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Abstract

We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations 
around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference 
field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An arbitrary 
gauge field can be mapped to an associated gauge invariant field. An effective action that depends on gauge-
invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge 
field the corresponding gauge-invariant field. The gauge-invariant effective action can be obtained from 
an implicit functional integral with a suitable “physical gauge fixing”. We generalize this concept to the 
gauge-invariant effective average action or flowing action, which involves an infrared cutoff. It obeys a 
gauge-invariant functional flow equation. We demonstrate the use of this flow equation by a simple compu-
tation of the running gauge coupling and propagator in pure SU(N)-Yang–Mills theory.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a quantum field theory context the field equations employed in “classical field theory” 
correspond to exact equations that are obtained by the first functional derivative of the quan-
tum effective action. These field equations are used widely in practice. For electromagnetism 
in vacuum the lowest order are Maxwell’s equations, while effects of quantum fluctuations are 
taken into account by the Euler–Heisenberg correction [1–3] in the effective action. In condensed 
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matter physics the field equations obtained from a suitable effective action (“Landau theory”) de-
scribe superconductivity and many other phenomena. For electromagnetism, a crucial ingredient 
is the gauge invariance of the effective action.

The field equations derived from the quantum effective action for gravity are the basis of 
general relativity and cosmology. Modifications of the Einstein–Hilbert action, for example 
by higher-order curvature terms, can describe the inflationary epoch in cosmology [4]. Again, 
a central ingredient is diffeomorphism invariance (invariance under general coordinate transfor-
mations) of the effective action. Quantum gravity is characterized by a non-abelian local gauge 
symmetry.

The validity of the field equations for electromagnetism and gravity has been tested by nu-
merous precision experiments. For Yang–Mills theories, such as quantum chromodynamics or 
the electroweak gauge theory, field equations are explored widely as well. For these theories the 
direct observational tests of the field equations are more difficult. Still, the Higgs phenomenon 
[5,6] is a direct consequence of the quantum field equations for the electroweak gauge theory 
coupled to scalar fields.

In practice, one is used to treat fields as observables. We measure electric and magnetic fields, 
or the metric field in gravity. At first sight, this seems to conflict with the observation that the 
metric changes under gauge transformations, and with the general property that only gauge in-
variant objects are observables. For local gauge theories formulated in terms of continuum gauge 
fields the status of the arguments of the effective action seems then to differ from simple scalar 
theories. For the latter the value of the scalar field may correspond to magnetization and is di-
rectly observable. For electromagnetism the issue has a simple solution. Transversal gauge fields 
are gauge invariant. They can be associated with physical gauge fields that are observable. Im-
posing the gauge ∂μAμ = 0 we can determine the transversal gauge fields that correspond to 
given configurations of electric and magnetic fields.

If one “measures the metric” one should do something similar. One again has to fix a gauge in 
order to eliminate the redundancy of the gauge transformations. The notion of transversal fields 
for electrodynamics has to be generalized to a construction of gauge invariant fields for gravity. 
This extends to other non-abelian gauge theories as Yang–Mills theories. Using gauge invariant 
fields as observables provides for a much more direct contact to practical measurement than any 
attempt to express the detailed outcome of a measurement of the metric field of the earth in terms 
of invariants as the curvature scalar or similar. In this paper we construct gauge invariant fields 
for non-abelian gauge theories. They will be the crucial concept for our construction of the gauge 
invariant effective action.

While it is rather clear that the gauge-invariant quantum effective action is a powerful concept, 
its construction in a quantum field theory for local gauge theories is less obvious. The reason is 
that perturbative approaches require gauge fixing, whereas for non-perturbative methods, such as 
lattice gauge theories, the implementation of the continuum gauge fields and their effective action 
is difficult. In a continuum formulation the gauge fixing is necessary since the second functional 
derivative of a gauge-invariant action contains zero modes – they correspond to the gauge fluctua-
tions. The propagator as a central ingredient for all computations of fluctuation effects is then not 
well-defined. The solution of this problem by gauge fixing guarantees a well-defined propagator, 
but the gauge invariance of the effective action is now lost.

Background gauge fixing [7–10] uses a “background field” Āμ in the gauge fixing condition. 
This restores invariance of the effective action under simultaneous gauge transformations of the 
macroscopic gauge field Aμ and the background field Āμ. The gauge-invariant effective action 
depends now on two gauge fields Aμ and Āμ. This is, however, not the object used in electro-
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dynamics or general relativity, where the gauge-invariant effective action depends only on one 
gauge field or metric. A gauge-invariant effective action depending on a single gauge field can 
be obtained by identifying Ā = A. This object depends, however, on the gauge fixing and its 
connection to physical observables like the quantum field equations and correlation functions is 
not obvious.

In this work we propose a gauge-invariant effective action which depends on a single gauge 
field. The field equations derived from this effective action are the equations of “classical field 
theory” discussed in the beginning. Our continuum construction is similar to background gauge 
fixing in a particular “physical gauge”, which can be taken as Landau gauge for Yang–Mills theo-
ries. We do not introduce a separate “fixed” background field Āμ. The gauge fixing is formulated 
with the macroscopic field Aμ replacing the usual background field Āμ, such that the effective 
action will depend on a single macroscopic gauge field. With this construction the functional in-
tegral defining the effective action is turned into an implicit construction, involving a functional 
differential equation.

As an example, we may define the gauge-invariant effective action �̄[A] by a functional inte-
gral over the fluctuating microscopic gauge field A′,

�̄[A] = − ln

(∫
DA′ ∏

z

δ(Gz) M̃

× exp

{
−S[A′] +

∫
x

∂�̄

∂Az
μ

(A′z
μ − Âz

μ)

})
,

(1)

where

Gz = [
D−2(Â)Dμ(Â)(A′

μ − Âμ)
]z

, (2)

and

δ(Gz) = lim
α→0

exp

{
− 1

2α

∫
x

(Gz)2
}
. (3)

Here we associate to every macroscopic gauge field A a gauge invariant physical gauge field 
Â(A). The effective action is evaluated for physical gauge fields, and subsequently extended to 
arbitrary gauge fields, �̄[A] = �̄[Â(A)]. Covariant derivatives Dμ(Â) = Dμ(Â(A)) are taken 
with the physical gauge field, and D2 = Dμ Dμ. The microscopic or classical action S[A′] for 
the microscopic gauge field A′ is assumed to be gauge-invariant, and we omit field-independent 
normalization factors. The Faddeev–Popov determinant

M̃ = [
det

(−D2(Â)
)]−1 det

(−Dμ(Â)Dμ(A′)
)

(4)

equals one for A′
μ = Âμ. With∏

z

δ(Gz) = det
(−D2(Â)

)
lim
α→0

∏
z

(5)

× exp

{
− 1

2α

∫
x

([
Dμ(Â)(A′

μ − Âμ)
]z)2

}
,

the factor det(−D2) cancels the first factor in M̃ and one recognizes the close resemblance to 
Landau gauge in the background field formalism. We typically work with (infinitesimally) small 
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α and take the limit α → 0 at the end. Possible improvements of the physical gauge fixing and 
the precise functional integral definition of �̄[A] will be discussed later in the text and in the 
appendices.

While the definition (1) is conceptually a rather complicated object, there will never be a need 
for an explicit solution of this functional differential equation. A perturbative expansion of the 
gauge-invariant effective action, or a computation by non-perturbative functional renormaliza-
tion, involves only techniques familiar from background gauge fixing. Our approach based on 
physical gauge fields involves a particular gauge fixing. It differs in this respect from gauge in-
variant formulations that employ a gauge invariant regularization [11–13]. The advantage is the 
simplicity of the setting, in practice close to existing computations.

A key element in our approach are the gauge invariant physical gauge fields Â(A). Our con-
struction of physical gauge fields Â exploits the split of infinitesimal fluctuations A′

μ − Aμ into 
physical and gauge fluctuations. Gauge-invariant physical fields can be constructed by starting 
from some reference field Ār , for example Ār,μ = 0, and consecutively adding physical fluctua-
tions. Gauge-invariant fields obey differential constraints. We can also view the physical gauge 
fields Â as the unique representations for every gauge orbit. In this way one associates to every 
gauge field A a physical gauge field Â(A).

An arbitrary gauge field Aμ can be decomposed into a physical gauge field Âμ(A) and a 
gauge degree of freedom ĉμ(A),

Aμ = Âμ + ĉμ. (6)

This decomposition depends on the choice of the reference field Ār . A gauge-invariant effective 
action only depends on the physical gauge fields Âμ and is independent of ĉμ. The distinction 
between physical and gauge degrees of freedom is essentially a local issue in field space, refer-
ring to infinitesimal changes of gauge fields and a definition by differential relations. It is this 
feature that necessitates the (arbitrary) choice of a reference field Ār for any global definition of 
gauge-invariant fields. A global definition of physical gauge fields not involving a reference field 
is possible only for abelian gauge theories.

The physical gauge fixing acts only on the gauge fluctuations, leaving the physical fluctua-
tions untouched. As a result, the gauge-fixed effective action �̃[A] becomes effectively a sum 
of two pieces �̃ = �̄ + �gf . The first is the effective action �̄[Â] for the physical gauge fields, 
while the second is a gauge-fixing term �gf [Â, ĉ], which is quadratic in the macroscopic gauge 
fluctuations ĉ, with a coefficient tending to infinity. A partial solution of the field equations for ĉ
therefore implies ĉμ = 0. Inserting this solution into �̃ eliminates the gauge-fixing term �gf, such 
that only the effective action �̄[Â] remains. The gauge-invariant effective action �̄[A] is obtained 
by extension, associating to every A the physical field Â(A) and defining �̄[A] = �̄[Â(A)]. 
This realizes the general mechanism of how a gauge-invariant effective action can arise via the 
“decoupling” of gauge modes [14].

The first functional derivative of the gauge-invariant effective action yields a source term 
which is covariantly conserved

∂�̄

∂Aμ

= Jμ, DμJμ = 0. (7)

Eq. (7) constitutes in a quantum field theory context the “classical field equations” in the presence 
of sources. As it should be, these field equations do not involve the microscopic or “classical” 
action, but the effective action which includes all fluctuation effects. In a quantum field theory 
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the relevant source term Jμ is defined by the quantum field equation (7). It may differ from some 
microscopic source term. In quantum gravity the r.h.s. of the quantum field equation involves the 
effective or renormalized energy momentum tensor.

The second functional derivative �̄(2) of the gauge-invariant effective action constitutes the 
inverse propagator for the physical fluctuations. On the space of all fluctuations only �̃(2) is in-
vertible, while �̄(2) contains zero modes corresponding to gauge fluctuations. We can project the 
fluctuations on the physical fluctuations employing a projector P . Then �̄(2) becomes invertible 
on the space of physical fluctuations

�̄(2) G = P T, (8)

with G the propagator (Green’s function) for the physical fluctuations. We discuss the relation 
of G to the connected two-point correlation function for the physical fluctuations. Knowledge 
of the gauge-invariant effective action �̄ is sufficient to compute the correlation function for the 
physical fluctuations. One-particle-irreducible higher-order correlation functions for the physical 
fluctuations are obtained from higher functional derivatives of �̄.

Our construction shows some similarities with the geometric formulation of gauge theories 
by Vilkovisky and DeWitt [15–20]. This concerns the property that the macroscopic field does 
not equal, in general, the expectation value of the microscopic field. There is also a common 
emphasis on gauge orbits and their representatives. Our main emphasis concerns the notion of 
gauge invariant physical gauge fields which is not present in the Vilkovisky–DeWitt formulation. 
They are the basis of our construction of a gauge invariant effective action. On the other hand, 
the gauge invariant effective action proposed here is not parameterization invariant, which is the 
main concept in ref. [15–20]. The formulation (1) involves explicitly A′, which is a “coordinate” 
in configuration space. Also the construction of Â is not parameterization invariant. Formally, the 
two approaches are therefore rather different, but it seems not excluded that some new relations 
may be found. This may concern, for example, an explicit construction for the physical fields 
Â(A) by employing the connection in configuration space used in ref. [21,22].

Our setting can be extended to a gauge-invariant effective average action or flowing action 
�k[A], for which only fluctuations with covariant momenta larger than k are included (in a 
Euclidean setting). Following ref. [23] we will discuss a gauge-invariant flow equation for the 
effective average action �k[A],

k∂k�k[A] = 1

2
tr
{
k∂kRP (A)GP (A)

}− δk[A]. (9)

Here GP is the propagator for the physical fluctuations in the background of an arbitrary macro-
scopic gauge field Aμ and in presence of the infrared cutoff. It generalizes G in eq. (8) for k �= 0. 
The infrared cutoff function RP suppresses fluctuations with covariant momenta smaller than 
k and renders the momentum integral contained in the trace in eq. (9) infrared finite. The term 
k∂kRP vanishes fast for high momenta, ensuring that eq. (9) is also ultraviolet finite. (In the 
following we often will omit the label k for �k[A].) For any setting where G and R are formu-
lated in an extended field space including gauge fluctuations one can employ a projection on the 
physical fluctuations,

GP (A) = P(A)G(A)P T(A),

RP (A) = P T(A)R(A)P (A).
(10)

More generally, GP obeys PGP = GP P T = GP , and similar for RP .
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For pure Yang–Mills theories the projector onto physical fluctuations P , P 2 = P , is given by

P ν
μ = δν

μ − DμD−2Dν. (11)

It involves covariant derivatives Dμ formed with the macroscopic gauge field Aμ, with D2 =
DμDμ. The propagator GP is related to the projected second functional derivative of �,

�
(2)
P = P T �(2) P ,

�(2)μν
zy (x, y) = ∂2�

∂Az
μ(x)∂A

y
ν (y)

.
(12)

It involves the infrared cutoff according to(
�

(2)
P + RP

)
GP = P T. (13)

While �(2) is not invertible due to the presence of zero modes associated to gauge invariance, 
the inverse propagator �P for the physical fluctuations is invertible on the appropriate projected 
subspace.

The infrared cutoff function R depends on the renormalization scale k. It typically involves 
covariant derivatives formed with the macroscopic gauge field Aμ. The measure contribution 
δk(A) arises from the regularization of the factor 

∏
z δ(Gz) M̃ in eq. (1) or, more generally, from 

the regularization of the gauge modes and the Faddeev–Popov determinant. It is a given function 
of covariant derivatives, typically depending on D2(A)/k2. It does not involve the effective ac-
tion �[A] and its functional derivatives. The flow equation (9) is closed in the sense that for any 
macroscopic gauge field A the r.h.s. can be evaluated in terms of �(2). No separate background 
field is involved.

For k = 0 the effective average action �k[A] equals the gauge-invariant quantum effective 
action �̄[A] – all fluctuations are included. On the other hand, for k → ∞, or k equal to some 
large UV-scale �UV, no fluctuations are included. In this region of very large k the effective 
average action �k equals the microscopic or “classical” action. The solution of the flow equation 
interpolates from the microscopic action for large k to the macroscopic or quantum effective 
action for k → 0.

The precise status of the gauge invariant flow equation (9), if it is exact or only a good ap-
proximation, depends on the choice of the relation between the macroscopic gauge field A and 
the expectation value of the microscopic gauge field 〈A′〉. Only for an “optimal choice” of this 
relation eq. (9) becomes exact, which requires the existence of a solution of a differential relation 
[23]. In general, there exists always a closed gauge invariant flow equation, but it may involve 
additional terms if the choice of A(〈A′〉) is not optimal. Since this is not the main emphasis of the 
present paper we discuss the issue in an appendix D. We also note that the flow equation is man-
ifestly gauge invariant, while the regularization is not, since Sgf involves the gauge fluctuations. 
This differs from the construction of explicitly gauge invariant regulators in refs. [11,12]. The 
issue of dependence of the flow equation on the choice of gauge [24] is, at least partly, settled by 
the restriction to a physical gauge.

In practice, the flow equation (9) resembles closely the flow equation in the background for-
malism [25] in Landau gauge, with background field Ā identified with A. It omits, however, 
the “correction terms” discussed in ref. [25], and employs a particular regularization of the 
Faddeev–Popov determinant. It can be seen as an a posteriori justification for the omission of the 
correction terms in many past practical computations, by use of a different object that follows 
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a different flow trajectory in the “theory space” of functionals. Past investigations of functional 
renormalization in Landau gauge [25–28] have computed the running of the gauge coupling in 
various dimensions [25,27,29–31] or at different temperatures [25,32]. They have addressed the 
phase diagram of superconductors [33,34], gluon condensation [35,36], the heavy quark poten-
tial [37–40], the gluon propagator [36,38,41–46], as well as confinement [47] and the infrared 
properties of QCD [42,43,48], see refs. [49–51] for reviews.

