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Abstract

Inspired by Okounkov’s work (2001) [20] which relates KP hierarchy to determinant point process, we 
establish a relationship between BKP hierarchy and Pfaffian point process. We prove that the correlation 
function of the shifted Schur measures on strict partitions can be expressed as a Pfaffian of skew symmetric 
matrix kernel, whose elements are certain vacuum expectations of neutral fermions. We further show that 
the matrix integrals solution of BKP hierarchy can also induce a certain Pfaffian point process.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There is a connection revealed by Okounkov [20] between random partitions and KP hier-
archy of type A∞. He introduced the Schur measure of a partition λ which is proportional to 
sλ(x)sλ(y), where sλ is the Schur function. Then the correlation function can be realized as a 
determinant point process via the Fock space formalism, which satisfies the KP (or 2d-Toda lat-
tice) hierarchy. In Kyoto school’s picture, there are different ways to describe the tau function of 
KP hierarchy of type A∞ [2,5,13]. On one hand, the tau function can be viewed as an element 
in the Bosonic Fock space (the space of symmetric functions), and thus it can be expressed in 
terms of Schur functions. On the other hand, the tau function can also be viewed as a vector 
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in the Fermionic Fock space (the infinite wedge space). The Boson–Fermion correspondence
is an explicit isomorphism between these two spaces, via which a relationship between Schur 
functions and vacuum expectations of fermions is obtained, and this is the reason why the 
Boson–Fermion correspondence of type A∞ plays an important role in Okounkov’s approach. 
The infinite wedge space also appears in [4,21] on Schur process and in [28] on a Toeplitz-type 
determinant point process.

Moreover, besides KP hierarchy of type A∞, there are KP hierarchies of other types. One of 
them is of type B∞, which we call BKP hierarchy for short. BKP hierarchy was introduced and 
studied in details by the Kyoto school [6,13]. Many phenomenons in BKP hierarchy are parallel 
to the cases of type A∞. For example, in [19] Okounkov found that the generating functions 
for the Hurwitz numbers of certain ramified coverings of CP1 are the 2d-Toda tau functions, 
and parallelly Natanzon and Orlov [17] showed that the generating functions for the weighted 
Hurwitz numbers of certain branched coverings of RP2 are BKP tau functions. Another analogy 
between type A∞ and B∞ is also important: in the case of type B∞, the corresponding tau 
function can be described in the language of neutral fermions. Therefore, many results derived 
by using free fermions in the A∞ case can be generalized to the B∞ case, if one instead uses 
neutral fermions. For instance, in [8] neutral fermions are used to obtain volume-weighted plane 
partitions, which is analogous to the fact that free fermions can be used to obtain plane partitions 
[21]. Moreover, as the BKP tau functions can be described respectively in the Bosonic picture 
and the Fermionic picture [30], the Boson–Fermion correspondence of type B∞ allows us to 
relate projective Schur functions to vacuum expectations of neutral fermions.

Inspired by these facts, we generalize Okounkov’s results to BKP hierarchy in this paper. We 
consider the shifted Schur measure M on strict partitions [25], whose weight of λ is proportional
to Pλ(x)Qλ(y), where Pλ(x) and Qλ(y) are projective Schur functions. For a finite set A ∈Z+, 
the correlation function is defined as the probability that the set σ(λ) = {λi} containing A. In 
Theorem 3.3, we prove that

ρ(A) = Pf(K(ai, aj ))ai ,aj ∈±A, (1.1)

and thus we can relate the BKP hierarchy to a Pfaffian point process.
The same result has been obtained by Matsumoto [16], who calculated the correlation function 

using operators on the exterior algebra. Later, Vuletić [29] generalized Matsumoto’s result to 
the shifted Schur process and related it to a Pfaffian point process. Both these two articles are 
generalizations of Okounkov’s results [20,21], and they mainly focused on the measures of strict 
partitions. However, in our article, we start with a different point of view. We use the neutral 
fermions to do calculations and pay more attention to its connection with the theory of integrable 
hierarchy. Moreover, since the tau function of BKP hierarchy plays a key role in Pfaffian point 
process, we turn to a specific τ -function—the matrix integrals solution to BKP hierarchy and 
find its connection with some certain Pfaffian point process. Interestingly, an explicit Pfaffian 
point process with skew symmetric matrix kernel is induced by the matrix integrals solution of 
BKP hierarchy, which generalizes the Pfaffian point process in [24] and unify a certain Pfaffian 
point process with arbitrary points rather than the points of even number.

The rest of this paper is arranged as follows. In Section 2, we review some basic facts on 
neutral fermions and the Fock space for BKP hierarchy. In particular, we introduce the Boson–
Fermion correspondence of type B∞. In Section 3, projective Schur functions are introduced in 
terms of neutral fermions and we use them to construct a measure on strict partitions, thus prov-
ing that the correlation functions can be realized as a Pfaffian point process. In Section 4, a certain 
Pfaffian point process is constructed from the matrix integrals solution of BKP hierarchy.
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2. A brief introduction to neutral fermions

In [13], neutral fermions {φn, n ∈ Z} were introduced to construct the spin representation of 
B∞ which derive the BKP hierarchy finally. In this section, we give a brief introduction to the 
method proposed by Jimbo and Miwa.

Introducing the neutral free fermions {φn, n ∈ Z} by the relations

φn = ψn + (−1)nψ∗−n√
2

,

where {ψi, ψ∗
i , i ∈ Z} are standard charged free fermions satisfying the anti-involution relations 

[ψi, ψ∗
j ]+ = δi,j and [ψi, ψj ]+ = [ψ∗

i , ψ∗
j ]+ = 0, it turns out

[φm,φn]+ = (−1)mδm,−n.

