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Abstract

This thesis is concerned with the examination of systems whose external parameters change
slowly in time. The slowness assumption allows for the so called adiabatic approximation in
many situations and is a useful means to study a variety of physical question. Both aspects are
addressed here: On the one hand we present adiabatic theorems for linear as well as nonlinear
evolution equations. On the other hand several applications are being discussed with main
focus on quantum mechanical systems.

In a first – purely mathematical – part, we adopt a relatively abstract framework, namely
that of time-dependent generators of contraction semigroups on a Banach space. If such gen-
erators satisfy a certain spectral gap condition there exists a perturbation expansion in the
parameter measuring the slowness. The structure of the expansion has a geometric meaning
entailing a distinction between terms which are local and terms which are non-local in time.
If the gap condition is abandoned an adiabatic theorem can still be proved, though without
information on the rate of convergence in the limit of infinite slowness. We will see that the
appreciation of the geometric structure allows for fairly simple proofs in both cases.

Our theorems are likewise applicable to closed and open quantum systems described by a
family of Hamiltonians or Lindbladians, respectively. A short introduction to the latter is the
subject of the second part of this thesis. In view of our physical examples a particular emphasis
is placed on the special class of dephasing Lindbladians. They model decoherence without
dissipation: for them, a structural theorem is presented.

A third part then treats the combination of adiabatic and quantum theory resulting in a
considerable range of applications: The coefficients in the above mentioned perturbation ex-
pansion have a different physical interpretation in closed as opposed to open quantum systems.
After highlighting this fact in some generality we turn to more specific settings: An analogue
of the Landau-Zener formula for transitions near an avoided crossings of eigenvalues is derived
in the dephasing case. Furthermore, an optimization problem in adiabatic quantum comput-
ing is investigated in absence and in presence of dephasing. As a result, constraints on the
physically allowed dephasing parameters are revealed in the case of Grover’s search algorithm.
Subsequently, we turn to slowly driven stochastic systems in order to illustrate the applicability
of adiabatic perturbation expansions outside of quantum mechanics. The chapter is rounded
off by a discussion of the adiabatic theorem in closed and open quantum systems without the
condition of a spectral gap.

All these results are finally complemented in a forth part by an example of a nonlinear
adiabatic theorem. More precisely, we study the time-dependent Gross-Pitaevskii equation
which describes the dynamics of a weakly interacting Bose-Einstein condensate which is trapped
by a slowly in time varying potential with exactly one eigenstate. The fact that the propagator
of the linearized equation is not a contraction complicates the control of error terms considerably
and asks for additional techniques in comparison to the linear case. That said however, the
more concrete setting – that of a partial differential equation and a function space – allows
for further structure and in particular we have dispersive estimates for the linear Schrödinger
equation at hand. In connection with a bootstrap argument they enable us to prove the desired
result.
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Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der Untersuchung von Systemen, deren externe Para-
meter sich langsam mit der Zeit ändern. Die Annahme von Langsamkeit erlaubt die sogenannte
adiabatische Approximationen in zahlreichen Situationen und ist ein nützliches Mittel für das
Studium einer Vielfalt physikalischer Fragen. Beide Aspekte werden hier behandelt: Einer-
seits präsentieren wir adiabatische Theoreme sowohl für lineare als auch für nichtlineare Evolu-
tionsgleichungen. Andererseits werden mehrere Anwendungen diskutiert, wobei ein besonderes
Augenmerk auf quantenmechanischen Systemen liegt.

In einem ersten – rein mathematischen – Teil führen wir einen relativ abstrakten Rah-
men ein, nämlich denjenigen zeitabhängiger Generatoren von Kontraktionshalbgruppen auf
Banachräumen. Falls solche Generatoren eine gewisse Spektrallückenbedingung erfüllen, dann
existiert eine Störungsentwicklung im Parameter, welcher die Langsamkeit misst. Die Struktur
der Entwicklung hat eine geometrische Bedeutung und bedingt eine Unterscheidung in Terme,
welche lokal respektive nicht-lokal in der Zeit sind. Wird die Spektrallückenbedingung fallen
gelassen, kann ein adiabatisches Theorem immer noch bewiesen werden; allerdings ohne Infor-
mation über die Konvergenzrate im Grenzfall unendlicher Langsamkeit. Wir werden sehen,
dass die Beachtung der geometrischen Struktur ziemlich einfache Beweise in beiden Fällen er-
möglicht.

Unsere Theoreme sind gleichermassen anwendbar auf abgeschlossene wie auf offene Quanten-
systeme, welche durch eine Familie von Hamilton- respektive Lindblad-Operatoren beschrieben
werden. Eine kurze Einführung in die letzteren ist Thema eines zweiten Teils dieser Doktor-
arbeit. Angesichts unserer physikalischen Beispiele wird eine besondere Beachtung der Klasse
der phasenauslöschenden (engl. dephasing) Lindblad-Operatoren geschenkt. Diese modellieren
Dekohärenz ohne Dissipation: für sie wird ein Strukturtheorem bewiesen.

Ein dritter Teil behandelt dann die Kombination von Adiabaten- und Quantentheorie,
woraus ein beachtlicher Umfang an Anwendungen resultiert: Die Koeffizienten der oben er-
wähnten Störungsentwicklung haben eine unterschiedliche physikalische Interpretation für ab-
geschlossene im Gegensatz zu offenen Quantensystemen. Nach dem Beleuchten dieser Tat-
sache in einiger Allgemeinheit, wenden wir uns spezifischeren Situationen zu: Ein Analogon
der Landau-Zener Formel für Übergänge nahe einem gemiedenen Kreuzen (engl. avoided cross-
ing) von Eigenwerten wird hergeleitet für phasenauslöschenden Fall. Ferner wird ein Optimie-
rungsproblem des adiabatischen Quantenrechnens (engl. adiabatic quantum computing) in An-
und Abwesenheit von Phasenauslöschung untersucht. Als Konsequenz werden Einschränkungen
für die physikalisch zulässigen Parameter, welche die Phasenauslöschung beschreiben, zutage ge-
fördert. In der Folge wenden wir uns langsam angetriebenen stochastischen Systemen (engl.
slowly driven stochastic systems) zu, um die Anwendbarkeit adiabatischer Störungsentwicklun-
gen ausserhalb der Quantenmechanik zu illustrieren. Das Kapitel wird abgerundet durch eine
Diskussion des adiabatischen Theorems für abgeschlossene und offene Quantensysteme ohne die
Voraussetzung einer Spektrallücke.

All diese Resultate werden schlussendlich in einem vierten Teil ergänzt durch ein Beispiel
eines nichtlinearen adiabatischen Theorems. Genauer gesagt studieren wir die zeitabhängige
Gross-Piteavksii-Gleichung, welche die Dynamik eines schwach wechselwirkenden Bose-Einstein-
Kondensats beschreibt, das gefangen ist in einem langsam zeitlich veränderlichen Potential,
welches genau einen Eigenzustand zulässt. Die Tatsache, dass der Propagator der linearisier-
ten Gleichung keine Kontraktion ist, erschwert die Kontrolle von Fehlertermen erheblich und
verlangt nach zusätzlichen Techniken im Vergleich zum linearen Fall. Nichtsdestotrotz lässt
der konkretere Rahmen – derjenige einer partiellen Differentialgleichung und eines Funktionen-
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raums – zusätzliche Struktur zu und so haben wir insbesondere dispersive Abschätzungen für
die lineare Schrödingergleichung zur Verfügung. In Verbindung mit einem Stetigkeitsargument
(engl. bootstrap argument) ermöglichen es uns diese, das angekündigte Resultat zu beweisen.
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Chapter 1

Introduction

1.1. Aspects of adiabatic approximation

A slow dependence on external parameters of a physical systems is conveniently formalized by
introducing an adiabatic parameter ε, the “adiabaticity”, which quantifies the slowness in an
evolution equation

ẏ(t) = F (εt, y(t)) . (1.1.1)

If ε = 0 and y(0) = y0 with F (0, y0) = 0 then clearly y(t) ≡ y0 is a solution of Equation (1.1.1).
This leads immediately to the simple idea of adiabatic approximation in the case of finite ε: If
the function F admits a family y0(t) of instantaneous stationary states, that is, F (εt, y0(t)) ≡ 0
and if y(0) = y0(0) then it may be expected that under certain conditions y(t) remains close
to y0(t) for all t in the limit ε → 0. To give a more precise statement we note that as ε gets
smaller it is necessary to allow for increasingly large observation times in order to notice a
nontrivial effect and it is therefore customary to go over to a macroscopic time s := εt ∈ [0, 1]
transforming Equation (1.1.1) to

εẋ(s) = F (s, x(s)) (1.1.2)

with x(s) := y(s/ε). The adiabatic approximation – if it holds – then states that

lim
ε→0

x(s) = x0(s) := y0

(s
ε

)
for any fixed s. An obvious ambiguity in this discussion is the fact that the zero set of F (·, ·)
need not define a unique curve x0(s) and therefore necessitates further conditions. This will
incidentally almost always be the case throughout this thesis: Either F (s, ·) is linear and has
at least a one dimensional kernel, or it is part of a nonlinear partial differential equation which
admits a whole manifold of instantaneous stationary states. In some cases simple arguments
(e.g. unitarity in the linear, conservation laws in the nonlinear case) can almost single out
the relevant curve immediately. In greater generality the situation is however less clear and
we shall see that a certain notion of parallel transport will be a fruitful means to address
this problem. The generally quite geometric character of the adiabatic approximation was
supposedly appreciated for the first time with the discovery of Berry’s phase [Ber84, Sim83]
which measures the holonomy along a closed path in a space of Hamiltonians as it arises in the
adiabatic limit.

Equation (1.1.2) has many faces: It may describe a classical dynamical system1, a driven
stochastic process, or a quantum evolution. Our main focus lies on the latter, where F (s, x(s))

1Finite dimensional adiabatic dynamical systems are treated in [Ber98].

1



2 1. introduction

is for instance replaced by −i[H(s), ρ(s)] or −i(H(s) − E(s))ψ(s) with E(s) being an eigen-
value of the Hamiltonian H(s). The first quantum adiabatic2 theorem was proved by Born and
Fock [BF28] in 1928 in a setting of simple eigenvalues and yielded a cornerstone of the famous
Born-Oppenheimer approximation in the description of molecules. Since then, many further
developments have taken place. Some of them [Kat95,ASY87,ASY93] generalized the theorem
to degenerate eigenvalues or even continuous energy bands. Some of them, e.g. [Nen93, JP91],
were concerned with expansions of solutions in the adiabaticity showing that error terms are
exponentially small under certain conditions; just like it is the case for the Landau-Zener for-
mula. Others [AE99,Bor98] showed that the putatively unavoidable spectral gap assumption
which is usually made for the Hamiltonian H(s) is unnecessary in a certain sense. In the gapped
case on the other hand many of these theorems have been generalized to contracting evolutions
on arbitrary Banach spaces, [Joy07,NR92,Sal07]. Such theorems are relevant if one takes into
account the interaction of a quantum system with its environment. The system is then re-
ferred to as open quantum system and has the striking feature that pure states are transformed
into mixed states during its evolution. This phenomenon is referred to as decoherence3 and
is of great importance both theoretically and experimentally. The dynamics of such an open
quantum system can often efficiently be described by a semigroup law given by a Lindblad
master equation [Lin76]; a big field of research on it own as we shall see in due course. For
the time being we content ourselves with the remark that the setting is then indeed that of a
contracting evolution on a Banach space and hence the above mentioned theorems apply.

As we will demonstrate the quantum adiabatic theorem can also be generalized in absence
of a gap so as to be applicable to open quantum systems; a spin-off being that the proof will
give a simple and new derivation even in the Hamiltonian case. At first sight the existence
of such a theorem may appear a bit puzzling or even – in the words of [AE99] – “morally
wrong”: If a system is said to vary slowly in time any physicist will ask the just question: “slow
compared to what?”. Without spectral gap there is however no obvious notion of a comparison
time scale. It turns out that the gap assumption is only needed to yield information on the
rate of convergence if the adiabaticity ε tends to zero. In fact, explicit expansions in ε exist in
that case; an observation which allows for a large range of applications, some of which will be
presented in this thesis. Our own expansion result reveals geometric conditions under which the
expansion terms are local, respectively non-local in time. This dichotomy applies to closed and
open quantum systems at the same time, yet has a very different physical interpretation in the
two cases; a feature, which will be illustrated with examples in areas as different as molecular
dynamics and adiabatic quantum computing.

Notably, as for classical systems, the dynamics (1.1.2) can be nonlinear even in the quantum
case: Although the time-dependent Schrödinger equation is linear, various effective evolution
equations in many-body theory are not. An example is the time-dependent Gross-Pitaevskii
equation

iε
d

ds
ψ(s) = −∆ψ(s) + V (s)ψ(s) + b|ψ(s)|2ψ(s) (1.1.3)

on R3 which describes the dynamics of a Bose-Einstein condensate under the influence of a time-
dependent exterior potential V (s). After subtracting a dynamical phase factor it can be cast in
the form of Equation (1.1.2). On physical grounds the validity of the adiabatic approximation
for this equation is very plausible and for instance referred to in certain interference experiments

2‘Adiabatic’ will always be understood with respect to time. For an exposition of space-adiabatic theorems
we refer to the monograph [Teu03].

3Caveat: The literature is not totally unambiguous concerning terminology.
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[AK98,OTF+01]. We are however unaware of a rigorous justification and therefore made it our
goal to give one in a simple model. That way we present a result which gives a contrast to
other adiabatic theorems both from a mathematical as well as from a physical perspective.

1.2. Synopsis

This thesis is largely based on the material presented in [AFGG11b,AFGG10,AFGG11a,GG]
and proceeds as follows:

Chapter 2

In this purely functional analytic chapter a general framework for linear contracting evolutions

εẋ(s) = L(s)x(s)

is set up. It is shown that generically the family L(s) induces a natural notion of parallel
transport – an observation which appears in the proofs of all adiabatic theorems that we shall
present. We then proceed with an exposition of our main results.

In the gapped case this includes the construction of the “slow manifold” which consists of
special solutions that illustrate the connection between the above mentioned locality dichotomy
and parallel transport. This is complemented by a theorem which – though giving less precise
information – allows for arbitrary initial data.

A simple lemma on the description of the range of L(s) is the key to a proof of the adiabatic
theorem without spectral gap assumption which will be given thereafter.

The chapter closes with several propositions and counterexamples which specify what is
meant by the “generic” occurence of parallel transport.

Chapter 3

The main goal of Chapter 3 is to give an introduction to the theory of open quantum systems
described by a Lindbladian. After introducing the central notion of complete positivity we
present the axiomatic approach as well as several constructive schemes leading to Lindbladians.
To avoid losing track of the thread of this thesis we only present one of them – the weak coupling
limit – in some more detail.

We then develop results on the structure and physical interpretation of so called dephasing
Lindbladians which prevent energy exchange between the quantum system and its environment.
They will be the “drosophila” in the examples presented in Chapter 4, for which the last pre-
parations conclude this chapter: We show as to what extent the notion of states enriches the
structure of a Banach space and how it allows for more detailed results on parallel transport.
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Chapter 4

Chapter 4 combines the preceding chapters and presents several applications. We explain the
implications of the locality dichotomy on physical tunneling in the Hamiltonian and Lindbla-
dian case. We then show that the exponentially small tunneling described by the Landau-Zener
formula has to be replaced by an expression which is linear in the adiabaticity once a nonzero de-
phasing is added. The limit of strong dephasing is shown to be in agreement with the quantum
Zeno effect. Subsequently, we turn to an optimization problem in adiabatic quantum comput-
ing and show an ill-posedness result in the Hamiltonian case while establishing the contrary
conclusion for dephasing Lindbladians. An optimality bound on the search time for Grover’s
algorithm is shown to yield restrictions on the physically allowed dephasing parameters under
the assumption that the environment has no a priori knowledge of the quantum computer. As a
last application of the gapped adiabatic theorem we derive formulae for integrated probability
currents as they appear in driven Markov processes.

The chapter is brought to an end with a discussion of the gapless adiabatic theorem. It
turns out that the existence of parallel transport in the Lindbladian case requires some care.

Chapter 5

From a mathematical perspective Chapter 5 is slightly detached from the others in that it largely
relies on results from partial differential equations. It is concerned with the proof of one single
adiabatic theorem for the time-dependent Gross-Pitaevskii equation (1.1.3). Under several
conditions on the external potential V (s), one being that it has just one eigenstate, we show:
A nonzero nonlinearity yields a whole manifold of “ground states” for the time-independent
Gross-Pitaevskii equation. If the initial data ψ(0) for (1.1.3) belongs to this manifold then ψ(1)
essentially tends to an element in the ground state manifold of equal L2(R3)-norm as ε→ 0.

1.3. Notation and conventions

We have tried to use standard notation whenever possible. Hilbert spaces H are always assumed
to be separable (although some results extend to the nonseparable case). The most important
symbols are listed below.

V strong closure of a subset V ⊂ B in a Banach space B

‖a‖B norm of a ∈ B; we simply write ‖a‖ if no ambiguities are possible

‖a‖B1∩B2 ‖a‖B1 + ‖a‖B2

B∗ topological dual of a Banach space B

S⊥ ⊂ B∗ annihilator of S ⊂ B: space of functionals ϕ ∈ B∗ with ϕ(s) = 0 for all s ∈ S

S⊥ ⊂ B predual annihilator of S ⊂ B∗: space of vectors φ ∈ B with s(φ) = 0 for all
s ∈ S

V ⊕W topological direct sum of vector spaces V and W

L(B, C) space of bounded linear operators L : B → C
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L(B) L(B,B)

Jp(H) set of p-Schatten class operators A ∈ L(H) with ‖A‖p := (tr |A|p)1/p <∞.
p = 1: trace class; p = 2: Hilbert-Schmidt class

σ(L) spectrum of a linear operator L

ρ(L) resolvent set of a linear operator L

L � V an operator L restricted to the space V

kerL kernel of a linear operator L

ranL range of a linear operator L

1 unity operator

1n unity operator on n-dimensional space

M ′ commutant of a M

[A,B] commutator AB −BA for A,B ∈ L(B)

trA trace of A

<a real part of a

=a imaginary part of a

MR <M for a space of complex valued functions M

a . b a ≤ Cb for C independent of b

a ' b a . b and b . a; if a, b are spaces then the symbol denotes an isomorphism

a ∼ b a and b share the same asymptotic behavior

a ≤ Cx,yb constant in a . b depends on x and y

〈a, b〉 scalar (inner) product or duality bracket

∆ Laplacian on Rn: ∆f :=
∑n

i=1 ∂
2
i f

∇ gradient on Rn: (∇f)i := ∂if

∇2 Hessian on Rn: (∇2f)ij := ∂i∂jf

〈x〉
√

1 + |x|2

x̂ unit vector in direction x; x̂ = x/|x|

Lp(Ω) space of (equivalence classes of) functions f : Ω→ C with ‖f‖p <∞ where

‖f‖p :=


(∫

dx |f(x)|p
)1/p

, if 1 < p <∞

ess supx∈Ω|f(x)| , if p =∞.

dx denotes the Lebesgue measure. ‖f‖2 is called ‘mass of f ’.

H2(Ω) Sobolev space of functions f : Ω→ C with ‖f‖H2 := ‖f‖2 + ‖∆f‖2 <∞

Lp,l(Ω) weighted Lp-space of functions f : Ω→ C with ‖f‖Lp,l := ‖〈x〉lf‖p <∞

H2,l(Ω) Sobolev space of functions f : Ω→ C with ‖f‖H2,l := ‖〈x〉lf‖H2 <∞
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W 2,1(Ω) Sobolev space of functions f : Ω→ C with ‖f‖W 2,1 := ‖f‖1 + ‖∆f‖1 <∞

C([a, b];B) continuous B-valued functions on [a, b]

Cr([a, b];B) r-times continuously differentiable B-valued functions on [a, b]



Chapter 2

Adiabatic Theorems for Generators of
Contracting Evolutions

2.1. Overview

In this chapter we will present adiabatic theorems for a slowly evolving family of linear operators
generating a contraction in a Banach space, a setting as it is found in [Joy07,NR92,Sal07]. More
precisely, we study equations of the form

εẋ(s) = L(s)x(s), (2.1.1)

where L(s) is, for any fixed s, the generator of a contraction semigroup. The initial data is
assumed to be close to the manifold of instantaneous stationary vectors, that is kerL(s).

As we shall see in Chapter 4 the so adopted abstractness has the advantage that it encom-
passes at the same time a large variety of applications from driven stochastic systems generated
in a Markovian process, through isolated quantum systems undergoing unitary evolution gen-
erated by Hamiltonians, culminating in open quantum systems whose evolution is generated by
Lindblad operators.

Adiabatic evolutions have a geometric character and are closely related to parallel transport:
We will demonstrate that the manifold of instantaneous stationary vectors has a distinguished
complement, with the property that a vector near the former evolves with a velocity in the
latter, to leading order in ε. Hence, to lowest order in the adiabatic limit (ε→ 0), the vector is
parallel transported with the manifold.

We consider both the case where kerL(s) is protected by a gap condition, i.e. 0 is an isolated
eigenvalue of L(s), and where it is not.

In the gapped case we give an adiabatic expansion which reveals that the dynamics has
distinct characters within the evolving subspace of instantaneous stationary vectors and trans-
versal to it. Notably, as we shall see, the motion within kerL(s) is irreversible, whereas the
motion transversal to it is transient in the following sense: Consider the adiabatic evolution
over a finite interval, traversed at a slow rate ε; assume that the generator is constant near its
endpoints and smooth otherwise, and let the initial state be stationary. Then the distance of the
vector at the endpoint from the manifold of stationary vectors is O(εN ) for all N , whereas the
distance covered within the manifold is typically O(1) and comprises a deviation from parallel
transport still as large as O(ε) (see Figure 2.1).

In the gapless case we no longer obtain an expansion, however we prove that the dynamics
of the system is constrained to the manifold of instantaneous stationary vectors and is parallel
transported along with the manifold as ε → 0. Results for the Hamiltonian case are found
in [AE99,Teu01,Bor98]: Their comparison with our theorem is presented in Chapter 4.

7
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ran L�s�

ker L�s�

s

Figure 2.1: The figure illustrates the motion within the kernel and the range as described by The-
orem 2.16 and Corollary 2.17 in the situation where L(s) is constant near the endpoints. It shows the
transient nature of the motion in the range: When L(s) does not vary, the part in the range is smaller
than any power.

2.2. Preliminaries

2.2.1. Existence of dynamics

We consider the evolution (2.1.1) with time-dependent generators L(s) on a Banach space B,
possibly unbounded. To start it is useful to recall the following classical theorem ( [RS75], Thm.
X.47a):

Theorem 2.1 (Hille-Yosida). A closed operator L on B generates a contraction semigroup if
and only if

(a) (0,∞) ⊂ ρ(L)

(b) ‖(L− γ)x‖ ≥ γ‖x‖ , (γ > 0, x ∈ D(L)) .
(2.2.1)

Remark 2.2. By definition ( [RS75], Sect. X.8), a contraction semigroup is strongly con-
tinuous. Its generator is thus closed and densely defined.

Conditions (2.2.1) reflect the connection between the resolvent and evolution operators. For
example the only if part of the Hille-Yosida theorem follows from the formula

− 1

L− γ
=

∫ ∞
0

e(L−γ)tdt , (γ > 0) . (2.2.2)

Definition 2.3. Operators L(s), (0 ≤ s ≤ 1) on B are called a Ck-family or simply Ck if the
L(s) are closed operators with a common dense domain D and the function L, taking values in
the Banach space of bounded operators D → B, is k-times differentiable in s (k will be specified).
Here D is endowed with the graph norm of L(s) for any fixed s.
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Lemma 2.4. Let L(s), (0 ≤ s ≤ 1) be C1 and, for each s, the generator of a contraction semi-
group on B. Then there exist operators Uε(s, s′) : B → B, (0 ≤ s′ ≤ s ≤ 1) with Uε(s, s′)D ⊂ D,
Uε(s, s) = 1 and

ε∂sUε(s, s
′)x = L(s)Uε(s, s

′)x , (x ∈ D) . (2.2.3)

For x ∈ D the unique solution x(s) ∈ D of (2.1.1) with x(s′) = x is x(s) = Uε(s, s
′)x. Moreover,

‖Uε(s, s′)‖ ≤ 1 (2.2.4)

and
ε∂s′Uε(s, s

′)x = −Uε(s, s′)L(s′)x , (x ∈ D) . (2.2.5)

We will call Uε(s, s′)x a solution of (2.1.1) even for x /∈ D.

Remark 2.5. Suppose, in alternative to the lemma, that the generator L(s) is bounded and
strongly continuous. Then – by an application of the uniform boundedness principle and a Dyson
expansion – the propagator exists and is uniformly bounded in 0 ≤ s′, s ≤ 1, but not in ε [RS75].

Proof of Lemma 2.4. The parameter ε may be absorbed in L without loss of generality. The
hypotheses are a convenient strenghtening of those of [RS75], Thm. X.70, including the remark
thereafter. All our statements but (2.2.5) are among its claims, and that one is a consequence
of its proof, as we will show. Actually, the proof in [RS75] makes the additional assumption
that 0 ∈ ρ(L(s)) which, as remarked there, can be arranged for by replacing L(s) with L(s)− c,
c > 0 (cf. Theorem 2.1). It is then shown that

(U(s′′, s′)− 1)x =

∫ s′′

s′
W (r, s′)L(s′)x dr , (x ∈ D) ,

where W (r, s′) = L(r)U(r, s′)L(s′)−1 is a bounded operator on B, jointly strongly continuous
in r, s′. In particular, W (r, r) = 1. Let 0 ≤ s ≤ 1, x ∈ D and λ > 0 be given. For all
r, s′ ∈ [s− δ, s+ δ] ∩ [0, 1] we have

W (r, s′)L(s′)x− L(s)x = W (r, s′)(L(s′)− L(s))x+ (W (r, s′)− 1)L(s)x ,

which is estimated in norm as C‖(L(s′) − L(s))x‖ + ‖(W (r, s′) − 1)L(s)x‖ ≤ λ for a C ≥ 0,
provided δ > 0 is small enough. Hence, for s′′ ≥ s ≥ s′,

(U(s′′, s′)− 1)x = (s′′ − s′)L(s)x+ o(s′′ − s′) , (s′′ − s′ → 0) .

Equation (2.2.5) then follows by the group property of U .

2.2.2. Parallel transport

Suppose P (s) : B → B, (0 ≤ s ≤ 1) defines a C1-family of projections in norm sense. With
Ṗ (s) = dP (s)/ds we compute the derivative of P (s)2 = P (s) and obtain

Ṗ (s)P (s) + P (s)Ṗ (s) = Ṗ (s), (2.2.6)

which, after multiplication with P (s) from the left yields the simple and useful identity

P (s)Ṗ (s)P (s) = 0. (2.2.7)



10 2. adiabatic theorems for generators of contracting evolutions

In the language of differential geometry P (s) naturally induces a subbundle P of the trivial
Banach bundle [0, 1]× B:

(s, x) ∈ P⇔ s ∈ [0, 1] and x ∈ P (s)B,

and similarly a subbundle Q with respect to Q(s) := 1 − P (s). We then define a parallel
transport T (s, s′) : B → B by

∂sT (s, s′) = [Ṗ (s), P (s)]T (s, s′) , (2.2.8)
T (s′, s′) = 1 .

T (s, s′) respects the range of P (s) and therefore induces also a parallel transport on P and
likewise on Q.

Lemma 2.6 (Intertwining property).

P (s)T (s, s′) = T (s, s′)P (s′) (2.2.9)

Proof. Clearly the identity holds for s = s′. Using Equations (2.2.6,2.2.7) it is easy to see
that the left as well as the right hand side of (2.2.9) satisfy the same differential equation.

If P (s) is a projection on the kernel of L(s), as it will be, we may say that the parallel
transport T (s, s′) is a perfect adiabatic evolution: no transitions from the bundle of projections
P (s) to that of the complementary projections Q(s) = 1− P (s), nor viceversa.

In view of the proofs of our adiabatic theorems the following characterization of T (s, s′)
restricted to P turns out to be very convenient: A section x on P is parallel if and only if the
projected velocity vanishes,

x(s) = T (s, 0)x(0) ⇔ P (s)ẋ(s) = 0 , (2.2.10)

and likewise for Q in place of P . Indeed, for such sections ẋ = Ṗ x+ Pẋ and Equation (2.2.8)
reduces to

∂sT (s, s′)x(s′) = Ṗ (s)T (s, s′)x(s′) (2.2.11)

by the identity 2.2.7; hence the equivalence (2.2.10).
Yet another way to describe T (s, s′) is the following: As the name suggests, parallel transport

is obtained by projecting vectors from either subspace at s′ to the corresponding one at s or,
more precisely, by repeating the procedure on the intervals of an ever finer partition of [s′, s].
In fact,

P (s)P (s′) +Q(s)Q(s′) = 1+ [Ṗ (s′), P (s′)](s− s′) + o(|s− s′|) , (s→ 0) , (2.2.12)

which implies

Lemma 2.7.

T (s, s′) = lim
N→∞

N−1∏
i=0

(P (si+1)P (si) +Q(si+1)Q(si))

= lim
N→∞

( N∏
i=0

P (si) +
N∏
i=0

Q(si)
)
, (2.2.13)

where s′ = s0 ≤ s1 ≤ . . . ≤ sN = s is a partition of [s′, s] into intervals of length |si+1 − si| =
N−1|s− s′| and

∏N
i=0Ai := AN · · ·A0.
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Proof. The second equality follows immediately from the first, whose validity we now show.
Define remainders ri, r̃i so that the following equations hold for each single factor:

T (s, s′) =

N−1∏
i=0

T (si+1, si)

=
N−1∏
i=0

(
1 + [Ṗ (si), P (si)](si+1 − si) + ri

)
=

N−1∏
i=0

(P (si+1)P (si) +Q(si+1)Q(si) + r̃i)

for arbitraryN . Since P (s) and T (s, s′) both have uniformly continuous derivatives with respect
to s on [0, 1] it follows from Taylor’s theorem that

‖ri‖, ‖r̃i‖ ≤ o
(

1

N

)
,

the right hand side being independent of i. For the same reasons also

‖P (si+1)P (si) +Q(si+1)Q(si)‖, ‖P (si+1)P (si) +Q(si+1)Q(si) + r̃i‖ ≤ 1 + C/N

with an i-independent C. Using the telescopic sum formula

N−1∏
i=0

Ai −
N−1∏
i=0

Bi =
N−1∑
i=0

BN−1 · · ·Bi+1 (Ai −Bi)Ai−1 · · ·A0

we obtain∥∥∥∥∥
N−1∏
i=0

(P (si+1)P (si) +Q(si+1)Q(si))−
N−1∏
i=0

(P (si+1)P (si) +Q(si+1)Q(si) + r̃i)

∥∥∥∥∥
≤ (N − 1)

(
1 +

C

N

)N−1

o(1/N)

which vanishes for N →∞.

The parallel transport determined by the dual projections P (s)∗ : B∗ → B∗ is

T ∗(s, s′) = T (s′, s)∗ , (2.2.14)

as can be seen from Equation (2.2.8) and ∂sT (s′, s) = −T (s′, s)[Ṗ (s), P (s)]. The same equations
show that parallel transport is unitary if P (s) is an orthogonal projection on a Hilbert space.
More generally, one has at least

sup
0≤s′,s≤1

‖T (s, s′)‖ <∞ (2.2.15)

by the remark after Lemma 2.4.
In applications we will often encounter the situation where P (s) is a rank 1 projection, e.g.

if a physical system admits a unique stationary state. This motivates the following lemma:
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Lemma 2.8. Let P (s) be a C1-family of rank 1 projections. If kerP (s) is independent of s,
then Ṗ (s) vanishes on kerP (s) and P (s) = T (s, s′)P (s′).