There are also important practical differences to the background formalism in Landau gauge. 
Since the flowing action is gauge-invariant and depends only on one macroscopic field, there 
is no need to investigate modified Slavnov–Taylor identities or background identities [52–58]. 
Differentiation of the flow equation (9) with respect to the macroscopic gauge field Aμ com-
mutes with the k-derivative. Concerning the flow of n-point functions the flow of the proposed 
gauge-invariant flowing action involves additional diagrams as compared to the background 
field formalism. They are generated by Aμ-derivatives of RP in eq. (9), and similarly by the 
Aμ-dependence of the IR cutoff in the measure term δk. On the other hand, it is an important 
technical simplification that the flow of n-point functions can now directly be found by func-
tional derivatives of the gauge-invariant flow generator in eq. (9). This is not possible in the usual 
background field formalism. We also recall that even for physical gauge fixing the effective ac-
tion with background field Ā = A differs from the one with Ā = 0. As one of the important 
effects the wave function renormalization for A differs [39].

An important issue for the practical usefulness of the gauge invariant effective action and the 
gauge invariant flow equation is the question of locality. The quantum effective action is not a 
local object in the strict sense. Already the perturbative running of the gauge coupling induces a 
logarithmic dependence on momentum that cannot be described by any finite polynomial. In the 
non-perturbative range the effective gluon propagator may involve a non-local mass term. These 
types of non-localities express physical properties and cannot be avoided. The question arises 
if additional “spurious” non-localities are generated by our formalism, since the latter involves 
non-local projectors. In the computations performed so far no such “spurious” non-localities have 
shown up. The reason is mainly that the projections can be implemented indirectly by a physical 
Landau gauge fixing, and the latter has a local nature. Presumably, only practical experience will 
finally settle this issue.

This paper is organized as follows. In section 2 we recapitulate the general connection between 
the effective action and sources. Particular emphasis is paid to physical sources obeying the con-
servation law (7). The projector onto the conserved sources is the same as the one projecting 
onto physical fluctuations of the macroscopic gauge field. This establishes the close connec-
tion between physical fluctuations and physical sources. In section 3 we introduce the notion of 
gauge-invariant fields or physical gauge fields.

In section 4 we construct the gauge-invariant effective action from a functional integral and 
compare it to the background formalism. Section 5 turns to the flow equation for the gauge-
invariant effective action (9). We define the measure contribution δk . As a practical demonstration 
we compute the running gauge coupling and the flow of the propagator in SU(N)-Yang–Mills 
theory. Section 6 contains our conclusions. In a series of appendices we discuss a non-linear for-
mulation of the split into physical gauge-invariant fields and gauge degrees of freedom, as well 
as the general consequences of a setting where the macroscopic field appears in the gauge fixing 
for the microscopic field.
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2. Gauge fields and sources

In this section we discuss the split of sources and infinitesimal fluctuations of gauge fields into 
a physical part and a gauge part. We introduce the appropriate projectors.

2.1. Gauge transformations

For the discussion of gauge transformations we employ matrix valued gauge fields Aμ (x) =
Az

μtz, where tz are the generators of the gauge group in the fundamental representation. For an 

abelian U(1)-gauge group one has t = 1/
√

2. For SU(2) the generators are given by the Pauli 
matrices, tz = τz/2. We normalize the generators as

Tr(ty tz) = 1

2
δyz, (14)

where Tr stands for the trace over internal indices. For the field variables Az
μ we use a normal-

ization for which the covariant derivative in the fundamental representation reads

Dμ = ∂μ − iAμ, Aμ = Az
μtz. (15)

Infinitesimal gauge transformations act on gauge fields as

δAμ = Dμϕ = ∂μϕ − i[Aμ,ϕ], ϕ = ϕztz. (16)

The field strength,

Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν], (17)

transforms as

δFμν = i[ϕ,Fμν], (18)

such that TrFμνFμν = 1
2 Fz

μνF
μν
z is invariant.

Generating functionals for correlation functions are obtained by adding to the microscopic 
action a source term. The partition function Z[L] is defined by the functional integral

Z[L] =
∫

DA′ exp
{−S̃[A′] − SL[A′,L]}, (19)

where S̃ includes gauge fixing and the Faddeev–Popov determinant. On the microscopic level an 
action for the source Lμ typically involves two pieces

SL = −2
∫
x

Tr(LμA′
μ) +

∫
x

L̃. (20)

The first is the generic source term, while the second may be needed in order to guarantee the 
gauge invariance of SL. If the two pieces transform under infinitesimal gauge transformations as

δLμ = i[ϕ,Lμ], δL̃ = 2 Tr(∂μϕLμ), (21)

the source term SL is gauge invariant. For the example of gauge fields coupling to fermions the 
covariant fermion kinetic term

SL = i

∫
ψ̄γ μ(∂μ − iA′ztz)ψ (22)
x
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amounts to

Lμ
z = −ψ̄γ μtzψ, L̃ = iψ̄γ μ∂μψ. (23)

With

δψ = iϕψ = iϕztzψ, δψ̄ = −iψ̄ϕ (24)

one indeed finds the transformation property (21). The term ∼ L̃ does not involve A′ or A and 
yields for W = lnZ a simple additive “constant” − 

∫
x
L̃.

2.2. Projectors

Physical sources are covariantly conserved, obeying the constraint

DμJμ = ∂μJμ − i[Aμ,Jμ] = 0. (25)

For general sources Lμ the projection on the physical sources obeys

Jμ = P μ
ν Lν = Lμ − DμD−2DνL

ν = Lν (P T) μ
ν , (26)

where the projector P is defined by

P ν
μ = δ ν

μ − P̄ ν
μ ,

P̄ ν
μ = DμD−2Dν.

(27)

This projector is a central object for our discussion.
The transposed projector obeys

(P T) ν
μ = P ν

μ = ηνρP τ
ρ ητμ, (P T)μν = P μ

ν , (28)

such that for Minkowski signature the difference between P T and P is only a question of raising 
and lowering indices, (P T) ν

μ = P ν
μ . We observe the identities

DμP ν
μ = 0, P ν

μ Dν = 0. (29)

Longitudinal fields are annihilated by the projector P ,

P ν
μ DνB = 0. (30)

For fields B in the adjoint representation the covariant derivatives are formed for the matrix 
representation (15) with the macroscopic field Aμ appearing in commutators, e.g.

Dμ(A)Bν = ∂μBν − i[Aμ,Bν], D2 = DμDμ. (31)

For non-abelian gauge theories P depends on Aμ. In contrast, for abelian gauge theories one 
has DμBν = ∂μBν , such that the projector is field-independent. If we employ Aμ = Az

μ tz, and 
similarly for Bμ, the operator Dμ does not act as a simple matrix multiplication. This has to be 
taken into account for the notion of products as used in the definition of the projector in eqs. (26)
and (27).

For a discussion of projectors it is often more convenient to use a representation where the 
action of covariant derivatives can be viewed as matrix multiplication. This holds if we represent 
gauge fields and sources as vectors with components labeled by z. Indeed, for fields Bz in the 
adjoint representation, such as the gauge fields, we can represent Dμ as a matrix multiplication
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(
Dμ(A)B

)z = (
Dμ(A)

)z
w

Bw, (32)

with

(Dμ(A))zw = ∂μδz
w − Ay

μf z
y w , (33)

and fyzw the totally antisymmetric structure constants of the gauge group. Compatibility with the 
matrix representation B = Bz tz follows for arbitrary representations of the generators tz from

(Dμ B)vw = (
∂μB − i[Aμ,B])

vw

= (Dμ)zy By(tz)vw = (DμB)z(tz)vw.
(34)

Eqs. (32) and (33) yield the projector acting directly on the (μ, z) index pair

P zν
μy = δν

μ δ
y
z − (Dμ)zw(D−2)wv(D

ν)vy. (35)

In this representation products of covariant derivatives and projectors are simply products of 
matrices containing differential operators. This facilitates many operations.

For arbitrary vectors A, B partial integration yields for the scalar product∫
x

Bμ
z

(
Dμ D−2 Dν

)z
y
Ay

ν =
∫
x

Ay
ν

(
Dν D−2 Dμ

) z

y
Bμ

z , (36)

justifying eq. (28). According to practical convenience we will switch between the representa-
tions of gauge fields and sources by vectors or matrices. The use of vectors is typically indicated 
by the explicit index z, while for matrices we often do not indicate explicit indices.

2.3. Physical sources and fluctuations

If the constraint (25) is realized for the sources appearing in the field equations derived from 
�̄[A],

∂�̄

∂Az
μ

= Jμ
z ,

∂�̄

∂Aμ

= Jμ = Jμ
z tz, (37)

one concludes that �̄ is gauge invariant,

δ�̄ =
∫
x

∂�̄

∂Az
μ

δAz
μ = 2

∫
x

Tr

{
∂�̄

∂Aμ

δAμ

}
(38)

= 2
∫
x

Tr{JμDμϕ} = −2
∫
x

Tr
{
DμJμ)ϕ

}= 0.

In other words, if the first derivative of �̄ obeys

Dμ

∂�̄

∂Aμ

= 0, (39)

the source is conserved and �̄ gauge invariant. We will realize the property (39) by projecting a 
more general effective action � on physical gauge fields.

With respect to the gauge transformations (16) the physical sources transform homogeneously,

δJμ = i[ϕ,Jμ]. (40)
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For DμJμ = 0 the transformed physical source J ′μ = Jμ + δJμ obeys D′
μJ ′μ = 0. This can be 

seen from

D′
μJμ′ − DμJμ (41)

= ∂μJ ′μ − i[Aμ + Dμϕ,J ′μ] − ∂μJμ + i[Aμ,Jμ]
= DμδJμ − i[Dμϕ,Jμ] = i[ϕ,DμJμ] = 0.

We next turn to the physical fluctuations of gauge fields. The infinitesimal difference between 
two gauge fields,

hμ = A(2)
μ − A(1)

μ , (42)

transforms homogeneously under simultaneous gauge transformations of A(1) and A(2).

δhμ = i[ϕ,hμ]. (43)

We can split

hμ = fμ + aμ, fμ = P ν
μ hν, Dμfμ = 0,

aμ = Dμλ, λ = D−2Dνhν.
(44)

The projector onto the physical fluctuations f μ is the same as the one projecting onto the physical 
sources Jμ.

Both fμ and aμ transform homogeneously, if A(1)
μ and A(2)

μ transform both according to 
eq. (16). The gauge transformation of A(1)

μ + hμ can equivalently be described by an inhomoge-

neous transformation of aμ at fixed A(1)
μ ,

δfμ = i[ϕ,fμ], δaμ = Dμϕ + i[ϕ,aμ]. (45)

For infinitesimal hμ we identify aμ with the gauge fluctuations, while fμ are the physical 
fluctuations. For both infinitesimal hμ and ϕ the gauge transformation only acts on the gauge 
fluctuations, δhμ = δaμ = Dμϕ.

3. Physical gauge fields

In this section we introduce the notion of gauge-invariant fields. For abelian gauge theories 
this can be implemented by a global constraint – the gauge-invariant field Âμ(x) is simply the 
transversal part of Aμ, e.g. Âμ = P ν

μ Aν . For non-abelian gauge theories a global constraint is no 
longer possible without the choice of a reference field. We rather realize a gauge-invariant field 
Âμ(x) by imposing differential constraints. Starting from a reference field Ār,μ(x) the gauge-
invariant field is constructed by adding consecutively physical fluctuations [14]. The precise 
choice of the gauge-invariant field depends on the choice of the reference field.

3.1. Gauge-invariant fields

Following ref. [14], an arbitrary gauge field Aμ can be decomposed into a “physical gauge 
field” Âμ and a gauge degree of freedom ĉμ,

Aμ = Âμ + ĉμ. (46)
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The “physical gauge fields” Âμ obey local differential constraints. Let two neighboring physical 
gauge fields differ by an infinitesimal fluctuation ĥμ, Â(2)

μ − Â
(1)
μ = ĥμ. For infinitesimal ĥ this 

fluctuation is required to be a physical fluctuation

P ν
μ (Â) ĥν = ĥμ, Dμĥμ = 0, ĥμ = fμ. (47)

Once the notion of physical infinitesimal fluctuations ĥμ = fμ is established, the family of phys-
ical gauge fields Âμ(x) can be constructed by starting with some field Ār,μ(x), and then adding 
consecutively transversal or “physical” infinitesimal fluctuations fμ.

This construction can be cast into the form of differential constraints. Consider the change of 
Âz

μ induced by an infinitesimal change of Ay
ν

δÂz
μ = ∂Âz

μ

∂A
y
ν

δAy
ν . (48)

The difference between Â + δÂ and Â is a physical fluctuation, resulting in the constraint

P zρ
μw(Â)

∂Âw
ρ

∂A
y
ν

= ∂Âz
μ

∂A
y
ν

. (49)

The projector P(Â) involves covariant derivatives formed with Â.
On the other hand, if δA is a pure gauge transformation, the physical gauge field Â remains 

unchanged and one has by construction δÂ = 0, or

∂Âz
μ

∂A
y
ν

(
1 − P(A)

)yρ
νw

δAw
ρ = 0. (50)

In short, a gauge transformation of A does not change the associated physical field Â(A). This 
is expressed by a second constraint

∂Âz
μ

∂Aw
ρ

P wν
ρy (A) = ∂Âz

μ

∂A
y
ν

. (51)

As it should be, eq. (51) directly implies the gauge invariance of Âμ

δÂz
μ = ∂Âz

μ

∂A
y
ν

δAy
ν = ∂Âz

μ

∂A
y
ν

(
Dνϕ

)y
= ∂Âz

μ

∂Aw
ρ

P wν
ρy

(
Dνϕ

)y = 0.

(52)

By virtue of the constraint (51) one finds for an arbitrary fluctuation hν ,

∂Âμ

∂Aν

hν = ∂Âμ

∂Aρ

P ν
ρ (A)hν = ∂Âμ

∂Aν

fν. (53)

Using the properties of the transposed projector the two constraints can also be written as

∂Âz
μ

∂A
y
ν

= ∂Âw
ρ

∂A
y
ν

(
P(Â)

)ρz

wμ
(54)

and
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∂Âz
μ

∂A
y
ν

= (
P(A)

)νw

yρ

∂Âz
μ

∂Aw
ρ

, (55)

implying the relations

∂Âz
μ

∂A
y
ν

(
Dμ(Â)

) w

z
= 0 (56)

and

(
Dν(A)

) y

w

∂Âz
μ

∂A
y
ν

= 0. (57)

For an effective action �̄
[
Â(A)

]
, depending on A only via the physical gauge fields Â, the con-

straint (57) entails the property (39) and therefore gauge invariance. Since the constraints on Âμ

are only differential, a unique specification of Âμ requires to fix an “initial value” Ār,μ, whose 
value is not relevant.

One may be tempted to employ global transversal and longitudinal fields

AT
μ = P ν

μ Aν, AL
μ = Aμ − AT

μ = DμD−2DνAν, (58)

which obey

DμAT
μ = 0, DμAL

μ = DμAμ = ∂μAμ. (59)

For non-abelian gauge theories they differ, however, from the physical gauge fields. Indeed, 
let us consider a transversal field Aμ, obeying DμAμ = 0. Adding an infinitesimal transversal 
fluctuation fμ one finds

Dμ(A + f )(Aμ + fμ) = ∂μ(Aμ + fμ)

= DμAμ + Dμfμ − i[f μ,Aμ] = −i[f μ,Aμ]. (60)

The commutator vanishes for abelian gauge fields. For non-abelian gauge theories the physical 
gauge field Âμ + fμ is no longer necessarily transversal if Âμ is transversal. (Since for a second 
step f (2)

μ one has Dμ(Ā + f (1))f
(2)
μ = 0 the physical gauge fields do not obey Dμ(Ā)Âμ = 0

either.) For non-abelian gauge theories the transversal fluctuations fμ are related to the concept 
of physical fields, while general transversal gauge fields AT

μ play no particular role.
Transversal abelian fields can be used for a simple construction of a subclass of physical gauge 

fields for non-abelian gauge theories. Indeed, fields obeying

Aμ(x) = nzTzBμ(x) , ∂μBμ(x) = 0 , (61)

are physical gauge fields, with reference field Ār,μ = 0. The components Az
μ(x) = Bμ(x)nz are 

proportional to the same nz for all x and μ, and the same holds for the infinitesimal difference 
hz

μ(x) = (B ′
μ(x) − Bμ(x)) nz. With

hμ = nzTz

(
B ′

μ(x) − Bμ(x)
)

, (62)

and

Dμhμ = ∂μhμ − i[Aμ,hμ] = ∂μhμ

= nzTz

(
∂μB ′

μ − ∂μBμ

)= 0 , (63)
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one infers that hμ = fμ is indeed a physical fluctuation. Furthermore, the physical gauge fields 
that are infinitesimally close to a reference field Ār,μ = 0 are the transversal gauge fields. 
The abelian field (61) can therefore indeed be constructed by a subsequent addition of physi-
cal fluctuations, starting from Ār,μ = 0. This generalizes to linear combinations of commuting 
abelian fields. For example, if Ta and Tb commute the field Aμ = B

(a)
μ Ta + B

(b)
μ Tb , ∂μB

(a)
μ = 0, 

∂μB
(b)
μ = 0, is a physical gauge field. The difference between physical gauge fields and transver-

sal gauge fields becomes important only for gauge fields that cannot be associated to the ones of 
an abelian subgroup.

