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Abstract

This analyze argue that BBU instability both in separate
cavities and in Linacs or ERLs is going due to the conse-
quence of fundamental property of dipole modes. “Head-
tail” bunch instability has also the same nature. New BBU
instability testing methods are described and analytically
proved in the article.

INTRODUCTION

Beam Break Up (BBU) instability of a beam in a cavity
begins to develop when the beam current value becomes
higher than some threshold value. Then a transversal beam
oscillation appears with avalanche growth that has the fre-
quency of a one of dipole modes in the cavity. The dipole
mode amplitude there also becomes to avalanche growth.
As a role the process continues up to the beam hit to the
channel wall (the tail particles in the first instance) if the
beam current source duration is long enough or if the fo-
cusing system cannot limit this oscillation. If the growth
increment is high enough to have time to pick up BBU in-
stability for a single bunch so this is known as “head-tail”
instability.

THRESHOLD CURRENT OF BBU INSTA-
BILITY

The dipole mode growth is attended by transferring of a
part of beam kinetic energy to saved dipole mode field en-
ergy. Incidentally, some part of this energy disappears in
the cavity wall. This energy transferring process is going
on due to beam space-modulation (transversal oscillation)
appeared with the dipole mode frequency as a result of the
beam interaction with the dipole mode. This occurred only
for those dipole modes that applies the energy brake to the
beam. Only approximately half of all dipole modes in a
cavity can do it. Such a ratio of stable and instable dipole
modes remind of equal probability of some stochastic pro-
cess. The reason will be clear then later in the pillbox cav-
ity example.

To be a stable process, the transferred average power
(Ppsy) must be lower then disappeared power (Pus), i.€.
Pppy < Pais. Such an approach has also considered by
W.K.H. Panofsky in [1], but we have come to new conclu-
sions.

On Fig.1 the example of the simplest dipole mode TMj ;¢
is shown in a pillbox cavity. Its resonance frequency (w) is
defined only by the cavity diameter (D) w=0.82¢'D and is
independent on its length (L).
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Figure 1: RF field distribution of 7M;; dipole mode in a
pillbox cavity with the view of a beam space-modulated
trajectory.

We have to stress, only the average transferred power
Pgpuplays arole in BBU instability. Each bunch separately
hits to different phase of a dipole mode and so it can loss
its energy or even to get it. So we can conclude that a bunch
repetition frequency does not have an importance if dipole
frequency is far enough from any harmonic of repetition
frequency. Even any unbunched continuous beam can be
instable.

BBU threshold current formula can be given if expres-
sions for powers will be inserted to the above mentioned
equation Pggu < Pais: Pesu =-Essu-l, where Eppy is average
energy gain of beam particles in the dipole mode in Volts;
1 is the average beam current. Pyi;=w-U/Q, where  is cir-
cular resonance frequency of the dipole mode; U is saved
dipole mode energy; Q is loaded quality factor of the dipole
mode. After the conversion we get

wU

1-Q<ly=~— (1)

Eppu’

The value of threshold current /o is the self-sufficing pa-
rameter for BBU instability as it follows from fundamental
properties of dipole modes described further. Instability
modes have positive value /p>0, for stability modes /p<0.
Minus sign in Eg./ compensates the sign of energy loss of
beam particles Egzy<0.

BBU Fundamental Properties of Dipole Modes

One of unique property of dipole modes is the propor-
tionality between values of average particle energy gain
and dipole mode saved energy for beams propagating close
enough to cavity axis:

1
EBBU = _g ) (UU,

2

This proportionality is follows from the fact that rf lon-
gitudinal electric field of dipole modes (that caused the par-
ticle energy gain) is growth linearly with deviation (x) from
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E axis. The proof is followed from the energy build-up equa-
5 tion Eq.3 and of motion differential equation Eq.4. The av-
Z eraged energy gain Epgy in a longitudinal electric field
% E.(z,x)=x"E’.(z) for the particles moved along some trajec-
o tory x=x(z,¢) defined by differential equation Eq.4 is the
g integral along this trajectory (¢ is the phase of the dipole
2 fields at the coordinate z=0, then this energy gain is aver-
aged on all ¢ phases):

L i y!
Essu = Jy Jy E'2(@)x(z,0) "D 474 . (3)

d(ydx/dt)/dt = (e/m) fcB(z)cos(wt + @), (4)

Since the rf field in a cavity are proportional to square
root of saved energy and particle deviations are also pro-
portional to the square root of saved energy then the value
after the integration is proportional to the saved energy.
There can be shown [2, 3] that no initial deviation from the
axis no initial inclination of beam do not influence to this
conclusion if the trajectory lies close enough to the axis
where there are linearity of E. on x.

