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Abstract

Inspired by Okounkov’s work (2001) [20] which relates KP hierarchy to determinant point process, we
establish a relationship between BKP hierarchy and Pfaffian point process. We prove that the correlation
function of the shifted Schur measures on strict partitions can be expressed as a Pfaffian of skew symmetric
matrix kernel, whose elements are certain vacuum expectations of neutral fermions. We further show that
the matrix integrals solution of BKP hierarchy can also induce a certain Pfaffian point process.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There is a connection revealed by Okounkov [20] between random partitions and KP hier-
archy of type As. He introduced the Schur measure of a partition A which is proportional to
855 (x)s5. (), where s, is the Schur function. Then the correlation function can be realized as a
determinant point process via the Fock space formalism, which satisfies the KP (or 2d-Toda lat-
tice) hierarchy. In Kyoto school’s picture, there are different ways to describe the tau function of
KP hierarchy of type A [2,5,13]. On one hand, the tau function can be viewed as an element
in the Bosonic Fock space (the space of symmetric functions), and thus it can be expressed in
terms of Schur functions. On the other hand, the tau function can also be viewed as a vector
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in the Fermionic Fock space (the infinite wedge space). The Boson—Fermion correspondence
is an explicit isomorphism between these two spaces, via which a relationship between Schur
functions and vacuum expectations of fermions is obtained, and this is the reason why the
Boson-Fermion correspondence of type A, plays an important role in Okounkov’s approach.
The infinite wedge space also appears in [4,21] on Schur process and in [28] on a Toeplitz-type
determinant point process.

Moreover, besides KP hierarchy of type Ao, there are KP hierarchies of other types. One of
them is of type Bso, which we call BKP hierarchy for short. BKP hierarchy was introduced and
studied in details by the Kyoto school [6,13]. Many phenomenons in BKP hierarchy are parallel
to the cases of type Aso. For example, in [19] Okounkov found that the generating functions
for the Hurwitz numbers of certain ramified coverings of CP! are the 2d-Toda tau functions,
and parallelly Natanzon and Orlov [17] showed that the generating functions for the weighted
Hurwitz numbers of certain branched coverings of RP? are BKP tau functions. Another analogy
between type A, and B, is also important: in the case of type B, the corresponding tau
function can be described in the language of neutral fermions. Therefore, many results derived
by using free fermions in the Ao, case can be generalized to the By, case, if one instead uses
neutral fermions. For instance, in [8] neutral fermions are used to obtain volume-weighted plane
partitions, which is analogous to the fact that free fermions can be used to obtain plane partitions
[21]. Moreover, as the BKP tau functions can be described respectively in the Bosonic picture
and the Fermionic picture [30], the Boson—Fermion correspondence of type B, allows us to
relate projective Schur functions to vacuum expectations of neutral fermions.

Inspired by these facts, we generalize Okounkov’s results to BKP hierarchy in this paper. We
consider the shifted Schur measure M on strict partitions [25], whose weight of X is proportional
to P, (x)Q,.(y), where P, (x) and Q; (y) are projective Schur functions. For a finite set A € Z,
the correlation function is defined as the probability that the set o (A) = {A;} containing A. In
Theorem 3.3, we prove that

p(A) = PE(K (a7, 4))ay.a) 4, (L1)

and thus we can relate the BKP hierarchy to a Pfaffian point process.

The same result has been obtained by Matsumoto [16], who calculated the correlation function
using operators on the exterior algebra. Later, Vuleti¢ [29] generalized Matsumoto’s result to
the shifted Schur process and related it to a Pfaffian point process. Both these two articles are
generalizations of Okounkov’s results [20,21], and they mainly focused on the measures of strict
partitions. However, in our article, we start with a different point of view. We use the neutral
fermions to do calculations and pay more attention to its connection with the theory of integrable
hierarchy. Moreover, since the tau function of BKP hierarchy plays a key role in Pfaffian point
process, we turn to a specific T-function—the matrix integrals solution to BKP hierarchy and
find its connection with some certain Pfaffian point process. Interestingly, an explicit Pfaffian
point process with skew symmetric matrix kernel is induced by the matrix integrals solution of
BKP hierarchy, which generalizes the Pfaffian point process in [24] and unify a certain Pfaffian
point process with arbitrary points rather than the points of even number.

The rest of this paper is arranged as follows. In Section 2, we review some basic facts on
neutral fermions and the Fock space for BKP hierarchy. In particular, we introduce the Boson—
Fermion correspondence of type Bso. In Section 3, projective Schur functions are introduced in
terms of neutral fermions and we use them to construct a measure on strict partitions, thus prov-
ing that the correlation functions can be realized as a Pfaffian point process. In Section 4, a certain
Pfaffian point process is constructed from the matrix integrals solution of BKP hierarchy.
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2. A brief introduction to neutral fermions

In [13], neutral fermions {¢,, n € Z} were introduced to construct the spin representation of
By which derive the BKP hierarchy finally. In this section, we give a brief introduction to the
method proposed by Jimbo and Miwa.