For abelian fields the differential identities (49), (51), (54), (55) for the physical gauge fields 
become trivial. The covariant derivatives become simple partial derivatives. For a general abelian 
gauge field

Aμ = CμnzTz (64)

the associated physical gauge field Â(A) is given by the transversal part

Âμ =
(
Cμ − ∂−2∂μ∂νCν

)
nzTz , (65)

such that

∂Âz
μ

∂A
y
ν

=
(
δν
μ − ∂−2∂μ∂ν

)
δz
y = P zν

μy. (66)

(There is no difference between P zν
μy(A) = P zν

μy(Â) = P zν
μy .) The differential identities reflect then 

simply the projector properties.

3.2. Gauge-invariant effective action

A gauge-invariant effective action depends by construction only on the gauge invariant phys-
ical gauge fields Âμ. Showing this explicitly requires, however, some care. As an example, we 
expand the invariant 

∫
x

Tr{FμνFμν} for arbitrary gauge field fluctuations hμ,

I =
∫
x

Tr
{
Fμν(A + h)Fμν(A + h) − Fμν(A)Fμν(A)

}
= I1 + I2 + . . . (67)

We want to show that I depends only on the difference between physical gauge fields, e.g. it 
vanishes if h is gauge fluctuation, hμ = Dμh. For this purpose we employ

Fμν(A + h) − Fμν(A) = Dμhν − Dνhμ − i[hμ,hν]. (68)

The term linear in h appears in the field equations

I1 = 4
∫
x

Tr(Fμν ;νhμ), (69)

with

Fμν ;ν = DνF
μν = ∂νF

μν − i[Aν,F
μν]. (70)

The quadratic term reads
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I2 = −2
∫
x

TrhμQμνhν,

Qμν = D2ημν − DμDν − 4iFμν.

(71)

We decompose hμ according to

hμ = fμ + Dμλ, Dμfμ = 0. (72)

With DμDνF
μν = 0 one finds that I1 depends only on the transversal fluctuations fμ

I1 = 4
∫
x

Tr(Fμν ;νfμ). (73)

For the quadratic term one has∫
x

Tr
{
(Dμλ)Qμν(Dνλ)

}

= −
∫
x

Tr{λDμQμνDνλ}

= −
∫
x

Tr
{
λ
(
[Dμ,D2]Dμλ − 2iFμν[Dμ,Dν]λ

+ 4i(Fμν ;ν)Dμλ
)}

= −2i

∫
x

Tr
{
λ(Fμν ;ν)Dμλ

}
,

(74)

where we use the commutator relations

[Dμ,Dν]λ = −i[Fμν,λ],
[D2,Dμ]λ = 2i[Fμν,D

νλ] + i[F ν
μ ;ν , λ]. (75)

Similarly, one obtains∫
x

Tr
{
fμQμνDνλ + (Dμλ)Qμνfν

}

= 2
∫
x

Tr
{
f μ[D2,Dμ]λ + 2i[fμ,Dνλ]Fμν

}

= 2i

∫
x

Trfμ[Fμν ;ν, λ]}.
(76)

For Jμ = 0 the field equations imply Fμν ;ν = 0, such that the r.h.s. of eqs. (69), (74) and (76)
vanishes and I2 depends only on the physical fluctuations fμ,

I2 = −2
∫
x

Tr{f μD2fμ − 4ifμFμνfν}. (77)

In this case the absence of terms involving longitudinal fluctuations, that we want to establish, 
is seen directly. For Fμν ;ν �= 0 the terms (74) and (76) involve contributions to I2 that do not 
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vanish for hμ = Dμh. We will show that these terms are actually needed for the property that I
only involves the difference of physical gauge fields.

Indeed, the non-vanishing contributions (74) and (76) for DνF
μν �= 0 are related to the non-

linear relation which connects the difference between two physical gauge fields ĥμ = Â′
μ − Âμ

to the difference between two gauge fields or the fluctuation hμ = A′
μ − Aμ = fμ + Dμλ. We 

write this relation in the form (for invertible S)

S ν
μ ĥν = fν + Eν, (78)

where Eν vanishes in linear order. Only in linear order ĥμ is independent of λ, as can be seen 
from the constraint (53),

ĥμ = ∂Âμ

∂Aν

hν = ∂Âμ

∂Aν

fν = (S−1) ν
μ fν. (79)

In quadratic order Eν is no longer purely transversal, DνEν �= 0.
In turn, we can write

I1 = 4
∫
x

Tr{DνF
μνS ρ

μ ĥρ} + �I1,

�I1 = −4
∫
x

Tr{Fμν

;ν Eμ}.
(80)

For

Eμ = i
[
(fμ + 1

2
Dμλ),λ

]+ . . . (81)

the corresponding part in �I1 cancels the contributions to I2 from eqs. (74) and (76). As it should 
be, the difference (67) only depends on the physical fluctuations ĥμ. (In quadratic order we can 
replace fμ by S ν

μ ĥν .)
In appendix A we present a more systematic discussion of this issue in terms of a non-linear 

field decomposition of Aμ. This establishes in a simple form that invariants such as TrFμν Fμν

only depend on the physical gauge fields Âμ.
For solutions of the vacuum field equations, Fμν ;ν = 0, the relevant operator for the quadratic 

fluctuations contains already implicitly a projector on the physical fluctuations. In order to see 
this we define the operator Q̃μν by

Q̃μνB = (D2ημν − DμDν)B − 2i[Fμν,B], (82)

such that

I2 = −2
∫
x

Tr{hμQ̃μνhν}. (83)

Applying the projector on the gauge fluctuations, we observe the relations

DμD−2DρQ̃ρνB = iDμD−2[Fνρ ;ρ,B], (84)

Q̃μρDρD−2DνB = i[Fμρ ;ρ,D−2DνB]. (85)

The r.h.s. of eqs. (84), (85) vanishes for Fμν ;ν . This shows that for Fμν ;ν = 0 the use of projec-
tors becomes rather simple for the operator Q̃μν – they are not needed explicitly.
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This feature is easily generalized for arbitrary gauge-invariant terms K . Gauge invariance 
implies

(Dμ) z
w

∂K

∂Az
μ

= 0. (86)

Taking a further derivative yields

(Dμ) z
w

∂2K

∂Az
μ ∂A

y
ν

= −
(

∂

∂A
y
ν

(Dμ) z
w

)
∂K

∂Az
μ

= f z
yw

∂K

∂Az
ν

(87)

For all configurations where ∂K/∂Az
ν = 0 the second derivative of K is transversal. Applying this 

for arbitrary linear combinations of invariants yields useful identities. In particular, if we take for 
K a gauge invariant effective action �̄[A], one infers that for solutions of the field equations for 
Jμ = 0 the second functional derivative of �̄ is automatically transversal. No explicit projector 
is needed for the computation of �(2)

P in this case, since �̄(2) obeys automatically the required 
projection properties. This constitutes an additional indication that at least for configurations of 
this type no spurious non-localities are introduced by the use of projectors.

3.3. Gauge-invariant effective action and functional derivatives

Practical computations in later parts of this paper will be performed with a simple truncation 
for the gauge invariant effective action. We summarize for later purposes a few properties of the 
relevant functional derivatives. Consider a simple form of the gauge-invariant effective action

�̄ = i

2g2

∫
x

Tr{FμνFμν}, (88)

where g is the gauge coupling. The first functional derivative yields the field equations for Aμ, 
which can be inferred from eq. (69)

DνF
μν = −ig2Jμ. (89)

A neighboring solution Aμ + hμ has to obey the field equations for a neighboring source Jμ +
δJμ. The conservation equation for Jμ + δJμ involves then the covariant derivative formed with 
Aμ + hμ. In terms of covariant derivatives Dμ(A) formed with Aμ this relates two neighboring 
physical sources by

Dμ(Jμ + δJμ) − i[hμ,Jμ + δJμ] = 0. (90)

In the linear approximation for hμ and δJμ, using DμJμ = 0, one finds

DμδJμ = i[hμ,Jμ]. (91)

In second order in hμ one has

�̄2 = i

2g2 I2 = − i

g2

∫
x

Tr{hμQ̃μνhν}

= 1
hy

μ

(
�̄(2)

)μν

hz
ν,

(92)
2 yz
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with second functional derivative(
�̄(2)

)μν

yz
= i

g2

{
(−D2ημν + DμDν)yz + 2gfwyzF

w,μν
}
. (93)

Taking into account the antisymmetry of the differential operator ∂μ the second functional deriva-
tive (�̄(2))

μν
yz (x, x′) is symmetric in the space spanned by the indices (μ, y, x) or (ν, z, x ′), 

as it should be. From eq. (87) we conclude that �(2) is transversal for configurations Aμ with 
F

μν

;ν = 0, but not for arbitrary macroscopic fields Aμ.

4. Functional integral

In this section we construct the gauge-invariant effective action from a functional integral. 
This proceeds largely in parallel to the usual gauge-fixing procedure in the background field 
formalism. Only a particular class of “physical” gauges can be employed, however. Furthermore, 
the background field is no longer an independent field. It is replaced by the macroscopic gauge 
field Aμ, which is the argument of the gauge-invariant effective action. This leads to an implicit 
definition of the effective action by a functional differential equation.

4.1. Partition function

We split the fluctuating or microscopic fields A′
μ in the functional integral into transversal and 

longitudinal fluctuations according to

A′
μ = Âμ + b′

μ + c′
μ, Dμb′

μ = 0,

c̃ = D−2Dν(A′
ν − Âν), c′

μ = Dμc̃.
(94)

Here Âμ = Âμ(A) is the physical gauge field associated to the macroscopic gauge field, and 
covariant derivatives involve the physical field Âμ. We can write b′ and c′ in terms of the projec-
tor P ,

b′
μ = P ν

μ (A′
ν − Âν), c′

μ = (1 − P) ν
μ (A′

ν − Âν), (95)

where the projector P(Â) is formed with the physical gauge field Âμ via the covariant derivatives 
Dμ(Â).

We discuss here the case of a gauge fixed formulation, with partition function

Z =
∫

DA′ M[A′, Â] (96)

× exp
{−(

S[A′] + Sgf[A′, Â] + SL[A′,L])}.
Here S[A′] is invariant under gauge transformations of A′

μ and SL(A′, L) is given by eq. (20). 
For the gauge fixing we choose a particular Landau gauge

Sgf = 1

α

∫
x

Tr
{[

(Dμ(Â)(A′
μ − Âμ)

]2}

= − 1

α

∫
Tr
{
(A′

μ − Âμ)DμDν(A′
ν − Âν)

}
,

(97)
x
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and take the limit α → 0. The covariant derivatives are again formed with the physical gauge field 
Âμ. Thus the gauge fixing depends on the macroscopic gauge field A, which will be the argument 
of the effective action, via the physical gauge fields Â(A). (Formally, it therefore depends on the 
reference field Ār used for the definition of Â(A).) The appearance of the macroscopic gauge 
field A in the formulation of the partition function is an important new feature in our formalism.

We have chosen this particular gauge fixing such that Sgf depends only on c′
μ, not on b′

μ,

Sgf = 1

α

∫
x

Tr
{(

Dμ(Â)c′
μ

)2}
. (98)

For α → 0 this realizes the decoupling scenario of ref. [14], with a diverging quadratic term for c′. 
Since eq. (98) does not involve the physical fluctuations b′

μ, it is a “physical” gauge fixing. In 
appendix A we discuss improved physical gauge fixings (α → 0) such as

Sgf = 1

α

∫
x

Tr
{[

D−2(Â)Dμ(Â) (A′
μ − Âμ)

]2}
, (99)

as well as an optimized physical gauge fixing where Â is replaced by Â′, the physical gauge field 
associated to the microscopic field A′. For the practical discussions of this paper eq. (99) leads to 
the same result as the choice (97), while some conceptual issues are clearer. In the main text we 
concentrate on the gauge fixing (97) because of its close connection to familiar work in Landau 
gauge.

The source term (20) decomposes as

SL =
∫
x

(
L̃ − 2 Tr{Jμb′

μ + Hμc′
μ}). (100)

It couples b′
μ to the physical sources Jμ and c′

μ to the “unphysical” sources Hμ,

Hμ = Lμ − Jμ = DμD−2DνL
ν. (101)

(At this stage covariant derivatives involve Â. This will later be extended to arbitrary A.) Finally, 
the Faddeev–Popov determinant reads

M[A′,A] = Det
[
−(

Dμ(Â)
) w

z

(
Dμ(A′)

) y

w

]
, (102)

with Dμ given by eq. (33).
So far we have not specified the definition of the macroscopic gauge field Aμ. The macro-

scopic gauge field Aμ and the sources Lμ should be in some fixed relation, Aμ(Lμ). For example, 
we could take

Az
μ(x) = ∂ lnZ[L,A]

∂L
μ
z (x)

∣∣∣
A
, (103)

which identifies the macroscopic field Aμ with the expectation value of the microscopic field A′
μ

for the source L,

Aμ = 〈A′
μ〉L. (104)

We will adopt a different choice for the relation between A and L, which will be specified be-
low. The relation (103) turns the definition of Z in eq. (96) into an implicit integro-differential 
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equation, since Aμ(L) involves partial derivatives of Z. This will generalize to other choices of 
the relation between A and L. We will not have to solve this type of equation explicitly.

Our setting resembles in many aspects the construction in the background field formalism in 
ref. [25], but there are also important differences. The major difference concerns the absence 
of an independent background field. For the gauge fixing the background field is replaced by 
the physical gauge field Â(A) for the covariant derivative and the expansion point entering the 
definition of c′

μ. A different choice of source is the second important difference to the formulation 
in ref. [25]. As a third difference to the construction in ref. [25] the gauge fixing is not arbitrary 
but restricted to physical gauge fixing terms.

4.2. Effective action

We define the effective action �̃[A] by the implicit expression

exp
(−�̃[A])=

∫
DA′ M[A′,A] (105)

× exp

{
−(

S[A′] + Sgf[A′,A])+
∫
x

Lμ
z (A′z

μ − Az
μ)

}

= −(
lnZ + SL[L,A]),

where L(A) denotes the source associated to A. Our choice of the relation between A and L is 
given by

Lμ
z = ∂�̃

∂Az
μ

. (106)

This results in the central functional differential equation

exp
(−�̃[A])=

∫
DA′

× exp

{
−S̃[A′,A] +

∫
x

∂�̃

∂Az
μ

(
A′z

μ − Az
μ

)}
,

(107)

with

S̃[A′,A] = S[A′] + Sgf[A′,A] − lnM[A′,A]. (108)

Since eq. (107) is a differential relation, one needs, in principle, the specification of boundary 
conditions for a unique definition of �̃[A] and L(A). This may be given by �̃[Ār ] = 0 or �̃[A =
0] = 0.

We write �̃[A] in the form

�̃[A] = �̄[Â] + �gf[Â, ĉ] + ��[Â, ĉ], (109)

where �� vanishes for ĉ = 0. Here we employ the decomposition (46) of Aμ into physical fields 
Âμ and gauge degrees of freedom ĉμ. The gauge-fixing term

�gf = 1

α

∫
x

Tr
{(

Dμ(Â)ĉμ

)2} (110)

will turn out to be the only term which diverges for α → 0.
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4.3. Field equation in gauge sector

We next want to show that in the limit α → 0 the partial solution of the field equations for 
the gauge degrees of freedom implies ĉμ = 0. Inserting this solution into the effective action 
�̃[A] results in the gauge-invariant expression �̃[Â, ĉ = 0] = �̄[Â]. This will be the basis for the 
definition of the gauge-invariant effective action.

For this purpose we write eq. (105) in the form

�̃[A] = 1

α

∫
x

Tr
{(

Dμ(Â)ĉμ

)2}+ F [A], (111)

with

F [A] = − ln
∫
x

DA′M[A′,A]B[c′,A]

× exp
{−S[A′] + 2

∫
x

Tr(Jμb′
μ − LμÂμ)

}
,

(112)

and

B[c′,A] = exp

[∫
x

Tr

{(
2Hμ + 2

α
DμDνĉν

)

× (c′
μ − ĉμ) − 1

α

(
Dμ(c′

μ − ĉμ)
)2
}]

.

(113)

Here Âμ is related to Aμ and ĉμ by Âμ = Aμ − ĉμ and we do not use at this point the properties 
of physical gauge fields. The precise choice of ĉμ is given below. For establishing the leading 
term (110) it is sufficient to show that F remains finite for α → 0.

