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Abstract

We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations
around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference
field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An arbitrary
gauge field can be mapped to an associated gauge invariant field. An effective action that depends on gauge-
invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge
field the corresponding gauge-invariant field. The gauge-invariant effective action can be obtained from
an implicit functional integral with a suitable “physical gauge fixing”. We generalize this concept to the
gauge-invariant effective average action or flowing action, which involves an infrared cutoff. It obeys a
gauge-invariant functional flow equation. We demonstrate the use of this flow equation by a simple compu-
tation of the running gauge coupling and propagator in pure SU (N)-Yang—Mills theory.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a quantum field theory context the field equations employed in “classical field theory”
correspond to exact equations that are obtained by the first functional derivative of the quan-
tum effective action. These field equations are used widely in practice. For electromagnetism
in vacuum the lowest order are Maxwell’s equations, while effects of quantum fluctuations are
taken into account by the Euler—Heisenberg correction [1-3] in the effective action. In condensed
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matter physics the field equations obtained from a suitable effective action (“Landau theory”) de-
scribe superconductivity and many other phenomena. For electromagnetism, a crucial ingredient
is the gauge invariance of the effective action.

The field equations derived from the quantum effective action for gravity are the basis of
general relativity and cosmology. Modifications of the Einstein—Hilbert action, for example
by higher-order curvature terms, can describe the inflationary epoch in cosmology [4]. Again,
a central ingredient is diffeomorphism invariance (invariance under general coordinate transfor-
mations) of the effective action. Quantum gravity is characterized by a non-abelian local gauge
symmetry.

The validity of the field equations for electromagnetism and gravity has been tested by nu-
merous precision experiments. For Yang—Mills theories, such as quantum chromodynamics or
the electroweak gauge theory, field equations are explored widely as well. For these theories the
direct observational tests of the field equations are more difficult. Still, the Higgs phenomenon
[5,6] is a direct consequence of the quantum field equations for the electroweak gauge theory
coupled to scalar fields.

In practice, one is used to treat fields as observables. We measure electric and magnetic fields,
or the metric field in gravity. At first sight, this seems to conflict with the observation that the
metric changes under gauge transformations, and with the general property that only gauge in-
variant objects are observables. For local gauge theories formulated in terms of continuum gauge
fields the status of the arguments of the effective action seems then to differ from simple scalar
theories. For the latter the value of the scalar field may correspond to magnetization and is di-
rectly observable. For electromagnetism the issue has a simple solution. Transversal gauge fields
are gauge invariant. They can be associated with physical gauge fields that are observable. Im-
posing the gauge d* A, = 0 we can determine the transversal gauge fields that correspond to
given configurations of electric and magnetic fields.

If one “measures the metric” one should do something similar. One again has to fix a gauge in
order to eliminate the redundancy of the gauge transformations. The notion of transversal fields
for electrodynamics has to be generalized to a construction of gauge invariant fields for gravity.
This extends to other non-abelian gauge theories as Yang—Mills theories. Using gauge invariant
fields as observables provides for a much more direct contact to practical measurement than any
attempt to express the detailed outcome of a measurement of the metric field of the earth in terms
of invariants as the curvature scalar or similar. In this paper we construct gauge invariant fields
for non-abelian gauge theories. They will be the crucial concept for our construction of the gauge
invariant effective action.

While it is rather clear that the gauge-invariant quantum effective action is a powerful concept,
its construction in a quantum field theory for local gauge theories is less obvious. The reason is
that perturbative approaches require gauge fixing, whereas for non-perturbative methods, such as
lattice gauge theories, the implementation of the continuum gauge fields and their effective action
is difficult. In a continuum formulation the gauge fixing is necessary since the second functional
derivative of a gauge-invariant action contains zero modes — they correspond to the gauge fluctua-
tions. The propagator as a central ingredient for all computations of fluctuation effects is then not
well-defined. The solution of this problem by gauge fixing guarantees a well-defined propagator,
but the gauge invariance of the effective action is now lost.

Background gauge fixing [7—10] uses a “background field” A 1 in the gauge fixing condition.
This restores invariance of the effective action under simultaneous gauge transformations of the
macroscopic gauge field A, and the background field A - The gauge-invariant effective action
depends now on two gauge fields A, and A - This is, however, not the object used in electro-
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dynamics or general relativity, where the gauge-invariant effective action depends only on one
gauge field or metric. A gauge-invariant effective action depending on a single gauge field can
be obtained by identifying A = A. This object depends, however, on the gauge fixing and its
connection to physical observables like the quantum field equations and correlation functions is
not obvious.

In this work we propose a gauge-invariant effective action which depends on a single gauge
field. The field equations derived from this effective action are the equations of “classical field
theory” discussed in the beginning. Our continuum construction is similar to background gauge
fixing in a particular “physical gauge”, which can be taken as Landau gauge for Yang—Mills theo-
ries. We do not introduce a separate “fixed” background field A - The gauge fixing is formulated
with the macroscopic field A, replacing the usual background field A > such that the effective
action will depend on a single macroscopic gauge field. With this construction the functional in-
tegral defining the effective action is turned into an implicit construction, involving a functional
differential equation.

As an example, we may define the gauge-invariant effective action I'[A] by a functional inte-
gral over the fluctuating microscopic gauge field A,

[[A] =—ln<fDA’ ns(GZ)M

’ or z A2
xexp{—S[A]—i—/ AZ (AM—AM)}>,
”w

X

(1)

where
G*=[D*(A) D" (A)(A], — A)]". 2)
and

8(G%) = lim exp{—i/(GZﬁ} 3)
a—0 20 '

Here we associate to every macroscopic gauge field A a gauge invariant physical gauge field
A(A). The effective action is evaluated for physical gauge fields, and subsequently extended to
arbitrary gauge fields, ['[A] = I'[A(A)]. Covariant derivatives D*(A) = D*(A(A)) are taken
with the physical gauge field, and D? = D,, D*. The microscopic or classical action S[A’] for
the microscopic gauge field A’ is assumed to be gauge-invariant, and we omit field-independent
normalization factors. The Faddeev—Popov determinant

M = [det(—D?(A))]™" det(—~D"(A) D, (A")) 4)
equals one for A}, = A,,. With

[ [8(G®) = det(-D*(A)) lin})l_[ 5)
1 LA r )2
xeXp{—Q/([D (A)(A), = Ap)] ) }

the factor det(—D?) cancels the first factor in M and one recognizes the close resemblance to
Landau gauge in the background field formalism. We typically work with (infinitesimally) small
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o and take the limit o — O at the end. Possible improvements of the physical gauge fixing and
the precise functional integral definition of I'[A] will be discussed later in the text and in the
appendices.

While the definition (1) is conceptually a rather complicated object, there will never be a need
for an explicit solution of this functional differential equation. A perturbative expansion of the
gauge-invariant effective action, or a computation by non-perturbative functional renormaliza-
tion, involves only techniques familiar from background gauge fixing. Our approach based on
physical gauge fields involves a particular gauge fixing. It differs in this respect from gauge in-
variant formulations that employ a gauge invariant regularization [11-13]. The advantage is the
simplicity of the setting, in practice close to existing computations.

A key element in our approach are the gauge invariant physical gauge fields A(A). Our con-
struction of physical gauge fields A exploits the split of infinitesimal fluctuations A/ — A, into
physical and gauge fluctuations. Gauge-invariant physical fields can be constructed by starting
from some reference field A,, for example A, . =0, and consecutively adding physical fluctua-
tions. Gauge-invariant fields obey differential constraints. We can also view the physical gauge
fields A as the unique representations for every gauge orbit. In this way one associates to every
gauge field A a physical gauge field A(A).

An arbitrary gauge field A, can be decomposed into a physical gauge field AM(A) and a
gauge degree of freedom ¢, (A),

Ap=Au+é, (©6)

This decomposition depends on the choice of the reference field A,. A gauge-invariant effective
action only depends on the physical gauge fields A . and is independent of ¢,,. The distinction
between physical and gauge degrees of freedom is essentially a local issue in field space, refer-
ring to infinitesimal changes of gauge fields and a definition by differential relations. It is this
feature that necessitates the (arbitrary) choice of a reference field A, for any global definition of
gauge-invariant fields. A global definition of physical gauge fields not involving a reference field
is possible only for abelian gauge theories.

The physical gauge fixing acts only on the gauge fluctuations, leaving the physical fluctua-
tions untouched. As a result, the gauge-fixed effective action I'[A] becomes effectively a sum
of two pieces ' =T + [gr. The first is the effective action [[A] for the physical gauge fields,
while the second is a gauge-fixing term I’ gf[A, ¢], which is quadratic in the macroscopic gauge
fluctuations ¢, with a coefficient tending to infinity. A partial solution of the field equations for ¢
therefore implies ¢,, = 0. Inserting this solution into I" eliminates the gauge-fixing term [gf, such
that only the effective action F[A] remains. The gauge- 1nvar1ant effective action ['[A] is obtalned
by extension, associating to every A the physical field A(A) and defining I'[A] = F[A(A)]
This realizes the general mechanism of how a gauge-invariant effective action can arise via the
“decoupling” of gauge modes [14].

The first functional derivative of the gauge-invariant effective action yields a source term
which is covariantly conserved

— =J", D, J" =0. 7

dA, . @
Eq. (7) constitutes in a quantum field theory context the “classical field equations” in the presence
of sources. As it should be, these field equations do not involve the microscopic or “classical”
action, but the effective action which includes all fluctuation effects. In a quantum field theory
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the relevant source term J# is defined by the quantum field equation (7). It may differ from some
microscopic source term. In quantum gravity the r.h.s. of the quantum field equation involves the
effective or renormalized energy momentum tensor.

The second functional derivative I'® of the gauge-invariant effective action constitutes the
inverse propagator for the physical fluctuations. On the space of all fluctuations only I'® is in-
vertible, while T® contains zero modes corresponding to gauge fluctuations. We can project the
fluctuations on the physical fluctuations employing a projector P. Then I'® becomes invertible
on the space of physical fluctuations

r?G=rp", (8)

with G the propagator (Green’s function) for the physical fluctuations. We discuss the relation
of G to the connected two-point correlation function for the physical fluctuations. Knowledge
of the gauge-invariant effective action I is sufficient to compute the correlation function for the
physical fluctuations. One-particle-irreducible higher-order correlation functions for the physical
fluctuations are obtained from higher functional derivatives of T.

Our construction shows some similarities with the geometric formulation of gauge theories
by Vilkovisky and DeWitt [15-20]. This concerns the property that the macroscopic field does
not equal, in general, the expectation value of the microscopic field. There is also a common
emphasis on gauge orbits and their representatives. Our main emphasis concerns the notion of
gauge invariant physical gauge fields which is not present in the Vilkovisky—DeWitt formulation.
They are the basis of our construction of a gauge invariant effective action. On the other hand,
the gauge invariant effective action proposed here is not parameterization invariant, which is the
main concept in ref. [15-20]. The formulation (1) involves explicitly A’, which is a “coordinate”
in configuration space. Also the construction of A is not parameterization invariant. Formally, the
two approaches are therefore rather different, but it seems not excluded that some new relations
may be found. This may concern, for example, an explicit construction for the physical fields
A(A) by employing the connection in configuration space used in ref. [21,22].

Our setting can be extended to a gauge-invariant effective average action or flowing action
I'x[A], for which only fluctuations with covariant momenta larger than k are included (in a
Euclidean setting). Following ref. [23] we will discuss a gauge-invariant flow equation for the
effective average action ['x[A],

1
kopTeA]= 5 tr{kdeRp(A) Gp(A)} — &[Al (€))

Here G p is the propagator for the physical fluctuations in the background of an arbitrary macro-
scopic gauge field A, and in presence of the infrared cutoff. It generalizes G in eq. (8) for k # 0.
The infrared cutoff function Rp suppresses fluctuations with covariant momenta smaller than
k and renders the momentum integral contained in the trace in eq. (9) infrared finite. The term
ko Rp vanishes fast for high momenta, ensuring that eq. (9) is also ultraviolet finite. (In the
following we often will omit the label k for I';[A].) For any setting where G and R are formu-
lated in an extended field space including gauge fluctuations one can employ a projection on the
physical fluctuations,

Gp(A)=P(A)G(A) P (A),

10
Rp(A) = PT(A) R(A) P(A). (10)

More generally, G p obeys PGp = GpPT = Gp, and similar for Rp.
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For pure Yang—Mills theories the projector onto physical fluctuations P, P = P, is given by
-2
Pﬂvzél‘i—DuD D". (11)

It involves covariant derivatives D, formed with the macroscopic gauge field A, with D? =
D,, D", The propagator G p is related to the projected second functional derivative of I,

ry =prrop,
3T (12)

FOW( y)y= ————— .
i IAT ()AL (y)

It involves the infrared cutoff according to
(Fg)+RP)GP=PT. (13)

While I'® is not invertible due to the presence of zero modes associated to gauge invariance,
the inverse propagator I"p for the physical fluctuations is invertible on the appropriate projected
subspace.

The infrared cutoff function R depends on the renormalization scale k. It typically involves
covariant derivatives formed with the macroscopic gauge field A,. The measure contribution
8k (A) arises from the regularization of the factor [ [, 6(G*) M in eq. (1) or, more generally, from
the regularization of the gauge modes and the Faddeev—Popov determinant. It is a given function
of covariant derivatives, typically depending on D*(A)/k?. It does not involve the effective ac-
tion I'[A] and its functional derivatives. The flow equation (9) is closed in the sense that for any
macroscopic gauge field A the r.h.s. can be evaluated in terms of I'®. No separate background
field is involved.

