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1 Introduction

It is well known the anticommutator of two supercharge generators closes on the generator
of translations, as the supercharges are contained in a super Lie algebra. Some time ago [1—
3], it was noted in one dimensional theories, there exists supersymmetric representations
where the commutator of two supercharge generators on the fields also and simultaneously
closes by defining a new generator that was given the name of “holoraumy”, but the new
generator involves the inclusion of an additional temporal derivative.

Thus, on these representations the supercharges augmented by the holoraumy gener-
ator have the potential to form a genuine algebra, and not just a super Lie algebra. The
one dimensional representations for which this is true are characterized by a distinguishing
feature. .. the engineering dimensions of all the bosons in the representation are identical



and the engineering dimensions of all the fermions in the representation are identical, but
distinct from that of the bosons. Such representations are called one dimensional “valise”
supermultiplets. The algebra of the supercharges closes on these representations.

Subsequently, it was demonstrated [4, 5] that such operators exist for 4D, N' = 1
representations, as well as 4D, N' = 2 representations [6], i.e. on manifolds with more
than one dimension. However, these higher dimensional valise representations only exist
for on-shell (i. e. in the presence of equations of motion) theories. The condition of being
on-shell is necessary for the higher dimensional theories to satisfy the same conditions that
are required on the engineering dimensions of field variables in the one dimensional valise
representations.

The fact that valise representations exist in both off-shell one dimensional supersym-
metrical theories and on-shell higher dimensional supersymmetrical theories is the central
pillar for the concept of “SUSY holography [7]”, i. e. the possibility that the kinematic
structure of higher dimensional SUSY theories can be holographically embedded [4-8] into
one dimensional SUSY theories.

Most recently it has been noted [9] that the “holoraumy’ involves both electromagnetic
duality transformations and Hodge duality transformations in a number of “on-shell” su-
permultiplet representations of 4D, N = 1 supersymmetry. From this observed behavior,
it was conjectured that more generally the commutator of two supercharges for higher di-
mensional and extended supersymmetrical representations was likely to possess the same
property. It is the purpose of this current work to provide calculational exploration of
this conjecture. The current work will also explore these concepts in the context of higher
dimensional supersymmetrical theories.

2 Examples of holoraumy in higher dimensions

2.1 Lagrangian and transformation laws in 10D, 6D, and 4D
The Lagrangian for the abelian vector supermultiplet takes a unified form in 10D, 6D, and
4D theories where explicitly one finds
1 1
L=—FuwF" + z‘ixa(a“)abauxb, (2.1)

with Fj,, = ), A, and the spinor \* is a real (i.e. Majorana) fermionic field. The trans-
formation laws in the 10D, 6D, and 4D theories are all of the exact same form,

DA, = (0,)ap\’,
D\’ = i(0"),9, A, , (2.2)

where the ranges of the vector indices (i.e. p, v, etc.) and the spinor indices (i.e. a, b, etc.)
depend on the spacetime dimension of the bosonic manifold according to:

wv,...=0,1,2,...,9, a,bye,...=1,2,3,...,16 in 10D, (2.3)
v, ...=0,1,2,...,5, a,be,...=1,2,3,...,8in 6D, (2.4)
wov,...=0,1,2,3, a,b,e,...=1,2,3,4in 4D.



The explicit forms of the o-matrices are given in appendix B for each respective manifold.
These are a reordering and rearrangement of those used in [10]. We choose these new
conventions as this leads to a simple dimensional reduction by taking the upper left block
of the o-matrices in this work.

2.2 10D algebra and holoraumy
The 10D SUSY algebra (expressed in terms of the D-operators) is
{Da s Db }AN = z‘2(a”)ab&,AM — 6MAab 5 (26)
{Da, Dy IX =i 2(0")p0pA + i8ap " (0") 40\ (2.7)
with the gauge term (the right most term in (2.6)) for the boson and the term proportional

to the equation of motion term (the rightmost term in (2.7)). These take the respective
explicit forms

Agp = 12(0")ap Ay (2.8)
7 1
cd cd cd

In calculating the algebra for the fermions, the following Fierz identity is useful:

7 1

ury ¢ 5 -9 Ma c b l/a Z/cf m
(") (00)pya = 2(0")abdd 8(0 Jav(0) (6") fa + 1020

(@ ap(o5) T (") 5. (2.10)

It can be seen from the expression in (2.10) that the final term is curiously similar in
its algebraic structure to the auxiliary field that is required to embed the lowest order
open-string correction into the supergeometry of a 10D space construction [11].

The holoraumy is

[Das Dy]Ay = i(0ump)apF"? = i2(0,"")ap Oy A, | (2.11)
[Da, DyJA° = —i(0"),%(00)jadu\? - (2.12)

It is readily apparent that the holoraumy calculation in (2.11) does not involve the dual
tensor of the 10D Maxwell field strength, at least not with the smallest number of products
of linearly independent o-matrices as written.! Instead the Maxwell tensor itself appears.
Thus the ubiquitous nature of the relation between holoraumy and electromagnetic duality
noted in the work of [9] in the context of 4D, N' = 1 theories does not apply in the case of
the 10D, NV = 1 super Maxwell theory.

2.3 Reduction to 6D

We reduce to 6D by setting to zero the ‘last’ four components of the 10D gauge field A,
and ’last’ eight components of the spinor field A® according to

A6:A7:A8:A9:0, A4 =0 fora:9,10,...16. (2.13)

!One can of course define the dual field strength as F,, .y s ~ EHIHQIHHS[Q]F[Q] and write the bosonic

holoraumy as proportional to ol™ Fu[ﬂv however, this reduces owing to identity ouva = —%E;wa[?]am-



We consider the remaining field components to depend only on the 6D coordinates. The
bosonic algebra reduces to that in eq. (2.6) with indices ranging over the 6D values in
eq. (2.4). The bosonic holoraumy reduces to

1. ~
Do, DylA, = 51(0[3})@@[3] : (2.14)
with the four-form dual Maxwell tensor equal to
. 1
Fn)\uu = §€nkpu[2}F[2} ) (215)

and with €,yup0 the completely antisymmetric Levi-Civita tensor in 6D. In the above
calculations we have made use of the following relationship, valid in 6D
1

Tpwr = geu,,)\[g]a[g] . (2.16)
Thus, although the duality interpretation of the holoraumy was not present for the theory
in ten dimensions, here we have found that it “reappears” for the six dimensional theory.
This can obviously be seen as a function of the number of indices versus the dimension of
the space-time: 6D is the critical dimension where the dual field strength would be able
to appear in the holoraumy with linearly-independent o-matrices, owing to the duality
relationship in eq. (2.16), and the fact that the dual field strength has four indices in 6D.

2.4 Reduction to 4D
We continue and reduce from 4D to 6D by setting to zero
Ay =A5=0, As=X=Ar=Xx3=0, (2.17)

and imposing the additional restriction on all remaining field components to depend only
on the 4D coordinates. The algebra reduces to that in eq. (2.6) with indices ranging over
the 4D values in eq. (2.5). The bosonic holoraumy reduces to

[Da, Dy]A, = 2(v"v ) Fp (2.18)
with the dual two-form equal to
F = %EWMAFHA. (2.19)
In the above calculations we have used
(Tun)ab = 1€unn (V20 )ab - (2.20)

The results in (2.14) and (2.18) demonstrate an interesting pattern. Apparently the
relationship between the holoraumy of the gauge field and the electromagnetic duality is
present in the 6D and 4D theory, but this relationship “evaporates”, and is not valid (2.12)
in the 10D theory.

The fact of the “evaporation” raises an interesting question. Ordinarily, and most
often one regards 4D, N = 4 theories as being the result of a dimensional reduction from a
10D theory. So are there no on-shell 4D, N' = 4 multiplets that have relationships between
holoraumy and electromagnetic duality? The most obvious context in which to explore this
question is within 4D, N = 4 supergravity theories. However, clearly such an exploration
is a substantial undertaking simply due to the complexity of such supermultiplets. There



is an intermediate theory which does not possess such a high degree of complication. There
exists a “variant” form [12] of the 4D, N' = 4 Maxwell supermultiplet where one of the
spin-0 fields is replaced by a skew second rank tensor. In the following, we will study the
issue of a possible relationship between the holoraumy and electromagnetic duality within
this supermultiplet.

3 On shell holoraumy results

The basis upon which we undertake the investigation is provided by two separate 4D, N
= 2 supermultiplets. One consists of the 4D, N' = 2 vector supermultiplet consisting of
component fields, (4, B, F, G, A,, d, ¥) and the second supermultiplet is the 4D, N = 2
tensor supermultiplet consisting of component fields, (ﬁ, E, F , C:’, @, By, ‘T’Z) The Latin
indices 4, j,... here take on values of 1 and 2. There are four supercovariant derivative
operators D! | and ]52 and their realizations on the component fields were given in the work
of [13]. We have included these, but they are relegated to appendix C. An advantage of
this formulation is that the D! and f)fl operators are each individually off-shell, i.e. close
without the use of equations of motion and central charges. This is not the case for the
cross terms in the algebra between D? and ]52

The only totally on-shell fields from the first 4D, " = 2 supermultiplet are (A, B, A,,
VU?) and for the second supermultiplet is the 4D, A/ = 2 supermultiplet consisting of com-
ponent fields, (A, E, &, By, \T/fl) Since our goal in this work is only to consider the purely
on-shell holoraumy we include the partial off-shell starting point results in an appendix as
this contains possible results that will be important for future work and explorations. We
perform the standard reduction to the on-shell system, imposing the equations of motion
which has the effect of removing all auxiliary fields from the transformation laws. on-shell
algebra results are explained in appendix D.

