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Abstract

Diffuse Galactic cirrus, or diffuse Galactic light (DGL), can be a prominent component in the background of deep
wide-field imaging surveys. The DGL provides unique insights into the physical and radiative properties of dust
grains in our Milky Way, and it also serves as a contaminant on deep images, obscuring the detection of
background sources such as low surface brightness galaxies. However, it is challenging to disentangle the DGL
from other components of the night sky. In this paper, we present a technique for the photometric characterization
of Galactic cirrus based on (1) extraction of its filamentary or patchy morphology and (2) incorporation of color
constraints obtained from Planck thermal dust models. Our decomposition method is illustrated using a ~10 deg2

imaging data set obtained by the Dragonfly Telephoto Array, and its performance is explored using various metrics
that characterize the flatness of the sky background. As a concrete application of the technique, we show how
removal of cirrus allows low surface brightness galaxies to be identified on cirrus-rich images. We also show how
modeling the cirrus in this way allows optical DGL intensities to be determined with high radiometric precision.

Unified Astronomy Thesaurus concepts: Astronomy data reduction (1861); Astronomy image processing (2306);
Interstellar dust (836); Low surface brightness galaxies (940); Sky surveys (1464)

1. Introduction

Dust is an important component of the interstellar medium
(ISM) in our Milky Way (MW) galaxy. It plays a critical role in
star formation and galaxy evolution by serving as the catalyst
of molecular hydrogen formation, the site for the photoelectric
effect heating the ISM, the coolant of warm ISM, and the
transporter of momentum (B. T. Draine 2011). Dust is involved
in numerous radiative transfer processes including thermal
emission, absorption and scattering, polarization, lumines-
cence, and radio emission from rotating grains. Dust models
have been developed to match the observations, which largely
improve our knowledge about the physical and radiative
properties of interstellar dust (e.g., V. Zubko et al. 2004;
B. T. Draine & A. Li 2007; M. Compiègne et al. 2011).

Dust scattering is probably one of the most ubiquitous
radiative processes among those mechanisms, occurring
throughout the MW (B. T. Draine 2003). Observations of dust
scattering can be traced back to pioneering work done by
C. T. Elvey & F. E. Roach (1937) and L. G. Henyey &
J. L. Greenstein (1941). More extensive studies in the 1970s–
1990s using photographic plates (e.g., A. Sandage 1976;

K. Mattila 1979; R. J. Laureijs et al. 1987; P. Guhathakurta &
J. A. Tyson 1989; E. S. Paley et al. 1991) revealed the
prevalence of Galactic cirrus, or diffuse Galactic light (DGL).12

However, dust scattering has been poorly mapped with modern
CCD detectors over the subsequent three decades.
This was mainly because of two facts: (1) the small size of

digital sensors has led to most large telescopes being optimized
for point-source depth in relatively small fields of view, while
cirrus often extends over degree scales on the sky, and (2)
when illuminated by the interstellar radiation field (ISRF) of
the MW (J. S. Mathis et al. 1983), light from dust scattering is
very faint and typically only a few percent of the brightness of
the night sky in optical bands. The faint diffuse nature of
optical cirrus (and many other low surface brightness sources)
makes it extraordinarily vulnerable to various kinds of
systematics in wide-field imaging, such as scattered light in
the extended wings of the point-spread function (PSF),
improper sky background subtraction, and flat-fielding.
Existing barriers have been broken recently, thanks to two

major advances: novel instrumental designs optimized for low
surface brightness imaging (e.g., R. G. Abraham & P. G. van
Dokkum 2014; K. M. Lanzetta et al. 2023) and improvements
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12 In the astronomical literature, DGL is often referred to as the unresolved
faint diffuse component of the sky background with an origin in the MW,
which extends from mid-infrared to UV. At wavelengths longer than NIR, dust
emission starts to dominate over scattering (K. Sano et al. 2015). Here we refer
to the optical DGL and use the term interchangeably with diffuse Galactic
cirrus below.
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in data analysis techniques dedicated to the preservation of low
surface brightness emission and the reduction of systematics
(e.g., C. T. Slater et al. 2009; A. E. Watkins et al. 2015, 2024;
J. Fliri & I. Trujillo 2016; J. C. Mihos et al. 2017; J. P. Greco
et al. 2018; S. Danieli et al. 2020; L. S. Kelvin et al. 2023;
Q. Liu et al. 2023; J. C. Cuillandre et al. 2024). This progress
has led to reprocessing deep imaging surveys with modern
observing and data reduction techniques optimized for imaging
the diffuse optical cirrus (e.g., N. Ienaka et al. 2013;
M. A. Miville-Deschênes et al. 2016; J. Román et al. 2020;
K. Mattila et al. 2023; A. A. Smirnov et al. 2023; J. Zhang et al.
2023; Y. Zhao et al. 2024).

Analysis of optical cirrus has pointed to one important
conclusion: it has a strong spatial correlation with its mid-to-
far-infrared (FIR) counterparts. The latter has its origin
primarily in the thermal emission from dust grains in
equilibrium with the radiation field and has been extensively
characterized by IR missions such as the Infrared Astronomical
Satellite (IRAS; e.g., F. J. Low et al. 1984; D. J. Schlegel et al.
1998; Y. Matsuoka et al. 2011), the Herschel Space
Observatory (e.g., P. G. Martin et al. 2010; A. Bracco et al.
2011), and the Planck Satellite (e.g., Planck Collaboration
2011a, 2011b, 2014a, 2014b). This correlation confirmed that
optical Galactic cirrus, or DGL, is mainly contributed by
scattering of starlight by large dust grains (T. D. Brandt &
B. T. Draine 2012); therefore, it is “clean” to be used to
constrain dust and ISRF properties and models. For example,
the changes in the correlations shed light on optical depth
effects in dust scattering due to the increase of dust column
densities (e.g., N. Ienaka et al. 2013; J. Román et al. 2020;
K. Mattila et al. 2023; J. Zhang et al. 2023). J. Zhang et al.
(2023) showed that observations of optical cirrus can be used to
constrain the size distributions and compositions of dust grains
and, furthermore, the anisotropy of the scattering phase
function and the incident ISRF. Cirrus is likewise able to
provide useful information about turbulence in the ISM.
M. A. Miville-Deschênes et al. (2016) used cirrus as a probe
of the turbulent cascade of the ISM and found no energy
dissipation at 0.01 pc scales. In summary, imaging the optical
cirrus provides valuable data sets for ISM researchers.

One person's gain may lead to another's pain. Cirrus is
unwanted foreground contamination for researchers interested
in extragalactic low surface brightness sources, many of which
rely on identification with visual inspection. In near-field
cosmology, an abundance of ultra diffuse galaxies (UDGs) and
dwarf satellite galaxies is a strong prediction of the hierarchical
galaxy formation predicted by ΛCDM cosmologies (e.g.,
A. Klypin et al. 1999; A. R. Wetzel et al. 2016; J. D. Simon
2019). However, their detection and measurement can be
drastically affected by pollution from cirrus (e.g., D. Zaritsky
et al. 2021). Around nearby large galaxies, confusion arises
between cirrus and collisional debris such as shells and tidal
tails (e.g., M. Bìlek et al. 2020). In galaxy clusters, cirrus serves
as contamination to the characterization of intracluster light
(e.g., J. C. Mihos et al. 2017). In fact, systematics from cirrus in
the sky background pose some of the major challenges in
recent-day deep imaging surveys reaching g-band surface
brightness limits of 29 mag arcsec–2 and fainter. Without a
doubt, cirrus contamination will be similarly nonnegligible
(and likely even more critical and pervasive) in the sky
background of next-generation deep imaging surveys, e.g.,
those to be carried out by the Vera C. Rubin Observatory

(G. Martin et al. 2022; A. E. Watkins et al. 2024) and the
Euclid Space Telescope (Euclid Collaboration et al. 2022,
2024; J. C. Cuillandre et al. 2024).
It is interesting to consider ways to disentangle the cirrus

emission from other sources of light in the images, which
would benefit both ISM and extragalactic studies. However,
this is challenging because of its faint diffuse nature, complex
morphology, and lack of well-calibrated radiometrically
unbiased imaging data sets. Current investigations have
involved two tracks:

1. Using morphology to filter out “cirrus-like” signals.
Many approaches have been developed to characterize
the filamentary and patchy morphology of the diffuse
ISM. For example, the pioneering work by
P. N. Appleton et al. (1993) used morphological filters
with varying structure elements (a technique called
“sieving”) to remove extended emission in IRAS imaging
of the M81/M82 group.

2. Using colors to distinguish cirrus from extragalactic
sources. In particular, J. Román et al. (2020) investigated
the optical colors of cirrus in the deep Sloan Digital Sky
Survey (SDSS) Stripe 82 region using the g, r, i, and z
bands and showed that with two colors, cirrus can be well
differentiated from extragalactic sources via multiband
photometry (also see discussions in K. Mattila et al. 2023
and A. A. Smirnov et al. 2023).

In the present paper, we combine both strategies by
presenting an approach that applies morphological filtering
with color constraints on deep wide-field images for the
decomposition of optical cirrus. We focus on the optically thin
cirrus to avoid optical depth effects. The data we used are from
the Dragonfly Telephoto Array (Dragonfly for short), a
telescope optimized for low surface brightness imaging. Even
with only two filters equipped on Dragonfly, this approach can
differentiate cirrus from most low surface brightness galaxies
(LSBGs). A similar approach is promising to apply to next-
generation deep imaging surveys from the ground-based Rubin
Observatory and the spaceborne Euclid Telescope.
This paper is structured as follows. Section 2 describes the

Dragonfly Telephoto Array and the data sets. Section 3 describes
the foreground and background source subtraction techniques
used. Section 4 presents the extraction of “cirrus-like” emission
using morphological information. Section 5 explains the
principles of color modeling on cirrus and demonstrates cirrus
removal using Dragonfly imaging. Furthermore, we use several
metrics to quantitatively evaluate the performance of our
algorithm. Section 6 illustrates how this approach can be applied
to facilitate LSBG searches via integrated light. Section 7
discusses cirrus imaging with multiband photometric surveys
and investigates the optical DGL in the data set. Finally,
Section 8 presents the conclusions.

2. Telescope and Data Sets

To illustrate the methodology of cirrus decomposition, deep
wide-field imaging data sets with high sensitivity to diffuse
extended emission are required. The example data sets we use
here were obtained by the Dragonfly Telephoto Array, which is
briefly introduced in Section 2.1. Section 2.2 summarizes the
observations and data reduction. Section 2.3 introduces the

2
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example fields used for demonstrating the decomposition
approach.

2.1. The Dragonfly Telephoto Array

The Dragonfly Telephoto Array is an array composed of 48
Canon 400 mm f/2.8 IS II USM-L telephoto lenses, which
together constitute a mosaic aperture telescope equivalent to a
1.0 m f/0.39 refractor. A Santa Barbara Imaging Group CCD
camera with a field of view of 2.6× 1.9 and a pixel scale of
2.85 pixel−1 is equipped on each lens.

The core concept of the design of Dragonfly is the
optimization of the performance in low surface brightness
imaging. Scattered light in the optical path is minimized by
several key instrumental elements, including (1) zero pupil
obscuration, (2) subwavelength nanostructure coatings on
optical surfaces, and (3) all-refractive optics with excellent
baffling. The 48 cameras take images in the Sloan g and r
bands. Two strategies are adopted in the observations to reduce
camera-by-camera systematics: first, the pointings of individual
lenses are offset by small amounts relative to each other so that
ghost images are removed in stacking, and second, large ( ¢15~ )
dithers are performed in each visit/iteration of the observation.
Readers are referred to R. G. Abraham & P. G. van Dokkum
(2014) for the general description of the telescope design. We
refer readers to S. Danieli et al. (2020) for a description of the
current configuration of the broadband array.

2.2. Data Acquisition and Reduction

The general strategy of Dragonfly's data acquisition is
described in S. Danieli et al. (2020). In brief, Dragonfly takes
10 minute exposures with the 48 lenses and performs quality
checks on each exposure. Because the images are under-
sampled, the mean FHWM of Dragonfly's PSF at New Mexico
Skies under good conditions is ≈5″. Observations are obtained
with a large dither angle to reduce systematics. For the data sets
used in this work, the dither angle adopted was ¢15 . A dark
exposure with the same integration time as used by the science
exposure was taken after each observing sequence. Darks
passing quality checks with the same exposure times are
average-combined into master darks. Twilight flats were taken
at the start and the end of the observing night, in company with
darks with the same exposure times as flats. High-quality flats
passing quality checks were combined into master flats. If no
good flat was acquired for a unit on a night, flats from the
nearest night were used. Details about the quality checks of the
calibration frames are referred to S. Danieli et al. (2020).