Let WB be the complex space spanned by {φn, n ∈ Z} and denote Cl(WB) as the Clifford 
algebra generated by WB , then the right Fock space for neutral fermions can be defined by

FB = Cl(WB)/Cl(WB)(
∑
n<0

Cφn),

and we denote |0〉 as the residue class of 1 in FB . Similarly the left Fock space can be defined by

F∗
B = Cl(WB)/(

∑
n>0

Cφn)Cl(WB),

and 〈0| is the residue class of 1 in F∗
B .

Clearly, from the above definition, we have

φm|0〉 = 0, m < 0 and 〈0|φm = 0, m > 0,

and thus

FB = span{φn1 · · ·φnk
|0〉}, F∗

B = span{〈0|φ−nk
· · ·φ−n1}, with n1 > · · · > nk ≥ 0.

There is a nondegenerate bilinear pairing F∗
B × FB → C, and we write the pairing of 〈U |

and |V 〉 as 〈U |V 〉. The vacuum expectation value of an operator A is defined as 〈0|A|0〉, and is 
denoted as 〈A〉. We have

〈φmφn〉 =

⎧⎪⎨
⎪⎩

(−1)mδm,−n, n > 0,
1
2δm,0, n = 0,

0, n < 0.

By using Wick’s theorem, one has

〈φ(z1) · · ·φ(z2s)〉 = 1

2s

∏
j<j ′

1 − zj ′/zj

1 + zj ′/zj

. (2.1)

Moreover, a Hamiltonian in terms of neutral fermions can be defined as

Hn = 1

2

∑
i∈Z

(−1)i+1φiφ−i−n. (2.2)
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Remark 2.1. Here we would like to mention that Hn has an original definition as

Hn = 1

2

∑
i∈Z

(−1)i+1 : φiφ−i−n : if n �= 0

where : ·: is the normal order of fermions. This is because

Hn = 1

2

∑
i∈Z

: φiφ−i−n := 1

2

∑
i∈Z

(φiφ−i−n − 〈φiφ−i−n〉).

We have known that 〈φiφ−i−n〉 = 0 if n �= 0, therefore it follows (2.2).

Remark 2.2. In the neutral fermions case, Hn equals zero if n is a nonzero even number. 
The reason lies in the fact that for an arbitrary integer i = n, there exists i′ = −n − m, such 
that (−1)i+1φiφ−i−n + (−1)i

′+1φi′φ−i′−n = (−1)m+1[φm, φ−n−m]+ = 0 if n ∈ 2Z\{0}, which 
means Hn = 0 if n is a nonzero even integer. In the followings, we assume n is an odd number 
without extra statement.

In the next, some properties of the Hamiltonian Hn are demonstrated. Firstly, it is shown that 
{Hn, n ∈ 2Z + 1} form a Heisenberg algebra.

Proposition 2.3.

[Hn,Hm] = n

2
δn+m,0. (2.3)

Proof. Since

[φiφj ,φkφl] = (−1)j δj,−kφiφl − (−1)iδi,−kφjφl + (−1)j δj,−lφkφi − (−1)iδi,−lφkφj ,

then it follows

[Hn,Hm] = 1

4

∑
i,j∈Z

(−1)i+j [φiφ−i−n,φjφ−j−m]

= 1

4

∑
j∈Z

[(−1)j−nφj−nφ−j−m − (−1)jφj−nφ−j−m

+ (−1)j−nφjφ−j−m−n − (−1)jφjφ−j−m−n],
noticing that Hn �= 0 only in the cases of n ∈ 2Z + 1, therefore,

[Hn,Hm] = 1

2

∑
j∈Z

(−1)j [−φj−nφ−j−m − φjφ−j−m−n]

which equals 0 if n + m �= 0 and n2 if n + m = 0. �
Moreover, if we introduce the current operators

H+(t) =
∑

k≥1,odd

tkHk, H−(t) =
∑

k≥1,odd

t−kH−k,

then from a direct computation, one could obtain
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[H+(t),H−(t)] =
∑

k≥1,odd

k

2
tkt−k. (2.4)

In what follows, we introduce some properties of the current operator H+(t) (respectively H−(t)) 
which are helpful for us to derive integrable systems and Pfaffian point processes.

Proposition 2.4. For current operators H+(t) and H−(t), they satisfy

H+(t)|0〉 = 0, 〈0|H−(t) = 0.

Proof. Since Hn = ∑
i∈Z(−1)i+1φiφ−i−n (n > 0), then if i < 0, it is obvious that φiφ−i−n|0〉 =

0. At the same time, when i > 0, −i − n < 0, φiφ−i−n|0〉 = 0 could also be verified. Noticing 
that i > −n and i < 0 could run over the whole integer axis, therefore Hn|0〉 = 0 if n > 0. Then 
one can conclude H+(t)|0〉 = 0, and by the same manner, 〈0|H−(t) = 0 is established. �
Remark 2.5. It directly follows that eH+(t)|0〉 = |0〉 and 〈0|eH−(t) = 〈0|.

Proposition 2.6. Denote φ(z) = ∑
i∈Z φiz

i , then it follows

[H+(t), φ(z)] = (
∑

n≥1,odd

tnz
n)φ(z), (2.5)

and consequently, it turns out

eH+(t)φ(z)e−H+(t) = eξ(t,z)φ(z), (2.6)

where ξ(t, z) = ∑
n≥1,odd tnz

n.

Proof. Before proving this result, firstly we should verify

[Hn,φ(z)] = znφ(z).

It comes true because

[Hn,φk] = 1

2

∑
i∈Z

(−1)i+1(φi[φ−i−n,φk]+ − [φi,φk]+φ−n−i )

= 1

2
((−1)−n+1φk−n − (−1)φk−n) = φk−n,

and

[Hn,φ(z)] =
∑
k∈Z

[Hn,φk]zk =
∑
k∈Z

φk−nz
k−nzn = znφ(z).