We next proceed to a saddle point expansion and expand B around its extremum, which occurs 
for c′ = c0,

DμDνc0,ν = −αHμ. (114)

Identifying

ĉμ = c0,μ (115)

the factor B becomes unity, such that the leading order saddle point approximation does not 
produce in �̃ any additional terms diverging ∼ α−1. Insertion of eqs. (114) and (115) yields

B[c′,A] = exp

⎛
⎝− 1

α

∫
x

Tr
[
Dμ(c′

μ − ĉμ)
]2

⎞
⎠ . (116)

For α → 0 one finds for any finite source Hμ the simple solution ĉμ = c0,μ = 0. The lowest-order 
saddle point approximation for F [A] inserts ĉ = 0 in eq. (112), resulting in the replacement 
A → Â. This implies in eq. (109) �� = 0, with �̄[Â] = F [A = Â]. For α → 0 and infinitesimal 
ĉμ the longitudinal character of ĉμ according to eq. (115) is sufficient to show that ĉμ is indeed 
a gauge fluctuation. Thus Âμ is a physical gauge field.
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Higher-order terms in the saddle point approximation do not produce terms diverging ∼ α−1. 
This may be seen in a somewhat sketchy way by decomposing the functional measure∫

DA′ =
∫

Db̃Dc̃ N(A), (117)

where b̃ and c̃ are unconstrained fields formed from b′ and c′, respectively [14], and N(A) is a 
normalization factor. The factor B in eqs. (112) and (116) becomes

B = exp

{
−
∫
x

1

2α
(c̃ − c̃0)D4(A) (c̃ − c̃0)

}
. (118)

Making a variable change d̃ = (c̃ − c̃0)/
√

α absorbs the α-dependence in 
∫
DA′ B into a field-

independent part of the Jacobian that can be neglected. All other dependence on c̃ in M[A′, A], 
S[A′], etc. appears now with appropriate factors of 

√
α. This can be neglected for α → 0, where 

the saddle point approximation in the c′-sector becomes exact. This concludes the argument that 
�� in eq. (109) remains finite for α → 0, and therefore ĉμ = 0 for all solutions of the field 
equations with finite sources.

4.4. Gauge-invariant effective action

The gauge-invariant effective action is obtained by extending �̄[Â] to �̄[A], associating to 
every macroscopic field Aμ the corresponding gauge-invariant field Âμ,

�̄[A] = �̄
[
Â(A)

]
, �̄[Â] = �̃[A]∣∣

ĉ=0. (119)

Gauge invariance of �̄[A] reflects directly that �̄ depends on A only through its dependence on 
the physical gauge field Â(A) [14]. The construction (119) eliminates the gauge-fixing term as 
well as all other terms involving ĉ.

The gauge-invariant effective action �̄[Â] can be obtained from the implicit definition (107)
by restricting the argument to A = Â. We can subsequently extend the argument of �̄ to arbitrary 
A according to eq. (119). The derivative ∂�̃/∂Aμ is replaced by ∂�̄/∂Aμ, which yields the 
conserved source Jμ. Here ∂�̄/∂A has to be evaluated at Â(A). The gauge-invariant effective 
action �̄[A] can then be defined as the gauge-invariant solution of eq. (107). In summary, the 
gauge invariant effective action �̄[A] is defined by the implicit relation

exp
(−�̄[A])=

∫
DA′

× exp

{
−S̃[A′, Â] +

∫
x

∂�̄

∂Az
μ

(
A′z

μ − Âz
μ

)}
,

(120)

with S̃[A′, Â] given by eq. (108) and Â = Â(A).
Nevertheless, our formulation contains a gauge fixing, necessary to render the functional in-

tegral well defined. Due to the restriction on physical gauges the usual issue of the dependence 
of the effective action on the choice of the gauge fixing is largely absent. A small residual depen-
dence could result from the precise selection of the physical gauge fixing. For the example of the 
improved physical gauge fixing (99) the gauge invariant effective action is determined by
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exp
(−�̄[A])=

∫
DA′ δ(c̃) M̃[A′, Â]

× exp

{
−S[A′] +

∫
x

∂�̄

∂Az
μ

(
A′z

μ − Âz
μ

)}
,

(121)

with M̃[A′, Â] = M̃[A′, Â(A)] given by eq. (4). We note that the Faddeev–Popov determinant 
M̃ equals unity for A′ = Â. With

δ(c̃) =
∏
z

δ(Gz),

Gz = [
D−2(Â)Dμ(Â)(A′

μ − Âμ)
]z

,

(122)

this yields eq. (1).
The procedure for computing the gauge invariant effective action first selects a suitable set 

of physical fields Â and evaluates eq. (120) for �̄[Â]. This is subsequently extended to �̄[A]. 
In practice, �̄[A] will only be evaluated in a given truncation, making some gauge invariant 
ansatz with unknown functions. The set of physical configurations Â has to be chosen large 
enough such that the free functions are determined once �̄[Â] is known for this set. Generalized 
perturbative expansions correspond to iterative solutions of the functional differential equation 
(120). One starts with a lowest order guess of the form of �[A], for example taking the form 
of the classical action. This lowest order can be used for ∂�/∂A on the r.h.s. of eq. (120). Then 
eq. (120) becomes a functional integral that determines the first order form of �[A]. Employing 
this first order form for ∂�/∂A one proceeds iteratively. We will below describe a computation 
of �̄[A] by a functional flow equation and proceed to a detailed discussion of its form for high 
covariant momenta of the gauge fields.

We finally recall that �� in eq. (109) remains finite for α → 0. For α → 0 it has no influence 
on the field equation for ĉ and vanishes once the partial solution ĉ = 0 is inserted. For the deriva-
tion of the field equations, or the evaluation of �̃ for a solution of the field equations, we can omit 
the term ��. The issue is more subtle for higher functional derivatives. For example, the second 
functional derivative of �� may not vanish of α → 0, ĉ → 0, since a term linear in ĉ could give 
rise to mixed derivatives. Such terms will often be eliminated by projections on physical fluctua-
tions. For many practical purposes we can simply omit ��. Then the gauge-fixed effective action 
decomposes for α → 0 effectively into a gauge-invariant part �̄[Â(A)] and a simple gauge-fixing 
term

�̃[A] = �̄[A] + 1

α

∫
x

Tr
{[

Dμ(Â) (Aμ − Âμ)
]2}

. (123)

In eq. (120) or (121) we may replace Â(A) by A in the terms that do not diverge for α → 0, 
e.g. in M̃ or (∂�̄/∂A)(A′ − Â). The reason is that the difference between these expressions 
evaluated at Â(A) or at A is at least linear in ĉ. Since these differences do not diverge for α → 0
they only modify ��. For all issues for which �� can be neglected the difference therefore does 
not matter. For all terms in the functional integral except for the physical gauge fixing term we 
can then set ĉ = 0.
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4.5. Field equation and expectation value of microscopic gauge field

The field equations relate the first functional derivative of �̄[A] to the conserved source

∂�̄

∂Aμ

= Jμ. (124)

On the other hand, the derivative of the gauge-fixing term in �̃ determines the field equation in 
the gauge sector. It enforces Aμ = Âμ for arbitrary finite unphysical sources Hμ. Insertion of this 
solution eliminates the gauge-fixing term. Eq. (124) is the definition of the field equation for clas-
sical field theories in a quantum context. For QED it constitutes the modification of Maxwell’s 
equations by the Euler–Heisenberg term, or more general effects from quantum fluctuations of 
charged particles.

In the standard construction of the effective action by a Legendre transformation of the gen-
erating functional W [L] for the connected Green’s functions the argument A of �̃[A] is directly 
given by the expectation value of the microscopic field, A = 〈A′〉, cf. eq. (104). In general, this 
does not hold for our implicit definition and the relation (106) between sources and macroscopic 
gauge fields. One may be interested in the expectation value 〈A′〉, even though this does not play 
an important role in practice. In appendix B, we discuss how expectation values are computed 
for effective actions defined by an implicit relation of the type (107). We find the relation(

�̃(2)
)μν

zy
〈A′y

ν − Ay
ν 〉 = V μ

z , (125)

with

V μ
z =

〈
∂S̄

∂Az
μ

〉
, S̄ = Sgf − lnM, (126)

reflecting the dependence of the gauge-fixing term and Faddeev–Popov determinant on the 
macroscopic field A at fixed microscopic field A′. With A′ − Â = b′ + c′ − ĉ we can use the 
previous result 〈c′〉 = ĉ = 0, such that eq. (125) fixes 〈b′〉 by(

�̄
(2)
P

)μν

zy
〈b′y

ν 〉 = V μ
z , (127)

or

〈b′z
μ〉 = (

GP

)μν

zy
V ν

y . (128)

Due to the projection properties of GP any longitudinal part of V μ
z does not contribute in 

eq. (128).
For an “optimal physical gauge fixing” the “source correction” V μ

z vanishes or is purely lon-
gitudinal. In this case one has 〈b′〉 = 0, such that the expectation value for the microscopic field 
〈A′

μ〉 for the source given by eq. (106) equals the physical macroscopic gauge field Âμ,

〈A′
μ〉 = Âμ. (129)

For any given macroscopic field Aμ one can find a reference field Ār,μ such that Âμ = Aμ. (This 
is achieved by gauge transformations such that Aμ is the physical field representing the gauge 
orbit.) For optimal physical gauge fixing we can associate 〈A′〉 with the macroscopic field A
modulo gauge transformations. For any given conserved source J the expectation value 〈A′〉 is 
uniquely defined only if a reference field Ār is specified.
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Landau gauge fixing is not optimal in this sense. The properties of V μ
z for Landau gauge 

fixing are discussed in appendix B. For 〈b′〉 �= 0 the macroscopic gauge field that solves the field 
equations for a given source J does not equal the expectation value of the microscopic gauge 
field. We advocate that it is the macroscopic gauge field that matters for practical purposes, and 
its precise relation to 〈A′〉 is of secondary importance.

At this point we note the possibility to add to S̄ in eq. (126) a gauge-invariant “correction 
term” C[A] that only depends on the macroscopic gauge field A. Being independent of A′ the 
term C[A] does not change the property that the physical gauge fixing acts only on the gauge 
fluctuations, and that the partial solution of the field equation in the gauge sector amounts to 
〈c′〉 = ĉ = 0. The correction term C[A] modifies V μ

z in eq. (126) and therefore the relation 
between 〈A′〉 and A. One may try to find a suitable functional C[A] such that 〈A′〉 = A also 
holds for Landau gauge. The correction term adds directly to �̄[A] by replacing in eq. (121) the 
factor δ(c̃) M̃ by δ(c̃) M̃ exp

{−C
}
. The field equation (124) is modified by the new definition of 

∂�̄/∂A.
An extended notion of an optimal physical gauge fixing is realized if eq. (129) is replaced by

〈A′
μ〉 = Ãμ, (130)

with Ã related to Â by a gauge transformation in a unique way. We discuss in appendix A an 
optimal gauge fixing of this type.

4.6. Propagator and physical correlation function

The propagator for physical gauge field fluctuations is determined by the second functional 
derivative �̄(2) of the gauge invariant effective action. More precisely, it is given by the inverse of 
�̄(2) in the projected space of physical fluctuations. We may first employ eq. (123) for computing 
propagators for gauge fields and show subsequently that �� can indeed be neglected. The second 
functional derivative of �̃, evaluated at ĉ = 0, can be projected into different subsectors. One 
finds, neglecting relative corrections ∼ α,

(1 − P T)�̃(2)(1 − P) = (1 − P T)�
(2)
gf (1 − P),

(�
(2)
gf )μν

zy = − 1

α
(DμDν)zy,

(131)

and

P T�̃(2)P = P T�̄(2)P = �̄
(2)
P . (132)

For the projection onto the physical fluctuations we can use the gauge-invariant effective action 
�̄, neglecting the gauge-fixing term. For the effective action (88) the inverse physical propagator 
�̄

(2)
P is given by eq. (93).

The propagator defined by the inverse of �̃(2) describes the response of the solutions of the 
field equation (106) to a small change of the sources. Let Aμ be the solution of the field equation 
(106) for source Lμ, and Aμ + δAμ the solution for source Lμ + δLμ. Expanding eq. (106) for 
small δAμ and δLμ yields

δLz
μ = ∂2�̃

∂Az
μ ∂A

y
ν

δAy
ν , (133)

or
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δA = (
�̃(2)

)−1
δL. (134)

For α → 0 the propagator vanishes except for the piece corresponding to the physical fluctua-
tions. Therefore only the variation δJ of the conserved physical source contributes, and δA is a 
physical fluctuation, δA = δÂ, with

δA = GP δJ. (135)

Here the propagator GP for the physical fluctuations is given by inversion on the projected 
subspace,

�̄
(2)
P GP = P T, (136)

with

�̄
(2)
P = P T �̄(2)P . (137)

With eq. (123), the second functional derivative �̃(2) is block diagonal according to eqs. (131), 
(132). Adding the term �� may induce off-diagonal terms that remain, however, finite in the limit 
α → 0. The contribution of such off-diagonal terms to the propagator vanishes for α → 0. They 
can therefore be omitted.

For theories without local gauge symmetry the propagator can be identified with the connected 
two-point correlation function. For local gauge theories in the background field formalism the 
identification of the two-point correlation function and the propagator holds as well, with �(2)

bg

corresponding to the second functional derivative with respect to A at fixed Ā. In general, �(2)
bg

cannot be expressed by the second derivative of �̄bg[A] = �bg[A, Ā = A], since the latter also 
involves derivatives of �bg[A, Ā] with respect to Ā at fixed A.

For an implicit definition of the gauge invariant effective action (120) the identification of the 
propagator GP defined by eq. (136), with the correlation function for physical fluctuations G̃P , 
as defined by (b = 〈b′〉)

(G̃P )zyμν(x, y) = 〈[b′z
μ(x) − bz

μ(x)][b′y
ν (x) − by

ν (x)]〉, (138)

is not obvious a priori. In appendix C we discuss conditions for the identity

G̃P = GP . (139)

Instead of optimizing the precise formulation of the gauge invariant effective action in order 
to achieve eq. (129), one may optimize in order to realize eq. (139) [23]. The identity (139)
relies then on an optimal physical gauge fixing and would not hold for general gauge fixing. For 
quantum gravity, an identity of this type is the basis for the computation of primordial cosmic 
fluctuations from the quantum effective action [59,60].

4.7. Independence of reference field

The definition of the physical gauge field Â depends on the choice of a reference field Ār

from which Â is constructed by adding physical fluctuations. (We add here the subscript r in 
order to avoid confusion with the background field in the background formalism.) Through the 
definition of Â the gauge-fixing term Sgf in S̃ in eq. (108) implicitly depends on Ār . Therefore 
the functional differential equation (107) depends formally on the reference field. One may ask 
to what extent the solution �̃[A] depends on Ār .
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Different choices of Ār correspond to different physical gauge-fixing conditions. While the 
expression (110) of the gauge-fixing term �gf in terms of ĉ is the same for all choices of Ār , the 
functional relation ĉ(A) depends on Ār . The partial solution of the field equation is independent 
of Ār , however. All arguments following eq. (110) are the same for any choice of the reference 
field. We conclude that the gauge-invariant effective action is independent of the choice of the 
reference field Ār . The reference field is only needed if we want to define a unique expectation 
value 〈A′〉 according to eq. (129).

4.8. Comparison with background formalism

It is instructive to compare our implicit definition (107) of the effective action with the back-
ground field formalism. In the background field formalism the effective action �̃bg[A, Ā] obeys a 
relation similar to eq. (107), but now involving the background field Ā instead of the macroscopic 
physical field Â(A). In eq. (108) one replaces M[A′, Â(A)] by M[A′, Ā], while Sgf[A′, Â(A)]
is replaced by Sgf[A′, Ā], with Ā the fixed background field. For the source term, ∂�̃/∂A is 
replaced by the partial derivative at fixed Ā, ∂�̃/∂A

∣∣
Ā

.
The effective action �̃bg[A, Ā] depends on both A and Ā. A gauge-invariant part

�̄bg[A] = �̃bg[A, Ā = A] (140)

can be defined by identifying the background field with the macroscopic field. We observe that 
�̄bg[A] and �̄[A] obey almost the same relation (107). Indeed, for ĉ = 0 one has Â = A, such 
that S̃[A′, A] in eq. (107) is identical for �̄bg[A] and �̄[A]. The only difference is the source 
term, which is given for the background effective action by

∂�̃bg[A, Ā]
∂A

∣∣∣∣
Ā

= ∂�̄bg

∂A
− ∂�̃bg[A, Ā]

∂Ā
, (141)

instead of ∂�̄/∂A for our definition of the gauge-invariant effective action. Possible differences 
between our definition of the gauge-invariant effective action �̄[A] and the gauge-invariant back-
ground effective action �̄bg[A] are rooted in the different relation between the macroscopic gauge 
field A and the sources.

Since the unphysical sources H have no influence for α → 0, one has

�̄[A] = �̄bg[A] = �̃bg[A, Ā = A] (142)

for all configurations A obeying in the background field formalism the relation

P ν
μ

∂�̃bg

∂Āz
ν

∣∣∣
A=Ā

= 0. (143)

Only for these configurations is the physical source identical for both formulations,

Jμ
z = ∂�̄

∂Az
μ

= ∂�̃bg

∂Az
μ

∣∣∣
Ā=A

, (144)

and the correction to the field equations discussed in ref. [25] vanishes. For configurations obey-
ing eq. (144) both the gauge-invariant effective action and the “classical” field equations can be 
computed equivalently in our manifestly gauge-invariant approach and in the background for-
malism.
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For general A the relation (143) needs not to hold. (This concerns, in particular, the flowing ac-
tion discussed in the next section.) In this case the sources corresponding to a given macroscopic 
field differ between the background field formalism and our definition of the gauge-invariant 
effective action. In the background field formalism we may define

J
μ
bg[A, Ā] = P ν

μ (A)
∂�̃

∂Aν

∣∣∣
Ā
,

J
μ
bg[A] = J

μ
bg[A, Ā = A].