Introducing the neutral free fermions {¢,, n € Z} by the relations

Yn + (D)"Y,
= —ﬁ ,
where {v;, ¥, i € Z} are standard charged free fermions satisfying the anti-involution relations
[i. ¥l =6i.j and [, ¥4 = [, Y714 = 0, it turns out
[¢mv ¢n]+ = (_1)m8m,—n'
Let Wp be the complex space spanned by {¢,,n € Z} and denote CI(Wp) as the Clifford

algebra generated by Wp, then the right Fock space for neutral fermions can be defined by

F =CL(Wg)/CLW)(Y_ Coy),

n<0

¢n

and we denote |0) as the residue class of 1 in Fg. Similarly the left Fock space can be defined by
T =Cl(Wp)/(D_ Cn)CL(Wp),
n>0
and (0| is the residue class of 1 in F.
Clearly, from the above definition, we have
¢m|0) =0, m <0 and (0|, =0, m >0,

and thus

Fp =span{dy, - ¢n [0)},  Fp=span{(Ol¢_n; -~ ¢—p }, withny>--->nr>0.

There is a nondegenerate bilinear pairing 75 x Fp — C, and we write the pairing of (U]
and |V) as (U|V). The vacuum expectation value of an operator A is defined as (0|A|0), and is
denoted as (A). We have

(_1)m6m,—na n>0,
(Bmn) = %Sm,(% n=0,
0, n<0.

By using Wick’s theorem, one has

LI o (eI kd}
@@ dGw) =5 [] 5 ey @.1)

i<i

Moreover, a Hamiltonian in terms of neutral fermions can be defined as

1 i
Hy=23 (=" gidion. (2.2)

i€eZ
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Remark 2.1. Here we would like to mention that H,, has an original definition as
1 ; .
Hy=2) (=0 if n#0
i€Z
where : -: is the normal order of fermions. This is because
1 1
Hy=2 ) ibibeioni=5 ) (@ithion — ($ichin)).
i€Z i€z
We have known that (¢;¢p_;_,) = 0 if n # 0, therefore it follows (2.2).
Remark 2.2.In the neutral fermions case, H, equals zero if n is a nonzero even number.
The reason lies in the fact that for an arbitrary integer i = n, there exists i’ = —n — m, such
that (=) ip_i_p + (=D Ty = (=" [p, —n—m]4+ = 0 if n € 2Z\{0}, which

means H, = 0 if n is a nonzero even integer. In the followings, we assume 7 is an odd number
without extra statement.

In the next, some properties of the Hamiltonian H,, are demonstrated. Firstly, it is shown that
{H,,n € 2Z + 1} form a Heisenberg algebra.

Proposition 2.3.

n
[Hn, Hm] = ESn—i-m,O- (23)

Proof. Since

[idj, pxdi] = (=178 iy — (—1)'8i _xdjpr + (= 1) 8; _1wpi — (= 1)'8i _1wp;,
then it follows
1 .
[y, Hol = 5 Z (D" [Gidi—ns §jP—j—m]
i,JEZL
1 . .
=22 N T b = DG
JjEZ
+ (=D jmmen — (1) b j—m—n],
noticing that H, # 0 only in the cases of n € 2Z + 1, therefore,
1 .
[Hns Hm] = E Z(_l)] [_¢j—n¢—j—m - ¢j¢—j—m—n]
JEZ

which equals O if n +m #0and 5 ifn +m =0. O

Moreover, if we introduce the current operators
Hi(r) = Z WHy, H_(t)= Z txH_y,
k>1,0dd k>1,0dd

then from a direct computation, one could obtain
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k
(Hy@), H-O1= ) Stet. (24)

k>1,0dd
In what follows, we introduce some properties of the current operator H, (¢) (respectively H_(t))
which are helpful for us to derive integrable systems and Pfaffian point processes.

Proposition 2.4. For current operators H(t) and H_(t), they satisfy

Ho()|0)=0, (0]H_(t)=0.

Proof. Since H, = ;;(—D)T¢;p_;_, (n > 0), thenif i <0, itis obvious that ¢;¢p_;_,|0) =
0. At the same time, when i > 0, —i —n < 0, ¢;¢p_;_,,|0) = 0 could also be verified. Noticing
that i > —n and i < 0 could run over the whole integer axis, therefore H,|0) = 0 if n > 0. Then
one can conclude H, (¢)|0) = 0, and by the same manner, (0| H_(¢) = 0 is established. O

Remark 2.5. It directly follows that e+|0) = |0) and (0]ef-®) = (0.