Proof. Rank 1 projections P are of the form Py = α(y)x where x ∈ B and α ∈ B∗ are
determined up to reciprocal factors. Any α with kerα = kerP may thus be picked, and
then x normalized by α(x) = 1. Since kerP (s) is independent of s, so is our choice of α in
P (s)y = α(y)x(s), while x(s) is C1. Thus Ṗ (s)y = α(y)ẋ(s), which vanishes for y ∈ kerP (s).
The claim just proved states Ṗ = ṖP ; together with (2.2.11) both sides of P (s) = T (s, s′)P (s′)
are seen to satisfy the same differential equation in s.

2.3. Adiabatic theorem in presence of a gap

We assume that 0 is an isolated point of the spectrum of L, which is what we mean by a gap.
Then, for small ε, the differential equation (2.1.1) forces a fast time scale of order O(ε−1) on
vectors transverse to the null space kerL(s). That scale reflects itself in a fast motion consisting
of oscillations and decay. By contrast on vectors in the null space the dynamics is slow, for
ẋ = 0. Nevertheless these vectors leak out of that subspace, because it is itself changing
with s. The leakage however remains of order O(ε), as shown by Theorem 2.19 below. We
will start our discussion with a complementary result, Theorem 2.16, which constructs a “slow
manifold”, where solutions x(s) remain suitably close to kerL(s) and the time scale is O(1).
Before presenting the two results, which are illustrated in Figure 4.5, we need to specify the
transversal subspace complementing kerL(s).

2.3.1. Setup

The general assumptions on L = L(s), (0 ≤ s ≤ 1) are

(H1) L is the generator of a contraction semigroup on a Banach space B.

(H2) The range of L is closed and complementary to the (closed) null space of L:

B = kerL⊕ ranL , (2.3.1)

and the corresponding projections are P and Q.

(H3) L(s) is a Ck-family for which 0 remains a uniformly isolated eigenvalue.

Remark 2.9. We will give sufficient conditions for (H2) in Section 2.5. For short, (H2) is
the regular case, given (H1) and (H3).

Before presenting the main results of this section we formulate several direct consequences
of assumptions (H1-H3) in the following sequence of Lemmata.

To start we remark that the direct sum in (2.3.1) is topological.

Lemma 2.10. Let V andW be subspaces of B with V ∩W = {0}. Any two among the following
statements imply the third:
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(i) V , W are closed,

(ii) V +W is closed,

(iii) Let v ∈ V and w ∈W . Then PV : v+w 7→ v and PW : v+w 7→ w are bounded operators
on V +W .

Proof. (i) and (ii) imply (iii) by the closed graph theorem.
To see (ii) let vn + wn → x ∈ V +W (n → ∞) with vn ∈ V, wn ∈ W . Then (PV (vn +

wn))n∈N = (vn)n∈N is a Cauchy sequence and so by (i) vn → v ∈ V and similarly wn → w ∈W
(n→∞). Hence x = v + w ∈ V +W .

Finally, to prove (i) let vn → v ∈ V (n→∞). By (ii) v ∈ V +W and so PV v ∈ V . Since for
all n we have PW vn = 0 it follows that PW v = 0 and hence PV v = v ∈ V . A similar reasoning
shows that W is closed.

Conditions (H1-H3) are not independent, as the following two lemmata show.

Lemma 2.11. (H1) implies

kerL ∩ ranL = {0}.

Proof. La = 0 and a = Lb imply (L− γ)(a + γb) = −γ2b and by (b) in Theorem 2.1 (Hille-
Yosida) γ‖a + γb‖ ≤ γ2‖b‖ for γ > 0. After dividing by γ we obtain a = 0 in the limit
γ → 0.

Lemma 2.12. (H1) and (H2) alone imply that 0 is an isolated point of the spectrum σ(L), if
at all.

Proof. By assumption (b) ranL reduces L. The restriction L � ranL is closed and has range
ran(L � ranL) = ranL; by Lemma 2.11 it is one-to-one. Thus 0 /∈ σ(L � ranL). Together with
σ(L � kerL) ⊂ {0} we conclude that the resolvent set contains a punctured neighborhood of 0,
which proves the presence of a gap.

We also note that the presence of a gap has the useful consequence to be able to work with
the Riesz projection.

Lemma 2.13. (H1) and (H2) imply that the projection P is given by the Riesz projection,

P̃ := − 1

2πi

∮
Γ
(L− z)−1dz; (2.3.2)

here Γ lies in the resolvent set ρ(L) and encircles 0 in counterclockwise direction.

Proof. We claim P̃ a = a for a ∈ kerL and P̃ b = 0 for b ∈ ranL. The first statement is
evident from (2.3.2); for the second it suffices, by P̃L ⊂ LP̃ , to show that ran P̃ ∩ ranL = {0}.
This in turn follows because L � (ran P̃ ∩ ranL) is a bounded operator with empty spectrum;
in fact it is contained in σ(L � ran P̃ ) ∩ σ(L � ranL) = ∅ since the first spectrum is contained
in {0}, while the second is disjoint from it.

By the closed graph theorem L � ranL has a bounded inverse, denoted by L−1. In con-
junction with Lemma 2.13 the uniformity of the gap, Hypothesis (H3), yields regularity in
s.

Lemma 2.14. s 7→ P (s) and s 7→ L(s)−1 are Ck in norm.
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Proof. We recall the formula for the inverse of L � ran(1−P ) ( [Kat95], Equation (III.6.23)):

L−1 = − 1

2πi

∮
Γ
(L− z)−1dz

z
. (2.3.3)

Uniformity of the gap allows us to choose Γ independent of s. It is easy to see that in the norm
of L(B, D)

1

h

(
(L(s+ h)− z)−1 − (L(s)− z)−1

)
= −(L(s+ h)− z)−1

(
L(s+ h)− L(s)

h

)
(L(s)− z)−1

→ −(L(s)− z)−1L̇(s)(L(s)− z)−1 (h→ 0) ,
(2.3.4)

by assumption (H3). In fact the convergence is uniform in z ∈ Γ. Thus by (2.3.2) and (2.3.3)
the assertion of the lemma follows: first for k = 1 but from the explicit form of (2.3.4) also for
higher derivatives.

Finally, we give a lemma on the situation in the dual space. We denote by L∗ the maximal
adjoint of L (cf. p. 167, [Kat95]). It need not be densely defined if B fails to be reflexive.1

Lemma 2.15 (Dual decomposition).

B∗ = kerL∗ ⊕ ranL∗ (2.3.5)

and kerL∗ = ranP ∗, ranL∗ = ranQ∗.

Proof. By a standard duality identity (e.g. [Kat95], Problem 5.27),

B∗ = (ranL)⊥ ⊕ (kerL)⊥ = kerL∗ ⊕ (kerL)⊥ .

Clearly ranL∗ ⊂ (kerL)⊥ and conversely for x∗ ∈ (kerL)⊥ and y ∈ B we have by [Kat95],
Theorem III.5.30,

x∗(y) = x∗(Py +Qy) = x∗(L−1LQy) = L∗L∗−1x∗(y)

which proves Equation (2.3.5). Next from Lemma 2.13 it follows that P ∗x∗ = 0 for x∗ ∈ kerL∗

and similar as in the proof there it remains to show that ranP ∗ ∩ ranL∗ = {0}. This follows
along the same lines.

2.3.2. Construction of the slow manifold

For ε = 0, Equation (2.1.1) requires x(s) ∈ kerL(s). For small ε the differential equation admits
solutions which remain close to kerL(s). The construction of the “slow manifold” reduces to a
differential equation for the slow variables only, with the fast ones providing the inhomogeneity.
The latter, rather than being governed by a further, coupled differential equation, are enslaved
to the solution at lower orders. More precisely, the solutions are described as follows.

1As a consequence of the fact that L is closed it is however possible to show that the domain of L∗ is dense
with respect to the ultraweak topology, [Phi55].
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Theorem 2.16 (Slow manifold expansion). Let L(s) be a CN+2-family of operators satisfying
hypotheses (H1-H3). Then

(i) The differential equation εẋ = L(s)x admits solutions of the form

x(s) =
N∑
n=0

εn(an(s) + bn(s)) + εN+1rN (ε, s) (2.3.6)

with

- an(s) ∈ kerL(s), bn(s) ∈ ranL(s).

- initial data x(0) specified by arbitrary an(0) ∈ kerL(0), rN (ε, 0) ∈ B; however, the
bn(0) are determined below by the an(0) and so together define the "slow manifold".

(ii) The coefficients are determined recursively through (n = 0, . . . , N)

b0(s) = 0 ,

an(s) = T (s, 0)an(0) +

∫ s

0
T (s, s′)Ṗ (s′)bn(s′)ds′ , (2.3.7)

bn+1(s) = L(s)−1Q(s)
(
Ṗ (s)P (s)an(s) + ḃn(s)

)
= L(s)−1Ṗ (s)an(s) + L(s)−1Q(s)ḃn(s) . (2.3.8)

(iii) The remainder is

rN (ε, s) = Uε(s, 0)rN (ε, 0) + bN+1(s)− Uε(s, 0)bN+1(0)−
∫ s

0
Uε(s, s

′)ḃN+1(s′)ds′ ,

(2.3.9)

where Uε(s, s′) is the propagator in Lemma 2.4. It is uniformly bounded in ε, if rN (ε, 0)
is:

sup
s
‖rN (ε, s)‖ ≤ CN

N∑
n=0

‖an(0)‖+ ‖rN (ε, 0)‖ ,

where CN depends on the family.

Explicitly: for a1(0) = 0 we have

a0(s) = T (s, 0)a0(0) , (2.3.10)

b1(s) = L(s)−1Ṗ (s)a0(s) , (2.3.11)

a1(s) =

∫ s

0
T (s, s′)Ṗ (s′)L(s′)−1Ṗ (s′)a0(s′)ds′ . (2.3.12)

Before giving a proof of Theorem 2.16 we present two immediate corollaries.

Corollary 2.17. If L(s) is constant on an interval I ⊂ [0, 1], then

bn(s) = 0 , (s ∈ I).

Proof. This follows recursively from (2.3.8) by Ṗ (s) = 0.
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Corollary 2.18. If P (s) are rank 1 projections and kerP (s) is independent of s, then
an(s) = T (s, 0)an(0).

Proof. In Equation (2.3.7) we have Ṗ (s′)bn(s′) = 0 in view of Lemma 2.8 and of bn(s′) ∈
ranL = kerP .

Proof of Theorem 2.16. We insert the right hand side of (2.3.6) as an ansatz into (2.1.1)
and equate orders εn, (n = 0, . . . , N), resp. O(εN+1). We find

Lb0 = 0,

ȧn + ḃn = Lbn+1 , (n = 0, . . . , N − 1) (2.3.13)

εṙN + ȧN + ḃN = LrN . (2.3.14)

In particular, b0 = 0. Note that Qa = 0 implies Q̇a+Qȧ = 0, or Qȧ = −Q̇a = Ṗ a. Similarly,
P ḃ = −Ṗ b. Applying Q and P to (2.3.13) yields

Ṗ an +Qḃn = Lbn+1 , (2.3.15)

P ȧn − Ṗ bn = 0. (2.3.16)

If bn is known, (2.3.16) implies

ȧn = Qȧn + P ȧn = Ṗ an + Ṗ bn ,

the solution of which is (2.3.7) by Equation (2.2.11) and the Duhamel formula. If an and bn are
known, bn+1 follows from (2.3.15), provided bn is differentiable (see below). All this determines
b0, a0, b1, . . . , aN−1, bN . We then define aN , bN+1 by the same Equation (2.3.7, 2.3.8), which
ensures ȧN + ḃN = LbN+1. Then (2.3.14) reads

εṙN = LrN − LbN+1

with solution

rN (ε, s) = Uε(s, 0)rN (ε, 0)− ε−1

∫ s

0
Uε(s, s

′)L(s′)bN+1(s′)ds′

= Uε(s, 0)rN (ε, 0) +

∫ s

0
(
∂

∂s′
Uε(s, s

′))bN+1(s′)ds′ .

An integration by parts yields (2.3.9) and the bound on the remainder follows by Assumption
(H1) in Subsection 2.3.1 and Lemma 2.4. Inspection of the recursion relations shows an, bn ∈
CN+2−n, which provides the required differentiability.

2.3.3. The case of general initial data: decoupling

In Theorem 2.16 the initial data x(0) = P (0)x(0) +Q(0)x(0) is such that the first (slow) part
is arbitrary, and it prescribes the second (fast) part, up to a remainder. The general case that
both parts of the initial condition are arbitrary is addressed by a result on the decoupling of
the slow variables from the fast variables:
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Theorem 2.19 (Decoupling). Let L(s) be a C2-family satisfying the assumptions of The-
orem 2.16. Then

‖P (s)x(s)− T (s, 0)P (0)x(0)‖ ≤ Cε‖x(0)‖ , (0 ≤ s ≤ 1) ,

where C depends on the family.

Remark 2.20. Note that no statement about the fast part, Q(s)x(s), is made. The proposition
may in particular be applied to the difference x̃(0) = Q(0)x̃(0) of initial conditions sharing the
same slow part; in this case, ‖P (s)x̃(s)‖ ≤ Cε‖x̃(0)‖.

Figure 2.2: The figure shows the result of a computation of the unitary adiabatic evolution of a
qubit, see Subsection 4.3.2 for details. The state is represented as a point on the Bloch sphere. The
(red) meridian shows the manifold of instantaneous stationary states, i.e. kerL. The parametrization
corresponds to uniform speed along this path. The “slow manifold" is represented by the (green) curve
essentially parallel to the (red) meridian. An orbit is shown by the (blue) cycloid. Note that the initial
conditions do not lie on the slow manifold (b1(0) 6= 0 when Ṗ (0) 6= 0). This is the reason for the large
oscillations.

The proof of Theorem 2.19 will depend on the following result. We consider linear forms
ϕ ∈ B∗. The duality bracket is 〈ϕ, x〉.

Proposition 2.21 (Adiabatic invariants). Let L(s) be a C2-family. Suppose that ϕ(·) ∈
C2([0, 1];B∗) satisfies

ϕ(s) ∈ kerL∗(s) , ϕ̇(s) ∈ ranL∗(s) . (2.3.17)

Then ϕ is an approximate adiabatic invariant in the sense that for any solution x(t) ∈ D of
Equation (2.1.1)

〈ϕ, x〉|s0 = ε

∫ s

0
〈L∗−1ϕ̇, ẋ〉ds′ (2.3.18)

with bound

|〈ϕ, x〉|s0| ≤ Cε‖ϕ(s)‖‖x(0)‖ , (2.3.19)

where C depends on the family L(s).
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Before giving proofs we note that assumption (2.3.17) of Proposition 2.21 may be phrased
differently. The projections P ∗ and Q∗ are associated to kerL∗ ⊕ ranL∗, see Lemma 2.15.
Thus Q∗ϕ = 0, P ∗ϕ̇ = 0 just means that ϕ(s) ∈ ranP ∗(s) is parallel transported: ϕ(s) =
T ∗(s, s′)ϕ(s′).

Proof of Proposition 2.21. Equation (2.3.18) follows from

d

ds
〈ϕ, x〉 = 〈ϕ̇, x〉+ 〈ϕ, ẋ〉 = 〈L∗L∗−1ϕ̇, x〉+ ε−1〈ϕ,Lx〉

= 〈L∗−1ϕ̇, Lx〉+ ε−1〈L∗ϕ, x〉 = ε〈L∗−1ϕ̇, ẋ〉+ 0 .

Integration by parts in (2.3.18) gives

〈ϕ, x〉|s0 = ε

(
〈φ, x〉|s0 −

∫ s

0
〈φ̇(s′), x(s′)〉ds′

)
, (2.3.20)

where φ(s′) = L∗(s′)−1ϕ̇(s′). We observe that ‖x(s′)‖ ≤ ‖x(0)‖ by Lemma 2.4, and ϕ̇(s) =
Ṗ ∗(s)ϕ(s) by (2.2.11). By (2.2.15) we see that ‖ϕ(s′)‖, ‖φ(s′)‖ and ‖φ̇(s′)‖ are bounded by a
constant times ‖ϕ(s)‖, proving (2.3.19).

Proof of Theorem 2.19. Bound (2.3.19), together with 〈ϕ(0), x(0)〉 = 〈ϕ(s), T (s, 0)x(0)〉
yields

|〈ϕ(s), x(s)− T (s, 0)x(0)〉| ≤ Cε‖ϕ(s)‖‖x(0)‖ .

The claim follows from ‖P (s)x‖ = sup{|〈ϕ, x〉| | ϕ ∈ kerL∗(s), ‖ϕ‖ = 1}.

2.4. Adiabatic theorem in absence of a gap

In this section we no longer assume that ranL is closed. By Lemma 2.12 and Assumptions (H1)
and (H2’) below this intimately connected with the absence of a spectral gap. Remarkably, an
adiabatic theorem can still be proved in this setting as has been discovered independently by
Avron and Elgart [AE99] as well as Bornemann [Bor98] in the Hamiltonian case. A characteristic
feature of such theorems is the fact that no information on the rate of convergence as ε→ 0 is
obtained unless further assumption on L are made.

In what follows we provide a shorter proof which in addition does not require anti-self-
adjointness of L and therefore allows for a wider range of applications, such as open quantum
systems described by a Lindbladian, see Chapter 4.

Assumptions (H1-H3) of Subsection 2.3.1 are relaxed in a natural way:

(H1) L is the generator of a contraction semigroup on a Banach space B.

(H2’)
B = kerL⊕ ranL. (2.4.1)

(H3’) L(s) is a C1-family.

Remark 2.22. Sufficient conditions for (H2’) are given in Section 2.5.

The proof of our adiabatic theorem without gap condition depends on the ’if’-part of the
following key observation.
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Lemma 2.23. (H1) implies

b ∈ ranL⇔ lim
γ↘0

γ

L− γ
b = 0, (b ∈ B).

Proof. By Theorem 2.1 (Hille-Yosida) γ(L− γ)−1 is uniformly bounded in γ > 0. By density
it suffices to prove the direct implication for b = Lx, for which it follows from γ(L− γ)−1Lx =
γ(x+ γ(L− γ)−1x). Conversely, set xγ := (L− γ)−1b; then Lxγ = b+ γ(L− γ)−1b→ b.

Lemma 2.23 allows for the following strengthening of Lemma 2.11.

Lemma 2.24. (H1) implies

kerL ∩ ranL = {0}. (2.4.2)

Proof. Let b be in the intersection (2.4.2): we holds that (L − γ)b = −γb, and therefore
b = −γ(L− γ)−1b, which vanishes for γ ↘ 0.

Theorem 2.25 (Gapless). Let L(s) satisfy hypotheses (H1), (H2’), (H3’) and let 1 = P (s) +
Q(s) be the projections associated to Equation (2.4.1) for almost all s; moreover let P (s) be
defined for all 0 ≤ s ≤ 1 and C1 as a bounded operator on B. Then the solution of εẋ = L(s)x
with initial data x(0) = P (0)x(0) satisfies

sup
0≤s≤1

‖x(s)− T (s, 0)x(0)‖ → 0 , (ε→ 0) . (2.4.3)

Remark 2.26.

1) Since we do no longer have the Riesz projection formula 2.3.2 at our disposal regularity
of P (s) has to be assumed.

2) The regularity assumption is as mild as C1 thanks to a remark by Elgart, reported in
[Teu01].

Proof. We observe that, by continuity, L(s)P (s) = 0 holds for all 0 ≤ s ≤ 1. In particular,
L(s)x0(s) = 0 for x0(s) = T (s, 0)x(0). The remainder to be estimated is r(s) = x(s) − x0(s).
By Equation (2.1.1) it satisfies the differential equation εṙ(s) = L(s)r(s)− εẋ0(s) with solution

r(s) = −
∫ s

0
Uε(s, s

′)ẋ0(s′)ds′

= −
∫ s

0
Uε(s, s

′)L(s′)(L(s′)− γ)−1ẋ0(s′)ds′ +

∫ s

0
Uε(s, s

′)γ(L(s′)− γ)−1ẋ0(s′)ds′ ,

for γ > 0. By Equations (2.2.10, 2.4.1) we have ẋ0(s) ∈ ranL(s) for almost all s. Therefore, by
an appropriate choice of γ > 0, the second integral can be made arbitrarily small by means of
Lemma 2.23 and dominated convergence; in fact, uniformly in ε due to ‖Uε(s, s′)‖ ≤ 1.

It remains to show that, for fixed γ > 0, the first integral vanishes with ε → 0. To
illustrate the argument, let us temporarily pretend that z(s) := (L(s)− γ)−1ẋ0(s) is C1. Since
ε∂s′Uε(s, s

′) = −Uε(s, s′)L(s′) an integration by parts yields for that integral

ε

∫ s

0
∂s′Uε(s, s

′)z(s′)ds′ = εUε(s, s
′)z(s′)|s′=ss′=0 − ε

∫ s

0
Uε(s, s

′)
d

ds′
z(s′)ds′ ,

and exhibits the desired property for ε→ 0.
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Finally, we get rid of the additional assumption by amending the argument as follows. We
introduce a mollifier j, (j ∈ C∞0 (R),

∫
j(x)dx = 1) and set jδ(x) = δ−1j(x/δ), (δ > 0); we

extend ẋ0 continuously outside of the interval [0, 1]; and split

z = (L− γ)−1(ẋ0 − jδ ∗ ẋ0) + (L− γ)−1(jδ ∗ ẋ0) .

Since ẋ0 − jδ ∗ ẋ0 → 0, (δ → 0) and ‖L(L − γ)−1‖ is bounded, both uniformly in s, the first
term contributes arbitrary little to the integral, uniformly in ε, if δ is picked small enough. The
preliminary argument can now be applied to the second term in place of z.

In view of our applications we present the following variant of Proposition 2.21. Its assump-
tions allow to estimate the error to be of order O(ε) even in the gapless case.

Proposition 2.27. Let L(s) be a C1-family satisfying (H1). Suppose the family ϕ(s) ∈ B∗,
(0 ≤ s ≤ 1) satisfies

ϕ(s) ∈ kerL∗(s) , ϕ̇(s) = L∗(s)φ(s) (2.4.4)

with uniformly bounded φ(s) and φ̇(s). Then

|〈ϕ, x〉|s0| ≤ 3ε sup
0≤s′≤1

(
‖φ(s′)‖+ ‖φ̇(s′)‖

)
‖x(0)‖ . (2.4.5)

Proof. Equation (2.3.20) can be obtained from the present assumptions by replacing φ for
L∗−1ϕ̇ in the previous derivation.

2.5. Complementarity of subspaces

In this section we give sufficient conditions for the Complementarity Assumptions (H2) of
Section 2.3 in relation with a spectral gap, and (H2’) of Section 2.4 otherwise. Counterexamples
matching the two cases are also given. Related results are found in [HP57], Section 18.8. In
either case the two subspaces in Equations (2.3.1, 2.4.1) are transversal,

kerL ∩ ranL = {0} ,

as a consequence of assumption (H1), cf. Lemmata 2.11 and 2.24. However they may fail to
generate B without further hypotheses.

Example 2.28. [Gan] Consider the operator L defined by (Lf)(x) = −xf(x) for f ∈
L∞(0, 1) = B. Obviously, L has trivial kernel and (eLtf)(x) = e−xtf(x), which makes L
the generator of a contraction semigroup. However, for 1 ≡ g ∈ L∞(0, 1) one has

‖g − Lf‖L∞ ≥ 1 , (f ∈ L∞(0, 1)) .

Thus ranL is a proper subspace of L∞(0, 1).

Notation: As before, a prime indicates a hypothesis tailored to the second, gapless case; a
sufficient condition for an earlier hypothesis is noted by an added roman numeral.

2.5.1. Complementarity in presence of a gap

In this case the Riesz projection plays a crucial role.

Proposition 2.29. Let B be a Banach space and L a closed operator on B. Assume
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(H1) L is the generator of a contraction semigroup;

(H2i) 0 ∈ σ(L) is isolated and that ran P̃ = kerL, where P̃ is the Riesz projection (2.3.2).

Then

B = kerL⊕ ranL ,

and in particular ranL is closed.

Proof. Note

L
1

2πi

∮
Γ
(L− z)−1dz

z
=

1

2πi

∮
Γ

1

z
dz +

1

2πi

∮
Γ
(L− z)−1dz = 1− P̃

and so ranL ⊃ ran(1− P̃ ), which implies

B = ran P̃ ⊕ ran(1− P̃ ) = kerL⊕ ranL

in view of Lemma 2.11; ranL is closed by Lemma 2.10.

If B is a Hilbert space and L an anti-self-adjoint operator on B with 0 being an isolated
eigenvalue it is always true that B = kerL ⊕ ranL and ran P̃ = kerL. Lemma 2.12 and
Proposition 2.29 then imply

ranL is closed ⇔ 0 ∈ σ(L) is isolated.

In general the situation is more subtle since kerL may indeed be a proper subspace of ran P̃
even if L generates a contraction semigroup as the following example from [LP61], Theorem
2.2, shows.

Example 2.30. There exists a non-trivial generator L of a contraction semigroup with trivial
null space, yet with σ(L) = {0}.

However, if P̃ is finite-dimensional (i.e. if 0 ∈ σ(L) then 0 is a discrete eigenvalue2) such a
thing cannot happen:

Lemma 2.31. Suppose L is the generator of a contraction semigroup on a Banach space B
and

(H2ii) If 0 ∈ σ(L), then 0 is a discrete eigenvalue.

Then

ran P̃ = kerL .

Proof. Clearly ran P̃ ⊃ kerL and σ(L � ran P̃ ) ⊂ {0}, in particular L � ran P̃ is finite-
dimensional and nilpotent. Assuming that there is b ∈ ran P̃\ kerL it follows that 0 6= Lb ∈
ranL and in fact, by Lemma 2.11, 0 6= Lnb ∀n ∈ N: a contradiction.

Alternatively, the claim follows from the observation that eLt exhibits polynomial growth
on ran P̃ if L is a nontrivial nilpotent which is again a contradiction.

2Note that for non-self-adjoint operators the discrete spectrum need not be the complement of the essential
spectrum. In fact, several, inequivalent, definitions of the essential spectrum (=complement of the discrete
spectrum) exist in this case, cf. [EE87].
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A combination of Proposition 2.29 and Lemma 2.31 can also be derived by means of stability
theorems in Fredholm theory which is shown in the remainder of this subsection. We recall that
L is semi-Fredholm if and only if ranL is closed and kerL or B/ ranL are finite-dimensional.
If both are, L is called Fredholm.

Proposition 2.32. Let B be a Banach space and L a closed operator on B. Assume

(H1) L is the generator of a contraction semigroup;

(H2ii) If 0 ∈ σ(L), then 0 is a discrete eigenvalue.

Then B = kerL⊕ ranL, cf. Equation (2.3.1).
Property (H2ii) implies that L is Fredholm, and hence

(H2iii) L is semi-Fredholm.

In conjunction with (H1), properties (H2ii) and (H2iii) are equivalent.

Proof. Suppose a closed operator L has 0 as an isolated point in its spectrum with associated
Riesz projection P̃ . Then P̃ decomposes L with σ(L � ran P̃ ) = {0} and σ(L � ran(1 − P̃ )) =
σ(L) \ {0} ( [Kat95], Theorem III.6.17). Furthermore ranL is closed being the direct sum of a
closed and a finite dimensional vector space. As a result, (H2ii) implies that L is Fredholm as
it is the direct sum of two Fredholm operators. In particular (H2iii) holds, regardless of (H1).

From now on we assume (H1), which implies Equation (2.4.2), and (H2iii). By the stability
theorem ( [Kat95], Theorem IV.5.31) L − z remains semi-Fredholm for z in a complex neigh-
borhood of 0 and the index dim ker(L− z)− dim(B/ ran(L− z)) is constant; moreover the two
dimensions are separately constant in a punctured neighborhood U . By (2.2.1) in Theorem 2.1
(Hille-Yosida), they both vanish there, and so does the index at z = 0. This has the follow-
ing implications: First, if 0 ∈ σ(L), then it is isolated. Second, the map kerL → B/ ranL,
a 7→ a + ranL is one-to-one by (2.4.2) and thus onto by the vanishing index. This proves
kerL+ ranL = B, completing the proof of Equation (2.3.1).

Finally in order to prove (H2ii), we observe that the Riesz projection is given by P , as
established in Lemma 2.13. Thus it is finite-dimensional because kerL is.

Example 2.30 (revisited). For the mentioned operator the Riesz projection cannot be finite-
dimensional. Hence (H2ii) fails there. By the equivalence with (H2iii), ranL is not closed,
spoiling (2.3.1).

2.5.2. Complementarity in absence of a gap

In absence of a gap the Riesz projection is no longer available as a tool and a different approach
is needed. It turns out that reflexivity of the Banach space B is a key property.

Proposition 2.33. If B is a reflexive Banach space and L the generator of a contraction
semigroup on B, then kerL+ ranL ⊂ B is dense. Thus, in particular, if kerL+ranL is closed,
then

B = kerL⊕ ranL.
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Remark 2.34.

1) Recall that P(s) in Theorem 2.25 was required to be C1 in norm sense. Under this hypo-
thesis kerL+ ranL is closed as a consequence of Lemma 2.10.

2) L∞(0, 1) in Example 2.28 is not reflexive.

Proof. By the Hahn-Banach theorem it suffices to show that x∗ ∈ (kerL)⊥∩ (ranL)⊥ implies
x∗ = 0. Here S⊥ ⊂ B∗ is the annihilator of a subspace S ⊂ B. We have (ranL)⊥ = kerL∗

and, in the reflexive case, (kerL)⊥ = ranL∗. The last equality is due to (S⊥)⊥ = S ( [Kat95],
Equation III.1.24), where S⊥ ⊂ B denotes the predual annihilator in B for S ⊂ B∗. The
properties (2.2.1) are inherited by L∗, and hence so is (2.4.2). We conclude that x∗ = 0. (As a
matter of fact, L∗ is also densely defined ( [Kat95], Theorem III.5.29) by reflexivity, and hence
is the generator of a contraction semigroup).

2.5.3. Summary

For convenience we collect here the most important results on the Decomposition (H2) resp.
(H2’). Let L be the generator of a contraction semigroup on a Banach space B. Then it holds
that

(i) kerL ∩ ranL = {0}.

(ii) B = kerL⊕ ranL if in addition one of the following conditions is satisfied:

- 0 ∈ σ(L) is isolated and ran P̃ = kerL, which holds in particular if 0 ∈ σ(L) is
discrete or, equivalently, if L is semi-Fredholm. As a consequence, ranL is closed.

- B is reflexive and kerL+ ranL is closed.

Now assume also B = kerL⊕ ranL and let P be the associated projection onto kerL. Then it
holds that:

ranL is closed ⇒ 0 ∈ σ(L) is isolated.

0 ∈ σ(L) is isolated and P = P̃ ⇒ ranL is closed.

Specifically, if 0 ∈ σ(L) and L is semi-Fredholm or anti-self-adjoint (in which case B is a Hilbert
space):

ranL is closed ⇔ 0 ∈ σ(L) is isolated.
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Chapter 3

Quantum Dynamical Semigroups

3.1. Interaction of a physical system with its environ-
ment

In most textbooks on quantum mechanics the usual setting is given by some physical system
Σ described by a Hamiltonian HΣ which acts on an appropriate Hilbert space HΣ. Recall
that Hilbert spaces are always assumed to be separable without further notice. A common
assumption is that the interaction of Σ with its environment1 E (described by a Hilbert space
HE and a Hamiltonian HE) can be neglected.

In principle however the full Hamiltonian

HΣ∨E = HΣ ⊗ 1 +HI + 1⊗HE on HΣ ⊗HE , (3.1.1)

withHI describing the interaction, has to be taken into account. It is of course still the dynamics
of the system Σ itself in which we are interested: If Σ∨E is prepared in an initial state described
by a density matrix ρ⊗ ρE ∈ J1(HΣ⊗HE) then the dynamics on Σ is described by tracing out
the degrees of freedom of the environment,

Φt(ρ) = trE
(
e−iHΣ∨E tρ⊗ ρEeiHΣ∨E t

)
. (3.1.2)

If HI = 0 then Φt(ρ) = e−iHΣtρeiHΣt and in particular Φt(ρ) is a pure state if ρ is. In general
though, correlations between Σ and E will build up such that a pure state on Σ is transformed
into a mixed state under the evolution Φt; a phenomenon referred to as decoherence and not
always negligible. Its inclusion may rather change the physical picture. This is corroborated in
Chapter 4 by several examples.