For k = 0 the effective average action I'y[A] equals the gauge-invariant quantum effective
action T'[A] — all fluctuations are included. On the other hand, for k — 0o, or k equal to some
large UV-scale Ayy, no fluctuations are included. In this region of very large k the effective
average action 'y equals the microscopic or “classical” action. The solution of the flow equation
interpolates from the microscopic action for large k to the macroscopic or quantum effective
action for k — 0.

The precise status of the gauge invariant flow equation (9), if it is exact or only a good ap-
proximation, depends on the choice of the relation between the macroscopic gauge field A and
the expectation value of the microscopic gauge field (A’). Only for an “optimal choice” of this
relation eq. (9) becomes exact, which requires the existence of a solution of a differential relation
[23]. In general, there exists always a closed gauge invariant flow equation, but it may involve
additional terms if the choice of A({A’}) is not optimal. Since this is not the main emphasis of the
present paper we discuss the issue in an appendix D. We also note that the flow equation is man-
ifestly gauge invariant, while the regularization is not, since Sy involves the gauge fluctuations.
This differs from the construction of explicitly gauge invariant regulators in refs. [11,12]. The
issue of dependence of the flow equation on the choice of gauge [24] is, at least partly, settled by
the restriction to a physical gauge.

In practice, the flow equation (9) resembles closely the flow equation in the background for-
malism [25] in Landau gauge, with background field A identified with A. It omits, however,
the “correction terms” discussed in ref. [25], and employs a particular regularization of the
Faddeev—Popov determinant. It can be seen as an a posteriori justification for the omission of the
correction terms in many past practical computations, by use of a different object that follows
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a different flow trajectory in the “theory space” of functionals. Past investigations of functional
renormalization in Landau gauge [25-28] have computed the running of the gauge coupling in
various dimensions [25,27,29-31] or at different temperatures [25,32]. They have addressed the
phase diagram of superconductors [33,34], gluon condensation [35,36], the heavy quark poten-
tial [37-40], the gluon propagator [36,38,41-46], as well as confinement [47] and the infrared
properties of QCD [42,43,48], see refs. [49-51] for reviews.

There are also important practical differences to the background formalism in Landau gauge.
Since the flowing action is gauge-invariant and depends only on one macroscopic field, there
is no need to investigate modified Slavnov—Taylor identities or background identities [52-58].
Differentiation of the flow equation (9) with respect to the macroscopic gauge field A, com-
mutes with the k-derivative. Concerning the flow of n-point functions the flow of the proposed
gauge-invariant flowing action involves additional diagrams as compared to the background
field formalism. They are generated by A, -derivatives of Rp in eq. (9), and similarly by the
Ay -dependence of the IR cutoff in the measure term J;. On the other hand, it is an important
technical simplification that the flow of n-point functions can now directly be found by func-
tional derivatives of the gauge-invariant flow generator in eq. (9). This is not possible in the usual
background field formalism. We also recall that even for physical gauge fixing the effective ac-
tion with background field A = A differs from the one with A = 0. As one of the important
effects the wave function renormalization for A differs [39].

An important issue for the practical usefulness of the gauge invariant effective action and the
gauge invariant flow equation is the question of locality. The quantum effective action is not a
local object in the strict sense. Already the perturbative running of the gauge coupling induces a
logarithmic dependence on momentum that cannot be described by any finite polynomial. In the
non-perturbative range the effective gluon propagator may involve a non-local mass term. These
types of non-localities express physical properties and cannot be avoided. The question arises
if additional “spurious” non-localities are generated by our formalism, since the latter involves
non-local projectors. In the computations performed so far no such “spurious” non-localities have
shown up. The reason is mainly that the projections can be implemented indirectly by a physical
Landau gauge fixing, and the latter has a local nature. Presumably, only practical experience will
finally settle this issue.

This paper is organized as follows. In section 2 we recapitulate the general connection between
the effective action and sources. Particular emphasis is paid to physical sources obeying the con-
servation law (7). The projector onto the conserved sources is the same as the one projecting
onto physical fluctuations of the macroscopic gauge field. This establishes the close connec-
tion between physical fluctuations and physical sources. In section 3 we introduce the notion of
gauge-invariant fields or physical gauge fields.

In section 4 we construct the gauge-invariant effective action from a functional integral and
compare it to the background formalism. Section 5 turns to the flow equation for the gauge-
invariant effective action (9). We define the measure contribution ;. As a practical demonstration
we compute the running gauge coupling and the flow of the propagator in SU (N)-Yang—Mills
theory. Section 6 contains our conclusions. In a series of appendices we discuss a non-linear for-
mulation of the split into physical gauge-invariant fields and gauge degrees of freedom, as well
as the general consequences of a setting where the macroscopic field appears in the gauge fixing
for the microscopic field.
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2. Gauge fields and sources

In this section we discuss the split of sources and infinitesimal fluctuations of gauge fields into
a physical part and a gauge part. We introduce the appropriate projectors.

2.1. Gauge transformations

For the discussion of gauge transformations we employ matrix valued gauge fields A, (x) =
A}, 1, where t; are the generators of the gauge group in the fundamental representation. For an

abelian U(1)-gauge group one has 1 = 1/+/2. For SU(2) the generators are given by the Pauli
matrices, t; = 7, /2. We normalize the generators as

1
Tr(tyt;) = 3 Syz, (14)

where Tr stands for the trace over internal indices. For the field variables Aﬁ we use a normal-
ization for which the covariant derivative in the fundamental representation reads

Dy=d —iAy, — Ay=Ait. (15)
Infinitesimal gauge transformations act on gauge fields as

A =Dup=0,0—ilA,, 0], © =t (16)
The field strength,

Foo=0,A, —0,A, —ilAL, Al 17)
transforms as

§Fuv =ile, Fuyl, (18)
such that Tr F*V F,, = § F5, F" is invariant.

Generating functionals for correlation functions are obtained by adding to the microscopic
action a source term. The partition function Z[L] is defined by the functional integral

Z[L]:/DA’ exp{—S[A"]— S.[A", L1}, (19)

where S includes gauge fixing and the Faddeev—Popov determinant. On the microscopic level an
action for the source L typically involves two pieces

SL = —Z/Tr(L“A;l)—i-/Z. (20)

The first is the generic source term, while the second may be needed in order to guarantee the
gauge invariance of Sy . If the two pieces transform under infinitesimal gauge transformations as

SL* =i[p,L*], 8L =2Tr(d,pL"), 21

the source term Sy, is gauge invariant. For the example of gauge fields coupling to fermions the
covariant fermion kinetic term

S, =i / FyH @ — A )Y 22)
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amounts to

L =—yytey,  L=iyy" . (23)
With

SY=ipy =ig't,y, Sy =—ive (24)

one indeed finds the transformation property (21). The term ~ L does not involve A’ or A and
yields for W =1n Z a simple additive “constant” — fx L.

2.2. Projectors

Physical sources are covariantly conserved, obeying the constraint
D,J*=09,J" —i[A,, JF]=0. (25)
For general sources L the projection on the physical sources obeys
JE=PK LY =L* —D'D2D,L" =L" (PT) M, (26)
where the projector P is defined by

v o_ v D V
Pﬂ _5M _PM ’

_ 27)
-2
P,Y=D,D7D".
This projector is a central object for our discussion.
The transposed projector obeys
(PH," =P’ =n"P,"neu, (PH*, =PN, (28)

such that for Minkowski signature the difference between PT and P is only a question of raising
and lowering indices, (PT),” = P, ”. We observe the identities

p*p,’'=0,  P,"D,=0. 29)
Longitudinal fields are annihilated by the projector P,
P,"Dy,B =0. (30)

For fields B in the adjoint representation the covariant derivatives are formed for the matrix
representation (15) with the macroscopic field A, appearing in commutators, e.g.

D,(A)B, =9,B, —i[A,, B,], D*=D"D,. 31

For non-abelian gauge theories P depends on A,. In contrast, for abelian gauge theories one
has D, B, = 9, By, such that the projector is field-independent. If we employ A, = Aj, t;, and
similarly for By, the operator D,, does not act as a simple matrix multiplication. This has to be
taken into account for the notion of products as used in the definition of the projector in egs. (26)
and (27).

For a discussion of projectors it is often more convenient to use a representation where the
action of covariant derivatives can be viewed as matrix multiplication. This holds if we represent
gauge fields and sources as vectors with components labeled by z. Indeed, for fields B in the
adjoint representation, such as the gauge fields, we can represent D* as a matrix multiplication
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(Du(A) B) = (Du(A)", B, (32)
with

(Dyu(A))*y, = 8ubyy — A Sy (33)
and f;,, the totally antisymmetric structure constants of the gauge group. Compatibility with the
matrix representation B = B* t, follows for arbitrary representations of the generators ¢, from

(Dy B)yw = (0uB —i[Ay. B),, 34)

= (Du)zy By(tz)vw = (D;LB)Z(tz)vw~

Eqgs. (32) and (33) yield the projector acting directly on the (i, z) index pair

Py =882 = (D)7, (D7), (D")". (35)

In this representation products of covariant derivatives and projectors are simply products of
matrices containing differential operators. This facilitates many operations.
For arbitrary vectors A, B partial integration yields for the scalar product

/Bé‘(DM D2 D), A;‘}’:/A{)’(D” D D,) "B, (36)
X X

justifying eq. (28). According to practical convenience we will switch between the representa-
tions of gauge fields and sources by vectors or matrices. The use of vectors is typically indicated
by the explicit index z, while for matrices we often do not indicate explicit indices.

2.3. Physical sources and fluctuations
_ If the constraint (25) is realized for the sources appearing in the field equations derived from
I'[A],
ar ar
—=J!, —=Jt =T, 37)
0A;, 0A,
one concludes that I is gauge invariant,

_ ar ar
(SF:/ Z SA;ZL ZZ/TI‘{—(SAM} (38)
BAp 3A,L

X X

= 2/Tr{J“DM<p} = —2/Tr{DMJ“)<p} =0.
X X
In other words, if the first derivative of T obeys
D or =0 39)
oA,

the source is conserved and I" gauge invariant. We will realize the property (39) by projecting a
more general effective action I" on physical gauge fields.
With respect to the gauge transformations (16) the physical sources transform homogeneously,

SJH =ilp, JH. (40)
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For D, J* = 0 the transformed physical source J'** = J* + §J* obeys D), J'* = 0. This can be
seen from
D, J" — D, J" 1)
=0, J" —ilAy+ Dup, J*1— 0, J" +ilAy, JH]
=D,8J* —i[Dyy, J*1=ile, D,,J*]1=0.
We next turn to the physical fluctuations of gauge fields. The infinitesimal difference between
two gauge fields,
hy=AP — A, (42)
transforms homogeneously under simultaneous gauge transformations of A" and A®.
Shy =ile, hyl. (43)
We can split
hy = fu+ay, fM:PMl)hv, D" f, =0, 44)
ay =Dy, A=D72D"h,.

The projector onto the physical fluctuations f* is the same as the one projecting onto the physical
sources J#.

Both f,, and a, transform homogeneously, if Af}) and A,(f) transform both according to
eq. (16). The gauge transformation of A,(}) + h,, can equivalently be described by an inhomoge-
neous transformation of a, at fixed A/(LI ) ,

Sfu =ilo, ful, day = Dyp +ile,ayl. (45)

For infinitesimal 4, we identify a, with the gauge fluctuations, while f,, are the physical
fluctuations. For both infinitesimal &, and ¢ the gauge transformation only acts on the gauge
fluctuations, 8, = da,, = D, ¢.

3. Physical gauge fields

In this section we introduce the notion of gauge-invariant fields. For abelian gauge theories
this can be implemented by a global constraint — the gauge-invariant field A, (x) is simply the

transversal partof A, e.g. A p = P,"A,.Fornon-abelian gauge theories a global constraint is no
longer possible without the choice of a reference field. We rather realize a gauge-invariant field

A, (x) by imposing differential constraints. Starting from a reference field A, 1 (x) the gauge-
invariant field is constructed by adding consecutively physical fluctuations [14]. The precise
choice of the gauge-invariant field depends on the choice of the reference field.

