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Fernanda Psihas

MEASUREMENT OF LONG BASELINE NEUTRINO OSCILLATIONS AND

IMPROVEMENTS FROM DEEP LEARNING

NOvA is a long-baseline neutrino oscillation experiment which measures the oscillation of muon

neutrinos from the NuMI beam at Fermilab after they travel through the Earth for 810 km. In this

dissertation I describe the operations and monitoring of the detectors which make it possible to

record over 98% of the delivered neutrino beam. I also present reconstruction and identification

techniques using deep convolutional neural networks (CNNs), which are applicable to multiple

analyses. Lastly, I detail the oscillation analyses in the νµ → νµ and νµ → νe channels on a dataset of

8.85× 1020 protons on target, with emphasis on the application of deep learning, energy

reconstruction, and treatment of systematic uncertainties.

The CNN single particle identifier achieves 65%, 73%, 74%, 83%, and 45% efficiency and 81%, 71%,

86%, 73%, and 45% purity for electrons, photons, muons, protons, and pions, respectively, with no

additional selection. The identification of signal events using CNNs achieves 93% purity and 31%

efficiency for muon neutrinos and 66% purity and 64% efficiency for electron neutrinos, with no ad-

ditional selection. The number of events in the energy region of interest is 66 over 20.5 expected

background events for appeared electron neutrinos and 126 over 9.2 background events for surviving

muon neutrinos, with leading uncertainties from cross sections, calibration, and near/far normaliza-

tion. These results, fit to the three flavor model of neutrino oscillations with constraints from known

oscillation parameters are consistent with values of sin2 θ23 = 0.558+0.041
−0.033, ∆m2

32 = 2.444+0.079
−0.077 ×

10−3 eV2, and δCP = 1.213π with a preference for the normal neutrino hierarchy at a significance

level of 1.8σ.
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Chapter 1

Introduction
“I want to know how God created this world. I am not interested

in this or that phenomenon, in the spectrum of this or that
element. I want to know His thoughts, the rest are details.”

–Albert Einstein

The field of experimental particle physics seeks to answer questions at the most elementary level. The

particles which we study are the main protagonists in the story of how the universe came to be and the

fundamental laws of nature. The nature of neutrinos and their masses is amongst the most interesting

questions in physics today. Neutrinos are presently the only particles experimentally shown to be

beyond the description provided by the Standard Model of particle physics. Furthermore, through

the non-zero value of their masses they are linked in the theory to potential explanations for long

sought after questions such as the matter anti-matter asymmetry in the universe.

Neutrino detection is a challenge both technological and scientific. Not only are neutrinos difficult

to detect because they interact so rarely with matter, their interactions with nuclei are not well de-

scribed by existing models. When they do interact and we detect them, there is still some uncertainty

associated with how likely they were to interact in the first place. While these may be obstacles, they

present great opportunities for collaboration and discovery. Such is the nature of scientific endeavors:

every obstacle brings a lesson, every unexpected result a new adventure on the path to unveiling the

mysteries that God may have left for us in nature.
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Indeed, obstacles which turn into opportunities are at the heart of experimental neutrino physics.

The first time we tried to measure the flux of solar neutrinos was in the 1960s, with Ray Davis’ Home-

stake experiment. When Ray Davis saw but a third of the neutrinos from the Sun that John Bahcall

had predicted [1], he might have known there was a mystery there to uncover. It is unlikely, however,

that he anticipated the emergence of a new field once it was discovered that the mysterious effect was

the mixing of neutrino flavors, also referred to as neutrino oscillations.

Figure 1.1: Ray Davis (left) and John Bahcall
(right) standing next to the C2Cl4 tank of the
Homestake Experiment.

Little was known about the behavior of neutrinos

back then. They were known to be a by-product of the

nuclear processes which make stars like the Sun shine,

but their rate had never beenmeasured. TheHomestake

experimentmade ameasurement of incoming neutrinos

by counting 37Ar atoms, produced in the interaction of

electron neutrinos (νe) with Cl atoms in a 100,000 gal-

lon volume of cleaning fluid (Fig.1.1). For decades, the

source of the discrepancy between the measurement and Bahcall’s calculations, what we now call the

solar neutrino problem, remained unproven. The knowledge that most of the νe’s had undergone os-

cillations would explain this discrepancy, but this phenomenonwould remain unobserved for decades.

Since Ray Davis’ experiment in the 1960’s, many experiments have aimed to better understand the

solar neutrino problem, now known to be explained by the phenomenon of neutrino oscillations: the

fact that a neutrino, known to be one of the flavors νe, νµ, or ντ when produced, can be observed as a

different one after some time. Neutrino oscillations are possible because the neutrino mass states that

exist, ν1, ν2, and ν3 do so as a superposition of the flavor states νe, νµ, and ντ .

2



Being in a superposition of the flavor states means that a neutrino is not one but all three flavors

simultaneously, in a state governed by oscillating probabilities, a concept which Heisenberg described

as “a strange kind of physical reality, just in the middle between possibility and reality” [2]. Only at their

birth or death does one open the box, collapse the wave function, and resolve the neutrino’s identity.

The reality that we can only know the flavor of neutrinos at production and upon their interaction

with matter influences much of our experimental methodology to measure their oscillations: choose

a source of neutrinos whose initial flavor is known, allow them to travel for some distance, and then

measure their flavor again to see if it changed.

This simple principle is the basis of neutrino oscillation experiments, but matters quickly get com-

plicated. The fact that neutrino cross sections are extremely small, i.e., they interact with matter ever

so rarely, requires an effort to provide themwith as much matter as possible such that their chances of

finding an atomic nucleus in their path and interacting with it are enhanced. Thus, neutrino detectors

tend to be as massive or as dense as we can afford, a fascinating problem of engineering on its own.

Another challenge is to probe all possible combinations of neutrino mixing, or at least as many as are

needed in order to understand this phenomenon,1 by measuring their flavor and energy.

Neutrino physicists have performed oscillation measurements using neutrinos from a variety of

natural sources. Solar electron neutrinos, which brought the solar neutrino problem to light, have also

been studied by experiments like Kamiokande [3], SAGE [4], Gallex [5], and SNO [6]. Atmospheric

muon and electron neutrinos, which are produced by cosmic rays in the Earth’s atmosphere, fueled

the first observations of neutrino oscillations by the Super-Kamiokande [7] experiment in 1998 and

1While it is actually not the case that every single channel needs to be observed in order to understand as much as we
can about neutrino oscillations, a large subset of them does need to be probed by experiments to complete the picture of
probabilities for each single flavor to oscillate into another.
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have since been observed by SNO [8], MACRO [9], and others. Neutrinos are also produced in the

far reaches of space. Extragalactic muon neutrinos are probed by the IceCube [10] experiment in

Antarctica.

On Earth, there are man-made sources of neutrinos such as nuclear reactors, which make elec-

tron anti-neutrinos as a byproduct of fission processes. The Daya Bay [11], RENO [12], and Double

Chooz [13] experiments have performed oscillation measurements from reactor neutrinos. We also

produce our own neutrinos in particle accelerators, with the advantage that the energies and fluxes

can be engineered and controlled by design. NOvA is one of the experiments which measures the os-

cillations of accelerator neutrinos. Some accelerator neutrino experiments have measured oscillations

close to the beam source, such as LSND [14] and MiniBooNE [15], while others like K2K [16], MI-

NOS [17], and OPERA [18] have studied these neutrinos over longer baselines. Experiments such as

T2K [19] and NOvA [20] continue to study accelerator neutrinos, and improvements are already un-

derway. The next generation of neutrino experiments like DUNE [21] and HyperK [22] are currently

in development and will be taking data in the next decade.

The techniques employed by these experiments have utilized and sometimes driven the advance-

ments of new technologies. Detection techniques have been varied, from the counting of ions in

a chlorine tank to the observation of Cherenkov radiation—cones of blue light emitted by particles

going faster than light—in the ultra-pure ice of Antarctica. A number of techniques have also been

developed and employed to make possible the detailed identification and study of neutrino interac-

tions. While the first visualizations of neutrino interactions came from the photographic plates of

spark chambers and bubble chambers in the 60s and 70s [23] (Fig.1.2), on NOvA, we employ deep

learning image recognition techniques for the first time in the field to study these data.
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Figure 1.2: Left: neutrino interaction in a bubble chamber. Right: neutrino interaction in the NOvA detector.

We have learned much about neutrino oscillations in the past few decades. Precise measurements

have beenmade inmany oscillation channels and in some cases anomalies2 have been found which are

currently being investigated. However, some of the most interesting questions remain unanswered.

The nature of neutrinos, specifically whether they are Majorana or Dirac particles (the same or dif-

ferent from their anti-particles), and whether they are connected to the fact that the universe is made

up of mostly matter and not anti-matter, what we call the matter-antimatter asymmetry are both fun-

damental questions about nature itself and how things came to be what we observe in the universe

today. In particular, two pieces of information are yet to be determined from neutrino oscillations

which are related to these fundamental questions. One is the neutrino mass ordering, or mass hier-

archy, a question of whether there is one heavier and two lighter neutrinos or vice-versa. The other

is CP violation, the question of whether neutrinos violate the fundamental Charge-Parity symmetry.

The mass hierarchy and CP violation can be determined by measuring νe appearance in a νµ source

(and their anti-particles), after they have traveled through the Earth for a long distance (see Chapter

2). These oscillations, νµ → νe and ν̄µ → ν̄e are the main measurements we perform at NOvA.

2 In particular, an excess of low energy, short-baseline νe ’s, [14,15] and the anomaly found inGallium experiments [5].
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Dissertation Overview
In this dissertation, I describe neutrino oscillation measurements in NOvA data for the νµ → νe

and νµ → νµ channels, as well as improvements from deep learning techniques to identification

and reconstruction. I begin by motivating these measurements through a description of neutrinos

and the phenomenon of oscillations in Chapter 2 and introducing the challenges regarding neutrino

interactions and detection in Chapter 3.

In Chapter 4, I describe the NOvA experiment, detailing some of my contributions to commis-

sioning, maintenance, and detector operations and monitoring in Secs. 4.2.2, 4.2.3, and 4.2.4. The

reconstruction algorithms used for these analyses are described in Chapter 5, where my contributions

to the application and optimization of the deep learning technique for event identification are de-

scribed in Sec. 5.2.2, as well as the full development and application of the techniques in Secs. 5.2.3,

5.3.2, and 5.4.

I detail the methodology for the analyses of the νe appearance and νµ disappearance channels in

Chapter 6, including the improved signal identification and reconstruction methods using deep learn-

ing techniques. The description in Chapter 6 pertains to the analysis made public by the collaboration

in January 2018, to which I contributed to the development of the event selection for νµ signal events

and systematic uncertainties for both analyses, in addition to the contributions detailed in Chapter 5.

Finally, in Chapter 7, I show the resulting energy spectrum for each analysis, as well as the limits set

on sin2θ23 ,∆m2
32 , and δCP from a fit of the oscillation probabilities to this result.
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Chapter 2

TheNature of Neutrinos and
Their Masses

“Neutrinos, they are very small...”

– John Updike

When Wolfgang Pauli proposed the existence of the neutrino in 1930, he had already come up

with his famous exclusion principle, which governs the behavior of fermions, as well as the existence

of a new quantum number, which he called Zweideutigkeit, nowadays known as spin. We knew

little about the elementary particles at the time (only protons and electrons had been observed), but

contributions like Pauli’s would bring about an era of great advancement in our understanding of the

fundamental constituents of nature. Neutrinos and their masses would be, and remain, one of the least

understood pieces of the theory of elementary particles and fundamental forces.

Initially, the neutral particle proposed by Pauli in the famous letter to a conference [24] was in-

tended to account for both the atomic integer spin—unaccounted for by electrons and protons—(the

spin-statistics problem) and for the seemingly missing energy in β decay:

A
ZX →A

Z−1 X
′ + e+ + νe. (2.1)

Eq. 2.1 shows the general form of β decay for which, without the detection of the neutrino in the final

state, a fraction of the energy and momentum would appear to be missing.
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In the end, Pauli effectively proposed two neutral particles which ultimately accounted for the

missing pieces in both of these phenomena. The first was the neutron, discovered in 1932 [25] and

found to resolve the spin-statistics problem, and the secondwas the neutrino, whichwas first observed

in 1953 [26, 27] and was found to account for the missing energy in β decay.

As mentioned in Chapter 1, neutrinos are far from fully understood. In the following sections I

detail our current understanding of the neutrino particles and their properties, give an overview of

the remaining questions regarding their nature and their masses, and introduce the phenomenon of

neutrino oscillations.