Proposition 2.6. Denote ¢(z) =Y ;. $iz', then it follows
[Hi(),6@1=( Y 12" (), (2.5)

n>1,odd
and consequently, it turns out
M 0¢ @)1 = 519 (2), (2.6)

where £(t,2) =3, o1 pqa 7"

Proof. Before proving this result, firstly we should verify

[Hp, ¢ ()] =2"9(2).
It comes true because
s el = = S D™ @il i1 — (01, Dids b i)
n» Pk 2iEZ i P—i—n> Pkl+ is Pk I+-P—n—i
1
= (DT = (D) = i,
and

[Hy, ¢@1=) [Hy, iz =) drnd 2" =7"9 ().

keZ keZ

Therefore, equation (2.5) can be obtained directly from the above computation and equation (2.6)
can be verified by Lemma 3.35in [10]. O

Remark 2.7. It is noted that for the dual current operator

1
Hoo= ) tulay=5 ) D" agugn,

1e27+1 neZ,le2Z+1

it follows
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H-(1).¢@]=( Y 1227 hp@). e Dp@e -0 = - Dp o), 2.7)

1€2Z+1

which is of importance when the dual is taken into consideration in the derivations of integrable
systems and Pfaffian point process.

Now, we are about to demonstrate the Boson—Fermion correspondence of type Bo. Firstly,
we consider the following spaces of even and odd elements respectively:

]'—109 = Span{¢n1 e ¢”2k |O>}v f}? = Span{‘f’m e ¢n2k+l |O>}

Then we have the decomposition Fp = ]-'g e F 113. Moreover, each fé is isomorphic to
C[x1, x3,---] and this isomorphism is called the Boson—Fermion correspondence of type Bso
[30]:

op:Fp=Clw,x1,x3,---1/~
1

U) = Y w'(ile™ ),
i=0

. . . 1
where ~ is a relation w? ~ 1, i.e. we regard w? as 1, and [1) =22¢9]|0).
Note that o5 induces isomorphisms on each components. For i =0, 1, one has

of: Fp=Clxy,x3,---]
1U) — (ile+D|U).

Under the isomorphism op, for n > 1 odd, the Heisenberg action of H,, can be realized on

n
Clx1,x3,---]as ,and H_, as %

Xn

Conversely, we can realize the fermionic action of ¢; on Clw, x1, x3,---]/ < w?—1>.Letus

introduce the vertex operator X p(z) = 50 e=601.27D) and its dual X p(z) = e 02 f0-,0)
with notation 0+ = (20, %B,ﬂ, --+), then it follows

Proposition 2.8.
op@(IU)) =2 TwX p()op(U)).

This proposition is stated in an equivalent form in [6,14,27]:
Xp(@)(0le™ O =23 (11 Vg (). Xp@)(1e© =23(01e™ Vg (z).
Since the proof is ignored in these articles, for readers’ convenience, we give a brief proof in
Appendix A, which is also helpful in finding integrable hierarchies.

3. Schur Q-functions and Pfaffian point process

In this section, a Pfaffian point process is given in terms of neutral fermions. The basic facts of
Okounkov’s work are reviewed firstly. For a positive integer n, a partition A of n is a set of positive
integers Ay > Ay > --- > A; >0 withn =A; 4+ ---+ X, and it is denoted by A = (Aq, -+, A7).
The number |A| = n is called the weight of A, and /(A) = is called the length of A. We can
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also define the partition of 0, which is denoted by A = 0. In [20], Okounkov defined the Schur
measure on partitions. For a partition A, the measure of A is proportional to s, (x)s (y), where s,
is the Schur function. Under the Boson—Fermion correspondence, s, can be written as the image
of an element in the Fermionic Fock space, and then the correlation function is expressed as the
vacuum expectation of certain fermions, which can be realized as a determinant point process by
using Wick’s theorem. It is shown that the determinants are tau functions of 2d-Toda hierarchy
of integrable nonlinear partial differential equations of Ueno and Takasaki [26]. A good review
for this result can be found in [3].

What we are going to do in this section is to apply Okounkov’s discussion to strict partitions.
A partition A = (A, - - -, A7) is called a strict partition if A, - - - , A; are distinct. The set of all strict
partitions is denoted by DP. In [25] the shifted Schur measure was defined on DP as follows:

I +xiy;
1—x;y;’

1
M@ =—P 0, Z=) RmG(»=]]

1eDP i,j
where P (x) and Q;(y) are Schur P-function and Schur Q-function respectively, which are de-
fined later. For a finite subset A € Z_, we can define the correlation function

p(A) = M({r, ACoM)}),

where o (1) = {A;}. To compute the correlation function, we need to express Py (x) and Q,(y)
as images of elements in the Fock space of neutral fermions under the Boson—Fermion corre-
spondence of type Bo,. Now let us give a definition of P, (x) and Q; (y) in terms of the neutral
fermions.

