
ar
X

iv
:2

00
8.

13
63

6v
1

 [p
hy

si
cs

.c
om

p-
ph

]
31

 A
ug

 2
02

0

HL-LHC Computing Review:

Common Tools and Community Software

HEP Software Foundation∗: Aarrestad, Thea3; Amoroso, Simone5; Atkinson, Markus

Julian31; Bendavid, Joshua3; Boccali, Tommaso14; Bocci, Andrea3; Buckley, Andy34;

Cacciari, Matteo21; Calafiura, Paolo18; Canal, Philippe7,a; Carminati, Federico3;

Childers, Taylor1; Ciulli, Vitaliano12; Corti, Gloria3,a; Costanzo, Davide47; Dezoort,

Justin Gage43; Doglioni, Caterina39,a; Duarte, Javier Mauricio30; Dziurda,

Agnieszka8,a; Elmer, Peter43; Elsing, Markus3; Elvira, V. Daniel7; Eulisse, Giulio3;

Fernandez Menendez, Javier41; Fitzpatrick, Conor40; Frederix, Rikkert39; Frixione,

Stefano13; Genser, Krzysztof L7; Gheata, Andrei3; Giuli, Francesco15; Gligorov,

Vladimir V.21; Grasland, Hadrien Benjamin10; Gray, Heather18,26; Gray, Lindsey7;

Grohsjean, Alexander5; Gütschow, Christian29; Hageboeck, Stephan3; Harris, Philip

Coleman22; Hegner, Benedikt3; Heinrich, Lukas3; Holzman, Burt7; Hopkins, Walter1;

Hsu, Shih-Chieh46; Höche, Stefan7; Ilten, Philip James27; Ivantchenko, Vladimir24;

Jones, Chris7; Jouvin, Michel10; Khoo, Teng Jian36,35,a; Kisel, Ivan6; Knoepfel, Kyle7;

Konstantinov, Dmitri17; Krasznahorkay, Attila3; Krauss, Frank33; Krikler, Benjamin

Edward28; Lange, David43; Laycock, Paul2,a; Li, Qiang42; Lieret, Kilian20; Liu,

Miaoyuan45; Loncar, Vladimir3,16; Lönnblad, Leif39; Maltoni, Fabio11,38; Mangano,

Michelangelo3; Marshall, Zachary Louis18; Mato, Pere3; Mattelaer, Olivier38;

McFayden, Joshua Angus18,a; Meehan, Samuel3; Mete, Alaettin Serhan1; Morgan,

Ben49; Mrenna, Stephen7; Muralidharan, Servesh3,1; Nachman, Ben26; Neubauer,

Mark S.31; Neumann, Tobias29,9; Ngadiuba, Jennifer4; Ojalvo, Isobel43; Pedro, Kevin7;

Perini, Maurizio3; Piparo, Danilo3; Pivarski, Jim43; Plätzer, Simon48; Pokorski,

Witold3,a; Pol, Adrian Alan3; Prestel, Stefan39; Ribon, Alberto3; Ritter, Martin20;

Rizzi, Andrea14,a; Rodrigues, Eduardo37; Roiser, Stefan3; Schulz, Holger32; Schulz,

Markus3; Schönherr, Marek33; Sexton-Kennedy, Elizabeth7; Siegert, Frank25;

Siódmok, Andrzej8; Stewart, Graeme A3,a; Sudhir, Malik44; Summers, Sioni Paris3;

∗hsf-editorial-secretariat@googlegroups.com

FERMILAB-PUB-20-467-SCD

HSF-DOC-2020-01

10.5281/zenodo.4009114

31 August, 2020

This document was prepared by HEP Software Foundation collaboration using the resources of the Fermi National Accelerator
Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research
Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

http://arxiv.org/abs/2008.13636v1
mailto:hsf-editorial-secretariat@googlegroups.com

Thais, Savannah Jennifer43; Tran, Nhan Viet7; Valassi, Andrea3,a; Verderi, Marc19;

Vom Bruch, Dorothea21; Watts, Gordon T.46; Wenaus, Torre2; Yazgan, Efe23,a

1 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
2 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
3 CERN, Geneva, Switzerland
4 California Institute of Technology, Pasadena, California, CA, USA
5 Deutsches Elektronen-Synchrotron, Hamburg, Germany
6 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt,

Frankfurt,Germany
7 Fermi National Accelerator Laboratory, Batavia, IL, USA
8 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul.

Radzikowskiego 152, 31-342 Kraków, Poland
9 Illinois Institute of Technology, Chicago, USA
10 IJCLab, CNRS, Université Paris-Saclay and Université de Paris, Orsay, France
11 INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
12 INFN Sezione di Firenzea, Università di Firenze, Firenze, Italy
13 INFN Sezione di Genova, Genova, Italy
14 INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
15 INFN Sezione di Roma Tor Vergata, Roma, Italy
16 Institute of Physics Belgrade, Pregrevica 118, Belgrade, Serbia
17 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino;

Russia
18 Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
19 Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau,

France
20 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
21 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université

Paris Diderot, CNRS/IN2P3, Paris, France
22 Massachusetts Institute of Technology, Cambridge, MA, USA
23 National Taiwan University (NTU), Taipei, Taiwan
24 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
25 Technische Universität Dresden, Dresden, Germany
26 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA,

USA
27 University of Birmingham, Birmingham, United Kingdom
28 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
29 Department of Physics and Astronomy, University College London, London, United Kingdom
30 University of California, San Diego, La Jolla, CA, USA
31 University of Illinois Urbana-Champaign, Champaign, Illinois, IL, USA
32 University of Cincinnati, Cincinnati, OH, USA
33 IPPP, Durham University, Durham, United Kingdom
34 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

35 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
36 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
37 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
38 Université Catholique de Louvain, Belgium
39 Fysiska institutionen, Lunds Universitet, Lund, Sweden
40 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
41 Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnoloǵıas Espaciales de Asturias

(ICTEA), Oviedo, Spain
42 Peking University, Beijing, China
43 Princeton University, Princeton, NJ, USA
44 University of Puerto Rico, Mayaguez, USA
45 Purdue University, West Lafayette, USA
46 University of Washington, Seattle, WA, USA
47 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
48 University of Vienna, Austria
49 Department of Physics, University of Warwick, Coventry, United Kingdom

a Editor

Contents

1 Introduction 2

2 Physics Event Generators 4

2.1 Introduction 4

2.2 Collaborative Challenges 4

2.3 Technical Challenges 6

2.4 Physics Challenges 9

3 Detector Simulation 9

3.1 Introduction 9

3.2 Geant4 R&D 10

3.3 Experiment Applications and Optimised Use of Geant4 11

3.4 Fast Simulations 12

3.5 Technical Challenges 13

3.6 Other Activities 15

3.7 Outlook 15

4 Reconstruction and Software Triggers 16

4.1 Evolution of Triggers and Real-Time Analysis 16

4.2 Challenges and Improvements Foreseen in Reconstruction 17

4.3 Enhanced Data Quality and Software Monitoring 18

4.4 Trigger and Reconstruction Software Sharing 20

5 Data Analysis 21

5.1 Key Analysis Computing Challenges at the HL-LHC 21

5.2 Analysis Processing and Workflows: Current Problems and Solutions 22

5.3 Plans and Recent Progress 24

5.4 Prospects and R&D needs 25

6 Summary 27

6.1 Physics Event Generators 27

6.2 Detector Simulation 28

6.3 Reconstruction and Software Triggers 28

6.4 Data Analysis 29

References 30

– 1 –

1 Introduction

Common and community software packages, such as ROOT, Geant4 and event generators

have been a key part of the LHC’s success so far and continued development and opti-

misation will be critical in the future [1–3]. The challenges are driven by an ambitious

physics programme, notably the LHC accelerator upgrade to high-luminosity, HL-LHC,

and the corresponding detector upgrades of ATLAS and CMS. The General Purpose De-

tectors describe their specific challenges elsewhere; in this document we address the issues

for software that is used in multiple experiments (usually even more widely than ATLAS

and CMS) and maintained by teams of developers who are either not linked to a particular

experiment or who contribute to common software within the context of their experiment

activity. We also give space to general considerations for future software and projects that

tackle upcoming challenges, no matter who writes it, which is an area where community

convergence on best practice is extremely useful.

ATLAS and CMS will undergo major detector upgrades and will also increase their

trigger rates for HL-LHC by about a factor of 10; event complexity will rise, with peak

pile-up of 200, far higher than in Run-2. This places an enormous burden on storage

and processing resources. Current CMOS microprocessor technology is clock speed limited

(due to the failure of Dennard scaling) and, while processors per-integrated circuit still

keeps rising, Moore’s Law is expected to stall during the 2020s. More importantly, the

effective runtime related improvements in computing from CPU servers at sites is likely to

be only about 10% per year, making the shortfall in processing resources more severe. As

manufacturers struggle to deliver ever-more effective computing through CPUs the drive

to different architectures intensifies, with GPUs becoming commonplace and increasing

interest in even more specialised architectures, such as TPUs, IPUs and developments that

make FPGA devices more user friendly [4]. These pose huge challenges for our community

as the programming models and APIs vary widely here and possible lock-in to a particular

vendor’s devices is a significant problem for code sustainability and preservation. Huge

work has been done already to adapt to this changing landscape, e.g. multi-threading

software and GPU codes have been used in production by some experiments for years

now [5, 6]. In other areas migration is still ongoing. In yet others it has not even started.

Generic heterogeneous programming models have existed for some time, and new ones are

arising, but there is, as yet, no clear winner, in-part because the performance obtained

can be highly application-dependent. HEP itself will not drive the success of one model or

another, so even if the community converged on a preferred model, its long term success

would not be assured. The C++ standard itself is likely to lag for many years behind what

is required by us in the area of heterogeneous or even distributed computing. Further,

experiment frameworks (and with knock-on effects to systems like workload management)

will need to adapt to sites that provide heterogeneous resources. How to do this, and make

effective use of different heterogeneous resources across different sites, remains far from

settled.

For storage systems (see the DOMA and WLCG documents) the pressure on software

is to store as much physics information in as few bytes as possible, but also to be able to

– 2 –

read at very high rates to deliver data from modern storage technologies into the processing

hardware. This requires critical developments in the storage formats and libraries used in

HEP, e.g. developments like RNTuple for ROOT I/O is likely to be of great importance for

the community [7]. The likelihood of finding an off-the-shelf compact and efficient storage

format for HEP data is remote, so investment in smart software to support our PB sized

science data is simply cost effective. Particularly for analysis, which is usually I/O bound,

we have an end-to-end problem from storage technology, through the software layers, to

processing resources that may well span multiple nodes. Other workflows, which are less

dependent on I/O rates will, nevertheless, have to be adapted to using remote data where

the I/O layer must optimise data transfers and hide latency, e.g. taking advantage of

XRootD’s single column streaming ability [8].

In this increasingly complex environment in which to write software, there are im-

portant problems where sharing information at the community level is far more efficient.

Providing a high level of support in the build environment for developers, sharing knowl-

edge about how to measure, and then improve, performance (especially on multiple different

architectures) and sharing best practice for code development can have a large integrated

benefit [9]. This requires improved training and the development of a curriculum for all

developer levels. In the field, such initiatives are often warmly received, but real support

is needed for those who can put this into practice, also ensuring that their work in training

contributes to their career development and a long term future in the field [10]. HEP soft-

ware stacks are already deep and wide and building these consistently and coherently is

also an area where knowledge can be shared. Support is needed for multiple architectural

targets and ensuring the correct runtime in heterogeneous environments.

This brings up the important question of validation and the need to improve the secu-

rity of physics results, which is even more complicated on heterogeneous platforms, when

exact binary compatibility often cannot be assured. Currently almost every experiment

and project has its own infrastructure for this.

Once software is built, it needs to be shipped worldwide so that the production work-

flows can run. CernVM-FS was a huge leap forward for software distribution and has even

been widely adopted outside HEP [11, 12]. However, new challenges arise, with container

based payloads, scaling issues and disconnected supercomputer sites. So maintenance and

development needs to be undertaken to support and extend this key supporting infrastruc-

ture for software.

Finally, over the multi-decade lifetimes of HEP experiments, we need to preserve both

the core and analysis software so that results can be confirmed and updated as the field

moves on. There are many exciting developments based around CernVM-FS [13, 14],

containers and things like analysis description languages [15], but these are not yet at the

stage of being settled nor integrated into our day-to-day workflows.

In the rest of this document the main issues associated with the key parts of the

software workflow in high-energy physics are presented, focusing on those that dominate

current resource consumption: physics event generation, detector simulation, reconstruc-

tion and analysis.

– 3 –

2 Physics Event Generators

2.1 Introduction

Physics event generators are essential in HEP. All of the LHC scientific results, both preci-

sion measurements or searches for new physics, depend significantly on the comparison of

experimental measurements to theoretical predictions computed using generator software.

Using Monte Carlo (MC) techniques, generators allow both the generation of un-

weighted events for experimental studies of differential distributions and the prediction of

total cross sections. The large-scale event generation campaigns of the LHC experiments

have significant computational costs, mainly in terms of CPU resources. The limited size

of simulated samples is a source of major uncertainty in many analyses and is therefore a

limiting factor on the potential physics output of the LHC programme. This situation will

get significantly worse for HL-LHC. The fraction of the CPU resources used for event gen-

eration today is approximately 5-15%. As is the case for the other big consumers of CPU

(detector simulation and reconstruction), speedups in generator software are needed to

address the overall resource problem expected at the HL-LHC, compounded because more

accurate predictions, requiring more complex calculations will be needed (e.g. beyond NLO

or with higher jet multiplicities). Many other issues, both technical and non-technical exist,

e.g. funding, training, careers for those working in this area [16, 17].

A HSF Working Group (WG) on generators [18] was set up at the beginning of 2019.

The main focus of the WG so far has been on gaining a better understanding of the

current situation, and identifying and prioritising the areas where computing costs can be

reduced. In particular, the WG has been active in analysing the ATLAS and CMS compute

budgets in detail, in profiling MG5 aMC [19], Sherpa [20] and Powheg [21], in discussing

the possible sharing of common parton-level samples by ATLAS and CMS, and in reviewing

and supporting the efforts for porting generators to modern architectures (e.g., MG5 aMC

to GPUs). This last activity is particularly important, as it has become increasingly clear

that being able to run compute-intensive WLCG software workloads on GPUs would allow

the exploitation of modern GPU-based supercomputers at High Performance Computing

(HPC) centres, and generators look like a natural candidate for this, as they are smaller

code bases without complex dependencies.