Raw frames were bias-subtracted, dark-subtracted, and flat-
fielded using the upgraded Dragonfly data reduction pipeline
DFReduce (W. B. Bowman et al. 2024, in preparation).
Astrometric solutions were derived using the astrometry.
net module (D. Lang et al. 2010).
Sky subtraction requires careful treatment. In cirrus-rich

fields, conventional algorithms (e.g., using a box-averaging sky
estimator or spline fitting) would inevitably be biased by cirrus.
This limitation arises because these methods are designed to
produce artificially flat sky backgrounds. Such systematics in
sky modeling could severely hamper the photometric char-
acterization of Galactic cirrus. To avoid this, sky subtraction of
the data set presented in this work was done following the
procedures described in Q. Liu et al. (2023). In brief, in order to
preserve the cirrus signal of interest while removing the time-
varying large-scale sky pattern (mostly contributed by the
zodiacal light and airglows), we adopted a sky modeling
method using FIR/submillimeter data from Planck as priors,
which proved to be effective in producing an unbiased sky
background model. The method relies on the assumption that
the dust is optically thin on large scales and is under thermal
equilibrium, which applies well to the scenarios in the context
of this work. Details about the principles and procedures of sky
modeling are described in Q. Liu et al. (2023).
Finally, the exposures were combined following procedures

in Q. Liu et al. (2023) using Gaussian process modeling, which
is more robust than typical stacking methods for images with
correlated signals extending on large scales (e.g., cirrus fields)
at low surface brightness levels.

2.3. Example Data Sets

The data sets used in this work for the demonstration of the
approaches consist of two fields. They were obtained by Dragonfly
as part of a larger observing campaign that aims to map the nearby
sky of M33. Throughout the paper, we denote them as field A and
field B. The observations were taken in 2020 October.
Table 1 lists the equatorial and Galactic coordinates, the areas

used for cirrus modeling, the numbers of effective exposures that
passed the quality checks, and the 1σ surface brightness limits at
[60″× 60″] scales. The surface brightness limits in mag arcsec–2

are calculated using sbcontrast (M. A. Keim et al. 2022), a
robust method to determine surface brightness limits, after
removing the Galactic cirrus (see below).13 The magnitudes and

Table 1
Summary of Example Data Sets Observed by Dragonfly

Field R.A. Decl. l b Area I100
a Band Nframe

b μlim,1σ (60″ × 60″)c

J2000 J2000 (deg) (deg) (deg2) (MJy sr−1) (mag arcsec–2)

Field A 01h29m36s +26d35m42s 133.42 −35.50 4.7 3.2–7.4 g 391 30.8
r 467 30.2

Field B 01h28m35.s52 +28d30m00s 132.74 −33.66 4.6 3.0–5.4 g 252 30.5
r 227 30.0

Notes.
a Range of 100 μm intensity from IRAS as the 1%–99% quantiles.
b Number of effective frames that passed the quality control.
c 1σ surface brightness limit on a spatial scale of 60″ × 60″ measured after diffuse light removal.

13 Cirrus effectively acts as a large-scale variation constraining the surface
brightness limit in its calculation. For reference, the surface brightness limit
μlim,1σ (60″ × 60″) calculated before cirrus removal is 29.5 mag arcsec–2 in g
and 28.8 mag arcsec–2 in r for field A, compared to the values listed in Table 1.
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surface brightness reported in this work are before Galactic
extinction and reddening correction.

The field of view of the Dragonfly coadd is ~10 deg2. We
use the central cutouts of the coadds for cirrus modeling
because of two considerations.14 First, the coadd is noisier at

the edges due to the large dither angle, which results in fewer
exposures covering these regions. Second, diffuse light from
extended wings of bright sources outside the area of
investigation may contribute to the diffuse light background
in the area and needs to be modeled as well (Section 3).
The red, green, and blue (RGB) images of the areas used for

cirrus modeling in this work, created from the g- and r-band
Dragonfly data (red channel: Dragonfly r; green channel:
average, in ADU, of Dragonfly g and r; blue channel:
Dragonfly g), are displayed in the top panels of Figure 1 (left:
field A; right: field B). Both fields show the presence of cirrus.

Figure 1. Example data set used in this work. Top row: Dragonfly g + r mosaic RGB image of the central 2.6 × 1.8 area of field A (left) and the central 2.4 × 1.9 area
of field B (right). The green channel of the RGB is the average of the g- and r-band data. Middle row: IRAS 100 μm maps of the two fields in units of MJy sr−1.
Bottom row: Planck dust radiance maps of the two fields in units of [10−7 W m−2 sr−1]. The Dragonfly data, the IRAS data, and the Planck dust products show clear
spatial correspondence.

14 The images are projected following TAN-SIP convention before trimming.
Note that projection effects could occur given the large field of view. We have
examined that such effects do not affect the source modeling in Section 3.2
(due to a mismatch in astrometry) and the filtering process applied in
Section 4.4 (due to distortion). However, caution needs to be taken where such
effects become nonnegligible.

4
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Field A has a wider dynamic range in the brightness of its
cirrus. A bright cirrus patch extends over 2° from the lower left
portion of the image to the upper right portion. Compared with
field A, the cirrus in field B is more diffuse and mostly
occupies regions away from the field center. Below, we use
field A as the main example field for demonstration of our
cirrus decomposition approach. However, we also show the
results of field B because field B contains a confirmed M33
dwarf satellite galaxy, And XXII, which is a perfect test case
for demonstrating the application of cirrus decomposition to
LSBG searches (see Section 6.2).

The middle and bottom rows show the 100 μm infrared maps
from IRAS and the dust radiance maps from Planck used in the
following sections, respectively. For IRAS data, we use
products from the Improved Reprocessing of the IRAS Survey
(IRIS; M.-A. Miville-Deschênes & G. Lagache 2005).15 Dust
radiance maps are products of the Planck all-sky thermal dust
models (Planck Collaboration 2014a), which are retrieved from
the Planck Legacy Archive.16 The 100 μm maps and Planck
dust radiance maps show good spatial correspondence with the
optical cirrus maps obtained by Dragonfly. Further details
about the infrared and thermal dust maps will be described in
the sections below.

3. Foreground and Background Source Subtraction

In Sections 4 and 5, the diffuse light in the entire field is
modeled as an entity originating from dust scattering. Prior to
this step, light other than cirrus emission should be modeled
and subtracted. This is particularly important for low-resolution
deep imaging, such as Dragonfly data, where unresolved stars
and galaxies contribute to the sky background. This section
introduces the modeling of light from foreground and back-
ground sources.

We use the MRF package, a software developed for modeling
compact sources in low surface brightness imaging (P. van
Dokkum et al. 2020). In brief, MRF takes advantage of high-
resolution imaging data and finds a matching kernel between
the low-resolution image and high-resolution image using
nonsaturated isolated stars and convolves the high-resolution
image with the kernel to build the flux models, which can then
be subtracted from the Dragonfly data to leave out diffuse
emission in the image. To preserve any faint diffuse sources
detected in the high-resolution image, extended sources below
a given mean surface brightness threshold and above a given
angular scale are excluded in the flux model.

3.1. PSF Modeling

One major consideration is the incorporation of wide-angle
PSF treatment in the PSF modeling. The wide-angle PSF
characterizes the extended wing of the PSF on scales beyond
tens of arcseconds, extending even to degree scales (I. R. King
1971). The wide-angle PSF can originate from a variety of
processes, including propagation of the wave front through the
turbulent atmosphere, scattering from microroughness and
microripples of optical surfaces, and diffraction within detectors
(I. R. King 1971; R. Racine 1996; C. T. Slater et al. 2009). Some
studies also have proposed that it can arise from the scattering of
aerosols or dust in the atmosphere (e.g., J. G. DeVore et al. 2013).

At low surface brightness levels, modeling the wide-angle PSF
can be challenging because of the degeneracy between the
extended PSF wing, the diffuse light from various sources, and the
sky background. Readers are referred to C. Sandin (2014) and
Q. Liu et al. (2022) for a review of the challenges and importance
of properly characterizing the wide-angle PSF for unbiased
measurement in low surface brightness imaging.
The original MRF algorithm uses a static extended PSF wing

model. As illustrated in Q. Liu et al. (2022), the wide-angle PSF
may show temporal variation due to changes in observing
conditions, such as atmospheric conditions and cleanliness of
lens surfaces. As a result, an instantaneous characterization of
the wide-angle PSF from the image is preferred over using static
PSF models when such changes are nonnegligible. To handle
this, we have incorporated the wide-angle PSF modeling
approach in Q. Liu et al. (2022) into MRF, in which the scattered
light in the background of the field is simultaneously fitted
through forward modeling of the wide-angle PSF. The extended
PSF wing is modeled by a combination of a Moffat function and
a double broken power law.
A key difference from the examples shown in Q. Liu et al.

(2022) is that in the example data sets used in this work,
Galactic cirrus covers the majority of the field, so it is now a
major systematic in PSF modeling, making it much more
challenging to model extended wings. The changes we have
made to enable the wide-angle PSF to be estimated are as
follows:

(i) The core of the PSF (within = r 15core ) is built using
isolated nonsaturated bright stars. In the [ ¢ ´ ¢3 3 ] cutout
of each star, we mask the target star with a circular
aperture with a radius of 20″ and then run a SExtractor-
like sky subtraction with a box size of 40″ (16 pixels) to
subtract the diffuse light in the background. The
fractional difference threshold is slightly increased
compared to normal fields because of higher photon
noise in the presence of cirrus.

(ii) At intermediate radii (rcore to rhalo = 50″), the PSF model
is constructed iteratively. An initial stellar halo model out
to rhalo is built by stacking isolated bright stars where no
saturation occurs in this range after subtracting the mean
sky background in the [ ¢ ´ ¢5 5 ] cutout, masking any
nearby fainter source, and normalizing by the surface
brightness at rcore. The halo model is concatenated with
the core model derived in item (i) to build an intermediate
PSF model. For each star in the stack, a radial profile is
extracted from the cutout and fitted with the PSF model to
determine its flux. The fitting range is between saturation
and the radius at which the profile bends upward. The
target star is then subtracted from the image using the flux
and the PSF model, and a 2D local background is again
evaluated by the SExtractor-like sky estimator with a box
size of 40″. This local background is subtracted to
remove the diffuse light contamination proceeding to the
next iteration of stacking and reevaluation. We find that a
couple of iterations are sufficient to yield a stable result.

(iii) At large radii (>rhalo), we follow the Bayesian forward-
modeling approach in Q. Liu et al. (2022) by assigning
the parametric fitting results on the PSF model derived in
item (ii) as priors of the outer wings of the PSF model.
The PSF is modeled out to ¢20 ; however, at large radii,
the outer wings might still suffer from the cirrus bias,
where the power of the wing can be overestimated. Such

15 https://www.cita.utoronto.ca/~mamd/IRIS
16 https://pla.esac.esa.int
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bias is not significant here as we do not observe clear
boundary effects in the fits, but caution is required when
proceeding to a larger data set.

We note that these specific treatments are “patches” to
mitigate the systematics from cirrus on wide-angle PSF
modeling. A more elegant, flexible, and self-consistent
approach would be to incorporate cirrus in the modeling,
which is challenging and will be explored in the future.

3.2. Building Flux Models

With the constructed PSF model, we can proceed to flux
model construction or source rendering. Similar to Q. Liu et al.
(2022), the rendering is done with different treatments
depending on the brightness of the source.

(i) For nonsaturated sources fainter than a magnitude limit
bright_mag_lim, the modeling follows P. van
Dokkum et al. (2020). In brief, the MRF algorithm selects
tens of isolated stars and creates a [ ¢ ´ ¢3 3 ] cutout for
each star in both low- and high-resolution images. The
low-resolution image is upsampled by a factor of 3 using
IRAF’s utility magnify, and the high-resolution image
is downsampled to the same pixel grid. It then computes
the matching kernel for each star in the Fourier space and
combines the kernels after clipping outliers. A source
detection is run on the high-resolution image with a
signal-to-noise ratio (S/N) of 2, and flux models are built
by convolving the downsampled image with the matching
kernel for the detected sources. Sources with mean
surface brightness above a limit sb_lim= 24.5 mag
arcsec–2 (before Galactic extinction correction) and pixel
area >40 pixel2 are removed from the flux models.17

Finally, the flux models are downsampled to the original
pixel grid and subtracted from the image. We use
imaging data from the Legacy survey DR9 (A. Dey et al.
2019) as the high-resolution images. For the example
fields in this work, bright_mag_lim is set to 16.

(ii) For saturated bright stars (g 12.5), they are rendered
using normalization from profile fitting, similar to the
procedures in PSF modeling above. In this case, the
normalization from profile fitting is less affected by the

presence of cirrus, given their high significance. The fit
range is set as the range between the saturation and where
the profile starts to deviate from the halo model by more
than 1σ (the local standard deviation of the sky
background using photutils), where it indicates that
the background systematics start to alter the profile shape.

(iii) For nonsaturated bright stars (brighter than bright_-
mag_lim), the normalization is measured from iterative
PSF photometry. In each iteration, the local background
in the [ ¢ ´ ¢5 5 ] cutout is evaluated by a sky estimator
with a box size of 40″ and subtracted prior to PSF
photometry. Faint stars and extended wings of bright stars
contributing to the diffuse background are also subtracted
during this step.

(iv) Bright extended sources are currently not included in the
flux models. Instead, we grow the mask from SExtractor
to mask out the diffuse light from halos. More aggressive
masking would be needed for nearby galaxies with large
angular sizes and prominent extended disks/halos,
although they are not present in the example data sets.
Occasionally, some non-LSBGs fall below the “diffuse”
limit and are retained in item (i). These leftover extended
sources and the diffuse light associated with them (e.g.,
halos) will also be picked out by the approach in
Section 4 given their morphologies.

This source model is subtracted from the image prior to
cirrus modeling. The results of this process are demonstrated in
Figure 2, where we show a [0.6× 0.5] region of the g-band
image of field A, the source model, and the source model
subtracted image. Small-scale structures and the extended PSF
wings are effectively removed, while large features are
retained. It should be noted that the extended wings of bright
sources outside the field of view might also contribute to the
diffuse light background in the field. Therefore, we construct
flux models on a larger sky area of the coadded image and use
only the central area of the field in the subsequent cirrus
modeling.