Equations Eq.3 and Eq.4 can be solved analytically for
the simplest case of 7M;y dipole mode shown in Fig.1. It
is easy to show that the value of the threshold current peri-
odically change their sign if the pillbox cavity length is
elongated (see Fig.2), though the dipole mode fields there
do not change. I.e. the dipole mode becomes periodically
instable from stable one and then repeats back
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5 Figure 2: The dependency of backward value of BBU
ﬁ threshold current on the Pillbox cavity length.

" The threshold current dependency on the beam energy
A can be obtained by using Eq. /, Eq.3, and the expression U ~
O L/?B?, where \=c/o: lp ~(m/e)w?-y/B. One can see the
£ low the frequency squared the low threshold current. The
‘8 threshold current has at least value at the electron energy
g of 374 keV. In connection with these we can introduce the
2 new parameter for dipole modes depending only on their
£ properties Igp such that Ip = (y/f3?)-Igp. This Ipp may be
S named as Threshold Current of Dipole Modes, that
5 uniquely determine potentially stable modes with Ipp<0,
'8 and instable one with Ipp>0.

From these we can conclude that BBU effect in cavities
% is the result of the fundamental property of dipole modes
described by the new parameter /op.

The next unique property of dipole modes is that a space-
.2 modulated beam (transversally oscillated) can excite di-
E pole modes independently on temporal distribution of
£ bunches, initial deviation, and initial inclination if its tra-
= jectory lies close enough to the axis where longitudinal rf
F—‘é electric field is linear on deviation x. It is natural that this
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excitation going on due to transferring of kinetic beams en-
ergy to the saved dipole field energy.

To operate with polarized dipole modes let introduce the
new vector parameter F such that | F| =U"”. The F has the
direction of the force acting to the beam, i.e. it is transver-
sally directed to the magnetic field vector B and to the axis.

The space-modulated beam can be described by Egq.3 if
there will be replaced Ezsy— Ewnop, where Eyop is the en-
ergy gain of  space-modulated beam, and
x=rsin(2nz/2+p+®@),where @ is the phase difference be-
tween the beam oscillation and the dipole mode B field; »
is the amplitude of the beam oscillation. So we can write

Emop = —Jw (R;;/Q)/4 - cos(®) - (7-F), (5)

where the oscillatory and field polarizations there are
taken into account by the scalar product of vectors r and F;
Ri/Q is the conventional coupling impedance of the dipole
mode in Ohm/m?2. The specific coupling impedance for a
space-modulated beam is less exactly by factor 4 then the
conventional one, so in £q.5 the conventional coupling im-
pedance is used with the factor of %.

On the basis of law of conservation of energy there is
true the differential equation: -Egpul - Evopl = Pais +
AU/At. After inserting to this the mentioned expression for
Pus, Egs.2, 5, we get:

o (/1g=1/Q)wt | 1o W®Ru/Q/w
F(t)=F,-exp > + - cos(P) 1/1g-1/Q
(1 —exp —(I/IQ_;/Q)M), (6)

where Fo, and r, is the complex values of initial dipole
mode field and beam oscillation correspondingly repre-
sents the polarization vectors in the complex space.

Let us consider some interesting cases of Eq.6 applica-
tions. Without of the beam (/=0) Eq.6 describes usual pro-
cess of damped oscillations in a cavity. If the dipole mode
is instable (/p>0), and the beam current there are more than
threshold one (//Ip-1/Q0>0) then there begins the avalanche
growth of the dipole mode with the increment o=(//Ip-
1/Q)w, the more the beam current the more the growth rate.
Only stable dipole modes with any beam currents gives al-
ways damped oscillations

BBU EFFECT IN LINACS

If the cavities are installed one by one like in a Linac
(@=0), they have the same dipole modes, and the beam
current is more than the threshold one //7p-1/0>0 then the
growth rate and its increment in each next following cavity
is more than it has been in previous one since the initial
amplitude 7, becomes more and more. The numerical solv-
ing of the differential equation for the case with oscillating
growth r,=r,exp[(l/lp-1/Q)wt/2] in the first cavity have
shown the increment growth in the second cavity by the
factor 1.34, and in the third cavity by the factor of 1.6, and
etc.