This section gives an overview of the many technical and non-technical challenges in

the generator area and of the work that can be done to address them. This is finally

condensed into a list of a few high-priority items, for the next 18 months. A more detailed

version of this contribution, including a more complete list of references, is uploaded to

arXiv and will be submitted for publication [22].

2.2 Collaborative Challenges

2.2.1 Generator Software Landscape

The landscape of generator software is extremely varied. Different generators are used for

different processes. Generating a sample also involves choices of precision (e.g. Leading

Order, LO, or Next-to-Leading-Order, NLO), hadronisation and Parton Shower (PS) mod-

els, underlying event tunes, prescriptions for matching/merging and simulating particle

– 4 –

decays, and other input parameters, chiefly among them the parton density functions, for

which different interfaces exist. Various combinations of software libraries are thus possi-

ble, often written by different authors and frequently many years old. For a given process

the LHC experiments often use different software packages and settings from each other,

and a single experiment can generate events using more than one choice. Many different

packages and configurations may therefore need to be worked on to get cumulative CPU

cost reductions. The large number of external packages also complicates their long-term

maintenance and integration in the experiments’ software and workflows, sometimes lead-

ing to job failures and computing inefficiencies. Other packages are also absolutely critical

for the whole generator community and must be maintained, even if their CPU cost is

relatively low (LHAPDF, Rivet, HepMC, etc.).

2.2.2 Skills and Profiles

A very diverse combination of skills and profiles are needed for generator software. The-

orists (who create fundamental physics models, and design, develop and optimise most

generator code), experimentalists working in research (who request different samples) and

in computing (who implement, monitor and account execution of workflows on computing

resources), software engineers and system performance experts. This is a richness and op-

portunity, as some technical problems are best addressed by people with specific skills, but

it also poses some challenges:

Training challenges. Theorists and experimentalists often lack formal training in soft-

ware development and optimisation. Software engineers and experimentalists are often not

experts in the theoretical physics models implemented in MC codes.

Communication challenges. It is difficult to find a shared terminology and set of

concepts to understand one another: notions and practices that are taken for granted in

one domain may be obscure for others. As an example, there are many articles about the

physics in generators, but software engineers need papers describing the software modules

and overall control and data flow.

Career challenges. Those working in the development, optimisation or execution of

generator software provide essential contributions to the success of the (HL-)LHC physics

programme and it is critical that they get the right recognition and motivation. However,

theorists get recognition on published papers, and may not be motivated to work on soft-

ware optimisations that are not “theoretical” enough to advance their careers. Generator

support tasks in the experiments may also not be enough to secure jobs or funding for

experimentalists pursuing a career in research.

Mismatch in usage patterns and optimisation focus. The way generators are built

and used by their authors is often different from the way in which they are deployed and

integrated by the experiments in their software frameworks and computing infrastructure.

The goals and metrics of software optimisation work may also differ. Theorists are mainly

interested in calculating cross sections and focus on minimising the phase space integration

– 5 –

time for a given statistical precision. The LHC experiments run large scale productions

of unweighted event generation, and mainly need to maximise the throughput of events

generated per unit time on a given node.

Programming languages. Attracting collaborators with a computer science background

to work on generators, especially students, may also be complicated by the fact that criti-

cal components of some generator packages are written in Fortran, which is rarely used in

industry and less popular among developers than other programming languages. Some of

the generators also do not use industry standard version control systems, making it harder

to contribute code.

2.3 Technical Challenges

The event generation workflow presents several challenges and opportunities for improve-

ment.

2.3.1 Inefficiency in Unweighted Event Generation

Phase space sampling inefficiency. Efficient sampling is the most critical ingredient

for efficient unweighted event generation. Many generic algorithms exist (e.g. VEGAS [23],

BASES / SPRING [24], MINT [25], FOAM [26]), as well as others developed specifically

for a given generator (e.g. MadEvent [27], itself based on a modified version of VEGAS,

in MG5 aMC, or COMIX [28] in Sherpa). In general, the larger the dimensionality of the

phase space, the lower the unweighting efficiency that can be achieved: in W+jets, for

instance, the Sherpa efficiency is 30% for W+0 jets and 0.08% for W+3jets [29]. This is an

area where research is very active, and should be actively encouraged, as significant cost

reductions in WLCG compute budgets could be achieved. Improvements in this area start

from physics-motivated approaches based on the knowledge of phase space peaks and are

complemented by machine learning (ML) algorithmic methods [29–32].

Merging inefficiency. Merging prescriptions (e.g. MLM [33], CKKW-L [34] at LO

and FxFx [35], MEPS@NLO [36] at NLO) imply the rejection of some events, to avoid

double counting between events produced with njets+1 matrix elements and with njets MEs

plus parton showers. The resulting inefficiencies can be relatively high, depending on the

process, but they are unavoidable in the algorithmic strategy used by the underlying physics

modeling [37]. However, a method like shower-kt MLM can reduce the merging inefficiency

of MLM [38].

Filtering inefficiency. An additional large source of inefficiency is due to the way the

experiments simulate some processes, where they generate large inclusive event samples,

which are then filtered on final-state criteria to decide which events are passed on to detector

simulation and reconstruction (e.g. CMS simulations of specific ΛB decays have a 0.01%

efficiency and ATLAS B-hadron filtering has ˜10% efficiency for V+jets). This inefficiency

could be reduced by developing filtering tools within the generators themselves, designed

for compatibility with the requirements of the experiments. Filtering is an area where

LHCb has a lot of experience and already obtained significant speedups through various

– 6 –

techniques. The speed of colour reconnection algorithms is a limiting factor for simulating

rare hadron decays in LHCb.

Sample sharing and reweighting. In addition to removing inefficiencies, other ways

could be explored to make maximal use of the CPU spent for generation by reusing samples

for more than one purpose. Sharing parton-level samples between ATLAS and CMS is being

discussed for some physics analyses. Event reweighting is already commonly used (e.g. for

new physics searches and some systematic uncertainty calculations) and could be explored

further, though this may require more theoretical work for samples involving merging or

NLO matching [39].

Negative weights. Matching prescriptions, like MC@NLO, are required in (N)NLO cal-

culations to avoid double counting between (N)NLO matrix elements and parton showers,

leading to the appearance of events with negative weights. This causes a large inefficiency,

as larger event samples must be generated and passed through the experiment simulation,

reconstruction and analysis codes, increasing the compute and storage requirements. For a

fraction r of negative weight events, the number of events to generate increases by a factor

1/(1 − 2r)2: for instance, with r = 25% (which may be regarded as a worst-case scenario

in top quark pair production [40]), one needs to generate 4 times as many events. Negative

weights can instead be almost completely avoided, by design, in another popular matching

prescription, POWHEG; however, this is only available for a limited number of processes

and describes the relevant physics to a different degree of precision than MC@NLO (see [40]

for a more in-depth discussion). Progress in this area can only be achieved with physics

knowledge: for instance, a new approach for MC@NLO-type matching with reduced nega-

tive weights has recently been proposed [40] and some recent papers show how to lessen the

impact of negative weights in a secondary step [41, 42]. It should be noted that negative

weights can also happen at LO because of not-positive-definite parton density function sets

and interference terms, e.g. in effective field theory calculations.

2.3.2 Accounting and Profiling

While progress has been made to better understand which areas of generator software have

the highest computational cost, more detailed accounting of the experiment workloads

and profiling of the main generator software packages would help to further refine R&D

priorities.

Accounting of CPU budgets for generators in ATLAS/CMS. Thanks to a lot of

effort from the generator teams in both experiments, a lot of insight into the settings used

to support each experiment’s physics programme was gained within the WG, and it is now

clear that the fraction of CPU that ATLAS spends for event generation is somewhat higher

than that in CMS. More detailed analysis of the different strategies is ongoing. These figures

had to be harvested from logs and production system databases, which was particularly

difficult for CMS, requiring significant person hours. It is important to establish better

mechanisms to collect this information, to allow for an easy comparison between different

experiments.

– 7 –

Profiling of the generator software setups used for production. Another area

where the WG has been active is the definition and profiling of standard generator setups,

reproducing those used in production. Detailed profiling could also be useful to assess the

CPU cost of external parton distribution function libraries [43], or the memory require-

ments of the software (which may motivate a move to multithreading or multiprocessing

approaches).

2.3.3 Software Modernisation

More generally, as is the case in other areas of HEP, some R&D on generator software is

certainly be needed to modernise it and make it more efficient, or even port it to more

modern computing architectures [16, 44]:

Data parallelism, GPUs and vectorisation. The data flow of an MC generator,

where the same (matrix element) function is computed repeatedly at many phase space

points, lends itself naturally to the data parallel approaches found in CPU vectorised code

and in GPU compute kernels. Porting and optimising generators on GPUs is essential to

be able to use modern GPU-based HPCs. The work done in this direction in the past on

MG5 aMC, that never reached production quality, is now being reinvigorated by the WG,

in collaboration with the MG5 aMC team, and represents one of the main R&D priorities

of the WG. This work is presently focusing on Nvidia CUDA, but abstraction libraries will

also be investigated. GPUs may also be relevant to ML-based sampling algorithms and to

the pseudo-random number generation libraries used in all MC generators.

Task parallelism, multithreading and multiprocessing. Generators are generally

executed as single threaded software units. In most cases, this is not a problem, as the

memory footprint of unweighted event generation is small and usually fits within the 2

GB per core available on WLCG nodes. However, there are cases where memory is higher

than 2 GB (e.g. DY+jets using Sherpa); this leads to inefficiencies as some processor cores

remain unused, which could be avoided using multithreading approaches. The fact that

some generators are not even thread safe may also be a problem, for instance to embed

them in multi-threaded event processing frameworks, such as that of CMS. Multi-processing

approaches may also be useful to speed up the integration and optimisation step for complex

high-dimensional final states. In particular, a lot of work has been done to implement

MPI-based multi-processing workflows for generators in recent years. For instance, the

scaling of LO-based generation of merged many-jet samples has been successfully tested and

benchmarked on HPC architectures using both Alpgen [45] and Sherpa [46]; in the latter

case, new event formats based on HDF5, replacing LHEF, have also been instrumental in

the success of these tests. MPI integration has also been completed for MG5 aMC [47]. It

should also be noted that, even if HPCs offer extremely high-speed inter-node connectivity,

it is perfectly ok for WLCG workflows to use these systems as clusters of unrelated nodes.

Generic code optimisations. A speedup of generators may also be achievable by more

generic optimisations, not involving concurrency. It should be studied, for instance, if data

caching [43] or different compilers and build strategies may lead to any improvements.

– 8 –

2.4 Physics Challenges

In addition to software issues, important physics questions should also be addressed about

more accurate theoretical predictions (above all NNLO QCD calculations, but also elec-

troweak corrections) and their potential impact on the computational cost of event gener-

ators at HL-LHC. Some specific NNLO calculations are already available and used today

by the LHC experiments in their data analysis. With a view to HL-LHC, however, some

open questions remain to be answered, in particular:

NNLO: status of theoretical physics research. The first question is, for which pro-

cesses NNLO precision will be available at the time of the HL-LHC? For example, when

would NNLO be expected for 2 → 3 or even higher multiplicity final states? And for lower

multiplicity final states, where differential NNLO predictions exist but the generation of

unweighted NNLO+PS events is not yet possible. It is important to clarify the theoretical

and more practical challenges in these calculations, and the corresponding computational

strategies and impact on CPU time needs.

NNLO: experimental requirements for data analysis at HL-LHC. The second

question is, for which final states unweighted event generation with NNLO precision would

actually be required? and how many events would be needed? One should also ask if

reweighting LO event samples to NNLO would not be an acceptable cheaper alternative to

address the experiment’s needs.

Size of unweighted event samples required for experimental analysis at HL-

LHC. Another question, unrelated to NNLO, is in which regions of phase space the

number of unweighted events must be strictly proportional to the luminosity? For example,

in the low pT regions of W boson production it is probably impossible to keep up with

the data, due to the huge cross section. Alternative techniques should be investigated, to

avoid the generation of huge event samples.

3 Detector Simulation

3.1 Introduction

In HEP, data analysis, theory model evaluation and detector design choices rely on detailed

detector simulation. Since the start of the first run the LHC experiments have produced,

reconstructed, stored, transferred and analysed hundreds of billions of simulated events.

This effort required a major fraction of WLCG’s computing resources [48–56]

The increase in delivered luminosity in future LHC runs, in particular with the HL-

LHC, will create unique research opportunities by collecting an order of magnitude more

data. At the same time, the demand for detector simulation will grow accordingly so that

statistical uncertainties are kept as low as possible. However, the expected computing

resources will not suffice if current detector simulation is used; the availability of simulated

samples of sufficient size would soon become a major limiting factor as far as new physics

discoveries, for example through precision measurements, are concerned. Development of

– 9 –

faster simulation, therefore, is of crucial importance and different techniques need to be

explored under the assumption that they will provide a sufficient gain in time performance

with a negligible or acceptable loss in physics accuracy.

The Geant4 simulation toolkit has been the de facto standard for HEP experiment

simulation for physics studies over the last two decades [57–59]. Designed in the late

1990s to cope with the simulation challenges of the LHC era, Geant4 introduced flexible

physics modelling, exploiting layers of virtuality. This fostered progress in physics by

comparison of competing models on the same energy ranges, and allowed complementary

models to be combined to cover large energy ranges. The simulation applications of the

LHC experiments make use of this toolkit and, as such, most of the LHC physics program

relies on it. It has delivered a physics precision that allows the experiments to perform

precision analysis of the collected data and to produce new results pushing the boundaries

of our understanding in HEP. At the same time, the code of the toolkit is becoming old,

with some parts written almost thirty years ago, making it more and more difficult to run

efficiently on modern computing architectures. Any improvement in the critical elements of

Geant4 can be leveraged by the applications that use it. Improvements of physics models

need to continue to take place to prevent systematic uncertainties from simulation from

becoming a dominant factor, however, their exact influence on the precision of physics

analysis is not always easy to quantify. On the other hand, the overall CPU performance

of the current code will not improve drastically just by relying on modern hardware or

better compilers.

Taking all those elements into account, three main development paths have emerged

to be undertaken simultaneously and these have started to be pursued. However, effort in

any one of them is far from sufficient to exploit their individual potential.

Firstly, it is necessary to continue to modernise and refactor the simulation code by

using more optimal, modern programming techniques.

Secondly, different fast simulation techniques, where tracking of individual particles

in given detectors is replaced by some sort of parameterisation and precision is traded to

achieve higher event throughput.