Tracing out the degrees of freedom of the environment yields a complicated integro-differential
equation for Φt. Its complexity is due to the fact that the interaction between Σ and E causes
memory effects and destroys the Markovian structure of the Heisenberg equation i ddtρ(t) =
[HΣ∨E , ρ(t)] once the dynamics is reduced to the system Σ.

For those reasons approximations for (3.1.2) which still account for the effect of decoherence
are necessary. This is most commonly achieved by the assumption of a semigroup law

Φt(ρ) = etLρ

in place of (3.1.2) and applies to many physical systems. It can be be justified in certain limiting
regimes as we shall see in Section 3.4.

Before asking about the structure of the generator L it pays to examine the properties of
Φt more closely. The key notion turns out to be that of complete positivity.

1E.g. a heat bath or measurement apparatus.

25
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3.2. Completely positive maps

3.2.1. Motivation

To have better accordance with the existing literature we find it convenient to go over to the
Heisenberg picture. Let L(HΣ) be the C∗-algebra of bounded operators whose self-adjoint
elements are the observables of Σ. Equation (3.1.2) induces a dynamical map

Φ∗t : L(HΣ)→ L(HΣ)

which is the Banach space dual of Φt and is defined by

tr(Φt(ρ)A) = tr (ρΦ∗t (A)) , ρ ∈ J1(HΣ) , A ∈ L(HΣ) .

It follows immediately that Φ∗t preserves positivity since Φt does and this is certainly a necessary
requirement for any reasonable approximative scheme for (3.1.2). Interestingly the following
argument suggests a stronger notion of positivity (see [Lin76]). Imagine a second system Σn

with n-dimensional Hilbert space HΣn which is governed by the trivial Hamiltonian HΣn = 0
and assume that it does neither interact with the system Σ nor with the environment E . For
A ∈ L(HΣ), B ∈ L(HΣn) the dynamics on Σ ∨ Σn is then given by

Φ∗Σ∨Σn,t(A⊗B) := (Φ∗t ⊗ 1n)(A⊗B) = (Φ∗tA)⊗B .

By construction Φ∗Σ∨Σn,t
is positivity preserving (short: positive). Remarkably the mere fact

that Φ∗t is positive is not sufficient to draw this conclusion as is seen in the following standard
example.

Example 3.1. Consider the transpose map T on the space of complex n×n-matricesMn(C) '
L(Hn): For n = 2

T :

a b

c d

 7→
a c

b d

 .

Clearly T is positive, however

(T ⊗ 12)


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


shows that T ⊗ 12 is not positive.

3.2.2. Definition and Kraus maps

Definition 3.2 (Complete positivity). For a map Ψ : A → B between two C∗-algebras A, B
we define

Ψn := Ψ⊗ 1n : A⊗Mn(C)→ B ⊗Mn(C).

Ψ is called completely positive if and only if Ψn is positive for all n ∈ N and in that case we
write Ψ ∈ CP (A,B);
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- if A = B = L(H) where H is a Hilbert space we simply write Ψ ∈ CP (H).

- if A and B are W ∗-algebras then CP (A,B)σ denotes the set of ultraweakly continuous
elements in CP (A,B).

To understand the significance of the ultraweak topology think of a norm convergent net
Ai→A ∈ L(H). Physically, we require convergence of expectation values: tr(ρΨAi)→ tr(ρΨA)
for every ρ ∈ J1(H). However, this is precisely ultraweak continuity by the duality relation
J1(H)∗ ' L(H).

As an important structure theorem we present the following useful characterization of com-
pletely positive maps due to Kraus [Kra71].

Theorem 3.3 (Kraus maps). Ψ ∈ CP (H)σ if and only if

Ψ(A) =
∑
i∈I

V ∗i AVi

where Vi,
∑

i∈I V
∗
i Vi ∈ L(H). I is finite or countably infinite and in the latter case convergence

of the sum is to be understood with respect to the ultraweak topology.

3.3. Lindblad-GKS generators

As announced we now replace the dynamics in Equation (3.1.2) on Σ by the semigroup law

Φt(ρ) = etLρ (3.3.1)

on the W ∗-algebra of bounded operators L(H).2 Under natural assumptions on Φt, such as the
aforementioned complete positivity, Lindblad [Lin76] described the general form of all possible
generators L. In fact some of his results even apply at the level of abstract C∗/W ∗-algebras.
Independently, and by a different method, the same structural result was obtained in the case
dimH <∞ by Gorini, Kossakowski and Sudarshan [GKS76].

To state their theorem recall that we adopted the Heisenberg picture. By the previous
section the natural postulates for Φ∗t are

(i) Φ∗t ∈ CPσ(H) ,

(ii) Φ∗t (1) = 1 (trace conservation) ,

(iii) Φ∗sΦ
∗
t = Φ∗s+t ,

(iv) limt↘0 ‖Φ∗t − 1‖ = 0 .

If (i-iv) are satisfied we call Φ∗t a quantum dynamical semigroup. By (i) Φ∗t is in particular
positive and in conjunction with (ii) it follows that ‖Φ∗t ‖ = 1 ( [BR79], Corollary 3.2.6). Hence
Φ∗t is a norm continuous contraction semigroup and therefore possesses a bounded generator L.

Theorem 3.4 (Lindblad [Lin76]). If Φ∗t satisfies (i-iv) then its generator L∗ is of the form

L∗(A) = i[H,A] +
∑
i∈I

(V ∗i AVi −
1

2
{V ∗i Vi, A}) (3.3.2)

where H = H∗ ∈ L(H) and Vi, I as in Theorem 3.3. Conversely, if L∗ satisfies (3.3.2) then
Φ∗t is a quantum dynamical semigroup.

2The subscript Σ is from now on omitted.
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Remark 3.5. In the Schrödinger picture the corresponding formula reads

L(ρ) = −i[H, ρ] +
1

2

∑
i∈I

([Viρ, V
∗
i ] + [Vi, ρV

∗
i ]) (3.3.3)

and is an operator on J1(H). We call L a Lindbladian.

Remark 3.6. Note that L does not determine the Vi and H uniquely: the transformation

Vi 7→ Vi + βi1

H 7→ H +
i

2

∑
i∈I

(
βiV

∗
i − βiVi

)
leaves L invariant. Another example for an invariance transformation is

Vi 7→
∑
j∈I

UijVj

for I finite and (Uij) unitary.

In the case of unbounded generators a classification of the kind of Theorem 3.4 is unknown.
However there exist concrete physical models where a generator of the form (3.3.2, 3.3.3), yet
unbounded, arises [Dav77].

3.4. Quantum dynamical semigroups as a limiting regime

Lindblad’s result leaves the question unanswered as to what extent the evolution law (3.3.1)
really captures the physical situation or, to be more precise, how it relates to the “true” dynamics
described by Equation (3.1.2). It turns out that the reduced dynamics (3.1.2) can be shown to
become Markovian in certain limiting regimes such as the weak coupling limit [Dav74,Dav76,
Dav75], the singular coupling limit [HL73, GK76, Pal77], or the low density limit [Düm85].
Exemplarily we will discuss this matter in the first scheme in what follows.

To prevent this digression to distract too much from the main goals of this thesis we stress
that for our applications we take up on the position that we are simply given a quantum
dynamical semigroup without further asking about its origin.

3.4.1. Weak coupling limit

Following the pioneering work of Davies [Dav74,Dav76,Dav75] we first adopt a rather abstract
framework. In a second step we shall translate the results to the context of composite quantum
systems.

Let P0 be a projection on a Banach space B and P1 := 1 − P0. On B there exists a
free evolution given by a strongly continuous one-parameter semigroup Ut which leaves P0B
as well as P1B invariant; its closed and densely defined generator is denoted by Z. Under the
assumption that P0 respects the domain of Z we may put Zi = PiZPi = ZPi. Furthermore
let A be a bounded perturbation of Z and put Aij = PiAPj . Finally let V λ

t describe the full
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evolution generated by Z + λA, Uλt the diagonal evolution generated by (Z + λA00 + λA11),
and W λ

t the full dynamics restricted to P0B, that is W λ
t = P0V

λ
t P0. By Duhamel’s principle

V λ
t = Uλt + λ

∫ t

0
ds Uλt−s(A01 +A10)V λ

s

which yields the restricted evolutions

P0V
λ
t P0 = P0U

λ
t P0 + λ

∫ t

0
ds Uλt−sA01P1V

λ
s P0 ,

P1V
λ
t P0 = λ

∫ t

0
ds Uλt−sA10W

λ
s .

Therefore, with Xλ
t = P0U

λ
t = P0e(Z0+λA00)t,

W λ
t = Xλ

t + λ2

∫ t

0
ds

∫ s

0
du Xλ

t−sA01U
λ
s−uA10W

λ
u (3.4.1)

= Xλ
t + λ2

∫ t

0
ds

∫ t

s
du Xλ

t−uA01U
λ
u−sA10W

λ
s (3.4.2)

= Xλ
t + λ2

∫ t

0
ds Xλ

t−sK
λ(t− s)W λ

s , (3.4.3)

where

Kλ(t) =

∫ t

0
ds Xλ

−sA01U
λ
s A10 .

With ϕ in the domain of Z0 and ϕt = W λ
t ϕ we arrive by differentiation of Equation (3.4.1) at

an abstract formulation of the so called Nakajima-Zwanzig equation

d

dt
ϕt = (Z0 +A00)ϕt + λ2

∫ t

0
du A01U

λ
t−uA10ϕu (3.4.4)

which is manifestly non-Markovian since it contains a memory term in form of an integral. We
now turn to the regime of weak coupling. In order to see an effect of the perturbation A it is
necessary that we look at very large times. In fact from Equation (3.4.1) we deduce that the
right scaling is τ = λ2t for fixed τ and λ→ 0. This is known as the van Hove limit. A change
of variables transforms Equation (3.4.3) into

W λ
λ−2τ = Xλ

λ−2τ +

∫ λ−2τ

0
dσ Xλ

λ−2(τ−σ)K
λ
(
λ−2(τ − σ)

)
W λ
λ−2σ . (3.4.5)

In the regime λ→ 0 Davies showed the following theorem.

Theorem 3.7 (Davies, [Dav76]). Suppose that Xλ
t is a one-parameter group of isometries on

P0B for all real λ. Suppose that for all τ1 > 0 the norm of Kλ(λ−2τ) is uniformly bounded in
λ and τ for |λ| ≤ 1 and 0 ≤ τ ≤ τ1. Furthermore suppose that there is a bounded operator K
on P0B such that if 0 < τ0 < τ1 <∞ then

lim
λ→0

sup
τ0≤τ≤τ1

‖Kλ(λ−2τ)−K‖ = 0.
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Then

lim
λ→0

sup
0≤t≤λ−2τ1

‖W λ
t − W̃ λ

t ‖ = 0

where

W̃ λ
t = e(Z0+λA00+λ2K)t .

Now suppose that P0B is finite dimensional and A00 = 0. Then there is a simpler generator
than K which still approximates the full dynamics. It is convenient to change to the interaction
picture. Note that now Xt = Xλ

t does no longer depend on λ and with Y λ
t = X−tW

λ
t it follows

from (3.4.5) that

Y λ
λ−2τ = 1 +

∫ λ−2τ

0
dσ X−λ−2σK

λ
(
λ−2(τ − σ)

)
Xλ−2σY

λ
λ−2σ .

Since Kλ is intertwined by X we expect that oscillations will make off-diagonal terms of Kλ

negligible (in the literature this is sometimes referred to as coarse-graining or rotating wave
approximation): Denote the spectral projections of Z0 on P0B by Qα and introduce

B\ =
∑
α

QαBQα

or, equivalently,

B\ = lim
t→∞

1

2t

∫ t

−t
dx XxBX−x .

Theorem 3.8 (Davies, [Dav74]). Let A00 = 0 and P0B be finite dimensional. Furthermore
let the same assumptions as in Theorem 3.7 be valid. Then

lim
λ→0

sup
0≤t≤λ−2τ1

‖Y λ
t − Ỹ λ

t ‖ = 0

where

Ỹ λ
t = eλ

2K\t . (3.4.6)

Note that K\ is simpler than K and that it commutes with the free evolution. To appreciate
the significance of these theorems we first have to translate the abstract theory to the more
concrete framework of Section 3.1.

Dictionary: B is identified with J1(HΣ⊗HE) and we have Z = −i[HΣ⊗1+1⊗HE , ·], at least
formally in the case of unbounded Hamiltonians. Furthermore, A = −i[HI , ·] with HI = Q⊗φ,
where Q, φ are bounded symmetric operators on HΣ and HE respectively. The state of the
system Σ is given by ρ and that of the environment by ρE for which we assume

[ρE , e
itHE ] = 0 , (3.4.7)

tr(φρE) = 0 . (3.4.8)

The projection P0 : B → B is essentially the partial trace, P0a := trE(a)⊗ ρE , and by (3.4.7) it
commutes with the free evolution generated by Z. This is for instance the case if E is a certain
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thermal heat bath and ρE one of its thermal equilibrium states [Dav74]. In addition (3.4.8)
implies A00 = 0.

Davies noted that the existence of a limit operator K in Theorems 3.7, 3.8 depends on the
decay of the environment correlation function

tr(ρEe
itHEφe−itHEφ) = tr (ρEφ(t)φ) . (3.4.9)

This however is not granted if the environment is finite due to Poincaré recurrences [AL07]:
Note that Davies chose a Fermion gas described by a quasi-free representation of the canonical
anticommutation relations with an infinite number of degrees of freedom [Dav74].

Comparing Theorem 3.7 with Theorem 3.8 it is interesting to note, as shown by Dümcke
and Spohn [DS79], that K generically does not give rise to a positivity preserving semi-group.
On the other hand eK

\τ arises as the limit of completely positive maps by Equation (3.4.6) and
is therefore itself completely positive: we remark that K\ is the natural generator in the van
Hove limit.

3.4.2. Other limiting regimes

Apart from the weak coupling limit there exist other regimes in which quantum dynamical
semigroups arise. Physically speaking, the Markovian approximation is expected to be valid if
the typical time τΣ of variation of quantities of the physical system Σ (relaxation time of Σ)
is much larger than the decay time τE of the environment correlation functions: Under such
conditions we may expect to get rid of memory terms. The van Hove limit corresponds to the
situation where τE is finite and fixed while τΣ tends to infinity.

The singular coupling limit corresponds to the situation where τΣ fixed and τE → 0. It
appears in the study of strongly driven systems such as lasers [HL73] and yields quantum
dynamical semigroups under suitable conditions, see also [GFV+78,GK76]. The Hamiltonian
is rescaled to

H = HΣ ⊗ 1 + λ−1Q⊗ φ+ λ−21⊗HE
with the effect that the decay time τE of the correlation function (3.4.9) acquires a factor of
λ2. The rescaling of the interaction term produces a finite Fourier transform of the correlation
function which is needed to see a nonzero effect. A rigorous mathematical treatment can be
inferred from Davies’ theory for the weak coupling limit as has been pointed out by Palmer
[Pal77].

We refer to [AL07,BP02] and references therein for more details on various procedures (e.g.
low density limit or dilation techniques3) which deduce a quantum dynamical semigroup from
an underlying Hamiltonian dynamics.

3.5. Dephasing Lindbladians

3.5.1. General structure

In our applications we will particularly focus on the special class of dephasing Lindbladians.
Their defining property is the assumption that all observables which are conserved by the

3This is not a limiting procedure, to be precise.
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HamiltonianH are so by the Lindbladian L∗. In particularH itself is conserved; if one interprets
the energy of the system in terms of H and Vi (caveat: cf. Remark 3.6) then one learns that,
although the system Σ is open, it does not exchange energy with its environment E . Formally,
this amounts to the following

Definition 3.9. A Lindbladian L is called dephasing if

kerL∗ ⊃ ker[H, ·] . (3.5.1)

Despite the lack of dissipation dephasing Lindbladians induce decoherence. A (non-rigorous)
scenario where they may arise is discussed in [PZ99]. The following lemma shows how the
manifolds of stationary states of the two evolutions, generated by H and L respectively, relate.

Proposition 3.10. In connection with Equations (3.3.2, 3.3.3) we have:

(i) kerL∗ ⊃ ker([H, ·]) is equivalent to Vi = fi(H) for some bounded Borel functions fi.

(ii) Vi = fi(H) implies kerL = ker([H, ·]).

(iii) If the spectrum of H is pure point, then the last implication is an equivalence. This applies
in particular to the finite-dimensional case.

Proof. To begin we write Equations (3.3.2, 3.3.3) as

Lρ = −i[H, ρ] +
1

2

∑
i∈I

(
2ViρV

∗
i − {ρ, V ∗i Vi}

)
,

and hence
L∗A = i[H,A] +

1

2

∑
i∈I

(
2V ∗i AVi − {A, V ∗i Vi}

)
.

It is evident that Vi = fi(H) implies kerL∗ ⊃ ker([H, ·]) and, through [V ∗i , Vi] = 0, also kerL ⊃
ker([H, ·]). By an elaborate version of the spectral theorem and von Neumann’s bicommutant
theorem it holds that {f(H) ∈ L(H)|f a bounded Borel function} =: {f(H)} = {f(H)}′′
(cf. [Con90], Chapter IX, Theorems 6.4 and 8.10). Here a prime denotes the commutant.

The three claims then reduce to the following ones:

(i) kerL∗ ⊃ ker([H, ·]) implies Vi ∈ {f(H)}′′.

(ii) Vi = fi(H) implies kerL ⊂ ker([H, ·]).

(iii) If the spectrum of H is pure point and if kerL ⊃ ker([H, ·]), then Vi ∈ {f(H)}′′.

The implications (i-iii) are based on the readily verified identity [Lin76]

L∗(A∗A)−A∗L∗(A)− L∗(A∗)A =
∑
i∈I

[A, Vi]
∗[A, Vi] . (3.5.2)

(i): Let A ∈ ker([H, ·]) = {f(H)}′. Since that subspace of L(H) is closed under taking
adjoints and products, the left hand side of Equation (3.5.2) vanishes by assumption, implying
Vi ∈ {f(H)}′′.

(ii): Under the assumption, L acts as L∗ under the replacement H → −H, Vi → V ∗i . Since
trL(ρ) = 0 for ρ ∈ J1(H), Equation (3.5.2) implies

− tr ρ∗L(ρ)− tr ρL(ρ∗) =
∑
i∈I

tr[ρ, V ∗i ]∗[ρ, V ∗i ] .
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Thus ρ ∈ kerL implies [ρ, V ∗i ] = 0 and, by L(ρ∗) = L(ρ)∗, also [ρ, Vi] = 0. We conclude
[H, ρ] = 0.

(iii): By the first assumption we can pick a sequence of finite-dimensional projections
(Pn)n∈N, which are sums of eigenprojections ofH or of subprojections thereof, such that Pn → 1

strongly as n→∞. In particular [H,Pn] = 0.
If A ∈ J1(H) then L∗(A) ∈ J1(H) and, we claim, trL∗(A) = 0 by our second assumption.

Indeed, it implies L(Pn) = 0 and hence

trL∗(A) = lim
n→∞

tr(L∗(A)Pn) = lim
n→∞

tr(AL(Pn)) = 0 .

Let now A ∈ J1(H)∩{f(H)}′. Then L(A) = 0 and tr(L∗(A∗)A) = tr(A∗L(A)) = 0. By taking
the trace of Equation (3.5.2) we conclude [A, Vi] = 0. The conclusion extends to A ∈ {f(H)}′
since PnA→ A strongly as n→∞. This proves the claim.

3.5.2. An example

Our main applications will concern the simplest (nontrivial) of all dephasing Lindbladians,
namely those which describe 2-level systems (qubits). They can be viewed as a 4-parameter
family: The Hamiltonian is determined by the 3-vector b

2H = b · σ (b ∈ R3, σ = (σ1, σ2, σ3)ᵀ) ,

where the σi are the Pauli matrices. With the dephasing parameter γ ≥ 0

Lρ = −i[H, ρ] +
γ

|b|2
[
[H, ρ], H

]
. (3.5.3)

Recall that by 4H2 = (b · b)1 any function of H is of the form f(H) = αH + β1. If P+, P−
denote the eigenprojections of H = |b|

2 (P+ − P−), (3.5.3) takes the form

Lρ = −i[H, ρ]− γ (P−ρP+ + P+ρP−) . (3.5.4)

The canonical map from the set of normalized states to the Bloch ball,

ρ 7→ n ∈ R3, |n| ≤ 1 : ρ =
1 + n · σ

2
,

maps the evolution equation ρ̇ = Lρ to the Bloch equation [GKS76]

ṅ = b× n+
γ

|b|2
b× (b× n)

= b× n− γ
(
n− (n · b̂)b̂

)
, (3.5.5)

where b̂ = b/|b| is the unit vector of b.
By Equation (3.5.4) dephasing Lindbladians can be interpreted as a model for a continu-

ous energy measurement in the following sense: Imagine that the energy H is measured with
probability γδt after a short waiting time δt. In the process the state is changed from ρ first to
ρ̃ = e−iHδtρeiHδt. If a measurement takes place, its outcome shall not be recorded which means
that a state ρ̃ is replaced by the incoherent superposition

∑
i=± Piρ̃Pi. This explains the word

dephasing.
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The full measurement prescription then amounts to

ρ 7→ (1− γδt)ρ̃+ γδt
∑
i=±

Piρ̃Pi = ρ− i[H, ρ]δt+ γ
(∑
i=±

PiρPi − ρ
)
δt+O((δt)2) . (3.5.6)

In the limit δt→ 0 the resulting dynamics is generated by Equation (3.5.4). Hence the dephasing
term in the Lindblad generator can be viewed as a continuous monitoring of the state of the
system at rate γ.

A different interpretation of Equation (3.5.4) applies to nuclear magnetic resonance (NMR)
where it models transversal relaxation processes; a terminology which is natural in view of
Equation (3.5.5). The corresponding relaxation time γ−1 is commonly denoted by T2 and is
usually smaller than the longitudinal relaxation time T1. The latter arises if dissipative effects
are taken into account as well [Lev08].

3.6. States, duality, and parallel transport

We conclude this chapter with a brief discussion of the concept of states in a physical system
and we shall first adopt the fairly general setting of abstract C∗-algebras. We will then compare
this with the more concrete algebras already encountered, such as L(H) and J1(H). With this
at hand we finally revisit the concept of parallel transport from Chapter 2 in order to prepare
the ground for the applications in the next chapter.

3.6.1. States on C∗-algebras

Let A, Ã be two unital C∗-algebras and consider linear maps Φ : A → Ã enjoying

(i) Φ is positive (Φ ≥ 0): a ≥ 0⇒ Φa ≥ 0 ;

(ii) Φ(1) = 1 (normalization).

The maps are automatically bounded and in fact satisfy ‖Φ‖ = 1 ( [BR79], Corollary 3.2.6). For
Ã = C one is considering linear functionals, denoted ρ ∈ A∗, and (i, ii) define states, ρ ∈ A∗+,1
(The subscripts indicate that the functionals are positive and normalized). For Ã = A, the
dual maps Φ∗ : A∗ → A∗ satisfy the corresponding properties

(i) ρ ≥ 0⇒ Φ∗ρ ≥ 0 ,

(ii) (Φ∗ρ)(1) = ρ(1) .

We call them state preserving maps. By an application of the Hahn-Banach theorem,

‖Φ∗‖ = 1 . (3.6.1)

The maps Φ and Φ∗ then refer to the Heisenberg and the Schrödinger picture (in the sense that
Φ acts on observables and Φ∗ acts on states).

In case A is not unital, we obtain Â by adjoining a unity ( [BR79], Definition 2.1.6). We
consider maps defined on Â satisfying (i, ii), provided they are compatible with the adjunction.
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More precisely, we consider linear functionals ρ ∈ Â∗ (and in particular, states), provided they
arise by canonical extension from ρ ∈ A ( [BR79], p. 52). Of a state preserving map it is then
required to be so with respect to the amended sense of states.

Of particular interest in connection with parallel transport are those state preserving maps
which are projections P : A∗ → A∗ (for economy of notation we omit the star and write P∗ for
the predual, if need arises). Associated to them is the norm closed4 convex set of states in their
ranges,

S := A∗+,1 ∩ ranP . (3.6.2)

Such projections naturally arise through the mean ergodic theorem [HP57] as projections on
stationary states of state preserving semigroups Φ∗t ,

P = lim
γ↘0

γ

∫ ∞
0

dt e−γtΦ∗t , (3.6.3)

provided the limit exists in a certain sense. Exemplarily we demonstrate how this relates to
Hypotheses (H1) and (H2’) on p. 18. If Φ∗t is strongly continuous with generator L then the
following formula is a standard fact, cf. (2.2.2)∫ ∞

0
dt e−γtΦ∗t (ρ) = −(L − γ)−1ρ ∀ρ ∈ A∗ .

For ρ ∈ kerL we obtain

−γ(L − γ)−1ρ = ρ− (L − γ)−1Lρ = ρ

whereas for ρ ∈ ranL it holds that

−γ(L − γ)−1ρ→ 0 (γ ↘ 0)

by Lemma 2.23. Together with (H2’) we conclude that (3.6.3) converges strongly to the pro-
jection onto kerL associated to the decomposition A∗ = kerL ⊕ ranL.

Example 3.11. Let ρ ∈ J1(H) satisfy ρ ≥ 0 and tr ρ = 1. Then tr(ρ ·) is a state5 on L(H).
An example of a state preserving projection P is given by its action on density matrices ρ,

Pρ =
∑
i∈K

PiρPi , (3.6.4)

where K = {1, . . . ,M} resp. K = N is a countable index set and the Pi are mutually orthogonal
projections on H with

∑
i∈K Pi = 1 in strong sense. For finite I the projection P is well-defined

and so it is if K = N: the infinite sum converges strongly for every ρ. Indeed, for arbitrary
y ∈ H and N ∈ N we obtain by Pythagoras∥∥∥∥∥

N∑
i=1

PiρPiy

∥∥∥∥∥
2

=

N∑
i=1

‖PiρPiy‖2 ≤ ‖ρ‖2 ·

∥∥∥∥∥
N∑
i=1

Piy

∥∥∥∥∥
2

≤ ‖ρ‖2‖y‖2

which implies that
∑N

i=1 PiρPiy is a Cauchy sequence and hence convergent.
4Since P is bounded.
5Of course the state is usually simply identified with ρ itself.
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As required by the definition of state preserving maps, P arises from the dual of a positive
normalized map on L(H); explicitly

P∗A =
∑
i∈K

PiAPi

which is well-defined for the same reasons as P is.

For clarity we recall that L(H)∗ ) J1(H) and hence P defined on density matrices in
Example 3.11 does strictly speaking not yield the whole dual. This issue is discussed in the
next subsection. Note that density matrices naturally induce linear functionals on L(H) in the
sense that

‖ρ‖J1(H) = ‖ tr(ρ ·)‖L(L(H);C) =: ‖ tr(ρ ·)‖ . (3.6.5)

This follows form

sup
‖A‖L(H)=1

| tr(ρA)| ≤ ‖ρ‖J1(H)

which can be improved to an equality by choosing A = 1.

3.6.2. Normal states and the operator algebras L(H), J1(H), K(H)

As we have seen a Lindbladian L acts on density matrices ρ ∈ J1(H) if regarded in the
Schrödinger picture while its dual L∗ acts on L(H) which corresponds to the Heisenberg picture.
In that sense the duality J1(H)∗ = L(H) is seemingly converse to the general notion of states
on a C∗-algebra.

One possible reconciliation is to restrict the algebra of observables to the compact operators
K(H) for it holds that

K(H)∗ = J1(H) .

Since 1 /∈ K(H) if dimH =∞, a unity has to be adjoined in that case in order to embed K(H)
in a unital C∗-algebra.

Another option is to note that L(H) is in fact a W ∗-algebra (von Neumann algebra) and
hence carries the following refined notion of a state [BR79].

Definition 3.12. A state ρ on the W ∗-algebra L(H) is called normal if and only if it is
ultraweakly continuous.

Thus normal states are induced by elements in the predual and therefore by J1(H)∗ = L(H)
they are precisely those which can be identified with density matrices. Note that the normal
states are ultraweakly dense in the set of all states [Thi02].
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3.6.3. Parallel transport on states

The fact that states enjoy more properties than mere vectors in a Banach space can be used
to investigate the parallel transport as defined in Subsection 2.2.2 in more detail. The family
of projections P (s) is now in addition assumed to be state preserving and therefore denoted
by P(s). The associated parallel transport and states are denoted by T (s, s′) and S(s) (cf.
Equations (2.2.8, 3.6.2)).

The following proposition shows that the action of T (s, s′) on S(s) is that of a rigid motion.
In the context of Example 3.11 this is illustrated in Figure 3.1.

P (s = 0)

PP

0

12

P (s = 1)0

Figure 3.1: An example where the set of instantaneous stationary states, given by Pρ = ρ, form
a simplex, here a triangle. The extreme points are the simple spectral projections Pi(s), i = 1, 2, 3.
Parallel transport rotates the triangle at time s = 0 (triangle whose boundary is the full line) to the
triangle at time s = 1 (triangle whose boundary is the dashed line) as a rigid body.

Proposition 3.13. Let the C1-family of projections P(s) : A∗ → A∗, (0 ≤ s ≤ 1) be state
preserving. Then so is T (s, s′). In particular, T (s, s′) maps

(i) S(s′) to S(s) isometrically;

(ii) (isolated) extreme points of S(s′) to corresponding ones of S(s).

Moreover, if ρ(s) ∈ ranP(s), depending continuously on s, is an isolated extreme point of S(s),
then ρ(s) = T (s, s′)ρ(s′).

Proof. The first claim follows from Equation (2.2.13). As a result T (s, s′)P(s′) maps S(s′)→
S(s), with inverse T (s′, s)P(s). Next, (i) follows from Equation (3.6.1) for the two maps since
for arbitrary ρ ∈ S(s′)

‖T (s, s′)ρ‖ ≤ ‖ρ‖ = ‖T (s′, s)T (s, s′)ρ‖ ≤ ‖T (s, s′)ρ‖.
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Any convex decomposition of T (s, s′)ρ(s′), (ρ(s′) ∈ S(s′)) entails one of ρ(s′), which yields (ii)
in the variant where the bracketed word is omitted. Since T (s, s′) is a homeomorphism the
other variant is also proved.

To obtain the last statement we note that T (s, s′)ρ(s′) is, for fixed s and all s′, an isolated
extreme point in S(s), just like ρ(s). They agree, since they do for s′ = s.

Example 3.14 (continuing Example 3.11). With respect to the Hilbert-Schmidt inner product
induced by the inclusion J1(H) ⊂ J2(H), the projection P is orthogonal and the transport
T unitary: Indeed, its generator [Ṗ(s),P(s)] is anti-self-adjoint. In particular, the motion
seen in Figure 3.1 is rigid with respect to the norms of both J1(H), see Equation (3.6.5), and
J2(H). Explicitly, if ρ(s) =

∑
i∈K λiPi(s) then ρ(s′) =

∑
i∈K λiPi(s

′) for the same λi, while
the projections retain their distances in both norms.

We conclude with a consideration about rank 1 projections, which is linked to Lemma 2.8.
In the present setting its hypothesis is satisfied:

Lemma 3.15. Consider state preserving projections P of rank 1. Then ranP∗ = span{1}
and kerP is independent of P. In particular, if P(s) is a C1-family of such projections, then
P(s) = T (s, s′)P(s′) and ρ(s) = T (s, s′)ρ(s′), where ρ(s) is the unique state in ranP(s).

Proof. P has a predual P∗, which is also of rank 1: Since P∗(1) = 1 by the normalization
condition its rank is at least one. If it were larger then (kerP∗)⊥ would contain at least two
linearly independent vectors as is seen from the decomposition B = kerP∗ ⊕ ranP∗. This
contradicts (kerP∗)⊥ = (ran(1 − P∗))⊥ = ker(1 − P) = ranP and hence we have ranP∗ =
span{1}. Therefore kerP = (ranP∗)⊥ is independent of P. The remaining claims follow from
Lemma 2.8 and Proposition 3.13.

