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The initial phase of the inspiral process of a binary system producing gravitational waves can be 
described by perturbation theory. At the third post-Minkowskian order a two-loop double box graph, 
known as H-graph contributes. We consider the case where the two objects making up the binary system 
have equal masses. We express all master integrals related to the equal-mass H-graph up to weight 
four in terms of multiple polylogarithms. We provide a numerical program which evaluates all master 
integrals up to weight four in the physical regions with arbitrary precision.
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1. Introduction

The initial phase of the inspiral process of a binary system producing gravitational waves can be described by perturbation theory [1–6]. 
Effective field theory methods [7–10] provide a link between general relativity and particle physics. There has been a fruitful interplay 
between these communities in recent years [11–36]. At the third post-Minkowskian order a two-loop double box graph, known as H-graph 
contributes. This is the most complicated graph entering the third post-Minkowskian order. The H-graph is shown in Fig. 1, where solid 
lines represent the two massive objects making up the binary system and dashed lines represent gravitons. In this article we consider 
the case where the two massive objects have equal masses, the more general case of unequal masses will be considered in a subsequent 
publication. We consider the H-graph in the relativistic setting without any non-relativistic approximations.

The H-graph with equal masses was first studied in ref. [37] in the context of quantum chromodynamics (where the solid lines 
represent massive quarks and the dashed lines gluons). In ref. [37] a set of canonical master integrals and the differential equation for 
these master integrals was derived. The differential equation is in ε d log-form (where ε denotes the dimensional regularisation parameter), 
however the arguments of the various d log’s contain several square roots. It is therefore not evident, if all master integrals can be 
expressed in terms of multiple polylogarithms or not.

In this article we present for all master integrals results up to weight four in terms of multiple polylogarithms. The challenge is not 
to express the top-level master integral with propagators all to power one up to weight four in terms of multiple polylogarithms. This 
particular integral is up to weight four rather simple and the result in terms of multiple polylogarithms is given in ref. [37]. What is 
not known and more challenging, are the analytic expressions of all master integrals up to weight four. This concerns in particular the 
remaining master integrals in the top-level sector and a few master integrals from sub-sectors.

Expressing all master integrals in terms of multiple polylogarithms would be straightforward if all arguments of the d log’s can be ra-
tionalised simultaneously. In the present case we expect that a transformation which simultaneously rationalises all square roots does not 
exist. However, the fact that not all roots can be rationalised simultaneously does not necessarily imply that the Feynman integrals cannot 
be expressed in terms of multiple polylogarithms, as shown for the first time in ref. [38]. By combining different techniques we are able to 
express all master integrals up to weight four in terms of multiple polylogarithms. It turns out that we may rationalise simultaneously all 
square roots except one. The square root, which cannot be rationalised in combination with the other square roots, appears up to weight 
four only in one master integral. This master integral can be evaluated in the Feynman parameter representation to multiple polyloga-
rithms. For all other master integrals we use the method of differential equations together with a rationalisation of the square roots.

We provide the results for the master integrals in electronic form in two ways: On the one hand, we provide symbolic expressions in 
terms of multiple polylogarithms for all master integrals up to weight four. On the other hand, we provide a numerical program, which 
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evaluates all master integrals up to weight four at a given kinematic point inside the physical region with a user-defined precision. We 
also would like to mention in passing “Loopedia” [39] as a usufull database for Feynman integrals.

This article is organised as follows: In section 2 we introduce our notation. The master integrals are defined in section 3. The differential 
equation for the master integrals is given in section 4. The method for the solution in terms of multiple polylogarithms is discussed in 
section 5. The results are presented in section 6. Finally, our conclusions are given in section 7. Appendix A describes in detail the 
electronic file attached to the arxiv version of this article, containing our results in electronic form.