(145)

If eq. (143) does not hold for all A, the functional relation Jμ
bg[A] differs from J [A] as defined 

by eq. (124).
In the background formalism A corresponds to the expectation value 〈A′〉 for the source 

Jbg[A]. Suppose that one can find an optimal gauge fixing for our formulation of the gauge-
invariant action, such that A equals the expectation value 〈A′〉 for the source J . For both 
formulations A corresponds then to the expectation value 〈A′〉. These are, however, expecta-
tion values for different sources. For a given A the expectation value 〈A′〉bg differs from 〈A′〉 as 
evaluated in our formalism for the source J . This extends to correlation functions. For a given A
the correlation function in the background field formalism differs from the physical correlation 
function proposed in this paper.

One may define in the background field formalism a modified conserved source

J̄
μ
bg = ∂�̄bg

∂Aμ

, (146)

which differs from Jbg by the omission of the second term in eq. (141). Then the macroscopic 
field Abg corresponding to J̄bg differs from A which corresponds to Jbg. If we choose J̄bg = J

the expectation value 〈A′〉bg[J̄bg] equals 〈A′〉[J ]. This extends to all correlation functions. The 
correlation functions depend on the sources and the gauge fixing, but should not depend on the 
formalism used to compute them. Since the gauge fixing is the same, the correlation functions 
should coincide if the sources are the same.

In the background field formalism one can compute, in principle, for any A the associated 
source J̄bg and therefore Abg, thus establishing a functional relation Abg[A]. Then the physical 
correlation functions computed in our formalism for a macroscopic field A should coincide with 
the correlation functions in the background field formalism, now computed for a macroscopic 
field Abg[A]. Establishing the relation Abg[A] in practice would be useful for a comparison of 
methods.

We finally note that gauge invariance and universality strongly restrict the form of gauge-
invariant effective actions such as �̄[A] or �̄bg[A]. This suggests that �̄[A] and �̄bg[A] may 
actually be identical up to a non-linear field redefinition, and perhaps up to the value of the gauge 
coupling at a given momentum or the associated confinement scale.

5. Gauge-invariant flow equation

The construction of the gauge-invariant effective average action �k[A] proceeds by introduc-
ing an infrared cutoff function Rk which suppresses the contributions of fluctuations for which 
D � k2 for a suitable generalization D of the covariant Laplacian. For k → 0 the effective av-
erage action �k[A] becomes the gauge-invariant quantum effective action �̄[A] discussed in the 
previous section. The dependence of �k on k obeys a functional flow equation. If �k[A] is gauge 



C. Wetterich / Nuclear Physics B 934 (2018) 265–316 293
invariant for all k, the flow equation has to be gauge invariant. We aim for a closed form for 
which the flow generator can be computed from �k[A]. The gauge invariant flow equation (9)
has been discussed in detail in ref. [23] and we only sketch here briefly some of the relevant 
ingredients. We rather focus on the explicit equations for pure Yang–Mills theories and on the 
practical use for the computation of the running gauge coupling and the gluon propagator.

While the non-local projectors are important for the general formulation of the gauge invariant 
flow equation, they do not appear any longer in the explicit form of the flow equation for the 
configurations considered here. The role of the projectors is to divide the contributions to the 
flow into two subsectors. In each subsector the flow equations take rather familiar forms, without 
the appearance of explicit projectors.

For k �= 0 two modifications are needed in order to obtain a simple closed gauge-invariant flow 
equation [23]. First, the macroscopic gauge field A no longer equals the expectation value 〈A′〉
even for an optimal physical gauge fixing. While 〈c′〉 = 0 remains preserved for α → 0, one now 
has a k-dependent non-zero value bμ = 〈b′

μ〉 = 〈A′
μ〉 − Âμ, which is, in principle, computable 

for any given source Jμ, cf. eq. (94). For k → 0 one recovers 〈b′
μ〉 as determined by eq. (128). 

For an optimal physical gauge fixing 〈b′〉 vanishes for k → 0.
Inversely, for any given bμ one can determine the associated source Jμ. We may choose for 

any given k a value b(k) such that the correlation function for b′ equals the physical propaga-
tor, G̃ = G. This modifies the relation (106), and therefore the implicit definition (105) of the 
effective action �̃. For practical computations the explicit relation between 〈b′

μ〉 and the source 
is not needed. Second, the effective average action �k[A] involves a k-dependent correction term 
Ck[A]. For k → 0 this equals C[A] as discussed in the previous section. Both 〈b′

μ〉 and Ck are 
determined by the requirement that the flow of �k[A] remains simple, computable in terms of 
�k[A] and its functional derivatives.

For comparison we discuss in appendix D a closed flow equation for the case where the source 
is fixed by eq. (106) and no correction Ck is added. This again results in a closed gauge-invariant 
flow equation for a gauge-invariant effective action �′

k[A]. As compared to eq. (9) it contains 
correction terms since the identification (139) of the propagator G and the correlation function G̃
is modified. While the correction terms are, in principle, computable from �̄[A] and its functional 
derivatives, it seems advantageous to employ the freedom in the relation between b and the 
sources, as well as for the precise definition of �k , in order to implement the simple form (9) of 
the flow equation. In this section we perform simple computations of running gauge couplings 
and propagators for the flow equation (9). This illustrates how the gauge-invariant flow equation 
(9) can be used in practice.

5.1. Flow in pure gauge theories

As a demonstration of the use of the gauge-invariant flow equation we consider pure non-
abelian gauge theories with the simple truncation (88) for the gauge-invariant effective action. 
The only flowing parameter is the k-dependent gauge coupling g(k). In order to compute the 
β-function for g we evaluate the flow equation for configurations obeying

Fμν ;ν = 0. (147)

In this case we can employ the identities (84) and (85) in order to establish that the projected 
inverse propagator �̄(2)

P equals �̄(2) in eq. (93).

Since �̄(2)
P is a matrix in the space of adjoint indices z we represent the gauge fields here as 

matrices in the adjoint representation,
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(Aμ)yz = Aw
μ(Tw)yz, (Fμν)yz = Fw

μν(Tw)yz,

(Tw)yz = −ifwyz, [Tw,Ty] = if z
wy Tz.

(148)

Many formulae of the previous discussion with matrices in the fundamental representation gener-
alize to the adjoint representation. The trace Tr has to be replaced by a normalized trace T̃r, such 
that T̃r = Tr in the fundamental representation, and T̃r = (1/2N) Tr in the adjoint representation 
of SU(N).

The action of covariant derivatives on the vector field Bz in the adjoint representation, as given 
by eqs. (32) and (33), involves a matrix multiplication according to

Dμ = ∂μ − iAμ. (149)

We will in the following use this representation of Dμ. If indices are not indicated explicitly, 
matrices in this section have adjoint indices z, y. The (projected) second functional derivative of 
the effective action (88) (for Minkowski signature) reads

(�̄
(2)
P ) ν

μ = i

g2D
ν

μ ,

D ν
μ = {−D2δν

μ + DμDν + 2iF ν
μ }.

(150)

The effective average action or flowing action obtains by adding to the classical action an 
infrared cutoff piece �kS which suppresses the small (covariant) momentum fluctuations. For 
the infrared cutoff for the physical fluctuations we choose

�kS = i

2g2

∫
x

(A′μ
z − Âμ

z ) rzν
μy(D) (A′y

ν − Ây
ν ), (151)

with r ν
μ (D) a matrix valued function of the operator D. The choice (151) results in an IR regu-

lated inverse propagator

�̃
(2)
k = i

g2

(
D + rk(D)

)= i

g2Pk(D), (152)

where we note that the gauge-fixing part of the IR cutoff is not yet included in this definition. 
(The use of the tilde for �̃(2)

k follows historical conventions and should not be confounded with 
the effective action �̃ in presence of the gauge-fixing term.) We will require

lim
x→0

rk(x) = k2, lim
x→∞ rk(x) = 0, (153)

such that rk induces an infrared cutoff for eigenvalues of D smaller than k2, and is ineffective for 
eigenvalues of D larger than k2.

For a discussion of the resulting gauge invariant flow equation we refer to [23]. The contribu-
tion from the physical fluctuations reads

k∂k�k = πk + . . . , (154)

πk = 1

2
tr
{
k∂k�̃

(2)
k (P �̃

(2)
k P )−1

}
, (155)

where the k-derivative on the r.h.s. only acts on rk/g2. For our purposes eq. (152) can be taken 
as the definition of �̃(2), e.g.
k
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�̃
(2)
k = �̄(2) + i

g2 rk(D). (156)

In eq. (152) �̃
(2)
k stands for (�̃(2)

k ) ν
μ , e.g. we have lowered one of the indices. As a result we have

�̃
(2)
k,P = P �̃

(2)
k P = �̃

(2)
k , (157)

where we use the property

PD =DP =D, (158)

that holds for F ν
μν; = 0.

We have to solve the inversion problem

�̃
(2)
k G̃k = P, (159)

for (G̃k)
ν

μ = (GP )μρ ηρν . For this purpose we employ the decomposition [25]

D = D̄ −DL, (160)

with

(DL) ν
μ = −DμDν,

D̄ ν
μ = −D2δν

μ + 2iF ν
μ .

(161)

The operator D̄ is invertible on the full function space. The operators D̄ and DL commute

D̄DL =DLD̄ = D2
L, (162)

and one has

D = P D̄ = D̄P, DDL =DLD = 0. (163)

For any function f (x) that admits a Taylor expansion one finds

f (D) = f (D̄) − f (DL) = Pf (D̄). (164)

The solution of

f (D)G = P (165)

reads therefore

G = f −1(D̄)P = f −1(D). (166)

This yields

G̃k = −ig2P−1
k (D). (167)

In short, the operator D̄ is block diagonal, with D and DL the submatrices in the respective 
projected spaces. After inversion of the inverse propagator in the appropriate projected subspace 
the projectors are no longer present in the flow equation.

For the contribution from the physical fluctuations we obtain

πk = 1

2
tr
{(

k∂krk(D) − ηF rk(D)
)
P−1

k (D)
}

= 1
trH(D),

(168)
2
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with

ηF = ∂ lng2

∂ lnk
. (169)

The function H(D) reads

H(D) = (k∂k − ηF )rk(D)
(
D + rk(D)

)−1
. (170)

We finally employ

trf (DL) = trf (DS), DS = −D2, (171)

and arrive with eq. (164) at

πk = 1

2
trH(D̄) − 1

2
trH(DS). (172)

The flow equation (9) contains a contribution from physical fluctuations πk , corresponding to 
the first term in eq. (9), from gauge fluctuations δk , and from the regularization of the Faddeev–
Popov determinant εk ,

k∂k�k = ζk = πk + δk − εk. (173)

For our regularization one has εk = −2δk , in accordance with eq. (9). Indeed, the regulator term 
(151) provides for an infrared cutoff for the transversal fluctuations, but not yet for the gauge 
fluctuations and the Faddeev–Popov determinant. This is easily seen by computing �k for very 
large k. This object is needed as an initial value for the flow and should be sufficiently simple. 
If the longitudinal fluctuations are not regulated the Faddeev–Popov determinant M and the 
unregulated gauge fixing term would induce highly complicated non-local terms in �k. We have 
therefore to extend the regularization and add the “measure terms” δk and εk in the flow equation 
(173).

For the gauge fluctuations we introduce an additional cutoff term

�kSc = 1

2α

∫
x

c′μ
z rk(DL)zνμy c′y

ν . (174)

Correspondingly, we subtract for the effective action

�k�gf = 1

2α

∫
x

ĉμ
z rk(DL)zνμy ĉy

ν . (175)

Combining eq. (131) with the second functional derivative of eq. (175) at ĉ = 0 one finds

�̃
(2)
k,gf = 1

α

(
(DL + rk(DL)

)
. (176)

Insertion into the general exact flow equation [61] yields the contribution from the gauge fluctu-
ations

δk = 1

2
tr H̃(DL) = 1

2
tr H̃(DS), (177)

with

H̃(DL) = k∂krk(DL)
(
DL + rk(DL)

)−1
. (178)
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As compared to H(D) in eq. (170) the contribution ∼ ηF is absent. For ηF = 0 the measure 
contribution δk cancels the second term in πk in eq. (172).

The Faddeev–Popov determinant takes the form

M = Det
[
DS + iDμ(A′

μ − Âμ)
]
. (179)

Without an additional regularization this would produce for k → ∞ a complicated term in the 
effective action. We want to introduce a regulator that guarantees simplicity of �k→∞, while it 
becomes absent for k → 0. We therefore insert into the functional integral a regulator factor [25]

Ek = Det
(
DS + rk(DS)

)
Det

(
DS

) . (180)

It becomes unity for k = 0 and therefore ineffective. In the presence of the regulator we replace 
M by

EkM = Det
(
DS + rk(DS)

)
det

(
1 + iD−1

S Dμ(A′
μ − Âμ)

)
(181)

In the limit k → ∞ the regulator function rk ≈ k2 dominates such that EkM becomes an 
irrelevant field independent constant,

lim
k→∞EkM = Det(k2)Det

(
1 + iD−1

S Dμ(A′
μ − Âμ

)
≈ Det(k2).

(182)

Indeed, for k → ∞ the functional integral for A′ contains now diverging quadratic terms for 
all fluctuations A′ − Â. The saddle point approximation becomes exact and we can replace in 
eq. (181) A′ → Â. Generalizing for finite but very large k we conclude that �k becomes indeed 
simple. If we express EkM in terms of ghost fields the term ∼ rk regulates the ghost propagator.

The k-dependence of Ek arises only through rk and we infer the measure contribution from 
the regularization of the Faddeev–Popov determinant

εk = k∂k lnEk

= k∂k tr ln
(
DS + rk(DS)

)
= tr

{
k∂krk(DS)(DS + rk(DS))−1}

= tr H̃(DS) = 2δk.

(183)

We therefore end with

k∂k� = πk − δk. (184)

At this stage δk is a functional of Â(A). The extension to a gauge invariant functional of A is 
straightforward. Since DS in eq. (177) involves only covariant derivatives we can simply evaluate 
eq. (177) for arbitrary A. This yields already a gauge invariant expression.

The regularization (180) has the advantage that the combined “measure term”-δk is a fixed 
functional of Aμ, not involving the form of the effective average action �k[A]. For a given 
choice of rk the trace (177) can be computed independent of the truncation for �k. An alternative 
regularization could employ a formulation with ghosts and introduce an explicit IR regularization 
for the ghost propagator. In this case one would have to follow the flow of the combined effective 
action for gauge fields and ghosts. For the approximations employed in the present paper the two 
alternatives give identical results. It remains to be seen in practice which choice of regularization 
of the Faddeev–Popov determinant is best for precision computations.
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We observe that the relation δk −εk = −δk = −εk/2 is no accident. For α → 0 the longitudinal 
sector decouples from the physical sector. In the absence of an IR cutoff in the longitudinal sector 
the integration over the longitudinal sector would produce a factor 

(
det[DS(A)])−1/2

. Instead of 

the IR regularization (174) we could insert an overall regularization factor E−1/2
k , cf. eq. (180), 

similar to the regularization of the Faddeev–Popov determinant. This replaces det(DS)−1/2 by 
the regularized expression det[DS + rk(DS)]−1/2. The total measure factor for longitudinal fluc-
tuations and Faddeev–Popov determinant amounts then to E1/2

k , resulting in a total measure 

contribution to the flow equation of −εk/2 = −δk . The same total measure factor E−1/2
k arises 

if we adopt the physical gauge fixing (99). In this case the Faddeev–Popov determinant needs 
no regularization. On the other hand, the unregularized integral over the longitudinal fluctuations 
would now produce a factor det(DS(A))−1/2. This can be regularized by a factor E−1/2

k .

5.2. Running coupling in SU(N)-gauge theories

We specialize to the non-abelian gauge group SU(N) where

Tr(TyTz) = Nδyz, (185)

such that

Fz
μνF

μν
z = 1

N
TrFμνF

μν = 2T̃rFμνF
μν. (186)

For the computation of the flow equation for the gauge coupling g we evaluate eq. (184) for a 
configuration that corresponds to a constant color-magnetic field

Az
μ(x) = nzA(B)

μ (x), Aμ(x) = A(B)
μ (x)nzT

z, (187)

with A(B)
μ (x) an abelian gauge field corresponding to a constant magnetic field B , e.g. ∂1A

(B)
2 −

∂2A
(B)
1 = B , and

Fμν
z F z

μν = 2B2. (188)

Choosing a transversal gauge field, ∂μA
(B)
μ = 0, the configuration (187) is a physical gauge field 

of the type (61).
We perform the computation in Euclidean space and analytically continue later to Minkowski 

space. For Euclidean signature the term in the effective action quadratic in B is identified with 
eq. (88)

�̄(B) =
∫
x

B2

2g2 + . . . (189)

The flow of the gauge coupling can therefore be extracted as

k∂k

(
1

g2

)
= �−1 ∂2

∂B2 k∂k�̄(B)|B=0, (190)

with total volume � = ∫
x
.