Consider the expansion (cf. [15,18])

D=3 qunst,
k>0

then from the equation (2.6), one can conclude

1
eH+(t)¢l,efH+(t) — Z Clk(il)@—k-
k>0

Then it is not difficult to compute that
<0|EH+(I)¢1.¢J.|0> — (0|6H+(1)¢ie—H+(t)eH+(t)¢je—H+(t)|0>
— G <1r>+i( D g (50450 oD
—2‘11 ) qj ) £ qk+i ) qj—k 51
On the other hand, it is easy to compute the orthogonality condition
1= P02 = % " gi(ng; (-0,
i,j=0

Fori + j =n > 0, one can obtain

D (=1 gi(t)ga—i(t) =0.

i=0

This equation is trivial for n odd and if n = 2m, one can obtain
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am(®* +2) (=1 guix (g1 (1) =0,

k=1
which helps to define
b
ap®) = qa®qp®) +2 Y (=1 qasiO)gp—i (1) (32)

k=1
with the property

Qa,b(t) = _‘Zb,a(t)’ da,a (t)=0.
Moreover, from equations (3.1) and (3.2), one knows
1
201"+ $ap10) = gap (51)-

Therefore, for a strict partition with even length A = {(A1, -+, A2,)[A1 > -+ - > A2, > 0}, we can
define a related Schur Q-function [15,30]

1 1
0351 =Pf(gs, 2, (D)1= j=on = PEQO1™ V110011 j <on

= 2@ (O|€H+(t)¢)»1 e ¢)‘2n |0)

For a strict partition with odd length, the related Schur Q-function can be defined as

0 qk],kz(%t) q)q,)»zn_](lt) Clkl(lt)
| Gy (31) 0  Gaaa (51 @y (50)
oGn=rr| : : ;
‘])»2;171,?»1(%’) q)LZn—Iy)Q(%t) 0 q)LZn—](%t)
_qkl(%t) _Q)Lz(%t) _CI)»zn—l(%t) 0

1(W)+1

= Pf(2(0le™ Dy, 310))i j=1... 2n—1.0=2 2

With the Miwa transformation

2
t, = - Zx{’, n odd,
1

01Dy, - iy, $010).

the following theorem is established [30].

Theorem 3.1. For a distinct partition A = (A1, --- , A;) € DP, we have

L)
2

01(0) =27 60(ps, - dr e ()) =22 (0 Dy - g, (V).
where
0 L()) is even,

A) =
D=V 10 s odd.

Remark 3.2. One can also define the Schur Q-function by 7_ part, which corresponds to the
other Miwa variables
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fop= %Zy{', n odd.
i
For the distinct partition A € DP, one has
0:(») = (~DH2F @) g_s, - §s, - )0).
Another symmetric function, the Schur P-function P, (x), can be defined as

Pi(x) =270, (x)

such that (P, Q) = 8, . It is straightforward to write P; in the terms of neutral fermions by
Theorem 3.1 and Remark 3.2.
Now we are ready to demonstrate the following theorem.

Theorem 3.3. The correlation function can be expressed in terms of neutral fermions as

1 1
pA)=— D7 P00 =0l ([T (=1)gud-a)e™V0).

ACo () acA

Moreover, it can be expressed as a Pfaffian point process

p(A) =PK (ai,aj))a.ajexa. K(a.b)= (0D =g, et~ 0]0).
(3.3)

Proof. By using Theorem 3.1, one can basically obtain

Ole™ 0 = 3" (~ M2 P @) @)l by

».€DP
)
-0y = Z 277 Qu(V)ba, byl (V).
».€DP
Moreover, for two partitions A = (A1, -+, A7) and w = (@1, -+, k), one has

@)Dz, - Py By - Dl () = (= DIHs;

then it is true that

> P00y = 0l O(JT(= D Padp-a)e™V10).

ACo(X) acA

In addition, since

1
logZ = (og(l +xiy;) —log(l =xiy) =Y 3+ (1= (=D")xfy]

i,J i,j k>0
2 n
n.n
DD NENIE
i,j n>0,0dd n>0,0dd

and by the use of (2.4), we can get e+ e=H-() = 7H-(0=H+(®) Finally, if we denote G =
e+ e=H-() and &; = G¢; G~ !, it follows
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p(A) = 01" O[T 1 up-0e™ 10)

acA

1
= E(O|eH+(’)G_1(H(—l)“cbacb_a)GeH—(’)lO)

acA

= (0l ([ [ (=1 @ @)+ ?10) = (0] [ [ (~1)* @aD—410).

acA acA

Thus, by Wick’s theorem, we know it is a Pfaffian with expression (3.3). O

Remark 3.4. Theorem 3.3 has been derived in [16] from a different point of view. See [16,29]
for more details on the properties of the correlation functions of the shifted Schur measure and
the shifted Schur process. In our paper, p(A) is constructed using neutral fermions, and thus it is
related naturally to tau functions of BKP hierarchies, which are discussed in Appendix A.