Finally, the use of compute accelerators (like GPUs or FPGAs) is the third emerging

path that needs to be undertaken and that requires intense R&D effort.

We will discuss more in detail these three development axes in the following sections,

outlining the developments identified in and since the Community White Paper [3, 60].

3.2 Geant4 R&D

The Geant4 particle transport toolkit contains advanced models for electromagnetic and

hadronic physics processes, as well as the geometrical description of the detectors. The

toolkit design principles were to allow flexibility in future extensions of its own code, as

well as choices for particular applications. It is clear that this flexibility comes at the price

of a performance penalty. It was observed that writing more compact and more specialised

code can lead in certain places to up to several tens of percent speed-up [61, 62]. The

technical improvements to explore here consist of avoiding too many virtual layers and

improving the instruction and data locality, leading to better cache use.

– 10 –

Going even further, as far as specialisation is concerned, studies suggest that imple-

menting compact, self-contained transport libraries with a minimal set of physics models

(for instance only electromagnetic interaction for selected particles) with predefined scoring

(to simulate, for instance, the response of an EM calorimeter) can also bring speed-ups to

the complete application [61, 62].

As far as architectural modifications are concerned, the design of the Geant4 track-

status machinery prevents the introduction of fine-grained track parallelism. It is still

not clear whether this kind of parallelism can bring any substantial speed-up, due to

the overheads; however, making the Geant4 kernel and physics processes stateless would

certainly provide the necessary starting points for further R&D in that direction.

Most of these investigations have started and it is hoped to see some first results on

a year long time-scale. More effort, however, will be required to integrate any eventual

changes in the production code in a timely manner.

The GeantV Vector prototype has allowed the assessment of the achievable speedup

using a novel, vectorised approach to particle transport. The demonstrator of a full electro-

magnetic shower in realistic (CMS) geometry has been implemented and the comparison to

a similar Geant4 application has been performed. The conclusion of that work showed that

the main factors in the speedup seem to include better cache use and tighter code, while the

vectorisation impact was much smaller than hoped for. This unimpressive impact is due to

a set of factors, including the fraction of the current algorithms that could be vectorised,

unresolved challenges for the gather/scatter and tail handling (to keep the number of events

in flight within bound) needed for large number of shapes, and of course Amdahl’s Law

applied to vectorisation where some bottleneck (for example geometry navigation) could

not be tackled without a major additional long term effort [61, 62].

At the same time libraries developed in the context of the GeantV R&D, e.g. VecGeom,

have been successfully integrated in Geant4 and ROOT benefiting the whole HEP software

community [63]. The cost-over-benefit of more vectorisation of the code has not been

deemed worth the necessary investment also due to the speculation that a complete rewrite

of the physics base could become necessary to fully exploit it. As a result investing in the

optimisation and modernisation of the Geant4 code has gained even more relevance.

3.3 Experiment Applications and Optimised Use of Geant4

All LHC experiments have dedicated simulation frameworks making use of the Geant4

toolkit for modelling physics processes in their detectors. Every experiment configures

and uses what is provided by Geant4 for their specific needs. Effort has been spent by

each experiment since the publication of the Community White Paper to benchmark their

simulation code and to maximally exploit the options provided by the Geant4 toolkit to

optimise the performance of their applications [64]. All of the various handles provided are

being continuously explored and adopted when deemed useful: range and physics cuts have

been reviewed and customised by all experiments, shower libraries adopted as baseline in

the forward region by ATLAS and CMS, stepping granularity optimised, magnetic field

caching investigated, neutron Russian roulette used for dedicated simulations. All of these

– 11 –

can have major impacts on simulation time and sharing knowledge and experience between

experiments can be of high benefit even if each experiment has to find its optimal solution.

ATLAS, CMS and LHCb have integrated the Geant4 event-based multi-threading fea-

tures within their own multi-threaded frameworks, harmonising their different architectural

choices with the Geant4 implementation [65–67], and have used, or are planning to use,

them in their production environment to gain access to a larger set of distributed resources.

ATLAS has been running their multi-process simulation framework on HPCs systems for

production in the last years [68, 69] while CMS has pioneered the use of their multi-threaded

simulation on available resources including HPCs [70]. Both approaches have allowed the

exploitation of additional computing resources by enabling access to lower memory systems.

3.4 Fast Simulations

Fast simulation techniques consist of replacing the tracking of individual particles through

the detector (or part thereof), including all the physics processes they would undergo, by

a parameterisation, where the detector response is produced directly as a function of the

incoming particle type and energy.

An example of such a parameterisation was implemented many years ago in the context

of the H1 experiment [71]. This parameterisation, available within the Geant4 toolkit under

the name of the GFLASH library, became the starting idea for several custom implemen-

tations, specific for other calorimeters. Those were interfaced to experiments’ simulation

applications through a hook in the Geant4 toolkit. The LHC experiments implemented,

for example, dedicated parametrised response libraries for some of their calorimeters. Re-

cently, an effort has been invested in Geant4 to generalise the parameterisation formulae,

and to implement automatic procedures of tuning the parameters for specific detector ge-

ometries. This kind of ‘classical’ fast simulation, which describes the shower shape using

some complex mathematical functions, with several parameters, will remain an impor-

tant tool; however, it is also clear that their overall precision for different energy values,

especially for highly granular and complex calorimeters will always be relatively low.

Recent developments of deep learning-based techniques have opened up an exciting

possibility of replacing those ‘classical’ parameterisations by trained neural networks that

would reproduce the detector response. This approach consists of training generative mod-

els, such as Generative Adversarial Networks (GAN), Variational Auto-Encoders (VAE)

or Autoregressive Generative Networks on the ‘images’ of particle showers [72–75]. The

energy deposition values in the calorimeter cells are considered as ‘pixels’ of the images

that the network is supposed to reproduce. The first studies and prototypes have shown

very promising results, however, the generalisation of the developed models (for different

calorimeters, with different particles incident at different angles with different energies),

still requires further effort. Detailed physics validation of those tools and understanding

their capability to reproduce fluctuations is a prerequisite towards production quality fast

simulation libraries. This work is already ongoing, but will require, over the next few years,

more effort to be invested, combining physics and Machine Learning expertise. Given that

the training of the deep learning algorithms usually requires using sufficiently large MC

– 12 –

samples produced using standard techniques, the development of these novel tools does not

necessarily remove the need to speed up Geant4.

It is worth pointing out that different fast simulation techniques have already been

extensively used for LHC simulation campaigns. Effort has been spent in the experiments

frameworks to combine as much as possible fast and detailed implementations. In par-

ticular, ATLAS and CMS are using shower libraries in production for the modelling of

calorimeters in the forward region, in combination with the detailed simulation of the rest

of the sub-detectors. In LHCb the re-use of part of the underlying events for specific signals

of interest has been established in production of samples when appropriate, with particular

care paid to ensure keeping under control bias on statistical uncertainties [76]. Applicabil-

ity of this technique in ATLAS and CMS could be explored for specific cases. Similarly, the

re-use of simulated or real events to mimic the background to hard-scatter events is also

being exploited, where additional challenges exist concerning storage and I/O due to the

handling of the large minimum bias samples needed to model the additional interactions.

All LHC experiments have explored the use of multi-objective regression and genera-

tive adversarial networks (GANs) [74, 75, 77], they are now in the process of investigating

the use of fast simulations for other types of detectors than calorimeters, e.g. Cerenkov

based systems [78] and Time Projection Chambers [79]. While implementations of fast

simulations of given sub-detectors is specific to their technology and experimental environ-

ment and as such the responsibility of each LHC experiment, an area of potential common

investigation is frameworks for fast tuning and validation.

The use of fully parametric response of experimental setups at the level of recon-

structed objects (tracks and clusters) for rapid evaluation of physics reach is also exploited

by the experiments with generic frameworks for fast simulation of typical collider detectors

being used [80, 81]. The advantage of such frameworks is that they allow simultaneous

studies for different experiments as well as their potential use by the theory community.

Experiment specific fully parameterised simulations providing reconstructed objects com-

patible with the experiment’s analysis frameworks for systematic verifications have also

been emerging [78] .

It is reasonable to expect that the full variety of simulation options, from ‘smeared

reconstructed quantities’ to parameterisation for specific detectors to detailed Geant4, will

need to be exploited by the experiments for different tasks. Seamless ways of providing

them in a transparent and integrated way in the experiments’ simulation frameworks should

continue to be pursued with Geant4 support.

3.5 Technical Challenges

The hardware landscape has always set directions as far as software evolution is concerned.

The recent adaptation of the simulation code to multithreading (MT) turned out to be rel-

atively straightforward, but still took several years to adopt and validate. Geant4 can now

run in MT mode efficiently, distributing the events between threads and sharing resources,

like the geometry description or physics data, and thus reduce the memory footprint of

a simulation while maintaining its throughput performance. The efficient utilisation of

Single Instruction Multiple Data (SIMD) architectures, on the other hand turned out to

– 13 –

be more challenging. Not only was a limited part of the code vectorisable but also, as the

already mentioned GeantV R&D has shown, overheads related to gathering the data for

vector processing presented a significant challenges (tail handling, work balancing across

threads, etc.) to efficiently (development time wise and run time wise) profit from it [61,

62].

The most recent revolution in computing hardware is the use of Graphics Processing

Units (GPUs) for general purpose computing. Several attempts have been made to port

specific simulation code to GPUs. A few of them turned out to be successful, leading to

factors of several hundred or a thousand speedup [82–84]; however, they were always lim-

ited to a very specific simulation problem, far from what is addressed by a general HEP

simulation. This application of GPUs has been very successful in restricted domains like

medical physics simulation, neutron transport [85] or optical photon transport [86]. In

those applications, the type of particles considered is very limited (often just one type,

with no secondary particle production), the set of physics processes is reduced and the

geometry is often extremely simple compared to the LHC detectors. A natural extrapola-

tion of those approaches to a general HEP simulation is very difficult to imagine, because

the stochasticity of the simulated events would immediately lead to divergences as far as

different GPU threads are concerned, not to mention, simply the feasibility of porting the

whole simulation to GPU code, for which specific expertise would be needed.

On the other hand, running only very small pieces of the simulation application on

GPUs does not seem to be efficient either, as gathering data and transferring it from the

host to the device and back again may strongly limit any possible performance gain, similar

to what was seen with the GeantV vectorisation R&D. The most plausible approaches

seem therefore to lead in the direction of specialised libraries (like those described above

in the context of speeding up Geant4 simulation on the CPUs) that would perform the

complete simulation of specific sub-detectors (for instance EM calorimeter, for specific

incoming particles or Cherenkov-based detectors for the optical processes) on the device.

Such libraries could be the right compromise between the complexity of the algorithm that

needs to be ported and the overall time that is now saved in by the full simulation on the

CPU.

An investigation of these directions is starting now, but it will certainly require con-

siderable effort to be invested before being able to judge the real impact. The first steps

that are currently being undertaken consist of implementing, on GPUs, prototypes based

on VecGeom geometry and navigation capabilities [87]. If those prototypes turn out to be

successful, the next challenge will consist of adding tracking and eventually a limited sub-

set of physics models. While Geant4 is a toolkit capable of addressing different modelling

and simulation problems and contains many features and capabilities allowing for user ac-

cess to detailed information for a large variety of use cases and scientific communities, this

GPU development might turn into specialised transport modules, stripped of some features

which would be expensive to implement or support efficiently on GPUs.

Another interesting avenue consists of exploring the application of some vendor libraries

(like Nvidia Optix). Those libraries, originally developed for ray tracing, have several

similarities with general particle transport and, if applied successfully, could lead to major

– 14 –

speed-ups. All these efforts certainly require a major investment and new developers,

expert in those technologies, to join the R&D work.

3.6 Other Activities

Common digitisation efforts would be desirable among experiments, with advanced high-

performance generic examples, which experiments could use as a basis to develop their own

code. Nevertheless the large variety of detector technologies used reduces its applicability.

Digitisation is not yet a limiting factor, in terms of CPU requirements, so developments in

this area have not been a priority.

Simulated samples are often processed through the reconstruction as real data. As

such in some cases they require the emulation of hardware triggers. Hardware triggers are

based on very specific custom devices and a general approach does not seem very feasible,

even if some parametrisation could be generalised.

3.7 Outlook

It is important to realise that there is a considerable risk that simulation becomes a major

limiting factor as far as new physics discoveries are concerned if no serious effort is invested

in R&D. Concerted effort of different experts in physics, Machine Learning and GPUs is

needed. There are too many unknowns to focus on only one direction, so a lot of different

prototyping is needed. Development of Geant4, while working on fast simulation algorithms

and doing extensive R&D on leveraging compute accelerators is required. While the R&D

activities are taking place, one can not forget that it is still necessary to support the existing

code and make sure that sufficient funding and staffing is provided for maintenance and

development of physics algorithms, as well as for adapting the code to any updated CPU

hardware, operating systems and new compilers.

It is also important to stress once again the need for a continuous integration activity

of new runtime performance improvements and solutions into the Geant4 code base and

experiments applications to profit from any improvement as quickly as possible. An effort

needs to be invested into making it possible to evolve it to meet the HL-LHC needs without

compromising the production quality of the Geant4 code used by the experiments. We

need to ensure that new developments resulting from the R&D programs can be tested

with realistic prototypes and, if successful, then integrated, validated, and deployed in

a timely fashion in Geant4 and adopted by the experiments. The strategy adopted in

the successful integration in Geant4 of VecGeom libraries developed in the context of the

GeantV R&D can provide a working example of how to proceed to provide some incremental

improvements to existing applications.

No single solution appears at the moment to provide by itself the processing gains

required by HL-LHC, nevertheless if a novel approach emerges that could do so it should

be pursued and carefully evaluated in terms of gains against the disruption of a complete

re-implementation of how events are simulated.

– 15 –

4 Reconstruction and Software Triggers

Software trigger and event reconstruction techniques in HEP face a number of new chal-

lenges in the next decade. Advances in facilities and future experiments bring a dramatic

increase in physics reach, as well as increased event complexity and rates.

At the HL-LHC, the central challenge for high-level triggers (e.g. software triggers) and

object reconstruction is to maintain excellent efficiency and resolution in the face of high

pileup values, especially at low transverse momenta. Detector upgrades, such as increases

in channel density, high precision timing and improved detector layouts are essential to

overcome these problems. The subsequent increase of event complexity at the HL-LHC

also requires the development of software algorithms that can process events with a similar

cost per-event to Run-2 and Run-3. At the same time, algorithmic approaches need to

effectively take advantage of evolutions in computing technologies, including increased

SIMD capabilities, increased core counts in CPUs, and heterogeneous hardware.