For the evaluation of the traces (172) and (177) we can closely follow ref. [25]. One has in 
quadratic order in B
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�−1 trH(D̄) ⇒ 5N

24π2H(D = 0)B2 = 5(2 − ηF )NB2

24π2 , (191)

where we employ

H(D = 0) = 2 − ηF . (192)

Similarly, one finds for the terms ∼ B2

�−1 trH(DS) ⇒ − (2 − ηF )NB2

96π2 ,

�−1 tr H̃(DS) ⇒ − NB2

48π2 ,

(193)

such that

πk = 21(2 − ηF )N�B2

192π2 , δk = −N�B2

96π2 ,

πk − δk = N�B2

48π2

(
11 − 21

4
ηF

)
.

(194)

One arrives at a non-linear equation for ηF

k
∂

∂k

(
1

g2

)
= N

24π2

(
11 − 21

4
ηF

)
= −ηF

g2 , (195)

that is solved by

ηF = −11Ng2

24π2

(
1 − 7Ng2

32π2

)−1

. (196)

Our truncation therefore yields for the flow of the gauge coupling

∂tg
2 = ηF g2 = −11Ng4

24π2

(
1 − 7Ng2

32π2

)−1

= −11Ng4

24π2 − 77N2g6

768π4 − . . .

(197)

The first term is the usual one-loop beta-function, while the second almost reproduces the exact 
two-loop contribution, for which the factor 77 has to be replaced by 68.

5.3. Flow of the gauge field propagator

The propagator Gk for the physical fluctuations of gauge fields is the inverse of the second 
functional derivative of �k on the projected subspace of physical fluctuations,

�
(2)
k Gk = P. (198)

The inverse propagator �(2)
k is related to �̃(2)

k in eq. (152) by subtraction of the IR cutoff piece, 
and reads in our truncation

�
(2)
k = iD

g2 . (199)

Its flow is given by the k-dependence of g, e.g.
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∂t�
(2)
k = −ηF �

(2)
k . (200)

Since the projector P does not depend on k, this transfers directly to

∂tGk = ηF Gk. (201)

We observe that for the gauge-invariant formulation of the flow equation the anomalous dimen-
sion ηF is the same object that appears in the β-function (169) for the running gauge coupling. 
This contrasts with formulations with a fixed background field where ηF is replaced to lowest 
order by η̃F = (13/22)ηF . We will discuss the origin of this difference below.

An improved truncation for the (Euclidean) effective average action is given by

�k = 1

4

∫
x

F ν
zμ Zzρ

νy(k
2 +D)F yμ

ρ , (202)

with Z ρ
ν (x) given for x = k2 by a solution of the flow equation for g−2,

Z(x = k2) = g−2(k2). (203)

Since D is matrix valued, also Z is matrix valued. In perturbation theory for small g2 the im-
provement is a higher-order effect. To lowest order one has

Z = 1

g2(k0)
+ 11N

48π2 ln

(
k2 +D

k2
0

)
. (204)

For D � k2 this reduces to the truncation (88), while for D 
 k2 we take into account that 
external momenta or large fields act as physical infrared cutoffs that effectively stop the flow. At 
quadratic order in Aμ one can replace

D ν
μ → −∂2 δν

μ + ∂μ∂ν. (205)

We can repeat the computation (168) of πk , with H(D) replaced by

H′(D) = (∂t − ηF ) rk
[
g2 Z(D)D + rk(D)

]−1
. (206)

If we define the running gauge coupling as before from the zero momentum limit of the effective 
action, the result for the β-function remains the same since H′(0) = H(0). For an alternative 
definition at non-zero momentum, p2 �= 0, the running is effectively stopped for k2 < p2. Taking 
the limit k → 0 the gauge coupling becomes a function of p2, with dependence on p2 governed 
by the same β-functions as for the dependence on k2 for p2 � k2. For the Euclidean inverse 
gluon propagator the improved truncation yields a non-trivial momentum dependence according 
to

�(2) = Z(k2 +D)D. (207)

Quite generally, the gauge field propagator (in the “vacuum state” Aμ = 0) is expected to be 
a function of D, and we may write

�
μν
k,zy(x, y) = ∂2�k

∂Az
μ(x) ∂A

y
ν(y)

= δ(x − y)ημρ
[
Z(k2,D)D

] ν
,

(208)
zyρ
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extending eq. (207) to a more general form of Z. In eq. (208) all quantities are evaluated for 
Aμ = 0. The ansatz (207) is compatible with the gauge invariance of �k and the projection onto 
physical fluctuations. The factor δ(x − y) reflects translation symmetry, with D acting on y.

The flow equation for �(2)
k is obtained from eq. (9) or (173) by taking two derivatives with 

respect to the gauge fields

∂t�
(2)
k

μν

zy
(x, y) = ∂2

∂Az
μ(x) ∂A

y
ν (y)

(
πk − δk

)
. (209)

In contrast to formulations with a fixed background field also rk in eqs. (168) and (170) depends 
on the macroscopic gauge field, such that eq. (209) receives contributions from ∂rk/∂Az

μ, etc. 
(This holds analogously for the measure contribution δk .) One can cast eq. (209) into a sum of 
one-loop diagrams with two external legs and one insertion of ∂tRk . For a fixed background field 
this involves the usual three- and four-point vertices, obtained from third and fourth derivatives 
of �k . For our gauge-invariant formulation one has additional diagrams involving derivatives of 
rk with respect to the gauge field.

In the truncation (88) the flow of the inverse propagator at zero momentum is given by 
eq. (200). The difference to the result for a fixed background field arises precisely from the terms 
∼ ∂rk/∂Aμ. For non-zero momentum squared p2 �= 0 one expects that the external momentum 
stops the flow for k2 < p2. This results for Z in the qualitative behavior (203). A more precise 
estimate of Z needs an explicit computation.

Extrapolating our estimate for g(k) in the truncation (202) and (203) to small k would lead to 
vanishing of Z for small momenta. This clearly indicates the insufficiency of this truncation for 
the infrared behavior of Yang–Mills theories. A self-consistent flow for the truncation

� = 1

4

∫
x

F ν
zμ Zzρ

νy(D)F yμ
ρ (210)

would be interesting. As long as the ground state corresponds to Aμ = 0 eq. (210) accounts 
for the propagator of the gauge fields. In QCD the Fourier transform of DZ(D) (at A = 0) is 
related to the heavy quark potential. A behavior Z ∼ D for k → 0 corresponds to a linearly 
rising potential in position space.

6. Conclusions

In this paper we propose a gauge-invariant effective action for theories with local gauge sym-
metry. This effective action depends on only one macroscopic gauge field Aμ, in distinction to 
the background field formalism. The macroscopic gauge field appears in the functional integral 
defining the effective action – this turns the definition formally into a functional differential equa-
tion. In practice, our construction proceeds by a particular physical gauge fixing, determined such 
that the gauge-fixed effective action �̃[A] decays into a gauge-invariant physical part �̄[A] and 
a gauge part �gf[A],

�̃[A] = �̄[A] + �gf[A]. (211)

Arbitrary gauge fields can be split into physical gauge fields Â and gauge degrees of free-
dom ĉ, A = Â(A) + ĉ(A). Physical gauge fields obey differential constraints. They formally 
depend on the choice of a reference field, which does not matter in practice, however. The 
gauge-fixing term is quadratic in ĉ, with coefficient α−1 tending to infinity. Solutions of the 
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field equations for arbitrary (finite) sources imply ĉ = 0. Inserting ĉ = 0 into eq. (211) projects 
onto �̄. The gauge-invariant effective action �̄ depends on A only via the physical gauge fields 
Â, �̄[A] = �̄

[
Â(A)], with �̄[Â] = �̃[A, ĉ = 0].

We have shown the following properties of the gauge-invariant effective action:

(i) The first functional derivative of �̄ yields the exact quantum field equations for arbitrary 
conserved sources.

(ii) The macroscopic gauge field A equals the expectation value of the microscopic gauge field 
〈A′〉, as computed for a conserved source corresponding to ∂�̄/∂A, only for particular 
choices of macroscopic field and physical gauge fixing.

(iii) The inverse propagator for physical fluctuations is defined as the second functional deriva-
tive �̄(2) of the gauge-invariant effective action. It can be inverted within the projected 
function space of physical fluctuations. The inverse of �̄(2) equals the connected two-point 
correlation function for the physical fluctuations only for an optimal choice of macroscopic 
gauge field, effective action and physical gauge fixing.

For an optimal setting the gauge-invariant effective action can be used in many respects in 
the same way as for theories without local gauge invariance. We have proposed an optimal phys-
ical gauge fixing, but not yet explored its use in practice. For other physical gauge fixings the 
consequences of the difference between the macroscopic field and the expectation value of the 
microscopic field, as well as between the propagator and the correlation function, need to be ex-
plored. We have given an implicit definition of the effective action �̃ by a functional differential 
equation. For small gauge coupling this can be employed for developing perturbation theory by 
an iterative solution.

We also introduce a gauge-invariant effective average action �k[A] which effectively only 
includes fluctuations with D ≥ k2, where D is an appropriate covariant Laplacian-type op-
erator. This effective average action equals �̄[A] if the infrared cutoff scale k vanishes. The 
k-dependence of �k obeys a closed flow equation which takes a one-loop form. It involves the 
full field-dependent propagator, as given by the inverse of 

(
�̄

(2)
k +Rk

)
, with Rk an IR cutoff term.

The advantage of the present formulation of �k[A] is the closed form of the flow equation 
for a gauge-invariant object depending on only one macroscopic gauge field. The flow can be 
computed in terms of �k[A] and its derivatives. In contrast, the flow equation in the back-
ground field formalism needs information from �k,bg[A, Ā] for A �= Ā [25]. As compared to 
the background field formalism with physical gauge fixing we can view the present formulation 
as following a different trajectory in the space of actions. For k = 0 the result may differ from 
the gauge-invariant effective action in the background formalism �bg[A, Ā = A] by a non-linear 
field redefinition of the macroscopic gauge field. The relation between the macroscopic fields in 
the two formulations may be non-local.

For pure Yang–Mills theories we have computed the running of the gauge coupling by use 
of the gauge-invariant flow equation in a simple truncation. It parallels the computation in the 
background field formalism of ref. [25] up to small modifications. The simple truncation with 
�k given by eq. (88) yields the correct one-loop expression for the β-function, as well as 5/6 of 
the two-loop term and higher corrections. We also have computed the flow of the propagator for 
physical fluctuations. For k �= 0 it differs from the propagator in the background field formalism 
by a different wave function renormalization. Based on our result we also propose a simple 
improvement of the effective action beyond the form eq. (88). It will be interesting to see if 
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the gauge-invariant flow equation beyond its simplest truncation can describe successfully the 
infrared behavior of Yang–Mills theories.
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Appendix A. Non-linear decomposition of gauge fields

In this appendix we relate the gauge degrees of freedom ĉμ or ĉ′
μ to the gauge orbits in a 

non-linear decomposition of the gauge fields Aμ or A′
μ.

A.1. Gauge orbits

The split Aμ = Âμ + ĉμ into a gauge-invariant physical gauge field Âμ and a gauge degree 
of freedom ĉμ can be associated with a non-linear decomposition of the gauge field,

Aμ = w Âμ w† − i(∂μw)w†, w†w = 1. (212)

We focus here on a gauge symmetry SU(N), with Aμ and w N × N -matrices and detw = 1. 
Gauge transformations leave Âμ invariant and transform

w → uw, (213)

such that

Aμ → uAμ u† − i(∂μu)u†. (214)

The non-linear fields w parametrize the gauge orbits associated to Â, and gauge transformations 
simply act as matrix multiplications of the SU(N)-matrices u and w. The gauge degrees of 
freedom ĉμ are related to w by

ĉμ = Aμ − Âμ = w Âμ w† − Âμ − i(∂μw)w†

= −i
(
Dμ(Â)w

)
w†,

(215)

with

Dμw = ∂μw − i[Âμ,w]. (216)

For infinitesimal gauge transformations one has

u = 1 + iϕ, ϕ† = ϕ, trϕ = 0, (217)

and recovers eq. (16). Similarly, we may consider w close to one

w = 1 + iδ, δ† = δ, tr δ = 0. (218)

To linear order in δ eq. (215) yields

ĉμ = ∂μδ − i[Âμ, δ] = Dμ(Â) δ = Dμ(A)δ, (219)
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where we employ that Aμ − Âμ is of the order δ. The gauge condition Dμ ĉμ = 0 translates 
to D2 δ = 0. We note that we could also formulate the gauge fixing with Dμ(A) ĉμ instead of 
Dμ[Â] ĉμ. To linear order in ĉ this makes no difference.

With the decomposition (212) one finds for the field strength

Fμν = w
(
∂μÂν − ∂νÂμ − i[Âμ, Âν]

)
w†. (220)

Therefore invariants such as TrFμνF
μν do not involve w. They depend only on the physical 

gauge fields Âμ and not on the gauge degrees of freedom ĉμ. This completes the discussion in 
section 3. To linear order ĉμ is longitudinal, cf. eq. (219).

If we consider A′
μ in the vicinity of a given gauge-invariant field Aμ = Âμ,

A′
μ = Âμ + hμ = Âμ + ĥμ + ĉμ = Âμ + fμ + Dμ λ, (221)

we can identify to linear order fμ = ĥμ, ĉμ = Dμ λ, such that ĥμ is transversal. Beyond linear 
order ĉμ needs no longer to be longitudinal, and ĥμ is not transversal. Expanding w = exp(iδ)

to quadratic order in δ,

w = 1 + iδ − i

2
δ2, (222)

yields

ĉμ = Dμ(Â) δ − i

2
[Dμ(Â) δ, δ], (223)

which is, in general, not longitudinal. We have discussed this issue in section 3.
The non-linear field parametrization (212) permits a close contact to a similar parametrization 

in work on spontaneous color symmetry breaking [62,63]. (The identification is v = wT, Vμ =
−ÂT

μ.) It is straightforward to extend this parametrization to quark fields or other matter fields. 
For a field ψ in the fundamental representation of SU(N), such as quarks in QCD or the Higgs 
doublet for the SU(2) × U(1) electroweak gauge theory, one employs

ψ = wψ̂, (224)

with ψ̂ a gauge-invariant field. For fermions the gauge-invariant kinetic term depends only on 
the gauge-invariant fields ψ̂ and Âμ, not on w,

iψ̄i γ
μ
(
Dμ(A)

)
ij

ψj = i ˆ̄ψi γ
μ
(
Dμ(Â)

)
ij

ψ̂j . (225)

For three-flavor QCD a simple effective action, based on the invariants (88) and (225), together 
with a part for scalar bilinears ∼ ψ̄ ψ , gives a rather satisfying description of phenomenology 
provided chiral symmetry breaking occurs also in the octet sector [62]. The physical gauge fields 
Âμ can then be associated with the octet of vector mesons, and the physical fermions ψ̂ with an 
octet and singlet of nucleons.

A.2. Physical gauge fixing

The non-linear representation sheds light on the physical gauge fixing. To linear order one has

δ = D−2(Â)Dμ(Â) (Aμ − Âμ) = δz tz. (226)
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Employing the general relation (34), covariant derivatives act by matrix multiplication on the 
vector field Ay

μ

δz = (
D−2(Â)Dμ(Â)

)z
y
(Ay

μ − Ây
μ). (227)

One may define similarly

δ′ = D−2(Â)Dμ(Â) (A′
μ − Âμ) = δ′z tz, (228)

with

δ′z = (
D−2(Â)Dμ(Â)

)z
y
(A′ − Â)yμ. (229)

We define a non-local physical gauge fixing, α → 0,

Sgf = 1

2α

∫
x

∑
z

(δ′z)2, (230)

resulting in

�gf = 1

2α

∫
x

∑
z

(δz)2. (231)

The solution of the field equations in the longitudinal sector directly imply δ = 0, instead of 
D2 δ = 0. For Landau gauge we have disregarded the discussion of non-trivial solutions of 
D2 δ = 0 and employed the solution Dμδ = ĉμ = 0. Then the gauge fixing (230) and Landau 
gauge yield the same results.

From a conceptual point of view the physical gauge fixing (230) seems to be attractive. The 
Faddeev–Popov determinant reads now, with covariant derivatives given by eq. (33) and Â, A′ in 
the adjoint representation (148),

M̃ = Det
[
D−2(Â)Dμ(Â)Dμ(A′)

]
= Det

[
1 − iD−2(Â)Dμ(Â) (b′

μ + c′
μ)
]
,

(232)

where we employ the identity

D2(Â) − Dμ(Â)Dμ(A′) = iDμ(Â) (A′
μ − Âμ)

= iDμ(Â) (b′
μ + c′

μ).
(233)

At lowest order in a saddle point approximation one has δ′ = 0, c′
μ = 0, ĉμ = 0 and we recall 

that this approximation becomes exact for α → 0. One ends effectively with

M̃ = Det
[
1 − iD−2(Â)Dμ(Â)Tz b′z

μ

]
. (234)

For α → 0 no change occurs if we change in the definition of δ′ the covariant derivative 
Dμ(Â) → Dμ(A). The dependence of M̃ on the transverse fluctuations b′ remains a compli-
cation for many practical computations, for example perturbative expansions.