4. Matrix integrals solution of BKP hierarchy and Pfaffian point process

There have been several examples between the matrix integrals solution of integrable hi-
erarchy and determinantal point process and the fact lies in the r-functions (matrix integrals
solution) of those integrable hierarchies can be viewed as the normalization constant of those
point processes. In [1], the matrix integrals solution of Toda (KP) hierarchy and determinantal
point process in the configuration space in R” have been discussed with details. The determi-
nantal point process in the configuration space in C" and its connection with matrix integrals
solution of Topelitz lattice are shown in [28].

In this part, we mainly discuss the matrix integrals solution of BKP hierarchy, which can help
us to induce a novel Pfaffian point process. For this purpose, firstly, it has been demonstrated
that the partition function of Bures ensemble with suitable time flows can be regarded as the
t-function of BKP hierarchy [12,22,23].

Proposition 4.1. When time flows are introduced, the partition function of Bures ensemble

1 (x;
rnza/ I1 %an(x,,t)dxl, o) =o@exp( Yy  ux*) @1)
R I<i<j<n Joi=1 k>1,0dd

can be viewed as the t-function of BKP hierarchy for some formal weight @ (x). Moreover, if we
denote the moments

X—y
wj,j = x+y
R

then this partition function can be written in terms of Pfaffian as

xiyja)(x; Hw(y; dxdy, w;= /xia)(x; t)dx
Ry

2m

Pf(w,',j )i,j=1 n=2m,

Tn = 2m+1

O .
Pf( i ) n=2m+1.
—w;j Wi, j ij=1
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This proposition is consistent with the fact that the irreducible highest weight representation
is splitted into two families ]-'g e F }-), and each of them has individual form. Remarkably, this
t-function of BKP hierarchy can be constructed from the vacuum expectation form (A.4) if we
choose the group like element G appropriately. Now we would like to demonstrate how to relate
this 7-function of BKP equation to a Pfaffian point process proposed in [24].

Proposition 4.2. The matrix integrals solution oy, of BKP hierarchy in (4.1) can induce a Pfaf-
fian point process. That is, let (X, du) be a measure space, {¢p;(x) =x',i=0,---,2m — 1} be

Sfunctions from X to C and €(x,y) = % be skew symmetric function from X x X — C, then
moments

M j = / ¢i ()P (y)e(x, y)du(x)du(y)

x,yeX
form an invertible antisymmetric matrix M." For a finite subset S = {x1,--- ,x;} C X withl <
2m, we can define a correlation function
1 (xj —xj)?
R(S) = s / [T ——= Il drap. 4.2)
N . 4
e l)'pf(M)xm,m o ex 1=i<izam T izjzom

which is related to a Pfaffian point process with kernel

K(x,y)=

Yo<ij<am—1 SiOM; ¢ () Yo, j<am—1 SiOM; ] (€0 ()
2 0<i, j<om—1(€ '¢>i)(x)M,-TjT¢j ) =€, )+ 0<i j<om—1(€ '¢i)(X)M,-,_jT(€ PN )

where (€ - f)(x) = fyGX e(x,y) f(y)dx.

The fact that correlation function (4.2) is related to the Pfaffian point process with a skew
symmetric kernel K (x, y) has been proved in [24]. Here we just take specific {¢; (x)}l.zfo_ as
monomials and €(x, y) as specific skew symmetric inner product kernel so that pf(#/) is indeed
the t-function of BKP hierarchy if proper time flows are introduced. Moreover, the invertibility
of skew symmetric matrix M is based on Pfaffian Schur identity and de Bruijn formula [7,9].
Then a natural question is: whether the 7,41 of BKP equation can induce a such Pfaffian point
process? To do so, a notation about Pfaffian of odd order need to be firstly clarified.