Therefore, equation (2.5) can be obtained directly from the above computation and equation (2.6)
can be verified by Lemma 3.35 in [10]. �
Remark 2.7. It is noted that for the dual current operator

H−(t) =
∑

l∈2Z+1

t−lH−l = 1

2

∑
n∈Z,l∈2Z+1

(−1)n+1t−lφnφ−n+l ,

it follows
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[H−(t), φ(z)] = (
∑

l∈2Z+1

t−lz
−l )φ(z), eH−(t)φ(z)e−H−(t) = eξ(t−,z−1)φ(z), (2.7)

which is of importance when the dual is taken into consideration in the derivations of integrable 
systems and Pfaffian point process.

Now, we are about to demonstrate the Boson–Fermion correspondence of type B∞. Firstly, 
we consider the following spaces of even and odd elements respectively:

F0
B = span{φn1 · · ·φn2k

|0〉}, F1
B = span{φn1 · · ·φn2k+1 |0〉}

Then we have the decomposition FB = F0
B ⊕ F1

B . Moreover, each F i
B is isomorphic to 

C[x1, x3, · · · ] and this isomorphism is called the Boson–Fermion correspondence of type B∞
[30]:

σB :FB
∼=C[w,x1, x3, · · · ]/ ∼

|U〉 →
1∑

i=0

wi〈i|eH+(t)|U〉,

where ∼ is a relation w2 ∼ 1, i.e. we regard w2 as 1, and |1〉 = 2
1
2 φ0|0〉.

Note that σB induces isomorphisms on each components. For i = 0, 1, one has

σ i
B :F i

B
∼=C[x1, x3, · · · ]

|U〉 → 〈i|eH+(t)|U〉.
Under the isomorphism σB , for n ≥ 1 odd, the Heisenberg action of Hn can be realized on 

C[x1, x3, · · · ] as 
∂

∂xn

, and H−n as 
n

2
xn.

Conversely, we can realize the fermionic action of φi on C[w, x1, x3, · · · ]/ < w2 −1 >. Let us 
introduce the vertex operator XB(z) = eξ(t,z)e−ξ(∂̃+,z−1) and its dual X̄B(z) = e−ξ(t−,z−1)eξ(∂̃−,z)

with notation ∂̃± = (2∂t±1 , 
2
3∂t±3 , · · · ), then it follows

Proposition 2.8.

σB(φ(z)|U〉) = 2− 1
2 wXB(z)σB(|U〉).

This proposition is stated in an equivalent form in [6,14,27]:

XB(z)〈0|eH+(t) = 2
1
2 〈1|eH+(t)φ(z), XB(z)〈1|eH+(t) = 2

1
2 〈0|eH+(t)φ(z).

Since the proof is ignored in these articles, for readers’ convenience, we give a brief proof in 
Appendix A, which is also helpful in finding integrable hierarchies.

3. Schur Q-functions and Pfaffian point process

In this section, a Pfaffian point process is given in terms of neutral fermions. The basic facts of 
Okounkov’s work are reviewed firstly. For a positive integer n, a partition λ of n is a set of positive 
integers λ1 ≥ λ2 ≥ · · · ≥ λl > 0 with n = λ1 + · · · + λl , and it is denoted by λ = (λ1, · · · , λl). 
The number |λ| = n is called the weight of λ, and l(λ) = l is called the length of λ. We can 
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also define the partition of 0, which is denoted by λ = 0. In [20], Okounkov defined the Schur 
measure on partitions. For a partition λ, the measure of λ is proportional to sλ(x)sλ(y), where sλ
is the Schur function. Under the Boson–Fermion correspondence, sλ can be written as the image 
of an element in the Fermionic Fock space, and then the correlation function is expressed as the 
vacuum expectation of certain fermions, which can be realized as a determinant point process by 
using Wick’s theorem. It is shown that the determinants are tau functions of 2d-Toda hierarchy 
of integrable nonlinear partial differential equations of Ueno and Takasaki [26]. A good review 
for this result can be found in [3].

What we are going to do in this section is to apply Okounkov’s discussion to strict partitions. 
A partition λ = (λ1, · · · , λl) is called a strict partition if λ1, · · · , λl are distinct. The set of all strict 
partitions is denoted by DP. In [25] the shifted Schur measure was defined on DP as follows:

M(λ) = 1

Z
Pλ(x)Qλ(y), Z =

∑
λ∈DP

Pλ(x)Qλ(y) =
∏
i,j

1 + xiyj

1 − xiyj

,

where Pλ(x) and Qλ(y) are Schur P-function and Schur Q-function respectively, which are de-
fined later. For a finite subset A ∈Z+, we can define the correlation function

ρ(A) =M({λ,A ⊂ σ(λ)}),
where σ(λ) = {λi}. To compute the correlation function, we need to express Pλ(x) and Qλ(y)

as images of elements in the Fock space of neutral fermions under the Boson–Fermion corre-
spondence of type B∞. Now let us give a definition of Pλ(x) and Qλ(y) in terms of the neutral 
fermions.

Consider the expansion (cf. [15,18])

e2ξ(t,z) =
∑
k≥0

qk(t)z
k,

then from the equation (2.6), one can conclude

eH+(t)φie
−H+(t) =

∑
k≥0

qk(
1

2
t)φi−k.

Then it is not difficult to compute that

〈0|eH+(t)φiφj |0〉 = 〈0|eH+(t)φie
−H+(t)eH+(t)φj e

−H+(t)|0〉

= 1

2
qi(

1

2
t)qj (

1

2
t) +

j∑
k=1

(−1)kqk+i (
1

2
t)qj−k(

1

2
t).

(3.1)

On the other hand, it is easy to compute the orthogonality condition

1 = e2ξ(t,z)e−2ξ(t,z) =
∑
i,j≥0

qi(t)qj (−t)zi+j .