In order to realize an N' = 4 on-shell SUSY system, we will require two independent
superspace derivative operators denoted by D% and ]5}1 where the “isospin” label on each
take the values 7 = 1, and 2. In the remainder of this section and the next two, we show the
on-shell holoraumy results. These are derived from the fully on-shell transformation laws
arrived at by taking the transformation laws in appendix C and setting all auxiliary fields
to zero (F =G =d = F = G =0). The fermionic holoraumies are shown upon enforcing
the Dirac equation (7#),°9,¥* = (7),°9,¥* = 0. The terms involving the Dirac equation
can be found in the associated Mathematica code that is freely available online through
GitHub at https://hepthools.github.io/Data/4DN4Holo/.

3.1 Vector multiplet D-D holoraumy

1

DY, D]]A = —25"(v°4") 0, B + 5

CORICUELNY S
. , y 1, g ,
[D;,, D} |B = 26" (757“),1;,(%14—!—2 5(02) 7(757[“7 ])abFW ,
[sz ) Di ]AH = (UQ)ij [(’Y[u’}/u])abayA + i(’757[/471/])ab61/3} - 5ij€uyaﬁ (757V)abFa/3 3

[Di,, D}IWE =i2(6%) (6 (1) a0 WL+ 2[(0) 7 (61 + (6%)7 (6*)M | (177" )ab (7°) 10, Ty
(3.1)


https://hepthools.github.io/Data/4DN4Holo/

3.2 Vector multiplet D-D holoraumy

[Di, DJJA=1i2(0*)" (v"4")apOs B—75” LB () ey Hyap
[sza fji}B = 72(01)ij(75vu)abaug+2(03)”(757”)0,1)8”&
] ™J i j 5y . ij A ij = .2 ij, va
[Di. DAy =209 (3%)ab 0B +i(vu ) a0 {(0%) A+ (o) Jw}+Z§(02) 76, L% (4" )ab Hyas

[D; . DY =i 2V (5) a0 e+ 20V (V)b (1) 10, 0 + 2V (1917 ab (°) 10,

(3.2)
where V” ki V” kl, nd V” 'kl are defined in subsection E.5.
3.3 Vector multiplet D-D holoraumy
D! DA = 8 (AP 1 2Y8j (L~ V]
[ a’ b] = -2 (77)abauB_§(U) (7 Y )abF;wa
Dl DB = 250 (5~ L i 5[]
[ a’ b]B_25 (’7'7)ab8,uA_Z§(O-) (’7’7 v )abF,ulM
(D%, DAL = —(0%)7 [ (Yur)avd” A + i(v° 97 b0 B] — 7€ L (V) abFap
(D5, DIwE = =i(0®) (o) (Y9 an() "0 W + 20870 (579" ) (0) "0 Wi
(3.3)

3.4 Tensor multiplet D—D holoraumy

2 )
7<O—1)ZJ VOC/\(’Y i )ale/aBa

[sz ) Di ]Av = _2(03)ij(757u>ab8,u§ + 2(02)2'3'(7!1)@8“()5 + 3

2(0_2)1'3' uaﬁ(

(D4, DYIB =2(v°1")as [ (0°) 70, A + (61)Y0,5] = S (0%) e,

)abHVozﬂ )
(D%, DIg = —2(01) 7 (4°4") b8, B — 2(63)7 (1) apu A — §< 3)ide YoP (YoM oy Hyg
(DY, Di]éuu = (02)” X (v5)apOr B + € A (v°5)ab [ — () ONA 4 (6°) 10\ ]
A
3 [\ Y))abdiras
(D, D)0 = —i(0?)7 (o) (Y1) (1) 20, By + 1 2670 6M (7P yH) (1) 20,0,
(3.4)



3.5 Tensor multiplet D-D holoraumy

(D, DJJA = 2(¢")7 (v*y")ap0, B + %(0’3)” (YY) v Fpu
[Di, DB =—i2(0*)" (v"¥")ar0,A,
(DL, BYIE = 200 (11" B+ 5 (09 (1 s F
[DZ, DBy = 7€, (7" 75) abOrA + 6" (V) ab B B — Cap(02) Fpy + i %(Uz)ijqw 7 (Y*)ab Fpo »
[Di, DIJWE =i 2V (400, WL + 20V 5 (419 ) 0y (1) 20, Wl + 20V (P91 b (7°) 0,
(3.5)

where V}’ M Vy? M and Vg? Mare defined in subsection E.11.

3.6 Tensor multiplet D-D holoraumy

I g - g 2 -
(D5, DA =2(0) (v"7")a0u B + 2(0*) (1) a0 + 5 (01) 7,/ (11" )apHya

(D, BY1B = ~20°0")adul (0175 + (%) A} + 2 (02)96,7 (")
(D, DI = 20070510 B — 2002 (A — 3 (0996, (551 s s
(55, B3 1Bus = ~(07) 76,2 00)ass B + 2 (P70 A (0" A + (%))
+ ééijena[ﬁ#(757u])abﬁnaﬁ ;
(D}, DB = i2(0%)7 (02)1 ()0, V!

—i2[(@")7 (e + (%) (@) (77 )ab (7)1 0 Ty (3.6)

4 Exploring electromagnetic rotations on bosons in the on shell results

4.1 Vector holoraumy

Starting with vector transformations, we can write

[sz ) DIZ ]A = _25ij (WBVM)abauB + (UQ)U (V[M’YV])abauAu 5
(DY, DJ1B = 267 (4°4") a0, A + i(02) 7 (41" 8, Ay
[sz ) Di ]A,u = (0-2)“ [ (h//h ’YV])aballA + Z'(’Y5 [7#7 /yy])abaVB] - 25”6#”0[6(75’71/%1)8&146 .
(4.1)

These allowing us to construct a 6-by-6 matrix, which we will implicitly represent as a
3-by-3 matrix by introducing a set of row and column indices I, J which run from 0-5, with
1 and v representing the 0-3 indices. We also introduce a column vector, ®; to contain



all the bosons as follows:

- _251j6up)\y ('757p)aba)\ (0—2)“ ([’7,“7 ’YA])aba/\ i(0—2)ij (75 [7#7 ’YA])aba)\
BIMN T = | (62)1 (1A 0 0 —26% (459) 4O
i(02)9 (PP Oy 209 (1599 ) apOr 0

(4.2)

A A,

=

i j ij (VM
(D, D} | A | =@B5"") | a (4.4)
B B

Using this same type of framework, we can translate the tilded laws into a similar form

[f)fz ) ]5{; ]A = _25ij (757u)ab6uB - (02)ij (7[M7y])abauAV )

[Di,, DJ]1B =209 (") a0 A — (%) (/9" ) ap 0 Ao

[sz ) D{) }AN = 7(02)“{(7[“71/])(11)6”14 + i('y57[y7V})abaVB} - 251’]'6#1/&5 (’7571/)abaaAﬁ .
(4.5)

Exchanging some dummy indices and raising and lowering some space time indices, this

leads to
) =207, (V2 y0)ab0n = (02) ([ Y abOx —i(0)Y (77 [0, 7])abOx
BN = —(02) (vP") 005 0 —26 (757X O

—i(a2) I (PPN dn 209 (799) apO 0

(4.6)

So we see that this is the same matrix as the untilded transformation law except with a
sign change in all terms associated with the crossing between gauge terms and chiral fields.

For the vector multiplet D-D holoraumy, the vector multiplets are transformed into
the tensor multiplets. We have

(D%, DA, =267 (%) B+i (v )av@ { (037 A+ (1) 3} +i2(0%) 7€, (4°) apOy Bags
[sz ; Di]A:i2(o_2)ij (’75’7H)abau§ - 25ij6,uyaﬁ (’757#)%81/@&6 5
DY, DIB=—2(c" )" (v°7")ap0u A+2(0>) 7 (V1) b0, 7 - (4.7)



This can be succinctly written as

Bag
A, i
3 =7 i (VM
DL, D | 4 | =g 5 (48)
B ~
@
(A =
i2(0%)7 e, }P (V) a0 (o) (v, 7)) apO 25”‘(’75)@@1 (o) () b
—20% €, 2P (7%4%) 4O 0 i 2(0%)7 (77 apOx 0
0 —2(a") (") apOa 0 2(0®) (Y57 a0
(4.9)

where the index J := af for J =0,--- ,5.