3.1. Gauge-invariant fields

Following ref. [14], an arbitrary gauge field A, can be decomposed into a “physical gauge
field” A « and a gauge degree of freedom ¢,

Ap=Ayu+¢,. (46)
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The “physical gauge fields” A . obey local differential constraints. Let two neighboring physical
gauge fields differ by an infinitesimal fluctuation h o Aff) — Aﬂ) =h - For infinitesimal h this
fluctuation is required to be a physical fluctuation

PV (AYhy=hy,  DMhy=0,  hy= fu (47)
Once the notion of physical infinitesimal fluctuations h u = fu 1s established, the family of phys-
ical gauge fields A «(x) can be constructed by starting with some field Ar, «(x), and then adding
consecutively transversal or “physical” infinitesimal fluctuations f,.
_ This construction can be cast into the form of differential constraints. Consider the change of
A7, induced by an infinitesimal change of A}

o AL
35 = oA, (48)

The difference between A + §A and A is a physical fluctuation, resulting in the constraint

P (A) oAy _ 34, (49)
PETHAY T BAY

The projector P (A) involves covariant derivatives formed with A. .
On the other hand, if A is a pure gauge transformation, the physical gauge field A remains
unchanged and one has by construction §A =0, or

aAZl P(A))? §AY =0 50

In short, a gauge transformation of A does not change the associated physical field A(A). This
is expressed by a second constraint

Az Az

[l wy M
PYY(A) = . 51
dAY oy () JAY (51)

As it should be, eq. (51) directly implies the gauge invariance of A "

LA A ‘
§AY = —L 8AY = —L (Dyo)’
PTaAY T 0AY (Dvg)
. (52)
_ aAfL wv (D )y =0
T AW Y ey =5
By virtue of the constraint (51) one finds for an arbitrary fluctuation #4,,
dA, dA, dA,
hy=—=P,"(A)h, = . 53
Sa = g b (W =21, (53)
Using the properties of the transposed projector the two constraints can also be written as
dAL  dAY
Iz o 2
= P(A 54
dA)  0Ay (P oY

and
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Az A
L= (P, —L, (55)
A5 Ay
implying the relations
A R
" w
DH(A =0 56
Jar (D), (56)
and
045
(DU(A))w PYY =0. (57)

For an effective action l:[A (A)], depending on A only via the physical gauge fields A, the con-
straint (57) entails the property (39) and therefore gauge invariance. Since the constraints on A “

are only differential, a unique specification of A u requires to fix an “initial value” A, > Whose
value is not relevant.
One may be tempted to employ global transversal and longitudinal fields

Al =P,"A,, Ab=A,— Al =D,D?D"A,, (58)
which obey
D*A] =0,  DMAL=DFA,=03"A,. (59)

For non-abelian gauge theories they differ, however, from the physical gauge fields. Indeed,
let us consider a transversal field A,, obeying D* A, = 0. Adding an infinitesimal transversal
fluctuation f}, one finds

DM(A+ f)(Au+ f) =0"(Au+ f)
= D" A, + D" f —ilf*, Al = =il f*, Aul.

The commutator vanishes for abelian gauge fields. For non-abelian gauge theories the physical
gauge field A u + fi 1s no longer necessarily transversal if A u 18 transversal. (Since for a second
step f,ﬁz) one has D*(A + f(D) f,ﬁz) = 0 the physical gauge fields do not obey D*(A)A u=0
either.) For non-abelian gauge theories the transversal fluctuations f;, are related to the concept
of physical fields, while general transversal gauge fields A;T,L play no particular role.

Transversal abelian fields can be used for a simple construction of a subclass of physical gauge
fields for non-abelian gauge theories. Indeed, fields obeying

(60)

A,(x)=n*T;B,(x), 9"B,(x)=0, (61)
are physical gauge fields, with reference field A, = 0. The components A} (x) = B, (x)n® are
proportional to the same n* for all x and u, and the same holds for the infinitesimal difference
i, (x) = (B}, (x) — By (x))n*. With

hy =n*T, (B, (x) — B, (x)) (62)
and

D¥h, =d"h, —i[A* h,]=0"h,

=n°T, (0" B), — 0" B,) =0, (63)
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one infers that 4, = f, is indeed a physical fluctuation. Furthermore, the physical gauge fields
that are infinitesimally close to a reference field Ar,u = 0 are the transversal gauge fields.
The abelian field (61) can therefore indeed be constructed by a subsequent addition of physi-
cal fluctuations, starting from A,, n = 0. This generalizes to linear combinations of commuting
abelian fields. For example, if 7, and 7, commute the field A, = B,&”)Ta + Bftb) Ty, O™ B,(f) =0,
ot B,(Lb) =0, is a physical gauge field. The difference between physical gauge fields and transver-
sal gauge fields becomes important only for gauge fields that cannot be associated to the ones of
an abelian subgroup.

For abelian fields the differential identities (49), (51), (54), (55) for the physical gauge fields
become trivial. The covariant derivatives become simple partial derivatives. For a general abelian
gauge field

Ay =Cyn'T, (64)
the associated physical gauge field A(A) is given by the transversal part

Ap=(Cp=0720,0"C, ) n°T:, (65)
such that

0A, (0 a2y o v

i (s, —0720,0") 85 = Py, (66)

(There is no difference between Pﬁ; (A) = Plit (A) = Pﬁ; .) The differential identities reflect then
simply the projector properties.

3.2. Gauge-invariant effective action

A gauge-invariant effective action depends by construction only on the gauge invariant phys-
ical gauge fields A, . Showing this explicitly requires, however, some care. As an example, we
expand the invariant || . Tr{ F*V F,, } for arbitrary gauge field fluctuations 4,

I :/Tr{F’“’(A +h)Fuy(A+h) — F*(A)F 0 (A)}

=hLh+L+... (67)

We want to show that / depends only on the difference between physical gauge fields, e.g. it
vanishes if 4 is gauge fluctuation, h,, = D, h. For this purpose we employ

Fiw(A+h) — Fu,(A)=Dyhy — Dyhy —ilhy, hyl. (68)
The term linear in & appears in the field equations
I =4/Tr(F’“’;th), (69)
X
with
FM., = D,F*' =3,F" —i[A,, F"]. (70)

The quadratic term reads
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L= —2/TrhMQ“”hu,

X
Q" = D*y*’ — D*DV — 4i F*V,
We decompose &, according to
hy= fu+ Dy, Dt f, =0.
With D, D, F*¥ = 0 one finds that /1 depends only on the transversal fluctuations f,

I = 4]Tr(F’“’;vfM).

X

For the quadratic term one has

/ Te{(D2) 0" (D))

X

=—/Tr{ADMQ“”DVA}
X

—— f Tr{3(ID", DA1DA = 2 F*' (D, D,
X

+4i(F“”;U)DMA)}

_ 2 / Te{A(F*,,) D2},
X

where we use the commutator relations

[Dy, Dyld = —i[Fyy, Al

[D?, Dyx =2i[Fp, D'A1+ilF, ", . Al.
Similarly, one obtains

/ Tr{ £, 0"’ DA + (D 1) O™ £}

X

= 2/Tr{f“[D2, DA+ 2i[ fu, DyAF* )

X

= Zi/TrfM[F’“’;v, A}

X

279

(71)

(72)

(73)

(74)

(75)

(76)

For J# =0 the field equations imply F*".,, = 0, such that the r.h.s. of egs. (69), (74) and (76)

vanishes and /> depends only on the physical fluctuations f,,

L= _2/Tf{f“02fu —4ifu F* fo).

X

(77)

In this case the absence of terms involving longitudinal fluctuations, that we want to establish,
is seen directly. For F*V., # 0 the terms (74) and (76) involve contributions to I5 that do not
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vanish for h;, = D, h. We will show that these terms are actually needed for the property that /
only involves the difference of physical gauge fields.

Indeed, the non-vanishing contributions (74) and (76) for D, F*V # 0 are related to the non-
linear relation which connects the difference between two physical gauge fields h W= A/u —A “
to the difference between two gauge fields or the fluctuation h, = A}, — A, = fi + Dyr. We
write this relation in the form (for invertible S)

Su"hv = fu + Ey, (78)

where E, vanishes in linear order. Only in linear order h « 1s independent of A, as can be seen
from the constraint (53),
. 0A dA
hy=-—"h,="F~
A, A,
In quadratic order E), is no longer purely transversal, D" E,, # 0.
In turn, we can write

fr=E"D"f (79)

I :4/Tr{DVF“”sMP/2p}+A11,

X

AL = —4-/Tr{F’“;v E,}.

X

(80)

For
1
Euzi[(fu—kEDM)L),A]—i-... (81)

the corresponding part in A/ cancels the contributions to /> from egs. (74) and (76). As it should
be, the difference (67) only depends on the physical fluctuations h w- (In quadratic order we can
replace f, by Suvfzv.)

In appendix A we present a more systematic discussion of this issue in terms of a non-linear
field decomposition of A,,. This establishes in a simple form that invariants such as Tr F,, F*”
only depend on the physical gauge fields A u-

For solutions of the vacuum field equations, F*¥ ., = 0, the relevant operator for the quadratic
fluctuations contains already implicitly a projector on the physical fluctuations. In order to see
this we define the operator Q" by

0" B = (D*y*’ — D*DV)B — 2i[F"", B], (82)
such that
h=—2 / Te(h, 0"y ). (83)
X
Applying the projector on the gauge fluctuations, we observe the relations
D*D™2D,0P"B=iD"D?[F".,, B], (84)
0" D,D*D"B =i[F"".,, D"*D"B]. (85)

The r.h.s. of eqs. (84), (85) vanishes for F*" ... This shows that for F#*¥., = 0 the use of projec-
tors becomes rather simple for the operator Q*V — they are not needed explicitly.
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This feature is easily generalized for arbitrary gauge-invariant terms K. Gauge invariance
implies

D 2K _o (86)
ww a7 =V
YA,
Taking a further derivative yields
92K 9 9K
D) {———=—|— (D).} )| —
(Diuu IA3 DAY (aAﬁ( “)“f)aA;a &7)
K
=’ 5az

For all configurations where 9 K /d A% = 0 the second derivative of K is transversal. Applying this
for arbitrary linear combinations of invariants yields useful identities. In particular, if we take for
K a gauge invariant effective action '[A], one infers that for solutions of the field equations for
J* =0 the second functional derivative of I is automatically transversal. No explicit projector

is needed for the computation of F%,z) in this case, since I'® obeys automatically the required
projection properties. This constitutes an additional indication that at least for configurations of
this type no spurious non-localities are introduced by the use of projectors.

3.3. Gauge-invariant effective action and functional derivatives

Practical computations in later parts of this paper will be performed with a simple truncation
for the gauge invariant effective action. We summarize for later purposes a few properties of the
relevant functional derivatives. Consider a simple form of the gauge-invariant effective action

= %gz/Tr{F’“’FW}, (88)
X

where g is the gauge coupling. The first functional derivative yields the field equations for A,
which can be inferred from eq. (69)

D FM = —ig? JH. (89)

A neighboring solution A, 4 h,, has to obey the field equations for a neighboring source J* +
8J". The conservation equation for J# + 8 J# involves then the covariant derivative formed with
Ay + hy. In terms of covariant derivatives D, (A) formed with A, this relates two neighboring
physical sources by

D, (J*+8J*) —ilh,, J* +8J*]1=0. (90)
In the linear approximation for /,, and §J#, using D*J,, = 0, one finds
D, 8J* =ilh,, JH]. o1
In second order in 4, one has

- i

i = v
F2=@12=—? Tr(h, 0" hy}
x 92)

1 - Y
=om, (T@)ni,
2 yz ¥
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with second functional derivative

_ i
(F@) = ?{(—D2n‘“’ + D*D")y: + 28 fuy F ). (93)

Taking into account the antisymmetry of the differential operator 9, the second functional deriva-
tive (f(z))’;zv(x,x/) is symmetric in the space spanned by the indices (u,y,x) or (v,z,x’),
as it should be. From eq. (87) we conclude that I'® is transversal for configurations A, with
F" U; , = 0, but not for arbitrary macroscopic fields A .

4. Functional integral

In this section we construct the gauge-invariant effective action from a functional integral.
This proceeds largely in parallel to the usual gauge-fixing procedure in the background field
formalism. Only a particular class of “physical” gauges can be employed, however. Furthermore,
the background field is no longer an independent field. It is replaced by the macroscopic gauge
field A,,, which is the argument of the gauge-invariant effective action. This leads to an implicit
definition of the effective action by a functional differential equation.

4.1. Partition function

We split the fluctuating or microscopic fields A;i in the functional integral into transversal and
longitudinal fluctuations according to

A=A+, +c| D"b), =0,

w

: (94)
E=D72D"(A, - A)), ¢}, = Dyé.

Here AM =A w(A) is the physical gauge field associated to the macroscopic gauge field, and
covariant derivatives involve the physical field A - We can write " and ¢’ in terms of the projec-
tor P,

buy=P (A, = A). ¢, =01-P) (A - A), (95)

where the projector P (A) is formed with the physical gauge field A « via the covariant derivatives
D,(A).
We discuss here the case of a gauge fixed formulation, with partition function

7= / DA M[A’, A] (96)

x exp{—(S[A"] + Ser[A’, Al+ SL[A, L))}

Here S[A’] is invariant under gauge transformations of A;i and Sy (A’, L) is given by eq. (20).
For the gauge fixing we choose a particular Landau gauge

1 ~ A
Sa=, [ Tl[0" DA, - A0T)
- _l/Tf{m; — A)DFDY(A, — Ay},

(04
X

o7)
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and take the limit « — 0. The covariant derivatives are again formed with the physical gauge field

A - Thus the gauge fixing depends on the macroscopic gauge field A, which will be the argument

of the effective action, via the physical gauge fields A(A). (Formally, it therefore depends on the

reference field A, used for the definition of A(A).) The appearance of the macroscopic gauge

field A in the formulation of the partition function is an important new feature in our formalism.
We have chosen this particular gauge fixing such that Se¢ depends only on ¢, not on b;i,

1 )
Sef = E/Tr{(D“(A)c;L)Z}. (98)

For a — 0 this realizes the decoupling scenario of ref. [14], with a diverging quadratic term for ¢’.
Since eq. (98) does not involve the physical fluctuations &/, it is a “physical” gauge fixing. In
appendix A we discuss improved physical gauge fixings (¢ — 0) such as

| o
Su= [ T2 Db - AT, o2

X

as well as an optimized physical gauge fixing where Ais replaced by A’, the physical gauge field
associated to the microscopic field A’. For the practical discussions of this paper eq. (99) leads to
the same result as the choice (97), while some conceptual issues are clearer. In the main text we
concentrate on the gauge fixing (97) because of its close connection to familiar work in Landau
gauge.