2.1 Neutrinos in the Standard Model

“Had I foreseen this, I would have gone into botany!”
–Wolfgang Pauli

In contrast with the picture of elementary particles from the early 1900s, which contained only what

is found in the atom, it is now known that the number of elementary particles in nature is at least

seventeen. Five of these particles, called bosons, are responsible for the fundamental forces which

govern particle interactions. The remaining twelve are the fermions, which comprise all the matter

we know to exist in the universe.

The Standard Model (SM), see Fig.2.1, is a quantum field theory that describes the fundamental

particles and interactions through fields and symmetries and which describes the strong nuclear, elec-

tromagnetic, and weak forces. The model is characterized by the gauge symmetry SU(3) ⊗ SU(2) ⊗

U(1) and its dynamics are uniquely defined once its 19 free parameters (which include the masses of

the fermions) are determined.
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Figure 2.1: The Standard Model of particle physics.

The Standard Model is widely regarded as one of the most successful scientific theories in history.

It contains a fundamental description of nature and makes accurate predictions of particles and as-

sociated observables that have been confirmed by experiments in the past several decades. With the

discovery of the Higgs boson in 2012 [28], the full set of particles predicted by the model have been

observed, although precision measurements of particles’ characteristics and searches for other exotica

are still underway [29].

The only observed discrepancy between experimental observations and what is predicted by the

Standard Model is related to the behavior of neutrinos. The three neutrinos of flavors νe , νµ , and ντ

are light fermions that interact only via the weak force, as they have no electric charge and no color

charge. Neutrinos are produced in association with their corresponding heavy lepton, conserving

lepton number.

While the StandardModel predicts the existence of neutrinos, it requires them to bemassless. The

non-zero mass of neutrinos and its implications in the theory are discussed in the following sections.
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2.2 Neutrino Masses

“God used beautiful mathematics in creating the world.”
–Paul Dirac

The non-zero value of the neutrino mass is the only laboratory based evidence of physics beyond the

Standard Model to date, and it is an extremely meaningful deviation from the model because of its

potentially large implications in the theory. To understand the consequences of non-zero neutrino

masses, it is useful to discuss the possible modifications to the StandardModel that can generate them.

In the Standard Model, neutrino masses are not generated because there is no right-handed neu-

trino field. However, it is possible to introduce the neutrinomasses via two different (yet notmutually

exclusive) mechanisms: the Higgs mechanism and the Seesaw mechanism [30]1.

The Higgs mechanism [32] is responsible for the masses of all the fermions in the SM and can be

used to give neutrinos their masses if a right-handed neutrino νR and corresponding left-handed anti-

neutrino ν̄L are introduced. In that case, the Yukawa Lagrangian for the lepton masses is expanded to

include a second term and is of the form:

LH−ℓ = −
∑

α,β=e,µ,τ

(
Y ℓ
αβLαLΦ ℓβR + Y ν

αβLαLΦ̃νβR

)
+ h.c. . (2.2)

Here, Φ is the Higgs field, the LαL are what generate the lepton fields:

LeL =

νeL

eL

 , LµL =

νµL

µL

 , LτL =

ντL

τL

 , (2.3)

and Y ℓ
αβ and Y

ν
αβ are 3× 3 Yukawa matrices, where the Yukawa couplings of the Higgs field generate

the lepton (ℓR,L) masses.
1What is presented here is not an exhaustive list, but only themost commonly discussedmechanisms, in their simplest

form. A clear and detailed review of existing options can be found in [31] .

10



This model treats neutrinos as Dirac particles, but it allows for the generation of a mass term of

the form:

LD = −mD (νRνL + νLνR) . (2.4)

Alternatively to the Higgs-generated masses, the introduction of Majorana masses via the type I

Seesaw mechanism is also possible for neutral particles, such as neutrinos. This extension to the SM

introduces Majorana mass terms to the Lagrangian, which for the left and right handed neutrinos are

of the form:

LML
= −1

2
mL (νLν

c
L + νc

LνL) (2.5)

LMR
= −1

2
mR (νRν

c
R + νc

RνR) , (2.6)

where νc is the charge-conjugated field. This is only allowed for mL = 0 in the SM, but the right-

handed Majorana mass term and the Dirac mass term can be combined into one Lagrangian of the

form:

LD+M = −1

2

(
νL νc

R

) 0 mD

mD mR
M

 νc
L

νR

+ h.c. (2.7)

ThemR mass scale is not linked to the SM scale, which means that its value is unconstrained and, in

principle, can be much larger than the SM scale would require. With the assumption thatmR ≫ mD,

the diagonalization of the mass matrix in LD+M leads to two Majorana eigenstates:

mlight ≃
m2

D

mR

, mheavy ≃ mR. (2.8)

In this model, the light, active neutrino flavors observed in nature emerge: mlight ≈ 0.1 eV, when

mD ≈ 100 GeV, which is on the quark mass scale. On the other hand2, the massive right-handed
2Pun not intended.
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Majorana neutrinos acquire masses on the order ofmR
M ≈ 1014 GeV and are not observed, although

they could have been found in the early universe due to the high energy density.

One of the questions that arises from the introduction of neutrino masses in the Standard Model

is the Dirac or Majorana nature of neutrinos. Whereas Dirac particles are distinct from their anti-

particles of the same helicity, as are the rest of the fermions, Majorana particles are effectively their

own anti-particles when accounted for in lepton flavor conserving processes such as double beta de-

cay.3 The observation of processes unique to Majorana neutrinos, such as neutrino-less double beta

decay (0νββ) [34], are the only probe on the nature of the neutrino masses. The contribution from

0νββ searches and other probes to our understanding of the neutrino masses will be mentioned in

relation to the neutrino mass hierarchy in Sec. 2.3.2.

2.2.1 Neutrino Eigenstates

The term “neutrino masses” does not refer to the masses of the particles portrayed in the Standard

Model diagram in Fig.2.1, but to the mass eigenstates of neutrinos: ν1, ν2, and ν3. These three mass

eigenstates are in turn quantum superpositions of the flavor eigenstates νe, νµ, and ντ . In fact, the

neutrino eigenstates can be written in either the flavor or the mass eigenstate basis, which diagonalize

the weak interaction and the free particle Hamiltonian, respectively. Thus, the mass eigenstates can

be written as a linear combination of the flavor eigenstates (and vice-versa):

|νk⟩ =
∑
α

Ukα |να⟩ , (2.9)

3The statement that Majorana neutrinos are their own anti-particle is commonly used in this description, but this is
not necessarily the case (see [33]). Two neutrinos may still have opposite helicity but be effectively identical, as far as the
process of annihilation is concerned. This is different from the case of particles which are identical to their anti-particle
in all quantum numbers.
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where U is a unitary rotation matrix known as the Pontecorvo, Maki, Nakagawa, Sakata (PMNS)

matrix [35, 36]. This matrix relates the |να⟩ flavor eigenstates, where α = e, µ, τ and the |νk⟩ mass

eigenstates, where k = 1, 2, 3. The elements Ukα are amplitudes of the flavor eigenstates να in mass

state k.

In order to define neutrinos conceptually in terms of their unchanging identity and characteristic

properties, it is necessary to state that neutrinos exist as the mass eigenstates, since it is the mass

eigenstates that have unchanging identity and mass. However, it is impossible to observe or measure

the properties of ν1, ν2, and ν3 directly, since upon interacting, their wave function is collapsed into

one of the flavor eigenstates. In other words, neutrino properties can only be measured at moments

at which they are bound to be in a single flavor eigenstate by the known laws of conservation.
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2.3 Neutrino Oscillations

“There is no quantum world. There is only an abstract quantum physical
description. It is wrong to think that the task of physics is to find out how

nature is. Physics concerns what we can say about nature...”
–Niels Bohr

Neutrinos are unambiguously in one flavor state |να⟩ only when they are produced and upon their in-

teraction with matter. At any other moment, neutrinos are in a superposition of the flavor eigenstates

which allows for the phenomenon of neutrino oscillations to occur. While the flavor of a neutrino

may be known at creation, it propagates as one of the mass eigenstates |νk⟩ given by Eq. 2.9. Thus

the probability that a neutrino is created as one flavor eigenstate but interacts as another is non-zero.

This is known as neutrino flavor mixing or neutrino oscillations.

The probability to observe a neutrino of a given flavor can be obtained by propagating the initial

flavor eigenstate from Eq. 2.9 in time:

|να (t)⟩ =
∑
k

e−iEktU∗
αk |νk⟩ (2.10)

where the e−iEt is the time-evolution operator for the free particle Hamiltonian in natural units.

For a relativistic free particle, E2
k = p2 + m2

k where we assume pk = pl ≡ p [37], and since

neutrino masses are very small with respect to their energies, Ek ≈ |p| + m2
k

2|p|
. The probability of

oscillation from flavor α to flavor β is given by

Pα→β (t) = |
⟨
νβ (t) |να (t = 0)

∣∣νβ (t) |να (t = 0)
⟩
|2 = |

∑
k

U∗
αkUβke

−i
m

2
k

2|p| t|2. (2.11)

Under the assumption that the neutrinos are ultra-relativistic, we can use t ≈ L to write t/|p| asL/E,

where L and E are the distance traveled by the neutrino and the neutrino energy, respectively. L/E

is typically expressed in units of km/GeV.
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Taking advantage of the unitarity of U , Eq. 2.11 can be expanded into

Pα→β = δαβ − 4
∑
i>j

Re
[
U∗
αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ij

4E
L

)

+ 2
∑
i>j

Im
[
U∗
αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ij

2E
L

) (2.12)

which, for the survival probability (νβ = να) reduces to:

Pνα→να
(L,E) = 1− 4

∑
k>j

|Uαk|2|Uαj|2 sin2
(
∆m2

kjL

4E

)
, (2.13)

where∆m2
ij ≡ m2

i −m2
j .

Neutrino oscillations are therefore governed not only by the elements of the matrixU , but also by

the squared mass differences,∆m2
21,∆m2

31, and∆m2
32.

A parametrization of the PMNS matrix in terms of rotation angles θ12, θ13, θ23, and a complex

phase δCP is convenient to describe neutrino oscillations and is given by:

U =


c13c12 c13s12 s13e

−iδ

−c23s12 − s13s23c12e
iδ c23c12 − s13s23s12e

iδ c13s23

s23s12 − s13c23c12e
iδ −s23c12 − s13c23s12e

iδ c13c23

 , (2.14)

where cij ≡ cos θij and sij ≡ sin θij . The sij terms in the matrix describe the amplitude of the

oscillation probabilities in Eqs. 2.12 and 2.13 which, in some cases, also depend on the value of δCP .

It is useful to look at the expanded form of this matrix:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (2.15)

as it separates it into factors containing parameters that drive the oscillations in different channels.
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Figure 2.2: Feynman diagrams for coherent forward scattering for neutrinos inmatter (time goes from left to right).
Left: an electron neutrino scattering via a charged-current (CC) interaction. Right: any neutrino flavor scattering
via a neutral-current (NC) interaction.

2.3.1 Matter Effects on Oscillations

When neutrinos travel through matter, an additional term is introduced to the Lagrangian to account

for their interaction with particles in the medium they traverse.This effect, due to the presence of

electrons, protons, and neutrons, changes the effective masses of the neutrinos in the medium due to

coherent forward scattering of the neutrinos, an effect that is somewhat analogous to the refraction

of light in a medium [38].

The presence of particles in the medium introduces potential terms in the Hamiltonian, H0 =

Uβi
m

2
i

2E
U †
iα. As seen in Fig. 2.2, the potential coming from the presence of electrons will be felt only by

the νe flavor eigenstates. This potential is calledVCC as it results from the charged current interactions

(W± exchange) and is the expected potential for a cold electron gas, VCC =
√
2GFNe. The effects

from the NC potential—right panel of Fig.2.2—are felt by all neutrino flavors and through cancellation

of the electron and proton contributions can be reduced just to the effect from the neutrons, VNC =

√
2GFNn.

4 In turn, given that VNC is felt equally by all flavors, it can be absorbed into a phase term

4This cancelation and more details of the calculation starting from a low-energy charged-current weak interaction
Lagrangian can be found in Chapter 9 of [39], and a derivation analogous to refraction index is in the original paper [38].
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and ignored as far as the effect in CC channel measurements is concerned.

The remaining potential, VCC , is introduced in the Hamiltonian by adding an element, Aαβ =

δαβδαeVCC , such that the effective Hamiltonian is now given by:

Hαβ =
∑
i

Uβi

m2
i

2E
U †
iα + Aαβ. (2.16)

The Hamiltonian including matter effects is then:

H =


Ue1 + A Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (2.17)

where A ≡ ±
√
2GFNe, where the positive and negative sign apply to neutrinos and anti-neutrinos,

respectively.