4.2 Tensor holoraumy
The steps for the three sectors of the bosonic holoraumy on the tensor supermultiplet
follows the same steps as used for the vector supermultiplet and yields the results we
report through the end of this section.
(D, DJJA=-2(0")" (4" )as0u B +2(0*) (1" )asu +2(0") 7€, (17" a0y Bax
[Di, DIIB=2(v"7")as{(0*) 70 A+ (01)7 0,8} —2(0%) 7 €, (4") b Bas ,
(D, DJJe=—2(c")"(7"7")ab0uB = 2(0*)" (v")arOp A —2(0™) 7 €, (11" a0 Bars
(D&, D} 1B =(0")" € (10)ab0r B+ €™ (4770 { (o) " 0x A+ (o) 7 012}
+67 1, (V")) abOx Bas (4.10)

@, =

S (VP ardn  —(01) T € (Y )abdr (0°) €™ (7)o" On (%) €uno™ (7977 )abOr
2(0)7 e (721" abOx 0 =206 (VP M 2(0)7 (7)) abOs
—2(0%)7 € (4" ) apOa 2(0®)7 (7°7*) abOa 0 2(a")7 (v°4™)abOx
—2(6®)7e P (V) a0 —2(0%) T (Y M)arOn  —2(0") (V77 )abOr 0

(4.11)

) ) - A |
0., DI | = |=B5"") | < | =85 e, (4.12)

;=B | - (4.13)




Here, the index I := pyv and J := af for I, J = 0,...5. Then for the tilde transformations

[Di, DIJA=2(")" (v*7")av0u B +2(0%)? (v )ar0u 2 + 2(0 )7 €, (1°4")ar Oy Bas

[Di, D} 1B==2(v"v")as0u{(c") "G+ (0*)7 A} +2(°) 7 €, (v")abu Bas

[Di, DI1E=2(0")" (+"7")as0u B = 2(0°) (1")as0u A — 2(0°) 7 €,"*" (1°4" )b Oy Bas
DL, DI]Buw=—(0%) 7" (v6)abOr B + €, (77 75) abOr {— () T A+ (%) 3}

896 (4P,) o0 s (4.14)
(B ™)’ =
7P (V) avdn = (01) e (P )abdn —(0)7 €5 (7)abOx (0°) €pvo™ (V77 abOn
2(01) 7€ (Y99 apOa 0 2(0®)7 (7°7*) abOa 2(0%)7 (7*) abOa
2(0%)7 e (7") abOx —2(0%)7 (7°7*)ab O 0 =2(01)7 (7°7*)abOx
-2(0°)7e (V¥ ) andr  —2(0%)7 () avOa 2(a")7 (7°7*) abOa 0
(4.15)

For the tensor multiplet D-D holoraumy, the tensor multiplets are transformed into
the vector multiplets. We have

(D%, DI]Buw = 676, (v*75)abOrA + 89 (v° ) av0) B + Cap(0%) 78,20, A,
+1 (UQ)ijﬁ,uu)\p( )aba)\Ap )
(D%, DIJA = 2(c")7 (7°4") a8, B + i(0%) (Y1) 10, A,
[Di ﬁj]g = _i2( 2)”(’757#)@8/1‘47

[Di,, DJJ@ = )7 (V") ab0uB + i (01) 7 (V) a0 Ay (4.16)
. Bg Aa
DL, Dl | 5 | =g | 4 (4.17)
- B
2
ij (TM
(A s
(0'2)Zj [ie,uuka (75)aba)\ + Cabé[,uaay]] 5ij6uun>\(’75’7n)ab8)\ 6 (757[u)abay]
—i(03)1 (y10yA) 40 0 2(0 )7 (7°4) b0
0 —2(0%)" (459*) b O 0
—i(0") (7 *9M) O 0 —2(0%)7 (7°7*) apO
(4.18)

where here [ := pv for I =0,...,5and J :=a for J =0,1,2,3.

5 Exploring electromagnetic rotations on fermions in the on-shell results

The results in the last section refer to the evaluation of the holoraumy calculations on the
bosonic fields on-shell. There are equivalent ways to reach results on fermions. One way to
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obtain these is by application of the D and 152 operators to both sides of the equations in
the previous section. Alternately, one can directly obtain them after some algebra in the
off-shell formulation so we arrive at the results that follow. Below are the on-shell fermionic
holoraumies upon enforcing the Dirac equation (y#),¢9,¥* = (w)acaﬁﬂg = 0. The terms
involving the Dirac equation can be found in the associated Mathematica code that is freely
available online through GitHub at https://hepthools.github.io/Data/4DN4Holo/.

5.1 Vector multiplet D—D fermionic on-shell holoraumy

(D, D}JWg = i2[ V1M (3)ap + VoM (v99)an(7°) ] 9,04 (5.1)

5.2 Vector multiplet D-D on-shell fermionic holoraumy
(DL, DL = i2 VM (4)a0, T+ 82 [V (P Dan() !+ V3™ (599" (7°)] 0404
(5.2)

5.3 Vector multiplet D-D on-shell fermionic holoraumy
(D}, DIIWE =i [2V17 (P9)ab(77)e" + Va7 (71 e ()] 0,9 (5.3)

5.4 Tensor multiplet D—D on-shell fermionic holoraumy
(D, DYJWg = 2V (1999 (7°) 10, Ty + i Vo™ (1) oy (12)e10, 0 (5.4)

5.5 Tensor multiplet D-D on-shell fermionic holoraumy

o ST ikl I

(D}, DJWE =i 2V (300, W+ 32 [V (419 Do () ! + V3™ (5P an(17) ) 0,0
(5.5)

5.6 Tensor multiplet D-D on-shell fermionic holoraumy
(DL, DTS =2 (V7 ()b 4 M (995} 0,0 (5.6)

The explicit data about the V-type and V-type coefficient tensors is found by carefully
referring respectively to each type of holoraumy (i.e. D-D, D-D, or D-D) acting on the
field variable as given in the tables of E.

6 Holoraumy points to an infinite-dimensional algebra

6.1 A 2D, (4,0) superspace truncation

Having found evidence that the commutator of the supercharge operator when acting
on valise supermultiplets (either in one dimension or in higher dimensions), indicates an
additional algebraic structure, it is natural to study this via examination of the commutator
algebra of the holoraumy operator acting on fermions. As can be seen from the systems
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analyzed previously such calculations tend to become rather involved. Accordingly, we will
follow a path that avoids these by using an appeal to SUSY holography.

It has long been known [14]? that theories which realize one degree of extendedness or
spatial dimension can be represented by superfields that manifestly realize a lower degree
or extendedness or dimensions. In the following, we will use the work of [16] to gain insight
into the structures that follow from the equations shown in (4.1)—(4.18).

The work in [16] is focused upon superfields in 2D, (4, 0) superspace. The work provides
a complete analysis of all such superfields with the property that a set of propagating bosons
reside “lower” in a #-expansion than a set of propagating fermions. This ensures that a
dimensional reduction of the results will have to “land” on one of the supermultiplets
considered in this section. Also in the following, we will use the notational conventions
seen in [16].

The analysis in [16] found there are four and only four distinct supermultiplets we
need to consider. In this work they are given the names SM-I, SM-II, SM-IIT and SM-IV
so that we can introduce a “representation label” R that takes on these four values. For
each value of the “representation label” there are four bosons and four fermions. In order

(R

to use as compact a notation as possible, we denote these fields by ®, ) (bosons with 4

=1,...,4) and ‘I/ch)
in the 2D, (4,0) superspace, a reduction to a 1D superspace streamlines the results. This

(fermions with k=1,..., 4). However, after obtaining the results

amounts to “dropping” all spin-helicity indices on operators (i.e. Dy, — D, 9+ — )
and fields ¥ — wi"

Before we continue, it may be convenient here to discuss the significance of the SM-I,
SM-IT, SM-IIT and SM-IV supermultiplets. There are two way to demonstrate this and
the presentation to follow with discuss both. One has its origin in the initial discovery of

twisted superpotentials [17], “twisted chiral supermultiplets” [18]. The other perspective
is a mathematical one of more recent vintage [19, 20].

The works of [17, 18], provided the first in the physics literature of examples in ex-
tended SUSY theories, there can exist supermultiplets with identical spectra of component
fields, but which nevertheless are inequivalent. The inequivalence of such supermultiplets
is manifested in two ways, First the SUSY transformation laws are inequivalent. As shown
in the works of [17, 18], this can led to an unexpected result. Some sets of dynamical
equations that are consistent with supersymmetry require the simultaneous presence of
inequivalent supermultiplets.

A mathematical perspective on this was recently enunciated in the works of [19, 20].
These works inaugurated the use of a mathematical concept (sometimes called the “per-
mutahedron”) to show that the inequivalences of such SUSY representations can easily be
detected mapping the transformation laws of the component fields of a SUSY represen-
tation onto elements of the permutation group. When this is done, the permutahedron,
provides a well-defined metric on the space of one dimensional supermultiplets which easily
allows for the identification of the inequivalence.