This section focuses on the challenges identified in the Community White Paper [6, 16,

88] and the development of solutions since then. It also includes mentions of open source

software efforts that have developed within or outside LHC collaborations that could be

adapted by the LHC community to improve trigger and reconstruction algorithms.

4.1 Evolution of Triggers and Real-Time Analysis

Trigger systems are evolving to be more capable, both in their ability to select a wider

range of events of interest for the physics program of their experiment, and their ability to

stream a larger rate of events for further processing. The event rates that will be processed

by experiments at the HL-LHC will increase by up to a factor 10 with respect to Run-3,

owing to upgraded trigger systems and expanded physics programs. ATLAS and CMS

plan to maintain a two-tiered trigger system, where a hardware trigger makes use of coarse

event information to reduce the event rate to 10x over the current capability, up to 1 MHz

[89, 90]. The high level trigger system, implemented in software, selects up to 100 kHz of

events to be saved in full for subsequent analysis∗.

Experiments have also been working towards minimising the differences between trig-

ger (online) and offline software for reconstruction and calibration, so that more refined

physics objects can be obtained directly within the HLT farm for a more efficient event

selection. This is also in-line with enhancing the experiment’s capabilities for real-time

data analysis of events accepted by the hardware trigger system, driven by use cases where

the physics potential improves when analysing more events than can be written out in full

with traditional data processing.

Implementations of real-time analysis systems, where raw data is processed into its

final form as close as possible to the detector (e.g. in the high-level trigger farm), are in

use within several experiments. These approaches remove the detector data that typically

makes up the raw data kept for offline reconstruction, and keep only a limited set of

analysis objects reconstructed within the high level trigger or keepig only the parts of

∗LHCb [91] and ALICE [92] will both stream the full collision rate to real-time or quasi-real-time software

trigger systems.

– 16 –

an event associated with the signal candidates, reducing the required disk space. The

experiments are focusing on the technological developments that make it possible to do

this with acceptable reduction of the analysis sensitivity and with minimal biases. The

HSF Reconstruction and Software Trigger group has been encouraging cross-talk between

LHC experiments and beyond on real-time analysis, as these kinds of workflows increase

the physics output for selected physics cases without adding significant overhead to the

current resources.

Active research topics also include compression and custom data formats; toolkits for

real-time detector calibration and validation which will enable full offline analysis chains to

be ported into real-time; and frameworks which will enable non-expert offline analysts to

design and deploy real-time analyses without compromising data taking quality. Use cases

for real-time analysis techniques have expanded during the last years of Run 2 and their

use appears likely to grow already during Run 3 data taking for all experiments owing to

improvements in the HLT software and farms. Further ideas include retaining high-rate,

but very reduced data, from selected regions and sub-detectors, even up to the 40 MHz

bunch crossing rate [93].

4.2 Challenges and Improvements Foreseen in Reconstruction

Processing and reducing raw data into analysis-level formats, event reconstruction, is a

major component of offline computing resource needs, and in light of the previous sec-

tion it is relevant for online resources as well. This is an essential step towards precision

reconstruction, identification and measurement of physics-objects at HL-LHC.

Algorithmic areas of particular importance for HL-LHC experiments are charged-

particle trajectory reconstruction (tracking), including hardware triggers based on tracking

information which may seed later software trigger and reconstruction algorithms; jet re-

construction, including the use of high-granularity calorimetry; and the use of precision

timing detectors.

4.2.1 Tracking in High Pile-up Environments

The CPU needed for event reconstruction in Runs 2 and 3 is dominated by charged particle

reconstruction (tracking). This is still a focus for HL-LHC triggering and event reconstruc-

tion, especially when the need to efficiently reconstruct low transverse momentum particles

is considered.

The huge increase in the number of charged particles, and hence the combinatorial load

for tracking algorithms, at future colliders will put great strain on compute resources. To

minimise the memory footprint, tracking software needs to be thread-safe and to support

multi-threaded execution per core. At the same time, the software has to be efficient and

accurate to meet the physics requirements.

Since the CWP, experiments have made progress towards improving software tracking

efficiency in HL-LHC simulation, e.g. [94]. A number of collaboration and community

initiatives have been focusing on tracking, targeting both offline and online, and these are

listed below.

– 17 –

The ACTS project [95, 96] is an attempt to encapsulate the current ATLAS track

reconstruction software into an experiment-independent and framework-independent track-

ing software, designed to fully exploit modern computing architectures. It builds on the

tracking experience already obtained at the LHC, and targets the HL-LHC as well as future

hadron colliders. ACTS provides a set of track reconstruction tools designed for parallel

architectures, with a particular emphasis on thread-safety and concurrent event reconstruc-

tion. ACTS has active collaborators from other HEP experiments, such as FASER, and

provides support to Belle-II, EIC and CEPC.

The aim of the mkFit [97] project is to speed up Kalman filter (KF) tracking al-

gorithms using highly parallel architectures and to deliver track building (and possibly

fitting) software for the HL-LHC. Recent activities focused on delivering a production

quality software setup to perform track building in the context of LHC Runs 2 and 3.

The implementation relies on single-precision floating point mathematics and is available

for multicore CPUs. It achieves significant gains in compute performance from the use of

vector instructions, extending to AVX-512, based on Matriplex library (a part of the mkFit

project).

Exa.TrkX [98] is a cross-experiment collaboration of data scientists and computa-

tional physicists from ATLAS, CMS and DUNE. It develops production-quality deep neu-

ral network models, in particular Graph Neural Networks, for charged particle tracking on

diverse detectors employing next-generation computing architectures such as HPCs. It is

also exploring distributed training and optimisation of Graph Neural Networks (GNN) on

HPCs, and the deployment of GNNs with microsecond latencies on Level-1 trigger systems.

4.2.2 Adding Timing Information to Reconstruction

Physics performance in very high pileup environments, such as the HL-LHC or FCC-hh,

may also benefit from adding timing information to the reconstruction. This allows the mit-

igation of the effects of pile-up by exploiting the time-separation of collision products [99,

100]

Experiment communities have been working on timing detector reconstruction and

object identification techniques in complex environments. Since the CWP, initial track-

ing and vertexing algorithms that include timing information have been developed and

incorporated into experimental software stacks [101]†.

4.3 Enhanced Data Quality and Software Monitoring

At HL-LHC, the development, automation, and deployment of extended and efficient mon-

itoring tools for software trigger and event reconstruction algorithms will be crucial for the

success of the experimental physics programme.

HEP experiments have extensive continuous integration systems, including code re-

gression checks that have enhanced the monitoring procedures for software development in

†Tracking algorithms where events overlap in time within time slices are employed by the CBM experi-

ment [102, 103]. The use of a cellular automaton makes the algorithm less dependent on the specific detector

geometry, and there may be the possibility of cross-talk with LHC experiments that are investigating 4D

reconstruction.

– 18 –

recent years. They also have automated procedures to check trigger rates as well as the

performance of the low- and high-level physics objects in the data.

Since the CWP, experiments have started making limited use of machine learning

algorithms for anomaly detection [104, 105].

4.3.1 General Reconstruction Software Improvements: Vectorisation

Improving the ability of HEP developed toolkits to use vector units on commodity hard-

ware will bring speedups to applications running on both current and future hardware.

The goal for work in this area is to evolve current toolkit and algorithm implementations,

and develop best programming techniques to better use the SIMD capabilities of current

and future computing architectures. Since the CWP, algorithm development projects have

demonstrated success in increasing the use of vector units [97, 106]. In addition, HEP

has increasingly benefited from industry developed software, including machine learning

toolkits (e.g., TensorFlow), that typically make excellent use of vector units. Challenges

remain in this area: for example, full exploitation must also account for many generations

of hardware that experiments must exploit on the grid. In addition, to realise full perfor-

mance gains, a large fraction of the application must be improved to use SIMD processing

capabilities (partly due to turbo-boost capabilities of processors).

4.3.2 Use of Machine Learning

It may be desirable, or even necessary, to deploy new algorithms that include advanced

machine learning techniques to manage the increase in event complexity without increasing

per-event reconstruction resource needs.

Work is already ongoing in the collaborations to evolve or rewrite existing toolkits and

algorithms focused on their physics and technical performance at high event complexity

(e.g. high pileup at HL-LHC), and efforts in this area have expanded. Cross-collaboration

developments are focusing on the availability of ML algorithms for experimental software,

especially in persistifying models and running inferences in production and in enhancing

the training capacities of collaborations by submitting jobs to the grid and to facilities

offering large CPU/GPU resources [107, 108]. One can also foresee that HEP will increase

the benefit from techniques and cross-talk from industry.

4.3.3 Algorithms and Data Structures

Computing platforms are generally evolving towards having more cores or to adopt different

architectural models (GPUs, FPGAs) to increase processing capability [4]. The goal for

HEP is to improve the throughput of software trigger and event reconstruction applications,

so current event models, toolkits and algorithm implementations have to evolve to efficiently

exploit these opportunities. The first algorithms that should be targeted are those which

are most time consuming.

Since the CWP, HEP now has a number of algorithmic projects that are designed for, or

have successfully adapted to, hardware accelerators, most notably to NVIDIA GPUs using

CUDA. Two projects targeting Run-3 and with prospects for use in Run-4 are Patatrack

(from CMS) [109] and Allen (from LHCb) [110].

– 19 –

Patatrack is a CMS initiative aimed at using heterogeneous computing for charged

particle reconstruction. Within the CMS codebase (CMSSW), this project has demon-

strated that physics reconstruction code can be written to leverage heterogeneous archi-

tectures, like GPUs, and achieve a significant speed-up, while reducing the overall cost and

power consumption of a system. An example is the CMS Pixel local reconstruction and the

track and vertex reconstruction: these algorithms can run on an NVIDIA T4 GPU with

the same performance as 52-56 Xeon cores, at a fraction of the cost and power consumption

of an equivalent CPU-only system; further improvements may come pairing one or more

high end GPUs with a low power ARM system.

Allen is a data processing framework for GPUs, as well as a specific implementation of

a first-level trigger for LHCb Run-3 data-taking. Allen is optimised for sustaining the rate

required by real-time processing in LHCb, but can be used as a more general GPU data

processing system as it includes a scheduler and a memory manager that can be integrated

into Gaudi [111]. This permits the extension and implementation of Allen within other

experimental software using the same underlying framework.

ATLAS is also investigating GPU solutions for reconstruction software and its accel-

eration at HL-LHC, in particular in terms of highly parallel algorithms [112] and to enable

the use of machine learning algorithms in object reconstruction and identification.

The experience acquired with these projects shows that GPUs can be used for increas-

ing the throughput in cases of large-size (ALICE) [113] and small-size events per second

(LHCb), and to speed up specific parts of the data processing (CMS Patatrack).

It is clear that the technology is improving rapidly in this area. The adoption of

portability toolkits is needed to avoid vendor lock-in and/or the need to evolve algorithms

by hand to adapt to each new type of computing architecture, as well as to increase the

sustainability of the codebase avoiding multiple implementations of the same algorithm.

The HLS4ML project [114–116] targets the implementation of machine learning algo-

rithms on FPGA for low-latency applications useful for e.g. Level-1 triggers. The aim of the

HLS4ML project is the translation of trained ML models into FPGA firmware. HLS4ML

also extends to the production of coprocessor kernels for FPGAs for longer latency appli-

cations, and can be used as a tool to design AI-powered ASICs. The SONIC application

[117] is being developed in parallel, with the goal of facilitating and accelerating the in-

ference of deep neural networks for triggering, reconstruction, and analysis, by providing

software to use heterogeneous computing resources as a service targeting next-generation

facilities at the energy and intensity frontier (HL-LHC, LBNF).

4.4 Trigger and Reconstruction Software Sharing

Nearly all software solutions presented in this chapter are tailored to a specific experiment,

and would require additional work to be adapted to different environments. Neverthe-

less, it is still useful to maintain open communication channels to discuss design choices

and compare performance assessments of different solutions to guide future software and

reconstruction design choices.

– 20 –

The use of open-source elements of the LHC software stacks for trigger and recon-

struction by smaller experiments, especially in case of common experimental design‡, is

still worthwhile This benefits smaller experiments and increases the return on investment

for LHC experiment software. For this reason, we also encourage the addition of common

open software projects to the ESCAPE software catalogue.

5 Data Analysis

5.1 Key Analysis Computing Challenges at the HL-LHC

Examination of collision data is, in essence, the primary objective of the experiment collab-

orations, coming at the end of the data preparation, simulation and reconstruction chain.

The stage of analysis, starting in most cases from a standard data format generically re-

ferred to as “Analysis Object Data” (AOD) containing reconstructed physics object data,

and producing physics results as the end product, poses unique computing challenges. The

scope of analysis data processing is broad, encompassing the production of derived data

formats as well as end stage analysis actions, such as producing histograms from those in-

termediate datasets and visualising the final results. In the following, attention is focused

on the computing challenges related to analysis for the ATLAS and CMS experiments.

Today, ROOT format AOD files and derived datasets take up the lion’s share of disk

resources, filling approximately 80% of the total data volume for both ATLAS and CMS

[118, 119]. To serve precision analyses that require large event statistics experiments will

increase the recorded event rate by an order of magnitude, compared with a projected ˜10%

annual growth of storage resources. The large pile-up in HL-LHC collisions will compound

the storage challenge by inflating the data size per event. Reducing the storage footprint

of data analysis is therefore of paramount importance.

The effective CPU needs for end-stage analysis payloads are typically orders of magni-

tude lower than those in simulation and reconstruction. When scaled up to O(100) analyses

per year, each processing the input data dozens of times a year, the total CPU consump-

tion at the HL-LHC is projected to be around 10% of total experimental computing [118,

119]. Central production of analysis data formats may account for another 10-30%. It is

worth noting at this point that analysis data access patterns tend to be more chaotic than

preceding stages, which can increase the effective resource needs by large factors.

More significant than the global storage and computational costs is the job turnaround

time, closely tied to the “time to insight”, which is a strong limitation on the speed of

analysis publication. One significant constraint is the need for full coverage of the input

data, which is inextricably linked to weaknesses in book-keeping tools that make it difficult,

if not impossible, to make meaningful studies on subsets of the data. This full coverage

requirement is clearly limited by computing infrastructure load and downtime. Another

challenge is the multiplication of computing resource demands from the assessment of

‡An example of software sharing happens in the case of the FASER experiment, whose offline software

(https://gitlab.cern.ch/faser/calypso) is based on a derivative of the ATLAS Athena open-source software,

which in turn uses the Gaudi framework. FASER also shares tracking detector components with ATLAS,

facilitating the adoption of software relying on similar detector descriptions.