4. Distinguishing Diffuse Structures Using Morphology

The geometry of the diffuse ISM is largely molded by
turbulence and magnetic fields (e.g., B. G. Elmegreen &
J. Scalo 2004; L. Barriault et al. 2010; S. E. Clark et al. 2014;
A. Hacar et al. 2023). As a consequence, dust emission as a
tracer of the diffuse ISM has been observed to have 1D
filamentary or 2D sheetlike structures both in state-of-the-art

Figure 2. Left: a [0.6 × 0.5] zoom-in region of the Dragonfly g-band image of field A. Middle: zoom-in of the source model constructed following the procedures in
Section 3. Right: the source model subtracted image. The central bright parts of stars and galaxies are masked out to 5σ. The image scale is in units of kJy sr−1 in linear
scale.

17 That is to say, diffuse extended sources with mean surface brightness >24.5
mag arcsec–2 and areas >40 pixel2 in each filter are preserved as “LSB”
sources in the images. Further criteria will be required for a clean and complete
detection of LSBGs, which is not the purpose of this work.
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simulations (e.g., S. D. Clarke et al. 2020) and in observations
in a variety of tracers (e.g., S. Schneider & B. G. Elmegreen
1979; L. Barriault et al. 2010; D. Arzoumanian et al. 2011;
S. Boissier et al. 2015; M. A. Miville-Deschênes et al. 2016;
E. Schisano et al. 2020). High-resolution observations of
nearby galaxies have even revealed filamentary dust structures
beyond the MW (e.g., D. A. Thilker et al. 2023).

In contrast, LSBGs such as ultrafaint dwarf galaxies and
UDGs have roundish (or “blobby”) morphologies in their
integrated light (e.g., P. G. van Dokkum et al. 2015;
S. G. Carlsten et al. 2021). Therefore, a natural idea for
distinguishing LSBGs from cirrus is to make use of their
differences in morphologies.

In recent years, various methods have been proposed to
identify and extract filamentary structures from simulations/
observations, including the density-based DISPERSE
algorithm (T. Sousbie 2011) using critical manifolds, which
was initially developed for identifying filaments in the
cosmic web; the multiscale filtering GETFILAMENTS algo-
rithm (A. Men’shchikov 2013) using wavelets; curvature-based
approaches using the local Hessian matrix (E. Schisano et al.
2014; C. J. Salji et al. 2015); algorithms based on mathematical
morphology by E. W. Koch & E. W. Rosolowsky (2015); and,
more recently, approaches using machine learning (D. Alina
et al. 2022; A. A. Smirnov et al. 2023; A. Zavagno et al. 2023).

In this section, we present a method for distinguishing
blobby LSBG-like emission from patchy or filamentary “cirrus-
like” emission using the rolling Hough transform (RHT), a
widely adopted algorithm used for identifying ISM structures,
for its simplicity and interpretability. Section 4.1 introduces the
RHT algorithm. Section 4.2 discusses parameter choices.
Section 4.3 describes mask infilling. Section 4.4 presents
results obtained by applying RHT on imaging data retrieved by
Dragonfly.

4.1. The RHT

The RHT is a machine vision technique developed for
detecting and characterizing coherent ISM structures
(S. E. Clark et al. 2014). It was initially applied to H I survey
data by S. E. Clark et al. (2014) to quantify the alignment of H I
fibers with the magnetic field. The algorithm was also
successfully applied to Herschel IR data for the characterization
of the ISM filaments in the Herschel Gould Belt Survey by
E. W. Koch & E. W. Rosolowsky (2015). Below, we provide a
brief summary of the RHT algorithm and describe the
adaptations made to fit into our use case. The procedures are
illustrated in Figure 3. Detailed explanations and implementa-
tions of the original algorithm can be found in S. E. Clark
et al. (2014).

The RHT is a variant of the well-known Hough transform
(P. V. C. Hough 1962), which is a feature extraction technique,
particularly for line detection, that has been widely applied in
imaging analysis and computer vision. In the classical Hough
transform, a straight line in Cartesian image space (x, y) is
mapped into the polar parameter space (ρ, θ) by

( )r q q= +x ycos sin , 1

where ρ is the orthogonal distance to the origin and θ is the
orientation (R. O. Duda & P. Hart 1972). Any possible line
segment in the (x, y) image space can be transformed into a
single point in the (ρ, θ) parameter space. In turn, a single point
in the image space corresponds to a family of curves that

overlap at the same point in the parameter space. As a result,
collinear points in the image space “accumulate” and become
significant in the parameter space. The Hough transform then
selects local maxima in the parameter space that passes a
specified threshold as candidates for linear features.
For the RHT, the key adaption from the Hough transform is

to restrict ρ= 0 and define the origin as the center of a circular
domain (with a disk diameter Dw) placed on a given pixel on
the image and map the intensity distribution I(x, y) in the image
space within the domain to intensities in the RHT parameter
space. At a given pixel (xi, yi), the transformed intensity (called
the “response”),

∬( ) ( ) ( )q q=R R x y dxdy, , , 2i i i
disk

is a single variable function of θ (because ρ= 0) summing over
the disk that measures the significance of linear structure at
different orientations in the local neighborhood of that pixel.
By “rolling” the circular disk across the image, one yields a
distribution of R(θ, x, y).
We follow S. E. Clark et al. (2014) by defining θ= 0° to be

the positive y-axis, while θ varies between [0°, 180°) given the
periodic behavior outside the domain. In practice, the response
R(θ, x, y) is calculated at discretized θ values with a binning
step. For larger Dw, the bin width needs to be smaller given the
larger change in R between steps. We adopt the rule-of-thumb
binning used in S. E. Clark et al. (2014) for the number of θ
bins in the domain [0°, 180°),

( ) ( )p= -qn D
2

2
1 , 3w

where Dw is in pixel units and nθ is rounded up to an integer.
This mapping is done by convolving the image with a linear
kernel with a rotating position angle relative to the image y-axis
using the middle value of the bin at a step of dq = p

qn
.

The main purpose of the RHT approach in S. E. Clark et al.
(2014) is to identify the ridgeline of ISM structures (the
“skeleton”) as a probe of the interstellar magnetic field and to
characterize its orientation. In S. E. Clark et al. (2014), the
original image was smoothed by a top-hat kernel and
subtracted from the unsmoothed image, and the RHT was
performed on this residual image to remove the underlying
continuum of ISM. Our aim is to distinguish “blobs” from
“cirrus-like” emission, and we therefore do not subtract the
large-scale smooth component before doing the RHT. Instead,
we compute the maximum of the response R(θ, x, y) at each
pixel over θ, ( )R x y, as the peak response:

( ) { ( ∣ )} ( ) q= = =R x y R x x y y, max , . 4i i i i

This is based on the fact that ( )R x y, is enhanced at pixels
belonging to an extended “cirrus-like” structure tracing the
filamentary or patchy morphology, while it represents the local
mean intensity within the domain at pixels belonging to a blob
without a clear directional preference.
When using ( )R x y, to identify blobs based on their

morphologies, two facts need to be taken into account: (1) a
blob may have an elliptical morphology with elongation in one
direction and hence nonnegligible significance relative to the
background response, and (2) nearby blobs (within the domain
specified by Dw) at similar surface brightness or that overlap
with dense regions of cirrus patches may be misidentified as a
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directional preference. Note that for fact (2), it is not frequent in
reality that two nearby blobs are real LSBG candidates, given
their relative sparsity. However, contamination from the
leftovers of star/galaxy subtraction may also contribute to the
response computation. To mitigate these sources of confusion,

( )R x y, is optionally smoothed by a square [DM×DM] median
filter, denoted by ( )R x y,s .18 We test that modifying DM does
not dramatically affect the result, as long as it is sufficiently
large to smear out the blobs. Very small DM values should also
be avoided to avoid the pixelization effect. We then look at the
ratio between ( )R x y,s (or ( )R x y, for the toy model) and the
image smoothed by the median filter, denoted by ( )I x y,s :

( ) ( ) ( ) ( )/ =H x y I x y R x y, , , . 5s s

On H(x, y), any structure extending on scales larger than Dw in
1D/2D is suppressed. Effectively, this mapping from I(x, y) to
H(x, y) subtracts a large-scale background along the “mani-
folds” based on local connectivity on scale Dw, in comparison
with the box estimator used by conventional sky subtraction.

Source detection is then run on the output image H(x, y).
Practically, this is performed using the detect_sources
and deblend_sources utilities in the photutils pack-
age. Sources with very small axis ratios (b/a), which are likely

contamination from dense regions of cirrus, are cleaned from
the list. A mask map is generated on the detections to mask out
blobs, which are LSBG candidates. The masks are morpholo-
gically dilated with three iterations to include the outskirts of
the blobs. This masked image is then infilled (see Section 4.3)
preceding the color modeling of the cirrus in Section 5. A
demonstration of the algorithm on simulated galaxies and cirrus
is presented in Appendix A.

4.2. Choice of Dw in RHT

The disk size, Dw, is an input parameter chosen by the user. In
fact, it is one advantage of the RHT that Dw can be changed to
identify filamentary features on scales of interest (S. E. Clark
et al. 2014). However, as E. W. Koch & E. W. Rosolowsky
(2015) pointed out, using a too-small Dw will result in a
pixelization bias where intensities along the x-, y-, and diagonal
axes dominate, while using a too-large Dw can potentially wipe
out the structural information. E. W. Koch & E. W. Rosolowsky
(2015) adopted a Dw of 3 times the beamwidth for ISM in the
Herschel data. For our purpose, we would like to distinguish
(relatively) small blobs, which are LSBG candidates or other
sources, from the large-scale cirrus. The disk needs to be
sufficiently large to fully contain the blob to differentiate it from
cirrus structures extending on larger scales but not so large as to
include big cirrus patches. Based on the empirical rule for the
disk size being at least 3 times larger than the scale of the
phenomena of interest, we adopt a minimum of = ¢D 3w ,
considering that very few LSBG candidates have an angular extent
larger than 30″ in their effective radii (J. Fliri & I. Trujillo 2016;

Figure 3. Schematic of the RHT procedure applied to toy models. Step 1 extracts a local disk of diameter Dw around each pixel in the input image. The disk is the
window function rolling across the field. The insets show disks centering on a “filamentary” (upper) and a “blobby” (lower) structure. Step 2 performs the Hough
transform at ρ = 0 to map the intensity in (x, y) space to response R as a function of θ. In this step, a filament would have significant peaks in R(θ), while the R(θ) of a
blob would be much flatter, as illustrated in the example insets. In each inset, a background response is subtracted for display to highlight the contrast. The R(θ, x, y)
cube is used in step 3 to compute the peak response at each pixel, which is significant at a pixel belonging to filamentary structures. This step generates the response
image ( )R x y, and (optionally) smooths it into ( )R x y,s . R(θ) is normalized to 0–1 for display. Step 4 smooths the input image by median filtering, producing ( )I x y,s .
Step 5 calculates the ratio of products in steps 3 and 4 and runs a blob detection with cleaning on the output image H(x, y).

18 The smoothing is applied on all the results of real and simulated data in this
paper, except the toy model in Figure 3. This is to better preserve one of the
mock filaments with sharp boundaries and a small width relative to the
smoothing filter size. The toy model is for demonstrative purposes only, and
real cirrus structures would be more diffuse and extended.
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D. Zaritsky et al. 2022). In practice, we have tweaked Dw between
3¢ and 6¢ to optimally extract cirrus information while removing
contamination, although the difference in performance is not
dramatic. We note that faint extended sources larger than this scale
may be misidentified as cirrus patches. Meanwhile, at this stage,
cirrus at small scales with analogous morphologies to LSBG
candidates (such as knots and clumps at high dust column density
regions) may also cause confusion, which is one of the main
motivations for using colors to further refine the discrimination in
Section 5.

4.3. Infilling of Masked Pixels

The core regions of bright stars and the blobs detected on the
output image (including intrinsic LSBG candidates and the
contamination from residuals of the star/galaxy subtraction)
are masked in the image. This section describes the implica-
tions of this masking and the infilling of missing data.

Modern nonparametric machine learning techniques have
been developed to tackle the problem of filling missing data in
the images, e.g., using generative neural networks. Conven-
tional statistical approaches, such as Gaussian process regres-
sion (GPR), are also popular and, in many cases, more robust
and explainable. In astronomy, GPR has been widely used for
interpolating missing/bad data (e.g., I. Czekala et al. 2015). In
particular, A. K. Saydjari & D. P. Finkbeiner (2022) developed
a method called local pixelwise infilling (LPI) that predicts the
ISM background and its uncertainty behind foreground sources
to improve source photometry. The LPI approach is similar to
GPR but does not need optimization over kernel parameters by
using a nonparametric kernel estimated from local pixel
covariance.

Here we employ an iterative mask infilling approach using
the software maskfill (P. van Dokkum & I. Pasha 2024).
maskfill is a simple and robust method that performs
inward extrapolation on the masked pixels using the edges of
unmasked pixels, leading to a smoothly varying spatial
resolution in the filled regions and a seamless transition at
the edges. Details about the algorithm can be found in P. van
Dokkum & I. Pasha (2024). This mask infilling approach
avoids the deficiency of convolution-based interpolation using
a fixed kernel, in which a too-small kernel cannot fill large
“holes” and a too-big kernel produces oversmooth interpolation
across the field. A comparison with results using a more time-
consuming GPR approach that has similar outputs but is much
slower in computational efficiency is presented in Appendix B.
However, it is promising to apply the LPI approach to infill the
cirrus map as a more robust and physically driven solution,
which we will explore in future work.