The matter effect can be seen in the leading term of the oscillation probability:

Pνµ→νe
≈ sin2 θ23 sin 2θ

eff
13 sin

2

(
∆eff

13L

2

)
, (2.18)

sin 2θeff13 =
∆2

13 sin 2θ13
(∆eff

13)
2

, (2.19)

where

∆eff
13 =

√
(∆13 cos 2θ13 − A)2 +∆2

13 sin
2 2θ13 (2.20)

∆13 =
∆m2

31

2E
. (2.21)

Note that the first term inside the square root in Eq. 2.20 depends on the relative sign of∆m2
13 andA.

Thus, the oscillation probability P (νµ → νe) is different for neutrinos versus antineutrinos as well as

for normal versus inverted hierarchies.

When introducing matter effects the oscillation probability is given by:
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Pνµ→νe
= Patm + Psol + 2

√
Patm

√
Psol

(
cos∆m2

32 cos δ ∓ sin∆m2
32 sin δ

)
, (2.22)

where

Patm = sin2 θ23 sin
2 2θ13

sin2 (∆31 ∓ AL)

(∆31 ∓ AL)2
∆2

31, (2.23)

Psol = cos2 θ23 sin
2 2θ12

sin2 (∓AL)

(∓AL)2
∆2

21, (2.24)

with the positive and negative signs now applying to anti-neutrinos and neutrinos, respectively.

The matter effects on the oscillation probability present an advantage for experiments seeking

to determine the value of δCP and distinguish between the two neutrino mass hierarchies. In par-

ticular, the probability for NOvA’s main channel, Pνµ→νe
, is shown in Fig.2.3 for different values of

the oscillation parameters it will measure. The influence of these effects on the design of the NOvA

experiment will be explained in Chapter 4.
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2.3.2 Oscillation Parameters and Neutrino Properties

Experiments have measured oscillations and constrained the values of the mixing angles and ∆m2
ij

parameters to high precision, and phenomenological analyses exist that study their results and ob-

tain global fits representing the current knowledge of neutrino oscillations in the field. The status

of our knowledge about the oscillation parameters given by the global analysis described in [41] is

summarized in the following table and depicted in Fig.2.4:

Parameter Ordering Best fit 1σ range 2σ range 3σ range
δm2/10−5 eV2 NO, IO, Any 7.37 7.21 – 7.54 7.07 – 7.73 6.93 – 7.96
sin2 θ12/10

−1 NO, IO, Any 2.97 2.81 – 3.14 2.65 – 3.34 2.50 – 3.54
|∆m2|/10−3 eV2 NO 2.525 2.495 – 2.567 2.454 – 2.606 2.411 – 2.646

IO 2.505 2.473 – 2.539 2.430 – 2.582 2.390 – 2.624
Any 2.525 2.495 – 2.567 2.454 – 2.606 2.411 – 2.646

sin2 θ13/10
−2 NO 2.15 2.08 – 2.22 1.99 – 2.31 1.90 – 2.40

IO 2.16 2.07 – 2.24 1.98 – 2.33 1.90 – 2.42
Any 2.15 2.08 – 2.22 1.99 – 2.31 1.90 – 2.40

sin2 θ23/10
−1 NO 4.25 4.10 – 4.46 3.95 – 4.70 3.81 – 6.15

IO 5.89 4.17 – 4.48⊕ 5.67 – 6.05 3.99 – 4.83⊕ 5.33 – 6.21 3.84 – 6.36
Any 4.25 4.10 – 4.46 3.95 – 4.70⊕ 5.75 – 6.00 3.81 – 6.26

δ/π NO 1.38 1.18 – 1.61 1.00 – 1.90 0 – 0.17⊕ 0.76 – 2
IO 1.31 1.12 – 1.62 0.92 – 1.88 0 – 0.15⊕ 0.69 – 2
Any 1.38 1.18 – 1.61 1.00 – 1.90 0 – 0.17⊕ 0.76 – 2

Table 2.1: Results of the global 3ν oscillation analysis, in terms of best-fit values for the mass-mixing parameters
and associated nσ ranges (n = 1, 2, 3), defined by χ2 − χ2

min = n2 with respect to the separate minima in each
mass ordering/hierarchy (NO, IO) and to the absolute minimum in any ordering. δm2 is defined herein as m2

3 −
(m2

1 +m2
2)/2, and that δ is taken in the (cyclic) interval δ/π ∈ [0, 2]. From [41].

As mentioned in Chapter 1, neutrinos are linked to fundamental questions through the non-zero

value of their masses and the phenomenon of oscillations. In particular, the neutrino mass hierarchy,

the octant of the angle θ23, and the value of δCP are parameters which have yet to be determined, a

task to which the NOvA experiment has been designed to contribute.
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Figure 2.4: Covariance plot for sin2 θ23, δ (top) and sin2 θ23, sin2 θ13 (bottom). From left to right, the regions allowed
at Nσ = 1, 2 and 3 refer to the analysis of long-baseline accelerator + Solar + KamLAND data (left panels), plus short-
baseline reactor data (middle panels), plus atmospheric data (right panels). Best fits are marked by dots. The three
upper (lower) sub-panels refer to normal (inverted) ordering. From [41].
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NEUTRINOMASS HIERARCHY

Neutrino masses are difficult to probe directly, given their small value as well as the small neutrino

cross sections. However, indirect probes on the neutrino masses have been explored to set limits on

related parameters, like the absolute effective neutrino massmββ , the lightest of the neutrino masses,

and the neutrino mass ordering or mass hierarchy, the question of whether the mass of the ν3 state is

lighter or heavier than the states ν1 and ν2 (Fig.2.5).

The complementarity of different probes on the neutrino masses can be seen in Fig.2.6, which

shows the current limits on mββ and mlightest set by different probes. Because the neutrino masses

are related to structure formation in the early universe, measurements of the cosmic microwave back-

ground are sensitive to upper limits on the sum of the neutrino masses [42]. The absolute mass scale

mββ can be estimated from searches for neutrino-less double beta decay (0νββ) and is given by:

mββ,NH =

∣∣∣∣c212c213mmin + eıα1s212c
2
13

√
m2

min +∆m2 + eıα2s213

√
m2

min +∆m2 +
∆m2

2

∣∣∣∣, (2.25)

mββ,IH =

∣∣∣∣c212c213
√
m2

min +∆m2 − ∆m2

2
+ eıα1s212c

2
13

√
m2

min +∆m2 +
∆m2

2
+ eıα2s213mmin

∣∣∣∣, (2.26)

where α1 = 2λ1 and α2 = 2(λ2 − δ), and λ1,2 are the Majorana CP phases [43].

The neutrino mass scale can also be expressed in terms of the measurable half-life of 0νββ decay

T 0ν
1/2 for a given isotope:

mββ = (G0ν)−1|M0ν |−2T 0ν
1/2 (2.27)

whereG0ν is the phase space factor andM0ν is the nuclear matrix element.

Currently the best upper limit onmββ , from the Kamland-ZEN experiment [44], is set at (61-165)

meV, although the uncertainties on M0ν are large, which impacts the sensitivity of these measure-
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Figure 2.5: This diagram depicts the two possible mass orderings. The three horizontal bars on each column repre-
sent ν1, ν2, and ν3. The colors represent the combination of states νe, νµ, and ντ in each mass state. The terms∆m2

ij

are the squared differences between two masses.

ments [45].

The relation between the different limits seen in Fig.2.6 could be interpreted as an indication that

the hierarchy can be determined from a combination of constraints from cosmology and 0νββ experi-

ments. However, the correlation depicted only holds for the type I Seesawmodel presented in Sec. 2.2

and, thus, an unambiguous determination of the origin of the neutrino masses would be necessary for

such a claim. The measurements of neutrino oscillation probabilities are the only unambiguous probe

for the neutrino mass hierarchy regardless of the mass scale and, in turn, can constrain the values of

mββ and the lightest neutrino mass for type I Seesaw.
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Figure 2.6: Current limits on mββ and the lightest neutrino mass. The green and red bands show the currently
allowed regions for inverted and normal hierarchy, respectively. The three horizontal bands are the upper limits to
mββ set by 0νββ searches in different isotopes [46]. The blue, vertical band indicates the upper limit to the lightest
neutrino mass from cosmological constraints [47], in the style of [48].
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Figure 2.7: A diagram of the flavor
eigenstate composition of the mass
eigenstate ν3.

The allowed values of the amplitude sin2θ23 at 3σ (fromTable 2.1)

are in the range 0.384–0.636. Thus, the question of whether this

mixing is maximal is yet to be answered. The diagram in Fig.2.7

depicts the relation of the quantity sin2θ23 to the composition of

the state ν3. A maximal value of this mixing angle would imply

equal fractions of νµ and ντ in the state ν3 andmaximize the amplitude of the corresponding oscillation

probabilities. Otherwise, the octant of this angle would imply which flavor eigenstate is more largely

represented in ν3.

THE δCP PHASE

The δCP phase is also not currently determined, as seen in Table 2.1. This parameter indicates the

measure to which the assumed Charge-Parity symmetry in the lepton sector is violated, which is one

of the conditions for connecting neutrinos to the question of baryogenesis5. The values of δCP that

imply CP conservation are 0 and π, all others mean CP is violated, maximally so for δCP values of π/2

and 3π/2.

The separation between the curves depicted in Fig. 2.8 allows one to translate the oscillation prob-

ability for neutrinos and anti-neutrinos into a constraint for the value of the δCP phase as well as a

potential determination of the mass ordering, for some values of the P (νµ → νe ) P (ν̄µ → ν̄e ) phase

space.

5Technically, it is the Majorana phases in Eq. 2.26 that are connected to leptogenesis, according to Sakharov’s condi-
tions [49]. However, the only probe on those phases is a combination of precision measurements of both the oscillation
parameters and 0νββ. Evidence of CP violation in oscillations would be the first indication of this possibility in the lepton
sector.
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Figure 2.8: Oscillation probability curves for an 810 km baseline for νµ → νe oscillations, assuming sin2 2θ13 =

0.085, ∆m2
32 = 2.44 × 10−3 eV2, and sin2 θ23 = 0.5. Left: Oscillation probability for neutrinos (top) and anti-

neutrinos (bottom). Right: Bi-probability plot. The curves on this plot show varying points of δCP for one point in
sin2θ23 from the probability distributions on the left. Every curve in this plot corresponds to a point atEν = 2 GeV,
the rest of the curve shows the variation over δCP . The colors in all figures are for the inverted (orange) and normal
(blue) hierarchies.
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Chapter 3

Neutrino Detection
“We have to remember that what we observe is not nature herself,

but nature exposed to our method of questioning.”

–Werner Heisenberg

The motivation behind particle detectors of any kind is to observe identifiable behaviors of the parti-

cles in which we are interested, through their direct interaction with somematerial. The technologies

used for this purpose have evolved, frommarks in photographic plates to electronics specially designed

for the signal events expected, and are of varied type and complexity according to the needs of the ex-

perimental array in question, as are the analysis techniques that follow. The basic questions that drive

the R&D behind particle detectors, however, are common across the board: How do particles interact

in different environments? And how can we engineer media in which the interaction of the particles

of interest (signal) is distinguishable from the interactions of other particles (background)? For this

reason, a discussion of particle interactions and detection techniques is relevant in order to motivate

the challenges present in experiment design in general, and to motivate the choices behind the details

of the NOvA design in particular.

In the case of neutrino oscillation measurements, the metrics of interest are the flavor and the

energy of the incoming neutrino. Thus, a knowledge of the expected energy spectrum and the particle

interactionswithmatter in this context is necessary. Neutrinos interact solely via exchanges ofW orZ
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bosons, yielding a lepton of the same flavor and one or multiple hadrons. Neutrino detection is, thus,

done through the detection of the outgoing particles from such interactions, whose characteristics are

the real drivers of the technology of choice. In particular, the identification of the lepton flavor is of

particular importance for analyses regarding oscillations, cross sections measurements, or any flavor

dependent effects.

This chapter describes the main characteristics of the interaction of neutrinos and their daughter

particles with matter, as well as the methods used by some neutrino experiments to detect them. The

following sections will detail neutrino interactions with matter through which they produce leptons

and hadrons in our detectors. The types of neutrino interactions are shown in Sec. 3.1. The character-

istic energy depositions of leptons and hadrons as a handle to identification and energy reconstruction

are presented in Sec. 3.2 and a motivation for the design of the NOvA detectors in the context of other

technologies is introduced in Sec. 3.3.