2. Notation

We are interested in the H-graph shown in Fig. 1. Solid lines denote massive objects of mass m, dashed lines denote massless particles. 
In the application towards binary systems the two solid lines correspond to the two objects making up the binary system, the massless 
particles to gravitons. The name H-graph stems from the fact that the gravitons form the letter “H” (which in our figure is rotated by 90◦). 
We may express any Feynman integral with non-trivial numerators in terms of scalar integrals and hence it is sufficient to focus on scalar 
integrals. The H-graph has seven propagators (labelled 1, 2, 3, 5, 7, 8, 9 in Fig. 1). In order to express any scalar product involving the loop 
momenta as a linear combination of inverse propagators we have to consider an auxiliary graph with nine propagators shown in Fig. 2. 
Hence, we consider the integrals

Iν1ν2ν3ν4ν5ν6ν7ν8ν9 = e2γEε
(
μ2

)ν−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

9∏
j=1

1(
P j

)ν j
, (1)

where D = 4 − 2ε denotes the number of space-time dimensions, γE denotes the Euler-Mascheroni constant, μ is an arbitrary scale 
introduced to render the Feynman integral dimensionless, and the quantity ν is defined by

ν =
9∑

j=1

ν j . (2)

The inverse propagators P j are defined as follows:

P1 = − (k1 + p1)
2 , P2 = −k2

1 + m2, P3 = − (k1 − p2)
2 ,

P4 = − (k1 − p2 − p3)
2 + m2, P5 = − (k2 + p1)

2 , P6 = −k2
2 + m2,

P7 = − (k2 − p2)
2 , P8 = − (k2 − p2 − p3)

2 + m2, P9 = − (k1 − k2)
2 . (3)

The external momenta satisfy

p2
1 = p2

2 = p2
3 = p2

4 = m2. (4)

The Mandelstam variables are defined by

s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 , (5)

and satisfy

s + t + u = 4m2. (6)

We are interested in the integrals with ν4 ≤ 0 and ν6 ≤ 0. With the help of integration-by-parts identities [40,41] implemented in public 
available computer programs [42–45] we may reduce all integrals Iν1ν2ν3ν4ν5ν6ν7ν8ν9 with ν4 ≤ 0 and ν6 ≤ 0 to linear combinations of 25
master integrals. Thus we only need to compute 25 master integrals.

The essential complication in the computation of the master integrals is the occurrence of square roots. We encounter the following 
square roots:

r1 =
√

−s
√

4m2 − s,

r2 =
√

−t
√

4m2 − t,

r3 =
√

−s
√

4m6 − s
(
m2 − t

)2
,

r4 =
√

−s − t
√

4m2 − s − t. (7)

Note that we write√
−s

√
4m2 − s and not

√
−s

(
4m2 − s

)
. (8)

In the Euclidean region (s < 0, t < 0, m2 > 0) the arguments of all roots are positive and the two forms are equivalent. In regions where 
s > 0 or t > 0 we have to add a small imaginary part according to Feynman’s iδ prescription (s → s + iδ, t → t + iδ with δ > 0) and the 
two forms may differ. An example is provided by s = 25 and m2 = 4. We have (with the standard choice of the branch cut of the square 
root along the negative real axis)
2
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Fig. 1. The H-graph. Solid lines denote massive objects of mass m, dashed lines denote massless particles.

Fig. 2. The auxiliary graph with nine propagators. Solid lines denote massive objects of mass m, dashed lines denote massless particles.√
−s − iδ

√
4m2 − s − iδ

∣∣∣
s=25,m2=4,δ→0+ = −15,√

(−s − iδ)
(
4m2 − s − iδ

)∣∣∣∣
s=25,m2=4,δ→0+

= +15. (9)

The form in eq. (7) simplifies the analytic continuation from the Euclidean region to the physical region of interest.

3. Master integrals

We recall that for the number of space-time dimensions we set D = 4 − 2ε. As master integrals we use

J1 = ε2 I020000020,

J2 = ε2 (−s)

μ2
I020020100,

J3 = ε2 (1 + 4ε)

(1 + ε)

m2

μ2
I010020002,

J4 = ε2 (−s)

μ2
I001020002,

J5 = 1

2
ε2 r2

μ2 (2I020000012 + I020000021) ,

J6 = ε2 (−t)

