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The success of relativistic fluid dynamics
in describing the matter formed in ultra-
relativistic heavy-ion collisions initially led
to the belief that the hot and dense matter
formed in these collisions is close to local ther-
mal equilibrium [1]. However, with the ad-
vent of numerical dissipative hydrodynamic
models, it became clear that the evolution of
the formed matter is affected by large dissi-
pative corrections. This “unreasonable effec-
tiveness” of hydrodynamics in providing a dy-
namical description of high-energy collisions
has generated much interest in the formula-
tion of new fluid dynamic theories [2]. In the
present study, we explore the approach to the
hydrodynamic regime of a plasma of massive
particles that mimics the matter created in the
collision of heavy nuclei at high energy [3].

We consider a fluid consisting of particles
of mass m undergoing a boost-invariant ex-
pansion along the z direction [4]. The kinetic
equation describing the evolution of the dis-
tribution function, in the relaxation-time ap-
proximation is [5]
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where 7 is the proper time, 7r denotes
the relaxation time, and pyg = +/m? + p2
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is the energy of a particle with momentum
p. The energy-momentum tensor can be ob-
tained from the single-particle distribution
function: T# = [dPptp”f(r,p), where
dP = d3p/[(27)3po].

For a system undergoing Bjorken expansion,
the components of energy-momentum tensor
(e, Pr and Pp) can be defined in terms of the
moments

L, = / PP Pan(cost) f(rp),  (2)

where P, is the Legendre polynomial and
costy = p,/po. The first two L,-moments
are Lo = € and £; = (3Pr —¢)/2. The
transverse pressure involves in addition the
trace of the energy-momentum tensor, Py =
% (ﬁg — L — %T[j), which cannot be ex-
pressed solely in terms of the L,-moments.
This requires another type of moments, which
we define as

My = m? / dP Py, (cos) f(r.p).  (3)

The moment My is equal to the trace of the
energy-momentum tensor 7. The bulk vis-
cous pressure (II), and a single independent
shear stress tensor component (¢) can be ex-
pressed in terms of the moments and the equi-

librium pressure (P),
1 2
P+II = 5([:0 - M), ¢ = *g(ﬁl + %) . (4)
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Using the relations among the Legendre
polynomials and the definitions (2), (3) of the
moments, the kinetic equation (1) can be re-
cast into a hierarchy of coupled equations:
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where the coefficients a,, b, ¢, and a., b}, ¢,
are real constants. The equations for the
lowest three moments Ly, £1, and Mg fully
represent the evolution of energy-momentum
tensor. Israel-Stewart-like (ISL) second-order
non-conformal hydrodynamic equations ob-
tained in [6] can be derived from these moment
equations. The derivation is based on the mo-
ment truncation, in particular, accounting for
the moment £5 and M; [3].

We compare results obtained by solving
the second-order hydrodynamic equations [6]
with those obtained from the exact solution
of the kinetic equation in Fig. 1 for two phys-
ical quantities, the longitudinal (Pr) and the
transverse (Pr) pressures. The initial condi-
tion is set at 7,y = 0.17g, with an isotropic
distribution function. The red and green lines
correspond to z = m/T = 1 and 0.01, respec-
tively, at time 7 = 7r. Remarkably, as can be
seen in the figure, the exact results are also ap-
proximately reproduced by second-order ISL
hydrodynamics. In particular, a short free-
streaming regime (dotted curves) is seen in
both the kinetic description and in the ISL
hydrodynamic one. There is of course nothing
typically “hydrodynamic” here; hydrodynam-
ics becomes a valid description only for times
7 2 Tr. The reason ISL theories capture such
free-streaming behavior, albeit approximately,
is because the relaxation-type structure of ISL
equations is similar to that of the truncated
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FIG. 1: The longitudinal (Pz) and the transverse
(Pr) pressures normalized to the energy density
€, as a function of time [3].

three-moment equations. The time derivative
of the moments £, and My, and correspond-
ingly, the viscous pressures, capture approxi-
mately some of the features of the collisionless
regime of the expanding system [3].

The work reported here sheds light on the
“unreasonable success of hydrodynamics” in
describing the space-time evolution of the nu-
clear matter formed in heavy-ion collisions
even in far-from-equilibrium situations. This
success may be attributed to the phenomeno-
logical Israel-Stewart-like theories which are
used in simulations of heavy-ion collisions, and
not to hydrodynamics.
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