The source term (20) decomposes as

S = /(i —2Tr{J b, + H”c;}). (100)

It couples b;L to the physical sources J* and c;L to the “unphysical” sources H*,
H*=L* — J*=DMD2D,L". (101)

(At this stage covariant derivatives involve A. This will later be extended to arbitrary A.) Finally,
the Faddeev—Popov determinant reads

MIA', A] =Det[—(D”(A))Zw(DM(A’))wy], (102)
with D,, given by eq. (33).

So far we have not specified the definition of the macroscopic gauge field A,. The macro-
scopic gauge field A, and the sources L" should be in some fixed relation, A, (L*). For example,
we could take
dlnZ[L, A]

Aut0) = AL (x) la

) (103)
which identifies the macroscopic field A;, with the expectation value of the microscopic field Ab
for the source L,

AM=(AL)L. (104)

We will adopt a different choice for the relation between A and L, which will be specified be-
low. The relation (103) turns the definition of Z in eq. (96) into an implicit integro-differential
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equation, since A, (L) involves partial derivatives of Z. This will generalize to other choices of
the relation between A and L. We will not have to solve this type of equation explicitly.

Our setting resembles in many aspects the construction in the background field formalism in
ref. [25], but there are also important differences. The major difference concerns the absence
of an independent background field. For the gauge fixing the background field is replaced by
the physical gauge field A(A) for the covariant derivative and the expansion point entering the
definition of c;L. A different choice of source is the second important difference to the formulation
in ref. [25]. As a third difference to the construction in ref. [25] the gauge fixing is not arbitrary
but restricted to physical gauge fixing terms.

4.2. Effective action

We define the effective action I'[A] by the implicit expression

exp(—T[A]) = / DA M[A', A] (105)

X exp{—(S[A/] + ng[A/, A]) + / L?(A;f — AZ)}

=—(InZ + SL[L, A]),

where L(A) denotes the source associated to A. Our choice of the relation between A and L is
given by

ar
Lt = . 106
‘= A (106)
This results in the central functional differential equation
exp(—T[A]) = / DA’
. 5T N . (107)
xexp{—S[A ,A]—i—/ A7 (Af —AM)},
J Iz
with
S’[A/,A]=S[A’]+ng[A’,A]—lnM[A’,A]. (108)

Since eq. (107) is a differential relation, one needs, in principle, the specification of boundary
conditions for a unique definition of I'[A] and L(A). This may be given by '[A,]=0or I'[A =
0]=0. ~
We write I'[ A] in the form
[A]=T[A] + glA, &1+ AT[A, &), (109)
where AT vanishes for ¢ = 0. Here we employ the decomposition (46) of A, into physical fields
A 1« and gauge degrees of freedom ¢,,. The gauge-fixing term

I A
[y = E/Tr{(D“(A)éM)Z} (110)

will turn out to be the only term which diverges for o — 0.
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4.3. Field equation in gauge sector

We next want to show that in the limit &« — O the partial solution of the field equations for
the gauge degrees of freedom implies ¢, = 0. Inserting this solution into the effective action
f‘[A] results in the gauge-invariant expression f‘[A, c=0]= f‘[A]. This will be the basis for the
definition of the gauge-invariant effective action.

For this purpose we write eq. (105) in the form

I[A] = é/Tr{ (D"(A)é,)*} + FIAL (a11)
with

ﬂM:—m/DNMMCMBMA]
(112)
x exp{—S[A']+ Z/Tr(J“b;L —L"Ap)},

and

2
B[, A]= exp|:/ Tr{ <2H” + —D“D”6U>
o

x (113)
A~ 1 / A~
X (C;L — i) — &(D“(cﬂ — cﬂ))z}].

Here A u is related to A, and ¢,, by A uw = A, — ¢, and we do not use at this point the properties
of physical gauge fields. The precise choice of ¢, is given below. For establishing the leading
term (110) it is sufficient to show that F' remains finite for « — 0.

We next proceed to a saddle point expansion and expand B around its extremum, which occurs
for ¢’ = ¢y,

D"DVcg, = —aH". (114)
Identifying
Cu=copu (115)

the factor B becomes unity, such that the leading order saddle point approximation does not
produce in I" any additional terms diverging ~ o~ '. Insertion of eqs. (114) and (115) yields

1
B[¢/, A] =exp ——fTr[D“(c; —éu)]2 ) (116)

o

X

For o — 0 one finds for any finite source H* the simple solution ¢,, = co,,, = 0. The lowest-order
saddle point approximation for F[A] inserts ¢ = 0 in eq. (112), resulting in the replacement
A — A. This implies in eq. (109) AT" =0, with F[A] F[A= A] For @ — 0 and infinitesimal
¢,, the longitudinal character of ¢,, according to eq. (115) is sufficient to show that ¢, is indeed

a gauge fluctuation. Thus A w 18 a physical gauge field.
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Higher-order terms in the saddle point approximation do not produce terms diverging ~ ™!

This may be seen in a somewhat sketchy way by decomposing the functional measure
/DA’:/DBDEN(A), (117)

where b and & are unconstrained fields formed from »’ and ¢’ , respectively [14], and N(A) is a
normalization factor. The factor B in eqs. (112) and (116) becomes

B:exp{—/%(E—EO)D“(A) (5—50)}. (118)

Making a variable change d = (¢ — &)/+/« absorbs the a-dependence in /DA’ B into a field-
independent part of the Jacobian that can be neglected. All other dependence on ¢ in M[A’, A],
S[A’], etc. appears now with appropriate factors of /c. This can be neglected for @ — 0, where
the saddle point approximation in the ¢’-sector becomes exact. This concludes the argument that
AT in eq. (109) remains finite for « — 0, and therefore ¢, = 0 for all solutions of the field
equations with finite sources.

4.4. Gauge-invariant effective action

The gauge-invariant effective action is obtained by extending [[A] to [[A], associating to
every macroscopic field A, the corresponding gauge-invariant field A,

MAl=T[A4)].  TIAl=T[A]|,_, (119)

Gauge invariance of I'[A] reflects directly that T" depends on A only through its dependence on
the physical gauge field A(A) [14]. The construction (119) eliminates the gauge-fixing term as
well as all other terms involving ¢.

The gauge-invariant effective action I'[A] can be obtained from the implicit definition (107)
by restricting the argument to A = A. We can subsequently extend the argument of T to arbitrary
A according to eq. (119). The derivative 3T/ 0A, is replaced by ar/ 0A,, which yields the
conserved source J*. Here 9T/ A has to be evaluated at A(A). The gauge-invariant effective
action T[A] can then be defined as the gauge-invariant solution of eq. (107). In summary, the
gauge invariant effective action I'[A] is defined by the implicit relation

exp(—T[A]) = f DA’
) NPUVR (120)
X exp{—S[A LAl + / AT (Alf — AZ)},
J Iz
with S[A’, A] given by eq. (108) and A = A(A).

Nevertheless, our formulation contains a gauge fixing, necessary to render the functional in-
tegral well defined. Due to the restriction on physical gauges the usual issue of the dependence
of the effective action on the choice of the gauge fixing is largely absent. A small residual depen-
dence could result from the precise selection of the physical gauge fixing. For the example of the
improved physical gauge fixing (99) the gauge invariant effective action is determined by
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exp(~T[A]) = / DA’ §(¢) M[A', A

oF A (121)
xexp{—S[A’]+/ YE (A;f—AfL)},
m

X

with M (4, A] [A’ A(A)] given by eq. (4). We note that the Faddeev—Popov determinant
M equals unity for A’ = A. With

8(%) = ]_[a(Gz
(122)

G* [D 2(A) D*(A)(A, — AT,

this yields eq. (1).

The procedure for computing the gauge invariant effective action first selects a suitable set
of physical fields A and evaluates eq. (120) for F[A] This is subsequently extended to T[A].
In practice, I'[A] will only be evaluated in a given truncation, making some gauge invariant
ansatz with unknown functions. The set of physical configurations A has to be chosen large
enough such that the free functions are determined once f‘[/i] is known for this set. Generalized
perturbative expansions correspond to iterative solutions of the functional differential equation
(120). One starts with a lowest order guess of the form of I'[A], for example taking the form
of the classical action. This lowest order can be used for dI"/9 A on the r.h.s. of eq. (120). Then
eq. (120) becomes a functional integral that determines the first order form of I'[A]. Employing
this first order form for dI'/d A one proceeds iteratively. We will below describe a computation
of I'[A] by a functional flow equation and proceed to a detailed discussion of its form for high
covariant momenta of the gauge fields.

We finally recall that AT in eq. (109) remains finite for « — 0. For « — 0 it has no influence
on the field equation for ¢ and vanishes once the partial solution ¢ = 0 is inserted. For the deriva-
tion of the field equations, or the evaluation of I" for a solution of the field equations, we can omit
the term AT'. The issue is more subtle for higher functional derivatives. For example, the second
functional derivative of AT" may not vanish of ¢« — 0, ¢ — 0, since a term linear in ¢ could give
rise to mixed derivatives. Such terms will often be eliminated by projections on physical fluctua-
tions. For many practical purposes we can simply omit AT". Then the gauge-fixed effective action
decomposes for o« — 0 effectively into a gauge-invariant part T[A(A)] and a simple gauge-fixing
term

- - 1 ~ ~
[[A]=T[A] + a/Tr{[Dﬂ(A) (A, — AM)]Z}. (123)

X

In eq. (120) or (121) we may replace A(A) by A in the terms that do not diverge for ¢« — 0,
e.g. in M or (dT/dA) (A" — A). The reason is that the difference between these expressions
evaluated at A(A) or at A is at least linear in ¢. Since these differences do not diverge for « — 0
they only modify AT. For all issues for which AT can be neglected the difference therefore does
not matter. For all terms in the functional integral except for the physical gauge fixing term we
can then set ¢ = 0.
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4.5. Field equation and expectation value of microscopic gauge field

The field equations relate the first functional derivative of ['[A] to the conserved source
ar

—=J" 124
9A, (124)

On the other hand, the derivative of the gauge-fixing term in I" determines the field equation in
the gauge sector. It enforces A, = A . for arbitrary finite unphysical sources H*. Insertion of this
solution eliminates the gauge-fixing term. Eq. (124) is the definition of the field equation for clas-
sical field theories in a quantum context. For QED it constitutes the modification of Maxwell’s
equations by the Euler—Heisenberg term, or more general effects from quantum fluctuations of
charged particles.

In the standard construction of the effective action by a Legendre transformation of the gen-
erating functional W[L] for the connected Green’s functions the argument A of f‘[A] is directly
given by the expectation value of the microscopic field, A = (A’), cf. eq. (104). In general, this
does not hold for our implicit definition and the relation (106) between sources and macroscopic
gauge fields. One may be interested in the expectation value (A’), even though this does not play
an important role in practice. In appendix B, we discuss how expectation values are computed
for effective actions defined by an implicit relation of the type (107). We find the relation

(F@)e Ay — Ay = Vi, (125)
with
B .
Vg‘=<ﬁ>, S=Se—InM, (126)
"

reflecting the dependence of the gauge-fixing term and Faddeev—Popov determinant on the
macroscopic field A at fixed microscopic field A’. With A" — A = b’ + ¢/ — ¢ we can use the
previous result {¢’) = ¢ = 0, such that eq. (125) fixes (b’) by

9 ) a2n
or
%
(b7) = (Gp)zy vy (128)

Due to the projection properties of G p any longitudinal part of V/* does not contribute in
eq. (128).

For an “optimal physical gauge fixing” the “source correction” V/* vanishes or is purely lon-
gitudinal. In this case one has (b’) = 0, such that the expectation value for the microscopic field
(A;J for the source given by eq. (106) equals the physical macroscopic gauge field A w

(A)=A,. (129)

For any given macroscopic field A, one can find a reference field A, w such that A u=Ay. (This
is achieved by gauge transformations such that A, is the physical field representing the gauge
orbit.) For optimal physical gauge fixing we can associate (A’) with the macroscopic field A
modulo gauge transformations. For any given conserved source J the expectation value (A’) is
uniquely defined only if a reference field A, is specified.
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Landau gauge fixing is not optimal in this sense. The properties of V/* for Landau gauge
fixing are discussed in appendix B. For (b') # 0 the macroscopic gauge field that solves the field
equations for a given source J does not equal the expectation value of the microscopic gauge
field. We advocate that it is the macroscopic gauge field that matters for practical purposes, and
its precise relation to (A’) is of secondary importance.

At this point we note the possibility to add to S in eq. (126) a gauge-invariant “correction
term” C[A] that only depends on the macroscopic gauge field A. Being independent of A’ the
term C[A] does not change the property that the physical gauge fixing acts only on the gauge
fluctuations, and that the partial solution of the field equation in the gauge sector amounts to
(¢'y = ¢ =0. The correction term C[A] modifies V/* in eq. (126) and therefore the relation
between (A’) and A. One may try to find a suitable functional C[A] such that (A’) = A also
holds for Landau gauge. The correction term adds directly to I'[A] by replacing in eq. (121) the
factor 8(¢) M by §(¢) M exp{ —-C } The field equation (124) is modified by the new definition of
AT /9A.

An extended notion of an optimal physical gauge fixing is realized if eq. (129) is replaced by

(Al)=Ay, (130)

with A related to A by a gauge transformation in a unique way. We discuss in appendix A an
optimal gauge fixing of this type.