In appendix G of this work, the SUSY transformation laws of the SM-I, SM-II, SM-III
and SM-IV supermultiplets are explicitly given. These are specified by giving four matrices

2The reader is directed to the work in [15] to see a more recent demonstration of such and approach.
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Supermultiplet |L1| |Ls]| |L3]| |Ly4|
SM-I (243) (123) (134) (142)
SM-II (1243) (23) (14) (1342)
SM-III (1243) (14) (23) (1342)
SM-IV (23) (1342) | (1243) (14)

Table 1. Supermultiplet Transformation Law/Permutation Elements.

for each supermultiplet. Mapping these onto elements of the permutation group is done
by simply taking the absolute values of the entries in the matrices. When this is done, the
following relationships are obtained.

In writing these results, we have utilized the cycle notation for the elements of the per-
mutation group of order four as in the works of [19, 20]. The matrix sets of { |Li|, |La|, |Ls],
|L4| } given here apply to each supermultipet as indicated. For the purpose of the physics
vantage point the sets should be considered as unordered sets. With this restriction only
the SM-I and SM-II paring will lead to the same type of dynamical properties as discovered
for the chiral vs. twisted chiral pair noted in the works published in 1984.

For each representation, the supercharges (D, with I = 1, ..., 4) are realized by the
transformations
R , R R R
Do =i (LP) w®, D™ = (RP); a0, (6.1)

where LﬁR) and RI(R) are matrices whose explicit values depend on the representation
under consideration. These values are given in appendix G. These matrices also satisfy the
equations.

R = (L) = @) (62)

It is a direct calculation to show

R < R
(D, D,] ™ = 2 [V®, ] 00, (6.3)
where
~(R)] & 1 , A A 7
[VP]F = =i 5 [(RPO (L®)F = (RN (L), ] (6.4)

It must be emphasized that the result shown in (6.4) is only valid for valise supermultiplets,
and is not valid for general supermultiplets.
Use of the explicit forms of the “V-matrices” from the final appendix shows that

(R (R R (R
VR, v®) (®) (R)

— 12 [(5JK\~/§§) — (5[}(\751? + 6IL\~/JK — 5JLVIK ] , (6.5)

a result that is uniformly satisfied on all the representations. In fact, it was proven in [21]

that all V15 satisfy eq. (6.5), so long as the associated L%R) and RI(R) satisfy the GR(d, N)
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“garden algebra”. The factor of two in eq. (6.5) along with the fact that ‘71(}2) squares to the

identity demonstrates that the holoraumy operator VI(}Q) is a representation of Gpin(NV).
To demonstrate the 4D, N/ = 4 VT multiplets relationship to the SM-i multiplets, we

dimensionally reduce the transformation laws, choosing temporal gauge Ag = Bia = Bas =

Bs1 = 0 and considering all other fields to depend only on time. We then define the 16 x 16

L%VT) and RI(VT) matrices through eq. (6.1) with I =1,2,3,...16, ¢,7,--- = 1,2,3,...16,
and l%, f, ---=1,2,3,...16 and the identifications
= = o (VT 13
DI = (Dtlza Dl%v 7D}:7 7D¢2i) ) Z\I]](; ) = <\Ijia \Ilga \1;(1:’ \P?i) (66)
and

(V™) — (A,E,/ﬁ dt,/é dt,@,ﬁu,é%,égl,A,B,/F dt,/G dt, Al,Ag,Ag,/d dt).

(6.7)
The explicit form of the resulting L%VT) matrices are given in appendix H. The RI(VT)

matrices can be found through the orthogonality relationship (6.2) forall1=1,2,3,...,16.
The above definitions of \I/lgVT) and @EVT) are chosen to line up with those for 4D, N’ =4
vector-chiral (V' C') multiplet of [22, 23] for the fields in common. The definition of Dy in
terms of the VT supercharges is chosen to identify with the following definition in terms

of the V' supercharges
D = (Da,D?’,Di,Di) for VC supercharges (6.8)

to align the transformation laws of these two multiplets for the fields in common. The ex-
plicit form of the L%VC) matrices defined in [23] can also be found in appendix H. The RI(VC)
matrices can be found through the orthogonality relationship (6.2) forall1=1,2,3,...,16.

Since the two multiplets V'T" and V' C describe the same on-shell physics in 4D though
clearly have different auxiliary fields, we compare their 1D reductions through the dot-

product like gadget to determine if this distinction is made there as well [1]

1
dmin(V)N(N — 1)

PR (6.9)
J

G(R,R') =

where dpin(16) = 128 and dpyin(4) = 4 and the VISVT) and f/ISVC) are calculated using
eq. (6.4) for I,J =1,2,3,...,16. Their gadgets are
GVT,VC) = o GVT,VT) = o, G(VC,VC) = — (6.10)
’ 240 ’ 480" ’ 107 '
Thinking of the gadget as a kind of dot product, we define an “angle” #(R,R’) between
two representations as [1]

(6.11)

N G(R,R)
O(R,R') = cos™ " <\/Q(R, R)Q(R’,R’)> :
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Any angle aside from zero indicates two representations are distinct in the sense of the
gadget. We find for VT and VC

O(VT,VC) = 61.04° (6.12)

to four significant figures. This means the gadget can distinguish these two multiplets at
the one-dimensional reduction, or adinkra, level.

The complete set of VISVT) do not furnish a representation of Gpin(16), however they do
furnish a representation of Gpin(8), i.e. satisfy eq. (6.5), for the subset I, J, K, L =1,2,...8
of 16 x 16 matrices as well as for the subset I,J,K,L = 9,10,...16 of 16 x 16 matrices.
The two Gpin(8) subalgebras satisfying (6.5) for N = 8 can be understood as arising from
the two off-shell 4D, A/ = 2 submultiplets. Thus it is not surprising that the fflgvc) do not
enjoy such a Spin(8) substructure of 16 x 16 matrices as it is the dimensional reduction of
a single 4D, N' = 2 off-shell multiplet and a 4D, N/ = 2 on-shell multiplet as demonstrated
explicitly in [22]. As neither the full 4D, N' = 4 vector-tensor multiplet nor the full 4D,
N = 4 vector-chiral multiplet close off-shell, it is expected [20] that the non-closure terms
for the complete sets ‘%SVT) and V(VO each take the form

(V000 = =2 [an VR — b0 T 4 60V — 63, V| + A TR

(6.13)
for some non-closure coefficients N1jxi, . Further analysis of the substructures within
VI(JVT) and XN/I(JVC) can be found in the Mathematica code on GitHub at https://hepthools.
github.io/Data/4DN4Holo/.

We conclude this section by focusing on representations that satisfy eq. (6.4), such as

MN(R)

the four SM-i multiplets. We will uncover associated 1D infinite dimensional algebras with
holoraumy matrices as essential building blocks. As a notational device, we can make a
definition AE’} = 1[D,, D,](d)P~!. In terms of this notation, the equation in (6.3) can
be cast into the form

R Y R
AW = [V, 100w (6.14)
Applying the operator 85" to both sides of this yields
R & R
AI[?] \Il](} )= [V(R)IJ} ]};é\I/é ) . (6.15)

The equation in (6.14) additionally implies

AfAffw® = [V [0 (A E) (6.16)
= [V ee [V Jan (0a0;®)
and
S = [V, ] [T L ()
= VO] [V¥ fan [V ]5; (020 20w)®)
so that furthermore the result in (6.16) implies
ol A6 — ([, 9, [ (a®) . (o
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and next by use of (6.5) we obtain

[al], Al 1ol = 2 (5, Vi - 5IKV§L))A,} (90 00w ™)

1y’

(6.19)
+ 21 <6IL V( — I, VI ) (60 80\I/(R)
Using (6.14), this can be rewritten in the form
1 Al g™ 2R _ 2]y (R)
(Al Al 1ol =iz (g (AZ0) — ouc (AR 620)

+ 02 (o, (ABw) — 5y (A[Q]‘I’(R)»

and to this equation, we can apply the differential operator 8[ =2 yhere S >land T
> 1. This yields
s 7 ¢® _ S+T] g (R) A+ (R)
[AH A[]] ' 12(5JK (A[ 1\1; ) 5IK( hp ))

I’ JL

+ Q2 (51L (A[S—i-T]\I/(R)) — oy (A[S-&-T]\I,(R))) ‘

k IK

(6.21)

This makes it apparent there exists a definition of a closure property of the collection of
operators Aﬁ] acting on the valise supermultiplet as in this equation.

Next we apply the operator 8([)S+T+U73} where S > 1, U > 1, and T > 1 to the equation
n (6.17) to derive

ARt A AR e = [V ]ae [V [ [V Ja (7 7)

(6.22)
and due to the form of this equation, it immediately follows that
S T U T U S
([ABL (AT AT + (A, (ALY, A1)+ (6.23)
U s T R) _ ’
AU (a8, A1) = 0.

The results in (6.14)—(6.23) indicate the set of operators AI[?] (with R > 0), form an
infinite dimensional algebra when acting on a valise supermultiplet representation. Thus
the holoraumy operator f/[(}z) being derived from one of the higher dimensional SUSY
representations R = SM-I, SM-II, SM-III, or SM-IV provides the linkage from higher
dimensional SUSY to a infinite-dimensional extension of Gpin(V).