Natural seesaw

Flavor puzzle

Leptogenesis

Dark matter?warm

 masses Icecube HE neutrinos

eV YeVMeV GeV TeV PeVtiny! keV

Reactor 

Accelerator Geo 

Supernova 

 matter effect

Coherent -N scat.
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Proton decay

ultra-light

Figure 3.1: A diagram of the broad energy range of processes for neutrino production and their relation to the ques-
tions presented in Sec. 2.3.2.
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3.1 Neutrino Interactions

The energy range in which neutrino sources are available, illustrated in Fig.3.1, is broad and rich

in probes of a variety of physical phenomena, from nuclear fusion to supernovae. However, their

measurement is a grand challenge in experimental particle physics.

Figure 3.2: Neutrino cross sections at large energies. Note
that even the largest cross-sections, coming from νe e →
νµ µ (red) are still only 10−31 cm2. Plot from [50].

It was thought even by Pauli himself that neu-

trinos were not only neutral but also extremely

light and thus impossible to detect. Indeed, for

most particle physics experiments and for col-

lider experiments in particular, neutrinos appear

merely as missing energy in known decays or in-

teractions and their detection remains to this day

a challenging physics problem on its own, due

to their small interaction cross sections (less than

10−30 cm2) over a large energy range, as shown in

Fig.3.2.

Neutrino interactions with matter occur only via the weak force by the exchange of any of the

weak force carriers, the Z orW± bosons. Upon this interaction with a nucleon the total number of

leptons from the same family (where the number is negative for anti-leptons) will be the same in the

final state. This is called lepton-flavor conservation, as seen in Fig.3.3. The interactions of neutrinos

with nucleons are known to be lepton flavor conserving and they can be categorized by the boson that

is exchanged as well as by the type of interaction with the nucleon.
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Figure 3.3: Feynman diagrams for charged current and neutral current interactions.

In order to detect neutrinos and measure their properties, there are two main obstacles to over-

come: the small statistics due to the aforementioned small interaction cross sections, and the uncer-

tainties in their modeled interactions with atomic nuclei. Since the number of interactions seen is the

product of both the neutrino flux and the cross sections, this challenge calls for massive detectors as

well as large neutrino fluxes, the likes of which we can produce in accelerators. The NOvA experi-

ment employs both a massive detector and an intense beam of neutrinos to maximize signal statistics,

as detailed in Chapter 4.

A more in-depth classification of neutrino interactions can be made beyond the charged current

(CC) and neutral current (NC) interactions shown in Fig.3.3.

The interactions of the incoming neutrinos with atomic nuclei can be further classified intoQuasi-

Elastic (QE), Deep Inelastic Scattering (DIS), Resonant Pion Production (RES), and Coherent Scatter-

ing (COH), as seen in Fig.3.4 and other less prominent ones for the energy ranges relevant to NOvA1.

However, while existing nuclear models can separate the contributions of each of these interaction

types, they do not map uniquely into final states, i.e., the same final state particles can be found for

more than one interaction type. This leads to an uncertainty in the expected energy distribution of

neutrino events in our detectors shown in Fig.3.5.

1For instance, there are also interactions with the atomic electrons with even smaller cross sections.
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Figure 3.4: Neutrino interaction types by process: Quasi-Elastic (CC), Deep Inelastic Scattering (DIS), Resonant Pion
Production (RES).

Figure 3.5: Neutrino Cross Sections in the energy range relevant to NOvA for neutrinos (left) and antineutrinos
(right). From [50].

The study of neutrino cross sections is in itself a large effort in the field of neutrino physics. While

not the topic of this dissertation, it is important to mention that our lack of complete understanding

of neutrino cross sections is the largest systematic uncertainty in our analyses. The details of the effect

of uncertainties in the cross-sections in our measurements are further explored in Sec. 6.6.

3.2 Handles on Identification and Energy

In order to design experiments that can detect and reconstruct the observables of interest in neutrino

physics, it is important to understand the processes by which we may gather information from the

interactions we study. The types of interactions that particles undergo and through which they de-
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posit energy depend mainly on the energy of the particles and the characteristics of the active detector

material they traverse. The circumstances (energy, material characteristics, etc.) that determine the

predominant types of interactions are also different for each type of particle.

While mechanisms for energy losses vary greatly for different particles, a useful categorization

to make broad distinctions is the following: Electromagnetic (mostly electrons and photons) and

hadronic. This difference is further explored in section Sec. 5.3.2. The energy of neutrino interac-

tions goes predominantly into charged heavy leptons2, which upon interacting with matter lose their

energy mostly through radiative losses or ionization. For the energy range encountered in NOvA, the

main losses for the different types of leptons are dominated by the following:

Muon stopping power. The stopping power of muons and the dominant process for their energy

losses is described by the curve in Fig.3.6. In the case of muons from neutrino interactions, the typical

energies (constrained by the energy of the incoming neutrinos) usually start at the hundreds of MeV.

Thus, their energy losses are typically in the Bethe-Bloch or the radiative regions, as defined in the

figure.

Electron stoppingpower. In the case of electrons, the amount of energy lost to radiative processes

is significant in comparison to their rest energy. Above some critical energy, Ec, their energy loss is

primarily through Bremsstrahlung.

Compton scattering is also an important effect in the behavior of these particles as they pass

through matter. However, the relative magnitude of this effect is dependent on the energy range

of the particles in question as well. In the case of muons, pions and protons, scattering in the typical

energy range of NOvA this effect will become important and useful for identification and reconstruc-

2Typically this refers to muons and electrons only, as the lifetime of ντ ’s is small. This causes them to decay (usually
into lighter leptons)
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Figure 3.6: Stopping power of muons (left) and electrons (right).

tion. See Sec. 5.1.4.

3.3 Neutrino Detectors

While specific detector designs can vary significantly, most neutrino detectors can be classified into

one or several groups based on the interaction medium. Most current and planned neutrino detectors

fall into one or two of these groups: water Cherenkov, scintillator, high-Z, and noble element. These

materials serve as the interactionmedium for the neutrinos, but theymust also be coupledwith sensors

and other electronics to perform the detection.

Cherenkov detectors employ water or oil as an interaction medium. Charged particles produced

fromneutrino interactions traveling faster than the speed of light in themedium produce a Cherenkov

ring of light that falls incident upon light sensors, typically Photo-Multiplier Tubes (PMTs). These de-

tectors are well-suited to measure lower-energy neutrinos in theMeV range, like solar and supernova

neutrinos, as well as ultra-high energy neutrinos, such as astrophysical neutrinos.

Noble element detectors, particularly those of liquid argon outfittedwith aTime ProjectionCham-
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Figure 3.7: The Super-K detector and Event Displays. From [51].

ber (TPC) apparatus, are increasingly popular for neutrino detection. The liquid argon provides a

dense medium for neutrino interactions whose charged products create electrons though ionization,

the process in which energy is transferred to molecules in the medium, creating ions and ionization

electrons. The electrons are forced to drift in a strong electric field towards a collection plane. This

delayed signal, combinedwith a prompt optical signal gives these detectors excellent spatial and energy

resolution.

Scintillator detectors, likeMINOS andNOvA, rely on the light produced by the passage of charged

particles through the detector, by exciting atomic electrons which de-excite by photon emission. In

some cases, PMTs are used to collect the scintillation light, but in the case of NOvA the detector is

outfitted instead with Avalanche Photo Diodes (APDs). The reasons for this choice will be detailed in

Chapter 4.

The design and technology of choice varies widely experiment to experiment and is coupled to

other constraints like the available resources and the expected reconstruction capabilities. The re-
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Figure 3.8: TheMINOS detector and Event Displays. From [52].

quirements are driven by characteristics of the expected signal such as type of particle and energy of

the signal and expected background, as well as the type of measurement which is to be performed and

the sensitivity required. A good example of this is the comparison between the technology in thewater

Cherenkov detector of Super-Kamiokande (Fig.3.7) compared to the steel and scintillator technology

in MINOS (Fig.3.8). The Super-Kamiokande detector’s expected signal events are cones of blue light

that should be distinguishable between muons and electrons. On the other hand, theMINOS detector

was built to look for muon neutrino disappearance in an accelerator neutrino beam. Identifying and

containing the muon energy was of paramount importance to their measurement. As seen in Fig.3.8,

electron neutrinos are more difficult to identify in a detector likeMINOS, but the combination of steel

and scintillator and its magnetic field facilitate the containment, identification and reconstruction of

muon neutrino events.

One of the design choices made for NOvA is an improvement on the capabilities of the MINOS

detector, specifically the ability to identify and reconstruct electron neutrino interactions. The NOvA

design is detailed in Chapter 4.
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Chapter 4

The NOvA Experiment
“A scientist in his laboratory is not only a technician: he is also a child
placed before natural phenomena which impress him like a fairy tale.”

–Marie Curie

The NuMI Off-Axis νe Appearance (NOvA) experiment is a two detector neutrino oscillation exper-

iment designed to look primarily for the appearance of νe’s in a beam of predominantly νµ’s. The

choice of the νµ → νe and νµ → νµ channels and the design of the experimental array are motivated

by the following physics goals:

Precision measurement of sin2θ23 . As seen in Sec. 2.3, the mixing angle θ23 contains information

about the fraction of νµ and ντ present in the mass eigenstate ν3.

Determination of the Neutrino Mass Hierarchy or Neutrino Mass ordering, as depicted in Fig.2.6.

Measurement of the δCP parameter. Specifically, the goal is to constrain possible CP conserving

values in order to set a limit on the possibility for CP violation in the lepton sector.

The design of the NOvA experiment was drawn from the optimization and careful choice of de-

tector and data acquisition technologies, as well as planned improvements to the neutrino beam given

these physics goals and our current understanding of neutrino oscillations, as detailed in Chapter 2.

The effect of neutrino passage through matter on the oscillation probabilities, discussed in Sec. 2.3, is

particularly important and calls for a long baseline. The small cross sections, discussed in Sec. 3.1, call

for an effort to maximize the neutrino flux and a massive detector.
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The task of operating the experiment for optimal data-taking is also of crucial importance to the

final result. Optimal operation andmonitoring ensure maximal uptime synchronized with the uptime

of the accelerator array, guarantee a long life for the electronics, and ensure optimal quality for the

data that we collect. This chapter further motivates and details the experimental configuration in Sec.

4.1 and discusses the operation and monitoring of the experiment, from the detectors to the handling

of the data, in Sec. 4.2.

4.1 Experiment Design
“We’ve got no money, so we’ve got to think.”

– Ernest Rutherford

Experimental design is an optimization problem of accomplishing specific physics goals as precisely

as possible, as soon as possible, and within realistic funding constraints. NOvA’s design addresses the

following challenges:

Maximizing the signal. Given the small value of the neutrino interaction cross-sections discussed in

Sec. 3.1, large statistical uncertainties are expected for thesemeasurements. This challenge is addressed

on two fronts: Increasing the intensity of the neutrino beam, and maximizing detectors’ active mass.

Flavor Identification. As discussed in Sec. 3.1, identification of the lepton is the only handle on

identification of the signal events. The choice of material and detector structure was optimized, in

particular, for the identification of electrons.

Reducing background. Suppressing the number of background events is a significant challenge, one

which I will discuss in this chapter as well as in the reconstruction and analysis (Chapters 5 and 6).

The experimental design impacts background reduction through accurate timing and the chosen beam

energy.
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GENERAL OVERVIEWOF THE NOVA EXPERIMENT:

A proton beam is accelerated and delivered by Fermilab’s Main Injector [53] into a graphite target.

The collision of the protons with the target produces a beam of neutrinos. The neutrinos are sampled

at two locations, near the source with a near detector and some distance away from the source with a

far detector, both of which are placed off axis relative to the beam. The interactions of particles in the

detectors are triggered and recorded by a time-synchronized data acquisition system (DAQ).

The following subsections will describe the NOvA experimental setup in detail, starting with the

neutrino beam in 4.1.1, and explaining the choice of off-axis location in 4.1.2. The details of the two

detectors are presented in 4.1.3, and the detection mechanism, including the electronics involved, is

described in 4.1.4. Finally, the details of the DAQ and the timing system are shown in Secs. 4.1.5 and

4.1.6.

4.1.1 NOvA’s Neutrino Beam

NOvA’s neutrinos come from the beam of Neutrinos at the Main Injector (NuMI) at Fermilab. This

beam is produced by colliding protons, which are first accelerated at energies up to 120 GeV, into a

graphite target 1.2 meters in length. This collision is known to produce charged mesons, specifically

kaons and pions of both positive and negative charge, which predominantly decay via the following

channels:

π± → µ± +
(−)
νµ , (4.1)

K± → µ± + νµ. (4.2)

The NuMI beam itself is structured into packets or clusters of 4.5× 1012 protons called bunches. By

limiting the length and frequency of the proton bunches the NuMI beam can produce a pulsed stream
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of neutrinos— also called spills—which are 10 µs streams separated by 1.3 sec intervals and containing

12 bunches each. The purpose of this segmented beam is to localize the neutrino signal in time, which

is useful to minimize cosmogenic backgrounds.

