconductor UTe2 discovered at the end of 2018 [89]. Since many previous
experiments support intrinsic spin-triplet superconductivity in UTe2, research into this material has
developed explosively. Stimulated by this background, we have discussed a detailed gap classifi-
cation and the possibility of topological superconductivity, based on band structures obtained from
first-principles calculations [90]. Furthermore, we have suggested unconventional gap structures pro-
tected by nonsymmorphic symmetry in LaNiGa2 [91] by using our classification method. Like the
above cases, our classification method is easily applicable to various superconductors in a systematic
way. In addition, more recent studies have proposed a more thorough classification of topological
crystalline nodes and databases of nodal superconductors [92,93]. Based on our theory and the related
studies, many other superconductors hosting unconventional nodes should be discovered.
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Appendix A. Wigner criterion

In this appendix, we review the method and meaning of the Wigner criterion [27,73–76] used in the
main text. Let G be a unitary group and α a dα-dimensional IR of G. We choose a certain set of basis
functions {ψ1, . . . ,ψdα } of the IR α. ψi transforms under the symmetry operation g ∈ G as

gψi =
dα∑

j=1

ψj[�α(g)]ji, (A.1)

where �α is a representation matrix of the IR α.
Let us consider whether the degeneracy of the IR (dα) increases or not, by adding an antiunitary

operator a to the groupG. In other words, we investigate the dimension of the representation matrix for
the nonunitary group M = G+ aG, supposing that information on the factor system {ω(m1, m2)} ∈
H 2(M, U (1)φ) is given. The problem can be solved by the Wigner criterion:

W a
α ≡ 1

|G|
∑
g∈G

ω(ag, ag)χ [�α((ag)2)] =

⎧⎪⎪⎨
⎪⎪⎩

1, (a),

−1, (b),

0, (c).

(A.2)

For each case, indeed, the irreducible corepresentation matrix Dα of M, which corresponds to �α
of G, is constructed as follows [27,73,74,76]:

Dα(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�α(g), (a),(
�α(g) 0

0 �α(g)

)
, (b),⎛

⎝�α(g) 0

0 ω(g,a)
ω(a,a−1ga)

�α(a−1ga)∗

⎞
⎠ , (c),

(A.3)

Dα(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U , (a),(
0 −U

U 0

)
, (b),

(
0 ω(a, a)�α(a2)

1 0

)
, (c),

(A.4)

where U used in the (a) and (b) cases is a unitary matrix satisfying

U †�α(g)U = ω(g, a)

ω(a, a−1ga)
�α(a

−1ga)∗. (A.5)

The meaning of each case is shown in the following.
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(a) There is no additional degeneracy due to the presence of the antiunitary operator a, because {ψi}
and {aψi} are not independent.

(b) The presence of the operator a gives rise to additional degeneracy, because {aψi} is linearly
independent of {ψi} although they belong to the same IR α.

(c) The degeneracy is doubled by applying a, because the basis {aψi} belongs to a representation
α′ inequivalent to α.
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