While in past works we have used the fermionic holoraumies in explanations of their
algaebraic significance to identify different 4D supermultiplets [1, 3-6, 16], the significance
of the bosonic holoraumies remains unclear. This is a question currently under study.

7 Conclusion

In this work, we have explored (to a greater extent than previously) the range of validity
of the interconnection between Hodge duality, noted in the work of [9], and the concept of
holoraumy. We find that up to six dimensions such a relation holds in supersymmetrical
Maxwell theories. However, beyond this, in the case of Maxwell theory, the interconnection
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vanishes. This would suggest that in four dimensional theories, it could appear that the
connection cannot hold beyond 4D theories with A/ = 2 supersymmetry. However, by ex-
plicit calculations within the context of the 4D, A = 4 supersymmetry such connections are
present for the 4D, N = 4 vector-tensor supermultiplet. Finally, by reduction to 1D SUSY
QM theories, evidence was given that the holoraumy operator is both a representation of
Gpin(N) and a member of a set of an infinite number of generators that are closed and
satisfy a Jacobi identity. Thus holoraumy appears to be a part of an infinite-dimensional
extension of Gpin(N).

Now let us discuss the important distinctions between the standard formulation of the
abelian (VC) multiplet versus the (VT) multiplet. For this comparison, we look at the

(VC) LgVT)

absolute values of the L; and matrices listed in appendix H.

L1 =9 @ L0+ 7 @ L1+ ) @ I+ o @ L ()
Lie =70 @ L+ 95 @ LMY+ 93 o IL U+ 93 o LY (12)
LD = 7 @ LYY+ 98 @ ILEMY |+ v @ LYY + 9 @ 1LY (7.3)
L = 73 @ IL | + 93, © rL<SM">r +73 @ LYY+ 93 o L] (1.9)
L) =73 @ LY + o) @ LT+ ) @ ILYY 4+ v @ I (75)
LD =73 @ LY +7/2 @ L™+ 73 @ ILEM + 93 @ L) (7.6)
LYy |— SMI|+7/@)®|LTM|+1/ @\LSMD\W‘* ®rLSM“>| (7.7)
LRl =73 @ \LISM Y+ 93 @ L™+ 98 o LYY+ 93 @ ILEY L (7.8)

Considering the absolute values allows us to map these matrices into elements associated
with the permutahedron [19, 20]. At this permutahedron level, it is clearly seen that
the difference between the two supermultiplets corresponds to switching the TM to SM-I
(called T'S and C'S in [19, 20], respectively).

Aim at high things but not presumptuously.
Endeavor to succeed-expect not to succeed.

— Michael Faraday
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A Useful gamma matrix identities

A.1 Definitions and conventions

Note that here and throughout, we use the “unweighted brackets” to indicate symmetriza-
tion or antisymmetrization of two indices, regardless of whether they are spinor or spacetime

indices. We use the following representation for the gamma matrices in 4D:

(W)’ =ic* @0, (W) =hLod', (¥ =20, (P =L, (A1)

where I, is the 2 x 2 identity matrix, and o', 02, 0 are the Pauli matrices. Also in 4D we

have the ° matrix:

(V)a” =i’y = —0* @ I (A.2)

0123 _

The totally antisymmetric Levi-Civita tensor e#*P? is defined by € —1. The spacetime

indices of the gamma matrices and the Levi-Civita tensor are lowered and raised using the
mostly plus Minkowski metric 7, and its inverse n*” respectively:

Y =0 Y™ =" 0P =08 (A.3)

The spinor indices are lowered and raised using the spinor metric Cy;, and its inverse C%
respectively:

(1)aCap = (W)ap, C*(3")e" = (¥"), (A.4)
where the spinor metric and its inverse are defined by
Coup = —io®> @ 0%, CypyC?P =5,°. (A.5)

A.2 Gamma matrix identities

(YH)ab = 26,0 (A.6)
AHAS = B (A.7)
VAP = P Pyt — Py — et Py (A.8)
VAP = 8" + 60" — 0Py + ey (A.9)
PylenBl = _%eaﬂuumm (A.10)
7“7[‘176] — 277#[@7,3] + iQea’B"‘”'y5'yy (A.11)
ylanBloyp = _opulanBl 4 jocaBuraby (A.12)
voy*yP = %75 (Yl + (2P = —%eaﬁ M) + 1P (A.13)
APpnlan Bl = _opulanBlab 4 gjcaBudy (A.14)
(V9)a” = 465 (A.15)
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YAy = =29
(YY" Y yu)a” = 40P 84"
(Y7777 )a" = 4ieh?? .

A.3 Spinor index symmetries

Cab
(Vu
(v

(v'~°

)

%)

7”)
(Y*")
)

)

([7 ab
(YHFy)ap =

ab =

ab

ab

ab

= _Cba

(Vu)ba
= ( )ba

= ( 5)ba

( )ba

(VWW”)
—(Y#y)pq -

B Useful higher D sigma matrix identities

The defining relationship of the sigma matrices is

with 7, mostly plus

The three form matrix is

(U(M)ac(au))d) = 277uV5ab7
N = diag(=1,+1,4+1,...,4+1).
1
(Oxw)ab = 27 (0ATuOL))ab

3!

Denoting n-anytisymmetric indices as [n], the n-form matrix is

O[n] = Oaiazas...an —

1

EU[CLIUQQU(JB ..

- Oq,]

(B.4)

where the matrix indices either both down or both up for odd n and one down and one up

for even n.

We use the following representation for the sigma matrices in 10D, a reordering and

rearrangement of those used in [10].

(Uu)ab

LRLRIL®I,

LeLRLed!
3o’
IQ®IQ®IQ®O'3
LRo?Ro @ o2
LRo?®o3® o2
ol ® Lo’
2RI d?
?®ol @I, ®o?
0’ ®0?®o?®o?
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The above representation allows for a simple reduction to 6D and 4D by taking the upper
left block of the first six and four o-matrices, respectively. Specifically, we have in 6D

I ® I, ® I —I, ® Ih® I
LRL®o! Lol
L, ®o?®o? b I ®o?®o?
ot — , oh)e — B.6
(")ab Lol (o) L®L o (B.6)
0’ @l @ o? o’ ®@ol @ o?
0’ ® o3 @ o2 0’ Qo3 ® o
and in 4D
I ® I -Ih®I
IZ®0'1 b ]2®O'1
(0")ap = EPP (o) = o2 & o (B.7)
_[2®0'3 I2®U3

C SUSY transformation laws

The 4D, N' = 4 Abelian Vector-Tensor Supermultiplet can be formulated in terms of four
sets of transformation laws implemented on the two distinct 4D, N/ = 2 supermultiplets as
presented in the work of [13]. The first two transformation laws are the standard 4D, N' = 2
transformation laws acting solely on the component fields within the vector supermultiplet
and separately acting solely on the component fields within the tensor supermultiplet. The
remaining two describe supersymmetry variations on the component fields between the
vector and the tensor supermultiplets. To distinguish these two types of SUSY charges, we
use the symbols DY for the first type and INDfI for the second type.

C.1 D-type SUSY VM realization

The notations (A, B, A, W) F, G, d) denote the component fields of the 4D, N' = 2 vector
multiplet. These transform as under the operator D! as,

DiA =690
D} B = 6" (%) 0],
DLF = 69 (27),'0, 7
DiG = i(0") (4°1") 0]
Di A, = i(0%) (),
= (o) (771) L0, 0]
sz\Il{) = 5“{1’(7“)@(%14 — (757“)@8“3 —iCypF'}
+ (D)l (6%)9G + ()9} + (07 (F)as F (eRY

under the action of D?.
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C.2 D-type SUSY TM realization

The notations (A, B, &, BW,, \I! . F, G) denote the component fields of the 4D, N’ = 2

tensor multiplet. These transform as under the operator D! as,
DA = (a%)70]
D, B = i8" (7%), ¥,
=69 (41,0, 9,
DG = 6% (") 0,0},
D@ = (") W],
D} By = (0% () B
Dy ¥ = 67{~(4"1") 0B — iCaF + (+°) G}
+i(")abu{(0%)7 A+ (078} = (%)Y e, (4°1") vy Bas -
C.3 D-type SUSY VM realization
The transformation of the VM fields under the operator ]52 look as,
D’ A=i(ch)¥ \113
DLB = —(02)(1"), ]
DL F =i(0%)7 ("), 0,9}
DG = i(ah) Y (v°4") LD, V]
Dd = —i(c®)" (v°4") L0,
DiA, = 9 (), ¥
DLW = i(0?) {— (79" B — iCabF + (1) G}

+i(v") a0 {— (0" )T A+ (0%) G} — 679,/ (Y°4") a0y Bas

C.4 D-type SUSY TM realization
The transformation of the TM fields under the operator D% look as,
DLA = —(o!)w)
DB = ~(0*)7(+°) ¥
DLF = i(0®)7 (+),0 9, %]
DG = —(0%)" ("), 0.}
DL = ()79}
D B = — 07 (b))}
]SZ\TI{) = i(UQ)ij{i(’Yu)abauA - (’YS'Y“)abauB —iCapF'}

+ ()l (617G — (6%)7d} — 269 (W) F,
4
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A complete discussion of the algebra associated with these transformations can be found
the work given in [13].