4.6. Propagator and physical correlation function

The propagator for physical gauge field fluctuations is determined by the second functional
derivative T'® of the gauge invariant effective action. More precisely, it is given by the inverse of
'@ in the projected space of physical fluctuations. We may first employ eq. (123) for computing
propagators for gauge fields and show subsequently that AT can indeed be neglected. The second
functional derivative of f‘, evaluated at ¢ = 0, can be projected into different subsectors. One
finds, neglecting relative corrections ~ «,

(1- PO - pPy=-PHrPa - p),

2)\pv 1 v (13)
(Fgf )éy = _E(DMD )zy,
and
PTT®p = pTr@p =1, (132)

For the projection onto the physical fluctuations we can use the gauge-invariant effective action
T, neglecting the gauge-fixing term. For the effective action (88) the inverse physical propagator
f‘g) is given by eq. (93).

The propagator defined by the inverse of I'® describes the response of the solutions of the
field equation (106) to a small change of the sources. Let A, be the solution of the field equation
(106) for source L*, and A, + A, the solution for source L* 4 § L*. Expanding eq. (106) for
small A, and L* yields

P M
SL;, = DAL DA SA7, (133)
or
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5A= (@) 5L (134)

For « — 0 the propagator vanishes except for the piece corresponding to the physical fluctua-
tions. Therefore only the variation §J of the conserved physical source contributes, and §A is a
physical fluctuation, §A = § A, with

SA=GpdlJ. (135)

Here the propagator G p for the physical fluctuations is given by inversion on the projected
subspace,

PO Gp=pT, (136)
with
Y =plr@p, (137)

With eq. (123), the second functional derivative I'"® is block diagonal according to egs. (131),
(132). Adding the term AT may induce off-diagonal terms that remain, however, finite in the limit
o — 0. The contribution of such off-diagonal terms to the propagator vanishes for « — 0. They
can therefore be omitted.

For theories without local gauge symmetry the propagator can be identified with the connected
two-point correlation function. For local gauge theories in the background field formalism the
identification of the two-point correlation function and the propagator holds as well, with Fézg)

corresponding to the second functional derivative with respect to A at fixed A. In general, F,(ng)

cannot be expressed by the second derivative of f‘bg[A] = I'pe[A, A = A], since the latter also
involves derivatives of I'pg[A, A] with respect to A at fixed A.

For an implicit definition of the gauge invariant effective action (120) the identification of the
propagator G p defined by eq. (136), with the correlation function for physical fluctuations G p,
as defined by (b = (b'))

(G )3 (x, y) = (D) = bE, )b () — B (0)]), (138)

is not obvious a priori. In appendix C we discuss conditions for the identity
Gp=Gp. (139)

Instead of optimizing the precise formulation of the gauge invariant effective action in order
to achieve eq. (129), one may optimize in order to realize eq. (139) [23]. The identity (139)
relies then on an optimal physical gauge fixing and would not hold for general gauge fixing. For
quantum gravity, an identity of this type is the basis for the computation of primordial cosmic
fluctuations from the quantum effective action [59,60].

4.7. Independence of reference field

The definition of the physical gauge field A depends on the choice of a reference field A,
from which A is constructed by adding physical fluctuations. (We add here the subscript r in
order to avoid confusion with the background field in the background formalism.) Through the
definition of A the gauge-fixing term Sgf in S in eq. (108) implicitly depends on A, . Therefore
the functional differential equation (107) depends formally on the reference field. One may ask
to what extent the solution f‘[A] depends on Ar.
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Different choices of A, correspond to different physical gauge-fixing conditions. While the
expression (110) of the gauge-fixing term I'gf in terms of ¢ is the same for all choices of A,, the
functional relation ¢(A) depends on A,. The partial solution of the field equation is independent
of A,, however. All arguments following eq. (110) are the same for any choice of the reference
field. We conclude that the gauge-invariant effective action is independent of the choice of the
reference field A,. The reference field is only needed if we want to define a unique expectation
value (A’) according to eq. (129).

4.8. Comparison with background formalism

It is instructive to compare our implicit definition (107) of the effective action with the back-
ground field formalism. In the background field formalism the effective action I'ng[A, A] obeys a
relation similar to eq. (107), but now involving the background field A instead of the macroscopic

physical field A(A). In eq. (108) one replaces M[A’, A(A)] by M[A', A, while Sg[A’, A(A)]
is replaced by Sgf[A’, A A], with A the fixed background field. For the source term, aT/dA is
replaced by the partial derivative at fixed A, 9T/ A | i

The effective action Fbg[A A] depends on both A and A. A gauge-invariant part

The[A] =ThelA, A = A] (140)

can be defined by identifying the background field with the macroscop1c field. We observe that
l"bg[A] and ['[A] obey almost the same relation (107). Indeed, for ¢ = 0 one has A= A, such

that S[A/, A] in eq. (107) is identical for Fbg[A] and T[A]. The only difference is the source
term, which is given for the background effective action by
OTvg[A, A]|  9Th  0Thg[A, A]
dA |z A dA

, (141)

instead of 9T/ A for our definition of the gauge-invariant effective action. Possible differences
between our definition of the gauge-invariant effective action I'[A] and the gauge-invariant back-
ground effective action I_‘bg [A] are rooted in the different relation between the macroscopic gauge
field A and the sources.

Since the unphysical sources H have no influence for « — 0, one has

T[A] = [pg[A] = Tig[A, A = A] (142)
for all configurations A obeying in the background field formalism the relation
ar
V2l o, (143)
A 1A=A

Only for these configurations is the physical source identical for both formulations,

i T T
©0AL  0Aj lA=a

(144)

and the correction to the field equations discussed in ref. [25] vanishes. For configurations obey-
ing eq. (144) both the gauge-invariant effective action and the “classical” field equations can be
computed equivalently in our manifestly gauge-invariant approach and in the background for-
malism.
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For general A the relation (143) needs not to hold. (This concerns, in particular, the flowing ac-
tion discussed in the next section.) In this case the sources corresponding to a given macroscopic
field differ between the background field formalism and our definition of the gauge-invariant
effective action. In the background field formalism we may define

JAIA, A= P “(A)£
bt T 9A, 14’ (145)

Jg‘g[A] = Jg‘g[A, A=Al

If eq. (143) does not hold for all A, the functional relation J;Lg[A] differs from J[A] as defined
by eq. (124).

In the background formalism A corresponds to the expectation value (A’) for the source
Jog[A]. Suppose that one can find an optimal gauge fixing for our formulation of the gauge-
invariant action, such that A equals the expectation value (A’) for the source J. For both
formulations A corresponds then to the expectation value (A’). These are, however, expecta-
tion values for different sources. For a given A the expectation value (A’)pg differs from (A") as
evaluated in our formalism for the source J. This extends to correlation functions. For a given A
the correlation function in the background field formalism differs from the physical correlation
function proposed in this paper.

One may define in the background field formalism a modified conserved source

FARL S
0A,

which differs from Jpe by the omission of the second term in eq. (141). Then the macroscopic
field Apg corresponding to fbg differs from A which corresponds to Jyg. If we choose fbg =J
the expectation value (A’ )bg[Jbg] equals (A’)[J]. This extends to all correlation functions. The
correlation functions depend on the sources and the gauge fixing, but should not depend on the
formalism used to compute them. Since the gauge fixing is the same, the correlation functions
should coincide if the sources are the same.

In the background field formalism one can compute, in principle, for any A the associated
source jbg and therefore Apg, thus establishing a functional relation Apg[A]. Then the physical
correlation functions computed in our formalism for a macroscopic field A should coincide with
the correlation functions in the background field formalism, now computed for a macroscopic
field Apg[A]. Establishing the relation Apg[A] in practice would be useful for a comparison of
methods.

We finally note that gauge invariance and universality strongly restrict the form of gauge-
invariant effective actions such as ['[A] or f‘bg[A]. This suggests that I'[A] and f‘bg[A] may
actually be identical up to a non-linear field redefinition, and perhaps up to the value of the gauge
coupling at a given momentum or the associated confinement scale.

(146)

5. Gauge-invariant flow equation

The construction of the gauge-invariant effective average action I'y[A] proceeds by introduc-
ing an infrared cutoff function Rj; which suppresses the contributions of fluctuations for which
D < k? for a suitable generalization D of the covariant Laplacian. For k — 0 the effective av-
erage action I'y[A] becomes the gauge-invariant quantum effective action ['[A] discussed in the
previous section. The dependence of 'y on k obeys a functional flow equation. If I't[A] is gauge
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invariant for all k, the flow equation has to be gauge invariant. We aim for a closed form for
which the flow generator can be computed from I'y[A]. The gauge invariant flow equation (9)
has been discussed in detail in ref. [23] and we only sketch here briefly some of the relevant
ingredients. We rather focus on the explicit equations for pure Yang—Mills theories and on the
practical use for the computation of the running gauge coupling and the gluon propagator.

While the non-local projectors are important for the general formulation of the gauge invariant
flow equation, they do not appear any longer in the explicit form of the flow equation for the
configurations considered here. The role of the projectors is to divide the contributions to the
flow into two subsectors. In each subsector the flow equations take rather familiar forms, without
the appearance of explicit projectors.

For k # 0 two modifications are needed in order to obtain a simple closed gauge-invariant flow
equation [23]. First, the macroscopic gauge field A no longer equals the expectation value (A’)
even for an optimal physical gauge fixing. While (¢’) = 0 remains preserved for « — 0, one now
has a k-dependent non-zero value by, = (b)) = (A},) — A w» Which is, in principle, computable
for any given source J*, cf. eq. (94). For k — 0 one recovers (b;L) as determined by eq. (128).
For an optimal physical gauge fixing (b’) vanishes for k — 0.

Inversely, for any given b,, one can determine the associated source J*. We may choose for
any given k a value b(k) such that the correlation function for »’ equals the physical propaga-
tor, G = G. This modifies the relation (106), and therefore the implicit definition (105) of the
effective action I'. For practical computations the explicit relation between (b;) and the source
is not needed. Second, the effective average action I'y[A] involves a k-dependent correction term
Ck[A]. For k — 0 this equals C[A] as discussed in the previous section. Both (b;) and Cy, are
determined by the requirement that the flow of I'y[A] remains simple, computable in terms of
I'k[A] and its functional derivatives.

For comparison we discuss in appendix D a closed flow equation for the case where the source
is fixed by eq. (106) and no correction Cy is added. This again results in a closed gauge-invariant
flow equation for a gauge-invariant effective action I',[A]. As compared to eq. (9) it contains
correction terms since the identification (139) of the propagator G and the correlation function G
is modified. While the correction terms are, in principle, computable from I'[A] and its functional
derivatives, it seems advantageous to employ the freedom in the relation between b and the
sources, as well as for the precise definition of I't, in order to implement the simple form (9) of
the flow equation. In this section we perform simple computations of running gauge couplings
and propagators for the flow equation (9). This illustrates how the gauge-invariant flow equation
(9) can be used in practice.

5.1. Flow in pure gauge theories

As a demonstration of the use of the gauge-invariant flow equation we consider pure non-
abelian gauge theories with the simple truncation (88) for the gauge-invariant effective action.
The only flowing parameter is the k-dependent gauge coupling g(k). In order to compute the
B-function for g we evaluate the flow equation for configurations obeying

Frv,, =0. (147)
In this case we can employ the identities (84) and (85) in order to establish that the projected
inverse [ [@

propagator I' ;" equals I in eq. (93).

Since I_’(Pz) is a matrix in the space of adjoint indices z we represent the gauge fields here as
matrices in the adjoint representation,
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(A/L)yz = A,lf(Tw)yzv (F,uv)yz = F;V(Tw)yz’
(Tw)yz = _ifwyzv [Ty, Ty] =i wy ZTz~

Many formulae of the previous discussion with matrices in the fundamental representation gener-
alize to the adjoint representation. The trace Tr has to be replaced by a normalized trace Tr, such
that Tr = Tr in the fundamental representation, and Tr = (1/2N) Tr in the adjoint representation
of SU(N).

The action of covariant derivatives on the vector field B* in the adjoint representation, as given
by egs. (32) and (33), involves a matrix multiplication according to

(148)

D=0, —iA,. (149)

We will in the following use this representation of D,,. If indices are not indicated explicitly,
matrices in this section have adjoint indices z, y. The (projected) second functional derivative of
the effective action (88) (for Minkowski signature) reads

) NV P

Ty, ==D,",

Pow g2 mm (150)
2 .

D" ={-D%) + D,D" +2iF,"}.

The effective average action or flowing action obtains by adding to the classical action an
infrared cutoff piece AxS which suppresses the small (covariant) momentum fluctuations. For
the infrared cutoff for the physical fluctuations we choose

i ~ A
AgS = ng /(A;“ — Al r,i‘;(’D) (AY — A)), (151)
X

with rMV (D) a matrix valued function of the operator D. The choice (151) results in an IR regu-
lated inverse propagator

I = (D +nD) = P, (152)

where we note that the gauge-fixing part of the IR cutoff is not yet included in this definition.
(The use of the tilde for f,iz) follows historical conventions and should not be confounded with
the effective action I" in presence of the gauge-fixing term.) We will require

lim rg (x) = k2, lim ri(x) =0, (153)
x—0 X—>00

such that r induces an infrared cutoff for eigenvalues of D smaller than k2, and is ineffective for
eigenvalues of D larger than k2.