The characteristics of the neutrino beam are largely consequential to the experimental sensitivities

of NOvA. Not only are oscillation probabilities dependent on neutrino energy, the signal statistics are

also a function of the beam’s intensity. NuMI has undergone improvements starting before NOvA

began taking data and occasionally since then. The original design intensity of NuMI is 700 kW,

which was reached in 2017 (See Fig.4.1). NuMI is currently the most intense neutrino source ever

built.

The total flux of neutrinos delivered by NuMI is dependent on the proton beam intensity as well

as the processes in Eq. 4.1. The beam exposure is reported in the unambiguous quantity POT (protons

on target), the number of protons which have been accelerated into the target, which is later translated

into an expected flux.

The flux of neutrinos from the pion and kaon decays on a cross sectional area A at a distance z

from the source is given by:

Φ =
2γ

1 + γ2θ2
A

4πz2
(4.3)

where θ is the angle between the meson and the neutrino direction and γ = E(π,K)/m(π,K).

While this flux is dominated by νµ’s, there is a secondary decay of interest: µ → e + ν̄e. This

decay introduces some contamination of νe’s in the predominantly νµ beam. The composition of this

neutrino beam has been measured by both the MINOS and the MINERvA experiments, which are

also situated close the NuMI beam, and is simulated for NOvA as shown in Fig.4.2.
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Figure 4.1: Delivered and recorded Protons on Target (POT) over NOvA’s entire data taking period. The points
are daily recorded values and the lines are traced over a 28-day average. NOvA’s uptime efficiency, the fraction of
time the detectors are running and recording beam data, is above 95% overall and above 98% after the detector was
commissioned.

Figure 4.2: Simulated NuMI flux×cross-section in neutrino (left) and antineutrino (right) mode. The visible dif-
ference in wrong-sign contamination is an effect of mostly the difference in cross sections between neutrinos and
antineutrinos and also by charge conservation from the initial proton-on-carbon collision. The simulation on this
plot is made [54] using Flugg [55] and Fluka [56].
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Figure 4.3: A diagram (top) and photographs (bottom) of the NuMI focusing horn. Protons coming from the accel-
erator (left of the page) impact a graphite target. The outgoing π+ andK+ mesons (only π+ depicted) get focused
by the field induced by a 100kA current in horn 1, and into horn 2, 10 meters away. The same current de-focuses
negative π− andK− mesons. Reversing the polarity of horn 1 has the opposite effect, a design choice that allows for
running in neutrino and antineutrino modes interchangeably. [53]

The measurement of oscillations requires not only flavor identification, but also the distinction

between neutrinos and antineutrinos for reasons explained in Sec. 2.3. In order to isolate each contri-

bution as much as possible, focusing horns are used to select the charged mesons produced by the pro-

ton interaction with the target. The focusing horns depicted in Fig.4.3 allow for two running modes,

with neutrinos or antineutrinos for the main composition of the beam, respectively. Reversing the

current on the horns will cause the opposite effect, producing a beam of predominantly antineutrinos.

4.1.2 Off-axis Spectrum and NC Backgrounds

As described in Sec. 3.1, neutral current (NC) events are themain backgrounds to the νµ → νe electron

neutrino signal coming from the NuMI beam. As the outgoing neutrino in these events carries with it

some of the incoming neutrino energy, NC events with energies higher than that of signal events can

mimic them if misidentified. Thus, constraining the energy of the incoming neutrinos is beneficial

to the goal of background rejection. In addition to reducing the neutral current backgrounds, con-
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straining the incoming neutrino energyEν distribution can be used in combination with the baseline

L to constrain the mean energy of the expected signal events at a value consistent with the expected

maximum of the oscillation probability.

In the case of NOvA, Eν is constrained by placing the detector off-axis with respect to the NuMI

beam direction. This takes advantage of decay kinematics, given that the angle of the outgoing neu-

trino from the meson decay is related to its energy. Thus, the mean Eν increases as the angle with

respect to the beam increases. The NOvA far detector (FD) was built at a location 14 mrad off-axis

with respect to the direction of the NuMI beam. As seen in Fig.4.4, this effectively constrains the flux

of incoming neutrinos to a narrow beam spectrum peaking close to 1.9 GeV.

Constraining the incoming neutrino energy represents an additional advantage to the measure-

ment of oscillation probability. As seen in Eq. 2.22, this probability depends on the ratio L/E, where

L is the baseline in km andE is the incoming neutrino energyEν . Fig.4.4 shows the expected proba-

bility of oscillations for an assumption of matrix parameters compatible with current best values. This

shows the oscillation maximum expected for νµ → νe atL/E ∼ 400 km/GeV.With a baseline of 810

km, NOvA’s L/E is 426.3 km/GeV at the energy peak, precisely chosen to maximize the sensitivity

to these oscillations.
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Figure 4.4: NOvA’s Off-Axis Energy. Bottom: the neutrino energy as a function of the energy of the mother π for
different angles. Top: the energy spectrum of the NuMI neutrinos on axis (black dotted) and for different angles off-
axis. The bottom panel shows the oscillation probability as a function ofEν for L=800 kmwhich is approximately
NOvA’s baseline. This figure illustrates the advantage of the 14 mrad design choice, which places the peak energy of
the neutrinos at the far detector close to the expected oscillation maximum at 1.9 GeV.44



4.1.3 Detectors

   
  

  

810 kilom
eters

Fermilab

NOȞA  
MINOS

Figure 4.5: Map of the NOvA experiment
layout. The NuMI beam located at Fermilab
makes a beam of neutrinos aimed at the loca-
tion where the MINOS detector was once lo-
cated. The NOvA far detector sits close to the
Canadian border, 810 kmaway from theNuMI
beam.

NOvA’s experimental array, shown in Fig.4.5 consist of

two detectors, a near detector (ND)∼1 km from the NuMI

beam and a far detector (FD) 810 km away, in Ash River,

MN. The ND is located 105 meters underground, within

the MINOS underground area at Fermilab. The FD is lo-

cated on the surface, shielded only by the building which

contains it in a 6-inch layer of barite overburden placed

on the roof of the building, providing some shielding from

cosmic ray particles entering from the atmosphere.

The NOvA detectors are made up of PVC modules,

which are filled with liquid scintillator, and optimized for

electron identification. The PVC modules are 15.8 meter

long extrusions (3.84 m for the near detector) that are seg-

mented into 3.5× 5.6 cm cells, as shown in Fig.4.6. These

modules of 32 cells each are then joined side-by-side to

form detector planes which are 15.8× 15.8meters for the far detector, and up to 3.84× 3.84meters

for the near detector. The full detector volume is made up of these planes, positioned front-to-back

in alternating vertical and horizontal orientations. This yields two orthogonal views of the energy

depositions, as shown in Fig.4.6.

While treatment of systematic uncertainties will not be detailed until Chapter 6.6, it is impor-

tant to note that the methodology employed in their treatment is greatly impacted by the design of
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Figure 4.6: Detector structure. Left: A photograph of the PVCextrusions that form theNOvAdetector planes. Right:
A structural diagram of the detector plane orientation, from [57]. Detector readout is done in vertical (side view) and
horizontal (top view) planes independently. This design allows for 3D reconstruction of particle trajectories.

the detectors and their similarities (or lack thereof). For instance, some systematic uncertainties are

common to both detectors and are expected to cancel upon a comparison of measurements between

the two, if the uncertainties apply identically. This is the motivation behind the choice to build both

detectors as functionally equivalent in technology as possible.

The near detector is an array of 192 alternating horizontal and vertical planes, the last 22 of which

alternate a steel plane with each vertical-horizontal plane as shown in Fig.4.7. This section of the ND

is called the muon range . The purpose of the higher density of the steel planes is to absorb a larger

fraction of the energy of passing muons, in order for them to stop before escaping the detector.

The far detector is an array of 896 planes, put together in sets of 64 planes called diblocks1. There

are a total of 14 diblocks in the far detector, making up a total active mass of 14 ktons, 35% of which

is PVC and 65% of which is scintillator.

1Technically, the far detector is divided into sections of 32 planes called blocks. However, given that blocks were
joined in sets of two through their interplay with common pieces of electronics diblocks are usually taken as one unit for
simplicity.
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Figure 4.7: Top: A diagram of the near detector. Region A on this diagram represents the main body of the detector
made of PVC+scintillatormodules. Themuon range (alternating activemoduleswith steel planes) is labeled as region
B. Left: A photograph of the near detector inside the detector hall underground at Fermilab and my friend Louise
Suterwho is represented by a star on the diagramon the top. Right: A photograph from the back of the near detector,
the shorter planes at the front of the image form the muon range.
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Figure 4.8: Top: A diagram of the construction and commissioning stages of the far detector. During construction,
the pivoter platform (which now sits at the end of the detector on the right-hand side photograph)would serve as an
assembly area for detector blocks and would then transport them to the end of the building. Once in place, modules
were filled, equipped with electronics, and started taking data while the rest of the commissioning continued. Bot-
tom: A photograph of the NOvA far detector, a 15.8 × 15.8 × 62meter structure of planes which are functionally
equivalent to the near detector planes. The NOvA far detector is perhaps the largest standing plastic structure ever
built.
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NOvAdata-taking began in the summer of 2014, overlappingwith installation and commissioning

of the far detector. We took advantage of the segmented structure of the readout to begin taking

data in advance of full completion of the detector construction. Once the initial four diblocks had

been commissioned, the completed region of the detector would take neutrino data, as the rest of the

diblocks were being moved into place in the detector hall, filled, and fitted with readout electronics

(see Fig.4.8). In future chapters, numbers for POT are reported as “POT equivalent” which implies the

conversion to equivalent POT for a complete 14 kton active volume, scaling for periods of data-taking

with the partially completed detector.

4.1.4 Signature Process

To APD 
Readout

Scintillation 
Light

Wavelength 
Shifting
Fiber Loop

Particle 
Trajectory

3.9 cm 6.6 cm

15
.5

 m

Figure 4.9: NOvA detector ele-
ment.

Detection of charged particles is achieved through the scintillation light

they produce as they travel through the detectors. This is made possi-

ble by the composition of the liquid scintillator with which the PVC

modules are filled. This liquid is made of mostly mineral oil to which

the following substances have been added to make scintillation possible

while retaining the highest possible transparency of the material:

• Pseduocumene (4.1%) - Scintillant that emits light at wave-

lengths of 360–390 nm.

• PPO and bis-MSB (9200 ppm) - Additives that shift the wave-

length to 450 nm.

• Stadis-425 (0.3 ppm) - Anti-static agent that prevents charge

build-up.
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Figure 4.10: Left: The endcap of modules (planes of 32 channels like Fig.4.9) which bundles the wave-shifting fibers
and couples to anAvalanchePhotoDiode (APD).Middle: A customNOvAAPD.Right: APDschematic corresponding
to one of the 64 wire end ports. The photons from the wire come from the top at the contact layer and through
photoelectric effect they make photo-electrons. These get drifted by the existing field in the APD that causes the
avalanche through the material as they travel to the bottom contact layer.

Before being filled with liquid scintillator, each PVC cell was equipped with a loop of wavelength

shifting fiber. This fiber carries the scintillation light out to the readout electronics, while also shifting

its wavelength from the blue 400–450 nm to the green 490–550 nm which the readout electronics

expect as input. The process from scintillation to detection is shown in Fig.4.9.

The green light from the fibers is detected by avalanche photodiodes (APDs), depicted in Fig.4.10.

These were chosen in part for having a high quantum efficiency of 85% in this wavelength range as

shown in Fig.4.11. These APDs absorb the light from the endpoints of 32 fibers, one from each cell

in the detector, and output a current. Operationally this occurs when the absorbed photons cause

electron emission through the photoelectric effect and the emitted electrons are drifted by the voltage

applied to the APD, causing an electron avalanche.
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Figure 4.11: This figure shows the quantum efficiency of APDs and PMTs (photo-multiplier tubes)—a common al-
ternative technology—as a function of incoming photon wavelength. It also shows the wavelength spectrum for
different fiber lengths. For reference, the far detector planes are 15.8 meters long and 3.84 meters long for the near
detector.