μ2
I020000021,

J7 = ε2 (−s)2

μ4
I201020100,

J8 = ε3 r1

μ2
I111000020,

J9 = 2ε3 r1

μ2
I011020001,

J10 = ε3 r1

μ2
I020010101,

J11 = ε2 m2r1

μ4
I030010101,

J12 = ε2 (−s)
2

[
3
ε I020010101 + m2

2
I020020101 − m2

2
I030010101

]
,

μ 2 μ μ

3



P.A. Kreer and S. Weinzierl Physics Letters B 819 (2021) 136405
J13 = 2ε3 r2

μ2
I110000021,

J14 = ε3 (−s) r1

μ4
I111020100,

J15 = ε3 r3

μ4
I111000021,

J16 = ε3 r1

μ2

(
I111(−1)00021 − m2

μ2
I111000021

)
,

J17 = ε2 (−s) r2

μ4

(
m2

μ2
I111000031 − ε I111000021

)
,

J18 = 4ε4 r4

μ2
I011010011,

J19 = 2ε3 (−s) r2

μ4
I011010012,

J20 = 2ε3 m2r1

μ4
I011010021,

J21 = 1

2
ε2 (−s)

μ2

[
2

m2

μ2

(
m2

μ2
I021010021 − 2ε I011010021

)
− ε

(
2m2 − t

)
μ2

I011010012

]
,

J22 = ε4 (−s)
(
4m2 − s

)
μ4

I111010110,

J23 = ε4 (−s)2 r2

μ6
I111010111,

J24 = ε4 (−s) r1

μ4
I111(−1)10111,

J25 = ε4 (−s)

μ2

[
I111(−1)1(−1)111 + (−s)

μ2
I111(−1)10111 − (−t)

μ2
I111010110

]

+ε3 (−s)

μ2

[
−2ε I011010011 + 2

m2

μ2
I011010021 + 2I111(−1)00021 − 2

m2

μ2
I111000021

+ (−s)

μ2
I111020100 + I020010101 − 2

ε

m2

μ2
I030010101 − 4I011020001 − I111000020

]

+ ε2

(1 − 2ε)

(−s)

μ2

[
−ε

(−s)

μ2
I201020100 + 1

2
I001020002

]
. (10)

This choice coincides with the choice of master integrals in [37] up to relabelling and trivial prefactors.

4. The differential equation

We consider the derivatives of the master integrals J1- J25 with respect to the kinematic variables s, t and m2. The derivatives can 
again be written as a linear combination of the master integrals. This gives us the differential equation as

d J = A J , (11)

with

A = Asds + Atdt + Am2dm2. (12)

For the choice of master integrals as in eq. (10), the differential equation is in ε-form [46] and we write

A = ε

17∑
k=1

Ckωk, (13)

where the Ck ’s are 25 × 25-matrices, whose entries are rational numbers. The ωk ’s are differential one-forms. They are given by

ω1 = d ln

(−s

μ2

)
,

ω2 = d ln

(−t
2

)
,

μ

4
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ω3 = d ln

(
m2

μ2

)
,

ω4 = d ln

(
4m2 − s

μ2

)
,

ω5 = d ln

(
4m2 − t

μ2

)
,

ω6 = d ln

(
4m2 − s − t

μ2

)
,

ω7 = d ln

(−s − t

μ2

)
,

ω8 = d ln

(
2m2 − s − r1

2m2 − s + r1

)
,

ω9 = d ln

(
2m2 − t − r2

2m2 − t + r2

)
,

ω10 = d ln

(
(−s)

(
m2 − t

) − r3

(−s)
(
m2 − t

) + r3

)
,

ω11 = d ln

(
2m2 − s − t − r4

2m2 − s − t + r4

)
,

ω12 = d ln

(
st − r1r2

st + r1r2

)
,

ω13 = d ln

(
(−s)

(
4m4 − m2s − st

) − r1r3

(−s)
(
4m4 − m2s − st

) + r1r3

)
,

ω14 = d ln

(
p14 − q14r1r3

p14 + q14r1r3

)
,

ω15 = d ln

(
(−s)

(
t2 − 3m2t

) − r2r3

(−s)
(
t2 − 3m2t

) + r2r3

)
,

ω16 = d ln

(
p16 − q16r1r4

p16 + q16r1r4

)
,

ω17 = d ln

(
(−t)

(
4m2 − t

) + (−s)
(
2m2 − t

) − r2r4

(−t)
(
4m2 − t

) + (−s)
(
2m2 − t

) + r2r4

)
. (14)