For a discussion of the resulting gauge invariant flow equation we refer to [23]. The contribu-
tion from the physical fluctuations reads

ko y=mp +..., (154)
1 ~ ~
mo= 5t {kaFP PR P (155)

where the k-derivative on the r.h.s. only acts on r;/g2. For our purposes eq. (152) can be taken
.. ~(2)
as the definition of I';”, e.g.
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~ - i
FY =1+ 5 n®). (156)

Ineq. (152) l:‘,(cz) stands for (f‘,(cz)) v, e.g. we have lowered one of the indices. As a result we have
=(2) =(2) =(2)
Lip=PI7P=T\", (157)
where we use the property
PD=DP =D, (158)

that holds for F. V' =0.
We have to solve the inversion problem

6 =P, (159)

for (Gy) ﬂ" = (G p)yup n*". For this purpose we employ the decomposition [25]

D—D-Dy, (160)
with

(Pp)," = —=Dy.D", (161)

Ju TTwI

D#” =-D%), +21FM”.

The operator D is invertible on the full function space. The operators D and D;, commute

DD, =D D="D3, (162)
and one has
D=PD=DP, DDy =D D =0. (163)

For any function f(x) that admits a Taylor expansion one finds

f(D)=f(D)~ f(Dr)=Pf(D). (164)
The solution of

fMDG =P (165)
reads therefore

G=f"'D)P=f"(D). (166)
This yields

Gy =—ig*P (D). (167)

In short, the operator D is block diagonal, with D and D; the submatrices in the respective
projected spaces. After inversion of the inverse propagator in the appropriate projected subspace
the projectors are no longer present in the flow equation.

For the contribution from the physical fluctuations we obtain

1
=5 tr{ (koyri(D) — UFVk(D))Pk_l(D)}
1 (168)
= 5 tr’H(D),
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with
_ 9lng? (169)
= Sk
The function H (D) reads
H(D) = (kdk — np)rx(D)(D +re(D)) . (170)
We finally employ
trf(DL)=tr f(Ds),  Ds=-D7 (171)

and arrive with eq. (164) at

T = %tr?—l(ﬁ) — %tr’H(DS). (172)

The flow equation (9) contains a contribution from physical fluctuations 7%, corresponding to
the first term in eq. (9), from gauge fluctuations J;, and from the regularization of the Faddeev—
Popov determinant €,

kOx Ty = & = i + Ok — €. (173)

For our regularization one has €, = —2§y, in accordance with eq. (9). Indeed, the regulator term
(151) provides for an infrared cutoff for the transversal fluctuations, but not yet for the gauge
fluctuations and the Faddeev—Popov determinant. This is easily seen by computing 'y for very
large k. This object is needed as an initial value for the flow and should be sufficiently simple.
If the longitudinal fluctuations are not regulated the Faddeev—Popov determinant M and the
unregulated gauge fixing term would induce highly complicated non-local terms in I'y. We have
therefore to extend the regularization and add the “measure terms” §; and ¢ in the flow equation
(173).
For the gauge fluctuations we introduce an additional cutoff term

1 ,
ApSe = o / e ry (DL)Z”y . (174)
X
Correspondingly, we subtract for the effective action

1
AVIRTES E/é? (D, Z‘;’ él. (175)
x

Combining eq. (131) with the second functional derivative of eq. (175) at ¢ = 0 one finds

@

iot = = (DL +re(D)). (176)

1
o
Insertion into the general exact flow equation [61] yields the contribution from the gauge fluctu-
ations

1 - 1 -
b = S uH(D) = S wH(Ds), (177)

with

H(Dr) = kderi (D) (Dp + (D) ™ (178)
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As compared to H(D) in eq. (170) the contribution ~ ng is absent. For nr = 0 the measure
contribution §; cancels the second term in 7y in eq. (172).
The Faddeev—Popov determinant takes the form

M =Det[Ds +iD"(A}, — A,)]. (179)
Without an additional regularization this would produce for k — oo a complicated term in the
effective action. We want to introduce a regulator that guarantees simplicity of I'y_, o, While it
becomes absent for k — 0. We therefore insert into the functional integral a regulator factor [25]
_ Det(DS + i (Ds))
N Det(Ds)

It becomes unity for kK = 0 and therefore ineffective. In the presence of the regulator we replace
M by

Ex (180)

ExM = Det(Ds + ri(Ds))det(1 +iDy' D*(A), — A,,)) (181)

In the limit k — oo the regulator function ry ~ k2 dominates such that E; M becomes an
irrelevant field independent constant,

lim E;xM = Det(k?) Det (1 +iD5 ' D*(A), - AM)
k—00 (182)
~ Det(k?).

Indeed, for kK — oo the functional integral for A’ contains now diverging quadratic terms for
all fluctuations A’ — A. The saddle point approximation becomes exact and we can replace in
eq. (181) A" — A Generalizing for finite but very large k we conclude that I'y becomes indeed
simple. If we express E;M in terms of ghost fields the term ~ rj regulates the ghost propagator.

The k-dependence of Ej arises only through r; and we infer the measure contribution from
the regularization of the Faddeev—Popov determinant

€ = ko In Ey,
= ko trln(D D
i trln(Ds + rx(Ds)) y (183)
= tr{kdkrk (Ds)(Ds + re(Ds) ™' }
= tr H(Ds) = 26.
We therefore end with
ko' = mp — k. (184)

At this stage Jy is a functional of A(A). The extension to a gauge invariant functional of A is
straightforward. Since Dy in eq. (177) involves only covariant derivatives we can simply evaluate
eq. (177) for arbitrary A. This yields already a gauge invariant expression.

The regularization (180) has the advantage that the combined “measure term”-; is a fixed
functional of A, not involving the form of the effective average action I't[A]. For a given
choice of ry the trace (177) can be computed independent of the truncation for I'y. An alternative
regularization could employ a formulation with ghosts and introduce an explicit IR regularization
for the ghost propagator. In this case one would have to follow the flow of the combined effective
action for gauge fields and ghosts. For the approximations employed in the present paper the two
alternatives give identical results. It remains to be seen in practice which choice of regularization
of the Faddeev—Popov determinant is best for precision computations.
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We observe that the relation §; — € = —8; = —€; /2 is no accident. For @« — 0 the longitudinal
sector decouples from the physical sector. In the absence of an IR cutoff in the longitudinal sector

the integration over the longitudinal sector would produce a factor (det[DS(A)]) 172 Instead of
the IR regularization (174) we could insert an overall regularization factor £ k_ 1/ 2, cf. eq. (180),
similar to the regularization of the Faddeev—Popov determinant. This replaces det(Ds)~'/? by
the regularized expression det[Dg + ry (Ds)]~1/2. The total measure factor for longitudinal fluc-
tuations and Faddeev—Popov determinant amounts then to E ,1/ 2, resulting in a total measure
contribution to the flow equation of —e;/2 = —d;. The same total measure factor E k_ 12 arises
if we adopt the physical gauge fixing (99). In this case the Faddeev—Popov determinant needs
no regularization. On the other hand, the unregularized integral over the longitudinal fluctuations

would now produce a factor det(Dg (A))~1/2, This can be regularized by a factor £ ,: 12,

5.2. Running coupling in SU (N)-gauge theories

We specialize to the non-abelian gauge group SU (N) where

Tr(TyT;) = Néy,, (185)
such that
1 -
FﬁUFZ’“’=NTrFWF’“’=2TrFWF’“’. (186)

For the computation of the flow equation for the gauge coupling g we evaluate eq. (184) for a
configuration that corresponds to a constant color-magnetic field

AL ) =n*AP @), Aux) =AY @n T, (187)

with ALB)(x) an abelian gauge field corresponding to a constant magnetic field B, e.g. 81A§B) -
AP = B, and
FIVF:, =28 (188)
Choosing a transversal gauge field, 0" ALB) = 0, the configuration (187) is a physical gauge field
of the type (61).
We perform the computation in Euclidean space and analytically continue later to Minkowski
space. For Euclidean signature the term in the effective action quadratic in B is identified with

eq. (88)

_ B2
F(B):/E—l—... (189)

X

The flow of the gauge coupling can therefore be extracted as

1 e
ko (?):Q Wkakr(BﬂB:O, (190)

with total volume Q = [ .
For the evaluation of the traces (172) and (177) we can closely follow ref. [25]. One has in
quadratic order in B



C. Wetterich / Nuclear Physics B 934 (2018) 265-316 299

_ - 5N 52 —nrp)NB?
Q 'wH(D — —HMD=0)B?="" 191
THD)= 5y HP=0) 2472 (15
where we employ
HD=0)=2—-1nF. (192)
Similarly, one finds for the terms ~ B2
2 —nr)NB?
Q' wH(Ds) = —%,
N329 u (193)
Q 'uH(D -
rH(Ds) = 18372
such that
212 — nr) NQ2B? NQB?
y— ==,
¢ 192772 £ T 9672 (194)
5 NQB? o2t
T — 0k = —— - — .
FTORT g2 4"
One arrives at a non-linear equation for nr
0 (1 N 21 nr
— (=)= 11-= =——, 195
ok (g2> 24712( 4’7F) 42 (193)
that is solved by
-1
11Ng? TN g?
__ _ 196
mr 2472 ( 3272 (196)
Our truncation therefore yields for the flow of the gauge coupling
11Ng* TNg?\ ™
gt =nrgt= o (1- 525
247 32 197)
_ 1INg*  77N%gS
© 2472 7687t

The first term is the usual one-loop beta-function, while the second almost reproduces the exact
two-loop contribution, for which the factor 77 has to be replaced by 68.

5.3. Flow of the gauge field propagator

The propagator Gy for the physical fluctuations of gauge fields is the inverse of the second
functional derivative of 'y on the projected subspace of physical fluctuations,

r? Gy=P. (198)

The inverse propagator F,(cz) is related to f‘,(cz) in eq. (152) by subtraction of the IR cutoff piece,
and reads in our truncation

iD

g%

Its flow is given by the k-dependence of g, e.g.

re = (199)
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TP = —ppr?. (200)

Since the projector P does not depend on k, this transfers directly to

3 Gr =nr Gy. (201)

We observe that for the gauge-invariant formulation of the flow equation the anomalous dimen-
sion nF is the same object that appears in the B-function (169) for the running gauge coupling.
This contrasts with formulations with a fixed background field where nr is replaced to lowest
order by nr = (13/22)nr. We will discuss the origin of this difference below.

An improved truncation for the (Euclidean) effective average action is given by

1 ,
o= / F,," Z% (K + D) F)*, (202)
X
with Z,” (x) given for x = k? by a solution of the flow equation for g2,
Z(x =k%) = g2 (k?). (203)

Since D is matrix valued, also Z is matrix valued. In perturbation theory for small g> the im-
provement is a higher-order effect. To lowest order one has
1 1IN  (k*+D
Z=— + 5 In 3 .
g*(ko) 48w ko

(204)

For D « k? this reduces to the truncation (88), while for D >> k% we take into account that
external momenta or large fields act as physical infrared cutoffs that effectively stop the flow. At
quadratic order in A, one can replace

2
DM" — —0 (Sl‘i +9,9". (205)
We can repeat the computation (168) of mx, with H (D) replaced by

H'(D) = (3 —nF) 1 [gZZ(D)D+rk(D)]_l~ (206)

If we define the running gauge coupling as before from the zero momentum limit of the effective
action, the result for the B-function remains the same since H’(0) = #(0). For an alternative
definition at non-zero momentum, p? = 0, the running is effectively stopped for k> < p?. Taking
the limit k — 0 the gauge coupling becomes a function of p?, with dependence on p? governed
by the same B-functions as for the dependence on k2 for p?> < k2. For the Euclidean inverse
gluon propagator the improved truncation yields a non-trivial momentum dependence according
to

r® =zk*+D)D. (207)

Quite generally, the gauge field propagator (in the “vacuum state” A, = 0) is expected to be
a function of D, and we may write

_ 32Fk
T AAL(X) DAY (Y) (208)

=5 -y [2&*,D)D], ",

Tpoy (X, 3)
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extending eq. (207) to a more general form of Z. In eq. (208) all quantities are evaluated for
A, =0. The ansatz (207) is compatible with the gauge invariance of I'y and the projection onto
physical fluctuations. The factor § (x — y) reflects translation symmetry, with D acting on y.

The flow equation for F,((Z) is obtained from eq. (9) or (173) by taking two derivatives with
respect to the gauge fields

2
(@)1 3
ro" e y=——
) = e AT

In contrast to formulations with a fixed background field also 7 in eqs. (168) and (170) depends
on the macroscopic gauge field, such that eq. (209) receives contributions from dr¢/9AJ,, etc.
(This holds analogously for the measure contribution 8;.) One can cast eq. (209) into a sum of
one-loop diagrams with two external legs and one insertion of d; Ry. For a fixed background field
this involves the usual three- and four-point vertices, obtained from third and fourth derivatives
of I'x. For our gauge-invariant formulation one has additional diagrams involving derivatives of
rr with respect to the gauge field.

In the truncation (88) the flow of the inverse propagator at zero momentum is given by
eq. (200). The difference to the result for a fixed background field arises precisely from the terms
~ 0ry/dA,. For non-zero momentum squared p? # 0 one expects that the external momentum
stops the flow for k> < p2. This results for Z in the qualitative behavior (203). A more precise
estimate of Z needs an explicit computation.

Extrapolating our estimate for g(k) in the truncation (202) and (203) to small k would lead to
vanishing of Z for small momenta. This clearly indicates the insufficiency of this truncation for
the infrared behavior of Yang—Mills theories. A self-consistent flow for the truncation

o (k. — 8%). (209)

4

X

1
rz_waVzgg(D) F)® (210)

would be interesting. As long as the ground state corresponds to A, = 0 eq. (210) accounts
for the propagator of the gauge fields. In QCD the Fourier transform of DZ (D) (at A =0) is
related to the heavy quark potential. A behavior Z ~ D for k — 0 corresponds to a linearly
rising potential in position space.