Figure 4.12: This diagram highlights the components of the front-end board (FEB) architecture. After the signal is
received from any of the 32 channels of the avalanche photo-diode (APD), the ASIC (application specific integrated
circuit) amplifies and shapes the signal in one of its 32 channels and feeds the resulting signal to theQuadADC,which
digitizes it at a rate of 2million samples per second. The FPGA (field-programable gate array) then receives the signal
in dual-correlated sampling mode and extracts a pulse height as well as timing information by looking for signals
above a threshold set for each particular channel.
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Figure 4.13: Electronics box. 1. APD con-
nected through a ribbon cable to 2. FEB 3.
Thermo-electroc cooler (TEC). 4. TEC con-
troller (TECC). 5. Network cable. 6. Data ca-
ble to DCM. 7. Dry gas ports and hoses. 8.
Cooling water ports and hoses.

This signal is then read, shaped, and digitized by a Front-

End Board (FEB), whose functionality is further described in

Fig.4.12. Finally, the digital signal is sent as a data packet to

a data concentrator module (DCM), which aggregates data

from multiple FEBs at a time.

The NOvA detectors operate with a total of 10,752 elec-

tronics boxes for the FD (and 329 for the ND) like the one

depicted in Fig.4.13, which read-out 32 detector channels

each. Each box contains an avalanche photodiode, a front

end board—which processes the signal—as well as a thermo-

electric cooler and controller for the water cooling system.

The connections to water and dry gas are also located in this

box, as are the connections to power supplies and a network

connection to the data concentrator module.Their location

on the FD is shown in Fig.4.14. These units operate at spe-

cific temperature and voltage conditions and the suite of on-

line monitoring systems described in Sec. 4.2 ensure that the

behavior of all these components is optimal for data taking.
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Figure 4.14: View of the top of the far detector. A.Manifold enclosing the fiber from each cell. B. Grounding strip. C.
Electronics box (see figure 4.13) containing anAPD, an FEB, and cooling systemboards. D. Data ConcentratorModule
(DCM) E. High voltage power supply which delivers 425 V to APDs and 24 V to the DCMs.
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4.1.5 DAQ and Timing

Figure 4.15: Data flow from the readout electronics to
data stored on disk.

The electronics described above allow for a readout

system with 100% live time for data-taking from the

344,064 (20,192) channels in the far (near) detector.

The data acquisition (DAQ) systems are responsible

for the delicate next steps. These include aggregating

all data from the 32 FEBs per module, triggering—

which is the decision process to either store or dis-

card data, and writing out information to disk.

Each DCM receives signals from 2,048 channels, which it aggregates and feeds into a circular

buffer. This buffer is comprised of a farm of machines that store all data for up to 16 minutes before it

is discarded. During that time, the DAQ awaits triggers to either store or ignore data from the buffer.

Fig.4.15 shows the elements of the readout and DAQ systems, as well as the progression of signals

through the buffer and into files on disk in those cases when a trigger is received.

There are three types of triggers for NOvA data which are in use within the DAQ: Clock triggers,

signal triggers, and data-driven triggers. Clock triggers are those for which there is a specific time

interval at which data is stored. Signal triggers are those for which the system receives an external

signal upon which data is stored for a period of time which is pre-defined for the trigger in question.

Data-driven triggers (DDTs) are driven by specific conditions in the data which, if encountered, will

prompt the DAQ to store the data from the time period during which such behavior was observed.

All triggers on NOvA cause data for given time intervals in multiples of 50 µsec to be stored. The

following is a partial list triggers that are currently active in the DAQ.
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• Cosmic Data Trigger: Timed to store readouts at 10 Hz in the far detector. These are 550 µsec

long readouts. These data are used as a minimum bias sample for detector calibration as well as

to estimate the cosmic backgrounds in the analyses (Fig.4.19).

• SNEWS Trigger: Takes long readout (on the order of seconds) upon receiving an alert from

the SuperNova EarlyWarning System [58], a world-wide network of neutrino detectors which

distributes an alert upon detection of potential galactic supernovae signals (Fig.4.17).

• Supernova Trigger: Data-driven trigger that performs basic reconstruction on the data in real

time to estimate a number of supernova-like candidates. It triggers a readout on the order of

seconds when the number of candidates exceeds some pre-set threshold [59]. A simulation of

supernova events is shown in Fig.4.18.

• NuMI Data Trigger: Stores a readout upon receiving a signal (in this case a GPS timestamp

from the accelerator). Readouts are 550 µsec long. We expect our neutrino signal to be con-

tained in these data, in addition to the characteristic cosmic signal in the far detector. The 550

µsec readout is centered on the 10 µsec beam spill time window, given by the accelerator com-

plex as detailed in Sec. 4.1.1 (Fig.4.19).

• DDEnergy Trigger: DDT which stores readouts upon encountering 50 µsec of data with to-

tal deposited charge in the detector exceeding some threshold. Readouts are 50 µsec long or

consecutive if the condition is continually filled (Fig.4.20).

• DDActivity: DDT which stores readouts upon any activity being seen in the near detector.

These are 550 µsec long readouts. These readouts are used to calibrate the near detector as well

as to evaluate running conditions independent of beam activity.
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Figure 4.16: Readout for the cosmic pulser trigger.

Figure 4.17: Readout for the SNEWS trigger.

56



Figure 4.18: Readout for a simulated 10 kpc supernova over a period of 5 ms. Red: Simulated interactions from
supernova neutrinos. Blue: minimum-bias overlay.

Figure 4.19: Readout for the NuMI trigger (550 µsec).
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Figure 4.20: Readout for the DDEnergy trigger. The pattern in this event is a large energy deposition from air show-
ers incoming from the top corner of the detector.

4.1.6 Timing

The timing system is a crucial component of the data acquisition system. It ensures accurate time-

stamping of signals from the accelerator and the timing synchronization of detector components.

Every channel in the detector is synchronized to the same internal time. This is achieved through

a system controlled by a series of timing distribution units (TDUs), which ensure that all of the DCMs

are simultaneously reporting consistent time. TDUs also maintain the global detector time in sync

with an external “wall time” from GPS satellites, which is consistent with both the accelerator time

and the second detector’s time. Another component of the system is called the spill server.

The accelerator will send a signal to the NOvA data acquisition system in order to prompt the

storage of data at the time at which neutrinos are expected as described in Sec. 4.1.5. The spill server

is responsible for time-stamping signals from the accelerator and delivering that information to a
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global trigger system on both detectors, which triggers the data readout. The entire timing system

ensures that readouts are taken exactly around the beam window, and that the time reported by all

channels is consistent, which is necessary for reconstruction downstream.
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4.2 Experiment Operations

The ongoing task of operating an experiment is rich in opportunities to reexamine one’s assumptions

about the expected behavior of the experimental array and the data-taking procedures. Continuous

evaluation of the expected conditions is required, as well as assessment of new, unexpected effects.

Collecting data is an active task that directly impacts the uncertainties in our measurement. Specif-

ically, statistical uncertainties are impacted by the amount of quality data collected, which requires

reliable understanding of the performance of the apparatus and the ability to quantify it, as well as

ongoing assessments of optimal operating conditions. For low statistics measurements, such as detec-

tion of neutrino interactions, the statistical uncertainties dominate over systematics in the sensitivity

of the results, which makes optimal data taking efficiency a high priority. The task of ensuring op-

timal data quality goes beyond the design and commissioning of the experiment and continues onto

new challenges—expected and otherwise—throughout its running life. Variations in hardware per-

formance, understood fluctuations, unexpected damage, cascading system failures, and even weather

conditions are examples of possible causes for detector downtime which must be understood and an-

ticipated when possible, and addressed when necessary.

On NOvA, a continuous effort exists to understand these effects as well as identify new ones

promptly. This effort has been carried out by experts over the years and is continuously under im-

provement and further development. Monitoring detector operations starts with immediate inspec-

tion of live data and running conditions, and it continues onto several failure identification systems

from detection electronics and downstream. This section details the broad operation procedures and

monitoring of the NOvA systems. Operation and monitoring of the DAQ and support systems is

discussed in 4.2.1. Data monitoring in real-time and close-to-real-time is detailed in 4.2.2 and 4.2.3.
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Figure 4.21: Left: Photograph of a NOvA Remote Operations Center (ROC). Controls for detector operations and
monitoring are available to collaborators from20 institutions, from4countries, as depictedon themaps in themiddle
and right panels.

Finally, the hardware monitoring and maintenance prioritization system is described in 4.2.4.

The ability to monitor data as it is being recorded gives an immediate handle on data quality,

running conditions and detector performance, which allows us to address and correct issues as they

arise. It is difficult to quantify the exact statistical impact of all the tools implemented for monitoring

of detector operations. However, it is clear that this effort plays a large role in the detector up-time of

NOvA and in the fraction of optimal quality data recorded, which at the time of writing are over 98%

and 97%, respectively.

4.2.1 Monitoring DAQ and Support Systems

As is common for most high energy physics experiments, the multiple DAQ and support systems

for NOvA are under constant monitoring by one or multiple collaborators on rotating shifts which

cover 24 hours a day, every day. This is done at one of the multiple remote operations centers set

up by experts in the twenty locations shown in Fig.4.21. While the NuMI beam is active, this task is

to prioritize detector uptime while documenting running conditions and consulting experts on how

to address unexpected incidents. While the beam is not operating, the shifter’s tasks also include

aiding experts in documenting the effects of changes and improvements to the systems and of general

maintenance.
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Figure 4.22: Operations screens for data acquisition for FD (ND screens are equivalent). Left: CR01 Control. A. Run
control, starts and stops data taking. B. DAQ Application manager: Runs and monitors connection to the detector
electronics. C. Trigger Scalars: Counts of triggers issued by the DAQ and events recorded. D. Timing system mon-
itors for the TDUs and the spill server. Right: CR02 monitoring. A. Event display B. OnMon viewer. C. APD/FEB
Temperature monitor. D. Nearline monitor.

Figure 4.23: Operations screens for externalmonitors: Left: Synoptic displayswith environmental details fromboth
detectors and voltage settings for electronics. Right: Beammonitoring and detector cameras.
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The standard tools available for these tasks, shown in Fig.4.22 and Fig.4.23 include monitoring

for hardware conditions, data acquisition systems, and data quality. Hardware operating conditions

are monitored by the systems described in the following subsections.

4.2.2 Online Monitoring

The Online Monitoring system provides the shifter with metrics calculated from the data as it is be-

ing read out by the DAQ. The system computes and constantly updates a set of metrics by sampling

different triggered readouts while they are still available in the buffer depicted in Fig.4.24. Given the

rate at which different readouts are taken this live system primarily samples two types of triggers, one

providing a regular stream of data (the cosmic trigger) and another providing beam signaled data (the

NuMI trigger). The raw data consists of ADC counts with time and location information. This raw

data provides us the “what”, “when”, and “where” of detector activity. The charge deposited, given in

ADC counts can be monitored for hardware thresholds and readout issues, the time of the hits can be

converted to a rate whose normal values are known, and the location of the hits allows for correlation

of the time synchronization over all the electronics.

Figure 4.24: Data flow from the readout
electronics to data stored on disk.

The Online Monitoring system has a backend that pro-

duces themetrics and a frontendGUI that displays them. The

backend, called OnMon Producer, samples live data by sub-

scribing to a shared memory segment from the event dis-

patcher (a component of theDAQ) for a set of chosen triggers

and computes metrics in the following categories:
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Figure 4.25: OnMon Viewer. A: Plot region. B. Information Box. C: Status Bar. D: Print Menu. E: Plot directories.
Plot: The hit rate seen by every APD in the Far Detector. The normal rate are between 10 Hz and 5 kHz.

Figure 4.26: DCM synchronization issue seen on the hit rate map (left) and the event display (right)
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Trigger metrics: These provide confirmation that triggers are being issued at expected rates.

Timing metrics: These allow for monitoring of the proper synchronization of the electronics as

well as time structure of the neutrino beam spills.

Hardware activity: These metrics serve as indicators of hardware performing as expected.

The front end of the system, called the OnMon Viewer is a ROOT [60] GUI which incorporates

formatting, plot information and comparison capabilities for further analysis. While the OnMon

Producer aggregates live data to the summarymetrics, theOnMonViewer displays themon 30-minute

summary plots or time series plots. The OnMon Viewer and the OnMon Producer communicate via

a shared memory segment where the information is being modified by the Producer and accessed by

the Viewer in real time. The OnMon Viewer is one of the main systems running in the control room

monitors for the detectors as shown in Fig.4.22.

Accurate timing is an important part of optimal data-taking, and is important to monitor. The

correct recording of triggers, the synchronized response of the hardware and the time of the NuMI

beam spills can all be confirmed on these plots. For example, Fig.4.26 presents examples of useful

online monitoring metrics to diagnose hardware issues and Fig.4.28 shows beam and timing system

monitoring available within the same system.