Example 3.16. Let A = L(H) and let ρ0 ∈ J1(H) be a normal state6. Consider the positive
and normalized projection

P∗ : A → A
A 7→ tr(Aρ0)1.

Its state preserving dual acts on normal states by P : ρ 7→ (tr ρ)ρ0 with kerP = {ρ | tr ρ = 0}.
If ρ0 = ρ0(s) is a C1-family, then Ṗ(s)ρ = (tr ρ)ρ̇0(s) and the statements of the lemma are
evident. Note however that, in contrast to the Projection (3.6.4), the actions of P and of P∗
are different if considered on J2(H). Hence P is not orthogonal there.

6Alternatively, let A = K(H) with adjoined unity and let ρ0 be a state which is a canonical extension.



Chapter 4

Applications of Linear Adiabatic
Theorems

4.1. Overview

With the background on quantum dynamical semigroups developed in the previous chapter we
can now appreciate the significance of the adiabatic theorems of Chapter 2 when applied to
closed and open quantum systems.

In the gapped case Theorems 2.16, 2.19 can be applied to time-dependent HamiltoniansH(s)
as well as Lindbladians L(s). We will explain that although both setups can be formulated as
an equation of the form (2.1.1),

εẋ(s) = L(s)x(s) ,

the physical interpretation is different. For short, the key to this difference is that when both
systems are phrased in terms of Equation (2.1.1) the manifolds of instantaneous stationary states
are not matching and this has interesting consequences for the magnitude of physical tunneling.
We shall explain this feature in the Hamiltonian case and illustrate it also for general dephasing
Lindbladians in some detail before specializing to two concrete applications.

The first is concerned with the Landau-Zener formula for the tunneling in a unitary adiabatic
evolution in a generic situation of nearly crossing eigenvalues. It was found in 1932 by Landau
[Lan32] and independently by Zener [Zen32], Majorana [Maj32], and Stückelberg [Stü32]. We
shall describe the corresponding result for the non-unitary case associated with a dephasing
Lindbladian.

The second application is concerned with adiabatic quantum computing. There one is given
a Hamiltonian H1 whose ground state is interpreted to be the solution of a computational
problem. This ground state is aimed at by an adiabatic interpolation of H1 with another
Hamiltonian H0 whose ground state is easy to prepare. This procedure naturally implies op-
timization problems: On the one hand one is interested in short computation times while on
the other hand one needs to control the tunneling out of the ground state in order to make
the computation reliable. The time-scheduling problem is concerned with the determination
of optimal time parametrization of a given interpolating path between H0 and H1. We will
address this question both in absence and in presence of dephasing and discuss some of its
consequences.

We finally point out that the applications of Theorems 2.16, 2.19 are not restricted to
quantum mechanics; this will be illustrated at the example of a driven stochastic system.

39
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As for the adiabatic theorem without gap condition, Theorem 2.25, examples will be different
in nature due to the absence of knowledge on the rate of convergence: in particular there is no
formula for a next to leading order correction. However, as in the gapped case, Theorem 2.25
applies to closed and open quantum systems. We discuss this in sufficient detail in order to
explain the appropriate notions of convergence.

4.2. Time-dependent Hamiltonians I

Let H(s) be a CN+2-family1 of self-adjoint operators on a Hilbert space H and let E∗(s) be
an eigenvalue with degeneracy n which is uniformly separated from the rest of the spectrum of
H(s). Technically,

dist({E∗(s)}, σ(H(s))\{E∗(s)}) ≥ g0 > 0. (4.2.1)

By Lemma 2.14 uniformity of the gap implies that the associated eigenprojection P∗(s) is CN+2

(in norm sense) and hence so is E∗(s) by nE∗(s) = tr(P∗(s)H(s)). It follows that the operator

L0(s) := −i (H(s)− E∗(s)) (4.2.2)

satisfies the conditions of Theorem 2.16. Starting the evolution at s = 0 the solutions of
εẋ(s) = L0(s)x(s) differ from those of the Schrödinger equation,

iεψ̇(s) = H(s)ψ(s) , (4.2.3)

only by a dynamical phase factor ψ(s) = e−
i
ε

∫ s
0 E∗(s

′)ds′x(s).

4.2.1. Reversible tunneling

If E∗(s) is simple then any associated normalized eigenfunction ψ∗(s) spans the manifold of
instantaneous stationary states, i.e. the kernel of L0(s). The tunneling T (s) is defined as the
leaking out from this manifold,

T (s) := 1− |(ψ(s), ψ∗(s))|2 . (4.2.4)

There is extensive literature ( [Nen93,HJ06], and references therein) which is concerned with
estimates of the tunneling amplitude at all orders in ε, or beyond. A simple, yet still remarkable,
version of these results can be seen to be an immediate consequence of Corollary 2.17.

Theorem 4.1. Suppose that H(s) is C∞ and constant near the endpoints s = 0 and s = 1.
Suppose further that E∗(s) is simple. Then T (1) = O(εk), for any k, see Figure 2.1.

We refer to this subpertubatively small tunneling as reversible. Interestingly, when The-
orem 2.16 is applied to open quantum systems, described by a dephasing Lindbladian one
reaches the opposite conclusion! Before coming to this point in Section 4.3 we comment on
some caveats when going over to a formulation which uses density matrices and the von Neu-
mann equation.

1Recall Definition 2.3.
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4.2.2. Hilbert-Schmidt formulation

To avoid domain questions we assume H to be bounded for the sake of the argument. An
equivalent description of the above can be given on the level of density matrices ρ ∈ J1(H)
with L1(s)ρ := −i[H(s), ρ] or, more elegantly, on Hilbert-Schmidt operators k ∈ J2(H) with
L2(s)k := L1(s)k, k∗k = ρ and scalar product 〈k1, k2〉 := tr k∗1k2. The dynamics is governed by

εk̇(s) = −i[H(s), k(s)].

Clearly, P∗(s) ∈ kerL3(s) but even more we have:

Lemma 4.2. The section s 7→ P∗(s) is parallel with respect to the transport induced by the
orthogonal decomposition J2(H) = kerL2(s)⊕ ranL2(s).

Proof. Omitting the time-dependence it suffices by (2.2.10) to show that

Ṗ∗ ⊥ kerL2.

For k ∈ kerL2(s) and Q∗ := 1− P∗ it holds that HP∗kQ∗ = P∗kQ∗H and hence

P∗kQ∗(H − E∗) = 0

which in turn implies P∗kQ∗ = Q∗kP∗ = 0. Finally, by Ṗ∗ = P∗Ṗ∗Q∗ +Q∗Ṗ∗P∗,

tr(kṖ∗) = tr
(

(P∗kP∗ +Q∗kQ∗)(P∗Ṗ∗Q∗ +Q∗Ṗ∗P∗)
)

= 0

where we applied the cyclicity of the trace.

Remark 4.3. We stress that the gap assumption (4.2.1) was irrelevant in the proof. Only the
fact that P∗(s) is an eigenprojection was needed.

With the Hilbert-Schmidt formulation one might suspect to get to following well known
improvement of Theorem 4.1 ( [ASY87,ASY93,Nen93]) as an easy application of Theorem 2.16.

Theorem 4.4. Suppose H(s) is C∞ and constant near the endpoints s = 0 and s = 1. Suppose
further that P∆s(s) is the spectral projection for a uniformly isolated energy band ∆s ⊂ σ(H(s));
i.e. there exist continuous real valued functions g+(s) > g−(s) such that ∆s ⊂ [g−(s), g+(s)]
and

dist([g−(s), g+(s)], σ(H(s))\∆s) ≥ g0 > 0.

Then for ρ(0) = P∆0(0) it holds in norm sense that

ρ(1) = P∆1(1) +O(εk), for any k.

However in contrast to Theorem 4.1 it turns out that Theorem 2.16 is not an efficient means
to tackle this problem.

Reason 1. If ∆s is a proper energy band in the sense that it contains continuous spectrum
then P∆s(s) /∈ J2(H). Moreover 0 cannot be an isolated eigenvalue of L2(s) due to

σ(L2) = {−i(E − E′) : E,E′ ∈ σ(H)} .

Thus by reformulating the problem in a Hilbert-Schmidt setting the gap condition is ‘lost’; in
the gapless case however, the approach is still feasible, cf. Section 4.7.
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Reason 2. Even if ∆s consist only of a finite number of discrete eigenvalues it not obvious that
the second term in the formula for the an,

an(s) = T (s, 0)an(0) +

∫ s

0
T (s, s′)Ṗ(s′)bn(s′)ds′,

will vanish at the endpoints (in order to avoid confusion we use script characters). The kernel
of L2 is far from being one dimensional and in general Ṗbn need not be 0, though Ṗb1 is. More
importantly, P(s) is not even continuous if ∆s contains crossing eigenvalues.

It turns out that if one is only interested in the Hamiltonian case a different iterative
procedure [Nen93] is more efficient: Under the assumption that k(0) = P∗(0) it then holds that
k(s)2 = k(s) which implies the additional relation

an + bn =

n∑
i=0

(aian−i + aibn−i + bian−i + bibn−i) (n ≤ N) (4.2.5)

for the ansatz (2.3.6). It is then possible to solve for the an without appealing to Duhamel’s
formula and so expressions which are local in time are obtained. For details and estimates on
the remainder we refer to [Nen93]. We stress however that Equation (4.2.5) is a special feature
of the Hamiltonian structure of the problem.

4.3. Time-dependent Lindbladians I

We now consider

ερ̇(s) = L(s)ρ(s) , (4.3.1)

where L(s) is a family of Lindbladians depending smoothly on s. Davies and Spohn [DS78]
derived similar models from Hamiltonian dynamics by considering a joint limit of adiabatic
driving and weak coupling of a system interacting with its environment. However we will simply
take Equation (4.3.1) as the definition of our model.2 In addition we will consider only finite
dimensional Hilbert spaces H unless otherwise stated; in particular J1(H) ∼= K(H) ∼= L(H).

4.3.1. Tunneling in the generic case

Generically kerL(s) is one-dimensional and hence so is kerL∗(s) = span{1}. The state in
kerL(s) is denoted by ρ∗(s). The tunneling in Equation (4.2.4) is generalized to T = 1 − F 2,
where the fidelity is

F (s) := tr
(

(ρ∗(s)
1/2ρ(s)ρ∗(s)

1/2)1/2
)

= ‖ρ∗(s)1/2ρ(s)1/2‖J1(H) . (4.3.2)

As an immediate consequence of Corollaries 2.17, 2.18 and Lemma 3.15 we obtain

Theorem 4.5. Let L(s) be as above and assume in addition that it is constant near the
endpoints s = 0 and s = 1. Then

ρ(1) = ρ∗(1) +O(εk) (for any k)

and in particular, T (1) = O(εk) for any k.
2This is not an unusual procedure in mathematical physics. As a prominent example we mention that the

validity of the Boltzmann equation is only established rigorously for very small times [Lan75,Lan76] even though
it is successfully applied to describe also large time-behavior in many situations.
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4.3.2. Adiabatic expansion for dephasing Lindbladians

The situation changes drastically if dephasing Lindbladians are considered. For simplicity we
consider a smooth family of Hamiltonians H = H(s) with simple eigenvalues E0, . . . , Ed−1 and
corresponding normalized eigenvectors ψi:

H =
∑
i

EiPi , Pi = |ψi〉〈ψi| ,

dimH = d. The operators Eij := |ψi〉〈ψj | form a basis of L(H) which is orthonormal once that
space is endowed with the Hilbert-Schmidt inner product. A straightforward computation using
Proposition 3.10 shows that the Eij are eigenvectors of L and the eigenvalues in LEij = λijEij
satisfy

(i) λij = λji since L is a ∗-map,

(ii) <λij ≤ 0 since L generates a contraction,

(iii) λij = 0 if and only if i = j since the eigenvalues are simple.

It follows that kerL is spanned by Eii = Pi and ranL by Eij (i 6= j) with the corresponding
projections (cf. (3.6.4))

Pρ =
∑
i

PiρPi , Qρ =
∑
i 6=j

PiρPj .

ker L

Figure 4.1: The states of a qubit (2-level system) can be represented as the three dimensional ball,
the convex hull of the Bloch sphere. For a dephasing Lindbladian, the set of stationary states is the
indicated axis whose extreme points (dots) are spectral projections for the Hamiltonian H.

Theorem 4.6. The equation

ερ̇(s) = L(s)ρ(s)
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admits solutions of the form

ρ(s) = P0(s) + ε
∑
j 6=0

(
PjṖ0

λj0
+
Ṗ0Pj
λ0j

)
− ε

∑
j 6=0

(P0(s)− Pj(s))
∫ s

0
αj(s

′)ds′ +O(ε2) (4.3.3)

with

αj(s) = tr(P0(s)Ṗj(s)
2P0(s)) · (−2<λ0j(s))

|λ0j(s)|2
≥ 0 .

More generally, the expansion applies to any solution for which it does at s = 0, e.g. for the
one with initial condition ρ(0) = P0(0), if Ṗ0(0) = 0.

The expansion (4.3.3) is just ρ(s) = a0(s) + ε(b1(s) + a1(s)) + O(ε2), in this order, with
coefficients given in (2.3.10-2.3.12). Like in the Hamiltonian case, b1(s) ∈ ranQ(s) describes the
shift of the slow manifold relative to the manifold of instantaneous stationary states which is
reversible in the sense of Corollary 2.17. Unlike there, a1(s) ∈ ranP(s) now describes irreversible
tunneling by means of a loss and a gain term involving P0(s) and Pj(s), (j 6= 0) respectively.
Note also that αj(s) vanishes in the Hamiltonian case in agreement with Theorem 4.4.

Proof. Clearly,

Ṗρ =
∑
i

(ṖiρPi + PiρṖi) ,

L−1Eij = λ−1
ij Eij , (i 6= j) . (4.3.4)

We note that

T (s, s′)Pk(s
′) = Pk(s) ,

which follows directly from Lemma 4.2 since the projection P here is a simple example for the
one considered there.

Alternatively, we can argue that the left hand side satisfies the differential equation (2.2.8),
viz.

d

ds
ρ(s) = Ṗ(s)ρ(s) ,

ρ(s′) = Pk(s
′) ,

and so does the right hand side, since

ṖPk =
∑
i

ṖiPkPi + PiPkṖi = ṖkPk + PkṖk = Ṗk .

The claim now follows from (2.3.10-2.3.12) with a0(0) = P0(0). Indeed, the middle term of
(4.3.3) follows from (2.3.11) and (4.3.4):

L−1ṖP0 = L−1Ṗ0 = L−1
∑
j 6=0

PjṖ0P0 + P0Ṗ0Pj

=
∑
j 6=0

λ−1
j0 PjṖ0P0 + λ−1

0j P0Ṗ0Pj =
∑
j 6=0

λ−1
j0 PjṖ0 + λ−1

0j Ṗ0Pj . (4.3.5)



4.3. time-dependent lindbladians i 45

For the last term of (4.3.3) we compute with (4.3.5)

ṖL−1ṖP0 =
∑
j 6=0

Ṗ(λ−1
j0 PjṖ0P0 + λ−1

0j P0Ṗ0Pj)

=
∑
j 6=0

(λ−1
j0 + λ−1

0j )(P0Ṗ
2
j P0 − PjṖ 2

0Pj)

=
∑
j 6=0

αj(Pj − P0) ,

(with termwise equality) where we have used ṖiPk = −PiṖk and tr(PjṖ
2
0Pj) = tr(P0Ṗ

2
j P0). To-

gether with (2.3.12) the expansion follows. The generalization follows because of the contraction
property of the propagator, Equation (2.2.4).

If Ṗ0(0) is arbitrary we have the following result about tunneling (cf. Equation (4.3.2)):

Corollary 4.7. The solution of ερ̇(s) = L(s)ρ(s) with the initial condition ρ(0) = P0(0)
has, to leading order in the adiabaticity, a non-negative tunneling

T (s) = ε
∑
j 6=0

∫ s

0
ds′ αj(s

′) +O(ε2) , αj(s
′) ≥ 0 :

Tunneling is irreversible and O(ε).

This result should be contrasted with the subperturbatively small tunneling in the unitary
case, Theorem 4.1.

Proof. For the given initial data we denote the corresponding trajectory in the slow manifold,
Equation 4.3.3, by ρM (s). It holds that

P(0) (ρM (0)− ρ(0)) = εP(0)
∑
j 6=0

(λ−1
j0 PjṖ0 + λ−1

0j Ṗ0Pj) +O(ε2) = O(ε2)

and by Theorem 2.19 for small ε

‖P(s)(ρM (s)− ρ(s))‖ ≤‖P(s)(ρM (s)− ρ(s))− T (s, 0)P(0)(ρM (0)− ρ(0))‖
+ ‖T (s, 0)P(0)(ρM (0)− ρ(0))‖ ≤ Cε2 ,

hence

F (s)2 = tr(P0ρ(s)P0) = 1−
∑
j 6=0

∫ s

0
ds′αj(s

′) +O(ε2) .

Example 4.8 (Continuing the example in Subsection 3.5.2 in a time-dependent setting). The
adiabatic expansion, Equation (4.3.3), takes a rather simple form for the Bloch equations (3.5.5).
With ṅ replaced by εṅ in (3.5.5), the assumption ḃ(0) = 0 and initial condition n(0) = −b̂(0)
(b̂ = b/|b|) one finds

n(s) = −b̂(s) + ε

(
γ(s)

˙̂
b(s) + b(s)× ˙̂

b(s)

|b(s)|2 + γ2(s)
+ b̂(s)

∫ s

0
α(t)dt

)
+O(ε2) . (4.3.6)
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where

α(t) =
γ(t)| ˙̂b(t)|2

|b(t)|2 + γ2(t)
.

The terms in brackets, in the order as they appear, have the following interpretation: The first
term, being proportional to γ ˙̂

b(s), describes friction that causes lagging behind the driver b̂. The
second term describes “geometric magnetism", a term introduced in [BR93]. The third term is
tunneling and describes a motion along the axis towards the center, see Figure 4.1. While the
first two terms describe an instantaneous response in the plane perpendicular to the stationary
axis b̂(s), the last term describes irreversible motion inside the Bloch sphere along the axis,
Figure 4.1.

Figure 4.2: The figure illustrates the adiabatic expansion in Example 4.8 in the case of no
dephasing γ = 0. It shows the northern hemisphere of the Bloch sphere. The orbit of H(s) is
represented by the (thin) meridian starting at the north pole. The parallel (thick) curve shows
the shift due to the term describing “geometric magnetism”.

Proof. Write (4.3.3) in the form

ρ(s) = P−(s) +
ε

|λ|2
(
<λ{P+, Ṗ−}+ i=λ[P+, Ṗ−]

)
− ε(P−(s)− P+(s))

∫ s

0
α(s′)ds′ +O(ε2)

and use λ = i|b| − γ as well as the (anti-)commutation relations

{P+, Ṗ−} = −1

2
˙̂
b · σ , [P+, Ṗ−] = − i

2
(b̂× ˙̂

b) · σ , (Ṗ+)2 =
| ˙̂b|2

4

to get the first order correction terms exactly in the same order as they appear in (4.3.6).

Solutions of the Bloch equations are illustrated in Figure 4.5.
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4.4. An analogue of the Landau-Zener formula

Zener and independently Landau [Lan32, Zen32] modeled a generic situation of an avoided
crossing of eigenvalues as it appears in the transition of a polar and homopolar state of a molecule
treated in the time-dependent Born-Oppenheimer approximation. The transition region is
so small that the Hamiltonian may be assumed to be linear in time. More precisely, by an
appropriate choice of basis and of the zero of energy the relevant dynamics is governed by the
Landau-Zener Hamiltonian

HLZ(s, g0) =
1

2

 s g0

g0 −s

 =
1

2


g0

0

s

 · σ , (s = εt)

where g0 is the minimal gap and σ = (σ1, σ2, σ3)ᵀ, where the σi denote the Pauli matrices.
The tunneling probability T is the probability of a state, which originates asymptotically on

-4 -2 2 4

-2

-1

1

2

Figure 4.3: The avoided crossing of the two eigenvalue branches E±(s) for g0 = 1.

one eigenvalue branch, to end up in the other at late times: Let P±(s) be the eigenprojections
corresponding to the eigenvalues E±(s) = ±1

2

√
g2

0 + s2 and ρ(s) the solution of

ερ̇ = −i[HLZ , ρ] (4.4.1)

with

lim
s→−∞

ρ(s) = lim
s→−∞

P−(s) .

Then

T := lim
s→∞

tr(ρ(s)P+(s)) ,

cf. Equation (4.2.4). Landau and Zener found the following formula:

T = e−πg
2
0/2ε . (4.4.2)

Remark 4.9. Landau, who used semiclassical methods did not actually attempt to calculate
the multiplicative overall factor in front of the exponential in Equation (4.4.2). Fortunately, this
factor happens to be unity. Zener solved the differential equation in terms of Weber functions
and derived Equation (4.4.2) exactly. He was aware of Landau’s solution but for some reason,
incorrectly, believed that Landau missed a factor of 2π in the exponent.
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4.4.1. The Landau-Zener formula with dephasing

Formula (4.4.2) holds for arbitrary ε and shows that for fast driving a transition takes place
with high probability. However we are particularly interested in the regime of small ε in order
to compare it with the tunneling results obtained for dephasing Lindbladians. The situation
then changes radically: The exponentially small tunneling in Equation (4.4.2) is exchanged for
an irreversible one. More precisely, we have

Theorem 4.10. Suppose T is defined as above with the single exception that Equation (4.4.1)
is exchanged for a dephasing Lindblad evolution,

ερ̇ = −i[HLZ , ρ]− γ (P−ρP+ + P+ρP−) = Lρ ,

with time-independent γ. Then for ε→ 0

T =
ε

2g2
0

Q

(
γ

g0

)
+O(ε2) , (4.4.3)

where Q is the function (shown in Figure 4.4.1):

Q(x) =
π

2

x(2 +
√

1 + x2)√
1 + x2(

√
1 + x2 + 1)2

. (4.4.4)

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.4: The function Q(x). The argument is the ratio of dephasing rate to the minimal gap. The
function has a maximum at x = 1.14.

Proof. Letting s0 and s1 be the initial and end times instead of s = 0, 1 the theorem is
formally a direct application of Corollary 4.7 and Example 4.8 with

b =


g0

0

s

 and ρ(s0) = P−(0).
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Indeed, if we define g := E+ − E− and x := γ
g0

we obtain | ˙̂b|2 =
g2
0
g4 and

T[s0,s1] := tr (ρ(s1), P+(s1)) = tr

(
1 + n(s1) · σ

2
P+(s1)

)
+O(ε2)

=
1

2
(1 + n(s1) · b̂(s1)) +O(ε2)

=
ε

2

∫ s1

s0

γ| ˙̂b(s)|2

|b(s)|2 + γ2
+O(ε2) (4.4.5)

=
ε

2

∫ s1

s0

γg2
0

g(s)6 + γ2g(s)4
ds+O(ε2)

=
ε

2g2
0

x

∫ s1/g0

s0/g0

(1 + u2)−2(1 + x2 + u2)−1du+O(ε2) .

The last integral can be calculated explicitly if its boundaries extend to ±∞ and this will
explain expression (4.4.4).

However it remains to justify that the error of order ε2 is uniform in s0, s1 and this can be
seen as follows: Clearly P+(s) is an approximate adiabatic invariant in the sense of Proposition
2.21 and it is readily checked that the adjoint acts like L∗A = i[H,A] − γ(P−AP+ + P+AP−)
and so

X = L∗−1Ṗ+ = −i
∑
k 6=j

PkṖ+Pj
Ek − Ej + iγ

. (4.4.6)

Integrating Equation (2.3.18) by parts yields

tr(ρP+)|s1s0 = ε tr(ρX)|s1s0 − ε
∫ s1

s0

tr ρẊds.

Note that X(s) = O(s−3), Ẋ(s) = O(s−4) as s → ±∞ (this follows for instance by looking at
the Riesz formulae for P±). Theorem 4.10 is then an immediate consequence of the claim

ρ(s)− P−(s) = O(ε) uniformly in s0, s,

for which we argue as follows: Note that

X̂ = L−1Ṗ− = i
∑
k 6=j

PkṖ−Pj
Ek − Ej − iγ

yields by Equation (2.3.9) in Theorem (2.16) for N = 1

ρ(s)− P−(s) = εUε(s, s′)X̂(s′)|s′=ss′=s0 − ε
∫ s

s0

Uε(s, s′) ˙̂
X(s′)ds′.

Since Uε(s, s′) is a contraction the uniformity follows from the decay of X̂, ˙̂
X.

4.4.2. Discussion

Units. We chose units where ~ = 1 and s has the dimension of an energy: [s] = [g0] = [γ].
Hence [ε] = [st−1] = [g2

0]. This yields two independent dimensionless parameters and it is
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therefore not obvious what the correct dimensionless expression corresponding to O(ε2) is. We
read off from Equations (4.4.3, 4.4.4) that by Q(x) ∼ x

1+x2 for small and large x we can interpret
O(ε) as O( ε

γ2+g2
0

γ
g0

). In general, the adiabatic limit means that
√
ε is the smallest energy scale

in the problem: ε� γ2, ε� g2
0.

Weak dephasing. If dephasing is weak, γ � g0, Equation (4.4.3) reduces to

T =
3π

16
· εγ
g3

0

+O

(
γ3

g3
0

)
ε

g2
0

+O(ε2).

The leading order has the same form as one of the tunneling terms found by Shimshoni and
Stern [SS93] in a (different) model where a two-level system is dephased by noise. The method
they use cannot give the overall constant 3π/16 [Ber90], nor does it allow investigating the full
range of γ/g0.

Strong dephasing. When γ � g0, Equation (4.4.3) reduces to

T =
πε

4g0γ
+O

(
g3

0

γ3

)
ε

g2
0

+O(ε2). (4.4.7)

This may be understood as a manifestation of the quantum Zeno effect [MS77] by the following
interpretation: In Subsection 3.5.2 we argued how a dephasing Lindbladian can be interpreted
to model a continuous energy measurement of a 2-level system: coherent superpositions ρ of
P±, which are reflected in P±ρP∓, get destroyed in the sense that the evolution drives them
towards incoherent superpositions at a rate γ. Transitions between the states P±, which the
changing Hamiltonian term potentially induces, are suppressed at high measurement rates as
stated in Equation (4.4.7) and in line with the Zeno effect.

4.5. Optimal schedule in presence of dephasing

Quantum computation holds a promise to solve some of the most challenging problems in
computational science: e.g. integer factorization [NC00]. The adiabatic model of quantum
computation introduced by Farhi et al. [FGGS02] is equivalent [AvDK+07, MLM07] to the
standard circuit model of a quantum computer [NC00] while having a built in protection from
decoherence associated with the exchange of energy with the environment. The simplicity and
physical character of the model led to a resurgence of interest in adiabatic control of both
isolated [JRS07,AR06] and open quantum systems [SL05] and gave rise to new and interesting
optimization problems in the context of adiabatic evolutions [RKH+09]: One is interested in
minimizing the requisite time to reach a target state with given fidelity and given cap on the
available energy. Equivalently, one is interested in minimizing the tunneling out of the ground
state given a cap on the energy and the time duration τ . For unitary evolution path optimization
problems have been studied by several authors analyzing various upper bounds on the tunneling,
see [JRS07] and references therein. A variational ansatz for the optimal path has been proposed
by Rezakhani et al. [RKH+09].

As indicated in the overview to this chapter the time-scheduling problem is to determine the
optimal time-parameterization of a given path of Hamiltonians. Theorem 4.11 below states that
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in absence of dephasing, there is no unique optimizer – there are plenty of them. On the other
hand we will demonstrate that under reasonable conditions the presence of dephasing singles
out a unique optimizer. This optimizer turns out to have a “local” characterization: It has fixed
tunneling rate along the path. This means that monitoring the tunneling rate (or, equivalently,
the purity of the state) allows one to adhere to an optimal time-schedule. In particular no
a-priori knowledge about the governing dynamics is required.

As an application we derive relations between dephasing rates of Lindblad evolutions and
Grover’s bound [Gro97] on the time for searching an unstructured data base. We show that
Markovian environments which are universal, i.e. environments which do not anticipate any
properties of the system, must have dephasing rates that are bounded by the spectral gaps in
the Hamiltonian for consistency with Grover’s bound.

4.5.1. Rules of the game

Let Hq, q ∈ [0, 1] be a smooth path in the space of bounded Hamiltonians, e.g. a linear
interpolation

Hq = (1− q)H0 + qH1 , (0 ≤ q ≤ 1) . (4.5.1)

For the sake of simplicity we assume that the associated Hilbert space has a dimension d <∞
and that Hq is a smooth self-adjoint matrix-valued function of q with ordered simple eigenvalues
Ei,q, 0 ≤ i ≤ d− 1, so that

Hq =
∑
i

Ei,qPi,q ,

where the Pi,q are the corresponding spectral projections. Furthermore let q = q(s) be a
timetable (q(0) = 0, q(1) = 1), parametrized by the slow time s = εt = t/τ . The cost function
is the tunneling, Tq(1), at the end point defined by

Tq(s) = 1− tr
(
P0,q(s)ρq(s)

)
,

cf. Equation (4.2.4). Here ρq(s) is the state at time s which has evolved from the initial
condition ρq(0) = P0,0 either under Hamiltonian evolution,

ερ̇q(s) = −i[Hq(s), ρq(s)] , (4.5.2)

or under a dephasing Lindblad evolution with a single smooth dephasing rate γq > 0,

ερ̇q(s) = −i[Hq(s), ρq(s)]− γq(s)
∑
i 6=j

Pi,q(s)ρq(s)Pj,q(s) . (4.5.3)

The time-scheduling problem in both cases amounts to the following question:

Which timetable q = q(s) minimizes the tunneling Tq(1)?
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4.5.2. Time-scheduling problem in Hamiltonian dynamics

We show ill-posedness of the time-scheduling problem in the Hamiltonian case by demonstrating
that paths with zero tunneling are ubiquitous for ε→ 0.

Theorem 4.11. Let q(s) be a C1 timetable and let the dynamics be Hamiltonian, i.e. given
by Equation (4.5.2), with

2Hq(s) = g(q(s)) · σ ,

where g ∈ C1([0, 1];R3) satisfies the gap condition |g(q)| ≥ g0 > 0. Then for ε ≤ g0/(2π) there
is a timetable qε(s) such that

(i) Tqε(1) = 0,

(ii) ‖q − qε‖∞ ≤ ‖q̇‖∞ 2πε
g0

.

Remark 4.12. The function qε is not smooth. Convolution with a mollifier yields smooth
timetables with arbitrarily small tunneling. They are however no longer close to q with respect
to ‖ · ‖∞.

Proof. Since our argument will be geometric it is convenient to translate Equation (4.5.2) to
the Bloch sphere with ρq = 1

2(1 + n · σ), cf. Equation (3.5.5):

εṅ(s) = g(q(s))× n(s) . (4.5.4)

To avoid unnecessary signs we may assume n(0) = ĝ(0) even though this corresponds to the
excited state. For ε as in the hypothesis choose 1 ≤ Cε ≤ 2 such that the slow time interval
[0, 1] can be partitioned into intervals of length Cε πεg0

and let [s−, s+] be an arbitrary exemplar
of those intervals.

Applying the intermediate value theorem to s 7→ ĝ(q(s)) · (ĝ(q(s+))− ĝ(q(s−))) yields the
existence of a time s∗ ∈ [s−, s+] such that g(q(s∗)) is a point of intersection of the path g(q(s))
with the equatorial plane orthogonal to ĝ(q(s+))− ĝ(q(s−)), see Figure 4.1. As a consequence
of Equation (4.5.4) the time-independent Hamiltonian Hq(s∗) rotates the vector ĝ(q(s−)) to
ĝ(q(s+)) after a time duration δs = επ

|g(s∗)| ≤
επ
g0
.