The last example demonstrates the importance of a
proper beam focusing to suppress the BBU grows rate in
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Linacs — focusing systems must support oscillation rj val-
ues as less as possible (rp—0).

BBU EFFECT IN ERLS

In this case, the same beam with different energies
comes through each cavity twice. The first passage usually
has no space-modulation. The second one can be space-
modulated due to BBU instability problems through the
passing cavities.

On the basis of law of conservation of energy we can
write: -Egpuil - Egguzl - Eviop2] = Pais + AU/AI, where the
index / corresponds to the first beam passage, and index 2
— to the second one. After inserting to this the expressions
for Epsui, Esguz Emops, Pais, U, and take into account
loi=Iopy1, and Ipy=Ipp-y>. After integrating, there can be
obtained the same equation of Egq.6 but only there is the
characteristically important replacing:

1/1g = 1/I51 + 1/Ip,. (7)

So the threshold current for ERLs is less than the least of
them among the cavities that occurs in a cavity with the
lowest value of beam energy.

The transversal beam oscillation and the dipole mode ex-
cited in n-th passage (t=nT) acts on the dipole mode in the
next passage (t=(n+1)T) according to FEq.6, where
Fo=F(nT)-cos(wT), and r,=ceF(nT)-cos(wT). There the
phase incursion for a one passage is taken into considera-
tion by the factor of cos(wT); ae=| az| e is the complex
coefficient granting the linear relation between the dipole
mode and the oscillation; € is the polarization tern angle of
the beam oscillation due to the beam focusing and trans-
portation along the ERL ring:

. (1/1g-1/Q)wT
F((n + 1)T) = F(nT)cos(wT)e 2 +

(I/Iq—l/Q)wT
(1 —e 2 ) (®)

The stability BBU condition in ERL is following:
| F(n+1)T)| /| F(nT)| <I. To carry out this there don’t
have enough stability in cavities. Let us find the minimal
ERL threshold current (/pzrz) in the least favorable case
when an integer number of oscillations will go into the ERL
length, i.e. cos(wT)=1I, and the polarization doesn’t
change, i.e. #=0. From Eq.§ it is follows:

&-F(nT) IYRi/Q/w
+— cos(wT) “lg-1/a

-2 IJRu/Q/w
2 1/19-1/Q s L ©)

If we replace in Eq.9: I-Q=Ipgr., then will get for insta-
ble modes (/p>0) the ERL threshold current always less
than the cavity one:

L —
1+ey (Ri1/Q)/wlq < lorm. < Io- (10)

And for the stable cavity modes (/p<0):
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I <—— 11
QERL = & [(Ri1/Q)/w|1g|-1’ an
i.e. even stable cavity modes can be instable in ERL. At
a sufficiently small & value the denominator of Eq.1/ be-
comes negative. So the beam will be absolutely stable at
any current if

-1/ (R;/Q)/w < Iy <O0.

At this condition there are enough power transporting
from the saved dipole energy to kinetic beam energy to
suppress the BBU instability in ERL.

NEW METHODS OF BBU TESTING

There are new testing methods for detection of instable
dipole modes and definition of its threshold currents. If we
compare two decrements (6 and ¢ ’) of damped oscillations
in a cavity, and one of them (J°) is going with any electron
beam passing through the cavity then the decrement of sta-
ble modes will be grown involving the beam current / but
for instable modes it will be fall:

(12)

') =6-1/1. (13)
I, =—t_ 14
Q — 5-8"(D" ( )

The next method utilizes space-modulated beams. If we
compare two fields in a cavity excited by space-modulated
beam with different average currents, F=F(I),
F’=F(’)=F(n-I), and at the same modulation amplitudes
(r’ = r) then the threshold current can be calculated as

n(1-F1/F)
n-Fr1/F ~

Iy=1Q (15)

This method can be used for testing of trapped dipole :

modes that cannot be seen by any test probes in the cavity.
In this case the F and F’ signals in Eq.15 are the beam os-
cillation amplitude signals taken from special probes.
Mentioned above methods can be applied both for a spe-
cial stand and for a Linac itself or ERL. In this case the
accelerator beam itself can be the instrument of the testing.
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