As usual, a Pfaffian is only defined on skew-symmetric matrices of even order; however,
it takes some advantages to consider odd orders. In [7], Pfaffian can be defined in any n x n
skew-symmetric matrix A as

1 <& " o 1
P(4) = My Z Z o < 1 ... ,:l )ajljz Ayt joms M= [5”] (4.3)
J1=1 Jn=1
with o the perturbation of set {ji,---, j,} to {1,---,n}. It can be found that the even case is

just the same as the original definition of Pfaffian, but the odd ones involve something new.
Indeed, let K be a skew-symmetric n x n matrix with n odd and K+ arises from K by adding an

1 It is noted that in this case, X should be a configuration space in R%rm to ensure the existence of the moments M; ;.
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(n + 1)-th column consisting of n elements 1, an (n 4 1)-th row consisting of n elements —1 and
k,:r] 241 = 0. Then one can show Pf(K) defined by (4.3) is the same with Pf(K ™). Later on, we

denote Pf(K ) as the Pfaffian of K modified by the above process.
Proposition 4.3. Let (X, dw) be a measure space and {¢;, i =0, --- ,2m} be 2m + 1 functions

from X to C. Assume that €(x, y) is a skew-symmetric function from X x X — C and related
moments are defined as

M; ;= / Gi (x)e(x, Y)p;(Vdp(x)du(y), 0=<i,j=<2m,

x,yeX
M;om+1=—Mom+1,i = / ¢i(x)dpu(x), 0<i<2m.
xeX
Assume the skew-symmetric moment matrix Mom+2)x2m+2) is well-defined and invertible, then
for a finite subset S = {x1,---,x1} C X withl <2m + 1, we can define a correlation function
1
R(S;¢,¢) =

Qm+ 1 —DIPAM™)
x / det(@i ()Pt (i x) [ dutp).

XI41s s X2m+1€X I+1=j=2m+1

For |S|>2m+1, R(S; ¢, €) =0 and for |S| < 2m + 1, one has R(S; ¢, €) = PAKT(S)), where
K™ is a skew-symmetric matrix kernel

K*(x,y)=
K(x,y) Y b OM S, 0
Y (e p M L —1
SHOMy T i (v) M (e 9 (y) 0 0
0 1 0 0
with
K(x,y)=
Yo<ij<am G COM; [ ¢ (3) Yo<i j<am G OM; [ (e~ 9)(y)
Yo<i j<am (€ BIOM; [ $j(3)  —€(x, )+ Xgoi jcam(€ - PDM T (€ - $))(y)

and € is an operator defined by (¢ - f)(x) = fyex ex, V) f(y)du(y).

Proof. It is of importance to state the invertibility of moments matrix M is equal to the non-
singularity of det(¢; (x j))pf(e+(x,-, x;)) due to the de Bruijn integral formula. Moreover, the
proof includes three different cases, that is, we need to prove the cases | S| =2m+1, |S| > 2m +1
and |S| < 2m + 1. Firstly, we are going to prove the case |S| =2m + 1. Note that Pf(K (S)) is a
Pfaffian of (4m + 4) x (4m + 4) skew symmetric matrix and by basic row and column transfor-
mations, one can obtain

—-T pT _r T
Pf(K(S)):(_l)m+l( RM™"R RM~"(e-R) )

(- RIM™TRT —et4+(-RM T -R)T
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where €™ is a matrix extended by the matrix € and R is a (2m + 2) x (2m + 2) matrix

¢1(x1) o Qomr1(x) 0

R = : : :
d1G02m+1) o Gamyp1(omr1) O

0 0 1

Therefore, by expressing (€ - ¢;)(x) on the set S as a linear combination of the functions ¢; (x),
we can find

_ m+1 1 RM-TRT rorr
PE(K (S)) = (~1) +Pf((L 1)( —e*)( ! ))

with L a coefficient matrix of transformation from (e - R) to R. Noting the formula Pf(ABAT) =
det(A)Pf(B) holds for all antisymmetric matrix B, the above equation can be rewritten as

Pf(K (S)) = det(R)Pf(e " )PE(M ™ T) = det(i (x;))Pf(e™ (xi, x)).

Pf(M)

For the case | S| > 2m+ 1, R(S; ¢, €) = 0 is obvious since the matrix R is singular if the elements
of S is more than 2m + 1. In addition, for the case |S| < 2m + 1, we just need to prove the
following equality due to an induction

/ PI(K(SU{x;))du(x)) = 2m — [ +2)P(K(S)).
xjeX

This equality can be proved by using the method proposed in [24] and we omit here. Thus we
say the kernel K here can induce a Pfaffian point process constituting of odd points. O

If one chooses €(x, y) = % and ¢; (x) = x’, this Pfaffian point process coincides with the
one induced by Bures ensemble with odd points [9]. Here we just show a general case for the
Pfaffian point process with a skew-symmetric matrix kernel, which admits odd points and is
different with the model proposed in [24]. Moreover, the Pfaffian point process of even and odd
points can be formulated by the unified one, if we use the de Bruijn’s notation about Pfaffian.