For i + j = n > 0, one can obtain

n∑
i=0

(−1)iqi(t)qn−i (t) = 0.

This equation is trivial for n odd and if n = 2m, one can obtain
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qm(t)2 + 2
m∑

k=1

(−1)kqm+k(t)qm−k(t) = 0,

which helps to define

qa,b(t) = qa(t)qb(t) + 2
b∑

k=1

(−1)kqa+k(t)qb−k(t) (3.2)

with the property

qa,b(t) = −qb,a(t), qa,a(t) = 0.

Moreover, from equations (3.1) and (3.2), one knows

2〈0|eH+(t)φaφb|0〉 = qa,b(
1

2
t).

Therefore, for a strict partition with even length λ = {(λ1, · · · , λ2n)|λ1 > · · · > λ2n > 0}, we can 
define a related Schur Q-function [15,30]

Qλ(
1

2
t) = Pf(qλi ,λj

(
1

2
t))1≤i,j≤2n = Pf(2〈0|eH+(t)φiφj |0〉)1≤i,j≤2n

= 2
l(λ)

2 〈0|eH+(t)φλ1 · · ·φλ2n
|0〉

For a strict partition with odd length, the related Schur Q-function can be defined as

Qλ(
1

2
t) = Pf

⎛
⎜⎜⎜⎜⎜⎝

0 qλ1,λ2(
1
2 t) · · · qλ1,λ2n−1(

1
2 t) qλ1(

1
2 t)

qλ2,λ1(
1
2 t) 0 · · · qλ2,λ2n−1(

1
2 t) qλ2(

1
2 t)

...
...

...
...

qλ2n−1,λ1(
1
2 t) qλ2n−1,λ2(

1
2 t) · · · 0 qλ2n−1(

1
2 t)

−qλ1(
1
2 t) −qλ2(

1
2 t) · · · −qλ2n−1(

1
2 t) 0

⎞
⎟⎟⎟⎟⎟⎠

= Pf(2〈0|eH+(t)φλi
φλj |0〉)i,j=1,··· ,2n−1,0 = 2

l(λ)+1
2 〈0|eH+(t)φλ1 · · ·φλ2n−1φ0|0〉.

With the Miwa transformation

tn = 2

n

∑
i

xn
i , n odd,

the following theorem is established [30].

Theorem 3.1. For a distinct partition λ = (λ1, · · · , λl) ∈ DP, we have

Qλ(x) = 2
l(λ)

2 σ 0
B(φλ1 · · ·φλl

|α(λ)〉) = 2
l(λ)

2 〈0|eH+(t)φλ1 · · ·φλl
|α(λ)〉,

where

α(λ) =
{

0 l(λ) is even,

1 l(λ) is odd.

Remark 3.2. One can also define the Schur Q-function by t− part, which corresponds to the 
other Miwa variables
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t−n = 2

n

∑
i

yn
i , n odd.

For the distinct partition λ ∈ DP, one has

Qλ(y) = (−1)|λ|2
l(λ)

2 〈α(λ)|φ−λl
· · ·φ−λ1e

H−(t)|0〉.

Another symmetric function, the Schur P-function Pλ(x), can be defined as

Pλ(x) = 2−l(λ)Qλ(x)

such that 〈Pλ, Qμ〉 = δλ,μ. It is straightforward to write Pλ in the terms of neutral fermions by 
Theorem 3.1 and Remark 3.2.

Now we are ready to demonstrate the following theorem.

Theorem 3.3. The correlation function can be expressed in terms of neutral fermions as

ρ(A) = 1

Z

∑
A⊂σ(λ)

Pλ(x)Qλ(y) = 1

Z
〈0|eH+(t)(

∏
a∈A

(−1)aφaφ−a)e
H−(t)|0〉.

Moreover, it can be expressed as a Pfaffian point process

ρ(A) = Pf(K(ai, aj ))ai ,aj ∈±A, K(a, b) = 〈0|eH+(t)e−H−(t)φaφbe
H−(t)e−H+(t)|0〉.

(3.3)

Proof. By using Theorem 3.1, one can basically obtain

〈0|eH+(t) =
∑
λ∈DP

(−1)|λ|2
l(λ)

2 Pλ(x)〈α(λ)|φ−λl
· · ·φ−λ1 ,

eH−(t)|0〉 =
∑
λ∈DP

2− l(λ)
2 Qλ(y)φλ1 · · ·φλl

|α(λ)〉.

Moreover, for two partitions λ = (λ1, · · · , λl) and μ = (μ1, · · · , μk), one has

〈α(λ)|φ−λl
· · ·φ−λ1φμ1 · · ·φμk

|α(μ)〉 = (−1)|λ|δλ,μ,

then it is true that∑
A⊂σ(λ)

Pλ(x)Qλ(y) = 〈0|eH+(t)(
∏
a∈A

(−1)aφaφ−a)e
H−(t)|0〉.

In addition, since

logZ =
∑
i,j

(log(1 + xiyj ) − log(1 − xiyj )) =
∑
i,j

∑
k>0

1

k
(1 − (−1)k)xk

i yk
j

=
∑
i,j

∑
n>0,odd

2

n
xn
i yn

j =
∑

n>0,odd

n

2
tnt−n

and by the use of (2.4), we can get eH+(t)e−H−(t) = ZeH−(t)e−H+(t). Finally, if we denote G =
eH+(t)e−H−(t) and �i = GφiG

−1, it follows
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ρ(A) = 1

Z
〈0|eH+(t)(

∏
a∈A

(−1)aφaφ−a)e
H−(t)|0〉

= 1

Z
〈0|eH+(t)G−1(

∏
a∈A

(−1)a�a�−a)GeH−(t)|0〉

= 〈0|eH−(t)(
∏
a∈A

(−1)a�a�−a)e
H+(t)|0〉 = 〈0|

∏
a∈A

(−1)a�a�−a|0〉.