4.4. Application to Dragonfly Imaging

Figure 4 presents the result of applying the above techniques
to a deep image obtained by Dragonfly. The input image is a
single-band image (g or r for Dragonfly) after subtracting the
flux model (Section 3). On the input image, the pixels with
values above three median absolute deviation (MAD) in the
flux models are masked to exclude the poorly modeled and
sampled cores, where the MAD is iteratively calculated after
applying the mask. A preliminary mask infilling is done as in
Section 4.3 to remove small “holes,” which are mainly the
central few pixels of fainter sources. The input image is then
binned by [4× 4] using a median binning to increase the S/N.

We then applied RHT to the image using a disk size
= ¢D 3w and a smoothing size of DM = 5 pixels. The number

of θ bins follows Equation (3). The output image contains
signals with blobby morphologies within the scale of Dw. For
blob detection, we adopt a detection threshold of 3 times the
standard deviation of the output image, a deblending threshold
of 0.001, and a number of deblending levels of 64. Detections
with axis ratio b/a< 0.5 are excluded to remove contamination
from compact cirrus emission.
The right panel of Figure 4 shows the extracted “cirrus-like”

emission in the central 2.6× 1.8 area of field A in the g band.
The original image is displayed to the left. The majority of the
light from stars (including the extended PSF wings) and galaxies
in the field has been removed using the approaches in
Section 3.2. Furthermore, blobby emissions are also removed,
yielding a clean representation of “cirrus-like” emission in the
field. Two notable objects are visible near the middle bottom of
the image, though: the left object is a galaxy missed by the
source modeling due to the presence of a nearby very bright star
(V ~ 7.2 mag), and the right object is a galaxy improperly
modeled by the source modeling. Future work will contribute to
improving the source modeling to reduce such contaminations.
Overall, the performance demonstrates the power of the

approach in extracting “cirrus-like” emission in the image.
However, as mentioned earlier, this approach works on a single
filter and does not account for the physical correlation of cirrus
emission between filters. We extend this method by building a
color model as described in the following section, which
enables a full analysis of cirrus using multiband photometry.

5. Physical Constraints on Galactic Cirrus Based on Colors

Another consideration for disentangling cirrus from extra-
galactic sources is to exploit the different origins of their
emission, which should result in different colors. If cirrus is
well constrained in its spectral energy distribution (SED)
locally, we can combine the color information of cirrus with the
decomposition method using morphological information
(which is based on a single band). This section applies color
constraints to the products (i.e., the “cirrus-like” emission
maps) presented in Section 4.
Cirrus emission at optical wavelengths primarily originates

from the scattering of ISRF off dust grains,19 whereas the
integrated light of LSBGs is emitted by their own stellar
populations. The SED of the cirrus at visible wavelengths is
dependent on the properties of dust grains (which determine the
absorption and scattering cross sections), the scattering phase
function, and the illuminating ISRF. It is expected that the SED
of the diffuse scattered light has spatial variation depending on
the position in the MW (K. Sano & S. Matsuura 2017).
However, many observations have shown that along different
lines of sight, the FIR and optical intensities of cirrus emission
are well correlated (e.g., N. Ienaka et al. 2013; J. Román et al.
2020; K. Mattila et al. 2023, and references therein). Therefore,

19 This does not take into account the possible luminescence of dust grains in
NIR to optical bands, or the so-called “extended red emission” (ERE). Studies
around some reflection nebulae have shown evidence of excess light that
cannot be explained by scattering alone (A. N. Witt et al. 2006). The ERE is
suggested to have its origin in the interaction of far-UV photons with dust
materials that have not yet been well understood (e.g., PAH++). Note that some
studies favor the presence of ERE in optical DGL (A. N. Witt et al. 2008),
while others suggest the opposite (F. Zagury et al. 1999). Caution needs to be
used in cases where the diffuse light comprises components different from dust
scattering. ERE will be explored in further detail in a future work.
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it is worth investigating whether one can decompose the cirrus
by assuming a fixed shape for its SED at a given line of sight,
i.e., applying constraints in the optical colors of the cirrus.

Interstellar dust grains are primarily heated by starlight and
cool via reradiation in the mid-to-FIR and submillimeter. Here
we make the following assumptions regarding the dust
populations and the ISRF: (1) dust grains are in local thermal
equilibrium (LTE), (2) the physical properties (size distribution,
composition, etc.) of the dust populations in the line of sight are
similar, and (3) illumination from ISRF is homogeneous. Very
small grains can be heated far above equilibrium by hard-UV
photons (B. T. Draine & A. Li 2001) and overshine in the near-
infrared (NIR). However, these are not the same population that
contributes most to the scattered light in the optical; at
λ ~ 0.6 μm, dust scattering is dominated by large grains with
sizes a> (λ/2π)≈ 0.1 μm (B. T. Draine 2011). These assump-
tions state that in optical bands (here, for Dragonfly, g and r), the
scattered light should be correlated with the amount of light that
is thermally emitted in FIR. As a result, the scattered light in
different optical bands should be well correlated with each other.
The decomposition of the cirrus with color constraints is done by
identifying and extracting the corresponding amount of diffuse
light in each band.

In Section 5.1, we correlate the Dragonfly observations with
Planck products. In Section 5.2, we correlate the Dragonfly

g- and r-band data. In Section 5.3, we present the results of
cirrus removal on the example data set with a color constraint
based on the color model and the products in Section 4.
Section 5.4 shows metrics for evaluating the performance of
the cirrus removal algorithm.

5.1. Correlation with Planck Thermal Dust Model

We first correlate the Dragonfly observations in g and r with
the all-sky thermal dust model derived from Planck observa-
tions (Planck Collaboration 2014a). There are two major
purposes: (1) to verify the correlation between optical scattered
light and FIR dust emissions and (2) to determine the zero-
points to convert surface brightness in ADU pixel–1 into
physical units (kJy sr−1). The Planck dust model is retrieved
from the Planck Legacy Archive. For the full description of the
Planck thermal dust model, readers are referred to Planck
Collaboration (2014a; see also Planck Collaboration 2016).

5.1.1. Dust Tracer from Planck All-sky Thermal Dust Model

For dust in LTE, the optical depth is often used as a reliable
tracer of the dust column density. The frequency-dependent
optical depth τν is given by

( )t s=n nN , 6e, H

Figure 4. Cirrus decomposition on field A based on morphological information using RHT. Left: the central [2.4 × 1.8] of the Dragonfly g-band observation of field
A. Right: the decomposed “cirrus-like” emission with patchy or filamentary structures extending on scales above = ¢D 3w . Masked pixels are filled by interpolation
from nearby pixels. The insets display the zoom-out of a [1° × 1°] cutout in the high column density regions of the image. The image scale is in units of kJy sr−1 in
linear scale.
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where σe,ν is the dust emission opacity and NH is the gas column
density. Alternatively, τν can be expressed in the form of

( )t k=n nM , 7d

where κν is the dust emissivity andMd is the dust mass column
density. In the Rayleigh–Jeans limit, κν is mostly described by
a power law, · ( )/k k n n=n

b
0 0 (R. H. Hildebrand 1983),

which leads to the frequency dependence of τν:

· ( )t t
n
n

=n

b

. 80
0

⎜ ⎟
⎛
⎝

⎞
⎠

Below, we adopt the reference optical depth at Planck
reference frequency ν0= 353 GHz (denoted by τ0 or τ353),
which is derived from fitting the dust SED with the empirical
modified blackbody approach (Planck Collaboration 2014a).
Under LTE, the specific intensity of thermal emission Iν is
related to τν by

( ) ( )t=n n nI B T , 9

where Bν(T) is the Planck function for a blackbody at dust
temperature T.

In Q. Liu et al. (2023), we discuss the difference between
using the radiance  and τ353 as the dust surrogate for their
optical counterpart, i.e., the optical DGL. The radiance  is
defined as the integral of thermal emission:

( )ò n= nI d . 10

Assuming a constant dust-to-gas ratio and other line-of-sight
properties,

¯ ( )sµ U N , 11a H

where U is the scaling factor of ISRF (U= 1 is the local ISRF)
depending on Galactic latitude and sa is the absorption opacity,
defined similarly to σe,ν. At high galactic latitude, both  and
τ353 are good tracers of dust column density given the
relatively small variation in U and the dust opacity (Planck
Collaboration 2014a).

In Appendix C, we demonstrate that both tracers are
expected to be well correlated with the optical scattered light
under the aforementioned assumptions and several approxima-
tions. Here, we use for the reason that the optical depth map
presents larger scattering at small scales, which are smoothed
out in the radiance map through integration. Furthermore,  is
less affected by optical depth effects. In the optically thin
regime, because of the large beamwidth of Planck ( ¢5~ )
compared to Dragonfly, the results using τ353 will be similar.
The radiance maps of the example data set are shown in the
bottom panels of Figure 1.

5.1.2. Linear Models

To correlate Dragonfly data with the relatively low-resolution
Planck dust map, we first subtract a median sky background
value from the image in each band and then convolve the
PSFs of Dragonfly images to the beamwidth of Planck with
apodization near the field edges. The Dragonfly data are
downsampled to 10″ resolution to smooth out small structures
and noise, and 0.1% of the data are clipped out as outliers. The
median sky background value from the pipeline is likely to be
biased by the presence of diffuse light in the image. To correct

this bias, the pixel intensities in the Dragonfly data are shifted by
a constant sky value. We use the intercept pixel intensity, aλ,p, as
the background value to convert the intensities to physical units,
assuming that the diffuse light from dust scattering should equal
0 where the Planck dust tracer indicates there is no dust.20 A
linear correlation between the Dragonfly data and the Planck
thermal dust tracer xp (here dust radiance ) is fit:

· ( )= +l l lI a b x , 12p p p, ,

where Iλ represents the surface brightness intensities of g and r
data in [kJy sr−1].
In regions at high intensities, observations indicate that the

correlation between optical and FIR data deviates from a single
linear correlation (N. Ienaka et al. 2013; J. Román et al. 2020;
K. Mattila et al. 2023; J. Zhang et al. 2023). This nonlinear part
could be due to several factors, including optical depth effects
(attenuation, multiple scattering, etc.), variations in the
scattering cross section, and changes in dust emissivity. To
account for the possible break, alternatively, we fit a piecewise
linear model between Dragonfly data and Planck:

·
·

( )=
+
+ >l

l l l

l l l


I

a b x x x

c d x x x
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,
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The critical threshold xp
c, at which the single linear correlation

begins to break, is given by ( ) ( )/= - - -l l l lx a c b dp
c

p p p p, , , , .
The critical intensity in the optical is ·= +l l lI b x ac

p p
c

p, , .
Equation (13) could return a smaller residual because of the

higher degree of freedom in the fitting. Therefore, to do a
model selection between Equations (12) and (13), we calculate
the Bayesian information criterion (BIC) of the best fit for each
model, ( ) ( )= -k N LBIC log 2 log , where N is the sample
size, k is the number of free parameters, and L is the likelihood
function evaluated at the point of the maxima. The model with
lower BIC is preferred. The best-fit intercept at xp= 0, aλ,p, is
used as the new background value to convert Iλ to physical units.
Figure 5 shows the correlations of the Dragonfly g and r,

after the zero-point shift, with Planck dust optical depth in field
A. At low intensities, both g and r data are well correlated with
xp. This is consistent with the correlation shown in Figure 3 of
J. Zhang et al. (2023) using Herschel 250 μm data. For this
field, the model of Equation (12) has a lower BIC. Therefore,
no flattening, i.e., optical effects, is preferred in either band
using radiance as the dust tracer. The ratio of the two fitted
slopes, br,p/bg,p, is 1.92± 0.06, which translates to g− r
= 0.70± 0.03. Note that this color measurement is based on
correlations with Planck, compared to that measured directly
from Dragonfly data in the next section. The fitting results are
summarized in Table 2. The uncertainties include systematic
errors in the photometric zero-points and fitting uncertainties
estimated from bootstrap.
We apply the same model fitting on field B. In this field, the

cirrus is more diffuse than field A with a smaller dynamical
range in xp. The model following Equation (12) is preferred
with lower BIC; therefore, no clear flattening is detected. The

20 This does not take into account other physical contributions to the optical
diffuse light, including the EBL and the diffuse ionized medium, neither does it
take into account contribution from dust in nonthermal equilibrium. Therefore,
the intrinsic zero-point for scattered light from dust in Dragonfly observations
should be slightly lower than aλ. However, these are higher-order effects since
EBL is much fainter than DGL in most sky areas involved here, and the diffuse
ionized medium is typically faint at high Galactic latitudes. Furthermore, dust
in the area of interest is mostly in LTE in the absence of ionizing sources.
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results from the best fit are summarized in Table 2, with a bluer
color g− r= 0.56± 0.03 than field A. Overall, the results
show that there exists a good correlation between Dragonfly
optical data and the dust tracer from Planck for the diffuse
Galactic cirrus in both the g and r bands.