Since s− + δs ∈ [s−, s+] we may define on that interval

qε(s) :=

{
q(s∗) if s ∈ [s−, s− + δs]

q(s+) if s ∈ [s− + δs, s+]

from which it is obvious that the so constructed Hqε(s) yields (i). The second point follows from
the mean value theorem and Cε ≤ 2.

4.5.3. Time-scheduling problem with dephasing

The dynamics shall now be given by Equation (4.5.3). Corollary 4.7 then takes the following
form.
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Figure 4.5: ĝ± := ĝ(q(s±)) are the images on the Bloch sphere of the end points of an interval of size
Cε

πε
g0

of a given parameterization (blue). The intersection of the associated interpolating path with the
equatorial plane (shaded) determines the time s∗ and thereby the axis of precession ĝ∗ := ĝ(q(s∗)) (red)
that maps the instantaneous state at the initial end point to the corresponding state at the final end
point.

Corollary 4.13.

Tq(1) = 2ε

∫ 1

0
M(q)q̇2ds+O(ε2) ,

with the q-dependent mass term

M(q) =
∑
i 6=0

γq tr(Pi,qP
′
0,q

2)

(E0,q − Ei,q)2 + γ2
q

≥ 0 .

P ′0,q denotes a derivative with respect to q. For a 2-level system, by Equation (4.4.5),

M(q) =
γq
4

|ĝ′(q)|2

|g(q)|2 + γ2
q

.

The leading order functional

T (1)
q := lim

ε→0

Tq(1)

ε
= 2

∫ 1

0
M(q)q̇2ds

has the standard form of variational Euler-Lagrange problems with fixed boundaries and there-
fore generically possesses a unique minimizer (in contrast to Theorem 4.11). More precisely,
considering T (1)

q on the set of C1-timetables, the following holds.

Theorem 4.14. Suppose M(q) > 0 for all 0 ≤ q ≤ 1. Then T
(1)
q has a unique minimizing

timetable q0; in fact q0 is smooth and the optimal tunneling to leading order is

εT (1)
q0 = 2εA where

√
A =

∫ 1

0

√
M(q)dq . (4.5.5)
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Remark 4.15.

1) We refer to the positivity assumption in Theorem 4.14 as generic since it corresponds to
the fact that the path 1

2g(q) ·σ is nowhere tangent to a simple rescaling of the Hamiltonian
(characterized by ĝ′(q) = 0). For a 2-level system this amounts to the statement that the
projection of the path on the Bloch sphere is a regular curve.

2) The constancy of the tunneling rate is due to the fact that the Lagrangian is s-independent
and hence its “energy” 2M(q0)q̇2

0 is conserved. This gives a local algorithm for optimizing
the parametrization: Adjust the speed q̇ to keep the tunneling rate constant.

Proof. For an arbitrary C1-timetable q Hölder’s inequality yields∫ 1

0

√
2M(q)dq =

∫ 1

0

√
2M(q)q̇ds ≤

(
2

∫ 1

0
M(q)q̇2ds

) 1
2

= (T (1)
q )

1
2 (4.5.6)

and equality holds if and only if
√
M(q)q̇ is constant. Together with the boundary conditions

q(0) = 0, q(1) = 1 the only candidate for a minimizer is the inverse of

s(q) =

∫ q
0

√
M(q′)dq′∫ 1

0

√
M(q′)dq′

(4.5.7)

which apparently exists and is C∞ by the inverse function theorem.

4.5.4. Apparent speedup of Grover’s algorithm and dephasing rates

From now on we assume that the dephasing rate γ = γq is constant. Note that it is in principle
arbitrary and not subject to any restrictions. However we shall show that if one makes some
natural assumptions about the environment, it is constrained by the minimal gap of H(s).

To see this we turn to quantum search with dephasing [ÅKS05,BKS09,CDF+02]. Grover
has shown [Gro97] that O(

√
N) queries of an oracle suffice to search an unstructured data

base of size N � 1. In the adiabatic formulation [JRS07,VDM01,RC02] of the problem one
considers the N = 2n dimensional Hilbert space H = (C2)⊗n of n qubits. Let |0〉, |1〉 be an
orthonormal basis on C2 and for w ∈ {0, 1}n define |w〉 := |w1〉 ⊗ · · · ⊗ |wn〉. Then initial and
final Hamiltonian are given by

H0 := 1− |0̂〉 〈0̂| , H1 := 1− |u〉 〈u| ,

where |0̂〉 = 2−n/2
∑

w∈{0,1}n |w〉 and u ∈ {0, 1}n encodes the object in the data base we are
searching for. The family of Hamiltonians is then given by linear interpolation as in Equa-
tion (4.5.1),

Hq = 1 + (q − 1) |0̂〉 〈0̂| − q |u〉 〈u| .

Clearly span{|0̂〉 , |u〉} and its orthogonal complement reduce Hq for all q and hence 1 is an
(N − 2)-fold degenerate eigenvalue. We replace |u〉, |0̂〉 by the orthonormal basis

|±〉 :=
1√

2± 2N−1/2

(
|0̂〉 ± |u〉

)
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with inverse relations

|0̂〉 =
1√
2

(√
1 +N−1/2 |+〉+

√
1−N−1/2 |−〉

)
,

|u〉 =
1√
2

(√
1 +N−1/2 |+〉 −

√
1−N−1/2 |−〉

)
.

Therefore

Hq = 1−1 +N−1/2

2
|+〉 〈+| − 1−N−1/2

2
|−〉 〈−|

+(q − 1

2
)
√

1−N−1 (|−〉 〈+|+ |+〉 〈−|) .

It follows that on span{|0̂〉 , |u〉}

2Hq = 2 · 1+


(2q − 1)

√
1−N−1

0

−N−1/2

 · σ ≡ 2 · 1+ g(q) · σ

which yields the gap function

|g(q)|2 = 4
(1− q)q
N

+ (1− 2q)2 (4.5.8)

as well as the velocity on the Bloch sphere

|ĝ′(q)| =
√

1

N
− 1

N2

2

|g(q)|2
. (4.5.9)

The constant A which determines the optimal tunneling is given by

√
A =

√
γ

N

√
1− 1

N

∫ 1

0

dq

4 (1−q)q
N + (1− 2q)2

√
4 (1−q)q

N + (1− 2q)2 + γ2

=

√
γ

4

√
1− 1

N

∫ √N
−
√
N

dx

(x2 + 1− x2

N )
√

1
N (1− x2

N + x2) + γ2
(4.5.10)

→ 1

2
√
γ

∫ ∞
−∞

1

x2 + 1
dx (N →∞)

=
π

2
√
γ

where we applied the change of variables x =
√
N(2q − 1) and used dominated convergence.

More precisely, we read of from (4.5.10) that A can be estimated by evaluating the integrand
in Equation (4.5.5) at its maximum, q = 1/2, and taking the width to be 1/

√
N . This gives

A = O

(
M(1/2)

N

)
. (4.5.11)

The exact result is

A = γ−1 arctan2

(
γ

√
N − 1

1 + γ2

)
.
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The adiabatic formulation of Grover’s search [FGGS02] fixes the scaling of the minimal gap
g0 = 1√

N
but does not fix the scaling of the dephasing rate γ with N . We shall now address the

issue of what physical principles determine the scaling of the dephasing with N . To this end
we consider various cases.

The regime γ � ε is a priori outside the framework of the adiabatic theory described here:
Note that for εT (1)

q to be a good approximation for Tq(1), ε should be the smallest energy scale
in the problem. Even Lemma 4.16 below, which holds for arbitrary ε, yields no information in
this regime. However, γ � ε is essentially the unitary scenario [FGGS02,JRS07].

The regime ε � γ � g0 is trivially consistent with Grover’s bound since τ � γ−1 �
O(
√
N).
Optimal scheduling recovers Grover’s bound when dephasing is comparable to the gap,

γ ∼ g0, at least within the framework of a first order approximation by means of T (1)
q . One

finds M(1/2) ∼ 1/g3
0 and from Equations (4.5.8, 4.5.11) the search time

τ = O

(
1

g3
0N

)
= O(

√
N) . (4.5.12)

The most interesting regime is the dominant dephasing case: γ � g0. Here M(1/2) ∼ γ−1/g2
0

and from Equations (4.5.8, 4.5.11) one finds

τ = O
(
γ−1

)
. (4.5.13)

If γ is scaled like γ ∼ N−α/2 then τ = O
(
Nα/2

)
which seems to beat Grover’s time whenever

α < 1 .
The accelerated search enabled by strong dephasing is in apparent conflict with the op-

timality of Grover’s bound [FG98,BBBV97]: Consider the joint Hamiltonian dynamics of the
system (computer) and its environment, which underlies the Lindblad evolution. By an ar-
gument of [RC02] for a universal environment, the Grover search time is optimal. How can
one reconcile Equation (4.5.13) with this result? Before giving an answer, however, we want
to point out that Equation (4.5.13) is essentially not an artefact of perturbation theory. This
follows from Lemma 4.16 below. In particular, while Tq0(1) = 2εA is valid to first order in
ε, an estimate Tq0(1) . Nα/2ε remains true up to a logarithmic correction for all ε provided
γ ∼ N−α/2 for α < 1.

The resolution is that a Markovian environment with γ � g0 cannot be universal and
must be system specific: The bath has a premonition of what the solution to the problem is.
(Formally, this “knowledge” is reflected in the dephasing in the instantaneous eigenstates of Hq.)
Lindbladians with dephasing rates that dominate the gaps mask resources hidden in the bath.
This can also be seen by the following argument: As we have seen dephasing can be interpreted
as the monitoring of the observable Hq. The time-energy uncertainty principle [AMP02] says
that if Hq is unknown, then the rate of monitoring is bounded by the gap. The accelerated
search occurs when the monitoring rate exceeds this bound, which is only possible if the bath
already “knows” what Hq is. If Hq is known, the bath can freeze the system in the instantaneous
ground state arbitrarily fast. Consequently, the Zeno effect [MS77] then allows for the speedup
of the evolution without paying a large price in tunneling.

It remains to prove the following

Lemma 4.16. If g0 ≤ γ then Tq0(1) ≤ C(γ)ε where C(γ) has the following behavior:

C(γ) ∼ 1/γ log(1/γ) if γ = γ(N)→ 0 as N →∞,

C(γ) ∼ 1/γ if γ = γ(N) ≥ c > 0 where c does not depend on N .
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Remark 4.17. In the critical scaling γ ∼ g0 = 1/
√
N we obtain a logarithmic correction

with respect to (4.5.13). It is conceivable that this would vanish with sharper estimates at our
disposal. Note however that the Grover bound still gets apparently beaten as soon as Nγ2 →∞.

Proof. By definition of Tq(1) and Theorem 2.16, using the setting of Example 4.8, it suffices
to estimate the right hand side of

|n(1)− (−ĝ(q0(1))| ≤ ε
∣∣∣∣γĝ′(1) + g(1)× ĝ′(1)

|g(1)|2 + γ2

∣∣∣∣ |q̇0(1)|+ ε

∣∣∣∣γĝ′(0) + g(0)× ĝ′(0)

|g(0)|2 + γ2

∣∣∣∣ |q̇0(0)|

+ ε

∫ 1

0
ds

∣∣∣∣ dds {γĝ′(q0(s)) + g(q0(s))× ĝ′(q0(s))}q̇0(s)

|g(q0(s))|2 + γ2

∣∣∣∣ . (4.5.14)

Henceforth we omit the s-dependence, introduce f := |g(q0)|2, and recall

f(q) = 4
(1− q)q
N

+ (1− 2q)2 ,

|ĝ′(q0)| =
√

1

N
− 1

N2

2

f
∼ 1√

Nf
,

g(q0) =


(2q0 − 1)

√
1−N−1

0

−N−1/2

 ,

as well as

A ∼ γ−1 ,

M(q0) =
γ

4

|ĝ′(q0)|2

f + γ2
.

Therefore

q̇0(s(q0)) =

√
A

M(q0)
∼ 1

|ĝ′(q0)|
∼
√
Nf .

The first line in (4.5.14) is then estimated by the bounds in the assertion. For the second we
note∫ 1

0
ds

∣∣∣∣ dds {γĝ′(q0(s)) + g(q0(s))× ĝ′(q0(s))}q̇0(s)

f(q0(s)) + γ2

∣∣∣∣ =

∫ 1

0
dq

∣∣∣∣∣∣
(
γĝ′(q) + g(q)× ĝ′(q)

f(q) + γ2

√
A

M(q)

)′∣∣∣∣∣∣
= 2

√
A

γ

∫ 1

0
dq

∣∣∣∣∣∣
γ ĝ′(q)

|ĝ′(q)| + g(q)× ĝ′(q)
|ĝ′(q)|√

f(q) + γ2

′∣∣∣∣∣∣ .
(4.5.15)

We need ∣∣∣∣( ĝ′

|ĝ′|

)′∣∣∣∣2 =

∣∣∣∣ ĝ′′|ĝ′| − ĝ′(ĝ′ · ĝ′′)
|ĝ′|3

∣∣∣∣2 =
|ĝ′′|2|ĝ′|2 − (ĝ′′ · ĝ′)2

|ĝ′|4
=
|ĝ′ × ĝ′′|2

|ĝ′|4
,
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where

ĝ′′ =

(
g′

|g|
− g

|g|3
(g · g′)

)′
=
g′′

|g|
− 2g′(g · g′) + g|g′|2 + g(g · g′′)

|g|3
+ 3

g(g · g′)2

|g|5

= 3
g(g · g′)2

|g|5
− 2g′(g · g′) + g|g′|2

|g|3
,

and so

|ĝ′ × ĝ′′|2 =

∣∣∣∣( g′|g| − g(g · g′)
|g|3

)
×
(

3
g(g · g′)2

|g|5
− 2g′(g · g′) + g|g′|2

|g|3

)∣∣∣∣2
=

∣∣∣∣3g′ × g(g · g′)2

|g|6
− g′ × g|g′|2

|g|4
− 2

g′ × g(g · g′)
|g|6

∣∣∣∣2
=
|g′ × g|6

|g|12
.

With

|g′ × g| = 2
√
N−1 −N−2 ∼ 1/

√
N

we obtain ∣∣∣∣( ĝ′

|ĝ′|

)′∣∣∣∣ =
|g′ × g|3

|g|6|ĝ′|2
.

1√
Nf

.

Ultimately,

g ∧ ĝ′

|ĝ′|
= g ∧

(
g′

|ĝ′||g|

)
∼
√
Nfg ∧ g′

which implies

|
(
g ∧ ĝ′

|ĝ′|

)′
| .
√
N

f ′√
f

1√
N

+
√
Nf

(
g′ ∧ g′ + g ∧ g′′

)
=

f ′√
f

+ 0

We can now estimate Expression (4.5.15):

2

√
A

γ

∫ 1

0
dq

∣∣∣∣∣∣
γ ĝ′(q)

|ĝ′(q)| + g(q)× ĝ′(q)
|ĝ′(q)|√

f(q) + γ2

′∣∣∣∣∣∣ .
∫ 1

0
dq
(1/(

√
Nf(q))√

f(q) + γ2
+

f ′

γ
√
f
√
f(q) + γ2

+

∣∣∣∣∣ f ′(q)√
f(q) + γ23

∣∣∣∣∣ )
= (I) + (II) + (III) .
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We estimate the three integrals separately:

|(I)| . 1

γ
√
N

∫ 1

0

1

f
dq

.
1

γ
√
N

∫ 1

0
dq

1

4 (1−q)q
N + (1− 2q)2

=
1

γ
√
N

∫ 1

0
dq

1

(1− 1
N )(2q − 1)2 + 1

N

=
1

γ

∫ √N
−
√
N
dx

1

(1− 1
N )x2 + 1

∼ π

γ
(N →∞) .

|(II)| . 1

γ

∫ 1

1/N

dx√
x(x+ γ2)

=
2

γ
log

(√
N +

√
N +Nγ2

1 +
√

1 +Nγ2

)

By inspection we see that this expression can be estimated by the bounds in the assertion of
the lemma. Finally,

|(III)| .
∫ 1

1/N

dx√
x+ γ2

3 =
2√

γ2 + 1
N

− 2√
γ2 + 1

,

which again has the asserted asymptotics.

4.6. Driven Markov processes

Theorem 2.16 may be applied to an evolution of the probability distribution of a continuous-time
Markov process. In particular, we shall describe below an application to (stochastic) molecular
pumps [RHJ08].

Let X be a random variable on a finite state space S = (1, 2, . . . , d) and denote

pi = Prob(X = i) .

The evolution of X is governed by

ṗi =

d∑
j=1

Lijpj , (4.6.1)

where the transition rate j → i, Lij (i 6= j), is non-negative and Ljj := −
∑

i 6=j Lij . For
convenience we collect some standard facts in the following lemma.

Lemma 4.18. The transition matrix φ(t) := exp(Lt) is

(i) a left-stochastic matrix (0 ≤ φij ≤ 1,
∑d

i=1 φij = 1),

(ii) a contraction with respect to the norm ‖x‖1 =
∑d

j=1 |xj |,
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(iii) and converges to a projection, φ(t) → P+, (t → ∞). The range of P+ is spanned by
stationary probability distributions, meaning

∑d
j=1 Lijπj = 0.

Proof. Note that whenever pi = 0 for a probability distribution p then ṗi =
∑

j 6=i Lijpj ≥ 0
and hence pi(t) ≥ 0 for all t which implies that the entries of φ are non-negative. By

∑
i,j Lijpj =

0 it follows that φ is trace preserving, which implies (i); (ii) is seen by
∑d

i=1 |
∑d

j=1 φijxj | ≤∑
i,j φij |xj | = ‖x‖1 which yields also Rd = kerL⊕ ranL by Proposition 2.29 and Lemma 2.31.

Hence for (iii) it suffices to show that L cannot have purely imaginary eigenvalues. If it did
then φ(t) would possess an eigenvalue e∗,t on the unit circle different from 1 for arbitrarily small
nonzero t. However since the diagonal elements of φ(t) are nonzero for small t the Gershgorin
discs for φ(t) cannot cover e∗,t by (i).

We assume that the state space S is indecomposable and denote by π the unique stationary
distribution of L, whence kerL = span{π} and ranL = {p |

∑
pi = 0}. In line with Equa-

tion (2.3.1), let P be the rank 1 projection associated to that pair of subspaces, which are left
invariant by L. We identify L−1 with the map (1 − P )L−1(1 − P ) defined on all of Cd, and
denote its matrix elements by L−1

ij .
Now we consider a smooth family of generators L(s) with corresponding stationary states

π(s). The following result generalizes one by [RHJ08] (see also [Par98,HJ09]).

Theorem 4.19. Assume that S is irreducible for L(s) and that π̇i(0) = 0. The solution of

εṗi(s) =

d∑
j=1

Lij(s)pj(s) (4.6.2)

with initial condition pi(0) = πi(0) is

pi(s) = πi(s) + ε
d∑
j=1

L−1
ij (s)π̇j(s) +O(ε2) . (4.6.3)

Proof. The expansion (4.6.3) is just that of Theorem 2.16. Note that by kerP (s) = ranL(s)
(or, more abstractly, by Lemma 3.15 forA = `∞(S)) the hypothesis of Corollary 2.18 is satisfied.
Thus T (s, s′)π(s′) = π(s) and a1(s) = 0.

We say that L satisfies a detailed balance if

Mij := Lijπj . (4.6.4)

is a symmetric matrix for some π, in which case that is the stationary distribution. This can
be interpreted as the statement that the current through any link j → i

Jij(p) = Lijpj − Ljipi (4.6.5)

vanishes at equilibrium, Jij(π) = 0.
We now strengthen the assumption on S from indecomposable to irreducible, meaning that

πj > 0 for all j. Then kerM = span{(1, 1, . . . 1)}, ranM = ranL, and the two subspaces
decompose M as a linear map. At first M−1 is defined on ranM , and it may be extended
afterwards, arbitrarily but linearly, to all of Cd, e.g. by having it vanish on kerM .

In applications to (stochastic) molecular pumps (see [RHJ08] and references therein) one is
interested in systems that carry no current in their equilibrium states, but can be induced to
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yield net particle transport in an adiabatic pump cycle. Note that M and π provide natural
coordinates for those irreducible processes L which satisfy a detailed balance condition. We set
the pump period (in scaled time) to be unity.

The net transport across the link j → i is expressed in terms of the integrated probability
current

Tij :=
1

ε

∫ 1

0
Jij
(
p(s)

)
ds .

The following result is due to [RHJ08].

Corollary 4.20. Let s 7→ (M(s), π(s)) be a pump cycle with π(s) the unique equilibrium
state for every s. Assume that π̇j(0) = 0. Then the transport is geometric to leading order,
given by

Tij =

∫ 1

0

d∑
k=1

(
Mij(s)M

−1
jk (s)−Mji(s)M

−1
ik (s)

)
dπk(s) +O(ε) . (4.6.6)

In particular, Tij = O(ε) if π is constant or, in the periodic case L(0) = L(1), if M is.

Remark 4.21.

1) Here, geometric means that the transport is independent of the parametrization of the
pumping cycle. This is evident in Equation (4.6.6).

2) Corollary 4.20 says that effective pump cycles require the variation of both π and M .

Proof. The contribution to Tij of order ε−1 vanishes due to the detailed balance condition.
To next order Equations (4.6.5, 4.6.3) yield

Tij =

∫ 1

0

d∑
k=1

(
Lij(s)L

−1
jk (s)− Lji(s)L−1

ik (s)
)
π̇k(s) ds+O(ε) .

Equation (4.6.4) may be written as M = (1 − P )L(1 − P )Π, where Πij = πiδij , implying
L−1 = (1− P )ΠM−1(1− P ). Thus, with Pjl = πj , we have

LijL
−1
jk π̇k = Lij

d∑
l=1

(1− P )jlπlM
−1
lk π̇k = MijM

−1
jk π̇k −

d∑
l=1

MijπlM
−1
lk π̇k .

After interchanging i, j and taking the difference, the second term cancels and we are left
with (4.6.6). The additional claim in the periodic case follows by the fundamental theorem of
calculus.

4.7. Time-dependent Hamiltonians II

Theorem 2.25 can be applied to evolutions generated by either a Hamiltonian or a Lindbladian,
just like Theorem 2.16 was in Sections 4.2 and 4.3, respectively. The Hilbert space H is, again,
infinite dimensional.
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In this section we discuss the first case where the result provides a simple proof of the
adiabatic theorem for the Schrödinger equation

iεψ̇(s) = H(s)ψ(s) (4.7.1)

or, in density matrix language, the von Neumann equation

iερ̇(s) = [H(s), ρ(s)] . (4.7.2)

Without the gap assumption for the family of Hamiltonian H(s) we have, as in [AE99,Teu01]
(with slightly weakened assumptions):

Theorem 4.22. Let H(s) be a C1-family of Hamiltonians with eigenvalue E∗(s) and let P (s)
be a C1-family of finite rank projections such that H(s)P (s) = E∗(s)P (s) for all s ∈ [0, 1] and
P (s) is the spectral projection of H(s) associated to E∗(s) for almost all s ∈ [0, 1]. Then if
P (0)ψ(0) = ψ(0) the solution of Equation (4.7.1) satisfies

sup
0≤s≤1

‖e
i
ε

∫ s
0 E∗(s

′)ds′ψ(s)− T (s, 0)ψ(0)‖ → 0 , (ε→ 0) . (4.7.3)

T (s, s′) is the parallel transport on pure states given by ∂sT (s, s′) = Ṗ (s)T (s, s′). In terms of
density matrices it holds that for ρ(0) = P (0) in Equation (4.7.2)

sup
0≤s≤1

‖ρ(s)− P (s)‖J1(H) → 0 , (ε→ 0) . (4.7.4)

Proof. The eigenvalue E∗(s) is differentiable by E∗(s) = tr(H(s)P (s))/tr (P (s)) and therefore
Theorem (2.25) implies (4.7.3) immediately by considering L(s) := −i(H(s) − E∗(s)). From
this, (4.7.4) follows by decomposing ρ(s) into a finite convex combination of pure states.

Remark 4.23.

1) The “almost all” formulation [Bor98,Teu01] allows for eigenvalue crossings.

2) (4.7.3) also holds for projections of infinite rank if E∗(s) is assumed to be continuously
differentiable.

3) It is instructive to note that (4.7.4) can be also be proved directly by considering

iεk̇(s) = [H(s), k(s)]

with k(s) =
√
ρ(s) ∈ J2(H): With respect to the projection onto the kernel of this gener-

ator the projection P (s) is automatically parallel transported, cf. Lemma 4.23.

4.8. Time-dependent Lindbladians II

We now turn to a discussion of gapless adiabatic theorems for open quantum systems. One
can adopt the point of view that they are more generic than their Hamiltonian counterpart for
the following reason: Consider a closed quantum system described by a family of Hamiltonians

3to be fair: that H(s) was bounded there.
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H(s) with nonempty continuous spectrum and an isolated eigenvalue E(s). Then 0 is a non-
isolated eigenvalue for the corresponding Liouvillian4 L(s) = −i[H(s), ·] which acts on J1(H)5.
In that sense the transition to a picture of density matrices may cloud the existence of a spectral
gap in the Hamiltonian case, cf. page 41. If in addition the interaction of the system with its
environment is taken into account (that is the Liouvillian becomes a “genuine” Lindbladian)
then – generically – 0 will still be a non-isolated point of the spectrum. However, the alternative
of working at the level of pure states is no longer available and hence the nonexistence of a gap
cannot be circumvented by the above “algebraic” measure.

As a first theorem we present the following somewhat generic case:

Theorem 4.24. Let L(s), 0 ≤ s ≤ 1, be a C1-family of Lindbladians with dim kerL∗(s) = 1
for almost all s. Furthermore assume the existence of a C1-section of instantaneous stationary
states ρ∗(s). Then the solution of ερ̇(s) = L(s)ρ(s) with initial data ρ(0) = ρ∗(0) satisfies

sup
0≤s≤1

‖ρ(s)− ρ∗(s)‖J1(H) → 0 , (ε→ 0) .

Proof. Inspection of the proof of Theorem 2.25 shows that we only need to show that ρ̇∗(s) ∈
ranL(s) = (kerL∗(s))⊥ = (span{1})⊥ (the last equality is due to dim kerL∗(s) = 1). This
however is nothing but the normalization condition for states: tr(1ρ̇∗(s)) = d

dt tr(ρ∗(s)) = 0.

More generally some care is required: Since J1(H) is not reflexive the decomposition con-
dition

J1(H) = kerL ⊕ ranL (4.8.1)

is not ensured by Proposition 2.33 and therefore needs to be implemented by assumption. In
that case the formulation of Theorem 2.25 translates directly to Lindbladians if L = L, P = P,
Q = Q and B = J1(H). Unfortunately, Decomposition (4.8.1) will generically be false (!) as
follows from the subsequent example, cf. also Example 2.28.

Example 4.25. Consider the Liouvillian L : ρ 7→ −i[H, ρ] defined for ρ ∈ J1(H) with a
bounded Hamiltonian H. Let H have nonempty continuous spectrum with associated projection
Pc and possibly also eigenvalues with associated eigenprojections {Pi}i∈I , I a countable index set.
Note that on ranL we have trPcLρ = 0 because trPcHρ = trPcρH ( [Sim05], Corollary 3.8).
Then trPcχ = 0 extends to χ ∈ ranL. In addition, trPcρ = 0 for ρ ∈ kerL = span{Pi}i∈I . By
considering any finite subprojection of Pc it follows that J1(H) = kerL ⊕ ranL is impossible.

Remark 4.26. The example has also a noteworthy consequence in relation with Theorem
4.24: There one might be tempted to translate the dimensionality assumption to the Schrödinger
picture: “dim kerL = dim kerL∗ = 1” . However, the first equality can be violated for the
following reason: Since ranL is a proper subspace of J1(H) it follows from the Hahn-Banach
theorem that there exists 0 6= y∗ ∈ J1(H)∗ = L(H) such that 0 = y∗(Lf) = L∗y∗(f) for all
f ∈ J1(H). But then y∗ ∈ kerL∗ and hence dim kerL < dim kerL∗.

4Recall that H is – as always when we refer to Lindbladians in this thesis – bounded and hence the expression
for the Liouvillian is well-defined.

5In fact the spectrum of L consists precisely of i times the differences of elements in σ(H). This follows from
the spectral theorem if L is considered on J2(H), see [Spo76, Spo77]. If we restrict to J1(H) the same can be
seen to hold: σ(L � J1(H)) ⊂ σ(L � J2(H)) is obvious. Conversely, the fact that iσ(L � J1(H)) contains all
energy differences is seen by considering Weyl sequences (which is admissible even though J1(H) is not a Hilbert
space).
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In the absence of (4.8.1) an alternative approach can be a remedy: Consider the Lindblad
evolution

ερ̇(s) = L(s)ρ(s) = −i[H(s), ρ(s)] +
1

2

∑
i∈I

([Vi(s)ρ(s), V ∗i (s)] + [Vi(s), ρ(s)V ∗i (s)]) (4.8.2)

on any p-Schatten class Jp(H), 1 < p ≤ ∞6, with L(s) being a C1-family. Recall that H,
Vi ∈ L(H). To avoid topological complications we assume that the index set I is finite. In
fact, this will be a standing hypothesis for the remainder of this section. Equation (4.8.2) is
well-defined since all p-Schatten classes are two-sided ideals in L(H). To apply Theorem 2.25
on Jp(H), 1 < p <∞, we use the following result.

Lemma 4.27. The propagator to Equation (4.8.2) is contracting on Jp(H) for any 1 ≤ p ≤ ∞
if

∑
i∈I

[Vi(s), V
∗
i (s)] = 0 (4.8.3)

for all s ∈ [0, 1].

Remark 4.28. Note that Condition (4.8.3) is satisfied for normal Vi and in particular for
dephasing Lindbladians, cf. Proposition 3.10.

Proof. We first consider the case p = ∞. We need to check that for fixed s the Lindbladian
generates a contraction. Equation (4.8.3) allows to write for A ∈ L(H)

L(A) = −i[H,A] +
1

2

∑
i∈I

(2ViAV
∗
i − V ∗i ViA−AV ∗i Vi)

= −i[H,A] +
∑
i∈I

(
ViAV

∗
i −

1

2
{ViV ∗i , A}

)

which is of the standard form in the Heisenberg picture, cf. Equation (3.3.2), for H → −H and
Vi → V ∗i . By Theorem 3.4 this generates a quantum dynamical semigroup and therefore proves
the contraction property on L(H). The assertion of the Lemma follows by the p-Schatten class
analogue of the Riesz-Thorin interpolation theorem ( [Zhu90], Theorem 2.2.7).

We mention that on J2(H) a more direct proof can be given:

Alternative proof for the case p = 2. We verify the conditions for the Lumer-Phillips
Theorem [LP61]. Clearly L − λ is surjective for λ large enough and it suffices to show that L

6J∞(H) := L(H).
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is dissipative. For any A ∈ J2(H),

< tr(A∗L(A)) = <1

2

∑
i∈I

(tr(A∗[ViA, V
∗
i ]) + tr(A∗[Vi, AV

∗
i ]))

= <1

2

∑
i∈I

(
2 tr(A∗ViAV

∗
i )− ‖ViA‖2J2(H) − ‖ViA

∗‖2J2(H)

)
≤ 1

2

∑
i∈I

(
‖V ∗i A‖2J2(H) + ‖AV ∗i ‖2J2(H) − ‖ViA‖

2
J2(H) − ‖ViA

∗‖2J2(H)

)
=

1

2

∑
i∈I

(
‖V ∗i A‖2J2(H) − ‖ViA‖

2
J2(H)

)
=

1

2
tr

(
AA∗

∑
i∈I

(ViV
∗
i − V ∗i Vi)

)
= 0 .

In the third line we used Hölder’s and Young’s inequality; the fourth line follows by duality.