D Algebra

The algebra of the full transformation laws shown in appendix C is as in [13]. The on-shell
transformation laws are found by imposing the equations of motion, effectively setting all
auxiliary fields to zero. The on-shell bosonic algebra is equivalent to the bosonic algebra
in [13] upon setting all auxiliary fields to zero. Some of the results of the on-shell algebra
for the fermions are shown below, the rest follow a similar structure and can be found
explicitly in the Mathematica code on GitHub.> We have

(D%, DIYUE = 2§67 (y) 48, TF + (Z”kl) )40, 0!
{Di, Dj}0k = 25 Ay

{Di, D]} Wk = 2i5%

)
")a 0u T,
")d 0u T,

)

(

(7).
abauwm(zw“) Uy
{D, D} }WE = 2i57 (v (29H) )0, 0 (D.1)
with

(704 0= i3695 (5 (e — 0707 (15 4 Db P W)
_ z%(O-l)ij(o'l)kl(’ya)ab('h)cd + i%(al)ij(al)kl([va, Y Dab([Var 1))
A DB D = T () )

1 i o 3 y
— i ()7 (@M ()b (V) — 5 (%) (%)M Capde!

ML COMEDK] (D.2)

and the terms of the form Z , Z, and Z found explicitly in the Mathematica code on
Git hub.?
For the cross terms we have
Di 15] \I]k; — ZXZ]kl m ) CI}l 2Xl]kl uo v da i}l
{Dg. Dy} = 207" (v") a0 Ve + 20X ([V, 7" ab () " 0u Vg
+ 2057 () (1) 0 + 20X (499 0 (1) 0
ik - ikl ~
+ 2027 (V)b (VO ) 0, Wl + 20X (V) ab (V)0
+ 207 Cop (1) 40, Y + 2075 (9", 4 b (s )7 )00 T, (D.3)
(D, DI Pk = 20X (1140, 0L + 2.0 (4,7 ()"0, 0y
+ 2Z‘%§] (/Yu)ab(’yy'yu)cdau\l/d + QiXi]kl ('757#)(117(7 )cdaulllld

3https:/ /hepthools.github.io/Data/4DN4Holo/.
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+ 207 (7)) (VP10 Y + 20X (7 ) ap (1P 10, P
+ 2075 Oy (4128, 0L + 2i2?§j’“l([v“, Y Dab (Vs W) 22Ty (D.4)

XM = 087 (0*) 4 B (01 (0% + 6,(0%) (o) + kg (0%) 76

T = 0,69 (0?1 4 ,(0") (0 >’f’+6 I 4 ra(0?)P0 . (D)

o 8 ) K o B 0 k
XM i | =3/4 | 3/4 | -4 || XM Gija | —3/4 | 3/4 | -if4
A s | oys [ys s | A s | s | s |
XIECLiie | 3/16 | —3/16 | 5ij16 | | XU /16 | 3/16 | —3/16 | 5i/16
XM Lga | e | o1y | i XA | 14| <1/4 | -if4

XIRL3i16 | —1/16 | 1/16 | i/16 XM 3i/16 | 1/16 | —1/16 | -i/16
XM _9i/16 | —1/16 | 1/16 | i/16 X1 _9i/16 | 1/16 | —1/16 | -i/16
XIRL 33716 | —5/16 | 5/16 | 5i/16 XUH 1 34/16 | 5/16 | —5/16 | —5i/16
XML /128 | —1/128 | 1/128 | i/128 XM /128 | —1/128 | 1/128 | /128

The above demonstrates the closure of the on-shell algebras {Dz,Dg} and {Di, ]5{7}
upon enforcing the equations of motion (y#)4°0, ! = (v#)4°0,¥! = 0 as expected.

E Holoraumy

In the results of this section, we present only new results by deriving the holoraumies
for these supermultiplets under the action of the four operators D% and DZ This will be
undertaken in three sectors, the D-D sector, D-D sector, and the D- D sector. In this
section and the next, calculations are from the full transformation laws in appendix C and
we will sometimes refer to these as “off-shell” in the sense that the underlying A = 2 tensor
and vector multiplets close off-shell although of course the composite N' = 4 vector-tensor
multiplet does not.

E.1 Vector multiplet D-D bosonic holoraumy

In the following equations, the D—D subsector of the holoraumy is presented on the bosonic
fields of the 4D, N' = 2 vector supermultiplet. We find

(D, DJJA = =269 [("4")ap0u B + iCapF ] + 2 (7*)ap [ (6*)9 G + (0)¥d]
+ 50T s Fy
(D}, DJIB =267 [(v"")a0uA + (1°)anF ] + 12 Cap| (0%)7G + (o))
Fig (079 (P
DY, D}F =269 [—iCoy0A + (v°)ap0B] — 2 (v°y") a0 [ (%) G + (01) 7 d]
= 2(0*)7 (") 0" Fyu
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[DZ DJ |G=2(c ) [('Ys)abDA +iCepIB + (757“)@(9“]7] +2 (02)1'3‘ ('Yu)aud
(

( )J’V’Y )aba F/ﬂ/7

[Di, D}ld =2 (0" [(v")a0A + iCap0B + (v*1") b0 F'] = 2 (62)7 (1) 0, G
+2(0®)7 (V4" ap0” F
(D%, DI 1AL = (037 [([Vus ¥ DabOu A + (7 [V 7D b B + 2(7)ab F ]
+ 20V ) ab [ (017G = (6°)7d] — 67,/ (V1 )ab Fog » (E.1)

for the fields of the vector supermultiplet holoraumy of this type.
E.2 Vector multiplet D-D bosonic holoraumy
(D, BjJA = 206%)[i(r°1")as0uB — CurF — ("G~ 396,59 )
DL, DIIB = 20027 ~i(7 ) F + CanG] + 279"l — ()7 A + (0% 5],
(D}, DIF =i2(0*)7[~(3")a0B + (7°1")apdu G + i 2Cap| (o) VDA — (0*)V 03]
[Di, DIIG = i2(0")7 (1")a0uC + 257 (402,
[D;,, Dild = ~i2(0*)7 (1) a0 G — 207 (") A,
(D%, DIA, = 269[(v*)a0uB — (V1) G ] + i (V1)) ap®” [ (02) P A + (1) ]
(0796, (0 )y s (.2
where ﬁ”ag = auéag + aaéﬁﬂ + 85§“a.
E.3 Vector multiplet D-D bosonic holoraumy
(D, D}]A = =269 [2(+"") a0 B + 2iCapF ] + 2| (67)7C + (o) ]

1 ..
- 5(0—2)U (V[M’)/V})abF,uu )
14, BB = 209 (%) + (s | + 2iCual (6996 + (o)

— %(Gz)ij (P Fuw

[Di, D}|F = 26" ~iCo0A + (v°)p0B] — 2(v°v") bl (0°)7 G + (1) d ]
+2(6*)7 (V") ab?” Fou

(D}, DJIG = 2(0”)7[ (v*)apDA + iCap OB + (v°4")ap0uF ] + 2(0%) 7 (1) apOpdl

+ Q(Ul)ij (VS’Yu)abayF;u/ )
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(DY, D]]d =2(c")7] (+*)as0A + iCa0OB + ("), F |
—2(0*)7 (") abOuG = 2(0°)7 (Y° ) a0 Fyuw
(D%, DAL = — (03[ (V) avd” A + i (v 7)) abd” B + 2(v)an F ]
—2(¥" e ()7 G = (6%)7d] — 67, (Y9 75)ab Fan - (E.3)

E.4 Vector multiplet D-D fermionic holoraumy

Following on in a similar fashion, the D—D subsector of the holoraumy is presented on the
fermionic fields of the 4D, N' = 2 vector supermultiplet next.

