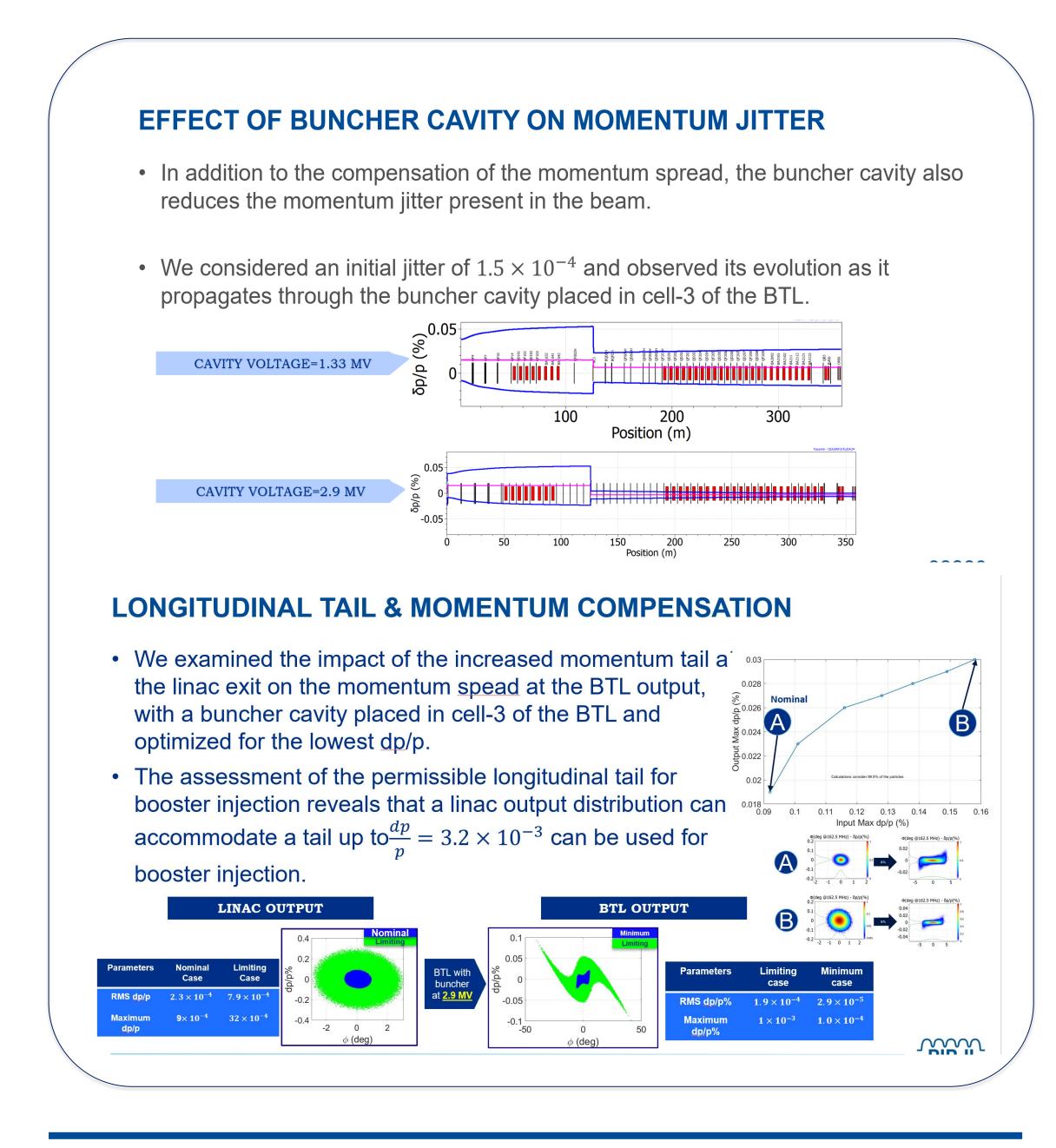
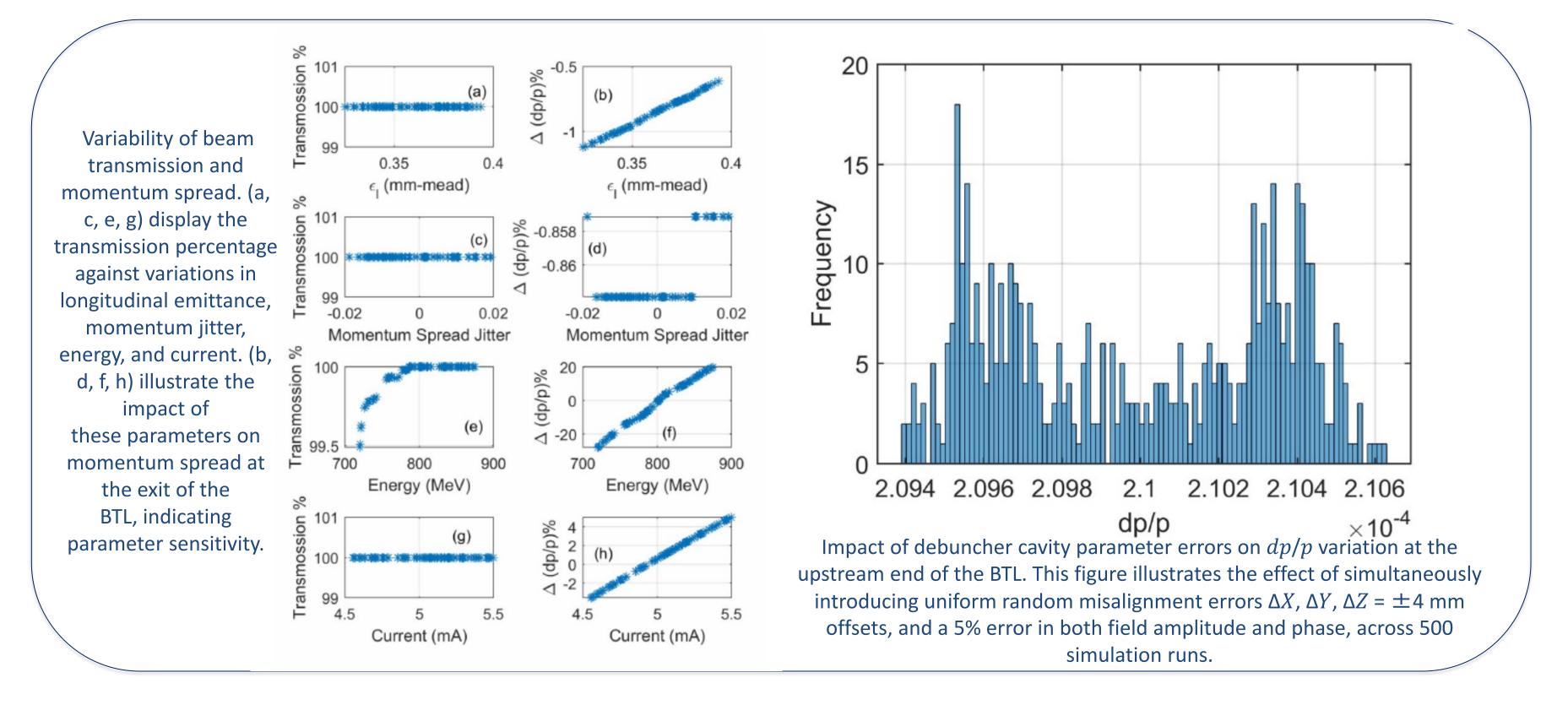
SPACE CHARGE DOMINATED MOMENTUM SPREAD AND COMPENSATION STRATEGIES IN THE POST-LINAC SECTION OF PROTON IMPROVEMENT PLAN-II AT FERMILAB