– 21 –

https://projectescape.eu/services/open-source-scientific-software-and-service-repository
https://gitlab.cern.ch/faser/calypso

systematic uncertainties, which involves processing many alternate configurations and input

data, inflating both the CPU load and storage footprint. Improvement of community

standards for metadata handling and uncertainty handling will be very important for HL-

LHC.

A last concern is that, while simulation and reconstruction code is mostly optimised

and developed under greater scrutiny, analysis code is often produced with emphasis on

quick results and less emphasis on code quality or performance. Over time, this may result

in inefficient, under-documented code that exacerbates the disk and CPU shortfall and

poses a major difficulty when software is re-purposed for a new analysis. Add to this

a growing array of alternative toolkits from the data science community, in particular for

machine learning, and it is clear that the entropy of the analysis code ecosystem has become

a major challenge in itself.

The following sections expand on the major challenges for analysis software, including

those identified above. An overview is given of ongoing work on common tools that alleviate

these problems, followed by an outlook on R&D prospects that would more significantly

transform the HL-LHC analysis model for major resource savings.

5.2 Analysis Processing and Workflows: Current Problems and Solutions

To make data analysis tractable, AOD data are typically reduced both by saving only

relevant information for each event, which may require transformations (object calibration,

computation of derived variables) beyond simply discarding information, and by skimming

out only events that are interesting. In post-reconstruction data formats, lossy compression

is also in use and being optimised. Coordination of the data reduction phase is a key point

for the organisation of data analysis processing at HL-LHC.

Two approaches have been followed during LHC Run 2 by ATLAS and CMS: ATLAS

analysis trains [120] and the CMS mini-AOD, a highly reduced and standardised event

content. Analysis trains place software payloads tailored for specific analyses (carriages)

into a periodically scheduled centralised execution, amortising data staging costs and shar-

ing some common processing steps [121]. Standardised event contents are instead common

reductions that satisfy the needs of the bulk of analyses, avoiding duplication of commonly

selected events in multiple datasets. Neither of these approaches provides exhaustive cover-

age of all the analysis use cases for the experiments and alternative data formats are needed

for the small but significant (10-20%) fraction of analyses requiring custom reconstruction

that may be CPU-intensive. These exceptions to the rule are expected to remain at the

HL-LHC.

It is worth considering the viability of the arguably more flexible option to have analysis

trains run over the reconstruction output at the HL-LHC. Extrapolating using a simple

model, ATLAS finds that they would produce 35 PB/year of data AOD and 213 PB/year of

MC [118]. In comparison, a reduced DAOD PHYSLITE format (10 kB/event) made from

the AOD would result in 0.5 PB/year for data and 2 PB/year for MC. Production of this

reduced format using a Data Carousel model [118] allows the much larger AOD to reside

on tape, providing significant savings in disk storage. Experience from CMS shows that

further reduction (down to ˜2 kB/event for the nano-AOD) could be possible while still

– 22 –

supporting a majority of physics analyses [122]. File size reductions also permit multiple

copies to be held on disk for more efficient parallel processing. It is clear that as many

analyses as possible need to be fed into this standardised analysis event-content pipeline

if analysis computing resources are to be kept under control. Nevertheless, analysis trains

or any similar means of synchronising data access could be applied to this highly reduced

format. It is worth noting the LHCb analysis model already in Run 3 has to forego the

luxury of reprocessing raw data. This constraint from sheer event rate is not without merit

as it greatly simplifies the data processing and analysis models and removes one tier of

offline data products.

Careful attention needs to be paid to the assessment of systematic uncertainties, partic-

ularly with regard to event content standardisation, to avoid creating many derived outputs

that differ only minimally. Analysis models that do not require all event information to

be present in a single file, instead leveraging ROOT “friend trees” or columnar storage,

may be a way to reduce this duplication both in the case of uncertainty calculations and

reconstruction augmentations, but will require development of robust strategies for keeping

the augmentations in sync with the core events. It is noted that the ROOT data format

is quantifiably very efficient for the processing model in HEP [123], and any competitors

would have to achieve a similar level of performance.

Access to metadata, defined as cross-event information, is clearly a weak point in the

handling of the multiple analysis datasets originating from the LHC. Metadata may in-

clude information such as book-keeping of processed events, detector conditions and data

quality, a posteriori measured scale factors, and software versioning. This information is

often scattered in multiple locations such as: in-file metadata, remote database resources,

shared-area text or ROOT files, TWiki pages or even in e-mail. The lack of proper meta-

data integration and a coherent interface leaves analyses exposed to any problems in data

processing. This in turn results in data completeness demands that simply will not work

at the HL-LHC, where the huge datasets all but guarantee that some fraction of the data

will be unavailable at any given point in time.

At the HL-LHC, as energy and luminosity conditions are quasi stable across the years,

datasets from multiple years with different conditions will need to be analysed in a coherent

way. The analysis software will then need to be able to fetch and use the proper metadata

automatically while today’s analysis software often requires dedicated configuration and

tuning for each data-taking period. Belle II have taken some steps to address this by using

the “global tag” concept commonly used in reconstruction and applying it to analysis,

allowing users to better organise and store their analysis metadata. Nevertheless, until all

metadata is organised under the same global tag umbrella and accessed through a coherent

interface, which is extremely challenging, the problem remains. Improvements here are

necessary both to permit efficient studies on partial datasets, and to reduce the risk of user

error in metadata access.

The growing complexity of analysis codes makes them extremely fragile (i.e. bug-

prone), hardly reusable, and unsuited for analysis preservation needs. The current best

efforts at analysis preservation are based on a snapshot of the full analysis setup that can

ensure the possibility to re-run the code on the original dataset in a few years. This may

– 23 –

allow a future analyser to reproduce previous results, but will likely not provide any under-

standing, for the future analyser, about what the analysis was effectively doing. Another

use case is to reuse the analysis code on new data, be that the same dataset with improved

calibrations or additional data that will improve the precision of the measurement. This

brings significant additional challenges, not least related to metadata.

Nevertheless, these preservation efforts encourage better organisation of the analysis

as a workflow, and promote the use of version control tools together with continuous

integration, which offers a natural route to improving analysis code quality. In addition

to these code quality measures, a longer-term solution for code complexity may be the

adoption of a Domain-Specific Language (DSL) [15], discussed in more detail later, a model

that would have physicists write logical descriptions of their analyses, leaving low-level

code generation and hardware optimisation to a backend. Thus analysis design could be

quickly understood and shared, sidestepping the usual dearth of documentation, while

simultaneously isolating analysis design from implementation and hardware, providing a

natural means of analysis preservation. An interesting development in this direction is

the REANA platform [124] that supports multiple backends and uses a DSL to provide a

framework to run an analysis. Already a valuable resource as a tool for analysing open

data, it is interesting to ask what would happen if every analyst first had to structure their

analysis and capture their workflows before they started submitting jobs.

5.3 Plans and Recent Progress

Most of the problems identified above were already identified in the community white paper

[125] from 2017 and since then some progress was made prototyping new technologies to

enable data analysis at the HL-LHC.

A first branch of new technologies is that of efficient data analysis processing in the

last steps of the analysis, i.e. when event data needs to be selected, derived and aggregated

into histograms. Several platforms developed by industry or data science have emerged in

recent years to quickly aggregate large datasets with parallel execution (either on clusters

of computers or simply on multi-core servers). Many of those tools have been tested to

understand the feasibility of usage in the HEP context providing fresh ideas and new

paradigms that have stimulated development within the HEP toolkit.

In particular, the Python ecosystem, implementing many such solutions (e.g. numpy,

pandas dataframes), is emerging as a possible alternative to HEP’s traditional C++ envi-

ronment. This is thanks largely to a combination of its versatility as a language, allowing

rapid prototyping, and the ability to out-source compute-intensive work to more perfor-

mant languages like C and C++. This is similar to the experimental software frameworks

where Python is used as steering code and C/C++ is used as an efficient backend imple-

mentation. The typical Belle II analysis starts with Python using a custom DSL to specify

particle selections and algorithms implemented in C++ and define output ntuples. The

ntuples are typically analysed by the PyHEP toolkit [126], and packages from the wider

data science community. Deeper integration with external Python tools is also particularly

important for enabling state-of-the-art machine learning frameworks such as PyTorch and

TensorFlow, whose relevance in analysis is likely to grow in the long term. Meanwhile Py-

– 24 –

ROOT, which allows the use of any C++ class from Python, has the potential to provide

a coherent analysis ecosystem with an effortless integration of HEP specific tools written

in C++ with industry Python big data toolkits.

The ROOT package, which is the foundation and workhorse for LHC analysis, has

been the focus of substantial development. On the data storage front, the ROOT team

demonstrated better data compression and accelerated reading for a wide variety of data

formats. Information density drives compression and this can vary massively between

experiments and analyses. This new RNTuple format [7, 127], an evolution of the TTree

file format, shows robust and significant performance improvements (1− 5× faster), which

could potentially save significant storage space (10− 20%) for the HL-LHC. Another area

of progress, and potential consolidation in ROOT I/O, is lossy compression, where the

number of significant bits for a quantity may be far fewer than a standard storage type’s

mantissa, enabling further savings in storage space [7].

Inspired by data science tools, the event processing framework was extended with

DataFrame-like functionality (RDataFrame) implementing a declarative approach to anal-

ysis processing in either Python or C++ (but always executed in C++), which natively

exploits multi-core architectures [128] and could be extended to accelerators. Used from

Python, it allows pre-processing data in C++, and exporting to numpy. Flexibility in

interfacing RDataFrame to non-ROOT data formats has allowed the ALICE collaboration

to prototype its Run-3 analysis model on this new technology. Growing use of Machine

Learning was also anticipated, and the TMVA toolkit has been improved with substan-

tial optimisations, more complex deep learning models and enhanced interoperability with

common data science tools [129, 130], which is of particular importance for inference.

A complementary approach provided in Python is the toolchain of uproot, awkward

arrays and coffea [131] for efficient columnar operations and transformations of the data.

These function as a lightweight end-stage analysis environment that provides only the

elements necessary for pre-processing ROOT inputs and converting them into formats used

by the standard ML frameworks, typically numpy. Lightweight distribution using package

managers such as pip or conda allows for rapid setup and extension with other Python

tools. Good performance appears to have been achieved within the scope of these projects,

which has been kept focused, but for the purposes of fair comparison with other existing

or emerging options, defining clear benchmarks for I/O and processing speed is essential.

A further feature linked to the growing use of Python is the use of “notebook” tech-

nology such as Jupyter. This permits quasi-interactive exploration where the annotated

history, including formatted outputs and graphics, can be saved and shared with collabora-

tors for reproduction and adaptation. Although not a substitute for command line scripts

in well-tested and complex workflows, notebooks make an effective vessel for software ed-

ucation and have been leveraged as a powerful frontend for access to facilities including

CERN’s SWAN [132].

5.4 Prospects and R&D needs

As the complexity of analysis data handling and processing grows, developing efficient and

robust code using a steadily increasing number of tools running on ever more heterogeneous

– 25 –

hardware becomes more and more difficult. In addition, analysis code is typically re-

implemented by tens of individuals, in different experiments, analysis teams or institutes

mostly performing the same kind of operations, i.e. data reduction, plotting, variation of

systematic uncertainty, fitting, etc. It is clear that tools and frameworks for performing

these repeated operations need to provide very efficient interfaces to avoid analysis code

bloat. Declarative rather than imperative programming is becoming visibly more prevalent

both in and outside of the field as it naturally provides efficient syntax.

DSLs are a generalisation of this declarative concept and have already demonstrated

their ability to simplify analysis code. Not only do they allow users to express opera-

tions concisely, improving comprehension and reusability, DSLs provide a natural layer of

insulation against hardware evolution as low-level, optimised code generation for multi-

ple different platforms and architectures is delegated to the tool and framework experts.

Prototypes of DSLs have been developed in recent years [15] for the event processing and

histogram production parts of the analysis workflow, and even built into experimental

frameworks to perform high-level analysis [133]. Similar efforts can also be investigated in

the context of data interpretation and statistical analysis and an interesting example here

is the so called “combine tools” developed by CMS and based on RooFit for the Higgs

discovery. Descriptions of a full analysis in terms of workflows could then tie together the

analysis at the top level [124, 134]. With some effort, the HEP community may be able to

converge on effective tools that provide a common solution, ideally across experiments.

There is an obvious need for good integration with analysis backends, whether these

be local CPU, batch or grid resources. At some stage in the analysis process, interactivity

or fast turn-around is needed. While typical grid task completion has a time scale of one

day to one week, fast turn-around exploration requires answers within a few seconds up to

perhaps a few hours in order to keep people productive. As analysis tasks are often I/O-

intensive and not necessarily-CPU intensive, the right trade off between CPU and high

bandwidth storage should be carefully studied. More detailed studies of resource usage

and its evolution, especially as pertains to the need for heterogeneous compute, is needed

to ensure the right resource balance is available in the HL-LHC computing infrastructure.

This will require more interaction between the analysis and infrastructure communities.

As a proof of principle, an unoptimised Higgs discovery analysis has been rerun on

Google Cloud in a few minutes as the infrastructure was able to quickly provide tens of

thousands of CPUs with guaranteed bandwidth to storage of 2 Gb/coresec [135]. Scaling

this to sustained, diverse analysis payloads will be far from trivial, so the question becomes

how we can compare different approaches to provisioning analysis. Eight initial benchmark

challenges have been defined to set the scope that should be addressed by analysis systems

[136]. What remains to be demonstrated is the capability of such systems to scale to

full analysis complexity, including tasks such as the handling of systematic uncertainties

and data-driven background estimation, and these are yet to be incorporated into the

benchmarks.

In contrast to the activity on analysis languages and infrastructure, metadata is a topic

that is almost entirely neglected by the analysis community, even while computing experts

have long understood its importance. That is likely due to the absence of a single coherent

– 26 –

stake-holder for and provider of analysis metadata. Event data comes in a ROOT file, but

already within a single experiment there are numerous sources of metadata that operate

on vastly different timescales and this poses a significant challenge to standardisation. As

analyses and detectors grow in complexity, further divergence may amplify the challenge,

making it critical to begin addressing this problem promptly. Nevertheless, the drive to

capture a complete analysis must drag metadata with it, and the gleeful adoption of the

declarative paradigm will make database-like interfaces seem less scary than they once were

and may finally allow a more complete integration with analysis code.