Lemma 2.10, Proposition 2.33 and Theorem 2.25 imply:

Theorem 4.29. Assume the conditions of Lemma 4.27 for a C1-family of Lindbladians L(s),
0 ≤ s ≤ 1, considered on the reflexive Banach space B = Jp(H), 1 < p <∞. Let L(s) be C1 and
let 1 = P(s) +Q(s) for almost all s be the projections associated to the Decomposition (2.4.1);
moreover let P(s) be defined for all 0 ≤ s ≤ 1 and C1 as a bounded operator on Jp(H). Then
the solution of ερ̇(s) = L(s)ρ(s) with initial data ρ(0) = P(0)ρ(0) ∈ Jp(H) satisfies

sup
0≤s≤1

‖ρ(s)− T (s, 0)ρ(0)‖Jp(H) → 0 , (ε→ 0) . (4.8.4)

T (s, s′) is the parallel transport on density matrices given by ∂sT (s, s′) = Ṗ(s)T (s, s′).

This theorem can be interpreted to imply convergence of the evolved state towards the
instantaneous stationary state in “almost” the physically natural topology.

A different point of view applies in the case of dephasing Lindbladians where many pure in-
stantaneous stationary states are present. Satisfactorily, this case is covered due to Remark 4.28.
In what follows we shall explain how the case p = 2 in Theorem 4.29 can be naturally applied
to tunneling, cf. Equation (4.3.2). As a preparation we state the following observation:

Lemma 4.30. Let L be a dephasing Lindbladian considered on J2(H). Associated to it is
a Hamiltonian H with eigenprojections {Pi}i∈K , where K = {1, . . . ,M} resp. K = N is a
countable index set. Then

(i) J2(H) = kerL ⊕ ranL is an orthogonal direct sum and

(ii) the projection onto the first component has the explicit form Pρ =
∑

i∈K PiρPi where
ρ ∈ J2(H).

(iii) Time-dependence: If H(s) is C1 then so is L(s). If the Pi(s) are C1, uniformly in i, then
so is P(s).

Proof. By Proposition 2.33 and Lemma 4.27, J2(H) = kerL ⊕ ranL and hence (i) follows by
showing that kerL ⊥ ranL and application of Lemma 2.10: In fact, for a dephasing Lindbladian
the statement kerL = ker([H, ·]) from Proposition 3.10 also holds true as subspaces of J2(H),
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as inspection of the proof shows. Thus kerL ⊂ kerL∗ by Inclusion (3.5.1). Then La = 0 and
b = Lb̃ imply 〈a, b〉J2(H) = 〈L∗a, b̃〉J2(H) = 0.

To prove (ii) it suffices to show that

ρ ∈ kerL if and only if ρ =
∑
i∈K

PiρPi : (4.8.5)

The last expression defines an orthogonal projection on J2(H), cf. Example 3.14, and so the
claim follows from (i). The “if” part in (4.8.5) is immediate; to understand the “only if” part
note that for a Hilbert-Schmidt operator ρ ∈ kerL = ker[H, ·] it holds that

ρ = lim
T→∞

1

T

∫ T

0
eiHtρe−iHt

= lim
T→∞

1

T

∫ T

0

∑
i,j∈K

eiEitPiρPje
−iEjt

=
∑
i∈K

PiρPi .

The second equality is due to the RAGE theorem ( [CFKS87], Theorem 5.8 (3)).
Finally, for (iii), the statement for L(s) is immediate. For P(s) we have (for notational

convenience choose without loss of generality ρ = ρ∗ ∈ J2(H) and K = N)

lim sup
s→s′

∥∥∥∥∥P(s)ρ− P(s′)ρ

s− s′
−
∑
i∈N

(
Ṗi(s

′)ρPi(s
′)− Pi(s′)ρṖi(s′)

)∥∥∥∥∥
2

J2(H)

≤ lim sup
s→s′

∑
i∈N

(∥∥∥∥(Pi(s)− Pi(s′)s− s′
− Ṗi(s′)

)
ρPi(s

′)

∥∥∥∥2

J2(H)

+ ‖c.c.‖2J2(H)

)
≤ o(1)

∑
i∈N
‖ρPi(s′)‖2J2(H) = o(1)‖ρ‖2J2(H) (s→ s′) .

In the first inequality we applied Pythagoras. The o(1) in the third line is independent of i due
to the uniformity assumption.

Now let H(s) and Pi(s) be C1, uniformly in i. It follows by regularity that P(s)ρ =∑
i∈K Pi(s)ρPi(s) for all s ∈ [0, 1]. Since P(s) is also the projection onto the kernel of [H(s), ·]

it induces a parallel transport which preserves the purity of states.7 Then, if ρ(0) is a pure state
the tunneling in Equation (4.3.2) has a very simple form and converges to zero by Theorem 4.29
and Equation (2.2.15):

T (1) := 1− tr(ρ(1)T (1, 0)ρ(0))

= 1− tr(T (1, 0)ρ(0)T (1, 0)ρ(0))︸ ︷︷ ︸
=0

+ tr((ρ(1)− T (1, 0)ρ(0))T (1, 0)ρ(0))

≤ ‖ρ(1)− T (1, 0)ρ(0)‖J2(H)‖T (1, 0)ρ(0)‖J2(H) → 0 , (ε→ 0) .

Note that if in particular ρ(0) = Pi(0) is one-dimensional the above formula applies with
T (1, 0)ρ(0) = Pi(1) as follows from Lemma 4.2.

7This can also be shown explicitly by computing d
dt

tr ρ2 = 2 tr ρρ̇ = 2 tr ρ[Ṗ,P](ρ) = 0 using Lemma 4.30
(ii).
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We conclude the discussion of gapless Lindbladians with an example which illustrates that,
although the tunneling out of the initial state is of order o(1), an adiabatic invariant is conserved
up to order O(ε).

Example 4.31. Consider the Hamiltonians H(s) = V (s)HV ∗(s) arising from a C2-family
of unitaries V (s) and from a bounded H. Let ρ(s) solve the equation ερ̇ = −i[H, ρ]. Then the
energy is an adiabatic invariant in the sense that∣∣tr(H(1)ρ(1))− tr(H(0)ρ(0))

∣∣ = O(ε) .

This follows from Equation (2.4.5) in Proposition 2.27. We may in fact apply that estimate to
x(s) = ρ(s), ϕ(s) = H(s), 〈ϕ, x〉 = tr(Hρ) and L = −i[H, ·], since the Assumptions (2.4.4)
hold true by

L∗(s)(H(s)) = 0 , Ḣ(s) = −[H(s), V̇ (s)V ∗(s)] = L∗(s)(iV̇ (s)V ∗(s)) .
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Chapter 5

A nonlinear adiabatic theorem

5.1. Introduction

We contrast our results of the previous chapters by an adiabatic theorem for the non-autonomous
Gross-Pitaevskii equation (nonlinear Schrödinger equation) with a time-dependent external
potential Vs = Vs(x),

iε∂sΨs = −∆Ψs + VsΨs + b|Ψs|2Ψs , (5.1.1)

and initial data Ψ0 which is small in L2(R3) and b = ±1 (focusing resp. defocusing nonlin-
earity)1. As before the microscopic time s = εt takes values in [0, 1]. The stationary equation
reads

−∆ψE,s + VsψE,s + b|ψE,s|2ψE,s = EψE,s (5.1.2)

and its solutions are referred to as ground states since they solve the Euler-Lagrange equation
for the Gross-Pitaevskii energy functional

I[ψE,s] :=

∫
R3

d3x

(
1

2
|∇ψE,s|2 + Vs|ψE,s|2 +

b

4
|ψE,s|4

)
, (5.1.3)

with ‖ψE,s‖22 = η fixed.
Equation (5.1.1) constitutes an effective description for the dynamics of a Bose-Einstein

condensate in an external trap Vs and can be rigorously derived from the many-body Schrödinger
dynamics in the limit of large particle numbers N →∞ if the interaction potential among the
particles is scaled suitably with N ; see [Sch09] for a survey yet also [Pic10] for a recent theorem.
Such results however are not uniform in the macroscopic time t = s/ε and hence we will - in
the spirit of Chapter 4 - take Equation (5.1.1) as our starting point: Issues concerning the
interchangeability of adiabatic and particle number limit will not be addressed.

Physically speaking we consider a situation where the experimentalist is allowed to slowly
tune the parameters which determine the shape of the trapping potential Vs. For our main
result we shall assume that Vs decays at infinity (“weak trap”) and that the linear Hamiltonian
−∆ + Vs admits exactly one bound state for each s. After adding the nonlinearity this bifurcates
into a whole manifold of ground states. Under the assumption that Ψ0 belongs to this manifold
we will show that, up to phase, Ψ1 converges to an element in the ground state manifold at
s = 1 with equal mass as ε↘ 0. In fact the error term will be O(ε) and is thus reminiscent of
linear adiabatic theorems in presence of a gap condition.

1Equivalently ‖Ψ0‖2 = 1 and |b| � 1 as is seen from the replacements Ψs ; Ψs/‖Ψs‖2 and b; b‖Ψs‖22 and
mass conservation.
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To our knowledge the non-autonomous setting considered here - contrary to the autonomous
case (e.g. [SW90, SW92,YT02,FGJS04, SW04]) - has not yet been subject to intensive invest-
igations: A space-adiabatic theorem is found in [Sal08], however we are not aware of nonlinear
time-adiabatic theorems for the Gross-Pitaevskii equation.

Interestingly, the techniques we apply differ from the ones in the linear case. The main
difficulty is that by linearizing the Gross-Pitaevskii equation around a ground state one obtains
an operator which does no longer give rise to a unitary evolution on L2(R3) and therefore
makes it more delicate to estimate the error terms. This problem however can be dealt with by
a bootstrap argument where we will make use of the dispersive behavior of the linear Schrödinger
equation (see [Sch05] for a survey and [Gol06] for a recent result).

The organization of this chapter is as follows. We start in Section 5.2 with a proposition
that establishes the existence and regularity of a ground state manifold for Equation (5.1.2).
This enables us to give a precise statement of the main theorem in Section 5.3. In order to be
able to prove it we show H2(R3)-wellposedness for Equation (5.1.1) in Section 5.4 and discuss
the relevant properties of an appropriate linearization in Section 5.5. This allows us to cast
the main theorem in a more convenient form which we then prove (Sections 5.6 and 5.7). To
improve the readability we have placed the proofs concerning the ground state manifold and
several auxiliary results in Section 5.8.

5.2. Ground state manifold: Existence and regularity

5.2.1. Hypotheses on the potential

Here we state the general assumptions for the potential Vs. Unless stated otherwise they will be
standing hypotheses throughout this chapter.

We use the standard notation H2,σ(R3) := {φ : R3 → C|‖φ‖H2,σ := ‖〈x〉σφ‖H2 < ∞},
〈x〉 :=

√
1 + |x|2.

(Hd) V· ∈ C([0, 1];H2,σ(R3)) ∩ C2([0, 1];L∞(R3)) for a σ > 2.

(He) For every s ∈ [0, 1], −∆+Vs admits exactly one eigenstate v∗,s. The associated eigenvalue
E∗,s is separated from the rest of the spectrum of −∆+Vs, uniformly in s: there is G0 > 0
such that E∗,s ≤ −G0 for all s.

(Hr) For every s ∈ [0, 1], Vs admits no zero energy resonance, that is, the equation

(−∆ + Vs) g = 0

admits no distributional solution g /∈ L2(R3) such that 〈x〉−βg ∈ L2(R3) for every β > 1/2.

Remark 5.1. Note that (Hd) implies a spatial decay of Vs(x) ∼ 〈x〉−σ due to Sobolev’s
embedding:

sup
x∈R3

|〈x〉σVs(x)| = ‖〈x〉σVs‖∞ . ‖Vs‖H2,σ .

We will prove in Subsection 5.8.1 that this implies pointwise exponential decay estimates for v∗,s
resp. ∆v∗,s.
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5.2.2. Ground state manifold

We present the proposition which establishes in particular the existence of a curve of constant
mass in the manifold of instantaneous stationary states for Equation (5.1.1). More generally, our
result yields a differentiable manifold of nonlinear ground states. Before stating it we introduce
some notation. By

P dHs := |v∗,s〉 〈v∗,s| , (5.2.1)

P cHs := 1− P dHs (5.2.2)

we denote the spectral projections on the eigenvector space of −∆ + Vs and its orthogonal
complement. Moreover, we declare that a subindex in Landau’s O-symbol denotes the space in
which the statement is to be understood.

Proposition 5.2. Let s ∈ [0, 1], η � 1, 0 ≤ (E − E∗,s)/b� 1 and l ∈ R.

(i) The “time-independent” Gross-Pitaevskii equation (5.1.2) admits a family of nonlinear
ground states ψE,s > 0 which bifurcate from the zero solution:

ψE,s =

√
E − E∗,s

b

1√
〈v2
∗,s, v

2
∗,s〉

v∗,s +OH2,l(E − E∗,s) .

In fact, ψE,s is analytic in
√

E−E∗,s
b and P cH,sψE,s = OH2,l

((
E−E∗
b

) 3
2

)
.

(ii) The ground states ψE,s form a two-dimensional Banach manifold M ⊂ H2,l(R3). For
fixed s the assertions in (i) hold and the map s 7→ ψE,s ∈ H2,l(R3) is C2.

(iii) There exists a unique positive family of ground states s 7→ ψEs,s ∈ C2([0, 1];H2,l(R3))
with constant mass, ‖ψEs,s‖22 ≡ η.

The proof is somewhat lengthy and therefore deferred to Subsection 5.8.1.

5.3. Main theorem

The notion of a family of ground states allows to formulate the following adiabatic theorem.

Theorem 5.3. Let Ψ0 = ψE0,0 with ‖ψE0,0‖22 = η � 1 as above and ε � 1. Then Equation
(5.1.1) possesses a unique solution s 7→ Ψs in C1([0, 1];H2(R3)) with the property that

sup
0≤s≤1

‖Ψs − e−iζsψEs,s‖H2 . ε .

Here, ζs := ξεs + 1
ε

∫ s
0 Es′ds

′ and ξεs is a real function, uniformly bounded in s and ε.

The unaesthetic factor eiζs is avoided by going over to projectors. Dirac notation allows us
to formulate the following immediate corollary of Theorem 5.3.

Corollary 5.4. Under the assumptions in Theorem 5.3

sup
0≤s≤1

‖ |Ψs〉 〈Ψs| − |ψEs,s〉 〈ψEs,s| ‖L2→L2 . ε .
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5.4. Local well-posedness

The local existence of solutions for the nonlinear Schrödinger equation is well known even in
the energy class H1(R3), see e.g. [GV84a,GV84b]. The case considered here is easier2 and for
convenience we present our own argument for it.

Proposition 5.5 (Local Well-Posedness in H2(R3)). Let ε > 0. For Ψ0 ∈ H2(R3) and
τ = τ(ε)� 1,

iε∂sΨs = −∆Ψs + VsΨs + b|Ψs|2Ψs.

has a unique solution in C1([0, τ ];H2(R3)). Furthermore, every solution can be extended uniquely
to a maximal (forward) time inverval [0, T ) ⊂ [0, 1] or [0, 1] and in the first case

lim
s↗T
‖Ψs‖H2 =∞ (blow-up alternative).

Proof. The proof is an application of the Banach fixed point theorem. To cast the equation
into a convenient form we use Duhamel’s formula to obtain

Ψs = (T Ψ)(s) := ei∆s/εΨ0 −
i

ε

∫ s

0
du ei∆(s−u)/ε

(
VuΨu + b|Ψu|2Ψu

)
. (5.4.1)

Now we study the map

T : C([0, τ ];H2(R3))→ C([0, τ ];H2(R3)) .

To make the fixed point theorem applicable we have to verify that T meets two criteria:

(i) T maps a small ball around 0 in C([0, τ ];H2(R3)) to itself,

(ii) T is contractive on that ball.

For the first use Lemma 5.6 below and ‖e
i∆s
ε Ψ0‖H2 = ‖Ψ0‖H2 to obtain

sup
0≤u≤τ

‖(T Ψ)(u)‖H2 ≤ C
(
‖Ψ0‖H2 +

τ

ε

(
sup

0≤u≤1
‖Vu‖H2Mτ +M3

τ

))
where Mτ := sup0≤u≤τ ‖Ψu‖H2 = ‖Ψ‖C([0,τ ];H2(R3)). For

τ ≤ ε/2

sup0≤s≤1 ‖Vs‖H2 + (2C‖Ψ0‖H2)2

T is indeed a map from to complete metric space

B2C‖Ψ0‖H2
:= {Ψ ∈ C([0, τ ];H2(R3)) : Ψ(0) = Ψ0 and ‖Ψ‖C([0,τ ];H2(R3)) ≤ 2C‖Ψ0‖H2}

to itself.
Now we verify the contractiveness. For Ψ, Ψ̃ ∈ B2C‖Ψ0‖H2

‖T Ψ− T Ψ̃‖C([0,τ ];H2(R3)) ≤
τ

ε
C ′
(

sup
0≤u≤1

‖Vu‖H2 + ‖Ψ0‖2H2

)
‖Ψ− Ψ̃‖C([0,τ ];H2(R3)) .

2A remark for the time-independent, defocusing case: Note that the global existence theory is harder on
H2(R3) since energy conservation no longer controls the norm.



5.5. linearization around the ground state 73

Thus by choosing τ to satisfy

τ < min{ ε

C ′
(
sup0≤u≤1 ‖Vu‖H2 + ‖Ψ0‖2H2

) , ε/2

sup0≤u≤1 ‖Vu‖H2 + (2C‖Ψ0‖H2)2
} (5.4.2)

we see that T defines a strict contraction onB2C‖Ψ0‖H2
and hence has a fixed point Ψ. Inspection

of (5.4.1) yields Ψ ∈ C1([0, τ ];H2(R3)).
Next, the maximal time interval of existence is open in [0, 1] for if it were [0, T ] for a T < 1,

we could extend it at t = T by the just established local existence result.
Finally, assume that the blow-up alternative is wrong, that is, there is a finite number M

such that ‖Ψs‖H2 ≤ M for all s in the maximal interval of existence [0, T ). Note that in
(5.4.2) τ depends on the norm of the initial data only. Thus exchanging ‖Ψ0‖H2 for M there
defines a τ∗ and applying local existence to ΨT−τ∗/2 as initial data implies a contradiction to
the maximality of [0, T ).

In the proof of Proposition 5.5 we have used the following well-known results, some of which
will also be important later on.

Lemma 5.6.

(i) ‖φ‖H2 ' ‖φ‖2 + ‖(−∆ + V )φ‖2 .

(ii) For any l ∈ R

‖φ‖H2,l ' ‖〈x〉lφ‖2 + ‖〈x〉l∆φ‖2 .

(iii) Product estimates (‖φ‖W 2,1 := ‖φ‖1 + ‖∆φ‖1):

‖φχ‖W 2,1 . ‖φ‖H2‖χ‖H2 , (5.4.3)
‖φχ‖H2 . ‖φ‖H2‖χ‖H2 , (5.4.4)
‖φχ‖H2,l . ‖φ‖H2,l‖χ‖H2,l , (if l ≥ 0). (5.4.5)

A proof is given in Subsection 5.8.2.

5.5. Linearization around the ground state

We start with linearizing around the ground state and make a naive3 ansatz

Ψs = e−
i
ε

∫ s
0 Es′ds

′
(ψEs,s + ϕs) (5.5.1)

in order to linearize Equation (5.1.1) around the ground state. Note that since the nonlinearity
in (5.1.1) is not complex analytic in the wave function Ψs, the linearized operator will only be
real linear. It is thus favorable to adopt the notation

~ϕs =

Rϕs

Iϕs

 =

ϕ1,s

ϕ2,s

 (5.5.2)

3The ansatz is arguably very naive as it does not reflect possible geometric phase changes (geometric as in
the sense of Berry’s phase). This will be made good for in Lemma 5.9.
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and likewise for any other complex quantity. Plugging (5.6.3) into (5.1.1) yields

~̇ϕs = −1

ε
J

−∆ + Vs − Es + 3bψ2
Es,s

0

0 −∆ + Vs − Es + bψ2
Es,s

 ~ϕs (5.5.3)

− d

ds
~ψEs,s −

1

ε
J

bψEs,s|~ϕs|2 + 2bψEs,s(ϕ1,s)
2 + b|~ϕs|2ϕ1,s

2bψEs,sϕ1,sϕ2,s + b|~ϕs|2ϕ2,s

 (5.5.4)

=:
1

ε
LEs,s~ϕs −

d

ds
~ψEs,s −

1

ε
N(~ψEs,s, ~ϕs) . (5.5.5)

Here the linear operator LE,s is naturally defined by (5.5.3) and the nonlinearityN = N(~ψEs,s, ~ϕs)
by (5.5.4). We used the notation

J :=

0 −1

1 0

 ,

and moreover LE,s is considered as an unbounded operator on the Hilbert space L2(R3)⊕L2(R3).
To facilitate later discussions we define operators L+

E,s, L
−
E,s so that LE,s takes the form

LE,s =

 0 L−E,s

−L+
E,s 0

 . (5.5.6)

In the rest of this section we study various aspects of LE,s. This will eventually yield a convenient
reformulation of Theorem 5.3.

5.5.1. The zero eigenspace of the linearized operator LE,s

Now we study the eigenvalues of the operator LE,s. By a direct computation we find that

L−E,sψE,s = 0 .

Hence
(

0, ψE,s

)ᵀ
is an eigenvector of LE,s with eigenvalue 0. Differentiation of the left hand

side with respect to E yields

L+
E,s∂EψE,s = ψE,s .

It follows that
(
−∂EψE,s, 0

)ᵀ
is an associated generalized eigenvector of

(
0, ψE,s

)ᵀ
for LE,s.

Similarly,

L∗E,s

ψE,s
0

 =

 0 −L+
E,s

L−E,s 0

ψE,s
0

 = 0

and

L∗E,s

 0

∂EψE,s

 = −

ψE,s
0

 .
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Lemma 5.7. 0 is the only eigenvalue of LE,s in the ball of radius G0/2 around zero (cf. (He)).
More precisely, if Γ parametrizes its boundary in counterclockwise direction then

P dE,s := − 1

2πi

∮
Γ
(LE,s − z)−1dz =

2

∂E‖ψE,s‖22

∣∣∣∣∣∣∂EψE,s0

〉〈
ψE,s

0

∣∣∣∣∣∣+

∣∣∣∣∣∣ 0

ψE,s

〉〈
0

∂EψE,s

∣∣∣∣∣∣
 .

(5.5.7)

Proof. By the above considerations

span

∣∣∣∣∣∣ 0

ψE,s

〉
,

∣∣∣∣∣∣∂EψE,s0

〉 ⊂ ranP dE,s ,

span

∣∣∣∣∣∣ψE,s0

〉
,

∣∣∣∣∣∣ 0

∂EψE,s

〉 ⊂ ran(P dE,s)
∗ .

Claim: These two inclusion are equalities.
To see the claim note that

JLE,s =

−∆ + Vs − E∗,s 0

0 −∆ + Vs − E∗,s

+AE,s = HE∗,s,s +AE,s,

where

AE,s =

E∗,s − E + 3bψ2
E,s 0

0 E∗,s − Es + bψ2
E,s

 (5.5.8)

is a small perturbation with ‖AE,s‖L2→L2 ∼ |E∗,s − E| � 1. For z ∈ Γ,

JLE,s − z = HE∗,s,s +AE,s − z = (HE∗,s,s − z)(1 + (HE∗,s,s − z)−1AE,s) (5.5.9)

is invertible on L2(R3) by ‖(HE∗,s,s − z)−1‖L2→L2 = 2/G0 and using a Neumann series, in
particular

‖(JLE,s − z)−1‖L2→L2 . 1/G0 . (5.5.10)

This justifies to write

(JLE,s − z)−1 − (HE∗,s,s − z)−1 = −(JLE,s − z)−1AE,s(HE∗,s,s − z)−1 ,

and so

‖ 1

2πi

∮
Γ
(JLE,s−z)−1dz − 1

2πi

∮
Γ
(HE∗,s,s − z)−1dz‖L2→L2

≤ ‖ 1

2πi

∮
Γ
(JLE,s − z)−1AE,s(HE∗,s,s − z)−1dz‖L2→L2 < 1 . (5.5.11)

By [RS78], Lemma on p. 14, it follows that the two spectral projections on the left hand side
of this inequality have equal dimension and hence the claim follows from the fact that

− 1

2πi

∮
Γ
(HE∗,s,s − z)−1dz =

∣∣∣∣∣∣v∗,s0

〉〈
v∗,s

0

∣∣∣∣∣∣+

∣∣∣∣∣∣ 0

v∗,s

〉〈
0

v∗,s

∣∣∣∣∣∣ .
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is two-dimensional.
We may therefore write

P dE,s =

∣∣∣∣∣∣ 0

ψE,s

〉α1

〈
ψE,s

0

∣∣∣∣∣∣+ α2

〈
0

∂EψE,s

∣∣∣∣∣∣
+

∣∣∣∣∣∣∂EψE,s0

〉β1

〈
ψE,s

0

∣∣∣∣∣∣+ β2

〈
0

∂EψE,s

∣∣∣∣∣∣


for some αi, βi ∈ C to be determined. By

P dE,s

∣∣∣∣∣∣ 0

ψE,s

〉
=

∣∣∣∣∣∣ 0

ψE,s

〉
,

β2 = 0 and by

P dE,s

∣∣∣∣∣∣∂EψE,s0

〉
=

∣∣∣∣∣∣∂EψE,s0

〉
,

α1 = 0. But then, by the same equations,

α2 = β1 =
1

〈∂EψE,s, ψE,s〉
=

2

∂E‖ψE,s‖22
,

which proves the lemma.

Remark 5.8. We say that ~χs belongs to the continuous subspace if P dE,s~χs = 0 and we say that
it belongs to the discrete subspace if P cE,s~χs := ~χs − P dE,s~χs = 0. That P cE,s indeed corresponds
to the continuous spectrum is true, however, this fact is not needed for the proof of Theorem
5.3 and hence we omit its proof. In that sense these expressions can be viewed as a handy
terminology.

5.6. Reformulation of Theorem 5.3

In the proof of the main theorem we shall make explicit use of dispersive estimates. For this,
a slightly different decomposition than (5.5.1) turns out to be useful. It relies on the following
lemma which can essentially be found in [YT02]. With this tool we will subsequently give a
technically more convenient reformulation of Theorem 5.3.

Lemma 5.9. For any φ with ‖φ‖2 � 1 there exist parameters Ê = Ê(E, s, φ) and γ̂ =
γ̂(E, s, φ), with Ê(E, s, 0) = E and γ̂(E, s, 0) = 0, such that

ψE,s + φ = eiγ̂
(
ψÊ,s + φÊ,s

)
,

where φÊ,s lies in the continuous subspace of LÊ,s. The dependence of Ê, γ̂ on E, φ is smooth;
the dependence on s is C2.
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Proof. The proof is an application of the implicit function theorem. Recall the conditions
for φÊ,s to be in the continuous subspace of LÊ,s (cf. Section 5.5): <φÊ,s ⊥ ψÊ,s and
=φÊ,s ⊥ ∂ÊψÊ,s. Thus,

K1(γ̂, Ê, E, s, φ) := 〈R
(

e−iγ̂ (ψE,s + φ)
)
− ψÊ,s, ψÊ,s〉 = 0 , (5.6.1)

K2(γ̂, Ê, E, s, φ) := 〈I
(

e−iγ̂ (ψE,s + φ)
)
, ∂ÊψÊ,s〉 = 0 . (5.6.2)

Whenever E is in a sufficiently small punctured neighborhood of E∗,s and sign(E−E∗) = sign(b)
the function

K := (K1,K2)ᵀ : R4 × L2(R3)→ R2

is C2 with respect to s and smooth with respect to the other variables.
To verify the applicability of the implicit function theorem it is important to verify that

K = (K1,K2)ᵀ satisfies the conditions that

(i) K(0, E,E, s, 0) = (0, 0)ᵀ,

(ii) the matrix ∂K1
∂γ̂

∂K1

∂Ê
∂K2
∂γ̂

∂K2

∂Ê

∣∣∣∣∣∣
(0,E,E,s,0)

is invertible.

It is easy to see the first, for the second note that

∂K1

∂γ̂
|(0,E,E,s,0) = 0 ,

∂K1

∂Ê
|(0,E,E,s,0) = −〈∂EψE,s, ψE,s〉 6= 0 ,

∂K2

∂γ̂
|(0,E,E,s,0) = −〈ψE,s, ∂EψE,s〉 6= 0 ,

∂K2

∂Ê
|(0,E,E,s,0) = 0 .

Hence there exist unique functions Ê(E, s, φ) and γ̂(E, s, φ) in a sufficiently small “punctured”
neighborhood of {(E∗,s, s, 0)|s ∈ [0, 1]} intersected with {(E, s, 0)|sign(E −E∗,s) = sign(b)}. Ê
and γ̂ satisfy Equations (5.6.1, 5.6.2) identically with the asserted regularity.

In figurative language what the lemma says is the following: As long as ϕs in Ansatz (5.5.1)
is sufficiently small, then, at the cost of introducing an additional phase γεs , we can “shadow”
ψEs,s ∈M by ψEεs ,s such that

Ψs = e−
i
ε
(
∫ s
0 E

ε
s′ds

′−γεs)(ψEεs ,s + φs) (5.6.3)

with P dEεs ,sφs = 0.
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In the following we reformulate Theorem 5.3 in terms of estimates on various components
of (5.6.3). Equation (5.5.5) is modified to (recall the convention (5.5.2))

~̇φs =
1

ε
Ls~φs −

1

ε
γ̇εsJ

~φs −
d

ds
~ψEεs ,s −

1

ε
γ̇εt J

~ψEεs ,s −
1

ε
N(~ψEεs ,s,

~φs) , (5.6.4)

where Ls := LEεs ,s and, for later use, P
d
s := P dEεs ,s.

As a first consequence we derive equations for Ėεs , γ̇εs , the modulation equations. To that
end recall the condition P ds ~φs = 0, which, by (5.5.7) amounts to〈

~φs

∣∣∣∣∣∣ψE,s0

〉
=

〈
~φs

∣∣∣∣∣∣ 0

∂EψE,s

〉
= 0 .

By this and Equation (5.6.4) we obtain

Ėεs(〈∂EψEεs ,s, φ1,s〉 − 〈ψEεs ,s, ∂EψEεs ,s〉) +
γ̇εs
ε
〈ψEεs ,s, φ2,s〉 = −〈∂sψEεs ,s, φ1,s〉+ 〈ψEεs ,s, ∂sψEεs ,s〉

+
1

ε
〈ψEεs ,s, N(~ψEεs ,s,

~φs)〉,
(5.6.5)

Ėεs〈∂2
EψEεs ,s, φ2,s〉 −

γ̇εs
ε

(〈∂EψEεs ,s, φ1,s〉+ 〈∂EψEεs ,s, ψEεs ,s〉) =
1

ε
〈∂EψEεs ,s, N(~ψEεs ,s,

~φs)〉

− 〈∂s∂EψEεs ,s, φ2,s〉 . (5.6.6)

Next, it turns out that we also need to establish a refined decomposition for the quantity
~φs itself as follows

~φs = εL−1
s P cs

d

ds
~ψEεs ,s +

~̃
φs = εL−1

s P cs ∂s
~ψEεs ,s +

~̃
φs . (5.6.7)

By Lemma 5.7, L−1
s : P cs (L2(R3)) → P cs (L2(R3)) is a well-defined bounded operator. The

second equality in (5.6.7) is a consequence of Equation (5.5.7). In particular, we obtain as
initial data for Theorem 5.3

~̃
φ0 = −εL−1

0 P c0∂s
~ψEεs ,s|t=0 = −εL−1

0 P c0∂s
~ψEs,s|s=0 . (5.6.8)

The proof of the following regularity lemma is given in Subsection 5.8.2.

Lemma 5.10. For (E, s) sufficiently close to (E∗,s, s) and sign(E − E∗,s) = sign(b) the map

Φ : R2 → H2,σ(R3)

(E, s) 7→ L−1
E,sP

c
s ∂s

~ψE,s

is well-defined and continuously differentiable.