[Di, DIEF = i2 [V 7k (4#) 43,87 + VoiM (4241 () 4] 9,0,
A+ (P (VP Lo

+ V3 [Cop () + ()b (Pt + (VP

+ iV O (V) + (P)as(VPN) = () (Vo) LN T
o 1 3}

+ 4 V5Kt (7“)ab(7wA)cd+§(v[“W) bVt | Ty, (B4

where the factors of V,“* are defined by the expression

Vo'l = @, (02)7 (02 + Be [(61) (o) + (0%) T (6P ] + RpdTaM, (B.5)

and the corresponding coefficients a;, Bm, and K, are given in the following table.

a | Bl &
Vil 1 /0] 0
Vol 0 ]1] 0
Vs| 0 |0]-1
Vil 0 [1] 0
Vs| —-1/0] 0

E.5 Vector multiplet D-D fermionic holoraumy
The calculation yields
(D5, DUt =i2 V™ (58 + 2 [V (09 Dan()” + V37 (577 (7)1 0, T
+i2 [V (1) an () e+ VM (1) ap (v 7)) Oa
+ 82 [ Vg™ (" 3)ab(V°7 ) + Vi (77)an(7P7) 4 a0
+i2 VIR Oy () Lo (E.6)
and in these equations, we have introduced V7% by use of the definition V7k! = iV, ikl (52)ri ]

with V”kl defined in eq. (E.5), where the corresponding coefficient &, Bx, and K, are given

in the following table.
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a 3 R
VIR /4 1/4 | —1/4
VIR 18 | —1/8 | 1/8
ViRl g4 | —1/4 | —3/4
ViR —1a | 14 |0
VARl 132 | —1/32| 0
VIR 14 ) 14 | 12
VAR 14 ) 14 | —1)2
VIR 12 0 |-1/4

E.6 Vector multiplet D-D fermionic holoraumy

The calculation yields
NG TV [ 1 ij ) v
(DL, DI =i |5 Vi (0P (0)0+ Ve (00 () 2| 0,0

1
.- L
+ i Vgt [(7“)&6(7}17)\)cd + 2y ])ab('ymuwk)cd} N
+ i VAT (P an (VP9 et = Can ()T + (V7 )an(VP7) S 1ON T
+ i Vs [ (P ap (VP 1u0) ot + Cap () = ()b (P 10T, (B.7)

along with the corresponding coefficients &, Bx, and K; given in the following table.

alB| w
vilolo]| 1
Val1]0]| 0
Vsl 10| 0
Vilo]o0]| -1
Vsl 01| 0

The next series of calculations turn to the results for the holoraumy calculations for
the 4D, N/ = 2 supermultiplet.

E.7 Tensor multiplet D—D bosonic holoraumy
(DL, DA =2(0")7 [~ (v"¥")as0u B — iCaF + (V)G ] + 2 (0)7 (") a0 &

2
+ 7(0- )z] Vaﬂ(/y Y )abHuaﬁ7

3
DL, DJ1B = 269 [(4")uF + iG] +2 (1" ) ()P A+ (1))
2 ij . voy
- g(U )] € 5( )aszxaﬂy
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[Di, D}]F =26 [(v*)0B — (v"7")a0,G] — i 20,0 [ (0*) A + (017 3]
‘%( 2y (Y1) 8 oy
(DL, DG = 267 [iCop OB + (V4" apduF ] +2(v°) a0 [ (03)7 A + (a1)7 3]
+ 506 ()0 s
(D%, D13 = 2(c") [(=7°1)) b B — iCapF + (77)abG ] — 2(6%)7 (1) apOr A
2

- g (03)1']'6)\110(,8 (’757)\)abﬁuaﬁ )

4 . g -1 1
[Dzm D{)]BMV = (0-2)w G,ng\ (Vé)aba)\B (’)/[/,Lf)/l/})(le (’Y 'Y[;L’Yu])abG

+ 60 (" )alr | (0T A+ (08 15] + 507, (55 s
(E.8)

E.8 Tensor multiplet D-D bosonic holoraumy

S g ) i 1 g ,
(D}, DJJA =2(c")"7 [(7’¥")apOuB + iCab '] — 26 (7°)apd + 25(03) I (Yt g Flas
[sz? DJ]B = - 2( ) [(757u)abau14 + (75)abF]

( 2)ij [CabDA + i(’75)abDB]

2(02)9 [ —i(y%) DA + Cop0B — i(’y5’y“)ab(9NF]

(D, DjJF

(DL, DG
120"y [ (016G + (0%)9d] = 509557 0 Fo
(D}, BIE = —200%)9 (") OB +iCunF) + 257 (0 )asG + 5 (01)7 (011 ) oy
[Dis DBy = 7€, (4" 15) A + 89 (1731 ) b9 B — Can(0°) 7
+5(0%96,77 (0 )abFyo (.9

E.9 Tensor multiplet D-D bosonic holoraumy

(D%, DJ1A = 2(6®){(+’¥") a0 B + iCapF — (v*) G}

.. _ 2
+2(0%)7 (1")ab0u + 5(01) 7€, (7 )ap Huap (E.10)
(D, D}IB = 207{(")aF +iCu G} = 21" )m0u{(0°)7 A + (o) 75}
2 _
+ 5076 (")ab Huap (E.11)

DY, D} F =269 {(y*) 0B — (v°7")ap0, G} + 2iCap{(0®)0A + (01)9 0}

5 (07627 (7007 Hoa (E.12)

_l’_
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[f); ) ]5?7 ]é = 25ij{icabmé + (VS'Yu)abauﬁ} - 2('}’5)ab{<‘73)ijmg + (Ulyjm(ﬁ}
1 ij,_ va 7
- 3(02) Te, 8 (Y1) 000 Hyyas (E.13)
[ﬁfzv f){; ](’5 = Q(Ul)ij{(’ysryu)abaué + iCabﬁ - (75)(11)@}
—2(0%) 7 (V") apOp A — 5( e, (V) ap Hyap (E.14)
e~ - 1 1 =
(DY, D}1B, = (0%)” { °(5)apOrB + = (V[WV})abF + 12(757[u7y])abG}
+ 6uu/\5 (')/5%5)(1178)\{(Ul)ijf1 - (US)ijSE} + géijena,@[# ('YSFYV})abITIna,B .
(E.15)
E.10 Tensor multiplet D-D fermionic holoraumy
(DL, DJIWE = 2V (991 ap(v°) 10,05 + i Vo7 (1M )y, ()0, B
©Y). 1] 1 v T
+ i Vs | (e (1) + g (V' ])ab(’vmuwA)cd] G
+ iV ()b (P77 = Can (0N + (1) (1°77) 1 0r Wy

+ V57 (V99" ab (VP97 + Cap(1) T = (V) ab (Vo) HON T
(E.16)

along with the corresponding coefficients a,, Bx, and K, given in the following table.

al B | =r
vilo] o |1
Vo1 0] 0
Vs|1] 0] 0
Vilo] 0| -1
Vs | 0] -1] 0

E.11 Tensor multiplet D-D fermionic holoraumy
The holoraumy calculation yields
(D5 DYIOE = i 2V () a0 Wi+ 2V57 () (7). "0, W
+4 2375 (Y1) g () 0, G + 2V (Y1) g (i 7)1 OA
+ 1 2V M (09 b (1) 40,8l + 20V (7 )an (7P ) 0, WY
P2V (7) b (19") 10, W + 20V Can () 10,0 (E.17)

In these equations, we have introduced f/x” M by use of the definition ‘71?] M=y, irkl(g2)ri
where the corresponding coefficient &, 8., and K, are given in the following table.
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a 3 =z
VIR e | —1/4 | 1/4
VAR 14 | 14 ] 0
VAR 18 | 1/8 | —1/8
VAR 1320 1/32 | 0
Vil _3/4 | —1/4 | —3/4
VAR 14 | 174 | 1)2
VAR 14 14 | =12
VAR 172 1 0 | —1/4

E.12 Tensor multiplet D-D fermionic holoraumy
(D}, DWE = 2 { Vi (4)ap + VoM (1P1")an (1) } 0, 0
i 1, 0, -
+ Vs | ()a (1) e+ (Y Dan ()| 93P
+ Vi ()b (P + Can(V) + (7P )ab (7P oA
+iVs M ()b (VPN = Can(7)e! = (P)an(7°77) 10A Ty, (E.18)

along with the corresponding coefficients a,, Bw, and K, given in the following table.

al| B | =&
Vil 1] 0|0
Vol| O | =11 0
Vsl -1 0|0
Vil 0] 0 | =1
Vs| 0] 1|0

F Alternative off-shell D-D fermionic holoraumy and anticommutator

The cross term fermion calculations can take several different forms. In section E we
used the V' and V coeflicients, which correspond to two different pauli matrix bases which
emphasize i-j symmetries, and a gamma basis which can most easily be used for imposing
equations of motion in the on-shell case. Here, different variations are included, particularly
with ‘Y’ coefficients which are in the same basis as the results from [13].