One final comment in reviewing recent developments is worth noting. Exposure of the

HEP community to industry-standard data science tools has undoubtedly been a force for

good and a net gain for the community, providing fresh ideas and new ways of working -

RDataFrame is an excellent example. It is clear that the larger and better-supported data

science community will continue to innovate and produce tools that HEP will benefit from,

both by using directly and by borrowing their ideas for our own tools. Taking machine

learning as an example, it is extremely likely that industry will blaze a trail that HEP

would do well to follow and we should continue to build bridges to those tools. Equally

though, HEP will continue to have its own unique challenges and it is less likely that ultra-

performant machine learning inference will be top of the data scientists wishlist. Given

the challenges presented by extreme-throughput analysis at the HL-LHC, the right balance

must be found between software development within the community and relying on external

toolkits.

Finally, attention must be given to ensuring the longevity of any projects that the HEP

community decides to adopt en masse. Whether by specific institutes, funding schemes or

other collective programmes, responsibility for key software will need to be ensured in the

long term. The development of a secure support base will therefore need to be considered

for emerging projects that show significant promise.

6 Summary

The main challenges and R&D lines of interest have been discussed above. There are

clearly identified priority topics for the different areas in the next few years§.

6.1 Physics Event Generators

1. Gain a more detailed understanding of current CPU costs by accounting

and profiling.

2. Survey generator codes to understand the best way to move to GPUs and

vectorised code, and prototype the port of the software to GPUs using

data-parallel paradigms.

§Longer term R&D, into high-risk, high-reward blue sky areas, such as quantum or neuromorphic com-

puting, should happen at a low level, but are almost certainly too far from production to deliver improve-

ments for Run 4 of the LHC.

– 27 –

3. Support efforts to optimise phase space sampling and integration algo-

rithms, including the use of Machine Learning techniques such as neural

networks.

4. Promote research on how to reduce the cost associated with negative weight

events, using new theoretical or experimental approaches.

5. Promote collaboration, training, funding and career opportunities in the

generator area.

6.2 Detector Simulation

1. Undertake a detailed performance analysis of current production detector

simulation code, to better understand where performance limitations in

data and cache locality arise from.

2. Improve current codes through refactoring and specialised HEP models to

avoid bottlenecks identified.

3. Develop further fast simulation models and techniques, including machine

learning based options in addition to optimised parametric approaches as

well as common frameworks for their tuning and validation.

4. Undertake R&D into GPU codes for tackling very specific, time consum-

ing, parts of the simulation for HEP. Specifically calorimetry, including

geometry, field and electro-magnetic physics processes.

5. Develop integration prototypes to exercise and benchmark the simultane-

ous use of GPU specific libraries with CPU-based software (e.g. Geant4) to

cover all particles and processes required in experiments simulation frame-

works.

6.3 Reconstruction and Software Triggers

1. Develop fast and performant reconstruction software, making optimal use

of hardware resources. A particularly crucial development for HL-LHC

is that of pattern recognition solutions (including timing information, if

available) that can withstand the increase of pile-up at HL-LHC. Wherever

possible, solutions should be uniform for online and offline software, so the

experiments can benefit from consistent event selection between trigger and

final analysis and from more effective real-time analysis results.

2. Develop solutions that can exploit accelerators (FPGA, GPU) for trig-

ger and reconstruction, including general-purpose interoperability libraries

with a focus to generalising and mitigating their dependencies on architect-

ure specific codes.

3. Further promote activities in the area of data quality and software moni-

toring, as the quality of the recorded and reconstructed data is paramount

for all physics analysis.

4. Support efforts towards the implementation of machine learning models in

experimental framework (C++) to enable more widespread use in trigger

and reconstruction software.

– 28 –

6.4 Data Analysis

1. Identify a CPU-efficient data reduction and storage model that serves the

majority of analyses with a footprint of O(1kb/event), retaining the flexi-

bility to accommodate the needs of specialised analyses.

2. Streamline analysis metadata access and calibration schemes, and provide

effective book-keeping for fractional datasets.

3. Develop cross-experimental tools establishing declarative syntax and/or

languages for analysis description, interfaced with distributed computing

backends.

4. Define and improve schemes for interoperability of end-stage experimental

software with data science and machine learning frameworks.

Undertaking this programme of priority topics and R&D requires, first and foremost,

investment from funding agencies to support developments. A new generation of developers

is also needed to refresh and regenerate the long lived software projects on which the field so

heavily relies. The transition from R&D to production ready software is usually long and so

it is urgent to undertake this investment now, with the positive outcomes ready to become

integrated in time for HL-LHC. Regenerating the cadre of software developers in HEP also

requires support for realistic long term career prospects for those who specialise in this

vital area. Collaboration with industry can certainly be fruitful and is to be encouraged

to allow early access to technology and communication of HEP problems and priorities.

R&D that is successful will become the next generation of production software, but this

will require lifetime support for maintainance and further evolution.

Almost all the domain areas identify the use of compute accelerators, particularly

GPUs, as being a priority item, which matches our expectation of how computing hardware

will evolve. As a common problem area, this is an obvious area in which expertise should

be developed.

The stakeholders in HEP must be able to give their priorities and feedback on R&D

areas. Each project has mechanisms for doing this, while the HSF can help to provide

overall input on prioritisation and coordination of common cross-experiment activities.

– 29 –

References

[1] The HEP Software Foundation. The Importance of Software and Computing to

Particle Physics. Dec. 2018. doi: 10.5281/zenodo.2413005. url:

https://doi.org/10.5281/zenodo.2413005.

[2] Richard Keith Ellis et al. Physics Briefing Book: Input for the European Strategy

for Particle Physics Update 2020. Tech. rep. arXiv:1910.11775. 254 p. Geneva,

Oct. 2019. url: http://cds.cern.ch/record/2691414.

[3] Johannes Albrecht et al. “A Roadmap for HEP Software and Computing R&D for

the 2020s”. In: Computing and Software for Big Science 3.1 (Mar. 2019), p. 7.

issn: 2510-2044. doi: 10.1007/s41781-018-0018-8. url:

https://doi.org/10.1007/s41781-018-0018-8.

[4] John L. Hennessy and David A. Patterson. “A New Golden Age for Computer

Architecture”. In: Communications of the ACM 62.2 (Feb. 2019), pp. 48–60. doi:

10.1145/3282307.

[5] Paolo Calafiura et al. HEP Software Foundation Community White Paper

Working Group - Data Processing Frameworks. 2018. arXiv:

1812.07861 [physics.comp-ph]. url: https://arxiv.org/abs/1812.07861.

[6] Johannes Albrecht et al. HEP Community White Paper on Software trigger and

event reconstruction: Executive Summary. 2018. arXiv:

1802.08640 [physics.comp-ph]. url: https://arxiv.org/abs/1802.08640.

[7] ROOT Team et al. Software Challenges For HL-LHC Data Analysis. 2020. arXiv:

2004.07675 [physics.data-an]. url: https://arxiv.org/abs/2004.07675.

[8] XRootD Website. url: https://xrootd.slac.stanford.edu/.

[9] Benjamin Couturier et al. HEP Software Foundation Community White Paper

Working Group - Software Development, Deployment and Validation. 2017. arXiv:

1712.07959 [physics.comp-ph]. url: https://arxiv.org/abs/1712.07959.

[10] HEP Software Foundation et al. HEP Software Foundation Community White

Paper Working Group - Training, Staffing and Careers. 2018. arXiv:

1807.02875 [physics.ed-ph]. url: https://arxiv.org/abs/1807.02875.

[11] Jakob Blomer et al. “Distributing LHC application software and conditions

databases using the CernVM file system”. In: Journal of Physics: Conference

Series 331.4 (Dec. 2011), p. 042003. doi: 10.1088/1742-6596/331/4/042003.

url: https://doi.org/10.1088%2F1742-6596%2F331%2F4%2F042003.

[12] J. Blomer et al. “The Evolution of Global Scale Filesystems for Scientific Software

Distribution”. In: Computing in Science Engineering 17.6 (2015), pp. 61–71.

[13] Jakob Blomer et al. “Delivering LHC Software to HPC Compute Elements with

CernVM-FS”. In: High Performance Computing. Ed. by Julian M. Kunkel et al.

Cham: Springer International Publishing, 2017, pp. 724–730. isbn:

978-3-319-67630-2.

– 30 –

http://dx.doi.org/10.5281/zenodo.2413005
https://doi.org/10.5281/zenodo.2413005
http://cds.cern.ch/record/2691414
http://dx.doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
http://dx.doi.org/10.1145/3282307
http://arxiv.org/abs/1812.07861
https://arxiv.org/abs/1812.07861
http://arxiv.org/abs/1802.08640
https://arxiv.org/abs/1802.08640
http://arxiv.org/abs/2004.07675
https://arxiv.org/abs/2004.07675
https://xrootd.slac.stanford.edu/
http://arxiv.org/abs/1712.07959
https://arxiv.org/abs/1712.07959
http://arxiv.org/abs/1807.02875
https://arxiv.org/abs/1807.02875
http://dx.doi.org/10.1088/1742-6596/331/4/042003
https://doi.org/10.1088%2F1742-6596%2F331%2F4%2F042003

[14] Blomer, Jakob et al. “Towards a serverless CernVM-FS”. In: EPJ Web Conf. 214

(2019), p. 09007. doi: 10.1051/epjconf/201921409007. url:

https://doi.org/10.1051/epjconf/201921409007.

[15] ADL Workshop at Fermilab. url:

https://indico.cern.ch/event/769263/timetable/?view=standard.

[16] Johannes Albrecht et al. “A Roadmap for HEP Software and Computing R&D for

the 2020s”. In: Comput. Softw. Big Sci. 3.1 (2019), p. 7. doi:

10.1007/s41781-018-0018-8. arXiv: 1712.06982 [physics.comp-ph].

[17] CERN HSF Physics Event Generator Computing Workshop. Nov. 2018. url:

https://indico.cern.ch/event/751693.

[18] HSF Physics Generators Working Group. url:

https://hepsoftwarefoundation.org/workinggroups/generators.html.

[19] J. Alwall et al. “The automated computation of tree-level and next-to-leading

order differential cross sections, and their matching to parton shower simulations”.

In: Journal of High Energy Physics 2014.7 (July 2014). doi:

10.1007/jhep07(2014)079.

[20] Enrico Bothmann et al. “Event generation with Sherpa 2.2”. In: SciPost Physics

7.3 (Sept. 2019). doi: 10.21468/scipostphys.7.3.034.

[21] Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD

computations with parton shower simulations: the POWHEG method”. In:

Journal of High Energy Physics 2007.11 (Nov. 2007), pp. 070–070. doi:

10.1088/1126-6708/2007/11/070.

[22] HSF Physics Generators Working Group. Challenges in Monte Carlo event

generator software for High-Luminosity LHC. CERN-LPCC-2020-002. arXiv:

2004.13687.

[23] G. P. Lepage. VEGAS: an adaptive multi-dimensional integration program. Cornell

report CLNS-447 (1980). url: https://cds.cern.ch/record/123074.

[24] S. Kawabata. “A new Monte Carlo event generator for high energy physics”. In:

Computer Physics Communications 41.1 (July 1986), pp. 127–153. doi:

10.1016/0010-4655(86)90025-1.

[25] P. Nason. MINT: a Computer Program for Adaptive Monte Carlo Integration and

Generation of Unweighted Distributions. 2007. arXiv: 0709.2085.

[26] S Jadach. “Foam: A general-purpose cellular Monte Carlo event generator”. In:

Computer Physics Communications 152.1 (Apr. 2003), pp. 55–100. doi:

10.1016/s0010-4655(02)00755-5.

[27] Fabio Maltoni and Tim Stelzer. “MadEvent: automatic event generation with

MadGraph”. In: Journal of High Energy Physics 2003.02 (Feb. 2003), pp. 027–027.

doi: 10.1088/1126-6708/2003/02/027.

– 31 –

http://dx.doi.org/10.1051/epjconf/201921409007
https://doi.org/10.1051/epjconf/201921409007
https://indico.cern.ch/event/769263/timetable/?view=standard
http://dx.doi.org/10.1007/s41781-018-0018-8
http://arxiv.org/abs/1712.06982
https://indico.cern.ch/event/751693
https://hepsoftwarefoundation.org/workinggroups/generators.html
http://dx.doi.org/10.1007/jhep07(2014)079
http://dx.doi.org/10.21468/scipostphys.7.3.034
http://dx.doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/2004.13687
https://cds.cern.ch/record/123074
http://dx.doi.org/10.1016/0010-4655(86)90025-1
http://arxiv.org/abs/0709.2085
http://dx.doi.org/10.1016/s0010-4655(02)00755-5
http://dx.doi.org/10.1088/1126-6708/2003/02/027

[28] Tanju Gleisberg and Stefan Höche. “Comix, a new matrix element generator”. In:

Journal of High Energy Physics 2008.12 (Dec. 2008), pp. 039–039. doi:

10.1088/1126-6708/2008/12/039.

[29] Christina Gao et al. “Event Generation with Normalizing Flows”. In: (2020). doi:

10.1103/PhysRevD.101.076002.

[30] Joshua Bendavid. Efficient Monte Carlo Integration Using Boosted Decision Trees

and Generative Deep Neural Networks. 2017. arXiv: 1707.00028.

[31] Enrico Bothmann et al. Exploring phase space with Neural Importance Sampling.

2020. arXiv: 2001.05478.

[32] Matthew D. Klimek and Maxim Perelstein. Neural Network-Based Approach to

Phase Space Integration. 2018. arXiv: 1810.11509.

[33] Michelangelo L. Mangano, Mauro Moretti, and Roberto Pittau. “Multijet matrix

elements and shower evolution in hadronic collisions: -jets as a case study”. In:

Nuclear Physics B 632.1-3 (June 2002), pp. 343–362. doi:

10.1016/s0550-3213(02)00249-3.

[34] Leif Lönnblad. “Correcting the Colour-Dipole Cascade Model with Fixed Order

Matrix Elements”. In: Journal of High Energy Physics 2002.05 (May 2002),

pp. 046–046. doi: 10.1088/1126-6708/2002/05/046.

[35] Rikkert Frederix and Stefano Frixione. “Merging meets matching in MC@NLO”.

In: Journal of High Energy Physics 2012.12 (Dec. 2012). doi:

10.1007/jhep12(2012)061.

[36] Stefan Höche, Frank Krauss, and Marek Schönherr. “Uncertainties in

MEPS@NLO calculations of h+jets”. In: Physical Review D 90.1 (July 2014). doi:

10.1103/physrevd.90.014012.