Abhishek Pathak, Olivier Napoly and Jean-Francois Ostiguy Fermi National Accelerator Laboratory, Batavia, USA

FERMILAB-POSTER-24-0047-PIP2.


ABSTRACT

The upcoming Proton Improvement Plan-II (PIP-II), designated for enhancements to the Fermilab accelerator complex, features a Beam Transfer Line (BTL) that channels the beam from the linac exit to the booster. In the absence of longitudinal focusing beyond the superconducting linac, the beam experiences an elevated momentum spread, primarily due to nonlinear space-charge forces, surpassing the allowable limit of 2.1e-4. This study presents a detailed examination of the space-charge-induced momentum spread and outlines mitigative strategies. The investigation includes the fine-tuning of a de-buncher cavity, analyzed in terms of operating frequency, longitudinal location, and gap voltage, under both standard and perturbed beam conditions—specifically accounting for momentum jitter and energy variation. The impact of buncher cavity misalignments on the beam's longitudinal phase space is also assessed. The paper concludes by recommending an optimized cavity configuration to effectively mitigate the observed increase in momentum spread along the BTL.

KEY CONCERN LONGITUDINAL DYNAMICS IN POST PIP-II LINAC & BTL PIP-II SC LINAC & BRAM TRANSFER LINE (BTL) • Lack of longitudinal focusing after the Superconducting section of the PIP-II linac Here we have marked the location of the critical point that will be considered results in an increase in momentum spread along the BTL section driven by the throughout this energy spread minimization study. beam's space charge. • With space charge present, the rms dp/p at the exit of BTL is 4.2×10^{-4} , twice the desired value, while the maximum dp/p reaches 1.13×10^{-3} , surpassing the expected value of 1×10^{-3} . LONGITUDINAL RMS ENVELOPE LINAC OUTPUT **BTL O**UTPUT **DISTRIBUTION DISTRIBUTION** 500 Output RMS dp/p **BTL END** Output RMS dp/p CELL-3 REQUIREMENT LINAC BTL **END** CELL-6 \mathcal{M} **BUNCHER CAVITY IN BTL CELL-3 COMPENSATION STRATEGY** REQUIRED VS. MINIMUM MOMENTUM SPREAD • Investigated the utilization of a 650 MHz buncher cavity in the Beam Transfer Line • We placed the buncher cavity in the 3rd cell of the BTL and optimized its gap (BTL) to mitigate the increases in momentum spread at the end of the BTL. voltage to obtain the required as well as minimum momentum spread at the exit of the BTL. Gap Voltage By positioning the buncher cavity in · Based on space availability, two optimal placements for the buncher cavity were BTL cell-3, we achieved the desired explored: RMS dp/p% rms dp/p of 2.1×10^{-4} at a gap 0.048% Maximum dp/p% -BTL CELL-6 voltage of 1.33 MV. -BTL CELL-3 %dp/p vs. Gap Voltage dp/p% post SC linac and along BTL By increasing the gap voltage from • Varied the cavity voltage to examine its impact on dp/p at the BTL's exit: 1.33 MV to 2.9 MV, the rms dp/p can Placed the buncher the BTL. d/d p 0.02 Gap Voltage be further decreased to 0.29×10^{-4} -Determined the gap voltage necessary to achieve the minimum dp/p at the BTL's exit. **Parameters** Values SM 0.01 which is seven times lower than the -Obtain the gap voltage to achieve the target dp/p. RMS dp/p% required value. 0.019% Maximum dp/p% 2.9 MV Gap Voltage • The analysis considered the effects of nonlinear space charge forces. 1.5 Position (m) Gap Voltage (V)

This poster has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

CONCLUSION

- ☐ The momentum spread along the BTL, predominantly influenced by space charge, can be offset by utilizing a buncher cavity positioned within the BTL.
- □ The gap voltage of the buncher cavity, located in cell-3 of the beam transfer line, has been optimized to achieve a momentum spread (dp/p) of 2.1×10⁽⁻⁴⁾ at a gap voltage of 1.3 MV.
- ☐ With the buncher cavity, there's potential to further reduce the momentum spread to 2.9×10⁽⁻⁵⁾by elevating the gap voltage range from 1.33 MV up to 2.9 MV.
- ☐ The buncher cavity also compensates for momentum jitter present in the beam.
- Analysis of the longitudinal tail at the linac's exit for booster injection indicates a margin of 3.3 times the rms dp/p and 3.5 times the maximum dp/p.