In the definition of ω14 and ω16 the polynomials p14, q14, p16 and q16 appear. They are given by

p14 = (−s)

(
2m4

(
8m4 − 4m2t + t2

)
+ 2m2 (−s)

(
4m4 − 5m2t + 2t2

)
+ (−s)2

(
m2 − t

)2
)

,

q14 = 2m2
(

2m2 − t
)

+ (−s)
(

m2 − t
)

,

p16 = −8m4t + 2m2t2 + 10m2st − 8sm2
(

2m2 − s
)

− s (s + t)2 ,

q16 = 4m2 − s − t. (15)

In solving the differential equation we may always keep one variable constant. A typical choice would be m2 = μ2 = const. In this case 
ω3 = 0 and the number of non-zero differential one-forms reduces to 16, in agreement with the number reported in ref. [37]. The 
differential one-forms reported in ref. [37] can be written as linear combinations of the ones defined in eq. (14). We provide the matrix 
A in electronic form, see appendix A.

The differential equation eq. (11) is easily solved in terms of iterated integrals. In general, iterated integrals is defined as follows [47]: 
Let M be a n-dimensional manifold and

γ : [a,b] → M (16)

a path with start point xi = γ (a) and end point x f = γ (b). Suppose further that ω1, ..., ωr are differential 1-forms on M . Let us write

f j (λ)dλ = γ ∗ω j (17)

for the pull-backs to the interval [a, b]. For λ ∈ [a, b] the k-fold iterated integral of ω1, ..., ωr along the path γ is defined by
5
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Iγ (ω1, ...,ωr;λ) =
λ∫

a

dλ1 f1 (λ1)

λ1∫
a

dλ2 f2 (λ2) ...

λr−1∫
a

dλr fr (λr) . (18)

Multiple polylogarithms are a special case of iterated integrals, where all pull-back’s are of the form

γ ∗ω j = f j (λ)dλ = dλ

λ − z j
(19)

for some z j ∈ C. Allowing trailing zeros, we define multiple polylogarithms as G(z1, . . . , zr; λ) follows: If all z’s are equal to zero, we 
define G(z1, . . . , zr; λ) by

G(0, . . . ,0︸ ︷︷ ︸
r−times

;λ) = 1

r! lnr (λ) . (20)

This definition includes as a trivial case G(; λ) = 1. If at least one variable z is not equal to zero we define recursively

G (z1, z2 . . . , zr;λ) =
λ∫

0

dλ1

λ1 − z1
G (z2 . . . , zr;λ1) . (21)

The weight of the multiple polylogarithm G(z1, . . . , zr; λ) is r.
We would like to express the master integrals J1- J25 in terms of multiple polylogarithms. This would be straightforward if all ar-

guments of the logarithms appearing in eq. (14) would be rational functions in the kinematic variables s, t and m2. The obstruction is 
given by the occurrence of the square roots r1-r4. The occurrence of square roots is not always a problem. If there is a transformation of 
the kinematic variables, which simultaneously rationalises all square roots, we may again easily convert all iterated integrals to multiple 
polylogarithms. The challenge we face in converting all iterated integrals to multiple polylogarithms is related to the fact that we do not 
expect such a transformation to exist. The non-existence of a transformation has been proven in the slightly different case of two-loop 
corrections to the Drell-Yan process [48]. However, the fact that not all roots can be rationalised simultaneously does not necessarily imply 
that the Feynman integrals cannot be expressed in terms of multiple polylogarithms, as shown for the first time in ref. [38]. It only means 
that the method of differential equations does not lead in a straightforward way to multiple polylogarithms. Other methods, like direct 
integration in Feynman parameter space, may produce a result in terms of multiple polylogarithms.

5. Solution in terms of multiple polylogarithms

In this section we express all master integrals up to weight four in terms of multiple polylogarithms. Without loss of generality we set

μ2 = m2. (22)

We write

J i =
∞∑
j=0

J ( j)
i ε j (23)

for the expansion in the dimensional regularisation parameter ε and we compute for each master integral the coefficients J (0)
i - J (4)

i . Up 
to weight four the root r4 enters only the master integral J18, all other master integrals are independent of the root r4 up to weight 
four. The root r4 will enter other master integrals at higher weights. As the terms up to weight four are the relevant ones for two-loop 
calculations, we split the calculation of the master integrals into two cases: The first case consists of all master integrals except J18, the 
second case consists of the master integral J18.