[37] J. Alwall et al. “Comparative study of various algorithms for the merging of

parton showers and matrix elements in hadronic collisions”. In: The European

Physical Journal C 53.3 (Dec. 2007), pp. 473–500. doi:

10.1140/epjc/s10052-007-0490-5.

[38] Johan Alwall, Simon de Visscher, and Fabio Maltoni. “QCD radiation in the

production of heavy colored particles at the LHC”. In: Journal of High Energy

Physics 2009.02 (Feb. 2009), pp. 017–017. doi: 10.1088/1126-6708/2009/02/017.

[39] Olivier Mattelaer. “On the maximal use of Monte Carlo samples: re-weighting

events at NLO accuracy”. In: The European Physical Journal C 76.12 (Dec. 2016).

doi: 10.1140/epjc/s10052-016-4533-7.

[40] R. Frederix et al. On the reduction of negative weights in MC@NLO-type matching

procedures. 2020. arXiv: 2002.12716.

[41] Jeppe R. Andersen et al. A Positive Resampler for Monte Carlo Events with

Negative Weights. 2020. arXiv: 2005.09375 [hep-ph].

– 32 –

http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://dx.doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/1707.00028
http://arxiv.org/abs/2001.05478
http://arxiv.org/abs/1810.11509
http://dx.doi.org/10.1016/s0550-3213(02)00249-3
http://dx.doi.org/10.1088/1126-6708/2002/05/046
http://dx.doi.org/10.1007/jhep12(2012)061
http://dx.doi.org/10.1103/physrevd.90.014012
http://dx.doi.org/10.1140/epjc/s10052-007-0490-5
http://dx.doi.org/10.1088/1126-6708/2009/02/017
http://dx.doi.org/10.1140/epjc/s10052-016-4533-7
http://arxiv.org/abs/2002.12716
http://arxiv.org/abs/2005.09375

[42] Benjamin Nachman and Jesse Thaler. A Neural Resampler for Monte Carlo

Reweighting with Preserved Uncertainties. 2020. arXiv: 2007.11586 [hep-ph].

[43] D. Konstantinov. Optimization of Pythia8. EP-SFT group meeting, CERN

(January 2020). url: https://indico.cern.ch/event/890670.

[44] Christian Bauer et al. Computing for Perturbative QCD - A Snowmass White

Paper. 2013. arXiv: 1309.3598.

[45] J.T. Childers et al. “Adapting the serial Alpgen parton-interaction generator to

simulate LHC collisions on millions of parallel threads”. In: Computer Physics

Communications 210 (Jan. 2017), pp. 54–59. doi: 10.1016/j.cpc.2016.09.013.

[46] Stefan Höche, Stefan Prestel, and Holger Schulz. “Simulation of vector boson plus

many jet final states at the high luminosity LHC”. In: Physical Review D 100.1

(July 2019). doi: 10.1103/physrevd.100.014024.

[47] O. Mattelaer. MG5aMC status and plans. In Ref. [17].

[48] ALICE Collaboration. ALICE technical design report of the computing. Tech. rep.

CERN-LHCC-2005-018. ALICE-TDR-12. Geneva: CERN, 2005. url:

http://cds.cern.ch/record/832753.

[49] ATLAS Collaboration. ATLAS Computing: technical design report. Tech. rep.

CERN-LHCC-2005-022, ATLAS-TDR-17. Geneva: CERN, 2005. url:

http://cds.cern.ch/record/837738.

[50] CMS Collaboration. CMS computing: Technical Design Report. Tech. rep.

CERN-LHCC-2005-023, CMS-TDR-7. Geneva: CERN, 2005. url:

http://cds.cern.ch/record/838359.

[51] LHCb Collaboration. LHCb computing: Technical Design Report. Tech. rep.

CERN-LHCC-2005-019, LHCb-TDR-11. Geneva: CERN, 2005. url:

http://cds.cern.ch/record/835156.

[52] I Bird et al. Update of the Computing Models of the WLCG and the LHC

Experiments. Tech. rep. CERN-LHCC-2014-014. LCG-TDR-002. 2014. url:

http://cds.cern.ch/record/1695401.

[53] ALICE Collaboration. Technical Design Report for the Upgrade of the

Online-Offline Computing System. Tech. rep. CERN-LHCC-2015-006.

ALICE-TDR-019. Apr. 2015. url: http://cds.cern.ch/record/2011297.

[54] LHCb Collaboration. Computing Model of the Upgrade LHCb experiment.

Tech. rep. CERN-LHCC-2018-014. LHCB-TDR-018. Geneva: CERN, 2018. url:

http://cds.cern.ch/record/2319756.

[55] ATLAS Collaboration. ATLAS Computing update. Feb. 2019. url:

https://indico.cern.ch/event/754731/contributions/3127500/subcontributions/262952/attachments/1802165/2939783/LHCC_20100225_Costanzo.pdf.

[56] CMS Collaboration. Report from CMS Offline Software and Computing. Sept.

2019. url:

https://indico.cern.ch/event/754734/contributions/3127510/subcontributions/262959/attachments/1904905/3145814/19-09-10_LHCC.pdf.

– 33 –

http://arxiv.org/abs/2007.11586
https://indico.cern.ch/event/890670
http://arxiv.org/abs/1309.3598
http://dx.doi.org/10.1016/j.cpc.2016.09.013
http://dx.doi.org/10.1103/physrevd.100.014024
http://cds.cern.ch/record/832753
http://cds.cern.ch/record/837738
http://cds.cern.ch/record/838359
http://cds.cern.ch/record/835156
http://cds.cern.ch/record/1695401
http://cds.cern.ch/record/2011297
http://cds.cern.ch/record/2319756
https://indico.cern.ch/event/754731/contributions/3127500/subcontributions/262952/attachments/1802165/2939783/LHCC_20100225_Costanzo.pdf
https://indico.cern.ch/event/754734/contributions/3127510/subcontributions/262959/attachments/1904905/3145814/19-09-10_LHCC.pdf

[57] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment 506.3 (July 2003), pp. 250–303. doi:

10.1016/s0168-9002(03)01368-8. url:

https://doi.org/10.1016/s0168-9002(03)01368-8.

[58] J. Allison et al. “Geant4 developments and applications”. In: IEEE Transactions

on Nuclear Science 53.1 (Feb. 2006), pp. 270–278. doi:

10.1109/tns.2006.869826. url: https://doi.org/10.1109/tns.2006.869826.

[59] J. Allison et al. “Recent developments in Geant4”. In: Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment 835 (Nov. 2016), pp. 186–225. doi:

10.1016/j.nima.2016.06.125. url:

https://doi.org/10.1016/j.nima.2016.06.125.

[60] HEP Software Foundation et al. HEP Software Foundation Community White

Paper Working Group - Detector Simulation. 2018. arXiv:

1803.04165 [physics.comp-ph].

[61] A. Gheata. Design, implementation and performance results of the GeantV

prototype. Outcome of the GeantV prototype - HSF meeting, CERN (October

2019). url: https://indico.cern.ch/event/818702.

[62] G. Amadio et al. GeantV: Results from the prototype of concurrent vector particle

transport simulation in HEP. 2020. arXiv: 2005.00949 [physics.comp-ph].

[63] Vladimir Ivanchenko and Sunanda Banerjee. “Upgrade of CMS Full Simulation for

Run 2”. In: EPJ Web of Conferences 214 (2019). Ed. by A. Forti et al., p. 02012.

doi: 10.1051/epjconf/201921402012. url:

https://doi.org/10.1051/epjconf/201921402012.

[64] Miha Muskinja et al. Geant4 performance optimization in the ATLAS experiment.

ATL-SOFT-SLIDE-2019-811, Talk given at CHEP2019, Adelaide, November 2019.

url: http://cds.cern.ch/record/2696432.

[65] M Hildreth et al. “CMS Full Simulation for Run-2”. In: Journal of Physics:

Conference Series 664.7 (Dec. 2015), p. 072022. doi:

10.1088/1742-6596/664/7/072022. url:

https://doi.org/10.1088/1742-6596/664/7/072022.

[66] Dominik Müller. “Adopting new technologies in the LHCb Gauss simulation

framework”. In: EPJ Web of Conferences 214 (2019). Ed. by A. Forti et al.,

p. 02004. doi: 10.1051/epjconf/201921402004. url:

https://doi.org/10.1051/epjconf/201921402004.

[67] Marilena Bandieramonte et al. Multithreaded simulation for ATLAS: challenges

and validation strategy. Tech. rep. ATL-SOFT-PROC-2020-030. Geneva: CERN,

Mar. 2020. url: https://cds.cern.ch/record/2712940.

– 34 –

http://dx.doi.org/10.1016/s0168-9002(03)01368-8
https://doi.org/10.1016/s0168-9002(03)01368-8
http://dx.doi.org/10.1109/tns.2006.869826
https://doi.org/10.1109/tns.2006.869826
http://dx.doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
http://arxiv.org/abs/1803.04165
https://indico.cern.ch/event/818702
http://arxiv.org/abs/2005.00949
http://dx.doi.org/10.1051/epjconf/201921402012
https://doi.org/10.1051/epjconf/201921402012
http://cds.cern.ch/record/2696432
http://dx.doi.org/10.1088/1742-6596/664/7/072022
https://doi.org/10.1088/1742-6596/664/7/072022
http://dx.doi.org/10.1051/epjconf/201921402004
https://doi.org/10.1051/epjconf/201921402004
https://cds.cern.ch/record/2712940

[68] Steven Farrell et al. “Multi-threaded ATLAS simulation on Intel Knights Landing

processors”. In: J. Phys. Conf. Ser. 898.4 (2017). Ed. by Richard Mount and

Craig Tull, p. 042012. doi: 10.1088/1742-6596/898/4/042012.

[69] Douglas Benjamin et al. “Large scale fine grain simulation workflows (”Jumbo

Jobs”) on HPC’s”. In: (Oct. 2019). url: https://cds.cern.ch/record/2696330.

[70] M Hildreth, V N Ivanchenko, and D J Lange and. “Upgrades for the CMS

simulation”. In: Journal of Physics: Conference Series 898 (Oct. 2017), p. 042040.

doi: 10.1088/1742-6596/898/4/042040. url:

https://doi.org/10.1088/1742-6596/898/4/042040.

[71] G. Grindhammer, M. Rudowicz, and S. Peters. “The fast simulation of

electromagnetic and hadronic showers”. In: Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment 290.2 (1990), pp. 469–488. issn: 0168-9002. doi:

https://doi.org/10.1016/0168-9002(90)90566-O. url:

http://www.sciencedirect.com/science/article/pii/016890029090566O.

[72] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “Accelerating

Science with Generative Adversarial Networks: An Application to 3D Particle

Showers in Multilayer Calorimeters”. In: Physical Review Letters 120.4 (Jan.

2018). issn: 1079-7114. doi: 10.1103/physrevlett.120.042003. url:

http://dx.doi.org/10.1103/PhysRevLett.120.042003.

[73] Gul Rukh Khattak et al. “Particle Detector Simulation using Generative

Adversarial Networks with Domain Related Constraints”. In: 2019 18th IEEE

International Conference On Machine Learning And Applications (ICMLA).

IEEE, Dec. 2019. doi: 10.1109/icmla.2019.00014. url:

https://doi.org/10.1109/icmla.2019.00014.

[74] Aishik Ghosh et al. Fast simulation methods in ATLAS: from classical to

generative models. Nov. 2019. doi: 10.5281/zenodo.3599705. url:

https://doi.org/10.5281/zenodo.3599705.

[75] Deep generative models for fast shower simulation in ATLAS. Tech. rep.

ATL-SOFT-PUB-2018-001. Geneva: CERN, July 2018. url:

https://cds.cern.ch/record/2630433.

[76] D. Müller et al. “ReDecay: a novel approach to speed up the simulation at LHCb”.

In: The European Physical Journal C 78.12 (Dec. 2018). doi:

10.1140/epjc/s10052-018-6469-6. url:

https://doi.org/10.1140/epjc/s10052-018-6469-6.

[77] Fedor Ratnikov. Generative Adversarial Networks for LHCb Fast Simulation.

LHCb-TALK-2019-403, Talk given at CHEP2019, Adelaide, November 2019. url:

http://cds.cern.ch/record/2699549.

– 35 –

http://dx.doi.org/10.1088/1742-6596/898/4/042012
https://cds.cern.ch/record/2696330
http://dx.doi.org/10.1088/1742-6596/898/4/042040
https://doi.org/10.1088/1742-6596/898/4/042040
http://dx.doi.org/https://doi.org/10.1016/0168-9002(90)90566-O
http://www.sciencedirect.com/science/article/pii/016890029090566O
http://dx.doi.org/10.1103/physrevlett.120.042003
http://dx.doi.org/10.1103/PhysRevLett.120.042003
http://dx.doi.org/10.1109/icmla.2019.00014
https://doi.org/10.1109/icmla.2019.00014
http://dx.doi.org/10.5281/zenodo.3599705
https://doi.org/10.5281/zenodo.3599705
https://cds.cern.ch/record/2630433
http://dx.doi.org/10.1140/epjc/s10052-018-6469-6
https://doi.org/10.1140/epjc/s10052-018-6469-6
http://cds.cern.ch/record/2699549

[78] Adam Davis. Fast Simulations at LHCb. LHCb-TALK-2019-404, Talk given at

CHEP2019, Adelaide, November 2019. url:

https://cds.cern.ch/record/2699550.

[79] Benedikt Volker. Fast Simulation Overview from ALICE. HSF Simulation Working

Group meeting, CERN (January 2019). url:

https://indico.cern.ch/event/782507/contributions/3293465/.

[80] J. de Favereau and and C. Delaere and P. Demin and A. Giammanco and V.

Lemâıtre and A. Mertens and M. Selvaggi. “DELPHES 3: a modular framework

for fast simulation of a generic collider experiment”. In: Journal of High Energy

Physics 2014.2 (Feb. 2014). doi: 10.1007/jhep02(2014)057. url:

https://doi.org/10.1007/jhep02(2014)057.

[81] J. Conway, R. Culbertson, R. Demina, B. Kilminster, M. Kruse, S. Mrenna,

J. Nielsen, M. Roco, A. Pierce, J. Thaler, T. Wizansky. Pretty Good Simulation. url:

http://conway.physics.ucdavis.edu/research/software/pgs/pgs4-general.htm.

[82] Shogo Okada et al. “MPEXS-DNA, a new GPU-based Monte Carlo simulator for

track structures and radiation chemistry at subcellular scale”. In: Medical Physics

46.3 (Jan. 2019), pp. 1483–1500. doi: 10.1002/mp.13370. url:

https://doi.org/10.1002/mp.13370.