Thus, by Wick’s theorem, we know it is a Pfaffian with expression (3.3). �
Remark 3.4. Theorem 3.3 has been derived in [16] from a different point of view. See [16,29]
for more details on the properties of the correlation functions of the shifted Schur measure and 
the shifted Schur process. In our paper, ρ(A) is constructed using neutral fermions, and thus it is 
related naturally to tau functions of BKP hierarchies, which are discussed in Appendix A.

4. Matrix integrals solution of BKP hierarchy and Pfaffian point process

There have been several examples between the matrix integrals solution of integrable hi-
erarchy and determinantal point process and the fact lies in the τ -functions (matrix integrals 
solution) of those integrable hierarchies can be viewed as the normalization constant of those 
point processes. In [1], the matrix integrals solution of Toda (KP) hierarchy and determinantal 
point process in the configuration space in Rn have been discussed with details. The determi-
nantal point process in the configuration space in Cn and its connection with matrix integrals 
solution of Topelitz lattice are shown in [28].

In this part, we mainly discuss the matrix integrals solution of BKP hierarchy, which can help 
us to induce a novel Pfaffian point process. For this purpose, firstly, it has been demonstrated 
that the partition function of Bures ensemble with suitable time flows can be regarded as the 
τ -function of BKP hierarchy [12,22,23].

Proposition 4.1. When time flows are introduced, the partition function of Bures ensemble

τn = 1

n!
ˆ

R
n+

∏
1≤i<j≤n

(xi − xj )
2

xi + xj

n∏
i=1

ω(xi; t)dxi, ω(x; t) = ω(x) exp(
∑

k≥1,odd

tkx
k) (4.1)

can be viewed as the τ -function of BKP hierarchy for some formal weight ω(x). Moreover, if we 
denote the moments

ωi,j =
¨

R
2+

x − y

x + y
xiyjω(x; t)ω(y; t)dxdy, ωi =

ˆ

R+

xiω(x; t)dx

then this partition function can be written in terms of Pfaffian as

τn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pf
(
ωi,j

)2m

i,j=1 n = 2m,

Pf

(
0 ωi

−ωj ωi,j

)2m+1

i,j=1

n = 2m + 1.
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This proposition is consistent with the fact that the irreducible highest weight representation 
is splitted into two families F0

B ⊕ F1
B and each of them has individual form. Remarkably, this 

τ -function of BKP hierarchy can be constructed from the vacuum expectation form (A.4) if we 
choose the group like element G appropriately. Now we would like to demonstrate how to relate 
this τ -function of BKP equation to a Pfaffian point process proposed in [24].

Proposition 4.2. The matrix integrals solution τ2m of BKP hierarchy in (4.1) can induce a Pfaf-
fian point process. That is, let (X, dμ) be a measure space, {φi(x) = xi, i = 0, · · · , 2m − 1} be 
functions from X to C and ε(x, y) = x−y

x+y
be skew symmetric function from X × X → C, then 

moments

Mi,j =
ˆ

x,y∈X

φi(x)φj (y)ε(x, y)dμ(x)dμ(y)

form an invertible antisymmetric matrix M .1 For a finite subset S = {x1, · · · , xl} ⊂ X with l ≤
2m, we can define a correlation function

R(S) = 1

(2m − l)!pf(M)

ˆ

xl+1,··· ,x2m∈X

∏
1≤i<j≤2m

(xi − xj )
2

xi + xj

∏
l+1≤j≤2m

dμ(xj ), (4.2)

which is related to a Pfaffian point process with kernel

K(x,y) =( ∑
0≤i,j≤2m−1 φi(x)M−T

i,j
φj (y)

∑
0≤i,j≤2m−1 φi(x)M−T

i,j
(ε · φj )(y)∑

0≤i,j≤2m−1(ε · φi)(x)M−T
i,j

φj (y) −ε(x, y) + ∑
0≤i,j≤2m−1(ε · φi)(x)M−T

i,j
(ε · φj )(y)

)
,

where (ε · f )(x) = ´
y∈X

ε(x, y)f (y)dx.

The fact that correlation function (4.2) is related to the Pfaffian point process with a skew 
symmetric kernel K(x, y) has been proved in [24]. Here we just take specific {φi(x)}2m−1

i=0 as 
monomials and ε(x, y) as specific skew symmetric inner product kernel so that pf(M) is indeed 
the τ -function of BKP hierarchy if proper time flows are introduced. Moreover, the invertibility 
of skew symmetric matrix M is based on Pfaffian Schur identity and de Bruijn formula [7,9]. 
Then a natural question is: whether the τ2m+1 of BKP equation can induce a such Pfaffian point 
process? To do so, a notation about Pfaffian of odd order need to be firstly clarified.

As usual, a Pfaffian is only defined on skew-symmetric matrices of even order; however, 
it takes some advantages to consider odd orders. In [7], Pfaffian can be defined in any n × n

skew-symmetric matrix A as

Pf(A) = 1

2mm!
n∑

j1=1

· · ·
n∑

jn=1

σ

(
j1 · · · jn

1 · · · n

)
aj1j2 · · ·aj2m−1j2m

, m = [1

2
n] (4.3)

with σ the perturbation of set {j1, · · · , jn} to {1, · · · , n}. It can be found that the even case is 
just the same as the original definition of Pfaffian, but the odd ones involve something new. 
Indeed, let K be a skew-symmetric n ×n matrix with n odd and K+ arises from K by adding an 

1 It is noted that in this case, X should be a configuration space in R2m+ to ensure the existence of the moments Mi,j .
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(n + 1)-th column consisting of n elements 1, an (n + 1)-th row consisting of n elements −1 and 
k+
n+1,n+1 = 0. Then one can show Pf(K) defined by (4.3) is the same with Pf(K+). Later on, we 

denote Pf(K+) as the Pfaffian of K modified by the above process.