We performed a similar analysis using the optical depth τ353
as the dust tracer xp. The correlations show a deviation at high
intensities, similar to the results in J. Zhang et al. (2023). For
field A, the models according to Equation (13) have a lower
BIC in both bands; therefore, they prefer a “bending” caused by
optical depth effects. The transition occurs around
t ´ -1.2 10c

353
5~ , or, correspondingly, Ig ~ 9 kJy sr−1 and

Ir ~ 19 kJy sr−1.21 The results are consistent with the statement

that above a certain optical depth threshold, the dust is no
longer diffuse or translucent to scattered light, and optical depth
effects, including self-attenuation, reddening, and multiple
scattering, become nonnegligible.

5.2. Correlation in Optical: The Color Model

In this section, we correlate the Dragonfly observations in
the g and r bands and build a simple color model to explain the
diffuse light emitted by dust scattering. This color model
determines the amount of light in g to be removed from the
“cirrus-like” emission map in r produced in Section 4, and
vice versa. This is supported by the result in Section 5.1 where
both g and r imaging data show a good correlation with Planck
at the resolution of the Planck beamwidth. The zero-points of
the pixel intensities are from the correlations with Planck data.
To do the correlation in optical bands, we reduce the pixel

resolution to 10″ by running a [4× 4] median binning on
Dragonfly g and r images to increase S/N and calculate the
MAD of the images. Pixels with intensities 20 MAD higher or
lower than the median sky are clipped as outliers, which
accounts for <0.3% of the total.
Similar to Section 5.1, we build a linear model for the

Dragonfly g and r data.22 To prune the diffuse light from
sources other than dust scattering, including LSBGs, stars,
galaxy halo light, and possible contributions from extragalactic
background light (EBL), we build a generative mixture model
that includes an outlier population. The pixel intensity at pixel i
(e.g., in the g band) is

· ( · ) ( ) · ( )= + + -I q A B I q I1 , 14g i i r i i i, , bg,

where qi is a 0 or 1 binary integer assigned to each pixel and
Ibg,i belongs to a broader background (outlier) population,

( )sI m ,ibg, bg bg
2~ , described by its mean and variance, mbg

and sbg
2 .23 Following D. W. Hogg et al. (2010), the likelihood
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where σi stands for the uncertainties and pfg and pbg are the
probability distribution functions for the foreground (target)
and background (outlier) points. To marginalize over qi, note

Figure 5. Correlations of the Dragonfly g and r surface brightness intensities
with Planck radiance  for the diffuse light in field A. The Dragonfly data are
convolved to Planck beamwidth and binned 4 x 4. The linear fitting is indicated
by the solid line. The contours from outermost to innermost contain 99.5%/
90%/50% of the total data. The zero-points are shifted such that the intensity
equals 0 at the intercepts, assuming that there is no diffuse optical light from
dust scattering where there is no dust.

21 The detected transition in the example data set occurs roughly at E
(B − V ) ~ 0.16 based on the Planck dust model. Assuming an optical total-to-
selective extinction ratio RV of 3.1, this corresponds to AV ~ 0.5 or τV ~ 0.45.

22 Note that in general, the photometric data require a PSF matching. We skip
this because the difference of the Dragonfly PSF in the SDSS g and r bands is
very small. For multiband analysis across a wide range of wavelengths, e.g.,
using LSST, where the PSF can vary in different bands, the images need to be
convolved into the same PSF prior to the modeling.
23 The outlier population here, by its nature, should indeed be non-Gaussian.
However, for the purpose of outlier pruning, the outlier model is not required to
be accurate but rather, more importantly, to be included (D. W. Hogg et al.
2010). Given that σbg is much larger than σi, the difference of outliers
superimposed on different underlying backgrounds would have negligible
effects on the derivation of the key parameters (here A and B).
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that qi follows the binomial probability,
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where fbg is the probability that a pixel is drawn from the
background (outlier) population. The likelihood therefore
integrates to

( )

({ } ∣ )

[( ) ( ∣ )] [ ( ∣ )]

( )

[ · ]

[ ]

[ ]
[ ]





s

s

=

= - +

µ -

+ -

p s s

p s s s s

=

=

=

- - -

+

-

+

p I A B f m

f p I A B f p I m

, , , ,

1 , ,

exp

exp .

17

g i i
N

i

N

g i g i

i

N
f I A B I

f I m

, 1 bg bg bg
2

1
bg fg , bg bg , bg bg

2

1

1

2 2

2 2

i

g i r i

i

i

g i

i

bg

2

, ,
2

2

bg

bg
2 2

, bg
2

bg
2 2



⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦⎥

The best parameter set is given by maximizing the log-
likelihood function on the data, where free parameters include
A, B, fbg, mbg, and σbg. The uncertainty σi is estimated with the
local standard deviation of the sky background using
photutils. A similar model can be constructed by mapping
from the g band to the r band.

Figure 6 shows the correlation between Dragonfly g and r
data and the r-to-g model. The green line is the best-fit linear
model from the maximum-likelihood estimation. A similar
model is constructed mapping from the g band to the r band.
The parameters from the best fit are summarized in Table 3,
including the intercept at the x-axis and the g− r color
transformed from the slope of the linear model. Linear
regression may potentially suffer from the low-intensity pixels
because the data can be heteroscedastic. Therefore, we compute
the bisector of the two models following T. Isobe et al. (1990)
to correct the bias and list its slope, intercept, and corresp-
onding g− r in Table 3. The r-to-g ratios are 1.89± 0.08 and
1.78± 0.08, corresponding to g− r = 0.69± 0.05 for field A
and 0.63± 0.05 for field B. The fitted intercepts are close but
not equal to 0, indicating the amount of systematics in the zero-
point calibration and possible contribution from other emis-
sions such as EBL. No clear transition in the slope of the
correlation is observed between the fitted range in the g and r
correlation, indicating that a single color model is sufficiently
good here to explain the data set. However, it should be noted
that this only applies to the data set as presented, which is after
binning (to a pixel resolution of 10″) and clipping. More
complex color models might be preferred at different lines of
sight or at higher resolutions where finer structures of cirrus are
preserved. A higher-order color modeling can be implemented
by generalizing Equation (17).

Overall, the results show that the optical diffuse light can be
well explained by a single, simple color model. This color
model is used for predicting data in one band from the other in
Section 5.3.

5.3. Cirrus Removal with Color Constraint

In this section, we apply the color model to the “cirrus-like”
emission extracted based on morphologies in Section 4, using
field A for demonstration. The r-band “cirrus-like” emission is
used to predict the corresponding g-band emission according to
Equation (14), and similarly for the g band. The predicted
emission is subtracted from each band, and a g+ r residual image
is constructed from the g- and r-band residual images, which is
commensurate with the V band using the conversion derived from
Table 3 of K. Jordi et al. (2006): V= 0.435 g+ 0.565 r
− 0.016.24 Below, we use g + r interchangeably with V. The
g + r image of the central [2.6× 1.8] region of the field created
from the original Dragonfly data is shown in the top left panel

Table 2
Field-averaged Results from the Correlation of Dragonfly g and r with Planck Radiance

Field Model á ñ a br,p bg,p br,p/bg,p g − r

Field A Equation (12) 1.9 6.58 ± 0.15 3.44 ± 0.07 1.92 ± 0.06 0.70 ± 0.03
Field B Equation (12) 1.6 5.46 ± 0.13 3.27 ± 0.07 1.67 ± 0.05 0.56 ± 0.03

Note.
a Field median radiance in units of [10−7 W m−2 sr−1].

Figure 6. Correlation between the Dragonfly g- and r-band surface brightness
intensities for the diffuse light in field A. The zero-points are calibrated based
on correlations with Planck (Section 5.1). The images are binned by a [4 × 4]
median binning (at a pixel resolution of 10″). A mixture linear model
accounting for outliers in terms of a single color model is fitted from the r band
to the g band, indicated by the green line. There is no clear evidence of
transition at high intensities, although higher-resolution data at different lines
of sight will be needed for further investigation. The contours from outermost
to innermost show 99.9%/99%/97.5%/95%/90%/75%/50% of the total data
points. The 0.1% outliers are shown as small dots outside the outermost
contour. A similar model is constructed mapping from the g band to the r band.

24 Note that this is the Vega system V band, while the majority of this work
adopts the AB system. Also note that there is a small (<0.01) difference in the
coefficients between the ones derived from K. Jordi et al. (2006) and that of the
equation used here, which follows the equations listed at https://www.sdss3.
org/dr8/algorithms/sdssUBVRITransform.php. Practically, this difference is
negligible for the purpose of this work.
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of Figure 7. The top right panel shows the g + r source model
constructed in Section 3, and the bottom left panel shows the g
+ r cirrus model constructed following Sections 4 and 5.2.

The bottom right panel of Figure 7 shows the g + r residual
image after removing foreground and background sources
(Section 3) and removing cirrus using morphological informa-
tion (Section 4) with color constraints (Section 5). In essence,
the procedures remove the same amount of diffuse light with
patchy or filamentary morphology that can be explained by a
single color model in both optical bands. In the residual image,
we apply a 5σ mask to the centers of the sources and run a
mask infilling (Section 4.3) for small holes with scales smaller
than 10″. After the cirrus removal, the sky background in the
field is perceptually flat, which qualitatively proves the
effectiveness of the approach. A quantitative evaluation is
presented in the next section.

Despite the removal of the majority of the diffuse light, there
is a very faint large-scale diffuse light pattern in the residual
image roughly spatially matching the high-intensity regions of
the cirrus, which could result from changes in the dust
properties and optical depth effects that cause changes in the
cirrus color and/or the zero-point calibrated from FIR data.
Notably, there are also some small-scale blobs in the residual
images, which are composed of (i) sources missing in the
foreground/background flux models (e.g., faint sources around
very bright stars, galaxies with improper segmentation, variable
stars), (ii) LSBG candidates, (iii) bright cirrus blobs at field
edges, and (iv) cirrus knots and clumps with abnormally red/
blue colors relative to the integrated color based on the
modeling. Section 6 will investigate the blobs in the residual
images. Other systematic contributions include imperfect flat-
fielding, the diffuse ionized background (which should be low
at high Galactic latitudes), and contribution from the EBL.

5.4. Metrics of Performance

To quantitatively evaluate the performance of the cirrus
removal approach, we investigate several metrics of extended
structures in the input image in the presence of cirrus (with
the extended PSF wings of the sources subtracted and
centers masked) and the output image with cirrus removed
for the example shown in Figure 7. Only pixels out of the 3σ
source mask are included in the computation because the
pixels within the source mask are from interpolation in
the infilling procedure. The standard deviation of the
distribution is calculated to derive the surface brightness
limits in Table 1.

(i) Skewness. We calculate the skewness of the distribution
function of pixel intensities. Skewness is a measure of the
asymmetry of the distribution. Skewness approaching 0
corresponds to higher symmetry. The input image has a
positive skewness of 0.59, showing significant contrib-
ution from the diffuse light, mostly Galactic cirrus (with
stars and galaxies subtracted). The output image has a
skewness of 0.22, which is around a factor of 3 lower
than the input image.

(ii) Gini coefficient. We compute the Gini coefficient of the
pixel intensity distribution. The Gini coefficient is a
metric measuring the inequality in a given set of values,
which was originally introduced in astronomy for
quantitative galaxy morphology (R. G. Abraham et al.
2003; J. M. Lotz et al. 2004):

¯ ( )
( ) ( )å=

-
- -

=In n
i n IGini

1

1
2 1 , 18

i

n

i
1

where n is the sample size, Ii is the intensity of each pixel
sorted in ascending order, and Ī is the mean intensity. A
Gini coefficient of 0 represents a perfectly even
distribution, while 1 corresponds to an extreme inequal-
ity, e.g., with all flux concentrating in 1 pixel. The pixel
intensities of the input and output images are clipped with
the lowest and highest 0.01% of the data masked
(8,466,311 pixels left) and then mapped into [0, 1] using
the minimum and maximum intensities of the input
image: ( ) ( )/= - -I I I I Imin max min . In the example field,
Imin and Imax correspond to 4.0 kJy sr

−1 and 21.3 kJy sr−1.
The Gini coefficients of the input and output images are
0.28 and 0.04, respectively, indicating a much flatter sky
background in the output image. One can further
investigate the inequality of the intensity distribution of
bright pixels by only including pixels brighter than a
threshold in Equation (18). Figure 8 shows the Gini
coefficient measured with different thresholds based on
quantiles (from 0 to 0.99) of the intensity distributions in
the input and output images. As the threshold increases,
the pixel set shifts from being dominated by diffuse light
in the background to being dominated by overdensities.
The Gini coefficient of the input image quickly becomes
closer to that of the output as the quantile approaches 1.
The dashed line indicates the Gini coefficients of a flat
sky with a low-level (0.1%) perturbation with the same
normalization along different thresholds, which are close
to zero.