[83] Julien Bert et al. “Hybrid GATE: a GPU/CPU implementation for imaging and

therapy applications”. In: Oct. 2012. doi: 10.1109/NSSMIC.2012.6551511.

[84] Simon Blyth. “Opticks : GPU Optical Photon Simulation for Particle Physics

using NVIDIA R© OptiXTM”. In: EPJ Web of Conferences 214 (2019). Ed. by

A. Forti et al., p. 02027. doi: 10.1051/epjconf/201921402027. url:

https://doi.org/10.1051/epjconf/201921402027.

[85] Steven P. Hamilton and Thomas M. Evans. “Continuous-energy Monte Carlo

neutron transport on GPUs in the Shift code”. In: Annals of Nuclear Energy 128

(June 2019), pp. 236–247. doi: 10.1016/j.anucene.2019.01.012. url:

https://doi.org/10.1016/j.anucene.2019.01.012.

[86] Simon Blyth. Meeting the challenge of JUNO simulation with Opticks GPU

Optical Photon Accelerator. Talk given at CHEP2019, Adelaide, November 2019.

url: https://indico.cern.ch/event/773049/contributions/3581370/.

[87] Sandro Wenzel and Yang Zhang and. “Accelerating navigation in the VecGeom

geometry modeller”. In: Journal of Physics: Conference Series 898 (Oct. 2017),

p. 072032. doi: 10.1088/1742-6596/898/7/072032. url:

https://doi.org/10.1088%2F1742-6596%2F898%2F7%2F072032.

[88] Johannes Albrecht et al. HEP Community White Paper on Software trigger and

event reconstruction. 2018. arXiv: 1802.08638 [physics.comp-ph].

[89] ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the

ATLAS TDAQ System. Tech. rep. CERN-LHCC-2017-020. ATLAS-TDR-029.

Geneva: CERN, Sept. 2017. url: https://cds.cern.ch/record/2285584.

– 36 –

https://cds.cern.ch/record/2699550
https://indico.cern.ch/event/782507/contributions/3293465/
http://dx.doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1007/jhep02(2014)057
http://conway.physics.ucdavis.edu/research/software/pgs/pgs4-general.htm
http://dx.doi.org/10.1002/mp.13370
https://doi.org/10.1002/mp.13370
http://dx.doi.org/10.1109/NSSMIC.2012.6551511
http://dx.doi.org/10.1051/epjconf/201921402027
https://doi.org/10.1051/epjconf/201921402027
http://dx.doi.org/10.1016/j.anucene.2019.01.012
https://doi.org/10.1016/j.anucene.2019.01.012
https://indico.cern.ch/event/773049/contributions/3581370/
http://dx.doi.org/10.1088/1742-6596/898/7/072032
https://doi.org/10.1088%2F1742-6596%2F898%2F7%2F072032
http://arxiv.org/abs/1802.08638
https://cds.cern.ch/record/2285584

[90] CMS collaboration. The Phase-2 Upgrade of the CMS Level-1 Trigger. Tech. rep.

CERN-LHCC-2020-004. CMS-TDR-021. Draft version. Geneva: CERN, Apr. 2020.

url: https://cds.cern.ch/record/2714892.

[91] R. Aaij et al. “A comprehensive real-time analysis model at the LHCb

experiment”. In: JINST 14.04 (2019), P04006. doi:

10.1088/1748-0221/14/04/P04006. arXiv: 1903.01360 [hep-ex].

[92] P Buncic, M Krzewicki, and P Vande Vyvre. Technical Design Report for the

Upgrade of the Online-Offline Computing System. Tech. rep.

CERN-LHCC-2015-006. ALICE-TDR-019. Apr. 2015. url:

https://cds.cern.ch/record/2011297.

[93] Hannes Sakulin. 40 MHz Level-1 Trigger Scouting for CMS. Nov. 2019. doi:

10.5281/zenodo.3598769. url: https://doi.org/10.5281/zenodo.3598769.

[94] Fast Track Reconstruction for HL-LHC. Tech. rep. ATL-PHYS-PUB-2019-041.

Geneva: CERN, Oct. 2019. url: https://cds.cern.ch/record/2693670.

[95] Xiaocong Ai. “Acts: A common tracking software”. In: Meeting of the Division of

Particles and Fields of the American Physical Society. Oct. 2019. arXiv:

1910.03128 [physics.ins-det].

[96] C Gumpert et al. “ACTS: from ATLAS software towards a common track

reconstruction software”. In: Journal of Physics: Conference Series 898 (Oct.

2017), p. 042011. doi: 10.1088/1742-6596/898/4/042011. url:

https://doi.org/10.1088%2F1742-6596%2F898%2F4%2F042011.

[97] Giuseppe Cerati et al. Speeding up Particle Track Reconstruction in the CMS

Detector using a Vectorized and Parallelized Kalman Filter Algorithm. 2019.

arXiv: 1906.11744 [physics.ins-det].

[98] Xiangyang Ju et al. “Graph Neural Networks for Particle Reconstruction in High

Energy Physics detectors”. In: 33rd Annual Conference on Neural Information

Processing Systems. Mar. 2020. arXiv: 2003.11603 [physics.ins-det].

[99] ATLAS Collaboration. Technical Proposal: A High-Granularity Timing Detector

for the ATLAS Phase-II Upgrade. Tech. rep. CERN-LHCC-2018-023.

LHCC-P-012. Geneva: CERN, June 2018. url:

https://cds.cern.ch/record/2623663.

[100] Collaboration CMS. A MIP Timing Detector for the CMS Phase-2 Upgrade.

Tech. rep. CERN-LHCC-2019-003. CMS-TDR-020. Geneva: CERN, Mar. 2019.

url: https://cds.cern.ch/record/2667167.

[101] Lindsey Grey. First Steps Towards Four-Dimensional Tracking: Timing Layers at

the HL-LHC. Mar. 2018. url:

https://indico.cern.ch/event/658267/contributions/2870293/.

[102] Valentina Akishina and Ivan Kisel. “4-Dimensional Event Building in the

First-Level Event Selection of the CBM Experiment”. In: J. Phys. Conf. Ser.

664.7 (2015), p. 072027. doi: 10.1088/1742-6596/664/7/072027.

– 37 –

https://cds.cern.ch/record/2714892
http://dx.doi.org/10.1088/1748-0221/14/04/P04006
http://arxiv.org/abs/1903.01360
https://cds.cern.ch/record/2011297
http://dx.doi.org/10.5281/zenodo.3598769
https://doi.org/10.5281/zenodo.3598769
https://cds.cern.ch/record/2693670
http://arxiv.org/abs/1910.03128
http://dx.doi.org/10.1088/1742-6596/898/4/042011
https://doi.org/10.1088%2F1742-6596%2F898%2F4%2F042011
http://arxiv.org/abs/1906.11744
http://arxiv.org/abs/2003.11603
https://cds.cern.ch/record/2623663
https://cds.cern.ch/record/2667167
https://indico.cern.ch/event/658267/contributions/2870293/
http://dx.doi.org/10.1088/1742-6596/664/7/072027

[103] Valentina

Akishina. Four-dimensional event reconstruction in the CBM experiment. 2016. url:

https://indico.gsi.de/event/6198/contributions/28511/attachments/20671/26101/Akishina_thesis_corrected.pdf.

[104] M Adinolfi et al. “LHCb data quality monitoring”. In: J. Phys. : Conf. Ser. 898.9

(2017), 092027. 5 p. doi: 10.1088/1742-6596/898/9/092027. url:

https://cds.cern.ch/record/2298467.

[105] Pol, Adrian Alan et al. “Anomaly detection using Deep Autoencoders for the

assessment of the quality of the data acquired by the CMS experiment”. In: EPJ

Web Conf. 214 (2019), p. 06008. doi: 10.1051/epjconf/201921406008. url:

https://doi.org/10.1051/epjconf/201921406008.

[106] “Evolution of the upgrade LHCb HLT1 throughput”. In: (July 2019). url:

https://cds.cern.ch/record/2684267.

[107] Lightweight Trained Neural Network. url: https://github.com/lwtnn/lwtnn.

[108] Open Neural Network Exchange. url: https://onnx.ai.

[109] Andrea Bocci. Heterogeneous online reconstruction at CMS. Nov. 2019. doi:

10.5281/zenodo.3598824. url: https://doi.org/10.5281/zenodo.3598824.

[110] Roel Aaij et al. “Allen: A high level trigger on GPUs for LHCb”. In: (Dec. 2019).

arXiv: 1912.09161 [physics.ins-det].

[111] Guy Barrand et al. “GAUDI- A Software Architecture and Framework for building

HEP Data Processing Applications”. In: Computer Physics Communications 140

(Oct. 2001), pp. 45–55. doi: 10.1016/S0010-4655(01)00254-5.

[112] Attila Krasznahorkay et al. GPU Usage in ATLAS Reconstruction and Analysis.

Nov. 2019. doi: 10.5281/zenodo.3599103. url:

https://doi.org/10.5281/zenodo.3599103.

[113] David Rohr. GPU-based reconstruction and data compression at ALICE during

LHC Run 3. Nov. 2019. doi: 10.5281/zenodo.3599418. url:

https://doi.org/10.5281/zenodo.3599418.

[114] Javier Duarte et al. “Fast inference of deep neural networks in FPGAs for particle

physics”. In: JINST 13.07 (2018), P07027. doi:

10.1088/1748-0221/13/07/P07027. arXiv: 1804.06913 [physics.ins-det].

[115] Sioni Summers et al. “Fast inference of Boosted Decision Trees in FPGAs for

particle physics”. In: (Feb. 2020). arXiv: 2002.02534 [physics.comp-ph].

[116] Vladimir Loncar et al. “Compressing deep neural networks on FPGAs to binary

and ternary precision with HLS4ML”. In: (Mar. 2020). arXiv:

2003.06308 [cs.LG].

[117] Javier Duarte et al. “FPGA-accelerated machine learning inference as a service for

particle physics computing”. In: Comput. Softw. Big Sci. 3.1 (2019), p. 13. doi:

10.1007/s41781-019-0027-2. arXiv: 1904.08986 [physics.data-an].

– 38 –

https://indico.gsi.de/event/6198/contributions/28511/attachments/20671/26101/Akishina_thesis_corrected.pdf
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://cds.cern.ch/record/2298467
http://dx.doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://cds.cern.ch/record/2684267
https://github.com/lwtnn/lwtnn
https://onnx.ai
http://dx.doi.org/10.5281/zenodo.3598824
https://doi.org/10.5281/zenodo.3598824
http://arxiv.org/abs/1912.09161
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.5281/zenodo.3599103
https://doi.org/10.5281/zenodo.3599103
http://dx.doi.org/10.5281/zenodo.3599418
https://doi.org/10.5281/zenodo.3599418
http://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://arxiv.org/abs/1804.06913
http://arxiv.org/abs/2002.02534
http://arxiv.org/abs/2003.06308
http://dx.doi.org/10.1007/s41781-019-0027-2
http://arxiv.org/abs/1904.08986

[118] Evolution of the ATLAS analysismodel for Run-3 and prospects for HL-LHC

*ATLAS Collaboration. ATL-SOFT-PROC-2020-002. url:

https://cds.cern.ch/record/2708664/.

[119] CMS Collaboration. url:

%5Chref%7Bhttps://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults%7D.

[120] ATLAS Collaboration. “A new petabyte-scale data derivationframework for

ATLAS.” In: Journal of Physics: Conference Series 664.072007 ().

[121] ALICE Collaboration. “The ALICE analysis train system”. In: J.Phys.Conf.Ser.

608 (2015) no. 012019 (). url: http://arxiv.org/abs/arXiv:1502.06381.

[122] CMS Collaboration. “A further reduction in CMS event datafor analysis: the

NANOAOD format”. In: EPJ Web of Conferences. 214. 06021. ().

[123] J Blomer. “A quantitative review of data formats for HEP analyses”. In: Journal

of Physics: Conference Series. 2018. p. 032020. ().

[124] Reana homepage. url: http://reanahub.io/.

[125] HEP Software Foundation Collaboration. “HEP SoftwareFoundation Community

White Paper Working Group - Data Analysis andInterpretation”. In:

arXiv:1804.03983 (). url: https://arxiv.org/abs/1804.03983.

[126] PyHEP. url: https://github.com/hsf-training/PyHEP-resources.

[127] J Blomer et al. “Evolution of the ROOT Tree I/O”. In: (). url:

https://arxiv.org/abs/2003.07669.

[128] D Piparo et al. “RDataFrame: Easy Parallel ROOT Analysis at 100 Threads”. In:

EPJ Web of Conferences 214, 06029 (2019) (). url:

https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06029/epjconf_chep2018_06029.html.

[129] L Moneta et al. “Machine Learning with ROOT/TMVA”. In: EPJ Web of

Conferences;Proceedings of CHEP 2019 (in print). 2020. ().

[130] K Albertsson et al. “Fast Inference for Machine Learning in ROOT/TMVA”. In:

EPJ Web ofConferences; Proceedings of CHEP 2019 (in print). 2020. ().

[131] scikit-hep. url: https://github.com/scikit-hep/uproot.

[132] SWAN Homepage. url: https://swan.web.cern.ch/.

[133] T Kuhr et al. “The Belle II Core Software”. In: BELLE2-PUB-TE-2018-002 ().

url: https://docs.belle2.org/record/1044.

[134] M Rieger et al. “Design and Execution of make-like,distributed Analyses based on

Spotify’s Pipelining Package Luigi”. In: arXiv:1706.00955 (). url:

https://arxiv.org/abs/1706.00955.

[135] L Heinrich & R Rocha. Reperforming a Nobel Prizediscovery on Kubernetes. url:

https://indico.cern.ch/event/773049/contributions/3581373.

[136] ADL benchmarks index. url:

https://github.com/iris-hep/adl-benchmarks-index.

– 39 –

https://cds.cern.ch/record/2708664/
%5Chref%7Bhttps://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults%7D
http://arxiv.org/abs/arXiv:1502.06381
http://reanahub.io/
https://arxiv.org/abs/1804.03983
https://github.com/hsf-training/PyHEP-resources
https://arxiv.org/abs/2003.07669
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06029/epjconf_chep2018_06029.html
https://github.com/scikit-hep/uproot
https://swan.web.cern.ch/
https://docs.belle2.org/record/1044
https://arxiv.org/abs/1706.00955
https://indico.cern.ch/event/773049/contributions/3581373
https://github.com/iris-hep/adl-benchmarks-index