5.1. The master integrals except J18

If we restrict our attention to the master integrals J1 − J17 and J19 − J25 up to weight four, we only have to deal with the roots r1, r2
and r3. These roots can be rationalised simultaneously. Up to weight four the root r3 appears only in the master integrals J15 − J17 and 
J24 − J25, the master integrals J1 − J14 and J19 − J23 involve up to weight four only the roots r1 and r2.

The roots r1 and r2 are rationalised by the standard transformations

s = − (1 − x)2

x
m2, t = − (1 − y)2

y
m2. (24)

The value s = 0 corresponds to x = 1 (and the value t = 0 corresponds to y = 1). It will be convenient to introduce

x̄ = 1 − x, ȳ = 1 − y. (25)

Then s = 0 corresponds to x̄ = 0 and t = 0 corresponds to ȳ = 0. In terms of x̄ and ȳ we have

s = − x̄2

1 − x̄
m2, x̄ = s

2m2
+ r1

2m2
,

t = − ȳ2

m2, ȳ = t
2

+ r2
2
. (26)
1 − ȳ 2m 2m

6
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With the help of the methods of refs. [49,50] we find a transformation, which rationalises in addition r3:

x̄ = 4x′ (1 − ȳ)
(
1 − x′ + x′ ȳ

)[
1 + (

1 − ȳ + ȳ2
)

x′] [
1 − (

1 − ȳ + ȳ2
)

x′] ,

x′ =
(1 − ȳ)

[
2x̄ − (1 − x̄) r3

m4

]
x̄
[

4 (1 − ȳ)2 − x̄
(
1 − ȳ + ȳ2

)2
] . (27)

The point x̄ = 0 corresponds to x′ = 0.
We integrate the differential equation from the boundary point s = 0, t = 0 (corresponding to x̄ = 0, ȳ = 0). The boundary values at 

s = 0, t = 0 are obtained from the results of ref. [37]. We first integrate in ȳ (on the hypersurface s = 0). In a second step we integrate in 
x̄ or x′ (on the hypersurface t = const).

Actually, ref. [37] provides the complete boundary data on the hypersurface t = 0 and one might be tempted to use this boundary 
data and integrate just in t (or ȳ). This is possible, but does not lead to compact final expressions. The reason is that integration in ȳ
for x̄ = const or x′ = const leads to polynomials of higher degree in ȳ in the arguments of the logarithms in eq. (14). We find it more 
convenient to first integrate in ȳ, and then in x̄ or x′ , as opposed to the other way round.

We use the integration variable x̄ for all iterated integrals not involving the square root r3, while the integration variable x′ is used 
for iterated integrals involving the square root r3. This is unproblematic for all iterated integrals not involving trailing zeros. For iterated 
integrals with trailing zeros some care has to be taken, related to the fact that

dx̄

dx′

∣∣∣∣
x′=0

= 4 (1 − ȳ) . (28)

Consider ln(x̄), which corresponds to

x̄∫
0

dx

x
=

x̄∫
0

d ln (x) . (29)

Of course, strictly speaking the integral in eq. (29) does not equal ln(x̄). It is divergent due to the singularity of the integrand at the lower 
integration boundary. However, it is standard practice to imply a regularisation and renormalisation procedure and to assign ln(x̄) to the 
integral in eq. (29). From eq. (27) we have

ln (x̄) = 2 ln (2) + ln (1 − ȳ) + ln
(
x′) + ln

(
1 − x′ + x′ ȳ

)
− ln

[
1 +

(
1 − ȳ + ȳ2

)
x′] − ln

[
1 −

(
1 − ȳ + ȳ2

)
x′] . (30)

Consider now ω = d ln(x̄), which we would like to integrate on the hypersurface ȳ = const from x̄ = 0 to x̄. If we change variables from x̄
to x′ and integrate on the hypersurface ȳ = const from x′ = 0 to x′ we miss the terms 2 ln(2) + ln(1 − ȳ) as

2d ln (2) + d ln (1 − ȳ)| ȳ=const = 0. (31)