Proposition 4.4. Let (X, dw) be a measure space and {¢;,i = 1,--- ,n} be n functions from X
to C. Assume that €(x, y) is a skew symmetric function from X x X to C and the related partition
function

7= / det(d ()} ;i PRy oy [T dutep

X1, xp€X I<j<n

is well-defined and invertible, then for a finite subset S = {x1,--- ,x;} C X with | < n, we can
define an [-point correlation function

1
R(S:$.0) = o / det(@i (x)! o PReGix))e oy [ dut)).

X410 s Xn €X I+l=j=n

Moreover, this correlation function is related to a skew symmetric matrix kernel K for even
n and K for odd n with R(S; ¢, €) = PAK(S)) (or PAKT(S)) respectively) if |S| < n and
R(S: $,€) =0if|S] > n.
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Appendix A. Applications to Tau function and BKP hierarchy

In this appendix, we review some facts about the neutral fermions and tau functions of BKP
hierarchies.
We start with the proof of Proposition 2.8. Notice that it suffices to prove the following lemma.

Lemma A.1. There hold
(e 7T =22(01(z) and (Ol "+ = 22(114(2)

with [2] = 2z, 5, %, ).

Proof. Let us prove the first identity, which is equivalent to the following identity

(01¢ () (z1) -+ b (225 1)10) = (Olgpoe™ P+ (21) -+ (225 1)]0). (A.1)
By using equation (2.1), one has

2s5—1

LHS= - I 1—zi/z I L=zp/z)
29 XX 1+zi/z 2 2 1+2zj/z;
i=1 Jj<Jj

Moreover, the RHS of (A.1) is the coefficient of k¥ in (O|¢>(k)e’H+'Z_1]¢(Z1) < (225,)10). It
can be computed as

Olp (ke #+ =T (21) -+ b (224,)10)

2s—1

= [T e 5 010 0b 1) -+ $lzag—ne 110y
i=1

2s—1

= [T e 51001909 1) -+ (225-110)
i=1

2s—1 2s5—1

_l—Il_Zi/Z il—ll_zl/kl—ll_zj’/Z]
st l4zi/z 20 11 1+zi/kj<j/1+zjf/z]-’
2s—1
1 1—z 1—zi/z;
from which one knows the coefficient of k¥ is — l_[ G/ l_[ i/ indeed. O
2 - 14zi/z iy 1+2zj/z;

Remark A.2. It also holds true for the dual vertex operator that

Xp(@) - e =010) =229 @ O1) and Xp(2) - H-O11) =229 @)e"-O10).
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We see soon that Lemma A.1 is used in calculations of tau functions of BKP hierarchies.
Firstly we introduce the basic bilinear condition of BKP hierarchy and give some discussions
about the tau function of this hierarchy, which was called the small BKP hierarchy in [22]

D3GR uG=Y (—1)"Ghy ® G,
nez nez
or an equivalent matrix form as
S D UIGH VYU G-l V) = S (~1) (Ul$uGIV)(U'|$-n GIV"). (A2)
nez nez
Noting that different hierarchies are obtained by choosing different (U|, (U’|, |V) and |V'}), now
we constrain ourselves to the simplest case, that is, the BKP hierarchy. Taking (U | = (0|gge+®,
(U] = (0l¢poe™+ @ and |V) = |V') = |0), and assume the tau function has the form [13]
T(1) = (0le+ 0 G|0) = 2(0lgpoe ™ G o 0),
then one has

%r(r)r(r/) = > " (=1)"(0lgoe"+ V¢, G10) (Ol goe "+ ¢, G|0)

nez

=Res(z~ (0lgoe™ D¢ (2)G10)(0lgoe ™ ¢ (—2)G|0))
1 / _ P
— ZRGS(Z_IES(I_I \2) <0|€H+(T—[Z 1])G|0> (0|6H+(l +lz I])G|0)),

where Lemma A.1 is used to derive the last identity.
It equals the following bilinear form

dZ 4 _ —
§£ —— T — [T D+ T D =TT (@),
2wiz
Coo

and this is the bilinear equation of BKP hierarchy indeed.

In what follows, a negative flow of BKP hierarchy is given when 7_1, t_3, - - - are introduced
in tau functions [22]. Taking (U| = (0|¢oe™+®, (U’| = (0|goe+), |V) = -1 |0) and |V') =
ef-10), and define the tau function

T(t4,12) = (0]e™ 0 Ge=010) = 2(01goe ™+ G-V | 0),

then the negative flow of BKP hierarchy can be obtained, for which we state as the following
proposition.