An example of a check that can impact our signal statistics directly is the TDU offset metric, shown

in Fig.4.28. While the NOvANuMI triggers are in-timewith the beam spills, as discussed in Sec. 4.1.5,

it is possible for the timing system to be in a state of error, which causes an additional delaywith respect

to this time. This failure mode would be difficult to identify if present in one detector only, such that

all metrics concerning triggers, stored events, and timing would appear normal.

However, it is possible to identify this issue from the delay in the 1 Hz trigger (a trigger signal

received from the accelerator system and independent of the NOvA timing). The 1 Hz trigger records
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Figure 4.27: Left: Time structure of theNuMIbeam seen inNOvAreadoutswhich are 550µsec long, centered around
the 10 µsec beam spill. Right: The approximate number of triggers recorded as a fuction of UTC time.

an event on the tick every second. There is an expected 21 µsec offset from the time it takes the signal

to be acknowledged by the DAQ. The failure is an additional 64 µsec delay of all signal triggers. The

metric shown in Fig.4.28 shows the TDU offset calculated as:

ND Trigger delay = Ts ∗ 64× 106 (4.4)

and

FD Trigger delay = Ts ∗ 64× 106 − ToF −∆MI , (4.5)

where Ts is the trigger start time from the DAQ, 64 × 106 is the number of DAQ clock ticks per

second, ToF is the neutrino time of flight and∆MI is the time shift with respect to theMain Injector.

The trigger delay metric was incorporated to look for data which had been taken with a 64 µsec

offset, a failure which occurred for some time between 2014 and 2015, leaving NuMI data within the

recorded events, but away from the region of interest where the beam spill is expected. A total of

2.74 × 1020 POT was analyzed with this offset and two of the selected νe events were recovered by

adding the second time window.
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Normal Offset Normal offset

Figure 4.28: The signal travel time between the accelerator and the NOVA Timing Distribution Units detailed in
Section 4.1.6. There is an expected 21 µsec offset from this time, which the NOvA DAQ corrects for at the trigger
level.
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Figure 4.29: Event times for νe selected events. The timewindows used for the analysis are contoured by blue dashed
lines. Two events were found in the second time window.
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Figure 4.30: Live event display public webpage.

The live Event Display is another component of the online monitoring tools available in the con-

trol room as well as online, as shown in Fig.4.30. Like the OnMon producer, the live Event Display

subscribes to the event dispatcher and displays the raw data in amap of the detector. Fig.4.26 shows an

example of the live event display outlining the locations of individual DCMs, mapped in the OnMon

viewer, which correspond to geographical locations in the detector. An example condition where

hardware has fallen out of sync is shown in Fig.4.26, where issues in data from DCMs can be seen in

coincidence on both the OnMon Viewer and the Live Event Display.

4.2.3 Nearline Monitoring

While the online monitoring provides a fast look at the raw detector data, a second “nearline” system

provides monitoring of raw and reconstructed information over long periods.

The Nearline monitoring system if a set of algorithms that computes relevant summaries from
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multiple operational metrics. These summaries are made for periods of 24 hours, seven days and 30

days worth of data, as shown in 4.31. In addition to producing the live summary metrics, the OnMon

Producer also outputs summary files which are one of the inputs to the Nearline monitoring system.

The Nearline output consists of a set of plots which either aggregate metrics or show their evolution

over time. These metrics include the following categories:

OnMonmetrics: Hit-rates, active/reporting hardware status, issued triggers, trigger delay, among

others. Computed from the OnMon summary files. These give a handle on optimal hardware perfor-

mance and hardware issues which evolve over time, as well as the correct recording of triggers by the

DAQ.

Detector and Environmental metrics: From sensors in the FD and ND halls, these are temper-

ature and dew point summaries for different locations. These are important to monitor given the

dependence to temperature and dew point of the noise seen in our electronics due to hardware oper-

ating temperatures or condensation. The environmental metrics also include running voltages at the

power supply sources and the DCMs.

Data and OnMon files: Monitoring of data file transfers from the DAQ disks into permanent

storage, file processing and OnMon summary file production.

Beam metrics: From a combination of the Fermilab’s accelerator database and the NOvA trig-

gers, we can monitor the recording of beam events as well as the optimal use of scheduled detector

downtime in coincidence with beam downtime, as seen in Fig.4.32.

A few examples and use-cases of nearline metrics can be seen in Fig.4.32.

The Nearline backend monitors the creation of new raw data files by the DAQ and executes an of-

fline version of the OnMon Producer, which outputs one summary file per data file. When a new file

is closed, it re-computes all metrics for the 24 hour period of time starting with the newest summary
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Figure 4.31: Evolution of noise hits over 24hrs, one week and 30 days.

file. The production of plots with Nearline metrics has a delay with respect to live data of approxi-

mately 20 minutes for the far detector and on the order of one hour for the near detector. This delay

is driven by the frequency with which summary files are produced, which can only be computed for

the finite time intervals of readout determined by the DAQ.

The Nearline front-end is a series of webpages which display a subset of plots selected by the user

and holds all summary plots for both detectors calculated for the time intervals mentioned above. In

addition to this main display, a summary of the most important metrics is available through a front

page which shows a small subset of what are considered to be the most relevant plots for the shifters

to actively monitor. Additionally, the system alerts users of known, time-sensitive error conditions

in metrics as they are computed and displays alerts accordingly. The nearline front page even detects

when the user has not interacted with the system for a period of time and issues a reminder to do

so. Fig.4.33 shows an example of the nearline front page and Fig.4.34 shows the full content of the

nearline webpage.
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Figure 4.32: Nearline TriggerMetrics. The first twometrics are rates of collected readouts, calculated from readouts
in data files. Blue: Pulser Cosmic trigger rate gives a measure of detector uptime. Maroon: Rate of collected NuMI
trigger readouts. Red: Rate at which neutrino spills are delivered from the accelerator. This plot contains useful
uptime information like how much of the NuMI beam spill available we record (when the maroon and red lines
match), errors of triggering on the beam spill (when the detector is running butwe fail to record beam spills marked
A) and detector downtime taken for maintenance in coincidence with beam downtime marked B.

Figure 4.33: Nearline webpage accessible for expert remote monitoring of all systems.
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Figure 4.34: Nearline environmental metrics webpage. Left: The temperature from sensors inside the detector hall,
markers on the right show the physical location of the sensors.
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4.2.4 Hardware maintenance

Ensuring the continuing high quality of the data for the duration of the experiment requires prompt

and effective maintenance to be done on the hardware by expert technicians. Routine testing for

failures of the almost 11,000 FEBs, APDs, TECs, etc. would be impossible. However, using the online

and nearline summaries we can identify problems when they occur and categorize them enabling a

more efficient response from the experiment technical staff.

Element Constraint Normal Values
APD Voltage 25 V
APD Temperature -15 C
APD Hit Rate ∼500 Hz
FEB Temperature 35 C

Table 4.1: Hardware Operating Conditions.

In some cases, running conditions may deviate from the nominal values listed in Table 4.1, but do

not represent a threat to the electronics. However, runningwithin these limits is necessary for optimal

data taking and in some cases known effects on the quality of the recorded data occur when falling

outside of the normal values. For example, elevated operating temperature on APDs is correlated

with noise and with higher saturation rates from large charge depositions. However, some operating

conditions have been studied over time and adjusted to optimal values with positive effects on the

data. For example, the voltage gain changes in the APDs which will be discussed in Sec. 5.3.1 as well

as different algorithm settings within the FEB firmware.

The hardware watch system was designed to assess the stability of the detectors, identify features

in the data which can correlate to specific hardware failures, and prioritize maintenance tasks opti-

mizing for detector performance. This process begins by identifying the pieces of hardware that show
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failures or unexpected behaviors and other features over long periods of time. Once identified, the

maintenance needs are prioritized by severity and frequency of the issues. Such prioritization is done

by using the data summary outputs from the online monitoring covered in Sec. 4.2.2 for each of the

channels in the detectors over large periods of time. The most indicative metrics the hardware watch

system employs are the average noise rates over week-long periods of time, minimum or maximum

reported ADC and the thresholds set by the system. The system identifies issues which are defined as

values outside the expected noise rate across the detector shown in Fig.4.36.

The hardware watch system was not part of the original monitoring design. The concept and

development of this tool happened during detector commissioning after I employed a simpler first

iteration to assess a manufacturing defect of the first set of electronics installed in the far detector.

At the time, the first two diblocks of the detector had been completed and instrumented with the

Hamamatsu APDs shown in Fig.4.10, with a custom paraffin coating to avoid condensation issues

from the cooling system.

The coated APDs developed an incremental noise profile over time, as charge would accumulate

on the coating. This issue was characterized and potential solutions were discarded through studies

of the hit rate evolution over long periods of time. In the end, this study helped to determine that

no operational modification would resolve the issue, after which the design of the APDs was changed

and the more than 1500 pieces of hardware replaced.

Fig.4.35 shows the evolution of the noise incidents in the APDs, where incidents were defined as:

Incident rate =
Number of noise incidents
Number of data files sampled

(4.6)

where incidents are defined as hit rates exceeding an allowed maximum ofRatemax = 500 Hz.
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Figure 4.35: Hardware noise reduction diagnostics. Left: incident rate as defined in 4.6 is shown in color over a period
of 3 months (on the x axis) for each FAB/APD set (on the y axis) on an example DCM. The issue rate for the DCM
is displayed on the top bar. Right: an example noise profile for one FEB. Top: the hit-rate of each of the 32 channels
read at that location. Bottom: the issue rate for each channel over six time-periods, displayed as ordered on the APD
input face. Note that the x axis on both

This methodology inspired the design of the system I developed, called the HardwareWatch List,

to monitor the hardware. It operates as follows:

Every week, an issue rate is calculated for every channel in the detector (i.e. one fiber output

from Fig.4.9). Issue rates are reported as an average over the 32 channels readout in a single location

corresponding to an electronics box like the one shown in Fig.4.13. The score is computed in the

following way:

Issue rate =
Number of failure instances
Number of data files sampled

(4.7)

where all data files from the current week are sampled, except for those corresponding to period of

time with documented issues in running conditions.

75



Figure 4.36: Hit rates in cosmic triggers for all APDs in
the FD for oneweek. Top: Hit rate from all hits. Middle:
Rate of hits with ADC bellow the MIP range. Bottom:
Rate of hits with ADC above the MIP range. Lines in-
dicate the thresholds for issue tracking. Note that the x
axis is not uniform in units of time, as it is computed by
run numbers.

Failure instances may fall into one of six cate-

gories:

Noise failure. The hit rates exceed an allowed

maximum of Ratemax = 500 Hz. Figure 4.36

shows this metric and the failure rate is displayed

in pink on Fig.4.37.

Quiet failure. The rates are below an allowedmin-

imumofRatemin = 10Hz. Figure 4.36 shows this

metric and the failure rate is displayed in blue on

Fig.4.37.

Loud noise failure at high ADC counts. Noise

failure for rates of hits above a thresholdADCmax

Figure 4.36 shows this metric and the failure rate

is displayed in orange on Fig.4.37.

Loudnoise failure at lowADCcounts. Noise fail-

ure for rates of hits below a threshold ADCmin

Figure 4.36 shows this metric and the failure rate

is displayed in purple on Fig.4.37.

Non-reporting channels. The 32 channels report

null rates for the duration of that file. This failure rate is displayed in gray on Fig.4.37.

Channel drop out. Null rates for portions of time larger than 0.1/Ratemin.

The issue rate usesmostly hit rate information and can be interpreted as the fraction of time×channels

with issues within the seven day period. The list of maintenance requirements is available to the tech-
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Figure 4.37: Bottom-left Panel: Issue rate on every location at the near detector. Remaining panels: Components of
the issue rate.
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Figure 4.38: Hardware watch list front end web archive.

nicians as a summary of the computed metrics which in turn relate to issues with a specific piece of

the hardware (or multiple) in the box shown in Fig.4.13.

The front end of the hardware watch system is an web-based list available to the technicians and

is shown in Fig.4.38. This tool displays the current list of maintenance needs as well as plots of each

element of the issue rate shown with respect to the physical location on the detector.

In addition to computing the priority maintenance list weekly for technicians, the system keeps
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the history of the behavior for all pieces of hardware, computed for up to four months after an issue

has disappeared. This is done by computing the noise rate history per channel over a period of several

months and by keeping a summary of previous activity at that location. Fig.4.39 shows examples of the

noise history for three locations, before and after maintenance. This information allows technicians

to verify the stable behavior of channels after maintenance has been performed.

