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Abstract. The offline software framework of the ATLAS experiment (Athena)
consists of many small components of various types like Algorithm, Tool or
Service. To assemble these components into an executable application for event
processing, a dedicated configuration step is necessary. The configuration of a
particular job depends on the work-flow (simulation, reconstruction, high-level
trigger, overlay, calibration, analysis ...) and the input data (real or simulated
data, beam-energy, ...).
The configuration step is done by executing python code. The resulting config-
uration depends on optionally pre-set flags as well as meta-data about the data
to be processed. For the python configuration code, there is almost no structure
enforced, leaving the full power of python to the user.
While this approach did work, it also proved to be error prone and complicated
to use. It also leads to jobs containing more components that they actually need.
For LHC Run 3 a more robust system is envisioned. It is still based on python
but enforces a structure and emphasis modularity. This contribution briefly re-
ports about the configuration system used during LHC Run 1 and Run 2 and
details the prototype of an improved system to be used in Run 3 and beyond.

1 Introduction

The software framework of the ATLAS Experiment [1], Athena [2], consists of thousands
of C++-written components. They are assembled at run-time into executable jobs. The
individual components can define properties (variables) that can be set at run-time. This
component model allows for a high degree of flexibility. The Athena framework is used
in the high-level trigger, reconstruction, simulation, digitzation and to some extend also for
analysis jobs. This article is about configuring Athena by defining a set of components, their
properties and the relationship between then.

1.1 Types of components

The Athena framework knows the following types of components:

Algorithms are executed once per event.

Services are singletons (exactly one instance per job). Other framework components can call
methods of Services. Examples include the white-board store that is used to pass data from
one algorithm to the next (StoreGateSvc).
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AlgTools are used to factorize work of Service or Algorithms. So far, they can be either
private to one Algorithm or Service or public, shared by several Algorithms or Services.
With the online migration to a multi-threaded version of Athena [3], public AlgTools are
deprecated.

At the time of writing, the standard real-data reconstruction uses about 750 public tools,
88 services and 198 event processing algorithms. Each sub-detector group of ATLAS writes
the components necessary to reconstruct data from this sub-detector and to simulate the sub-
detector. The same applies to areas like tracking and jet-reconstruction. The configuration of
these components is also jointly done by many people. Therefore modularity is important.

2 A bit of history

In the early years of Athena, only a text-file based job-configuration system was used. This
system had almost no programming-language capabilities, it was largely declarative. In 2003,
ATLAS decided that such a system was too limiting and switched to python for job config-
uration. To ease the migration from the text-based configuration to python, some concepts
were preserved, in particular the option to include other files. In the python world, that
means executing them in the same name-space as the caller. This leads to an effectively
global name-space where name-clashes are inevitable. With the full power of the python
available, developers used that power to create overly complicated configuration “programs”.
Over the years, the configuration part of Athena grew into hundreds of thousands lines of
hard-to-maintain python code.

2.1 Auto-Configuration

Auto-Configuration is a concept that was devised during the commissioning period of AT-
LAS, where the detector configuration was frequently changing. The configuration auto-
matically adapts itself to data-taking circumstances. In practice, this means that during the
configuration step, the input file is opened and various data-bases are contacted to determine
for example if the magnets of the detector had been on or off when the data was taken or if
the input file is real data or simulated data. While this feature was initially meant as a stopgap
solution for the commissioning period it turned out to be very useful and is therefore main-
tained. It comes with a small performance penalty because of additional data-base traffic and
the fact that the input file is opened and closed multiple times.

3 Basic principles of the new configuration system

The new configuration system described here avoids the global namespace and imposes more
structure on the configuration code.

The configuration of pieces of a job is done by python methods (called configuration
method) that take flags as parameter and return configured algorithms, tools, etc. The result
should be self-consistent in the sense that it contains all auxiliary components (services)
that are needed for a functional job. That implies that each configuration method yields an
independently run-able set of components, as long as it contains at least one event-processing
algorithm and the input of this algorithm can be read from an input file.

The result of these configuration methods can be merged together to obtain bigger jobs
that do more work. This way the configuration of a full reconstruction job can be built from
smaller units.
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Since many components (for example basic services) are used by more than one algo-
rithm, they will be declared multiple times if two self-consistent configurations are merged.
To deal with this situation, a dedicated de-duplication step is required.

4 Elements of the new configuration system

The new configuration system uses the same python representation of Athena components
that have been used for many years, with minor modifications. To store configurations, a new
python class called ComponentAccumulator is introduced. It can hold the configuration
of an entire job or a single component. This class has a merge method that can unify two
instances of ComponentAccumulator, applying de-duplication if necessary.

4.1 De-Duplication

When two instances of ComponentAccumulator are unified or when more components are
added to a ComponentAccumulator, de-duplication avoids multiple components with the
same name. The following cases can be distinguished:

• If two components have the same type, same name and all their properties are identical,
the second instance is silently dropped. The second component may have been produced
by executing the same configuration method twice with the same parameter. This is not an
error but rather a unavoidable side-effect of self-consistent configuration sets.