Proposition 4.3. Let (X, dμ) be a measure space and {φi, i = 0, · · · , 2m} be 2m + 1 functions 
from X to C. Assume that ε(x, y) is a skew-symmetric function from X × X → C and related 
moments are defined as

Mi,j =
ˆ

x,y∈X

φi(x)ε(x, y)φj (y)dμ(x)dμ(y), 0 ≤ i, j ≤ 2m,

Mi,2m+1 = −M2m+1,i =
ˆ

x∈X

φi(x)dμ(x), 0 ≤ i ≤ 2m.

Assume the skew-symmetric moment matrix M(2m+2)×(2m+2) is well-defined and invertible, then 
for a finite subset S = {x1, · · · , xl} ⊂ X with l ≤ 2m + 1, we can define a correlation function

R(S;φ, ε) = 1

(2m + 1 − l)!Pf(M+)

×
ˆ

xl+1,··· ,x2m+1∈X

det(φi(xj ))Pf(ε+(xi, xj ))
∏

l+1≤j≤2m+1

dμ(xj ).

For |S| > 2m + 1, R(S; φ, ε) = 0 and for |S| ≤ 2m + 1, one has R(S; φ, ε) = Pf(K+(S)), where 
K+ is a skew-symmetric matrix kernel

K+(x, y) =⎛
⎜⎜⎜⎝

K(x,y)
∑2m

i=0 φi(x)M−T
i,2m+1 0∑2m

i=0(ε · φi)(x)M−T
i,2m+1 −1∑2m

i=0 M−T
2m+1,iφi(y)

∑2m
i=0 M−T

2m+1,i (ε · φi)(y) 0 0
0 1 0 0

⎞
⎟⎟⎟⎠

with

K(x,y) =( ∑
0≤i,j≤2m φi(x)M−T

i,j φj (y)
∑

0≤i,j≤2m φi(x)M−T
i,j (ε · φj )(y)∑

0≤i,j≤2m(ε · φi)(x)M−T
i,j φj (y) −ε(x, y) + ∑

0≤i,j≤2m(ε · φi)(x)M−T (ε · φj )(y)

)

and ε is an operator defined by (ε · f )(x) = ´
y∈X

ε(x, y)f (y)dμ(y).

Proof. It is of importance to state the invertibility of moments matrix M is equal to the non-
singularity of det(φi(xj ))pf(ε+(xi, xj )) due to the de Bruijn integral formula. Moreover, the 
proof includes three different cases, that is, we need to prove the cases |S| = 2m +1, |S| > 2m +1
and |S| < 2m + 1. Firstly, we are going to prove the case |S| = 2m + 1. Note that Pf(K(S)) is a 
Pfaffian of (4m + 4) × (4m + 4) skew symmetric matrix and by basic row and column transfor-
mations, one can obtain

Pf(K(S)) = (−1)m+1
(

RM−T RT RM−T (ε · R)T

(ε · R)M−T RT −ε+ + (ε · R)M−T (ε · R)T

)
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where ε+ is a matrix extended by the matrix ε and R is a (2m + 2) × (2m + 2) matrix

R =

⎛
⎜⎜⎜⎝

φ1(x1) · · · φ2m+1(x1) 0
...

...
...

φ1(x2m+1) · · · φ2m+1(x2m+1) 0
0 · · · 0 1

⎞
⎟⎟⎟⎠ .

Therefore, by expressing (ε · φj )(x) on the set S as a linear combination of the functions φj(x), 
we can find

Pf(K(S)) = (−1)m+1Pf

((
I

L I

)(
RM−T RT

−ε+
)(

I LT

I

))
,

with L a coefficient matrix of transformation from (ε ·R) to R. Noting the formula Pf(ABAT ) =
det(A)Pf(B) holds for all antisymmetric matrix B , the above equation can be rewritten as

Pf(K(S)) = det(R)Pf(ε+)Pf(M−T ) = 1

Pf(M)
det(φi(xj ))Pf(ε+(xi, xj )).

For the case |S| > 2m +1, R(S; φ, ε) = 0 is obvious since the matrix R is singular if the elements 
of S is more than 2m + 1. In addition, for the case |S| < 2m + 1, we just need to prove the 
following equality due to an inductionˆ

xl∈X

Pf(K(S ∪ {xl}))dμ(xl) = (2m − l + 2)Pf(K(S)).

This equality can be proved by using the method proposed in [24] and we omit here. Thus we 
say the kernel K+ here can induce a Pfaffian point process constituting of odd points. �

If one chooses ε(x, y) = x−y
x+y

and φi(x) = xi , this Pfaffian point process coincides with the 
one induced by Bures ensemble with odd points [9]. Here we just show a general case for the 
Pfaffian point process with a skew-symmetric matrix kernel, which admits odd points and is 
different with the model proposed in [24]. Moreover, the Pfaffian point process of even and odd 
points can be formulated by the unified one, if we use the de Bruijn’s notation about Pfaffian.

Proposition 4.4. Let (X, dμ) be a measure space and {φi, i = 1, · · · , n} be n functions from X
to C. Assume that ε(x, y) is a skew symmetric function from X×X to C and the related partition 
function

τn =
ˆ

x1,··· ,xn∈X

det(φi(xj ))
n
i,j=1Pf(ε(xi, xj ))

n
i,j=1

∏
1≤j≤n

dμ(xj )

is well-defined and invertible, then for a finite subset S = {x1, · · · , xl} ⊂ X with l ≤ n, we can 
define an l-point correlation function

R(S;φ, ε) = 1

(n − l)!τn

ˆ

xl+1,··· ,xn∈X

det(φi(xj ))
n
i,j=1Pf(ε(xi, xj ))

n
i,j=1

∏
l+1≤j≤n

dμ(xj ).