To complement the modulation equations we may now continue the analysis of Equa-
tion (5.6.4) in the range of P cs . Plugging the Decomposition (5.6.7) into (5.6.4) yields the
equation for ~̃φs,

~̇̃
φs =

1

ε
Ls
~̃
φs −

γ̇εs
ε
J ~̃φs − γ̇εsJL−1

s P cs ∂s
~ψEεs ,s − P

d
s

d

ds
~ψEεs ,s −

γ̇εs
ε
J ~ψEεs ,s − ε

d

ds
(L−1

s P cs ∂s
~ψEεs ,s)

− 1

ε
N(~ψEεs ,s, εL

−1
s P cs ∂s

~ψEεs ,s +
~̃
φs) .
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We put P cs on both sides and use ~̇̃φs = Ṗ cs
~̃
φs + P cs

~̇̃
φs = −Ṗ ds

~̃
φs + P cs

~̇̃
φs in order to obtain

~̇̃
φs =

1

ε
Ls
~̃
φs −

γ̇εs
ε
P csJ

~̃φs − Ṗ ds
~̃
φs − γ̇εsP csJL−1

s P cs ∂s
~ψEεs ,s −

γ̇εs
ε
P csJ

~ψEεs ,s︸ ︷︷ ︸
=0

−εP cs
d

ds
(L−1

s P cs ∂s
~ψEεs ,s)

− 1

ε
P csN(~ψEεs ,s, εL

−1
s P cs ∂s

~ψEεs ,s +
~̃
φs) . (5.6.9)

The announced reformulation of Theorem 5.3 reads as follows:

Theorem 5.11 (Reformulation of Theorem 5.3). ~̃φs, Eεs , γεs satisfy the following estimates:

sup
0≤s≤1

|Eεs − Es| . ε , (5.6.10)

sup
0≤s≤1

|γ̇εs | . ε2 , (5.6.11)

sup
0≤s≤1

‖~̃φs‖H2 . ε . (5.6.12)

Clearly, Theorem 5.11 implies Theorem 5.3: with ξεs := 1
ε

∫ s
0

(
Eεs′ − Es′

)
ds′ it follows that

sup
0≤s≤1

‖Ψs − e−i(ξεs+ 1
ε

∫ s
0 Es′ds

′)ψEs,s‖H2 = sup
0≤s≤1

‖ei
γεs
ε (ψEεs ,s + φs)− ψEs,s‖H2

. sup
0≤s≤1

‖ψEεs ,s − ψEs,s‖H2 + sup
0≤s≤1

‖φs‖H2 + ε

. ε .

The first inequality makes use of (5.6.11), the second of Proposition 5.2 in combination with
(5.6.10) as well as (5.6.12).

5.7. Proof of Theorem 5.11

In this section we prove Theorem 5.11. We begin with presenting the main ideas. The core of
the proof is a bootstrap argument. Specifically: Recall that σ > 2. Define a locally controlling
function M (l)

s as

M (l)
s : = sup

0≤s′≤s
‖~̃φs′‖H2,−σ

and a globally controlling function M (g)
s as

M (g)
s : = sup

0≤s′≤s
‖~̃φs′‖H2 ,

cf. Equation (5.6.7). We formulate the bootstrap assumptions

(Bl) M
(l)
s ≤ 2Aε‖L−1

0 P c0∂s
~ψEs,s|s=0‖H2∩W 2,1 ,

(Bg) M
(g)
s ≤ ε

2
3 ,
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where A is the constant in the dispersive Estimate (5.7.18) below. If L−1
0 P c0∂s

~ψE0,s = 0 then
(Bl) is replaced by

(B′l) M
(l)
s ≤ ε .

Note that in view of Equation (5.6.7): ‖~φs′‖H2,−σ . ε and ‖~φs′‖H2,−σ . ε
2
3 (both uniformly

in s′ ≤ s ≤ 1) under these assumptions.
We then first establish the assertion of Theorem 5.11 only for a small subinterval of positive

length [0, s0] ⊂ [0, 1]. Here s0 is independent of ε if the latter is sufficiently small. We show that,
given bootstrap assumption (Bl), resp. (B′l) we can control the derivatives of the modulation
parameters, Ėεs and γ̇εs , given by (5.6.5, 5.6.6).

With this at hand we may turn to the analysis of ~̃φs itself, which lies in the continuous
subspace of the linear operator Ls. Here we make use of dispersive estimates for the propagator
of a reference Hamiltonian H0. This, together with bootstrap assumption (Bg), will enable us

to improve the estimates for ~̃φs on the small interval [0, s0]. The assertion then follows from a
continuity argument.

In a second step, we extend the result to the whole interval [0, 1] using essentially the same
reasoning.

5.7.1. Theorem 5.11 for small times

Mathematically, the main work for the proof of Theorem 5.11 lies in the demonstration of its
validity on a small interval [0, s0] with s0 being independent of ε.

The most important Estimate (5.6.12) of Theorem 5.11 is captured by the following pro-
position (the Estimates (5.6.10, 5.6.11) are treated in Subsection 5.7.2):

Proposition 5.12 (Theorem 5.11 for small times). There exists s0 > 0 such that whenever
(Bl, Bg) resp. (B′l, Bg) hold for s ≤ s0 then in fact the better estimates

M (l)
s ≤

5

3
Aε‖L−1

0 P c0∂s
~ψE0,s|s=0‖H2∩W 2,1 , (5.7.1)

M (g)
s . ε (5.7.2)

are true for all ε� 1. If L−1
0 P c0∂s

~ψE0,s = 0 then (5.7.1) is replaced by

M (l)
s . ε

2 . (5.7.3)

The implicit multiplicative constants in (5.7.2, 5.7.3) are uniform in s ∈ [0, s0]. It follows that

M (g)
s0 . ε (5.7.4)

for all ε� 1.

Clearly, Estimate (5.7.4) follows from (5.7.1, 5.7.2): By Proposition 5.5 and Lemma 5.10
‖~̃φs‖H2 depends continuously on s and hence so does ‖~̃φs‖H2,−σ . By (5.6.8) the initial data
satisfies

‖~̃φ0‖H2,−σ ≤ Aε‖L−1
0 P c0∂s

~ψEs,s|s=0‖H2∩W 2,1 ,

‖~̃φ0‖H2 ≤ ε‖L−1
0 P c0∂s

~ψEs,s|s=0‖H2 ,
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resp.

~̃
φ0 = 0 if L−1

0 P c0∂s
~ψEs,s = 0 .

Hence there is a maximal 0 < τ ≤ s0 such that (Bl, Bg) resp. (B′l, Bg) are satisfied with s = τ
as long as ε � 1. Note that a priori τ may depend on ε. But in fact, τ = s0: If we assume
τ < s0, then by Estimates (5.7.1, 5.7.2) and continuity of the norms it follows that (Bl, Bg)
resp. (B′l, Bg) also hold on a slightly bigger interval than [0, τ ]. This contradicts the maximality
of τ .

In order to show Estimates (5.7.1, 5.7.2) we first establish controls for the modulation para-
meters. This will also yield the remaining assertions (Estimates (5.6.11, 5.6.12)) of Theorem 5.11
on [0, s0].

5.7.2. Control of modulation parameters

The two remaining Estimates (5.6.10, 5.6.11) of Theorem 5.11 are obtained by considering the
modulation equations (5.6.5, 5.6.6): Since M ⊂ H2,l(R3) for every l ≥ 0 is a C2-manifold it
is immediate that every scalar product in (5.6.5) and (5.6.6) which involves φs is of order ε
whenever assumption (Bl) resp. (B′l) holds. For ε� 1 it follows that

|Ėεs | . 1 , (5.7.5)

|γ̇εs | . ε2 , (5.7.6)

both implicit relative constants being uniform in s. Furthermore the following holds:

Lemma 5.13. If (Bl) resp. (B′l) holds then

|Eεs − Es| . ε ,

uniformly in s.

Proof. We apply a Grönwall-type argument. The function f(E, s) := − 〈ψE,s,∂sψE,s〉〈ψE,s,∂EψE,s〉 is C
1 in

s and smooth in E by Proposition 5.2. By (Bl) and (5.6.5)

Ėεs = f(Eεs , s) +O(ε) ,

where O(ε) is uniformly bounded in s. By constancy of 〈ψEs,s, ψEs,s〉 also

Ės = f(Es, s) .

Therefore the mean value theorem applied to f yields

Ėεs − Ės = f(Es, s)− f(Eεs , s) +O(ε)

≤ C (|Eεs − Es|+ ε) , (5.7.7)

with an s-independent constant C and thus, using Eε0 = E0 (see Theorem 5.3)

|Eεs − Es| ≤ Cεs+ C

∫ s

0
|Eεs′ − Es′ |ds′ .

This last inequality yields for x(s) := e−Cs
∫ s

0 ds
′ |Eεs′ − Es′ |

ẋ(s) ≤ Cεse−Cs

which, after integration, implies the claim.
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5.7.3. Proof of Proposition 5.12

We now turn to the proof of the remaining Estimates (5.7.1, 5.7.2) in Proposition 5.12. Our
starting point is the following refinement of Equation (5.6.9)

~̇̃
φs = −1

ε
J(HEεs ,u + γ̇εs)

~̃
φs +

1

ε
(Ls + JHEεs ,u)

~̃
φs +

γ̇εs
ε
P ds J

~̃φs − P ds Ṗ ds
~̃
φs − γ̇εsP csJL−1

s P cs ∂s
~ψEεs ,s

− εP cs
d

ds
(L−1

s P cs ∂s
~ψEεs ,s)−

1

ε
P csN(~ψEεs ,s, εL

−1
s P cs ∂s

~ψEεs ,s +
~̃
φs) . (5.7.8)

Here we made use of

Ṗ ds
~̃
φs = Ṗ ds P

c
s
~̃
φs = −P ds Ṗ cs

~̃
φs = P ds Ṗ

d
s
~̃
φs .

The fact that the linear operator Ls is time-dependent complicates the analysis and we find it
convenient to introduce the reference Hamiltonian

HEεs ,u :=

−∆ + Vu − Eεs 0

0 −∆ + Vu − Eεs

 , (0 ≤ u ≤ 1) . (5.7.9)

Its difference to Ls,

Ls −
(
−JHEεs ,u

)
= −J

Vs − Vu + 3bψ2
Eεs ,s

0

0 Vs − Vu + bψ2
Eεs ,s

 , (5.7.10)

is small and decays at spatial infinity. More precisely: given δ > 0 the first entry of this last
matrix is estimated by

‖Vs − Vu + 3bψ2
Eεs ,s
‖H2,σ ≤ δ , (5.7.11)

and similarly for the second entry as long as |s − u| ≤ τ∗ � 1, η � 1 (recall Proposition 5.2
and (Hd)). Duhamel’s principle and application of P cH0

yield for any s ≤ s0

P cH0

~̃
φs =U0(s, 0)P cH0

~̃
φ0 (5.7.12)

+

∫ s

0
ds′ U0(s, s′)

(1

ε
P cH0

(Ls′ + JH0)
~̃
φs′ +

γ̇εs′

ε
P cH0

P ds′J
~̃φs′ − P cH0

P ds′Ṗ
d
s′
~̃
φs′ (5.7.13)

− γ̇εs′P cH0
P cs′JL

−1
s′ P

c
s′∂s′

~ψEε
s′ ,s
′ − εP cH0

P cs′
d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′)

(5.7.14)

− 1

ε
P cH0

P cs′N(~ψEε
s′ ,s
′ , εL−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′ +

~̃
φs′)

)
. (5.7.15)

Here Uu(s, s′) is the propagator generated by HEεs ,s
′ + γ̇εs , that is,

ε∂sUu(s, s′) = −J(HEεs ,u + γ̇εs)Uu(s, s′) .

Since HEεs ,u does – up to a multiple of the identity – not depend on s, it follows that also
Uu(s, s′) satisfies the propagator estimates of Theorem 5.14 below for arbitrary u ∈ [0, 1]. In
addition this justifies the shorter notation Hu := HEεs ,u. As before the projections onto the
discrete and continuous subspace of Hu are denoted by P dHu and P cHu , respectively.

To estimate (5.7.12-5.7.15) we rely on appropriate propagator estimates:
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Theorem 5.14 (Goldberg). Under conditions (Hr,Hd) it holds for arbitrary τ ∈ [0, 1] and
t ∈ R that

‖e−itHτP cHτ ‖L1→L∞ . |t|−
3
2 (5.7.16)

‖e−i t
ε
HτP cHτχ‖H2 ' ‖P cHτχ‖H2 . ‖χ‖H2 , (5.7.17)

‖e−i t
ε
HτP cHτχ‖H2,−σ ≤ A〈

t

ε
〉−

3
2 ‖χ‖H2∩W 2,1 , (5.7.18)

where ‖χ‖H2∩W 2,1 := ‖χ‖H2 + ‖χ‖W 2,1. The constant A and the multiplicative constant in
(5.7.17) can be chosen independent of τ .

Estimate (5.7.16) can be found in [Gol06]; Estimates (5.7.17, 5.7.18) are easy consequences
of it. For convenience we show this and the statement about A in Subsection 5.8.2.

After these preparatory remarks we can proceed with our analysis of Equation (5.7.8). By
the decay of ~ψEεs ,s and v∗,s, cf. (Sub)sections 5.2, 5.8.1, and by (5.7.11) the H2-norm of every

term in (5.7.13) can be estimated in terms of ‖~̃φs′‖H2,−σ . This motivates to consider such local
estimates of ~̃φs′ first.

We start with the left hand side in Equation (5.7.12). The fact that the projection there
can be neglected (and also in estimates with respect to ‖ · ‖H2) is the content of the following
lemma whose proof is deferred to Subsection 5.8.2.

Lemma 5.15. For sufficiently small s0, η the following holds: If 0 ≤ s ≤ s0 then for all ε� 1

‖P cH0
~̃φs‖H2 ' ‖~̃φs‖H2 ,

‖P cH0
~̃φs‖H2,−σ ' ‖~̃φs‖H2,−σ .

For the right hand side, the local estimates for (5.7.12-5.7.15) are collected in the following
lemma. Its proof is provided in the next subsection.

Lemma 5.16. Assume (Bl, Bg) resp. (B′l, Bg). For any δ > 0 there exists 0 < s0 ≤ 1 and
η � 1 such that for s ≤ s0 the following holds: For all ε� 1 we have

‖(5.7.12)‖H2,−σ ≤ A〈
s

ε
〉−

3
2 ε‖L−1

0 P c0∂t
~ψEεs ,s|t=0‖H2∩W 2,1 ' 〈

s

ε
〉−

3
2 ε ,

‖(5.7.13)‖H2,−σ . δ(ε〈
s

ε
〉−

3
2 + ε2)M

( 3
2
,l)

s + ε2 ,

‖(5.7.14)‖H2,−σ . ε2 ,

‖(5.7.15)‖H2,−σ . ε2 ,

where M
( 3

2
,l)

s := sup0≤s′≤s(ε〈 s
′

ε 〉
− 3

2 + ε2)−1‖~̃φs′‖H2,−σ . If L−1
0 P c0∂s

~ψE0,s = 0 then the first two
estimates are replaced by

‖(5.7.12)‖H2,−σ = 0 ,

‖(5.7.13)‖H2,−σ . δM (l)
s + ε2 .

All implicit multiplicative constants are uniform in s ∈ [0, s0].

Given Lemma 5.16 we are ready to prove Proposition 5.12.
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Proof of Proposition 5.12. We discuss first the case where L−1
0 P c0∂s

~ψE0,s 6= 0. Given
δ > 0 we choose s ≤ s0 and η accordingly so that the local estimates of Lemma 5.16 hold.
Together with the results in Lemma 5.15 we obtain for all sufficiently small ε

‖~̃φs‖H2,−σ ≤ Cs0,A
(
ε〈s
ε
〉−

3
2 + δ(ε〈s

ε
〉−

3
2 + ε2)M

( 3
2
,l)

s + ε2

)
. (5.7.19)

Here we have made the multiplicative constant Cs0,A explicit in order to define our prescription
for δ: We choose

Cs0,Aδ ≤ 1/2 . (5.7.20)

Consequently,

M
( 3

2
,l)

s0 ≤ 2Cs0,A (5.7.21)

and therefore

‖~̃φs‖H2,−σ ≤ 2Cs0,A

(
ε〈s
ε
〉−

3
2 + ε2

)
. (5.7.22)

This estimate has two important consequences. First, we obtain a ~̃φs-independent bound in the
local estimates of (5.7.13) due to (5.7.21). That is, we have

‖~̃φs‖H2,−σ ≤ Aε‖L−1
0 P c0∂s

~ψE0,s|s=0‖H2∩W 2,1 + C̃s0,A
(
δε+ ε2

)
.

In addition to (5.7.20) we require that δ also satisfies δ ≤ 1
2C̃s0,A

A‖L−1
0 P c0∂s

~ψE0,s|s=0‖H2∩W 2,1 .

Accordingly, s0 and η can be chosen such that bootstrap assumption (Bl) is for s ∈ [0, s0]
improved to

M (l)
s ≤

5

3
Aε‖L−1

0 P c0∂s
~ψE0,s|s=0‖H2∩W 2,1

for all sufficiently small ε.
Second, by (Bl, Bg) and Lemma 5.13, for s′ ≤ s0 it holds

‖N(~ψEε
s′ ,s
′ , ~φs′)‖H2 . ε2 .

Hence (5.7.12-5.7.15) as well as (5.7.22) yield

‖~̃φs‖H2 .‖~̃φ0‖H2 +

∫ s

0
ds′
(1

ε
‖~̃φs′‖H2,−σ + ε2‖L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′‖H2 + ε‖ d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′)‖H2

+
1

ε
‖N(~ψEε

s′ ,s
′ , εL−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′ +

~̃
φs′)‖H2

)
. ε+

∫ s

0
ds′

(
1

ε
(ε〈s

′

ε
〉−

3
2 + ε2) + ε

)
. ε .

Note that the implicit multiplicative constant can be chosen to be uniform in s ∈ [0, s0].
The case L−1

0 P c0∂s
~ψE0,s = 0 is easier: Estimate (5.7.19) is then modified to

‖~̃φs‖H2,−σ ≤ Cs0,A
(
δM (l)

s + ε2
)
. (5.7.23)
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With (5.7.20) one obtains

M (l)
s0 . ε

2 (5.7.24)

proving (5.7.3). Estimating (5.7.12-5.7.15) in ‖ · ‖H2 similarly as above yields

M (g)
s . ε ,

with an implicit multiplicative constant being uniform in s ∈ [0, s0]. This proves Proposi-
tion 5.12.

5.7.4. Proof of Lemma 5.16

This subsection will be devoted to the proof of Lemma 5.16 and we now estimate (5.7.12-5.7.15)
in H2,−σ(R3) term by term.

Local estimate for (5.7.12): If L−1
0 P c0∂s

~ψE0,s = 0 there is nothing to do, otherwise: By

‖〈x〉−σ〈x〉σL−1
s P cs ∂s

~ψEεs ,s‖W 2,1 . ‖〈x〉−σ‖H2‖L−1
s P cs ∂s

~ψEεs ,s‖H2,σ ,

and Theorem 5.14:

‖U0(s, 0)P cH0

~̃
φ0‖H2,−σ ≤ A〈

s

ε
〉−

3
2 ε‖L−1

0 P c0∂s
~ψEεs ,s|s=0‖H2∩W 2,1 ' 〈

s

ε
〉−

3
2 ε .

Local estimate for (5.7.13): To apply Theorem 5.14 we need bounds for the ‖·‖H2∩W 2,1-norms
of each term:

Lemma 5.17. Given δ > 0 there are (small) s0, η such that

‖P cH0
(Ls + JH0)~φs‖H2∩W 2,1 . δ‖~φs‖H2,−σ , (5.7.25)

‖P cH0
P ds J

~φs‖H2∩W 2,1 . ‖~φs‖H2,−σ , (5.7.26)

‖P cH0
P ds Ṗ

d
s
~φs‖H2∩W 2,1 . ‖~φs‖H2,−σ . (5.7.27)

All estimates are uniform in s ∈ [0, s0] and ε as long as the latter is sufficiently small.

A proof of this lemma is given in Subsection 5.8.2. Here we simply stress that it is in (5.7.25)
where (5.7.11) enters.

First, we treat the case L−1
0 P c0∂s

~ψE0,s 6= 0. Lemma 5.17, Theorem 5.14, and Estimate (5.7.6)
yield for s ≤ s0 and s0, η, ε� 1:∥∥∥∫ s

0
ds′ U0(s, s′)

(
1

ε
P cH0

(Ls′ + JH0)
~̃
φs′ +

γ̇εs′

ε
P cH0

P ds′J
~̃φs′ − P cH0

P ds Ṗ
d
s
~̃
φs′

)∥∥∥
H2,−σ

.
∫ s

0
ds′〈s− s

′

ε
〉−

3
2

(1

ε
‖P cH0

(Ls′ + JH0)~̃φs′‖H2∩W 2,1 + ε‖P cH0
P ds′J

~̃φs′‖H2∩W 2,1

+ ‖P cH0
P ds′Ṗ

d
s′
~̃φs′‖H2∩W 2,1

)
.
∫ s

0
ds′〈s− s

′

ε
〉−

3
2

(
(ε〈s

′

ε
〉−

3
2 + ε2)(ε〈s

′

ε
〉−

3
2 + ε2)−1 δ

ε
‖~̃φs′‖H2,−σ + ‖~̃φs′‖H2,−σ

)
. δ(ε〈s

ε
〉−

3
2 + ε2)M

( 3
2
,l)

s + ε2 ,
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with M ( 3
2
,l)

s = sup0≤s′≤s(ε〈 s
′

ε 〉
− 3

2 + ε2)−1‖~̃φs′‖H2,−σ . In the last inequality we applied (Bl) as
well as the following key observations:

Lemma 5.18. ∫ s

0
ds′〈s− s

′

ε
〉−

3
2 . ε ,∫ s

0
ds′〈s− s

′

ε
〉−

3
2 〈s
′

ε
〉−

3
2 . ε〈s

ε
〉−

3
2 .

Proof. The first estimate follows immediately after a change of variables. For the second we
divide the integral region into two parts [0, s/2] and [s/2, s] and obtain

∫ s

0
ds′〈s− s

′

ε
〉−

3
2 〈s
′

ε
〉−

3
2 =

∫ s/2

0
ds′〈s− s

′

ε
〉−

3
2 〈s
′

ε
〉−

3
2 +

∫ s

s/2
ds′〈s− s

′

ε
〉−

3
2 〈s
′

ε
〉−

3
2

. 〈 s
2ε
〉−

3
2

(∫ s/2

0
ds′〈s

′

ε
〉−

3
2 +

∫ s

s/2
ds′〈s− s

′

ε
〉−

3
2

)
. ε〈s

ε
〉−

3
2 .

If L−1
0 P c0∂s

~ψE0,s = 0 then the above estimates are simpler:

∥∥∥∫ s

0
ds′ U0(s, s′)

(
1

ε
P cH0

(Ls′ + JH0)
~̃
φs′ +

γ̇εs′

ε
P cH0

P ds′J
~̃φs′ − P cH0

P ds Ṗ
d
s
~̃
φs′

)∥∥∥
H2,−σ

.
∫ s

0
ds′〈s− s

′

ε
〉−

3
2

(1

ε
‖P cH0

(Ls′ + JH0)~̃φs′‖H2∩W 2,1 + ε‖P cH0
P ds′J

~̃φs′‖H2∩W 2,1

+ ‖P cH0
P ds′Ṗ

d
s′
~̃φs′‖H2∩W 2,1

)
.
∫ s

0
ds′〈s− s

′

ε
〉−

3
2

(
δ

ε
‖~̃φs′‖H2,−σ + ‖~̃φs′‖H2,−σ

)
. δM (l)

s + ε2 .

Local estimate for (5.7.14):

‖
∫ s

0
ds′ U0(s, s′)

(
−γ̇εs′P cH0

P cs′JL
−1
s′ P

c
s′∂s′

~ψEε
s′ ,s
′ − εP cH0

P cs′
d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′)

)
‖H2,−σ

.
∫ s

0
ds′ 〈s− s

′

ε
〉−

3
2 ε

(
‖L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′‖H2∩W 2,1 + ‖ d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′)‖H2∩W 2,1

)
. ε2.

The first inequality results from Estimate (5.7.6) and the fact that ‖P cH0
P cs ‖H2∩W 2,1→H2∩W 2,1

is uniformly bounded in ε. The second inequality follows from Lemmata 5.10, 5.18 and (Bl) as
well as ‖ · ‖H2∩W 2,1 . ‖ · ‖H2,σ .
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Local estimate for (5.7.15): Instead of expanding N(~ψEε
s′ ,s
′ , εL−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′ +

~̃
φs′) it is more

convenient to consider N(~ψEε
s′ ,s
′ , ~φs′). By Equation (5.5.5) we may conclude that

- terms which are quadratic in φs′ come with a factor of ψEε
s′ ,s
′ which decays rapidly at

spatial infinity. By (Bl)

‖ψEε
s′ ,s
′φ2
s′‖H2∩W 2,1 = ‖〈x〉2σψEε

s′ ,s
′〈x〉−2σφ2

s′‖H2∩W 2,1 . ‖~̃φs′‖2H2,−σ . ε2 ,

- terms which are cubic in φs′ are estimated by

‖|φs′ |2φs′‖H2∩W 2,1 . ‖~̃φs′‖3H2 . ε2 .

Here the bootstrap assumption (Bg) for the global norm ‖~̃φs‖H2 has been used.

Hence

‖
∫ s

0
ds′ U0(s, s′)

1

ε
P cH0

P cs′N(~ψEε
s′ ,s
′ , ~φs′)‖H2,−σ .

∫ s

0
ds′ 〈s− s

′

ε
〉−

3
2

1

ε
· ε2 . ε2 .

This finishes the proof of Lemma 5.16. �

5.7.5. Proof of Theorem 5.11 for all s ∈ [0, 1]

So far we have established Theorem 5.11 on the small interval [0, s0] only. Recall that s0 does
not depend on ε if ε � 1. As announced in the beginning of this section the extension to all
s ∈ [0, 1] is similar and we therefore give the proof in one step now.

Proposition 5.19. For η � 1 there exists a small time τ∗ > 0 and constant Cτ∗ with the
following property: Whenever

M
(l)
s∗ ≤ Cs∗ε

(
〈s
ε
〉−

3
2 + ε

)
M

(g)
s∗ ≤ Cs∗ε

for s∗ ∈ [s0, 1] then

M
(l)
s∗+τ∗ ≤ Cτ∗Cs∗ε

(
〈s
ε
〉−

3
2 + ε

)
(5.7.28)

M
(g)
s∗+τ∗ ≤ Cτ∗Cs∗ε (5.7.29)

for all ε� 1.

Proof of Theorem 5.11. Clearly the hypothesis of the proposition is satisfied at s∗ = s0.
Estimate (5.6.12) follows by iteration. Estimates (5.6.10) and (5.6.11) are proven by the same
techniques as before.
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Proof of Proposition 5.19. We choose s to satisfy

s∗ ≤ s ≤ s∗ + τ∗ , (5.7.30)

where τ∗ will be defined later. By Duhamel’s principle,

P cHs∗
~̃
φs =Us∗(s, 0)P cHs∗

~̃
φ0 (5.7.31)

+

(∫ s∗

0
+

∫ s

s∗

)
ds′ Us∗(s, s

′)×

×
(1

ε
P cHs∗ (Ls′ + JHs∗)

~̃
φs′ +

γ̇εs′

ε
P cHs∗P

d
s′J

~̃φs′ − P cHs∗P
d
s′Ṗ

d
s′
~̃
φs′ (5.7.32)

− γ̇εs′P cHs∗P
c
s′JL

−1
s′ P

c
s′∂s′

~ψEε
s′ ,s
′ − εP cHs∗P

c
s′
d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′) (5.7.33)

− 1

ε
P cHs∗P

c
s′N(~ψEε

s′ ,s
′ , εL−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′ +

~̃
φs′)

)
. (5.7.34)

In what follows we estimate (5.7.31-5.7.34) by assuming (Bl, Bg) resp. (B′l, Bg) on [s∗, s∗+ τ∗].
In the end we will justify this and conclude the claim.

Local estimate for (5.7.31): By (5.7.30)

‖Us∗(s, 0)P cHs∗
~̃
φ0‖H2,−σ ≤ A〈

s

ε
〉−

3
2 ε‖L−1

0 P c0∂s
~ψEεs ,s|s=0‖H2∩W 2,1 . ε2 .

Here we used s ≥ s0 > 0.

Local estimate for (5.7.32): The integrals of the first summand 1
εP

c
Hs∗

(Ls′+JHs∗)
~̃
φs′ dominate

the others for ε� 1. By (5.7.22, 5.7.30) and Lemmata 5.17, 5.18

‖1

ε

∫ s∗

0
ds′ Us∗(s, s

′)P cHs∗ (Ls′ + JHs∗)
~̃
φs′‖H2,−σ ≤

Cs∗A

ε

∫ s∗

0
ds′ 〈s− s

′

ε
〉−

3
2 (ε〈s

′

ε
〉−

3
2 + ε2)

≤Cs∗,A
(
ε〈s
ε
〉−

3
2 + ε2

)
≤Cs∗,Aε2 ,

if L−1
0 P c0∂s

~ψE0,s 6= 0 and the same estimate holds if L−1
0 P c0∂s

~ψE0,s = 0.
Next, we use (5.7.25) in Lemma 5.17 with 0 replaced by s∗. Hence for given δ > 0 we

can choose η, τ∗ sufficiently small such that the following holds: There exists a constant C1 =
C1(A) > 0, so that for all ε� 1

‖1

ε

∫ s

s∗
ds′ Us∗(s, s

′)P cHs∗ (Ls′ + JHs∗)
~̃
φs′‖H2,−σ ≤ A

δ

ε

∫ s

s∗
ds′ 〈s− s

′

ε
〉−

3
2 ‖~̃φs′‖H2,−σ

≤ C1δ sup
s∗≤s′≤s

‖~̃φs′‖H2,−σ .

Note that the choice of τ∗, η does not depend on s∗ due to the uniform continuity of the left
hand side in 5.7.11.

Local estimate for (5.7.33): The integral of the second summand εP cHs∗P
c
s′

d
ds′ (L

−1
s′ P

c
s′
~ψEε

s′ ,s
′)

dominates the other and

ε‖
∫ s

0
ds′ Us∗(s, s

′)P cHs∗P
c
s′
d

ds′
(L−1

s′ P
c
s′∂s′

~ψEε
s′ ,s
′)‖H2,−σ . Cs∗ε

∫ s

0
ds′ 〈s− s

′

ε
〉−

3
2 . ε2 .
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Local estimate for (5.7.34): By the same reasoning as in the local estimate for (5.7.15) we
have

‖
∫ s

0
ds′ Us∗(s, s

′)

(
−1

ε
P cHs∗P

c
s′N(~ψEε

s′ ,s
′ , εL−1

s P cs ∂s
~ψEε

s′ ,s
′ +

~̃
φs)

)
‖H2,−σ . Cs∗ε

2 .

Taking all local estimates into account, we conclude that there exists a constant C2 =
C2(Cs∗ , A) such that for s∗ ≤ s ≤ s∗ + τ∗

‖~̃φs‖H2,−σ ≤ C2ε
2 + C1δ sup

s∗≤s′≤s∗+τ∗
‖~̃φs′‖H2,−σ

for all ε� 1.
Now we fix δ (and with it τ∗ and η) such that C1δ ≤ 1/2. It follows that

sup
s∗≤s′≤s∗+τ∗

‖~̃φs′‖H2,−σ ≤ 2C2ε
2 . (5.7.35)

Estimating (5.7.31-5.7.34) in ‖ · ‖H2 as in the proof of Proposition 5.12 yields with the help of
(5.7.35)

sup
s∗≤s′≤s∗+τ∗

‖~̃φs′‖H2 . Cs∗ε . (5.7.36)

Estimates (5.7.35, 5.7.36) imply (5.7.28, 5.7.29). It remains to argue that the assumption of (Bl,
Bg) resp. (B′l, Bg) on [s∗, s∗+ τ∗] was justified. But this is indeed the case: By Proposition 5.5
the bootstrap assumptions hold for a maximal subinterval [s∗, s∗+ τ ] ⊂ [s∗, s∗+ τ∗], where τ a
priori depends on ε. However, τ = τ∗: If we assume τ < τ∗, then the better Estimates (5.7.35,
5.7.36) still hold (with τ∗ replaced by τ). But now Proposition 5.5 implies that the bootstrap
assumptions also hold on a bigger interval (for ε � 1). This contradicts the maximality of
τ .