6. Conclusions

In this paper we propose a gauge-invariant effective action for theories with local gauge sym-
metry. This effective action depends on only one macroscopic gauge field A, in distinction to
the background field formalism. The macroscopic gauge field appears in the functional integral
defining the effective action — this turns the definition formally into a functional differential equa-
tion. In practice, our construction proceeds by a particular physical gauge fixing, determined such
that the gauge-fixed effective action I'[A] decays into a gauge-invariant physical part [[A] and
a gauge part I'gf[A],

[[A] =T[A]+ gl Al (211)

Arbitrary gauge fields can be split into physical gauge fields A and gauge degrees of free-
dom &, A = A(A) + é(A). Physical gauge fields obey differential constraints. They formally
depend on the choice of a reference field, which does not matter in practice, however. The
gauge-fixing term is quadratic in ¢, with coefficient o' tending to infinity. Solutions of the
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field equations for arbitrary (finite) sources imply ¢ = 0. Inserting ¢ = 0 into eq. (211) projects
onto I'. The gauge-invariant effective action I" depends on A only via the physical gauge fields
A, T[A]=T[A(A)], with [[A] = [[A, ¢ = 0].

We have shown the following properties of the gauge-invariant effective action:

(i) The first functional derivative of T yields the exact quantum field equations for arbitrary
conserved sources.

(ii)) The macroscopic gauge field A equals the expectation value of the microscopic gauge field
(A, as computed for a conserved source corresponding to dT'/dA, only for particular
choices of macroscopic field and physical gauge fixing.

(iii) The inverse propagator for physical fluctuations is defined as the second functional deriva-
tive I® of the gauge-invariant effective action. It can be inverted within the projected
function space of physical fluctuations. The inverse of I'® equals the connected two-point
correlation function for the physical fluctuations only for an optimal choice of macroscopic
gauge field, effective action and physical gauge fixing.

For an optimal setting the gauge-invariant effective action can be used in many respects in
the same way as for theories without local gauge invariance. We have proposed an optimal phys-
ical gauge fixing, but not yet explored its use in practice. For other physical gauge fixings the
consequences of the difference between the macroscopic field and the expectation value of the
microscopic field, as well as between the propagator and the correlation function, need to be ex-
plored. We have given an implicit definition of the effective action I" by a functional differential
equation. For small gauge coupling this can be employed for developing perturbation theory by
an iterative solution.

We also introduce a gauge-invariant effective average action I'y[A] which effectively only
includes fluctuations with D > k2, where D is an appropriate covariant Laplacian-type op-
erator. This effective average action equals [[A] if the infrared cutoff scale k vanishes. The
k-dependence of 'y obeys a closed flow equation which takes a one-loop form. It involves the
full field-dependent propagator, as given by the inverse of (I_‘,(Cz) + Rk), with Ry an IR cutoff term.

The advantage of the present formulation of I'x[A] is the closed form of the flow equation
for a gauge-invariant object depending on only one macroscopic gauge field. The flow can be
computed in terms of I'x[A] and its derivatives. In contrast, the flow equation in the back-
ground field formalism needs information from 'y pe[A, A] for A #* A [25]. As compared to
the background field formalism with physical gauge fixing we can view the present formulation
as following a different trajectory in the space of actions. For k = 0 the result may differ from
the gauge-invariant effective action in the background formalism I'pg[A, A = A] by a non-linear
field redefinition of the macroscopic gauge field. The relation between the macroscopic fields in
the two formulations may be non-local.

For pure Yang—Mills theories we have computed the running of the gauge coupling by use
of the gauge-invariant flow equation in a simple truncation. It parallels the computation in the
background field formalism of ref. [25] up to small modifications. The simple truncation with
I'x given by eq. (88) yields the correct one-loop expression for the B-function, as well as 5/6 of
the two-loop term and higher corrections. We also have computed the flow of the propagator for
physical fluctuations. For k # 0 it differs from the propagator in the background field formalism
by a different wave function renormalization. Based on our result we also propose a simple
improvement of the effective action beyond the form eq. (88). It will be interesting to see if
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the gauge-invariant flow equation beyond its simplest truncation can describe successfully the
infrared behavior of Yang—Mills theories.
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Appendix A. Non-linear decomposition of gauge fields

In this appendix we relate the gauge degrees of freedom ¢, or % to the gauge orbits in a
non-linear decomposition of the gauge fields A, or A;L.

A.l. Gauge orbits

The split A, = A u + ¢, into a gauge-invariant physical gauge field Au and a gauge degree
of freedom ¢, can be associated with a non-linear decomposition of the gauge field,

¥

Ap=wAy,w —i@w)w, wiw=1. (212)

We focus here on a gauge symmetry SU(N), with A, and w N x N-matrices and detw = 1.
Gauge transformations leave A, invariant and transform

w—uw, (213)
such that
Ay —uAyu’ —i@uu)u’. (214)

The non-linear fields w parametrize the gauge orbits associated to A, and gauge transformations
simply act as matrix multiplications of the SU (/N)-matrices u and w. The gauge degrees of
freedom ¢, are related to w by

6,L=AM—Auzwfiuuﬁ—AM—z'(E)Mw)wJf

=—i(Du(Aw)w’, (215)
with
Dyw=d,w —i[A,, wl. (216)
For infinitesimal gauge transformations one has
u=1+ip, o =0, tro =0, (217)
and recovers eq. (16). Similarly, we may consider w close to one
w=1+1i8, st =s, tré =0. (218)

To linear order in § eq. (215) yields

ép=0,8—i[Ay,81=Dy(A)8 = D,(A)S, (219)
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where we employ that A, — AM is of the order 8. The gauge condition D¢, = 0 translates
to D?8 = 0. We note that we could also formulate the gauge fixing with D*(A) ¢, instead of

DH[A] ¢, To linear order in ¢ this makes no difference.
With the decomposition (212) one finds for the field strength

Fuy=w(8,A, — 3,A, —i[Ay, A)T)w’. (220)

Therefore invariants such as Tr F),, F*" do not involve w. They depend only on the physical

gauge fields A « and not on the gauge degrees of freedom ¢,,. This completes the discussion in
section 3. To linear order ¢, is longitudinal, cf. eq. (219).

If we consider A;L in the vicinity of a given gauge-invariant field A, = A w
A=A +h,=Au+h,+¢=Au+ fu+Duh, (221)

we can identify to linear order f,, = h ws € = Dy A, such that h u 1s transversal. Beyond linear

order ¢, needs no longer to be longitudinal, and h w 1s not transversal. Expanding w = exp(id)
to quadratic order in &,

w=1+i8—l§82, (222)
yields

éu=Dyu(A)s — %[DM) 8,81, (223)

which is, in general, not longitudinal. We have discussed this issue in section 3.

The non-linear field parametrization (212) permits a close contact to a similar parametrization
in work on spontaneous color symmetry breaking [62,63]. (The identification is v = w', V,, =
—A};.) It is straightforward to extend this parametrization to quark fields or other matter fields.
For a field ¢ in the fundamental representation of SU (N), such as quarks in QCD or the Higgs
doublet for the SU (2) x U(1) electroweak gauge theory, one employs

v =wy, (224)

with x@ a gauge-invariant field. For fermions the gauge-invariant kinetic term depends only on
the gauge-invariant fields ¢ and A, not on w,

i v (Du(A),, Wy = 1 " (Du(A)),, (225)

For three-flavor QCD a simple effective action, based on the invariants (88) and (225), together
with a part for scalar bilinears ~ v v/, gives a rather satisfying description of phenomenology
provided chiral symmetry breaking occurs also in the octet sector [62]. The physical gauge fields
A « can then be associated with the octet of vector mesons, and the physical fermions ¥ with an
octet and singlet of nucleons.

A.2. Physical gauge fixing

The non-linear representation sheds light on the physical gauge fixing. To linear order one has

§=D72(A) D*(A) (A, — A,) =81, (226)



C. Wetterich / Nuclear Physics B 934 (2018) 265-316 305

Employing the general relation (34), covariant derivatives act by matrix multiplication on the
vector field A;Vl

8= (D72(A) DM(A))Z), (A% — A)). (227)
One may define similarly

§' =D ?(A) D*(A) (A, — Ay) = 8", (228)
with

8% =(D2(A) D“(A))Zy (A= Ay (229)

We define a non-local physical gauge fixing, & — 0,

1
Sef =5~ f 2(5/2)2, (230)
o J Z
resulting in
1
Tyt = £/Z(az)2. (231)
X Z

The solution of the field equations in the longitudinal sector directly imply § = 0O, instead of
D?5 = 0. For Landau gauge we have disregarded the discussion of non-trivial solutions of
D?§ = 0 and employed the solution D8 = ¢, = 0. Then the gauge fixing (230) and Landau
gauge yield the same results.

From a conceptual point of view the physical gauge fixing (230) seems to be attractive. The
Faddeev—Popov determinant reads now, with covariant derivatives given by eq. (33) and A, A'in
the adjoint representation (148),

M =Det[D72(A) D*(A) D, (A")]

. . (232)
=Det[1 —iD"*(A) D*(A) (b, + ¢})].
where we employ the identity
D*(A) — D*(A) Dy (A") =iD"(A) (A], — A,,) 33

=iD"(A) (b), + ).

At lowest order in a saddle point approximation one has §' =0, c;t =0, ¢, =0 and we recall
that this approximation becomes exact for « — 0. One ends effectively with

M =Det[1 —iD~*(A) D*(A) T, b7]. (234)

For @ — 0 no change occurs if we change in the definition of &' the covariant derivative
D”(A) — DH(A). The dependence of M on the transverse fluctuations b’ remains a compli-
cation for many practical computations, for example perturbative expansions.

The gauge fixing (230) is not very convenient for perturbation theory. In the longitudinal
sector one has I“g) ~ é D* D~* DV, For finite o this leads to a strong suppression of the IR
fluctuations, while the inverse propagator vanishes as covariant momenta tend to infinity. For
any finite momenta the divergence of 1/« overwhelms this effect, but a careful discussion of
limits is needed. For functional flow equations, which are UV finite by construction, this issue
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is solved automatically. For perturbation theory it seems advantageous to stick to Landau gauge
fixing.

The gauge fixing (230) is not an optimal physical gauge fixing in the sense that A, does not
equal the expectation value <A;¢>7 and the second functional derivative of I'[A] does not equal
the correlation function for the physical fluctuations. The simplest way to realize “optimal gauge
fixing” would be, of course, to keep the gauge fixing independent of the macroscopic field. We
will next discuss a non-linear gauge fixing of the type (230), with a different non-linear definition
of §'.

We can associate to every microscopic gauge field A’ the corresponding physical gauge field
A’ [A},], and define §’ by

A;A =l AIL e i(BlLei‘S,) e i (235)
HT=8=6"1,
Infinitesimal gauge transformations of A;L act for small &’ as
8/—>8/+§0+%[<p,8/]+... (236)
The gauge-transformed §%(¢),
8%(p) = 87 (0) + % = 3£, " 0" 8 (0), (237)
obeys
z 88/2 _82 _ _f Z(slw _ (1 _ La/)z (238)
y = Ay -7y 2Jyw - 2 v

The Faddeev—Popov determinant M = det N, evaluated for 8 = 0 as appropriate for « — 0,

simply becomes M = 1. Furthermore, this choice of the gauge fixing ensures the absence of

Gribov copies since 8’ = 0 guarantees that A u 1s the unique representative of the gauge orbit.
Expanding eq. (235) for small §’ yields

Al — A =Dy(A) 5/—1[1) (A8, 81+ (239)
I —A,=D, M ,

The lowest order term replaces in egs. (228) and (229) the macroscopic physical field A by the
microscopic physical field A'=A+h. Higher orders can be obtained by an iterative solution of
eq. (239). It is tempting to consider a Landau-type of gauge fixing with A replaced by A

The gauge fixing based on eq. (235) is a physical gauge fixing in the sense that it only affects
the gauge fluctuations around A Concerning the macroscopic field this does not imply ¢ = 0,
however. Only physical microscopic fields A’ contribute effectively in the functional integral.
However, a linear combination of two physical microscopic fields is typically not a physical
field. As a result, the expectation value

A=(A) (240)

will not be a macroscopic physical field A and we cannot infer ¢ = 0.
What is possible, however, is a unique association between a macroscopic physical field A
and the expectation value A, such that A is a gauge transform of A,

Ay=WA, Wi —i@,w)wT,

(241)
wiw =1, detW =1.
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The map A(A) is defined here by the general map of every gauge field to a physical field. The
existence of the inverse A(A) is possible since for « — 0 the gauge fixing (230) and (235)
results in a restriction for the possible values of A. Only those A can be realized that are linear
combinations of physical gauge fields. The manifolds spanned by the family of physical fields
A and the one spanned by the expectation values A therefore permit a one-to-one mapping if
A is the only possible expectation value on the gauge orbit of A. To every A corresponds then
precisely one A.
A unique map A(A) allows us to define

T[A] =TTA(A)], (242)

where I[A] is obtained from the usual gauge-fixed effective action I'[A] by inserting the par-
tial solution of the field equations in the presence of the gauge-fixing term corresponding to
egs. (230) and (235). This parallels the construction of I_‘[A] from f‘[A] in section 4. Then the
gauge-invariant effective action is defined as before

[[A]=T[A(A)] =T[A(AA))] =TTAA)]. (243)
As it should be, the source
_ar af“aA’_LaA_LaAaA
A 9AaA A T pAoA
is covariantly conserved with respect to the macroscopic field A, D,,(A) J* = 0, due to the factor
JA/IA.