(iii) Δ-variance. We compute the Δ-variance spectrum
(J. Stutzki et al. 1998; F. Bensch et al. 2001;
V. Ossenkopf et al. 2008) for the input and output
images. In brief, theΔ-variance method is a variant of the
power spectra method that measures the power of
structure on a range of spatial scales by convolving the
image with a set of kernels with increasing kernel width.
We use the implementation in the TurbuStat package
(E. W. Koch et al. 2019) to calculate sD

2 , which adopts
the formulation and kernel separation introduced by
V. Ossenkopf et al. (2008). The implementation uses a
Ricker kernel split into its core and outer annulus. The
local standard deviation map of the local sky background
was used as a weight map to down-weight noisy or
missing data. The top panel of Figure 9 shows the Δ-

Table 3
Field-averaged Results from the Best-fit Color Models for Dragonfly Data

Field Model r /g A g − r
(kJy sr−1)

Field A Bisectora 1.89 ± 0.08 0.08 ± 0.55 0.69 ± 0.05
g to r 1.84 ± 0.12 0.42 ± 0.55 0.66 ± 0.07
r to g 1.95 ± 0.12 0.13 ± 0.27 0.72 ± 0.07

Field B Bisectora 1.78 ± 0.08 −0.59 ± 0.42 0.63 ± 0.05
g to r 1.56 ± 0.10 0.52 ± 0.41 0.48 ± 0.07
r to g 2.06 ± 0.13 0.96 ± 0.22 0.79 ± 0.07

Note.
a Based on the ordinary least-squares bisector formula in Table 1 of T. Isobe
et al. (1990). The intercept (A) of the bisector model is calculated on g to r.

14

The Astrophysical Journal, 979:175 (27pp), 2025 February 01 Liu et al.



variance spectra measured at different scales on the input
and output images in magenta and blue, respectively. The
kernel width is referred to as the “lag.” The bottom panel
of Figure 9 shows the ratio of Δ-variance of the input
(sD,in

2 ) and output (sD,out
2 ) as a function of spatial scales.

The power of the cirrus structure is largely reduced in the
output compared to the input on large scales, with a factor
of ~10 on 1¢ scales and a factor of ~200 on 5¢ scales and
larger.

In the input image, sD
2 follows a power law over a

wide range of scales. The fitted slope is γΔ=
0.97± 0.06, as shown by the magenta dashed line.
This corresponds to a power index of γ= −γΔ− 2=
−2.97 for the power spectrum (J. Stutzki et al.
1998), which is consistent with the expected value of
γ ~−3 from turbulence theories and observations (e.g.,
T. N. Gautier 1992; M.-A. Miville-Deschênes et al. 2007;
M. A. Miville-Deschênes et al. 2016). On small scales,
the Δ-variance is affected by the beam effect, noise, and
residuals of stars and galaxies, while on large scales, it is
flattened by the limited size of the field relative to the
filter size (V. Ossenkopf et al. 2008). The sD

2 spectrum of
the output image reflects the residual pattern modulated
by cirrus residuals, the beam effect, and the field edge

Figure 7. Cirrus removal based on morphological information with color constraints. The top left panel shows the central [2.4 × 1.8] of the original g + r image of
field A obtained by Dragonfly. The top right panel shows the constructed source model combining g and r. The bottom left panel shows the constructed cirrus model
combining g and r. The bottom right panel shows the source- and cirrus-removed image of the same area. The images are in the same contrast. Compact sources (stars,
galaxies, etc.) in the source models are removed (in g and r, separately), and the cores are masked by 5σ above zero prior to the decomposition. The cirrus-removed
image has a significantly flatter sky background. Unlike typical sky subtraction, this decomposition approach has a physical motivation based on cirrus characteristics.

Figure 8. Gini coefficient measured on the sky background before and after the
cirrus decomposition. The metric is measured on the source-subtracted
Dragonfly g + r image (input) and the residual g + r image (output). The
figure shows the variation of the metrics measured on the brighter subset of
pixels above a given quantile. The dashed line shows the metric of a flat sky
with a low-level perturbation, which indicates that the output image is close to
a flat sky.
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effect. A more detailed analysis of the coherence of the
cirrus structures will be presented in our upcoming work,
where here we focus on the result quantifying the amount
of reduction of the cirrus structures with the decomposi-
tion algorithm.

Together these metrics quantitatively show that the cirrus-
subtracted image is fairly close to a flat sky; therefore, the
performance of the algorithm is acceptable. It is worth noting
that despite the simplicity of skewness (and, likewise, nth-order
moments) and Gini in their definition and calculation, unlike
Δ-variance, such metrics are pixelwise; therefore, these do not
encode 2D information. As a result, one should be careful
about associating them with physical interpretations. In our
follow-up work, we will present more metrics that further
employ the spatial coherence of the cirrus.

6. Application to LSBG Searches Using Integrated Light

In this section, we demonstrate the application of the cirrus
removal algorithm on LSBG searches using integrated light
(e.g., S. Danieli et al. 2018). This is done by recovering mock
galaxies injected into the image with cirrus (Section 6.1) and
attempting to recover a known faint dwarf satellite galaxy, And
XXII (Section 6.2).

6.1. Recovering Simulated Galaxies with Realistic Stellar
Populations

We test whether the cirrus decomposition approach can
facilitate LSBG searches. We inject mock galaxies into the
cirrus-rich field and attempt to recover them from the residual
image. Ideally, the algorithm should preserve light from the
injected galaxies while removing the diffuse light from cirrus
based on their differences in morphology and SED (i.e.,
colors).

6.1.1. Injection-recovery Test

We used ArtPop to build mock UDGs with realistic stellar
populations. ArtPop is a Python package for generating
artificial images of stellar systems with synthetic stellar
populations (J. P. Greco & S. Danieli 2022). Details about
the physical parameters used to generate the galaxy models and
mock observations are described in Appendix D. As a result,
the integrated color of the mock UDG is g− r = 0.54 (i.e.,
bluer than the field-averaged mean of cirrus), and the mean V-
band surface brightness within the effective radius, μeff,V, is
26.0 mag arcsec–2.
The mock UDGs were randomly injected into the g- and r-

band images of field A. The middle panels of Figure 10 show
example [ ¢ ´ ¢50 50 ] cutouts at two different positions in the
field. The positions of the injected galaxies are indicated by
orange circles. The g and r images with injections were then
processed with the cirrus decomposition software after source
subtraction. To reduce possible contamination and focus on the
performance of the cirrus decomposition, we used the same
flux models for the foreground/background sources con-
structed from the image without injection. However, the effects
of injected mock sources on the construction of the flux models
are generally small, and faint diffuse sources are, in principle,
excluded from the flux models.
The right panels of Figure 10 show the cirrus-removed

residual image, combining g and r, in the same region as the
panel to the left. Sources are masked at a 3σ level, and small
masks are infilled following the steps in Section 4.3. The
injections are marked by orange circles. The mock UDGs
become significant in the residual compared to the middle
panels, in which they are flooded by the cirrus emission. Note,
however, that there are some other diffuse signals remaining in
the residual image, which are likely contaminations from cirrus
knots/clumps with abnormally blue colors and/or compact
morphologies. Our methodology is not perfect, though, as
some injections were unfortunately removed or simply blocked
due to the blending with cirrus or bright stars/galaxies. We
now consider the metrics used to quantify the effectiveness of
our approach.

6.1.2. Performance Metrics

To quantify the goodness of the recovery, we run a source
detection on the residual image after a [4× 4] median binning
using SExtractor. We apply tentative cuts on the detections
based on the following criteria: (1) an S/N detection cut
above 5, (2) a size cut of FLUX_RADIUS> 20″ with
PHOT_FLUXFRAC = 0.5, and (3) an axis ratio cut above
0.5. The detections are cross-matched with the injections with a
maximum separation of 1.5 pixels. Injections that failed to be
recovered by the source detection on the cirrus-removed image
are marked by dashed circles in the right panels of Figure 10.
We calculate the recall and precision of the test, which are
defined by

( )=
+

=
+

Precision
TP

TP FP
, Recall

TP

TP FN
. 19

TP, FP, and FN stand for true positive, false positive, and false
negative, respectively. The precision is a measure of the
accuracy of the detection, and the recall represents the
completeness of the recovery. The overall performance is

Figure 9. Top: Δ-variance spectra measured on the source-subtracted
Dragonfly g + r image (input; magenta) and the residual (output; blue). The
Δ-variance measures the amount of structure on different spatial scales. The
power is largely reduced in the output image. A fitted slope of
γΔ = 0.97 ± 0.06 is shown as the magenta dashed line. Bottom: the ratio of
sD

2 of the input and output images on different spatial scales. The powers of
large-scale structures are largely reduced.
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evaluated by the F-score:

( )=
+- -

F
2

precision recall
. 201 1 1

The precision is 0.77 and the recall is 0.73, yielding an F-
score of 0.75.25 Future work will explore reducing contamina-
tion (FPs) in the cirrus decomposition procedures and restoring
the missed intrinsic candidates (FNs).

Overall, this injection-recovery experiment shows that the
performance of the cirrus removal approach is encouraging and
likely to be useful for facilitating LSBG searches via integrated
light.

6.1.3. Tests on a Grid of Models

To evaluate the variation of performance on LSBG candidate
properties, we explored the parameter space of the model
galaxy by building a grid of UDG models with varying
physical parameters that change the effective surface brightness
μeff,V and the g− r color of the galaxy models. Details about

the physical parameters used to generate the grid of galaxy
models are described in Appendix D.
Following the same procedures in Section 6.1, each model in

the grid was injected 100 times into the g and r images with
cirrus, and then a source detection was run in an attempt to
recover them after running cirrus removal. The performance
metrics resulting from this exercise are displayed in Figure 11.
The metrics are evaluated on the model grid and reprojected to
the apparent parameter space (μeff,V and g− r). As the galaxy
becomes fainter, the recovery rate drops rapidly, which is a
joint result of the LSBG being harder to detect and it being
harder to distinguish from the cirrus, especially with morph-
ology. The metallicity has a weaker power on the recovery for
brighter models; however, for fainter LSBGs, higher metallicity
would lead to degradation of the performance as the galaxy
becomes redder and, therefore, harder to distinguish from cirrus
with a similar color.
It is noteworthy that μeff,V and g− r in Figure 11 are

apparent observables without extinction and reddening correc-
tion. Therefore, in real observations, galaxies overshadowed by
cirrus would be intrinsically bluer and brighter. This correction
will be important to evaluate the completeness function of
LSBGs as a function of physical parameters, while the gist of
this experiment is to showcase that this decomposition

Figure 10. Injection of mock UDGs in a cirrus-rich field and recovery after cirrus removal in Dragonfly imaging. In each row, the middle panel shows a [ ¢ ´ ¢50 50 ]
region of the g + r image with injections, and the injected galaxy models are shown in the panel to the left, indicated by orange circles. The right panel shows the
cirrus-removed image with sources subtracted and center masked. Injections that are detected as LSBG candidates are marked in solid orange circles, while those that
fail to be recovered are marked in dashed orange circles. The two rows show different cutout regions in the field. The majority of the mock UDGs in the test are
capable of being recovered after cirrus removal. The image scale is in arcsinh stretch in units of kJy sr−1.

25 Note that the reported measures did not include corrections in TP and FP to
retain the bias from contaminations. Some ~20 objects were detected with the
above criteria, with only one overlapping with the injections within 3″. Among
these objects, <six of them are LSBG candidates with visual inspection.

17

The Astrophysical Journal, 979:175 (27pp), 2025 February 01 Liu et al.



approach facilitates reducing the confusion in the detection of
LSBGs in a cirrus-riddled sky area.

6.2. Recovering the M33 Satellite and XXII

As a final test of our approach, we applied it to the recovery
of a dwarf satellite of M33 identified originally via star counts.
And XXII is a dwarf satellite galaxy of M33 discovered by the
CFHT Pan-Andromeda Archeological Survey (PAndAS;
A. W. McConnachie et al. 2009), a comprehensive observa-
tional campaign aimed at mapping the vicinity of M31 to the
depths needed to reach ultrafaint dwarfs. PAndAS identified
only one M33 satellite candidate, And XXII (N. F. Martin et al.
2009), using color–magnitude diagram (CMD) analysis.
Spectroscopic follow-up was done by S. C. Chapman et al.
(2013) using the DEep Imaging Multi-Object Spectrograph on
the Keck II Telescope, which confirmed its identity as a strong
candidate for being an M33 satellite.

The upper panels of Figure 12 show [ ¢ ´ ¢16 16 ] cutouts
around And XXII in g, r, and g+ r data. With Dragonfly
imaging, the integrated light from And XXII is clearly present
in both g- and r-band data. And XXII appears as a fuzzy blob,
with Reff ~ 15″ and an effective surface brightness μeff,g ~
27 mag arcsec–2 in the g band. However, there is an extended
cirrus patch near And XXII, adding confusion to the detection
and identification of And XXII with its integrated light alone.
The extended PSF wing from a nearby bright star might also
contribute to the diffuse light in the background. The mean
color of And XXII in Dragonfly imaging is g− r ~ 0.35 (~0.3
bluer than the field-mean color of cirrus), making it likely that
this object is distinguishable from cirrus by using color
constraints.

The cutouts of the residual images produced by procedures
in Sections 4 and 5 are shown in the lower panels of Figure 12.
Compact sources and their extended PSF wings have been
subtracted following the procedures in Section 3. The cirrus in
the image is extracted and removed using morphological
information (Section 4) with color constraints (Section 5). The
majority of the extended cirrus emission is removed, and the
diffuse light from And XXII shows as an overdensity in the
cirrus-removed image. Note that part of the light from the red
giant branch in And XXII was also subtracted because And
XXII is semiresolved in the Legacy imaging. The remaining
signal represents the diffuse integrated light from unresolved
stellar populations. Therefore, LSBG searches using integrated
light can be supplementary to the CMD analysis.

This result is encouraging, because cirrus is one of the major
systematics that impedes LSBG searches in sky areas like
these. Future deep imaging surveys can run cirrus decomposi-
tion software to facilitate LSBG searches and increase the
significance of detections through control of systematics. Such
techniques might be valuable additives to the pipeline of deep
wide-field imaging surveys from, e.g., the Vera C. Rubin
Observatory, the Euclid space telescope, and the Roman Space
Telescope.