The gauge fixing (230) is not very convenient for perturbation theory. In the longitudinal 
sector one has �(2)

gf ∼ 1
α

Dμ D−4 Dν . For finite α this leads to a strong suppression of the IR 
fluctuations, while the inverse propagator vanishes as covariant momenta tend to infinity. For 
any finite momenta the divergence of 1/α overwhelms this effect, but a careful discussion of 
limits is needed. For functional flow equations, which are UV finite by construction, this issue 
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is solved automatically. For perturbation theory it seems advantageous to stick to Landau gauge 
fixing.

The gauge fixing (230) is not an optimal physical gauge fixing in the sense that Aμ does not 
equal the expectation value 〈A′

μ〉, and the second functional derivative of �̄[A] does not equal 
the correlation function for the physical fluctuations. The simplest way to realize “optimal gauge 
fixing” would be, of course, to keep the gauge fixing independent of the macroscopic field. We 
will next discuss a non-linear gauge fixing of the type (230), with a different non-linear definition 
of δ′.

We can associate to every microscopic gauge field A′
μ the corresponding physical gauge field 

Â′
μ[A′

μ], and define δ′ by

A′
μ = eiδ′

Â′
μ e−iδ′ − i

(
∂μeiδ′)

e−iδ′
,

(δ′)† = δ′ = δ′z tz.
(235)

Infinitesimal gauge transformations of A′
μ act for small δ′ as

δ′ → δ′ + ϕ + i

2
[ϕ, δ′] + . . . (236)

The gauge-transformed δ′z(ϕ),

δ′z(ϕ) = δ′z(0) + ϕz − 1
2f z

vw ϕv δ′w(0), (237)

obeys

Nz
y = ∂δ′z

∂ϕy
= δz

y − 1
2f z

yw δ′w = (
1 − i

2δ′)z
y
. (238)

The Faddeev–Popov determinant M̃ = detN , evaluated for δ′ = 0 as appropriate for α → 0, 
simply becomes M̃ = 1. Furthermore, this choice of the gauge fixing ensures the absence of 
Gribov copies since δ′ = 0 guarantees that Âμ is the unique representative of the gauge orbit.

Expanding eq. (235) for small δ′ yields

A′
μ − Â′

μ = Dμ(Â′) δ′ − i

2
[Dμ(Â′) δ′, δ′] + . . . . (239)

The lowest order term replaces in eqs. (228) and (229) the macroscopic physical field Â by the 
microscopic physical field Â′ = Â + ĥ. Higher orders can be obtained by an iterative solution of 
eq. (239). It is tempting to consider a Landau-type of gauge fixing with Â replaced by Â′.

The gauge fixing based on eq. (235) is a physical gauge fixing in the sense that it only affects 
the gauge fluctuations around Â′. Concerning the macroscopic field this does not imply ĉ = 0, 
however. Only physical microscopic fields Â′ contribute effectively in the functional integral. 
However, a linear combination of two physical microscopic fields is typically not a physical 
field. As a result, the expectation value

Ã = 〈A′〉 (240)

will not be a macroscopic physical field Â and we cannot infer ĉ = 0.
What is possible, however, is a unique association between a macroscopic physical field Â

and the expectation value Ã, such that Ã is a gauge transform of Â,

Ãμ = W Âμ W † − i(∂μW)W †,

W † W = 1, detW = 1.
(241)
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The map Â(Ã) is defined here by the general map of every gauge field to a physical field. The 
existence of the inverse Ã(Â) is possible since for α → 0 the gauge fixing (230) and (235)
results in a restriction for the possible values of Ã. Only those Ã can be realized that are linear 
combinations of physical gauge fields. The manifolds spanned by the family of physical fields 
Â and the one spanned by the expectation values Ã therefore permit a one-to-one mapping if 
Ã is the only possible expectation value on the gauge orbit of Â. To every Â corresponds then 
precisely one Ã.

A unique map Ã(Â) allows us to define

�̄[Â] = �̌[Ã(Â)], (242)

where �̌[Ã] is obtained from the usual gauge-fixed effective action �̃[A] by inserting the par-
tial solution of the field equations in the presence of the gauge-fixing term corresponding to 
eqs. (230) and (235). This parallels the construction of �̄[Â] from �̃[A] in section 4. Then the 
gauge-invariant effective action is defined as before

�̄[A] = �̄[Â(A)] = �̌
[
Ã
(
Â(A)

)]= �̌[Ã(A)]. (243)

As it should be, the source

J = ∂�̄

∂A
= ∂�̌

∂Ã

∂Ã

∂A
= L

∂Ã

∂A
= L

∂Ã

∂Â

∂Â

∂A
(244)

is covariantly conserved with respect to the macroscopic field A, Dμ(A) Jμ = 0, due to the factor 
∂Â/∂A.

This construction demonstrates that an optimal physical gauge fixing is possible. We leave the 
question of its practical use to future investigation.

Appendix B. Expectation values for implicit definition of effective action

In this appendix we discuss the implicit definition of the effective action by a functional differ-
ential equation. We first present a general discussion, and subsequently specialize to Yang–Mills 
theories.

B.1. Implicit definition of effective action

For a general discussion we consider arbitrary “fields” or variables φ′, φ. The microscopic 
variables φ′ and the macroscopic variables φ are vectors with components φ′

i and φi , which may 
be associated to fields such as Az

μ(x), e.g. i = (x, μ, z). We define the effective action by the 
functional differential equation

�[φ] = − ln
∫

Dφ′ exp
{
−S̃[φ′, φ] + ∂�

∂φ
(φ′ − φ)

}
, (245)

where (∂�/∂φ) (φ′ −φ) stands for the scalar product (∂�/∂φi) (φ′
i −φi). If S̃ is independent of φ

eq. (245) is a standard relation for the effective action, as constructed by the Legendre transform 
of the generating functional W for the connected correlation functions. We consider here the case 
where the action S̃ is also allowed to depend on the macroscopic field φ. With

Z[φ] =
∫

Dφ′ exp
{
−S̃[φ′, φ] + ∂�

∂φ
φ′}. (246)
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One has

� = − lnZ + ∂�

∂φ
φ. (247)

Taking a derivative of eq. (247) with respect to φ yields the identity

�(2)(〈φ′〉 − φ) =
〈
∂S̃

∂φ

〉
, (248)

with ∂S̃/∂φ taken at fixed φ′. Here expectation values are defined as

〈F [φ′, φ]〉 = 1

Z

∫
Dφ′ F [φ′, φ] exp

{
−S̃[φ′, φ] + ∂�

∂φ
φ′}. (249)

In general, expectation values depend on the sources L. The choice (245) and (247) identifies 
L = ∂�/∂φ. Eq. (248) involves the matrix of second derivatives,

�
(2)
ij = ∂2�

∂φi ∂φj

, �(2) φ = �
(2)
ij φj . (250)

We can use the relation (248) in order to compute the expectation value of φ′ for a source 
given by ∂�/∂φ. Indeed, for S̃ independent of φ and invertible �(2) the solution of eq. (248)
identifies the macroscopic field with the expectation value of the microscopic field,

φ = 〈φ′〉. (251)

On the other hand, for 〈∂S̃/∂φ〉 �= 0 and finite invertible �(2) the expectation value 〈φ′〉 is no 
longer given by the macroscopic field φ.

There are two cases for which 〈φ′〉 = φ holds even in the case where S̃ depends on φ. The 
first is simply that the expectation value of the φ-derivative of S̃ vanishes or is proportional to 
〈φ′〉 − φ, 〈∂S̃/∂φ〉 = D

(〈φ′〉 − φ
)
. The second corresponds to the case where �(2) contains a 

diverging piece, α → 0,

�(2) = 1

α
(1 − P)B (1 − P) + . . . (252)

with P a projector. If the omitted terms denoted by the dots are finite for α → 0, the inverse of 
�(2) takes the form

G = (
�(2)

)−1 = P C P + . . . , (253)

where the omitted terms corresponding to the dots vanish ∼ α. For

P

〈
∂S̃

∂φ

〉
= D

(〈φ′〉 − φ
)

(254)

one has 〈φ′〉 = φ.

B.2. Yang–Mills theory

We want to investigate for pure Yang–Mills theories with physical gauge fixing under which 
conditions eq. (254) is obeyed, and therefore 〈A′

μ〉 = Âμ. Gauge fixings with 〈A′
μ〉 = Âμ are 

called optimal. We will see that Landau gauge fixing is not an optimal gauge fixing. As discussed 
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in section A.2 the notion of optimal physical gauge fixing can be extended to the case where 〈A′
μ〉

is a unique representative in the gauge orbit of Âμ.
For gauge theories we may denote

V μ
z =

〈
∂S̃

∂Az
μ

〉
=
〈

∂

∂Az
μ

(
Sgf − lnM

)〉
, (255)

with derivative taken at fixed A′. Pieces in V μ
z that are either longitudinal, e.g. �V

μ
z = (Dμ)

y
z κ̃y , 

or are proportional to 〈A′ − Â〉, do not contribute to the difference between 〈A′z
μ〉 and Âz

μ. For 

our choice of gauge fixing Sgf and M̃ depend on A only through their dependence on Â. With

V̂ μ
z = ∂S̃

∂Âz
μ

(256)

one has

V μ
z = ∂Â

y
ν

∂Az
μ

〈V̂ ν
y 〉, (257)

such that V μ
z is transversal due to the relation (55). On the other hand, any longitudinal compo-

nent of V̂ μ
z does not contribute to 〈A′〉 − Â, see eq. (56).

The expectation value of ∂Sgf/∂Az
μ reads

∂Sgf

∂Âz
μ

= 1

α

{(
DμDνc′

ν

)
z
− fzyw(Dνc′

ν)
yc′μw

}
, (258)

where Dμ = Dμ(Â) and we employ

∂

∂Âz
μ

Dρ = −iδμ
ρ Tz,

∂

∂Âz
μ

(Dρ)yw = −δμ
ρ f

y
z w . (259)

Both 〈c′z
μ(x)〉 and 〈c′z

μ(x) c′y
ν (y)〉 vanish ∼ α. Indeed, the correlation function in the longitudinal 

sector, 〈c′ c′〉 − 〈c′〉〈c′〉 ∼ (1 − P)
(
�̃(2)

)−1
(1 − P), vanishes ∼ α. This cancels the factor α−1

in eq. (258), but is not sufficient for 〈∂Sgf/∂Az
μ〉 to vanish. The first term in eq. (258) vanishes 

since it is longitudinal. For the second term we employ eq. (94),

c′z
μ = (Dμ)zy c̃y, (260)

such that

∂Sgf,2

∂Âz
μ

= − 1

α
fzvw (Dμc̃)w (D2c̃)v. (261)

For the expectation value we use

〈c̃y c̃u〉 = 〈c̃y c̃u〉c = α(D−4)yu (262)

such that〈
∂Sgf,2

∂Âz
μ

〉
= −fzvw(Dμ)wy(D

−2)yv

= −i Tr
{
T Dμ D−2}.

(263)
z
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Indeed, eq. (262) follows from the longitudinal part of �(2) (cf. section 5),[
(1 − P)�(2) (1 − P)

]zν
μy

= 1

α
(DL)zνμy = − 1

α
(Dμ)zw(Dν)

w
y,

(264)

(for configurations where (DL)zνμy is symmetric), which is inverted by

〈c′z
μ c′y

ν 〉 = −αDμD−4Dν. (265)

With c′z
μ = (Dμ)zy c̃y and taking into account the antisymmetry of Dμ this is equivalent to 

eq. (262). (One may equivalently use directly the effective action for c̃.)
For the contribution from the Faddeev–Popov determinant one employs

− ∂

∂Âz
μ

lnM = −f
y

zv

(
Dμ(A′)

) w

y
(Ggh)

v
w

= −i Tr
{
Tz Dμ(A′)Ggh

}
,

(266)

with ghost propagator

Ggh = [−Dμ(Â)Dμ(A′)
]−1

. (267)

Combining eqs. (261) and (266) one finds

V̂ μ
z = −i Tr

{
Tz Dμ(A′)Ggh(A

′, Â)

− Dμ(Â)Ggh(Â, Â)
}
,

(268)

such that V̂ μ
z vanishes for A′ = Â. Expanding V̂ μ

z in A′ − Â, the linear term in A′ − Â does not 
contribute to 〈A′〉 − Â. Higher-order terms in the expansion contribute, however, to 〈V̂ μ

z 〉 even 
for 〈A′〉 = Â.

We conclude that 〈V̂ μ
z 〉 does, in general, not vanish for 〈A′〉 = Â. From eq. (248) we infer a 

difference between 〈A′〉 and Â according to

〈A′z
μ〉 − Âz

μ = (GP )zνμy V y
ν . (269)

Appendix C. Correlation function for implicit definition of effective action

In this appendix we use the functional differential equation (107) or (245) in order to establish 
a general expression for the two-point correlation function. For pure gauge theories and optimal 
physical gauge fixing the correlation function equals the propagator, establishing eq. (139).

In order to obtain a relation for the second functional derivative of � we start from

� = − ln Z̃, Z̃ =
∫

Dφ′ exp(−Ŝ),

Ŝ = S̃ − ∂�

∂φl

(φ′
l − φl).

(270)

Derivatives with respect to φ yield

∂�

∂φi

=
〈

∂Ŝ

∂φi

〉
(271)

and
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∂2�

∂φi ∂φj

= ∂�

∂φi

∂�

∂φj

+
〈

∂2Ŝ

∂φi ∂φj

− ∂Ŝ

∂φi

∂Ŝ

∂φj

〉
(272)

with expectation value defined by

〈B〉 = Z̃−1
∫

Dφ′ B exp(−Ŝ). (273)

We next exploit

∂Ŝ

∂φi

= ∂�

∂φi

+ ∂S̃

∂φi

− ∂2�

∂φi ∂φl

(φ′
l − φl) (274)

and

∂2Ŝ

∂φi ∂φj

= 2
∂2�

∂φi ∂φj

+ ∂2S̃

∂φi ∂φj

− ∂3�

∂φi ∂φj ∂φl

(φ′
l − φl). (275)

Insertion into eq. (272) and use of eq. (248) yields

∂2�

∂φj ∂φm

∂2�

∂φi ∂φl

〈(φ′
l − φl)(φ

′
m − φm)〉 = ∂2�

∂φi ∂φj

+ Xij (276)

with

Xij =
〈

∂2S̃

∂φi ∂φj

− ∂S̃

∂φi

∂S̃

∂φj

〉
(277)

+
〈(

2
∂2�

∂φj ∂φl

∂S̃

∂φi

− ∂3�

∂φi ∂φj ∂φl

)
(φ′

l − φl)

〉
.

(The expression for X should be symmetrized in i and j .) For S̃ independent of φ one has 
〈φ′

l〉 = φl such that X vanishes.

We next multiply eq. (276) with 
(
�(2)

)−1, such that(
�(2)

)
il

G̃lm = δim + Yim, (278)

with

G̃lm = 〈(φ′
l − φl)(φ

′
m − φm)〉 (279)

and

Yim = Xij

(
�(2)

)−1
jm

. (280)

For Y = 0 one recovers the well-known expression of the propagator G̃ as the inverse of the 
second functional derivative of �. More generally, one has

G̃ij = Gij + �Gij , Gij = (
�(2)

)−1
ij

,

�Gij = Gil Xlm Gmj .
(281)

The “correction term” can be written as

�Gij = �G
(1)
ij + �G

(2)
ij + �G

(3)
ij , (282)

where
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�G
(1)
ij = Gil

〈
∂2S̃

∂φl ∂φm

− ∂S̃

∂φl

∂S̃

∂φm

〉
Gmj ,

�G
(2)
ij = 2

〈
∂S̃

∂φm

(φ′
i − φi)

〉
Gmj ,

�G
(3)
ij = ∂Gij

∂φl

〈φ′
l − φl〉.

(283)

Appendix D. Gauge-invariant flow equation from implicit definition of effective action

In this appendix we show that an implicit definition of the average effective action by a 
functional differential equation leads to an exact closed flow equation. It is formulated here for 
Landau gauge fixing. This flow equation is not yet optimal as the one proposed in ref. [23]. We 
briefly discuss which modifications can lead to the flow equation (9).

We start by adding an infrared cutoff term �Sk in the implicit definition (107) of the effective 
action

�̃k[A] = − ln
∫

DA′ Ek(A) (284)

× exp

{
−(S̃ + �Sk)[A′,A] +

∫
x

∂�̃k

∂Az
μ

(
A′z

μ − Az
μ

)}
,

where S̃ contains a Landau gauge-fixing term and the corresponding logarithm of the Faddeev–
Popov determinant, S̃ = S ′ + Sgf − lnM . For the IR cutoff we take

�Sk = 1

2

∫
x

b′μ
z

(
R

(ph)
k

)zν
μy

b′y
ν + 1

2α

∫
x

c′μ
z

(
R

(g)
k

)zν
μy

c′y
ν , (285)

with R(ph)
k and R(g)

k suitable functions (see below) of covariant derivatives involving Â(A). The 
factor Ek(A) regularizes the Faddeev–Popov determinant (see below). It is a gauge-invariant 
expression of the covariant Laplacian D2(A).