Calculations also completed in the improved Pauli basis with old gamma basis

; ~J ijkl o~ ijkl I,
[Di,, DYWL = X7 ()b WL+ X3 (1) an (Y 10,0
+ XFM () an () 10,8 + XM (P an (VP 10, Y
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XM () ap(7°) 20,0 + X (4P ) an (VoA 20, 0
”’“’ (V) ab(7*7") L0 WYy + XM (1) 10,0 (F.1)
(D}, D}t = Xi”“( M b0l + X5 (1) b (YA 10, T
+ X () (1) 20,04 + XM (VP ap (V) 20,
+ X (P b (V) 10,0 + XM (VP ) ab (P ) 20, T
+ X7 () ap (1) 10u VY + XM Cap() 10,0 (F.2)

And we can write down the X coefficients as:

X = az67(0*)M + (a9 (0° )M + 6,(0%) (o) + ry(07)7 5" (F.3)

o I6; ) K o B 4 K
X[ 0 0 1/2 XMoo 0 0 | (-1/2)
XM 1a | (c1/ai | (1)) 0 X9 | @i |~y o
XAE 0 0 (—1/4) XAE 0 0 (1/4)
XM -1y | /e | (=140 o XM (1) | (=10 | /)i |0
D L | 0 0 (1/2) X1k 1 0 0 (1/2)
x| @4 | (-4 | (2 | X () | (/4) | (<14 | (—1/2)
XL 12 | a2y | (=172 ] 1 XM (Y2) | /)i | (-12)i| 1
xR 0 0 (1/2) Xk 1 0 0 (1/2)

Similarly for the anticommutator we have

(DL, DI Y0k = Wik (1) 140, WL + WiT™ () (114#) 20, T,
+ W™ (W) g (1) 20,0l + WM (Pl ) (7P ) A0, W
+W”’“< 51t (V) 10T + W ()b (P M) A0, T
WM ()b (VP4) 10, 0Y + W Cap (1) 0, T (F.4)
{Di, D] yuk = W”“( >abaﬂi+w”’d<%>ab< vyl 4o,
+ WM (Y1) ap (1) 20, Wl + W (P ) (v57) 10,0
+ WM (P ap (47) 10, Wl + W (7P an (VP4 10,0
+ WM (42) b (YP4") 20, WYy + W Cap(4) 20,0, (F.5)

And we can write down the W coefficients as:

WM = 0,89 (02) 4 5 (01) 3 (%) + 6,(0%) (o)) + ma(0®)90" . (F.6)
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«@ B 0 K o B o K
Wik (—1/2) | (=3/2)i | (3/2)i | 0 Wi (1/2) | (=3/2)i | (3/2)i 0
Wi o | o | o0 [Cyn| [ o | o | o |cu
Wit |14 | (<14 | (/4|0 Wi | (<1/4) | (~1/4)i | (148 | 0
Wik 0 0 (1/4) Wik Lo 0 0 (1/4)
Wik (Z1/2) | (=1/2)i | (1/2)i | -1 WM (-1/2) | (/)i | (-1/2)i | 1
Wik | (1/2) 0 0 | (=1/4) | | Wa | -(1/2) 0 0 (1/4)
Wikt 1 0 0 | (=1/2) Wik 1 0 0 (1/2)
Wt | (=1/2) | (=1/2)i | (1/2)i | -1 Wt (=172 | (/2)i | (-1/2)i ] 1
F.1 Y basis

An alternative basis for the holoraumy is similar to that used for the algebra in [13]. In

this basis, we have

(D, DIJWE = 20V 7" (30, WL + 2057 (Y1) oy (1) 10, T
+ 20757 ()an (77 10,0 + 207 (P 1) b (7P ) 10 Ty
+ 20V M () (1) 0,0 + 205 (V) an (1P ) 10, 9
+ 20V () 1 (V0 L0, WY + 20V TF O (41, 20,0, (F.7)
(D}, DYWE = 20V (4)00, WL + 2073 (44" 0 (1) 10, W,
+ 20Y5M () (Y 4") 20, 0h + 20 (P 0y (4P ) A0, P
+ 2037 (P (07) 10, WG + 208 () (9P ) 10, 0
+ 20V () 1 (V0 20,0 + 20YTH O (41, 20,0,
VM = ag (o) (o >’“+@E<a )#(@) 4 0,(0" V(o) + k(o) (07
! B ) K ! B 0 K
YR o (1/4) | (=1/4) | 0 VR0 | (~1/4) | (1/4) 0
R0 | (~1/8) | (1/8) 0 YR 0 (1/8) | (=1/8) | 0
v (-4 | g | a8 | o v /4 | /8) | (=1/8) | (-1/4)
v a4) | (-1/8) | (<1/8) | 0 Y (=4 | (18) | as8) | (/4
Lo |y a0 | G4 | (/9] (-12)
Yo /e [ (=18 | (/8) [ (=1/4) | | YT (/4) [ (=3/8) | (1/8) | 0
Ry | e/ (34 =) YT /2) | /4) (34 ] o
WL o iy a0 | G4 | 1/ (-2
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L§SM71) _

SM-T)

L

SM—II
LMD —

L:(BSM—II) _

LgSM—III) _

LgSM—III) _

LgSMfIV) _

LgSMfIV) _

r(SM-1I
ng )=

10 0 O
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00-10

0010
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0100
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o O = O
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Y
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LgSM—IH)

LgSMflv) _
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S(SM-1
V§3 )=

~32 -

0100
0010
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0001
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0010
0100
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0010
0-100
0 00-1

0010
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0
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o O O

0 01
-100
010
-1 000

o O O o O

00 —0
00 02
t 0 00
0— 00

)

)

G Explicit form of L-matrices and V-matrices for (4, 0) formulations
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-1
Vi =

V(SM m _

V(SM m _

V(SM II)

SM—III
Vi =

< (SM—III
V§4 )=

V(SM ) _

G(SM-1V) _

V12

SM—T)
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00— 0
0z 0 O
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00¢ 0
000 —2
—-:00 0
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-1 00 0
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0

0
000 ¢
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Vig'

< (SM—III
Vi
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o O O

)

- 00
0 00
0 0 ¢
00 —0

o .

o

- 00
0 00
0 0 ¢
0 —¢0

00—
0 ¢ 0
-1 0 0
t 000

o O O O O .

0 00
0 00¢
-2 000
0 =200

0200
—-:00 0
0 00—:
007 0

(G.7)



0004 000 ¢

~ (SM—1V) 00—20 < (SM—IV) 0 0—0

\Y = A% =

1 0i00]’ 2 0i00]’
-0 00 -0 00
0—-: 00 00—z 0

~(smM-1v) | ¢ 0 00 ~sm-1v) | 00 0 —1

V24 N 00 0 2 ’ V34 - 7200 O : (G8)
00 —0 070 0

H Explicit form of L- matrices for the 4D, N/ = 4 vector-tensor multiplet
and the 4D, N = 4 vector-chiral multiplet

To succinctly and efficiently write these matrices in tensor product notation, we will define

a new symbol 7/(3 The definition of this symbol is to begin with the Klein Vierergruppe

element 74 and then set all entries to zero except for the i-th row. A couple examples are

0000 0010
0000 0000
V3 = V3 = H.1
@~ 10001 | "W fooo00 (H.1)
0000 0000
as the ¥4 are in matrix form
1000 0100
1 _ 0100 7 2 _ 1000
0010 0001
0001 0010
0010 0001
3 _ 0001 , yh _ 0010 (H.2)
1000 0100
0100 1000
We also introduce the Boolean notation of [24] to multiply the L%SM_i) from appendix G
for embedding into the L%VT)
(=1)Pr 0 0 0
0 (=1 o0 0
20 + po2! 22 4 pl2%), = i =0,1 H.3
(P12” + pa2' + p32° +p'2°), 0 (C1p 0 , pi=0, (H.3)
0 0 0 (=1)r
So for example
—10 00 0100 0-10 0
: 0100 0010 0010
5), LMD _ = H.4
(5L 00-10|]-1000 1000 (H4)
0001 0 00-1 00 0-1
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With this, we can succinctly write the L; matrices as

L%VC) 7/(1) ®L(SM D 7/(2) ®L(SM-I) n 7/(1) (SM-I) " 7/(}1) ®L§SM-II) (FL.5)
%H=%@(>mﬂ+%@mm@“]

+ 73 @ (8L ] + 93 @ [ (H.6)
ng) _ 7/(1) ® :(8)bL(SM I) } i 7/( ! {(5)bL§SM-I)}

+ 7 @ (0L ] + 7 @ (ML (H.7)
Lijn =7 ® :(10)bL(SM MR OO0

+ 73 @ (WL ] + 76 @ [ (H.8)

With this same notation, the L%VT) matrices are

(VT) TM) SM-II)

LYY =93 o LMY 4 93 o L™ + 9 o LYY 1 9] o L (H.9)
VT SM-I T™
LY =73 @ [(uL] + 93 @ [a)L{™]
[ SM-I SM-II
+ 93 © [ + 93 @ (ML) (H.10)
SM-I ™™
Ly = i ® [(14)bL( )] + 73 © [(15)bL§ )]
+ 9 @ [l ] + 7 @ (ML (H.11)
VT SM-I ™™
LYy =7 © (L] + 73 @ [14){™)]
+ 73 ® [@WLV] + 73 @ [(15), L] (H.12)
where the L%TM) are
10 0 0 01 00
L(TM) _ 00 —-10 L(T™) _ 00 01
! 00 0 —1]" 2 00-10
0-10 0 1000
001 0 0001
100 0 ™ 0-100
LT™) _ L{™ = : H.13
3 010 0 |’ 4 1000 (H.13)
000 -1 0010

The RI(VC) and RI(VT) matrices satisfy the trace-orthogonality relation in eq. (6.2) for all
1=1,2,3,...,16.
We note that the L%VC) are identified with the LP] and LF] from [23] with I = 1,2,
3,4 as?
(VC) 10 (VC) 3 (VC) <[ (VO) 2
i’ =rf, iy =n?, uP=nt, L =r (I.14)

per the identification of the supercharges as in eq. (6.8).

“Here we correct two typos in [23]: L[20] should have (12),(23) instead of (4),(23) for its “//&L) term and
L[f] should have (13);(1243) instead of (13),(1234) in its "f/(i) term in the conventions of [23].
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