Moreover, this correlation function is related to a skew symmetric matrix kernel K for even 
n and K+ for odd n with R(S; φ, ε) = Pf(K(S)) (or Pf(K+(S)) respectively) if |S| ≤ n and 
R(S; φ, ε) = 0 if |S| > n.
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Appendix A. Applications to Tau function and BKP hierarchy

In this appendix, we review some facts about the neutral fermions and tau functions of BKP 
hierarchies.

We start with the proof of Proposition 2.8. Notice that it suffices to prove the following lemma.

Lemma A.1. There hold

〈1|e−H+[z−1] = 2
1
2 〈0|φ(z) and 〈0|e−H+[z−1] = 2

1
2 〈1|φ(z)

with [z] = (2z, 2z3

3 , 2z5

5 , · · · ).

Proof. Let us prove the first identity, which is equivalent to the following identity

〈0|φ(z)φ(z1) · · ·φ(z2s−1)|0〉 = 〈0|φ0e
−H+[z−1]φ(z1) · · ·φ(z2s−1)|0〉. (A.1)

By using equation (2.1), one has

LHS = 1

2s

2s−1∏
i=1

1 − zi/z

1 + zi/z

∏
j<j ′

1 − zj ′/zj

1 + zj ′/zj

.

Moreover, the RHS of (A.1) is the coefficient of k0 in 〈0|φ(k)e−H+[z−1]φ(z1) · · ·φ(z2s1)|0〉. It 
can be computed as

〈0|φ(k)e−H+[z−1]φ(z1) · · ·φ(z2s1)|0〉

=
2s−1∏
i=1

e−ξ([z−1],zi )〈0|φ(k)φ(z1) · · ·φ(z2s−1)e
−H+[z−1]|0〉

=
2s−1∏
i=1

e−ξ([z−1],zi )〈0|φ(k)φ(z1) · · ·φ(z2s−1)|0〉

=
2s−1∏
i=1

1 − zi/z

1 + zi/z
· 1

2s

2s−1∏
i=1

1 − zi/k

1 + zi/k

∏
j<j ′

1 − zj ′/zj

1 + zj ′/zj

,

from which one knows the coefficient of k0 is 
1

2s

2s−1∏
i=1

1 − zi/z

1 + zi/z

∏
j<j ′

1 − zj ′/zj

1 + zj ′/zj

indeed. �

Remark A.2. It also holds true for the dual vertex operator that

X̄B(z) · eH−(t)|0〉 = 2
1
2 φ(z)eH−(t)|1〉 and X̄B(z) · eH−(t)|1〉 = 2

1
2 φ(z)eH−(t)|0〉.
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We see soon that Lemma A.1 is used in calculations of tau functions of BKP hierarchies.
Firstly we introduce the basic bilinear condition of BKP hierarchy and give some discussions 

about the tau function of this hierarchy, which was called the small BKP hierarchy in [22]∑
n∈Z

(−1)nφnG ⊗ φ−nG =
∑
n∈Z

(−1)nGφn ⊗ Gφ−n,

or an equivalent matrix form as∑
n∈Z

(−1)n〈U |Gφn|V 〉〈U ′|Gφ−n|V ′〉 =
∑
n∈Z

(−1)n〈U |φnG|V 〉〈U ′|φ−nG|V ′〉. (A.2)

Noting that different hierarchies are obtained by choosing different 〈U |, 〈U ′|, |V 〉 and |V ′〉, now 
we constrain ourselves to the simplest case, that is, the BKP hierarchy. Taking 〈U | = 〈0|φ0e

H+(t), 
〈U ′| = 〈0|φ0e

H+(t ′) and |V 〉 = |V ′〉 = |0〉, and assume the tau function has the form [13]

τ(t) = 〈0|eH+(t)G|0〉 = 2〈0|φ0e
H+(t)Gφ0|0〉,

then one has

1

4
τ(t)τ (t ′) =

∑
n∈Z

(−1)n〈0|φ0e
H+(t)φnG|0〉〈0|φ0e

H+(t ′)φ−nG|0〉

= Res(z−1〈0|φ0e
H+(t)φ(z)G|0〉〈0|φ0e

H+(t ′)φ(−z)G|0〉)
= 1

4
Res(z−1eξ(t−t ′,z)〈0|eH+(t−[z−1])G|0〉〈0|eH+(t ′+[z−1])G|0〉),

where Lemma A.1 is used to derive the last identity.
It equals the following bilinear form

˛

C∞

dz

2πiz
eξ(t−t ′,z)τ (t − [z−1])τ (t ′ + [z−1]) = τ(t)τ (t ′),

and this is the bilinear equation of BKP hierarchy indeed.
In what follows, a negative flow of BKP hierarchy is given when t−1, t−3, · · · are introduced 

in tau functions [22]. Taking 〈U | = 〈0|φ0e
H+(t), 〈U ′| = 〈0|φ0e

H+(t ′), |V 〉 = eH−(t)|0〉 and |V ′〉 =
eH−(t ′)|0〉, and define the tau function

τ(t+, t−) = 〈0|eH+(t)GeH−(t)|0〉 = 2〈0|φ0e
H+(t)GeH−(t)φ0|0〉,

then the negative flow of BKP hierarchy can be obtained, for which we state as the following 
proposition.