7. Discussion

7.1. Differentiating Cirrus in Deep Imaging Surveys with
Multiband Photometry

The next 10 yr will be a golden age for low surface
brightness astronomy with the deployment of next-generation
deep imaging surveys using state-of-the-art facilities. Rubin
will achieve 3σ surface brightness limits of 30.3 mag arcsec–2

on 10″× 10″ scales in the g and r bands in a 10 yr campaign
covering the entire southern sky (A. E. Watkins et al. 2024).
The recently launched Euclid space telescope, which has
delivered a wealth of its first science results (Euclid
Collaboration et al. 2024), has achieved a limiting surface
brightness magnitude of 29.9 mag arcsec–2 (1σ, 10″× 10″)
with its Visible Imager instrument (J. C. Cuillandre et al. 2024).
The superb sensitivity of these imaging surveys to faint diffuse
emission calls for the essential need to characterize diffuse light
from optical Galactic cirrus.
The main driver of distinguishing the cirrus from extra-

galactic light using optical photometry is the difference in the
physical mechanisms that mold the SED and the geometry of
the optical cirrus. The important work by J. Román et al.
(2020) showed that optical cirrus is well separated from
extragalactic sources on the color–color diagrams, using
observations of 16 cirrus patches in the SDSS Stripe 82 area
after carefully subtracting contaminating light. They proposed
the following criterion based on the color of the cirrus:

( ) ( ) ( )- < ´ - -r i g r0.43 0.06, 21

which is applied to the Hyper Suprime-Cam Subaru Strategic
Program data (H. Aihara et al. 2018), and pixels dominated by
cirrus emission can be well differentiated from extragalactic
sources.
In this work, we show that by incorporating morphological

information, diffuse light from dust scattering can be well
differentiated from LSBG candidates, even with only two

Figure 11. Performance metrics for recovering injected galaxies in the cirrus-removed image at varying effective surface brightness μeff,V and g − r color, including
the recall, precision, and F-score. Details of the model grid are described in Appendix D. Recall represents the completeness of the recovery. Precision measures the
contamination rate. F-score indicates the overall performance. The red star indicates the fiducial model referred to in the main text. In general, fainter and redder
galaxies are more challenging to recover with cirrus removal. Note that μeff,V and g − r are apparent values without extinction and reddening correction. The galaxies
overshadowed by cirrus would be intrinsically bluer and brighter.
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filters. This is promising—although confusion between cirrus
and LSBGs with similar colors may exist—because deep
imaging surveys with more filters should have the capacity to
better characterize the cirrus by sampling the curvature of the
dust-scattered light SED.

It is worth noting that extragalactic sources with similar
morphologies to that of cirrus, such as tidal tails, may not be well
disentangled with this approach. In these cases, observations from
multiple optical filters will be necessary. Data from other wave-
lengths or tracers of dust, including FIR (e.g., J. C. Mihos et al.
2017), UV (e.g., S. Boissier et al. 2015), atomic and molecular
hydrogen (e.g., L. Barriault et al. 2010), and polarization
(S. K. Bowes & P. G. Martin 2023), will also be preferred.

While Dragonfly resolution is poor, the large field of view of
Dragonfly allows one to map Galactic cirrus in an unprece-
dentedly wide area of the sky (see the Dragonfly Ultra Wide
Survey from which the data set in Q. Liu et al. 2023 was
drawn), which will be presented in our following work. This
data set will be valuable as supplementary data for the Rubin
Observatory, the Nancy Roman Space Telescope, and the
Euclid space telescope. It will also provide a training set for
future deep-learning-based techniques.

7.2. The Optical DGL

One major motivation for the decomposition of the optical
cirrus from the other diffuse light is to obtain a “clean”

representation of the optical DGL, which will benefit ISM
studies by, e.g., constraining grain properties and parameters of
scattering functions. The optical DGL is also an important
source of foreground contamination of the optical EBL, which
is also known as the cosmic optical background (M. Zemcov
et al. 2017; T. R. Lauer et al. 2021). It is thus interesting to
compare the DGL/cirrus measurements in the literature with
measurements from Dragonfly. Below, we show the prelimin-
ary optical DGL measured from the two example fields
covering ~9.3 deg2 of sky area. This is a relatively small area
compared to measurements from a wide area comparable to the
entire sky (e.g., Y. Matsuoka et al. 2011; T. D. Brandt &
B. T. Draine 2012). Measurements of the optical DGL from the
Dragonfly Ultra Wide Survey (W. B. Bowman et al. 2024, in
preparation) covering over 10,000 deg2 of the northern sky will
be presented in the future.
Dust regions with higher column densities have more

scattering. Therefore, it is typical to normalize the observed
optical DGL by a tracer of column density. A widely adopted
tracer is dust thermal emission at 100 μm. For the two example
fields, we retrieve their 100 μm intensity maps from IRIS
(M.-A. Miville-Deschênes & G. Lagache 2005), which
includes improvements in the zodiacal light subtraction,
calibrations, and artifacts of the original IRAS products. The
100 μm maps (I100) contain emission from extragalactic
sources, known as the cosmic infrared background (CIB). As
pointed out by M. Zemcov et al. (2017), it is important to

Figure 12. Recovery of a confirmed dwarf satellite galaxy, And XXII, in the cirrus-riddled field B. The left to right columns show [ ¢ ´ ¢16 16 ] cutouts around And
XXII (marked by the green circle) in the g, r, and g + r bands in the original image (upper) and after cirrus removal (lower). In lower panels, sources are subtracted
and masked at 3σ levels. The image scale is in arcsinh stretch in units of kJy sr−1. The g + r image is stretched to enhance the faint signal.
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subtract the CIB out. Therefore, we subtract a uniform value in
each map by computing the mean offset between the observed
intensity and the predicted intensity using the Planck thermal
dust model of all pixels,

( )D = -I I I , 22100 100 100
mod

where I100
mod is the predicted thermal dust emission at 100 μm

(ν= 3000 GHz) using the Planck thermal dust model given by
Equation (9). The mean offset, áD ñI100 , is 0.56± 0.06 and
0.59± 0.05 MJy sr−1 in field A and field B, respectively.

The new intensity after correction, = - áD ñI I Ic
100 100 100 , is

used as the tracer of dust thermal emission. We fit a linear
model between the optical and 100 μm data in each band:

· ( )= +l l lI a b I . 23c
100

The best-fit bλ in the g and r bands is 3.28× 10−3 and
1.73× 10−3 for field A and 2.56× 10−3 and 1.51× 10−3 for
field B. We use the brightness intensity corresponding to
μg,lim,1σ (60″× 60″), the 1σ surface brightness limit on
scales of [60″× 60″] in the g band, as the representative
diffuse light measurement across the field. Using the model
of Equation (23), this corresponds to á ñI100 = 4.3± 0.3 and
3.8± 0.3 MJy sr−1 in field A and field B, respectively.
The field-mean DGL intensity measurements of Dragonfly

normalized by á ñI100 are shown in Figure 13, where we overplot
several classic measurements and models of the DGL/cirrus
from UV to NIR in the literature. The error bars of the
Dragonfly measurements include the difference between the
example fields and uncertainty propagation including fitting
errors estimated from bootstrap, systematic errors of photo-
metric zero-points, uncertainties in intensity calibration from
Planck dust models, and uncertainties of á ñI100 after CIB
correction.
As noted earlier, the measurements presented thus far have

been obtained from two Dragonfly fields, and in a future paper,
we will describe the results obtained from about 250× this area.
Nevertheless, it is interesting to place these measurements
into the context of previous work in this area, and Figure 13
also contains data points obtained from previous work.
P. Guhathakurta & J. A. Tyson (1989), A. N. Witt et al.
(2008), and N. Ienaka et al. (2013) studied individual high-
latitude clouds/fields with a typical I100 ranging from 1 to
18 MJy sr−1 (see a compilation in Table 3 of N. Ienaka et al.
2013). J. Murthy et al. (2010) presented the diffuse UV
background from Galaxy Evolution Explorer. (GALEX) T. Arai
et al. (2015) and K. Sano et al. (2016) reported the DGL in NIR
measured by the Cosmic Infrared Background ExpeRiment
(CIBER) and the Diffuse Infrared Background Experiment
(DIRBE), respectively. T. D. Brandt & B. T. Draine (2012),

Figure 13. The DGL SED from UV to NIR normalized by the 100 μm intensity. Dragonfly measurements of the diffuse background in the example data sets in the g
and r bands scaled by the mean 100 μm intensity, with CIB corrections included, are indicated by the green and red stars. Photometric/spectroscopic measurements in
the literature are displayed as symbols/dashed lines. Model spectra of T. D. Brandt & B. T. Draine (2012) based on the MMP83 ISRF and dust models by WD01 and
ZDA04 are indicated by green and blue curves, respectively. See the text for a summary of the compilation. For clarity, markers in optical bands are slightly shifted.
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K. Kawara et al. (2017), and B. Chellew et al. (2022) utilized
blank-sky spectra obtained from the SDSS, the Hubble Space
Telescope, and the Baryon Oscillation Spectroscopic Survey
(BOSS), respectively. Y. Matsuoka et al. (2011) presented
results from the Pioneer spacecraft over one-fourth of the sky.
T. Symons et al. (2023) analyzed the reported DGL measured by
the broadband imager equipped on the New Horizons (NH)
mission (see also analysis in T. R. Lauer et al. 2021). Y. Zhao
et al. (2024) analyzed the sky area in the Dark Energy
Spectroscopic Instrument (DESI) Legacy imaging survey
(A. Dey et al. 2019) with a mean á ñI100 of 4.9 MJy sr−1. Finally,
the solid curves stand for model spectra of the observed DGL in
T. D. Brandt & B. T. Draine (2012) using dust models from
J. C. Weingartner & B. T. Draine (2001, WD01; green) and
V. Zubko et al. (2004, ZDA04; blue) with the J. S. Mathis et al.
(1983) ISRF (MMP83). Compared with other measurements and
models, our results match the dust models and do not indicate a
clear presence of extended red emission in the r band. Further
investigation of the DGL and its constraints on grain properties
over a larger sky area will be explored in our future work.

8. Conclusions

Optical Galactic cirrus originates from the scattering of the
ISRF by interstellar dust grains. It can provide unique insights
into the physical and radiative properties of dust grains in our
MW. An unbiased photometric characterization of optical
cirrus depends on the preservation of large-scale low surface
brightness emission in images. This has only been possible in
deep imaging using CCD detectors recently, thanks to advances
in observation and data reduction techniques. Radiometric
calibration also requires a thorough understanding and
exquisite control of the various systematics that may contribute
to the diffuse light in images.

In this work, we investigate the photometric characterization
of optical Galactic cirrus in deep imaging of a ~9.3 deg2 sky
area obtained from the Dragonfly Telephoto Array, a telescope
optimized for low surface brightness imaging. We have
employed careful treatment to preserve cirrus in our data
reduction pipeline, including sky background subtraction, flat-
fielding, and removal of scattered light from the wide-angle
PSF, to reduce systematics in the photometric characterization
of optical cirrus.

We applied the RHT, an algorithm developed for identifying
and characterizing ISM structures, to extract “cirrus-like”
emission based on morphology. The algorithm has good
performance in distinguishing blobby emissions from patchy or
filamentary emissions in both simulated data and observations
from Dragonfly.