We see that a change of variables as in eq. (27) implies also a change of the renormalisation prescription for iterated integrals with trailing 
zeros. Of course we would like to have a uniform prescription for all iterated integrals. To this aim we isolate all trailing zeros in multiple 
polylogarithms in the variable x′ in powers of logarithms ln(x′) and make the substitution

ln
(
x′) → ln

(
x′) + ln (1 − ȳ) + 2 ln (2) . (32)

Alternatively, we may use instead of the variable x′ a variable x′′ = 4(1 − ȳ)x′ , for which

dx̄

dx′′

∣∣∣∣
x′′=0

= 1. (33)

For the integration in ȳ we have the alphabet (with upper integration limit ȳ)

A ȳ = {0,1,2} , (34)

for the integration in x̄ we have the alphabet (with upper integration limit x̄)

Ax̄ =
{

0,1,2,1 + y,
1 + y

y

}
, (35)

while for the integration in x′ we have the alphabet (with upper integration limit x′)

Ax′ =
{

0,
1

y
,

1

1 − y + y2
,

1

1 + y + y2
,− 1

1 − y − y2
,− 1

1 − y + y2
,

1

1 + y − y2
,− 1

1 − 3y + y2
,

− 1 + y
3
,

1 + y
2 3

, x′
1, x′

2

}
, (36)
1 − 2y − y 1 + 2y − y

7
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Fig. 3. The topology for the master integral J18. This topology has four master integrals J18- J21. Up to weight four the square root r4 enters only J18.

where x′
1 and x′

2 are the solutions for x′ of the equation

(y4 − 2y3 + y2 − 2y + 1)x′2 + 2yx′ − 1 = 0. (37)

Up to weight four we obtain 44 different multiple polylogarithms from the integration in ȳ, 144 different multiple polylogarithms from 
the integration in x̄ and 4289 different multiple polylogarithms from the integration in x′ . This is not surprising: The larger the alphabet, 
the more possibilities there are for an ordered sequence of up to four letters.

5.2. The master integral J18

Up to weight four the root r4 enters only the master integral J18. The topology of this master integral is shown in Fig. 3. The Feynman 
integral J18 starts at O(ε4) and as we are only interested in terms up to weight four, we only need to compute J (4)

18 . The master integral 
J18 appears also as a sub-topology in the two-loop corrections for Bhabha scattering [38,51]. We follow the lines of ref. [38] and compute 
this integral from the Feynman parametrisation

J (4)
18 = 4r4

∞∫
0

dα2

∞∫
0

dα5

∞∫
0

dα9

∞∫
0

dα3

∞∫
0

dα8
δ (1 − α8)

UF
, (38)

with

U = (α2 + α3) (α5 + α8) + (α2 + α3)α9 + (α5 + α8)α9, (39)

F = α3α5α9 (−s) + α2α8α9

(
2m2 − t

)
+

[
α2

2 (α5 + α8 + α9) + α2
8 (α2 + α3 + α9)

]
m2,

combining the methods of linear reducibility [52] with the algorithms for the rationalisation of square roots [49]. For the former we 
use the program “HyperInt” [53], for the latter the program ‘RationalizeRoots” [50]. This allows us to express J (4)

18 in terms of multiple 
polylogarithms. We obtain an alphabet with 23 letters and an expression for J (4)

18 in terms of 2330 different multiple polylogarithms.

6. Results

Albeit the fact that the result for the scalar double box integral J23 is rather compact,

J23 = 4 [G (1,1,1; ȳ) + ζ2G (1; ȳ)]ε3 + 4 {2G (2,1,1,1; ȳ) + 2G (0,1,1,1; ȳ) − 2G (1,1,2,1; ȳ)

−2G (1,1,0,1; ȳ) + 2ζ2 [G (2,1; ȳ) + G (0,1; ȳ) − G (1,1; ȳ)] − ζ3G (1; ȳ)

+2 [G (1,1,1; ȳ) + ζ2G (1; ȳ)] [G (1, x̄) − 2 ln (x̄)]}ε4 +O
(
ε5) , (40)

some of the other master integrals have rather involved expressions in terms of multiple polylogarithms. For this reason we give the 
results in electronic form. On the one hand, we provide symbolic expressions in terms of multiple polylogarithms for all master integrals 
up to weight four. On the other hand, we provide a numerical program, which evaluates all master integrals up to weight four at a 
given kinematic point inside the physical region with the help of the numerical evaluation routines for multiple polylogarithms of GiNaC 
[54,55]. The files are described in more detail in appendix A.