Proposition A.3. There exists a negative BKP hierarchy
˛

C∞

eξ(t+−t ′+,z)τ (t+ − [z−1], t−)τ (t ′+ + [z−1], t ′−)
dz

2πiz

=
˛

C0

eξ(t ′−−t−,z−1)τ (t+, t− + [z])τ (t ′+, t ′− − [z]) dz

2πiz
.
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The proof of this proposition is similar with that of BKP hierarchy and we omit it here. By 
applying the transformation

t+ → t+ − a, t ′+ → t+ + a, t− → t− − b, t ′− → t− + b,

one can obtain the following bilinear equations∑
k≥0

pk(−2a)pk(D̃+)e
∑

l≥1,odd alDl+blD−l τ · τ

=
∑
m≥0

pm(2b)pm(−D̃−)e
∑

l≥1,odd alDl+blD−l τ · τ,

where pk is a homogeneous symmetric function and a detailed introduction is given in the next 
section. Here one should notice that if the index of the negative flow vanishes, this hierarchy goes 
back to the original BKP hierarchy. The first member of this hierarchy is

D−1(D3 − D3
1)τ · τ = 0,

which has appeared in [13] as an equation derived from D′∞ and the negative BKP hierarchy 
here seems to be embedded as a subsystem of the D′∞ hierarchy. The negative flow plays an 
important role since it involves the dual of the original current operator, which is closely related 
to the construction of the correlation function.

Besides the negative flow of BKP hierarchy, the modified BKP (mBKP) hierarchy is also 
important [6]. It exhibits two different kinds of tau functions based on the decomposition of the 
Fock space FB = F0

B ⊕F1
B and it provides the original idea to consider a Pfaffian point process 

of even and odd points in section 4. Moreover, the mBKP hierarchy holds for the following 
proposition.

Proposition A.4. There exists an mBKP hierarchy˛

C∞

eξ(t−t ′,z)τn+1(t − [z−1])τn(t
′ + [z−1]) dz

2πiz
= 2τn(t)τn+1(t

′) − τn+1(t)τn(t
′). (A.3)

Proof. According to the basic bilinear condition (A.2), if one takes

〈U | = 〈0|eH+(t)φ(z), 〈U ′| = 〈0|φ0e
H+(t ′), |V 〉 = |V ′〉 = |0〉,

then it follows

Res(〈0|eH+(t)φ(z)φ(z′)G|0〉〈0|φ0e
H+(t ′)φ(−z′)G|0〉)

= 〈0|eH+(t)φ(z)Gφ0|0〉〈0|φ0e
H+(t ′)Gφ0|0〉.

Moreover, if we set tau functions as

τn = 〈0|eH+(t)G|0〉 = 2〈0|φ0e
H+(t)Gφ0|0〉,

τn+1 = 2〈0|eH+(t)φ(z)Gφ0|0〉 = 2〈0|φ0e
H+(t)φ(z)G|0〉,

the above equation can be rewritten as˛

z′=∞
〈0|eH+(t)φ(z)φ(z′)G|0〉〈0|φ0e

H+(t ′)φ(−z′)G|0〉 dz′

2πiz′ = 1

4
τn+1(t)τn(t

′).
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Notice that φ(z)φ(z′) = δ(− z
z′ ) − φ(z′)φ(z) and use the Boson–Fermion correspondence, one 

can easily obtain the equation (A.3), and thus complete the proof. �
Remark A.5. This hierarchy firstly appeared in [6] without proof and it is noted that the two 
different tau functions τn and τn+1 are linked to each other by the vertex operator. In fact, ac-
cording to the Boson–Fermion correspondence of type B∞, one can see that the tau functions are 
of different expressions when Pfaffian is involved, and the solutions are split into two families. 
Examples can be found in [11,12].

Indeed, the above mBKP hierarchy (A.3) can be equivalently expressed in a bilinear form as⎡
⎣∑

l≥1

hl(−2a)hl(2D̃+)e
∑

j=1 aj Dj + 4 sinh(
∑
j=1

ajDj )

⎤
⎦ τn · τn+1 = 0.

By considering that a is of one component, the above equation is

∑
m≥1

am

⎡
⎣ ∑

k+l=m,l≥1,k≥0

(
(−2)l

l!k! pl(2D̃+)Dk
1) + 4

Dm
1

m!

⎤
⎦ τn · τn+1 = 0, for m odd.

The first two nontrivial equations are the cases of m = 3 and m = 5:

(D3
1 − D3)τn · τn+1 = 0, (6D5 − 5D3D

2
1 − D5

1)τn · τn+1 = 0,

which are the modified BKP equations (or the Bäcklund transformation of BKP equation).
Here we would like to mention that the negative flow of the modified BKP equation is also 

included in the D′∞ hierarchy [13]. Consider the tau function with time flows t+ and t−, one can 
define2

τn = 〈0|eH+(t)GeH−(t)|0〉 = 2〈0|φ0e
H+(t)GeH−(t)φ0|0〉,

τn+1 = 2〈0|eH+(t)φ(z)GeH−(t)φ0|0〉 = 2〈0|φ0e
H+(t)φ(z)GeH−(t)|0〉. (A.4)

Based on the equation (A.2) and choosing

〈U | = 〈0|eH+(t)φ(z), 〈U ′| = 〈0|φ0e
H+(t ′), |V 〉 = eH−(t)|0〉, |V ′〉 = eH−(t ′)|0〉,

one can obtain˛

C0

eξ(t ′−−t−,z−1)τn+1(t+, t− + [z])τn(t
′+, t ′− − [z]) dz

2πiz
=

2τn(t+, t−)τn+1(t
′+, t ′−) −

˛

C∞

eξ(t+−t ′+,z)τn+1(t+ − [z−1], t−)τn(t
′+ + [z−1], t ′−)

dz

2πiz
,

and its first member is D1D−1τn · τn+1 = 0, which has been listed in the appendix of [13].

2 It should be noted that the different choices of group-like elements G can help us to construct different kinds of 
solutions of these integrable hierarchies and this is the idea why the matrix integrals solution can induce some Pfaffian 
point process.
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