We add constraints in optical colors to the extracted “cirrus-
like” emission by assuming a common SED for the optical
diffuse light from dust scattering. This is based on the
following assumptions: (1) dust grains are in local thermo-
dynamic equilibrium, (2) the physical properties of dust
populations are similar, and (3) the incident ISRF is
homogeneous. None of these assumptions necessarily hold in
all cases, but when they do hold, the optical diffuse light from
dust scattering should have a good correlation with dust
thermal emission in the FIR/submillimeter and, accordingly,
be well correlated with each other in different bands. We verify
the correlation in the FIR/submillimeter by correlating
Dragonfly g- and r-band data with the Planck dust thermal
radiance from the all-sky Planck thermal dust model, which is

used as a tracer of the dust content. The correlation corresponds
to a g− r = 0.70± 0.03 and 0.56± 0.03 for the two example
fields. The zero-points are also calibrated using Planck. We
found a good correlation of Dragonfly g and r data, yielding a
color of g− r = 0.69± 0.05 and 0.63± 0.05 for the diffuse
light in the two example fields. Cirrus decomposition is
performed by combining color modeling and morphological
extraction, producing a fairly flat sky background.
We present several metrics to quantitatively evaluate the

performance of our proposed cirrus decomposition algorithm.
Furthermore, we applied our approach to Dragonfly images
with (1) injections of simulated galaxies with realistic stellar
populations and (2) a known ultrafaint dwarf satellite galaxy to
demonstrate its efficacy in distinguishing LSBGs from cirrus.
Galaxies with mean effective surface brightness and colors
different from cirrus incur low-level confusion with cirrus and
are able to be recovered. Our approach will facilitate the
detection and identification of ultrafaint dwarf galaxies and
UDGs on the exquisite imaging data sets expected from the
forthcoming Vera C. Rubin Observatory and the recently
commissioned Euclid space telescope.
Finally, we measured the intensity of the optical DGL, which

is the diffuse region of the optical cirrus, in the example fields.
We used μg,lim,1σ (60″× 60″), the 1σ surface brightness limit
on a [60″× 60″] spatial scale, as the representative surface
brightness of DGL. The measured intensities in g and r are
normalized by I100, the thermal emission intensity at 100 μm
from IRAS, with a CIB correction derived using the Planck
thermal dust model. We compared the Dragonfly measure-
ments with observations and models reported in the literature.
Our measurements match the models and do not suggest a clear
presence of extended red emission. This suggests that
upcoming Dragonfly measurements of the DGL, covering a
much larger sky area, will usefully constrain dust properties in
our MW.
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Appendix A
Demonstration of RHT on Simulated Images

In this section, we show the performance of the RHT
algorithm on simulated images to decompose cirrus using
morphological information described in Section 4.
The simulated images are generated with toy galaxy models

and mock ISM structures that mimic the cirrus emission. The
image size is [800× 800] pixel2. The mock galaxies are
injected 100 times at random positions using Gaussian models
with semimajor axis a ranging from 8″ to 15″ and ellipticity ò
ranging from 0 to 0.3. The amplitude (peak value) of the
Gaussian ranges from 1 to 2 ADU. The mock “cirrus-like”
emission is a 2D fractional Brownian motion field
(M. A. Miville-Deschênes et al. 2003) generated using the
simulator module in the TurbuStat package
(E. W. Koch et al. 2019) based on a 2D power spectrum with
a power index of γ=−3 expected from turbulence theories and
observations (T. N. Gautier 1992; M.-A. Miville-Deschênes
et al. 2007; M. A. Miville-Deschênes et al. 2016). An ellipticity
of 0.5 with a position angle of p

3
(defined as the angle clockwise

relative to the positive y-axis) is applied to generate the cirrus
image from the 2D power spectra. The cirrus image is
convolved with a Gaussian beam with an FWHM of 5″ to
smooth out minor structures. The mean surface brightness of
the mock cirrus is 1.5 ADU pixel−2. Finally, low-level
Gaussian noise (~5%) is added to the simulated image to
avoid computational singularities. A realization of the
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simulated image is shown in the left panel of Figure 14. The
injected toy models are indicated by magenta circles.

We apply RHT on the simulated images with a disk size of
= ¢D 2w , which is illustrated by the orange circle in Figure 14.

The output image H(x, y) after applying RHT is shown in the
middle and right panels of Figure 14. The detections above a
threshold of 3 after a cleaning requiring b/a> 0.5 are indicated
by the red circles. In comparison with the injections, a small
number of detections indeed result from mock cirrus emission
with similar morphologies to blobs within the target scale. The
masked map generated from the detections is shown in the right
panel. Overall, the injections are well recovered by the
algorithm, though some confusion from cirrus exists.

Appendix B
Comparison of maskfill and the GPR Approach

Section 4.3 introduces the procedures of infilling the masked
pixels, which include undersampled or saturated stellar cores,
blobby LSBG candidates, leftover foreground and background
sources missing in the flux modeling, and compact bright cirrus
knots/clumps. Here we show the comparison of the mask-
fill approach and the approach using GPR.

The experiment was run on a [400 x 400] pixel2 cutout of
mock cirrus generated in the same procedure as Appendix A
with a different random seed. We masked the bright part of the
cirrus with a circular aperture with a radius of 5 pixels and

randomly placed aperture masks with radii of 2–5 pixels to
mimic the masking from blobby emission and bright stars.
Small masks were randomly placed and grown to mimic
masking from undersampled cores of fainter stars and saturated
cores of intermediate bright stars. The masked image was
infilled separately by the maskfill approach in Section 4.3
and by the GPR approach. For the GPR approach, we used the
GaussianProcessRegressor utility in the scikit-
learn package. We adopted a radial basis function kernel
with a scale length fit range between 1 and 10 pixels. The
pixels were sparsely sampled by splitting into five folds (a
“fold” is an instance of a training sample) for computational
efficiency and cross-validation. In each fold, the GPR model
was trained with 80% of the measurements. The average of the
cross-validation outputs was taken as the output.
Figure 15 shows the zoom-in comparison between the

results, which displays [150 x 150] pixel2 cutouts in the high-
intensity regions of the input image (upper left), the ground
truth (upper right), the image infilled by the GPR approach
(lower left), and the image infilled by the maskfill approach
(lower right). Overall, both approaches produce similar results,
but in terms of computational time, the maskfill approach is
more efficient than the GPR approach. As noted in the text,
future work will explore more data-driven approaches with
fewer assumptions, such as the LPI approach (A. K. Saydjari &
D. P. Finkbeiner 2022).

Figure 14. Demonstration of disentangling “cirrus-like” emission from fuzzy blobs based on morphological information using RHT. Left: simulated image with
injections of mock galaxies and cirrus. The mock galaxies are indicated by the magenta circles. The orange circle shows the disk size used in the RHT. Middle: output
after applying RHT. The red circles indicate detections of blobs after cleaning. Right: simulated image after masking the sources in the middle panel.
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Appendix C
The Correlation of the DGL and Thermal Dust Tracers

Dust emission can be characterized by a number of different
tracers (e.g., optical depth, radiance, FIR intensity, etc.). In this
Appendix, we briefly clarify the correlations seen when
comparing optical dust emission from scattered light to various
tracers of thermal dust emission.

Consider a simple model in which a plane-parallel dust slab
is illuminated by ISRF at optical wavelength ν (L. G. Henyey
1937); the optical DGL can be written as

[ ] ( )( )w
w

=
-

-n
n

n
n

w t- - n nI I e
1

1 , C1,sca ,ISRF
1

where ων represents the albedo and Iν,ISRF is the incident
strength of ISRF. This does not include the scattering
anisotropy of dust grains, which has a Galactic latitude
dependence26 (e.g., K. Sano & S. Matsuura 2017). The effect
of multiple scattering is not considered either.

In the optically thin limit τν= 1, Equation (C1) approx-
imates to

( )w t t= µn n n n nI I . C2,sca ,ISRF

From Equation (6), τν at optical wavelengths is given by
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where nd(a) is the dust column density as a function of grain
size a, Qν,ext is the extinction efficiency as a function of grain
size, and Qν,ext is the equivalent extinction efficiency integrated
over grain size distribution. Qν,ext is determined by the dust
model. Combining Equations (C2) and (C3) and assuming
constant grain size distribution and composition, Iν,sca has the
correlation (when τν= 1)

( )tµnI . C4,sca 353

On the other hand, the optical DGL can also be expressed as

( )òn a n= á ñn n nI I d , C5,sca ,sca ,sca

Figure 15. Demonstration of mask infilling using the maskfill approach and the GPR approach. Upper left: [150 x 150] pixel2 cutout of the input image. Upper right:
the same cutout of the ground truth (mock cirrus in units of ADU). Lower left: cutout of the image infilled by the GPR approach. Lower right: cutout of the image
infilled by the maskfill approach.

26 A more complicated model including scattering and ISRF anisotropies can
be found in T. D. Brandt & B. T. Draine (2012), Equation A7.
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if defining aá ñn,sca as a (dimensionless) scaling factor that
scales DGL at frequency ν from the total scattered light,

( )
ò

a
n

n
á ñ =n

n n

n n

Q I

Q I d
, C6,sca

,sca ,ISRF

,sca ,ISRF

where Qν,sca is the scattering efficiency integrated over grain
size. aá ñn,sca is dependent on the dust model and the incident
ISRF. Based on the energy conservation law that the energy
absorbed equals the energy thermally emitted, Equation (C5)
leads to

( )òa
w
w

n= á ñ
-

n n nI I d
1

, C7,sca ,sca ,thermal

where w is the spectrum-averaged albedo. Therefore, by
definition of  (Equation (10)), Iν,sca has the correlation

( )µnI . C8,sca 

Note that radiance is less affected by optical effects because
FIR is nearly optically thin with little extinction.

Similarly, by defining a scaling factor sá ñ100,abs that converts
total thermal emission to IRAS 100 μm bandpass power (~0.52
for models from 0.5 to 1.5 times the local ISRF; T. D. Brandt &
B. T. Draine 2012), Equation (C7) leads to

( )a
a

w
w

µ
á ñ
á ñ -

n
nI I

1
, C9,sca

,sca

100,abs
100

which explains the observed correlation with IRAS 100 μm
intensities.

Finally, we can clarify the behavior of the correlation under
LTE. Using Equation (9),  can be analytically expressed in
terms of the gamma (Γ) and Riemann zeta functions (ζ),

( ) ( )
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b z b
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4 4
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where σSB is the Stefan–Boltzmann constant, kB is the
Boltzmann constant, and h is the Planck constant. Therefore,
the optical DGL has the following dependency:

( ) ( )
( ) ( )
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µ G + +
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The Λ(T, β) dependence on T and β has a small spatial
variation at high latitudes. In the example data set, the
fractional fluctuation dL

L
derived from the Planck thermal dust

model is ~0.09.
In summary, the two tracers (optical depth and radiance)

converge when (1) in the optically thin limit and (2) β and T do
not present a large spatial variation in the field of interest,
which typically holds at high Galactic latitudes (Planck
Collaboration 2014a). It is worth noting that Equation (C11)
does not hold at non-LTE regions. Therefore, caution needs to
be taken in these cases to assume the same correlations, e.g.,
dust scattering illuminated by a nearby OB star where
photodissociation, luminance, and scattering and thermal
emission from ultrasmall grains might occur.

Appendix D
Generation of Mock UDGs in the Injection-recovery Test

In Section 6.1, we generated mock UDGs, injected them into
the images, and recovered them after cirrus removal. Here we

describe the details of the galaxy model construction. The
mock UDGs were constructed using ArtPop, a Python package
for generating artificial observations of stellar systems with
synthetic stellar populations (J. P. Greco & S. Danieli 2022).
To accomplish this goal, we adopted a set of realistic
parameters as follows.
In the test presented in Section 6.1.1, a mock UDG with a

stellar mass of M* = 108 Me was created from the MIST
isochrones (J. Choi et al. 2016; A. Dotter 2016) using a simple
stellar population following a Kroupa initial mass function
(P. Kroupa 2001). The mock galaxy was set with a metallicity
of [Fe/H]=−1.5 and an age of 9 Gyr. The galaxy was placed
at D= 20Mpc and projected onto the image plane at the pixel
resolution of Dragonfly (2.85 pixel−1), where stars were
sampled following the distribution of a 2D Sérsic profile with
a Sérsic index nSérsic= 0.8, an ellipticity ò= 0.1, and an
apparent effective radius Reff= 20″ (~2 kpc at D= 20Mpc).
For computational efficiency, only stars brighter than a
magnitude limit of 32 mag in the g band were sampled, and
fainter stars were combined into an integrated component. To
convert the model into mock observations, we used the
observing configuration of Dragonfly (equivalent to a 1 m

Figure 16. Mean V-band surface brightness within the effective radius, μeff,V

(upper), and g − r color (lower) of the mass–metallicity grid models. The red
star indicates the fiducial model at log (M*/Me) = 8 and [Fe/H] = −1.5,
which is referred to in the main text. The model is fixed at a distance of 20 Mpc
with an age of 9 Gyr, a size of Reff = 20″ (~2 kpc at 20Mpc), and a Sérsic index
nSérsic = 0.8. Models with lower metallicity have bluer colors and appear
brighter at fixed mass. Note that the galaxy models do not include Galactic
extinction.
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telescope) with equivalent exposure time. We adopted the PSF
model retrieved in Section 3.1 with a seeing of FWHM= 5″.
The observed flux was transformed into the SDSS ugriz
photometric system given that Dragonfly's g and r filters match
that of SDSS. The integrated color of the mock UDG from the
stellar population synthesis is g− r = 0.54, and the effective
V-band surface brightness, μeff,V, is 26.0 mag arcsec–2. It
should be noted that the model does not account for Galactic
extinction; therefore, real LSBGs observed in the cirrus fields
with similar physical parameters would be redder and fainter.

In Section 6.1.3, we explored the parameter space of the
model galaxy by building a grid of UDG models in M* and
metallicity [Fe/H] and fixed the rest of the parameters (D, age,
Reff, nSérsic). The stellar mass varies from log M/Me = 7.5 to
8.5 at a step of 0.125. Metallicity is changed from [Fe/H] =
−2.2 to −0.8 at a step of 0.2. Note that M* serves as a
normalization that controls the mean surface brightness of the
candidates, which can be controlled accordingly by changing
the distance, size, and nSérsic. Likewise, given the age–
metallicity degeneracy in stellar population synthesis, a lower
metallicity is equivalent to a younger age, which produces a
bluer color. Figure 16 shows the variation of the mean surface
brightness μeff,V and the g− r of the grid models. Note that the
models, which were injected into the images without additional
extinction and reddening correction, do not take Galactic
extinction into account. Figure 17 shows the performance
metrics (recall, precision, and F-score) evaluated on the
original M*–[Fe/H] grid, which was reprojected into μeff,V
and g− r space in Figure 11. The UDG model used for the
demonstration in Section 6.1.1 is indicated by the red star in
Figures 16 and 17. As noted in the text, galaxies with the same
apparent surface brightness and colors will be intrinsically
brighter and bluer if overshadowed by optically thicker cirrus.
This will be important when connecting the physical
parameters to the apparent observables (i.e., from Figure 11 to
Figure 17), e.g., when evaluating the completeness of a survey,
but would not affect the demonstrative purpose of the
experiments for this work.
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