Proposition A.3. There exists a negative BKP hierarchy

/ d
§5e5<’+—’+*z>r(t+ — T+ [ )
2miz
Coo
g —t_,z71) o dz
=@Qe -0 g, -+ 2Dt L = [2) .
2mwiz

Co
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The proof of this proposition is similar with that of BKP hierarchy and we omit it here. By
applying the transformation
thy >ty —a, ty >ty +a, t-—t_—b t_—>1i_+b,
one can obtain the following bilinear equations
3 pi(—2a) pr( Dy ) Xiztoaa 4PHID
k>0
=" pn(2b) p(—D_)eXiztoia WPIHID 1T . 7

m>0
where py is a homogeneous symmetric function and a detailed introduction is given in the next
section. Here one should notice that if the index of the negative flow vanishes, this hierarchy goes
back to the original BKP hierarchy. The first member of this hierarchy is
D_1(D; — D)t -t =0,

which has appeared in [13] as an equation derived from D/, and the negative BKP hierarchy
here seems to be embedded as a subsystem of the D/ hierarchy. The negative flow plays an
important role since it involves the dual of the original current operator, which is closely related
to the construction of the correlation function.

Besides the negative flow of BKP hierarchy, the modified BKP (mBKP) hierarchy is also
important [6]. It exhibits two different kinds of tau functions based on the decomposition of the
Fock space Fp = }'g @ F }9 and it provides the original idea to consider a Pfaffian point process
of even and odd points in section 4. Moreover, the mBKP hierarchy holds for the following
proposition.

Proposition A.4. There exists an mBKP hierarchy

! d
g§e5"*t D1t — [ D1 (¢ + [z*‘])ﬁ =27, (1) Ty41(t)) — Tus1 (DT (). (A3)
Coo

Proof. According to the basic bilinear condition (A.2), if one takes

(U= (0l D), (U'| = Olgoe™ T, |v)=|V)=10),
then it follows

Res((0le/™+ D (2)¢ (') G 0) (Olgroe ™™+ p (—2')G0))

= (0le+ D (2)Gpo|0) (0lgoe™ ) G po0).

Moreover, if we set tau functions as

7, = (0" G|0) = 2(0|¢poe ™+ G |0).

Tog1 =201 (2)Go|0) = 2(0lgoe ™ p (2)G10),

the above equation can be rewritten as

/

dz 1 ,
= < T 1 (DT (7).

;15 <0|e”+<’>¢(z)¢(z/>6|0><0|¢oeH+<’/>¢(—z/)G|0>zm, 1

7/=00
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Notice that ¢ (z)¢ (7)) = 8(—%) — ¢(z))¢(z) and use the Boson—-Fermion correspondence, one
can easily obtain the equation (A.3), and thus complete the proof. O

Remark A.5. This hierarchy firstly appeared in [6] without proof and it is noted that the two
different tau functions t, and 7,4 are linked to each other by the vertex operator. In fact, ac-
cording to the Boson—Fermion correspondence of type Boo, one can see that the tau functions are
of different expressions when Pfaffian is involved, and the solutions are split into two families.
Examples can be found in [11,12].

Indeed, the above mBKP hierarchy (A.3) can be equivalently expressed in a bilinear form as

> hi(—=2a)h 2D )e>i=1 4P + 4sinh(Y "a;Dj) | 7 - Tur1 =0,
=1 j=1

By considering that a is of one component, the above equation is

n 2 sk 4D
Za Z ( Tl pi(2D4)DY) +4—' Ty - Ty+1 =0, for m odd.
m>1 k+l=m,I>1,k>0 n

The first two nontrivial equations are the cases of m =3 and m = 5:

(D} — D3)ty - Tuy1 =0,  (6Ds —5D3D7 — D)7y - Tay1 =0,

which are the modified BKP equations (or the Bécklund transformation of BKP equation).

Here we would like to mention that the negative flow of the modified BKP equation is also
included in the D/ hierarchy [13]. Consider the tau function with time flows #1 and 7_, one can
define’

T, = (0D Gef=- 1|0y = 2(0|poe™ 1 GeH- D p0),

A4
Tat1 = 2(0[e™+ D (2) Ge =D |0y = 2(0|poe ™ V¢ (2) Ge-)0). B

Based on the equation (A.2) and choosing

(U= 01" D), (U= 0lgoe™ ), |v)y=el-D)0), V') =eH-)0),

one can obtain

A dz
%es(t, .z )Tn+](t+,t7+[z])r,,(tjr,t/,—[Z])2 — =
miz
Co
, , £ — 2 -1 / —1 / dZ
20 (14 1) Tyt (4 10) = P I (14 = 27 ) )T () F L2 D) 5

Coo

and its first member is D1 D_11, - 7,41 = 0, which has been listed in the appendix of [13].

2 1t should be noted that the different choices of group-like elements G can help us to construct different kinds of
solutions of these integrable hierarchies and this is the idea why the matrix integrals solution can induce some Pfaffian
point process.
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