• If two components have the same type, but a different name we assume that they are meant
to be different. Both instances are kept.

• If two components share the same name, same type but (some) of their properties are
different one has to evaluate the property.

– Properties that are lists of some kind and are explicitly white-listed as merge-able are
merged. This covers cases like the Folders property of IOVDbSvc which is the list of
conditions data-base folders that a job is supposed to read. Each configuration fragment
that requires conditions data sets up data-base access and declares the folders it needs.

– All other cases are considered a name-clash and will result in an error.

The de-duplication needs to be applied recursively to private tools and their properties.

4.2 Configuration flags

Configuration flags are used to steer the configuration process, like turning off a particular
feature or setting properties of various components consistently. Some of the flags are set via
the auto-configuration mechanism explained in section 2. The configuration flags used up to
now live in a global name-space and can be altered in the course of the configuration process.
That may lead to inconsistent configurations. Moreover, we observe a proliferation of flags:
more than 3000 job configuration flags have been defined.

The new version of configuration flags has their inter-dependence and a locking mech-
anism built in. Each flag is defined with either a default value or a function that sets the
default value based on other, previously defined flags. These functions are in most cases very
simple and can be implemented as python lambda functions. These default-setter are invoked
if a flag that has not been set explicitly is asked for its value. This works recursively: if the
default-setter of flag A asks flag B for it’s value, the default setter of flag B gets invoked.
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The auto-configuration becomes part of the functions that set the default values, which
may include opening files and connecting to databases. The following chain is typical: a
particular correction tool applies only to real data, not to simulated data. There is a dedicated
flag SubDet.doMyCorr that forces the correction on or off. The configuration asks for the
value of this flag, but in general its value was not explicitly set. So the default-setter is
invoked that queries the flag input.isMC. Since that depends on the input file, the default
setter of input.isMC invokes as function that opens the input files (the path to the input file
is itself a flag) to determines if it contains real or simulated data.1 After that happened, the
values of input.isMC and SubDet.doMyCorr are set. Subsequent calls do not trigger the
default-setter.

The second important feature is that flags can be set only before they get used and
can not be updated multiple times in the course of the configuration process. All pos-
sible configuration flags are defined (either directly or by importing) in one place (called
AllConfigFlags.py). We expect we can do with much fewer than the 3000 flags we have
now. The flag-container is the parameter to the configuration methods. When a configuration
method calls another configuration method, the flag-container is passed on. This way the
flag-container is passed through the call-stack from the main configuration method down to
the small methods configuring just one component.

5 Integration
The main-section of a python configuration file typically first imports the flag-container from
AllConfigFlags.py, sets values as appropriate (at least the input file) and locks it. Then
it calls a configuration method using the flag-container as parameter. In fact, most of the
new-style configuration python files have a short main-section that contains a few lines of
boilerplate code to access data from an input file and then calls the configuration-method
from the same file. This can serve as a unit-test of the algorithm in question. As an example,
the main-section of the configuration file of the algorithm producing topological calorimeter
clusters is shown in listing 1.

if __name__=="__main__":
from AthenaConfiguration.AllConfigFlags import ConfigFlags
ConfigFlags.Input.Files = ["myESD.pool.root"]
ConfigFlags.lock()

from AthenaConfiguration.MainServicesConfig import MainServicesSerialCfg
from AthenaPoolCnvSvc.PoolReadConfig import PoolReadCfg
cfg=MainServicesSerialCfg()
cfg.merge(PoolReadCfg(ConfigFlags))

topoAcc=CaloTopoClusterCfg(ConfigFlags)
cfg.merge(topoAcc)

cfg.run()

Listing 1. Example of a basic top-level configuration method

The flag-container is passed down the call-chain, as a parameter of the configuration
methods. The instances of ComponentAccumulator they return get merged and returned up
the call-chain to the top-level method. Along the way the duplicate components are elimi-
nated or reconciled as explained in section 4. This is illustrated in figure 1.

1For performance reasons, the opening of the input files happens only once and the relevant meta-data is cached.
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Figure 1. Example of a configuration work-flow. Blue arrows denote the container of flags passed down
from caller to callee. Red arrows are instances of ComponentAccumulator returned by the configuration
methods.

6 Current status and plans

The basic infrastructure of the new configuration system has been developed. The config-
uration of some of the basic services of Athena (like data-base access, detector geometry,
input file reading) have been implemented using the ComponentAccumulator-approach. A
number of demonstrators that configure a few event-processing algorithms with the tools and
service they need exist as well. ATLAS plans to use the configuration system described here
from run 3 onwards.

7 Conclusions

ATLAS has started to redesign the configuration system of its offline software. The new
system aims to be more maintainable and easier to understand.
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