5.8. Appendix

5.8.1. Ground state manifold: Proof of Proposition 5.2

In this section we provide a proof of Proposition 5.2. In the beginning we will concentrate
on the situation where Vs ∈ H2,σ(R3) does not depend on time and hence the s-dependence
will be suppressed, e.g. Vs → V . In particular, we give the proof of Proposition 5.2 (i). The
time-dependent case will then be discussed in a second step.

One possible approach to establish the existence of ground states relies on the calculus of
variations using concentration compactness [RW88]. For our purposes however the following
strategy is more convenient: We view Equation (5.1.2) as a bifurcation phenomenon arising
from weakly perturbing the linear eigenvalue problem

Hv∗ := (−∆ + V )v∗ = E∗v∗ , ‖v∗‖L2 = 1 . (5.8.1)

Our analysis is similar to [SW90,RW88]. Recall that the ground state v∗ is unique up to phase
and can be chosen to be positive, see e.g. [Tes09], Theorem 10.12.

We need the following classical lemma due to Slaggie andWichmann [SW62], see also [His00].



90 5. a nonlinear adiabatic theorem

Lemma 5.20. The eigenvector v∗ is continuous and satisfies for every λ > 0 the exponential
decay estimates

|v∗(x)| . e−(
√
|E|−λ)|x|,

|∆v∗(x)| . e−(
√
|E|−λ)|x|,

and hence in particular v∗ ∈ H2,l(R3) for all l.

Remark 5.21. Arbitrarily fast algebraic decay, which is enough for our purposes, can be
achieved as a corollary of the proof of Lemma 5.23 below (set b = 0 there).

Proof. We follow mostly the presentation in [His00]. Since V ∈ L∞(R3) we have

−∆v∗ = (E∗ − V )v∗ ∈ L2(R3) (5.8.2)

and therefore v∗ ∈ H2(R3). By Sobolev’s embedding theorem v∗ has a continuous representative
in L∞(R3). Thus it is meaningful to write for arbitrary λ > 0

v∗(x) ≤
∫
R3

d3x′
∣∣∣∣( 1

−∆− E∗

)
(x, x′)V (x′)v∗(x

′)

∣∣∣∣
≤
∫
R3

d3x′
e−λ|x−x

′|

4π|x− x′|
CV 〈x′〉−σe−(

√
|E∗|−λ)|x−x′|v∗(x

′)

≤ CV

(∫
R3

d3x′
e−λ|x

′|

4π|x′|
〈x− x′〉−σ

)
sup
x′∈R3

e−(
√
|E∗|−λ)|x−x′|v∗(x

′)

The integral in the last line is a rotationally symmetric function in x and by dominated con-
vergence there exists R > 0 such that for every x with |x| > R it holds that

v∗(x) ≤ 1

2
sup
x′∈R3

e−(
√
|E∗|−λ)|x−x′|v∗(x

′). (5.8.3)

By continuity the following manipulations are justified:

sup
x′ ∈ R3

|x′| > R

e−(
√
|E∗|−λ)|x−x′|v∗(x

′) < sup
x′ ∈ R3

|x′| > R

sup
x′′∈R3

e−(
√
|E∗|−λ)(|x−x′|+|x′′−x′|)v∗(x

′′)

≤ sup
x′′∈R3

sup
x′∈R3

e−(
√
|E∗|−λ)(|x−x′|+|x′′−x′|)v∗(x

′′)

≤ sup
x′′∈R3

e−(
√
|E∗|−λ)(|x−x′′|)v∗(x

′′) .

Hence for |x| > R the supremum in (5.8.3) is assumed inside the ball of radius R and hence we
may conclude for those x that

v∗(x) < e−(
√
|E∗|−λ)|x|e(

√
|E∗|−λ)R sup

x′ ∈ R3

|x′| ≤ R

v(x′) . e−(
√
|E∗|−λ)|x|,

by continuity of the eigenfunction v∗(x). By (5.8.2) the same is true for ∆v∗(x).

Next, we provide a crude, yet sufficient, control of the operator norm of (−∆− z)−1 acting
on the weighted space L2,l(R3) := 〈x〉−lL2(R3).
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Lemma 5.22. Let z ∈ C\R≥0. For arbitrary l ∈ R it holds that for every λ with |R
√
−z| >

λ > 0,

‖(−∆− z)−1‖L2,l→L2,l ≤ Cl
1

|R
√
−z| − λ

,

where
√

denotes the principle branch of the square root.

Proof. For f ∈ L2(R3) we have almost everywhere

|
(
〈x〉l(−∆− z)−1〈x〉−lf

)
(x)| . 〈x〉l

∫
R3

d3x′
e−|R

√
−z||x−x′|

|x− x′|
〈x′〉−l|f(x′)|

.
∫
R3

d3x′
e−|R

√
−z||x−x′|

|x− x′|
〈x〉l

〈x′〉l
|f(x′)|

.
∫
R3

d3x′
e−|R

√
−z||x−x′|

|x− x′|
〈x− x′〉l|f(x′)|

=

(
e−|R

√
−z||·|

| · |
〈·〉l ∗ |f |

)
(x) ,

where in the third inequality we used

〈x〉2

〈x′〉2
=

1 + |x|2

1 + |x′|2
.

1 + |x′|2 + |x− x′|2

1 + |x′|2
. 1 + |x− x′|2 = 〈x− x′〉2 .

This implies the required result after applying Young’s inequality for convolutions

‖e−|R
√
−z||·|

| · |
〈·〉l ∗ |f |‖2 . ‖

e−|R
√
−z||·|

| · |
〈·〉l‖1‖f‖2 ≤ Cl‖e−(|R

√
−z|−λ)|·|‖1‖f‖2 ,

and evaluating the integral on the right hand side.

As a first application of Lemma 5.22 we note that for HE := −∆ + V − E the following
holds.

Lemma 5.23. For l ≥ 0,

L2,l(R3) = span(v∗)⊕ ran(HE∗ � H
2,l(R3)) .

Proof. It suffices to show that ran(HE∗ � H
2,l(R3)) = ran(HE∗) ∩ L2,l(R3). The inclusion

ran(HE∗ � H
2,l(R3)) ⊂ ran(HE∗) ∩ L2,l(R3)

is immediate, for the converse let HE∗a = b ∈ L2,l(R3) and note that for m ≤ m∗ := min{σ, l}

‖〈x〉ma‖2 . ‖〈x〉m(−∆− E∗)−1b‖2 + ‖〈x〉m(−∆− E∗)−1V a‖2
. ‖b‖L2,m∗ + ‖a‖2 <∞ .

Bootstrapping this inequality to ‖a‖L2,l <∞ for any l ≥ 0 yields

‖〈x〉l∆a‖2 . ‖〈x〉lHE∗a‖2 + ‖a‖L2,l <∞

which implies the claim.
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Proof of Proposition 5.2 (i). The proof is an application of the analytic implicit function
theorem [Nir01]. It is convenient to introduce the notation MR := R(M) for any space M of
complex valued functions. Then the map F defined by

F : R× R×H2,l
R (R3) ∩ ran(HE∗)→ L2,l

R (R3) = spanR(v∗)⊕ ran(HE∗ � H
2,l
R (R3))

(E, δ, w) 7→ HE(δv∗ + w) + b(δv∗ + w)3 . (5.8.4)

is differentiable as we will demonstrate below. It is useful to assume without loss of generality
l ≥ 0.

Step 1: Continuous Fréchet differentiability of F : We treat the partial derivatives separately
and claim

∂F

∂E
|(E,δ,w) = −(δv∗ + w) ,

∂F

∂δ
|(E,δ,w) = HEv∗ + 3b(δv∗ + w)2v∗ ,

∂F

∂w
|(E,δ,w) = HE + 3b(δv∗ + w)2 .

The first two expressions follow in a straightforward manner, for the third, using Lemma 5.6,
we compute for u ∈ H2,l

R (R3) ∩ ran(HE∗).

‖F (E, δ, w + u)− F (E, δ, w)− (HE + 3b(δv∗ + w)2)u‖L2,l

‖u‖H2,l

.
‖3(δv∗ + w)u2 + u3‖L2,l

‖u‖H2,l

.
(1 + ‖w‖H2,l)‖u‖2H2,l + ‖u‖3

H2,l

‖u‖H2,l

,

which vanishes for ‖u‖H2,l → 0. Since HE + 3b(δv∗+w)2 : H2,l(R3)→ L2,l(R3) is bounded, all
partial derivatives of F exist. The continuity of the derivatives is simpler, exemplarily we show
it for ∂F

∂w ,∥∥∥∥(∂F∂w |(E1,δ1,w1) −
∂F

∂w
|(E2,δ2,w2)

)
v

∥∥∥∥
L2,l

. |E1 − E2|‖v‖L2,l + ‖(δ1v∗ + w1)2 − (δ2v∗ + w2)2‖∞‖v‖L2,l

. (|E1 − E2|+ ‖(δ1 + δ2)v∗ + w1 + w2‖H2,l‖(δ1 − δ2)v∗ + w1 − w2‖H2,l) ‖v‖H2,l .

Step 2: Analysis in ran(HE∗) = ran(P cH): By the above arguments, after temporarily com-
plexifying domain and target space in (5.8.4), we see that F is an analytic function and fur-
thermore

∂F

∂w
|(E∗,0,0) = HE∗ : H2,l

R (R3) ∩ ran(HE∗)→ ran(HE∗ � H
2,l
R (R3)) ⊂ L2,l(R3)

is a linear isomorphism between Banach spaces. Thus by the analytic version of the implicit
function theorem, for |(E − E∗, δ)| sufficiently small, there is a unique analytic map

w = w(E, δ) : R2 → H2,l
R (R3)
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with w(E∗, 0) = 0 such that

P cHF (E, δ, w(E, δ)) = HEw(E, δ) + bP cH(δv∗ + w(E, δ))3 ≡ 0. (5.8.5)

It follows that ‖HEw(E, δ)‖2 . (δ + ‖w(E, δ)‖H2)3 and since for |E−E∗| � 1, ‖H−1
E P cH‖L2→L2

(like ‖H−1
E∗
P cH‖L2→L2) is of order one, we deduce

‖w(E, δ)‖2 + ‖HEw(E, δ)‖2 ' ‖w(E, δ)‖H2 . (δ + ‖w(E, δ)‖H2)3

which by continuity of w(E, δ) yields the bound

‖w(E, δ)‖H2 . δ3, (5.8.6)

uniformly in E in a neighborhood of E∗. The norm in this estimate can be improved to ‖ · ‖H2,l

as follows. By Equation (5.8.5) and Lemma 5.20 we get

‖〈x〉lHEw(E, δ)‖2 . ‖〈x〉l(δv∗ + w(E, δ))3‖2 + ‖〈x〉l〈v∗, (δv∗ + w(E, δ))3〉v∗‖2
. (δ + ‖w(E, δ)‖H2,l)3 (5.8.7)

and furthermore by Lemma 5.22, Estimate (5.8.6) it holds for l ≤ σ that

‖〈x〉lw(E, δ)‖2 . ‖〈x〉l(−∆− E)−1P cH(δv∗ + w(E, δ))3‖2 + ‖〈x〉l(−∆− E)−1V w(E, δ)‖2
. ‖〈x〉lP cH(δv∗ + w(E, δ))3‖2 + ‖〈x〉l−σw(E, δ)‖2
. (δ + ‖w(E, δ)‖H2,l)3 + δ3 . (5.8.8)

Estimates (5.8.7, 5.8.8) imply

‖w(E, δ)‖H2,l . δ3 (5.8.9)

uniformly in E in a neighborhood of E∗. By induction on multiples of σ we conclude that
(5.8.9) holds for every l ≥ 0 and hence in fact for any real l.

Step 3: Analysis in ker(HE∗) = ran(P dH): The equation for P dHF (E, δ, w(E, δ)) corresponds to

〈v∗, HE(δv∗ + w(E, δ) + b(δv∗ + w(E, δ))3〉

= δ(E∗ − E) + 〈v∗, b(δv∗ + w(E, δ))3〉 !
= 0. (5.8.10)

which, for sign(b) = sign(E − E∗) and |E − E∗| sufficiently small, has a solution δ(E), unique
up to sign, with δ(E∗) = 0 as we shall see now. Define a∗ :=

√
〈v2
∗, v

2
∗〉L2 . If δ(·) exists we infer

from (5.8.10) the condition

δ(E)2

E − E∗
→ 1

ba2
∗

as |E − E∗| → 0 .

and hence sign(E − E∗) = sign(b). Thus we choose the sign of E accordingly and define p :=√
E−E∗
b . Furthermore, we introduce the quotient q := δ

p and consider an equation equivalent
to (5.8.10) in these new variables:

G(p, q) := −q + 〈v∗,
(
qv∗ +

w(E∗ + bp2, pq)

p

)3

〉 !
= 0 .
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By analyticity of w(·, ·) and by (5.8.6) G(p, q) is analytic for sufficiently small p. It possesses
for p = 0 two zeros q = ± 1

a∗
of which we choose the positive one since only this can lead to

positive solutions for Equation (5.1.2). Observe that

∂G

∂q
|(0, 1

a∗
) = 2 .

Thus there is a unique analytic map q(p) with q(0) = 1
a∗

satisfying

G(p, q(p)) ≡ 0

for sufficiently small p and hence

0 ≡ bp3G(p, q(p)) = −q(p)p · (E − E∗) + 〈v∗, b (q(p)pv∗ + w(E, p(q)q))3〉 .

Therefore δ(E) := q(
√

E−E∗
b )

√
E−E∗
b solves (5.8.10) with real analytic q(·) and q(0) = 1

a∗ .
Positivity of ψE follows from linear theory by considering the Hamiltonian −∆+V + |ψE |2.

From here on we allow the potential again to be time-dependent (in the sense of (Hd)).
Then in particular, Hs = −∆ + Vs is a C2-family with values in L(H2(R3), L2(R3)). As a
consequence P dHs = |v∗,s〉 〈v∗,s| and E∗,s = tr

(
HsP

d
Hs

)
are also C2, see Lemma 2.14.

Proof of Proposition 5.2 (ii) and (iii). For fixed τ ∈ [0, 1] and HE,s := −∆ + Vs − E we
generalize the Map (5.8.4) to

Fτ : [0, 1]× R× R×H2,l
R (R3) ∩ ran(HE∗,τ ,τ )→ L2,l

R (R3) = spanR(v∗,τ )⊕ ran(HE∗,τ ,τ � H
2,l
R (R3))

(s, E, δ, w) 7→ HE,s(δv∗,τ + w) + b(δv∗,τ + w)3 .

Since∥∥∥∥Fτ (s+ λ,E, δ, w)− Fτ (s, E, δ, w)

λ
− ∂sVs(δv∗,τ + w)

∥∥∥∥
L2,l

.

∥∥∥∥Vs+λ − Vsλ
− ∂sVs

∥∥∥∥
∞
‖δv∗,τ + w‖L2,l ,

and similarly for the second derivative, it follows that Fτ is C2. By application of the implicit
function theorem to P cHτFτ as in the proof of Proposition 5.2 (i), there is w(s, E, δ) which is C2

with respect to time and P cHτFτ (s, E, δ, w(s, E, δ)) ≡ 0. Then, P dHτFτ (s, E, δ, w(s, E, δ)) ≡ 0
corresponds to

Gτ (s, E, δ) :=δ(E∗,τ − E)

+ 〈v∗,τ , (Vs − Vτ )(δv∗,τ + w(s, E, δ))〉+ b〈v∗,τ , (δv∗,τ + w(s, E, δ))3〉 ≡ 0

and we have

∂Gτ
∂δ
|(τ,E,0) = E∗,τ − E ,

see (5.8.9). For E 6= E∗,τ we obtain the desired regularity of the function δ(E, s) (whose
existence is guaranteed by Proposition 5.2 (i)) with respect to s near s = τ , again by the implicit
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function theorem. Hence, since τ was arbitrary, a two-dimensional submanifoldM⊂ H2,l(R3)
of ground states with a single chart

ψE,s : {(E, s)|0 < E − E∗,s
b

� 1, s ∈ [0, 1]} →M

has been constructed. In particular, this proves (i).
Finally, we construct the submanifold of ground states with equal mass, (iii). By Proposi-

tion 5.2 (i) it holds for |E − E∗,s| sufficiently small that

∂‖ψE,s‖22
∂E

= 2〈ψE,s, ∂EψE,s〉 > 0 on M , (5.8.11)

in particular, ‖ψE,s‖2 is monotonic in E. Continuity of (s, E) 7→ ‖ψE,s‖22 and compactness of
[0, 1] yields the existence of η0 > 0 such that ‖ψE,s‖22 = η defines a nonempty subset N ofM
for each 0 < η ≤ η0. Moreover, by (5.8.11), η is a regular value for

h :M→ R
ψE,s 7→ ‖ψE,s‖22

and hence N is indeed a C2-submanifold.

5.8.2. Auxiliary results

This section presents the announced proofs of several lemmata needed before.

Proof of Lemma 5.6. The first claim follows from Hölder’s inequality and the triangle in-
equality,

‖∆φ‖2 + ‖φ‖2 ≤ ‖(−∆ + V )φ‖2 + ‖V φ‖2 + ‖φ‖2
. ‖(−∆ + V )φ‖2 + ‖φ‖2
. ‖∆φ‖2 + ‖φ‖2 .

To prove the second claim we observe that

∆(〈x〉lφ)− 〈x〉l∆φ = (∆〈x〉l)φ+ 2∇〈x〉l · ∇φ .

The L2-norm of the first term on the right hand side is estimated by ‖〈x〉lφ‖2 whereas for the
second term we compute

‖∇〈x〉l · ∇φ‖22 = −
∫
R3

d3x φ∇ ·
((
∇〈x〉l · ∇φ

)
∇〈x〉l

)
= −

∫
R3

d3x φ
(

2∆〈x〉l∇φ+∇〈x〉l∆φ
)
· ∇〈x〉l .

Hölder’s and Young’s inequalities lead to∣∣∣∣∫
R3

d3x φ∆φ|∇〈x〉l|2
∣∣∣∣ . (‖〈x〉lφ‖2 + ‖〈x〉l∆φ‖2)2 ,
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and ∣∣∣∣∫
R3

d3x φ∆〈x〉l∇φ · ∇〈x〉l
∣∣∣∣ . ‖〈x〉lφ‖2‖∇〈x〉l · ∇φ‖2 .

Hence we obtain

‖φ‖H2,l . ‖〈x〉lφ‖2 + ‖〈x〉l∆φ‖2 .

To prove the converse inequality observe that

‖∇〈x〉l · ∇φ‖2 . ‖|〈x〉l∇φ|‖2 = ‖|∇(〈x〉lφ)− (∇〈x〉l)φ|‖2 . ‖φ‖H2,l

by means of the equivalence

‖ · ‖2 + ‖∆ · ‖2 ' ‖ · ‖2 + ‖|∇ · |‖2 + ‖∆ · ‖2 . (5.8.12)

To prove the product estimates for ‖ · ‖W 2,1 note that∫
R3

d3x |φχ| . ‖φ‖2‖χ‖2

and ∫
R3

d3x |∆(φχ)| '
∫
R3

d3x |∇ · (φ∇χ+ χ∇φ) |

.
∫
R3

d3x |∇φ · ∇χ|+
∫
R3

d3x (|φ∆χ|+ |χ∆φ|) .

Hölder’s inequality and (5.8.12) now yield (5.4.3). Estimate (5.4.4) is a consequence of a special
case of Lemma A.8 in [Tao06], whose proof relies on Littlewood-Paley theory. We give a different
proof in our setting: By the Sobolev embedding H2(R3) ↪→ L∞(R3) we obtain

‖φχ‖2 . ‖φ‖∞‖χ‖2 . ‖φ‖H2‖χ‖2

and ∫
R3

d3x |∆(φχ)|2 .
∫
R3

d3x |∇φ · ∇χ|2 +

∫
R3

d3x
(
|φ∆χ|2 + |χ∆φ|2

)
.
∫
R3

d3x |∇φ|2|∇χ|2 + ‖φ‖2H2‖χ‖2H2 .

Next, integration by parts and the Sobolev embedding H1(R3) ↪→ L4(R3) yield∫
R3

d3x |∇φ|2|∇χ|2 = −
∫
R3

d3x φ∆φ|∇χ|2 − 2

∫
R3

d3x φ∇φ ·R
(
∇2χ∇χ

)
. ‖φ‖∞‖∆φ‖2‖|∇χ|‖24 + ‖φ‖∞‖χ‖H2‖|∇φ||∇χ|‖2
. ‖φ‖2H2‖χ‖2H2 + ‖φ‖H2‖χ‖H2‖|∇φ||∇χ|‖2

and hence

‖|∇φ||∇χ|‖2 . ‖φ‖H2‖χ‖H2 ,

implying (5.4.4). Ultimately, we note that for l ≥ 0 applying (ii) and (5.4.4) leads to

‖φ2‖H2,l . ‖〈x〉2lφ2‖2 + ‖〈x〉2l∆(φ2)‖2 ' ‖(〈x〉lφ)2‖H2 . ‖φ‖2H2,l ,

which proves (iii).
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Proof of Lemma 5.10. Continuous differentiability of ∂s ~ψE,s has been established in Sub-
section 5.8.1 and hence it suffices to consider

P csL
−1
E,sP

c
s : L2,σ(R3)→ H2,σ(R3) . (5.8.13)

The Mapping (5.8.13) is well-defined: Note

‖P csL−1
E,sP

c
sψ‖H2,σ ' ‖P csL−1

E,sP
c
sψ‖L2,σ + ‖LE,sP csL−1

E,sP
c
sψ‖L2,σ

. ‖P csL−1
E,sP

c
s ‖L2,σ→L2,σ‖ψ‖L2,σ .

By

P csL
−1
E,sP

c
s =

1

2πi

∫
Γ
(LE,s − z)−1 1

z
dz , (5.8.14)

for Γ encircling 0 in counterclockwise direction at distance G0/2, it suffices to estimate the
norm of the resolvent ‖(LE,s − z)−1‖L2,σ→L2,σ for |z| = G0/2. By the resolvent identity (5.5.9)
we observe that all we need is a bound on ‖(HE∗,s,s− z)−1‖L2,σ→L2,σ . However by Lemma 5.22,
with λ =

√
G0/8 > 0,

‖(HE∗,s,s − z)−1‖L2,σ→L2,σ ≤‖(−∆− E∗,s − z)−1‖L2,σ→L2,σ

+ ‖(−∆− E∗,s − z)−1Vs(HE∗,s,s − z)−1‖L2,σ→L2,σ

≤Cσ
1

R
√
−E∗,s − z − λ

(
1 + ‖〈x〉σVs(HE∗,s,s − z)−1〈x〉−σ‖L2→L2

)
≤CV,σ

1

R
√
−E∗,s − z − λ

(1 +
1

|z|
)

≤CV,σ
1

2
√
G0

(1 +
1√
G0/2

) . (5.8.15)

Therefore also ‖(LE,s−z)−1‖L2,σ→H2,σ is locally uniformly bounded. Differentiability of (5.8.13)
with respect to E, s follows from the first and second resolvent identity applied to Expres-
sion 5.8.14 and Hypothesis (Hd), see also Lemma 2.14.

Proof of Estimates (5.7.17, 5.7.18). The Estimate (5.7.17) follows from

‖e−i t
ε
HτP cHτχ‖H2 ' ‖e−i t

ε
HτP cHτχ‖2 + ‖Hτe−i t

ε
HτP cHτχ‖2

' ‖e−i t
ε
HτP cHτχ‖2 + ‖e−i t

ε
HτHτP

c
Hτχ‖2

' ‖P cHτχ‖2 + ‖HτP
c
Hτχ‖2

' ‖P cHτχ‖H2

' ‖P cHτχ‖2 + ‖P cHτHτχ‖2 . ‖χ‖H2 . (5.8.16)

By inspection we see that all multiplicative constants can be chosen to be independent of τ due
to (Hd).
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By ‖〈x〉−σχ‖2 ≤ ‖〈x〉−σ‖2‖χ‖∞ . ‖χ‖∞ for any σ > 2 (recall (Hd)) we obtain

‖e−i t
ε
HτP cHτχ‖H2,−σ ' ‖〈x〉−σe−i t

ε
HτP cHτχ‖2 + ‖〈x〉−σHτe−i t

ε
HτP cHτχ‖2

' ‖〈x〉−σe−i t
ε
HτP cHτχ‖2 + ‖〈x〉−σe−i t

ε
HτP cHτHτχ‖2

. ‖e−i t
ε
HτP cHτχ‖∞ + ‖e−i t

ε
HτP cHτHτχ‖∞

.

∣∣∣∣ tε
∣∣∣∣− 3

2

(‖χ‖1 + ‖Hτχ‖1)

.

∣∣∣∣ tε
∣∣∣∣− 3

2

‖χ‖W 2,1 . (5.8.17)

This together with (5.8.16) yields the Estimate (5.7.18).

The uniformity of the constant A follows from compactness of [0, 1] and the following lemma.

Lemma 5.24. Consider H0 = −∆+V0 with V0 ∈ H2,σ(R3) admitting no zero energy resonance,
thus

‖e−iH0tP cH0
φ‖H2,−σ ≤ C0〈t〉−

3
2 ‖φ‖H2∩W 2,1 .

Then for H = −∆ + V , V ∈ H2,σ(R3), ‖V − V0‖H2,σ sufficiently small, it holds that

‖e−iHtP cHφ‖H2,−σ ≤ C〈t〉−
3
2 ‖φ‖H2∩W 2,1 ,

where C can be chosen such that C → C0 as ‖V − V0‖H2,σ → 0.

Proof. To simplify the notation, δ > 0 will denote a generic quantity which tends to zero as
‖V − V0‖H2,σ → 0. By Duhamel’s formula

e−iHtP cHφ = e−iP cHHP
c
H tP cHφ =e−iP cHH0P cH tP cHφ

− i

∫ t

0
ds e−iP cHH0P cH(t−s)P cH(V − V0)P cHe

−iP cHHP
c
HsP cHφ .

(5.8.18)

Claim: ‖e−iP cHH0P cH tP cHφ‖H2,−σ ≤ 〈t〉−
3
2 (C0 + δ)‖φ‖H2∩W 2,1 .

We first show that the claim implies the lemma. With Lemma 5.6 we have

‖P cH(V − V0)〈x〉σ〈x〉−σP cHe−iP cHHP
c
HsP cHφ‖H2∩W 2,1 ≤ δ‖e−iP cHHP

c
HsP cHφ‖H2,−σ

and thus estimating (5.8.18) for all t ≤ t∗ we obtain

〈t〉
3
2 ‖e−iHtP cHφ‖H2,−σ ≤ (C0 + δ)‖φ‖H2∩W 2,1 + δ〈t〉

3
2

∫ t∗

0
ds(C0 + δ)〈t− s〉−

3
2 〈s〉−

3
2×

× sup
s≤t∗
〈s〉

3
2 ‖e−iP cHHP

c
HsP cHφ‖H2,−σ .

The lemma now follows from ∫ ∞
0

ds〈t− s〉−
3
2 〈s〉−

3
2 ≤ D〈t〉−

3
2
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for a numerical constant D. This is proved as in Lemma 5.18.
To prove the claim we define φt := e−iP cHH0P cH tP cHφ and apply Duhamel’s formula again,

φt = e−iH0tP cHφ+ i

∫ t

0
ds e−iH0(t−s)P dHH0P

c
Hφs

It holds that

‖φt‖H2,−σ = ‖P cHφt‖H2,−σ ≤‖(P cH0
− P cH)φt‖H2,−σ + ‖P cH0

φt‖H2,−σ

≤δ‖φt‖H2,−σ + ‖P cH0
φt‖H2,−σ ,

and the same is true if H2,−σ(R3) is replaced by H2(R3) ∩W 2,1(R3). The second inequality
can be proved with the Riesz formula and similar resolvent estimates as those in the proof of
Lemma 5.10. It follows that it is sufficient to estimate

P cH0
φt = e−iH0tP cH0

P cHφ+ i

∫ t

0
ds e−iH0(t−s)P cH0

P dHH0P
c
Hφs

= e−iH0tP cH0
φ+ e−iH0tP cH0

(P cH − P cH0
)φ+ i

∫ t

0
ds e−iH0(t−s)P cH0

P dH(V0 − V )P cHφs .

Hence for all t ≤ t∗

〈t〉
3
2 ‖φt‖H2,−σ ≤ (1 + δ)〈t〉

3
2 ‖P cH0

φt‖H2,−σ

≤ (C0 + δ)‖φ‖H2∩W 2,1

+ (1 + δ)〈t〉
3
2

∫ t

0
ds〈t− s〉−

3
2 〈s〉−

3
2 〈s〉

3
2 ‖(V0 − V )〈x〉σ〈x〉−σP cHφs‖H2∩W 2,1

≤ (C0 + δ)‖φ‖H2∩W 2,1 + δD sup
s≤t∗
〈s〉

3
2 ‖φs‖H2,−σ

This proves the claim.

Proof of Lemma 5.15. Obviously, ‖P cH0
~̃φs‖2 ≤ ‖~̃φs‖2 and ‖H0P

c
H0
~̃φs‖2 = ‖P cH0

H0
~̃φs‖2 ≤

‖H0
~̃φs‖2 imply

‖P cH0
~̃φs‖2 + ‖P cH0

H0
~̃φs‖2 ' ‖P cH0

~̃φs‖H2 . ‖~̃φs‖H2 .

By Lemma 5.20

‖〈x〉−σP dH0
~̃φs‖2 . ‖〈x〉−σ ~̃φs‖2 ,

and similarly,

‖〈x〉−σH0P
d
H0
~̃φs‖2 = ‖〈x〉−σP dH0

H0
~̃φs‖2 . ‖~φs‖H2,−σ ,

whence ‖P cH0
~̃φs‖H2,−σ . ‖~̃φs‖H2,−σ . To show the converse inequalities note that for both norms

‖~̃φs‖ ≤ ‖P cH0
~̃φs‖+ ‖

(
Ps − P cH0

)
~̃φs‖ .
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Therefore it suffices to show that ‖Ps−P cH0
‖H2→H2 resp. ‖Ps−P cH0

‖H2,−σ→H2,−σ can be made
arbitrarily small by choosing s0, η, ε suitably. By the second resolvent formula we obtain

‖Ps − P cH0
‖ .

∮
Γ
dz ‖(JLs − z)−1‖‖JLs −H0‖‖(H0 − z)−1‖ ,

Γ as above. Observe that for arbitrary δ > 0 we can achieve

‖JLs −H0‖ . δ

in both operator norms as a consequence of (5.7.10) and (5.7.11). Furthermore it follows from a
similar reasoning as for Estimate (5.8.15) that the norms of (Ls−z)−1 and (H0−z)−1 are both
uniformly bounded on H2,−σ(R3) (the case H2(R3) is easier). This concludes the proof.

Proof of Lemma 5.17. By Lemma 5.15 ‖P cH0
(Ls + JH0)~φs‖H2 . ‖(Ls + JH0)~φs‖H2 and

by Lemma 5.20 also ‖P cH0
(Ls + JH0)~φs‖W 2,1 . ‖(Ls + JH0)~φs‖W 2,1 . Then, by means of

Estimate (5.7.11)

‖(Ls + JH0)〈x〉σ〈x〉−σ~φs‖H2 . δ‖~φs‖H2,−σ ,

‖(Ls + JH0)〈x〉σ〈x〉−σ~φs‖W 2,1 . δ‖~φs‖H2,−σ .

The proof of (5.7.26) is follows from similar arguments using the explicit expression for P ds ,
Equation (5.5.7). Ultimately, to prove (5.7.27) we note that since
d
dtψEεs ,s,

d
dt∂EψEεs ,s ∈ H

2,σ(R3) it holds that

‖P ds Ṗ ds ~φs‖H2∩W 2,1 . ‖Ṗ ds ~φs‖H2,−σ . ‖~φs‖H2,−σ .
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