Taking a logarithmic k-derivative yields, with t = ln(k/k0)

∂t �̃k = 〈∂t�Sk〉 − εk +
∫
x

∂t

∂�̃k

∂Az
μ

〈A′z
μ − Az

μ〉, (286)

with

εk = ∂t lnEk. (287)

We define the effective average action as

�k = �̃k − 1

2
bμ
z

(
R

(ph)
k

)zν
μy

by
ν − 1

2α
cμ
z

(
R

(g)
k

)zν
μy

cy
ν

−
∫
x

∂�̃k

∂Az
μ

(bz
μ + cz

μ − ĉz
μ), (288)

where b = 〈b′〉, c = 〈c′〉. It obeys the flow equation (at fixed A)
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∂t�k = πk + δk − εk,

πk = 1

2

∫
x

∂t

(
R

(ph)
k

)zν
μy

〈b′y
ν b′μ

z 〉c,

δk = 1

2α

∫
x

∂t

(
R

(g)
k

)zν
μy

〈c′y
ν c′μ

z 〉c,
(289)

with 〈·〉c denoting the connected two-point function. We recognize the correlation function for 
the physical fluctuations

〈b′y
ν b′μ

z 〉c = (
G̃P

)yμ

νz
(290)

obeying

P G̃P = G̃P P T = G̃P . (291)

The correlation function for the gauge fluctuations,

〈c′y
ν c′μ

z 〉c = (
G̃g

)yμ

νz
(292)

vanishes ∼ α. Its leading expression in a saddle point expansion obeys

1

α

{−(
Dρ Dν

)w
y

+ (
R

(g)
k

)wν

ρy

}(
G̃g

)yμ

νz
= (1 − P)wμ

ρz , (293)

such that

δk = 1

2
tr
{
∂tR

(g)
k

(
DL + R

(g)
k

)−1}
,

(DL) ν
ρ = −DρDν.

(294)

Typically, R(g)
k is chosen as a function of DL. We will find εk = −2δk , such that eq. (289) yields 

eq. (9), if G̃P = GP , with GP obeying eq. (13) with RP identified with R(ph)
k .

For k �= 0 the dependence of the cutoff function on the macroscopic gauge field A, 
∂R

(ph)
k /∂Az

μ �= 0 is responsible for additional contributions to bz
μ = 〈b′z

μ〉 �= 0, even if for an 
optimal cutoff one has b = 0 for k = 0. The macroscopic gauge field Az

μ does not equal the 
expectation value of the microscopic gauge field. The addition of �Sk does not change the dis-
cussion in the gauge fixing and Faddeev–Popov sectors, such that one still has

〈c′〉 = c = ĉ = 0. (295)

However, for bz
μ �= 0 one has now

〈A′z
μ〉 = Az

μ + bz
μ. (296)

For the definition (288) of �k it seems likely that the difference �G = G̃−G, computed accord-
ing to eq. (281), does not vanish. This does not prevent the flow equation for the gauge-invariant 
effective action to be a gauge-invariant closed equation. The insertion of the “correction term” 
�G remains computable in terms of �, with S̃ in eq. (277) modified by the addition of the physi-
cal part of �Sk . Correction terms are proportional to ∂R

(ph)
k /∂Az

μ or derivatives of it, and vanish 
for k → 0.

In order to obtain a simpler flow equation were corrections from �G are absent we may 
modify the precise definition of the effective average action �k for k �= 0. This influences the 
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relation between the expectation value 〈A′z
μ〉 and the macroscopic field Az

μ, as well as �G. Also 
the relation between the source L and the macroscopic gauge field A may be modified, such that 
L is no longer given by ∂�/∂φ. If we do not fix the relation between L and ∂�/∂φ a priori, the 
relation between φ and 〈φ′〉 can be freely chosen, determining a posteriori the relation between 
L and ∂�/∂φ. More formally, we may replace on the r.h.s. of eq. (284) ∂�̃/∂A by some suitably 
chosen source functional L[A], and add to the definition of �k in eq. (288) a gauge-invariant term 
C̃k[A]. We require that for k = 0 one has L[A] = ∂�̃/∂A and C̃k[A] = C[A]. The correction �G

depends on the choice of L[A] and C̃k[A].
It has been argued in ref. [23] that a suitable definition of �k and the relation between φ and 

〈φ′〉 exists such that the correction term ∼ �G vanishes. In this paper we assume that this is 
indeed possible and work with the flow equation (9). We emphasize that different definitions 
of �k , which lead to the same effective action for k = 0, yield the same expectation values and 
correlations for physical observables.

References

[1] W. Heisenberg, H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys. A, Hadrons Nucl. 98 
(1936) (see ref. [3] for English translation), 714.

[2] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664.
[3] W. Heisenberg, H. Euler, Consequences of Dirac theory of the positron, arXiv :physics /0605038, 2006.
[4] A. Starobinskii, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 

682.
[5] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508.
[6] F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321, 

arXiv :hep -th /9802142.
[7] G. ’t Hooft, Functional and Probability Methods in Quantum Field Theory, Acta Univ. Wratislav, 1976.
[8] B. DeWitt, in: C. Islam (Ed.), Quantum Gravity, Oxford University Press, 1982.
[9] D.G. Boulware, Gauge dependence of the effective action, Phys. Rev. D 23 (1981) 389.

[10] L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189.
[11] T.R. Morris, A gauge invariant exact renormalization group. 1, Nucl. Phys. B 573 (2000) 97, arXiv :hep -th /9910058.
[12] T.R. Morris, O.J. Rosten, Manifestly gauge invariant QCD, J. Phys. A 39 (2006) 11657, arXiv :hep -th /0606189.
[13] K. Falls, T.R. Morris, Conformal anomaly from gauge fields without gauge fixing, Phys. Rev. D 97 (2018) 065013, 

arXiv :1712 .05011.
[14] C. Wetterich, Gauge symmetry from decoupling, Nucl. Phys. B 915 (2017) 135, arXiv :1608 .01515.
[15] G. Vilkovisky, The unique effective action in quantum field theory, Nucl. Phys. B 234 (1984) 125.
[16] B. DeWitt, The Effective Action in Quantum Field Theory and Quantum Statistics, Adam Hilger, 1987.
[17] A. Rebhan, The Vilkovisky–DeWitt effective action and its application to Yang–Mills theories, Nucl. Phys. B 288 

(1987) 832.
[18] J.M. Pawlowski, Geometrical effective action and Wilsonian flows, arXiv :hep -th /0310018, 2003.
[19] V. Branchina, K.A. Meissner, G. Veneziano, The price of an exact, gauge-invariant RG-flow equation, Phys. Lett. B 

574 (2003) 319, arXiv :hep -th /0309234.
[20] M. Demmel, F. Saueressig, O. Zanusso, RG flows of quantum Einstein gravity in the linear-geometric approxima-

tion, Ann. Phys. 359 (2015) 141, arXiv :1412 .7207.
[21] G. Kunstatter, The path integral for gauge theories: a geometrical approach, Class. Quantum Gravity 9 (1992) S157.
[22] B.S. DeWitt, C. Molina-Paris, Gauge theory without ghosts, in: Physics. Proceedings, 2nd International 

A.D. Sakharov Conference, Moscow, Russia, May 20–24, 1996, 1995, p. 396, arXiv :hep -th /9511109.
[23] C. Wetterich, Gauge-invariant flow equation, arXiv :1607 .02989, 2016.
[24] P.M. Lavrov, Gauge (in)dependence and background field formalism, arXiv :1805 .02149, 2018.
[25] M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 

417 (1994) 181.
[26] M. Reuter, C. Wetterich, Exact evolution equation for scalar electrodynamics, Nucl. Phys. B 427 (1994) 291.
[27] M. Reuter, C. Wetterich, Running gauge coupling in three dimensions and the electroweak phase transition, Nucl. 

Phys. B 408 (1993) 91.

http://refhub.elsevier.com/S0550-3213(18)30187-1/bib484531s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib484531s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib484531s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4A53s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib484532s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib537461s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib537461s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4869s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4245s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4245s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4748s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib424457s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4242s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4C41s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4D4F5231s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4D4F5232s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4D4F5233s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4D4F5233s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib43574744s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib56696Cs1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib446557s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib524542s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib524542s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib504731s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4252s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4252s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4445s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4445s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4B554Es1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib44574D50s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib44574D50s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4357474946s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4C4156s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5257s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5257s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5232s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5233s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5233s1


C. Wetterich / Nuclear Physics B 934 (2018) 265–316 315
[28] M. Reuter, C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry, Nucl. Phys. B 391 
(1993) 147.

[29] U. Ellwanger, M. Hirsch, A. Weber, Flow equations for the relevant part of the pure Yang–Mills action, Z. Phys. C, 
Part. Fields 69 (1995) 687, arXiv :hep -th /9506019.

[30] H. Gies, Running coupling in Yang–Mills theory: a flow equation study, Phys. Rev. D 66 (2002) 025006, arXiv :
hep -th /0202207.

[31] H. Gies, Renormalizability of gauge theories in extra dimensions, Phys. Rev. D 68 (2003) 085015, arXiv :hep -th /
0512085.

[32] J. Braun, H. Gies, Running coupling at finite temperature and chiral symmetry restoration in QCD, Phys. Lett. B 
645 (2007) 53, arXiv :hep -ph /0512085.

[33] B. Bergerhoff, et al., Phase diagram of superconductors from non-perturbative flow equations, Phys. Rev. B 53 
(1996) 5734, arXiv :hep -ph /9503334.

[34] B. Bergerhoff, et al., Phase transition of N -component superconductors, Int. J. Mod. Phys. A 11 (1996) 4273, 
arXiv :cond -mat /9502039.

[35] M. Reuter, C. Wetterich, Gluon condensation in non-perturbative flow equations, Phys. Rev. D 56 (1997) 7893, 
arXiv :hep -th /9708051.

[36] A. Eichhorn, H. Gies, J.M. Pawlowski, Gluon condensation and scaling exponents for the propagators in Yang–Mills 
theory, Phys. Rev. D 83 (2011) 045014, arXiv :1010 .2153.

[37] C. Wetterich, Effective quark interactions from QCD, arXiv :hep -th /9501119, 1995.
[38] C. Wetterich, Integrating out gluons in flow equations, Z. Phys. C, Part. Fields 72 (1996) 139, arXiv :hep -ph /

9604227.
[39] B. Bergerhoff, C. Wetterich, Effective quark interactions and QCD propagators, Phys. Rev. D 57 (1998) 1591, 

arXiv :hep -ph /9708425.
[40] U. Ellwanger, M. Hirsch, A. Weber, The heavy quark potential from Wilson’s exact renormalization group, Eur. 

Phys. J. C Part. Fields 1 (1998) 563, arXiv :hep -ph /9606468.
[41] A.K. Cyrol, et al., Landau gauge Yang–Mills correlation functions, Phys. Rev. D 94 (2016) 054005, arXiv :1605 .

01856.
[42] C.S. Fischer, J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang–Mills theory, Phys. Rev. 

D 75 (2007) 025012, arXiv :hep -th /0609009.
[43] C.S. Fischer, J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang–Mills theory. II, Phys. 

Rev. D 80 (2009) 025023, arXiv :0903 .2193.
[44] C.S. Fischer, A. Maas, J.M. Pawlowski, On the infrared behavior of Landau gauge Yang–Mills theory, Ann. Phys. 

324 (2009) 2408, arXiv :0705 .3809.
[45] A.K. Cyrol, et al., Non-perturbative quark, gluon and meson correlators of unquenched QCD, arXiv :1706 .06326, 

2017.
[46] A.K. Cyrol, et al., Non-perturbative finite-temperature Yang–Mills theory, arXiv :1708 .03482, 2017.
[47] J. Braun, H. Gies, J.M. Pawlowski, Quark confinement from color confinement, Phys. Lett. B 684 (2010) 262, 

arXiv :0708 .2413.
[48] M. Mitter, J.M. Pawlowski, N. Strodthoff, Chiral symmetry breaking in continuum QCD, Phys. Rev. D 91 (2015) 

054035, arXiv :1411 .7978.
[49] H. Gies, Introduction to the Functional RG and Applications to Gauge Theories, Renormalization Group and Effec-

tive Field Theory Approaches to Many-Body Systems, Springer, 2012, p. 287, arXiv :hep -ph /0611146.
[50] D.F. Litim, J.M. Pawlowski, On gauge invariant Wilsonian flows, arXiv :hep -th /9901063, 1999.
[51] J.M. Pawlowski, Aspects of the functional renormalisation group, Ann. Phys. 322 (2007) 2831, arXiv :hep -th /

0512261.
[52] C. Becchi, On the construction of renormalized gauge theories using renormalization group techniques, arXiv :

hep -th /9607188, 1996.
[53] U. Ellwanger, Flow equations and BRS invariance for Yang–Mills theories, Phys. Lett. B 335 (1994) 364, arXiv :

hep -th /9402077.
[54] M. Bonini, M. D’Attanasio, G. Marchesini, BRS symmetry for Yang–Mills theory with exact renormalization group, 

Nucl. Phys. B 437 (1995) 163, arXiv :hep -th /9410138.
[55] M. D’Attanasio, T.R. Morris, Gauge invariance, the quantum action principle, and the renormalization group, Phys. 

Lett. B 378 (1996) 213, arXiv :hep -th /9602156.
[56] F. Freire, C. Wetterich, Abelian Ward identity from the background field dependence of the effective action, Phys. 

Lett. B 380 (1996) 337, arXiv :hep -th /9601081.
[57] F. Freire, D.F. Litim, J.M. Pawlowski, Gauge invariance and background field formalism in the exact renormalisation 

group, Phys. Lett. B 495 (2000) 256, arXiv :hep -th /0009110.

http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5234s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5234s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523131s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523131s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523132s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523132s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523133s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523133s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523134s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523134s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5236s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5236s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5237s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5237s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523138s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523138s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523139s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523139s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523135s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523136s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523136s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523137s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523137s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib454857s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib454857s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523230s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523230s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523233s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523233s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523234s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523234s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4649s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4649s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib434D505331s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib434D505331s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib434D505332s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523231s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523231s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523235s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523235s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5238s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5238s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib5239s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523130s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523130s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523533s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523533s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523534s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523534s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523535s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523535s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523536s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523536s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523537s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523537s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523538s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523538s1


316 C. Wetterich / Nuclear Physics B 934 (2018) 265–316
[58] D.F. Litim, J.M. Pawlowski, Wilsonian flows and background fields, Phys. Lett. B 546 (2002) 279, arXiv :hep -th /
0208216.

[59] C. Wetterich, Cosmic fluctuations from a quantum effective action, Phys. Rev. D 92 (2015) 083507, arXiv :1503 .
07860.

[60] C. Wetterich, Quantum correlations for the metric, Phys. Rev. D 95 (2017) 123525, arXiv :1603 .06504.
[61] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90.
[62] C. Wetterich, Spontaneously broken color, Phys. Rev. D 64 (2001) 036003, arXiv :hep -ph /0008150.
[63] C. Wetterich, Higgs Picture of the QCD-Vacuum, AIP Conference Proceedings, vol. 739, AIP, 2004, p. 123, arXiv :

hep -ph /0410057.

http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523539s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib523539s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4357504631s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4357504631s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4357504632s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib43574645s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib4357534243s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib43574850s1
http://refhub.elsevier.com/S0550-3213(18)30187-1/bib43574850s1

	Gauge-invariant ﬁelds and ﬂow equations for Yang-Mills theories
	1 Introduction
	2 Gauge ﬁelds and sources
	2.1 Gauge transformations
	2.2 Projectors
	2.3 Physical sources and ﬂuctuations

	3 Physical gauge ﬁelds
	3.1 Gauge-invariant ﬁelds
	3.2 Gauge-invariant effective action
	3.3 Gauge-invariant effective action and functional derivatives

	4 Functional integral
	4.1 Partition function
	4.2 Effective action
	4.3 Field equation in gauge sector
	4.4 Gauge-invariant effective action
	4.5 Field equation and expectation value of microscopic gauge ﬁeld
	4.6 Propagator and physical correlation function
	4.7 Independence of reference ﬁeld
	4.8 Comparison with background formalism

	5 Gauge-invariant ﬂow equation
	5.1 Flow in pure gauge theories
	5.2 Running coupling in SU(N)-gauge theories
	5.3 Flow of the gauge ﬁeld propagator

	6 Conclusions
	Acknowledgements
	Appendix A Non-linear decomposition of gauge ﬁelds
	A.1 Gauge orbits
	A.2 Physical gauge ﬁxing

	Appendix B Expectation values for implicit deﬁnition of effective action
	B.1 Implicit deﬁnition of effective action
	B.2 Yang-Mills theory

	Appendix C Correlation function for implicit deﬁnition of effective action
	Appendix D Gauge-invariant ﬂow equation from implicit deﬁnition of effective action
	References