This construction demonstrates that an optimal physical gauge fixing is possible. We leave the
question of its practical use to future investigation.

(244)

Appendix B. Expectation values for implicit definition of effective action

In this appendix we discuss the implicit definition of the effective action by a functional differ-
ential equation. We first present a general discussion, and subsequently specialize to Yang—Mills
theories.

B.1. Implicit definition of effective action

For a general discussion we consider arbitrary “fields” or variables ¢’, ¢. The microscopic
variables ¢’ and the macroscopic variables ¢ are vectors with components ¢! and ¢;, which may
be associated to fields such as A;(x), e.g. i = (x, u, z). We define the effective action by the
functional differential equation

rig)=—in [ Dy exp| 3161+ 35 &' - )], (245)

where (3T'/9¢) (¢’ — ¢) stands for the scalar product (3T'/d¢;) (@) — ;). If Sis independent of ¢
eq. (245) is a standard relation for the effective action, as constructed by the Legendre transform
of the generating functional W for the connected correlation functions. We consider here the case
where the action S is also allowed to depend on the macroscopic field ¢. With

2161 = [ Do’ exp| 310’01+ 55 . (246)
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One has

r=_—mz+ L (247)
39

Taking a derivative of eq. (247) with respect to ¢ yields the identity

S
rewe) - ¢) = <@>, (248)

with 85/0¢ taken at fixed ¢'. Here expectation values are defined as
1 ~ A
(P16 91 = [ Do P18 grexp| 310’ 01+ 55 . (249)

In general, expectation values depend on the sources L. The choice (245) and (247) identifies
L =0TI"/d¢. Eq. (248) involves the matrix of second derivatives,

2
re_ 0T
Yo i dg;
We can use the relation (248) in order to compute the expectation value of ¢’ for a source

given by 9I'/d¢. Indeed, for S independent of ¢ and invertible I'® the solution of eq. (248)
identifies the macroscopic field with the expectation value of the microscopic field,

¢ = (). (251)

On the other hand, for (38 /d¢) # 0 and finite invertible I'® the expectation value (¢’) is no
longer given by the macroscopic field ¢.

There are two cases for which (¢') = ¢ holds even in the case where S depends on ¢. The
first is simply that the expectation value of the ¢-derivative of S vanishes or is proportional to
(@) — 9, (85‘/8¢) = D((qﬁ/) — qb). The second corresponds to the case where I'® contains a
diverging piece, « — 0,

r®e¢— r}? ;. (250)

F(z)zl(l—P)B(l—P)—i—... (252)
o

with P a projector. If the omitted terms denoted by the dots are finite for « — 0, the inverse of
I'® takes the form

G=(?®)"'=pPcP+..., (253)
where the omitted terms corresponding to the dots vanish ~ «. For
3S
P<£>=D((d/) - ) (254)

one has (¢') = ¢.
B.2. Yang-Mills theory
We want to investigate for pure Yang—Mills theories with physical gauge fixing under which

conditions eq. (254) is obeyed, and therefore (A;J = Au- Gauge fixings with (AL) = Au are
called optimal. We will see that Landau gauge fixing is not an optimal gauge fixing. As discussed
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in section A.2 the notion of optimal physical gauge fixing can be extended to the case where <A;¢>

is a unique representative in the gauge orbit of A u-
For gauge theories we may denote

3S 3
Vi = =(——(Ser —InM 255
= (3] (g e man) =

with derivative taken at fixed A’. Pieces in V/* that are either longitudinal, e.g. AV/* = (D) 2 Ky,
or are proportional to (A" — A), do not contribute to the difference between (A;f) and A; For
our choice of gauge fixing St and M depend on A only through their dependence on A. With

. a8
VZM =— (256)
0Ay,
one has
JAY .
V= —(V)), (257)
< dA}, Y

such that V! is transversal due to the relation (55). On the other hand, any longitudinal compo-
nent of V/* does not contribute to (A’) — A, see eq. (56).
The expectation value of 9Sgr/dAj, reads
0S8t _ 1

Y E{(D“D“c;)z - fZ},w(D"cL)yc’“w}, (258)

where D* = D*(A) and we employ

8 . a 9 y
o D,=—is" T, o (D) = —8% £.% (259)

Both (¢} (x)) and (c}; (x) ¢y (y)) vanish ~ «. Indeed, the correlation function in the longitudinal

sector, (¢’ ¢’) — (') ~ (1 — P)(f(z))71(1 — P), vanishes ~ «. This cancels the factor o~}
in eq. (258), but is not sufficient for (9 Sgf/ 8AfL) to vanish. The first term in eq. (258) vanishes
since it is longitudinal. For the second term we employ eq. (94),

¢ = (D), &, (260)
such that
9 Sgr 1
€2 — —~ fow (DHO" (D). (261)
dA}, a
For the expectation value we use
(@) = (e =a(D™H™ (262)
such that
aS
< %f’2>= _fsz(D,u)wy(D72)yv
dA;, (263)

= —i Tr{T, D* D72},
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Indeed, eq. (262) follows from the longitudinal part of '@ (cf. section 5),
_ [ v
[(A-P)T?( P)]W

1 i, 1 . " (264)
= — (DL =~ (D) (D",
(for configurations where (DL)Z” is symmetric), which is inverted by
(cic)y=—aD, D~ “D,. (265)

With cjf = (D“)Zy ¢” and taking into account the antisymmetry of D, this is equivalent to
eq. (262). (One may equivalently use directly the effective action for ¢.)
For the contribution from the Faddeev—Popov determinant one employs

=—fa’ (D"(A))," (Gan),"

dA}, (266)
=—iTr{T. D"(A") Gg},
with ghost propagator
A 1—1
Ggh = [—DM(A) DH(A )] . (267)

Combining egs. (261) and (266) one finds
VH = —i Tr{T. D" (A) Ggn(A', A)

) - (268)
— D"(A) Gan(A, A)},

such that V* vanishes for A" = A. Expanding V¥ in A’ — A, the linear term in A’ — A does not
contribute to (A) — A. Higher-order terms in the expansion contribute, however, to (\72“ ) even
for (A’) = A.

We conclude that (Vz“ ) does, in general, not vanish for (A’) = A. From eq. (248) we infer a
difference between (A’) and A according to

(AZ) — AZ = (Gp)IL VY. (269)
Appendix C. Correlation function for implicit definition of effective action

In this appendix we use the functional differential equation (107) or (245) in order to establish
a general expression for the two-point correlation function. For pure gauge theories and optimal
physical gauge fixing the correlation function equals the propagator, establishing eq. (139).

In order to obtain a relation for the second functional derivative of I" we start from

——InZ, Z:/m’ exp(=3),

(270)
§=8-— (¢> é0)-
¢ I
Derivatives with respect to ¢ yield
ar | a8
= < > 271)
dgi  \0¢;

and
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32T ar ar 328 38 a8
09 _ 9 (272)
0¢i d¢p; ¢ 3¢; 00 dp;  3¢; 09
with expectation value defined by
(B) :Z—I/D¢’B exp(—S). (273)
We next exploit
39S ar N as 32T @ — ) o7
= !
0pi  od; | ¢ odiddy |
and
928 9T LS Y @ — o) @75)
0di 9;  0didg;  0didd; Odidd;o¢ L
Insertion into eq. (272) and use of eq. (248) yields
T 0T b6 — ) = — 4+ x (276)
s _ N
O dpm i dgpy | T agiagy Y
with
928 a8 oS
ij=<__ _> @)
0¢; 0p; ¢ 39

+<<2 °T 3§ 3T )(d)’ ’ )>
20 — &),
00 o 0y  0¢; 3P Iy !
(The expression for X should be symmetrized in i and j.) For S independent of ¢ one has
(¢;) = ¢ such that X vanishes.

We next multiply eq. (276) with (F(Z))fl, such that
(T, Gim = 8im + Yim. (278)
with
Gim = (¢ — 6By, — bm)) (279)
and

Yim = Xij (r(2>) (280)

]m

For Y = 0 one recovers the well-known expression of the propagator G as the inverse of the
second functional derivative of I". More generally, one has

~ -1
Gij=Gij+ Gy, Gy=(I?),

(281)
AGij =Gi Xim Guj
The “correction term’ can be written as
AGij=AG + AGT + AGY), (282)

where
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32§ 3S 8S
(1
AG'Y =G; —— )G
i ”<8¢za¢m a¢za¢m> "
3S
2)
AGL==%5@g¢#—@ﬁGw» (283)
3 aG;;
A65¥=34W#—¢m

Appendix D. Gauge-invariant flow equation from implicit definition of effective action

In this appendix we show that an implicit definition of the average effective action by a
functional differential equation leads to an exact closed flow equation. It is formulated here for
Landau gauge fixing. This flow equation is not yet optimal as the one proposed in ref. [23]. We
briefly discuss which modifications can lead to the flow equation (9).

We start by adding an infrared cutoff term A Sy in the implicit definition (107) of the effective
action

[[Al=—In / DA’ Ex(A) (284)
- , 3fk , .

X exp{—(S—l— ASp[A’, A] +/ VY (Alf — Ah)},

"

X

where § contains a Landau gauge-fixing term and the corresponding logarithm of the Faddeev—

Popov determinant, S = S + Sgf — In M. For the IR cutoff we take

1 (ph)y 2 1 (&)
ASy = E/bg‘(Rk )y 07+ E/c;“(Rk )iy €5 (285)

X X

with R,((ph) and R,((g) suitable functions (see below) of covariant derivatives involving A(A). The
factor Ex(A) regularizes the Faddeev—Popov determinant (see below). It is a gauge-invariant
expression of the covariant Laplacian D?(A).

Taking a logarithmic k-derivative yields, with t = In(k/ ko)
Al
dAj,

(A — AL), (286)

am=@Am—q+/@ i

X
with
€= 0;In Ey. (287)

We define the effective average action as

~ 1 (ph)\zv 1 (2)\zv
Iy=Ty— Eb?(Rk )H,y bl)j - EC?(R]( )ﬂy Cg

ATk R
_ / oz G+ =, (288)

X

where b = (b'), ¢ = (¢’). It obeys the flow equation (at fixed A)
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0k = my + Ok — ek,

1
=5 / 0, (REV)E (BB,
(289)

f 0 (R ) (€52 )e

with (-). denoting the connected two-point function. We recognize the correlation function for
the physical fluctuations

bro*)e=(Gp))" (290)
obeying
PGp=GpPT=Gp. (291)

The correlation function for the gauge fluctuations,

(e e = (Go)M" (292)

vz

vanishes ~ «. Its leading expression in a saddle point expansion obeys
1

A=, D)+ (RE) ) (Ge)y = (1 = Py, (293)
such that
1 ( N1
b= w8, RE (D + RP) '], o1

(Dp),’ =—D,D".

Typically, R(g) is chosen as a function of Dy. We will find €, = —26, such that eq. (289) yields

eq. (9), if Gp = G p, with G p obeying eq. (13) with Rp identified with R®".

For k # 0 the dependence of the cutoff function on the macroscopic gauge field A,
8R,((ph) /9Aj, # 0 is responsible for additional contributions to by, = (b;f ) # 0, even if for an
optimal cutoff one has b = 0 for k = 0. The macroscopic gauge field Aj, does not equal the
expectation value of the microscopic gauge field. The addition of AS, does not change the dis-
cussion in the gauge fixing and Faddeev—Popov sectors, such that one still has

(Y=c=¢=0. (295)
However, for b}, # 0 one has now
/
(A}) = A}, + Dby, (296)

For the definition (288) of T’k it seems likely that the difference AG = G -G, computed accord-
ing to eq. (281), does not vanish. This does not prevent the flow equation for the gauge-invariant
effective action to be a gauge-invariant closed equation. The insertion of the “correction term”
AG remains computable in terms of I', with S in eq. (277) modified by the addition of the physi-
cal part of ASy. Correction terms are proportional to BR,({ph) /9 A3, or derivatives of it, and vanish
for k — 0.

In order to obtain a simpler flow equation were corrections from AG are absent we may
modify the precise definition of the effective average action I'y for k # 0. This influences the
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relation between the expectation value (A;f) and the macroscopic field AfL, as well as AG. Also
the relation between the source L and the macroscopic gauge field A may be modified, such that
L is no longer given by dI'/d¢. If we do not fix the relation between L and aI"/d¢ a priori, the
relation between ¢ and (¢’) can be freely chosen, determining a posteriori the relation between
L and dT'/d¢. More formally, we may replace on the r.h.s. of eq. (284) 8T'/d A by some suitably
chosen source functional L[A], and add to the definition of 'y in eq. (288) a gauge-invariant term
Ci[A]. We require that for k = 0 one has L[A] = 8f‘/8A and Cx[A] = C[A]. The correction AG
depends on the choice of L[A] and Cr[A].

It has been argued in ref. [23] that a suitable definition of 'y and the relation between ¢ and
(¢') exists such that the correction term ~ AG vanishes. In this paper we assume that this is
indeed possible and work with the flow equation (9). We emphasize that different definitions
of 'k, which lead to the same effective action for k = 0, yield the same expectation values and
correlations for physical observables.
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