Physical regions in the kinematic space are (we always assume m2 > 0)

Region I: s < 0, t < 0, u > 4m2,
Region II: s < 0, t > 4m2, u < 0,
Region III: s > 4m2, t < 0, u < 0.

Region I is the Euclidean region, region II is the one relevant to the inspiral process of a binary system, region III corresponds in particle 
physics to the annihilation-creation process. We first derive the result in the Euclidean region. The result may be analytically continued 
8
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Table 1
Numerical results for the first five terms of the ε-expansion of the master integrals J1- J25 at the kinematic point of eq. (44).

ε0 ε1 ε2 ε3 ε4

J1 1 0 1.6449341 −0.80137127 1.8940657

J2 −1 −3.5835189 −6.420804 −4.4642058 7.8627655

J3 −0.5 0 −4.1123352 −4.407542 −40.992992

J4 1 7.1670379 24.038282 36.746282 −39.627704

J5 0 −0.96242365 + 3.1415927i −23.544931 − 5.0561983i −18.55474 − 71.841236i 92.319226 − 171.0195i

J6 0 0 −8.9433451 − 6.0470861i 10.268808 − 29.261043i 36.85189 − 50.345329i

J7 1 7.1670379 24.038282 43.958624 21.804329

J8 0 0 8.9398354 48.985113 168.17193

J9 0 0 −17.879671 −168.99678 −962.19027

J10 0 0 0 3.4772053 19.173012

J11 0 0 4.4699177 45.726399 286.64965

J12 0.25 0 −2.7991685 −3.7744625 40.39835

J13 0 0 0 −24.14137 − 11.639717i −86.425957 − 104.64508i

J14 0 0 −8.9398354 −81.021183 −386.4065

J15 0 0 0 31.53239 + 23.957578i 274.64809 + 294.78346i

J16 0 0 0 −31.553588 − 24.931446i −270.62397 − 299.81333i

J17 0 −0.48121183 + 1.5707963i −7.3256456 + 8.7298576i −26.79551 + 15.696906i 17.270388 − 14.29595i

J18 0 0 0 0 −221.70403 − 52.195623i

J19 0 1.9248473 − 6.2831853i 29.302582 − 34.91943i 131.32341 − 51.147906i 62.917726 + 164.00682i

J20 0 0 −8.9398354 −56.904487 + 49.862893i −167.11741 + 635.25378i

J21 0.5 3.5835189 9.1924025 − 3.0235431i 8.1915237 − 23.451378i 60.572872 − 56.78219i

J22 0 0 0 0 79.920657

J23 0 0 0 12.070685 + 5.8198587i 101.45906 + 57.936199i

J24 0 0 0 0 −47.316121 − 24.238497i

J25 0.5 3.5835189 12.019141 18.373141 88.819635 + 7.6301454i

to other regions. The analytic continuation can be done by giving the variables s and t a small imaginary part according to Feynman’s 
iδ-prescription

s → s + iδs, t → t + iδt, δs, δt > 0, (41)

provided the following two conditions hold: There is a continuous path in kinematic space from the Euclidean region to the kinematic 
point of interest, such that

1. no branch cut of the square roots is crossed,
2. no branch cut of the multiple polylogarithms is crossed.

Requirement 1 is rather easy to satisfy for all real values of s and t: We use the form of the square roots as in eq. (7). The replacement in 
eq. (41) selects the correct branch of all square roots except possibly the square root√

4m6 − s
(
m2 − t

)2
. (42)

For s > 4m6/(m2 − t)2 the argument of the square root is negative and the correct branch of the square root is selected by the imaginary 
part of s. The kinematic variable t enters only in the combination (m2 − t)2 and a possible small imaginary part of t is not relevant for 
the selection of the branch cut. Thus we set in the case s > 4m6/(m2 − t)2 and 0 < t < m2

δt <

(
m2 − t

)
2s

δs. (43)

This ensures that the small imaginary part of s dominates over the small imaginary part of t . In all other regions we set δs = δt .
Requirement 2 is more subtle. For all multiple polylogarithms we extract trailing zeros and then normalise the upper integration limit 

in the multiple polylogarithms to one. Thus requirement 2 translates to the requirements that no argument of an explicit logarithm 
(obtained from extracting trailing zeros) crosses the negative real axis and no letter of a multiple polylogarithm crosses the line segment 
[0, 1].

If a crossing occurs and the final value is within an infinitesimal distance from the branch cut, we may try to rescue the situation by 
modifying the relative size of δs and δt . If this is not possible or if the final value is a finite distance away from the branch cut, we have 
to compensate the branch cut crossing by adding the corresponding monodromy.

We have scanned several kinematic points and found that a branch cut crossing of explicit logarithms or multiple polylogarithms 
occurs only in the unphysical region s > 0 and t > 0. As our main interest are the physical regions I, II and III, our program implements 
the analytic continuation as in eq. (41) with δs = δt .

As a reference point we give here numerical results for the point

s = − 1
GeV2, t = 5 GeV2, m2 = 1 GeV2. (44)
36

9
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This is a point from region II. We set μ2 = m2. The values of the master integrals at this point are given to 8 digits in Table 1. In addition 
we verified the first few digits at several other kinematic points with the help of the programs sector_decomposition [56] and 
pySecDec [57–60].

7. Conclusions

In this article we presented the results for all master integrals associated to the two-loop H-graph with equal masses and up to weight 
four in terms of multiple polylogarithms. The challenge in obtaining this result is the occurrence of four square roots in the differential 
equations for the master integrals. Although we cannot rationalise simultaneously all square roots, we were nevertheless able to express all 
master integrals up to weight four in terms of multiple polylogarithms. The techniques we used carry over to more complicated Feynman 
integrals, in particular the H-graph with unequal masses can be treated along the same lines.
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Appendix A. Supplementary material

Attached to the arxiv version of this article is an electronic file hequal-1.0.0.tar.gz. This file contains symbolic expressions in 
terms of multiple polylogarithms for all master integrals and a numerical program to evaluate all master integrals up to weight four at a 
given kinematic point in the physical region.

After unpacking, the symbolic expressions can be found in the file

supplementary_material.mpl

in the maple_files-directory. The file supplementary_material.mpl is in ASCII format with Maple syntax, defining the quanti-
ties

A, log_lst, letter_lst_ybar, letter_lst_xbar, letter_lst_xp, letter_lst_J18, J.

The matrix A appears in the differential equation eq. (11)

d	J = A	J . (45)

The entries of the matrix A are linear combinations of ω1, ..., ω17, defined in eq. (14). These differential forms are denoted by

omega_1, ..., omega_17.

The dimensional regularisation parameter ε is denoted by eps. The variables s, t , y, ȳ, x̄, x′ , x′
1 and x′

2 are denoted by

s, t, y, ybar, xbar, xp, xp_r1, xp_r2,

respectively. The square roots are denoted by r1, r2, r3 and r4. The expression for J18 involves two additional roots, which are denoted 
by r7 and r8 and defined by

r7 = √−s
√−t, r8 =

√
4m4 − st. (46)

The zeta values ζ2, ζ3, ζ4 are denoted by

zeta_2, zeta_3, zeta_4.

The lists

log_lst, letter_lst_ybar, letter_lst_xbar, letter_lst_xp, letter_lst_J18

contain the definitions for single logarithms and the letters of the various alphabets. The vector J contains the results for the master 
integrals up to order ε4 in terms of multiple polylogarithms. For the notation of multiple polylogarithms we give an example: G(l1, l2, l3; 1)

is denoted by

Glog([l_1,l_2,l_3],1).

The numerical program to evaluate all master integrals up to weight four at a given kinematic point requires the GiNaC library to be 
installed. Running the commands

./configure
make
cd bin
./hequal

will compile and run the numerical program hequal in the bin directory. The user may modify the variables Digits, s, t, m2 in 
hequal.cc. The variable m2 denotes the mass squared m2.
10
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .physletb .2021.136405.
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