The effectiveness of the maintenance over larger periods of time can be computed by keeping

track of resolved error conditions and correlating with themaintenance records kept by technicians in

a database over periods of several months. Fig.4.40 shows the percentage of channels which operate

normally after maintenance in three categories corresponding to the rate of issues prior to mainte-

nance. These saved channels are a metric for the success rate of the maintenance performed, which

improves significantly and remains above 95% after the detector was fully commissioned. This is a

metric of the stability of our hardware over time.
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Figure 4.39: Noise History in three locations.Top: normal rates in all pixels. Center:
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Figure 4.40: Top:Successful maintenance over a one year period of time. Bottom: Maintenance effectiveness over
time (left) and hardware stability over time (right). The three populations shown correspond to issue rates over one
week periods of time being non-zero, above 50%, and above 90% in pink, blue, and green, respectively.
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Chapter 5

DeepLearning andEventRe-
construction
Event reconstruction uses calibrated detector readouts, consisting of hit times and charges, to extract

the physical meaning of the particle interactions which produced them. The goal of reconstruction for

neutrino events is to separate the neutrino interactions from other activity in the detector, to identify

the neutrino flavor in the charged-current interactions , and to estimate the energy and direction of

the neutrino through the particles produced in its interaction.

This chapter details the multiple approaches through which we reconstruct NOvA events. The

next sections describe algorithms which are commonly used in particle physics experiments, begin-

ning with traditional reconstruction and followed by the newest deep learning algorithmic implemen-

tations we have developed in the last couple of years [61].

The clustering, vertexing and tracking algorithms used by NOvA were inspired by existing im-

plementations from other high energy physics experiments. Sec. 5.1 describes how these algorithms

have been adapted to the geometry and readout of the NOvA detectors. For categorization both of

the interaction as a whole and of the individual particles produced in it we employ deep learning tech-

niques which are new to physics experiments. These algorithmswere inspired by implementations for
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Figure 5.1: Diagram of the NOvA reconstruction chain. Top: Isolating an interaction from the 550 µsec readout.
Middle: Event reconstruction: Vertex location (left), single particle clustering (center) and identification (right).
Bottom: The same reconstruction algorithms are run onminimumbias data andNDMC for background estimation,
then on real data.

image recognition and were adapted to the NOvA calibrated readout. The diagram in Fig.5.1 shows

the main steps of event reconstruction:

Isolating Interactions: Separating each neutrino interaction or cosmic ray contribution from the rest

of the activity within the 550 µsec readout. This is detailed in Sec. 5.1.1

Event Reconstruction: Extract physics information from the topology of the event and the charac-

teristic energy depositions of different particles discussed in Sec. 5.1.2.

Event Identification. Classify different types of events in order to separate signal events from the

different backgrounds as detailed in Sec. 5.2.2.

Energy Reconstruction. By the use of algorithms detailed in Sec. 5.4, use the topological features and
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energy depositions in the event to map to the incoming neutrino energy.

Data/MC Comparisons Evaluate these algorithms in MC and data for the near detector and under-

stand the discrepancies if any are found.

Data Processing. Only after the preceding steps have been developed and studied run the analysis on

far detector data to compute the oscillation results.

It is crucial to point out that no one type of algorithm is an improvement over another generically,

and that all techniques should be approached with the same amount of rigor when trying to under-

stand their inner-workings. Above all else, the greatest improvements coming from different types

of algorithms, machine learning or otherwise, are consistently made by careful study of the processes

involved and, most importantly, by thoroughly applying the knowledge and intuition which help us

relate back to the physics principles which govern the task at hand.

5.1 Event Reconstruction

While the methodology is mostly analogous, there are important differences between the νe appear-

ance and the νµ disappearance channels. It is useful to keep the topology of signal events in mind

throughout the discussion of the reconstruction chain. Characteristic signal events are shown in

Fig.5.2. As discussed in Chapter 4, the detectors are optimized for electron identification. Electro-

magnetic depositions make distinctive showers of a handful of cells in width transversely, as shown

in the middle and bottom panels in Fig.5.2. Muons, on the other hand, leave long tracks of minimally

ionizing depositions, as discussed in Sec. 3.2.
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Figure 5.2: Signature event topologies for the νe CCand νµ CC signal events aswell as a characteristic neutral current
event. Top: νµ CC event with short hadron track and a long, minimally ionizing muon track. Middle: νe CC event
with short hadronic track and characteristic electromagnetic shower corresponding to outgoing electron. Bottom:
NC event with a hadronic track and two electromagnetic showers from π0 → γγ .
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Figure 5.3: Time separated neutrino interactions in ND NuMI data. Color indicates time.

5.1.1 Isolating Particle Interactions

The NOvA DAQ records all detector activity within a single 10 µsec beam spill window of time

as shown in Sec. 4.1.5. In the case of NuMI triggers, a single neutrino interaction can exist in one

550 µsec readout, along with additional detector activity. In the case of the near detector multiple

neutrino interactions are usually present, and for far detector readouts the additional activity comes

from the interaction of cosmic ray particles. The goal of the first stage in our reconstruction is to clus-

ter the hits from single interactions, of neutrinos or cosmic rays, while separating them from other

detector activity.

As discussed in Sec. 4.1.5, timing resolution is an important asset of our experimental design.

As is evident by the readout depicted in Fig.5.3, we can take advantage of the timing resolution and
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Figure 5.4: Slices in a FD data readout, marked by different colors.

granularity of the detector to isolate interactions by their time and space separation alone. Separating

contributions by time only, as is implicitly done in the figure, already shows promising efficiency

for separation of individual interactions, to first order. The algorithm used on NOvA for separating

neutrino interactions into clusters within one readout is called Slicer4D and was developed byM.Baird

[62] based on the DBSCAN clustering algorithm [63]. In this section the term slices refers to the

clusters of hits being built by the Slicer4D algorithm.

Slicer4D uses two main metrics: the separation in time and space between hits (∆s), and the

minimum density of hits which is considered a core cluster

dcore min = Nhits min/∆smax. (5.1)

Pairs of hits for which∆s < ∆smax are considered neighbors. Once∆s is calculated for every pair of
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Figure 5.5: A single slice within the FD readout.

hits in the readout 1, hits belonging to regions of density above dcore min, called core hits are clustered

together in a same slice. Hits outside the core cluster but which are neighbors to core hits are included

in the slice as well.

∆s =

(
|∆t| − |∆−→r |/c

Tres

)2

+

(
∆z

Dpen(1− δvivjVpen)

)2

+
(
1− δvivj

)(∆xory

Dpen

)2

, (5.2)

is the time-space separation used by Slicer4D, whereTres is the timing resolution of the hits,PE is the

total number of photoelectrons for both hits, andDpen and Vpen are penalty terms for hits separated by

a large distance and hits on different views (indexed v) respectively. These are additional parameters

considered for the specific geometry of NOvA events and capabilities of the detectors as well as other

geometrical considerations.

1For the far detector running time optimizations involve not computing∆s for every pair of hits in the readout, of
course, but rather skipping the rest of the calculation for hits which are too far away in time.
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Figure 5.6: Incomplete slice. The hits shown along the path of the proton (orange) and pion (yellow) are clustered
together, but hits corresponding to the electron and primary pion are not in this slice, as they are significantly sep-
arated in time.

The parameters in Eq. 5.2 were varied to maximize a figure of merit (FOM). The FOM chosen

for Slicer4D was the number of slices with purity and completeness above 90% within the 550 µsec

readout. Purity and completeness are calculated with respect to the true energy2 of the simulated

interactions as follows:

Purity =
ν Interaction true energy in this slice

Total true energy in this slice
, (5.3)

Completeness =
ν Interaction true energy in this slice
Total true energy of the ν Interaction

. (5.4)

One of the known inefficiencies to note comes from the fact that some processes lay beyond the

2True refers to the quantities known from the simulation.
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Figure 5.7: Slicer performance. Completeness and purity of slices in the far detector (top) and the near detector
(bottom). Note that the differences come from the pileup of events which happens in the near detector given the
multiplicity of interactions within the 10 µsec window of the neutrino spill.

acceptable∆t of the Slicer4D algorithm. An example of one such process is shown in Fig.5.6, where

a neutron, product of the neutrino interaction, will travel for some distance in the positive z direction

before it interacts with the detector. In this case the hits from the pion and proton from the neutron

interaction will be clustered together, but will be so separated from the neutrino interaction vertex

that they will be clustered as a different slice.

The performance of Slicer4D is shown in Fig.5.7 in terms of purity and completeness for events

in each detector.

From this section onward the term “event” and “slice” will be use interchangeably, referring to the
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cluster which is expected to contain mostly hits common to the same interaction.

5.1.2 Finding the Interaction Point

Figure 5.8: Clustering parameters.

To reconstruct the original momentum four-vector for

the incoming neutrino in our signal events it would be

necessary to extract information from the particles in

the final state. Postponing the question of identifica-

tion for discussion in Sec. 5.2, the following sectionswill

focus on the algorithms designed to separate contribu-

tions of individual particles to the event, starting with geometrical approaches that incorporate the

physics knowledge of how the particles are expected to interact with the detector, as covered in Sec.

3.2.

The first task is to cluster groups of hits associated with the same primary particle from the neu-

trino interaction. This is done in two steps, vertexing and clustering. It is useful to begin by recon-

structing the location of the interaction point or vertex, and then cluster hits assuming that starting

point for the contribution of every primary particle.

The NOvA vertexing algorithm is called Elastic Arms. It was developed by M. Messier [61, 64, 65]

based on other similar algorithms employing Hough transforms [66]. The progression of the Elastic

Arms algorithm chain is the following:
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Figure 5.9: The Hough lines (green) and reconstructed elastic arms vertex (yellow) for one neutrino interaction.

Making Hough lines: Draw a line through each pair of hits separated at least some threshold distance

apart, and describe it in polar coordinates θ, ρ.

Selecting Hough lines: The predominant line directions will appear as peaks in Hough (θ, ρ) space

and will correspond to the main lines in the event.

Elastic Arms vertex: Through a process of minimization of Eq. 5.5 with the main hough lines as

seeds, a main vertex is selected for the event. This is done through minimizing the energy function of

the distance and directions to the arms (lines in 3D space), and the location to the vertex. The energy

function is given by:

E =
N∑
i=1

M∑
a=1

ViaMia + λ
N∑
i=1

(
M∑
a=1

Via − 1

)
+

2

λν

M∑
a=1

Da. (5.5)
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Figure 5.10: ElasticArmsperformance. Distanceof the reconstructedvertex to the truevertex for simulated
νeCCevents (left) andνµCCevents (right). Most of the reconstructedvertices lay less than 10 cmaway from
the true vertex. The performance is better for the νe CC events, which is expected given their simpler
topology.

Mia is the distance of the hit to the arm, andDa is the distance from the start to the vertex, as seen

in Fig.5.8. Via measures the strength of the association between the ith hit and the ath arm and λ is a

penalty for the hits with no associations to arms.

The performance of the vertexing algorithm is shown in Fig.5.10. More than 90% of the vertices

are placed within 20 cm of the true interaction points, peaking below 5 cm. The best performance

is observed on quasi-elastic events, whose topology is simpler than non quasi-elastic events. The

reconstructed interaction vertex is used as input in the steps of the reconstruction which follow.
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5.1.3 Clustering Particle Contributions

In order to group hits into clusters corresponding to contributions from different particles, we use

a geometrical algorithm which takes in the reconstructed vertex location and the location of all hits

as input. NOvA’s FuzzyK clustering algorithm, developed by E. Niner [67], is a modified k-means

Figure 5.11: Clustering parameters.

clustering algorithm [68, 69] that incorporates a possi-

bilistic clustering [70] approach, i.e., it allows uncon-

strained values for hitmembership over all clusters in order

to ensure that hits can belong to multiple clusters. Clus-

ters are formed by minimizing the function:

J = − β

m2√c

c∑
i=0

h∑
j=0

exp
{(

m
√
ai dij
β

)
,

}
(5.6)

where a and d are angular distances as shown in Fig.5.11,m is the allowed total membership of hits

in clusters, and β is a measure of how wide the clusters can be, in units of standard deviations. The

indices i and j are the corresponding cluster and hit, respectively.

Clustering is done separately for each view and then clusters are matched into 3D clusters through

a KS test [71]. This involves a comparison of the deposited energy profile per unit length along a track

in the direction of the cluster. This comparison is used for view matching, as shown in Fig.5.13 for

the corresponding prongs in Fig.5.12.
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Figure 5.12: A simulated νeCC interaction in the Far Detector with completed 3D prong reconstruction from the
fuzzy-k algorithm. From [67].

5.1.4 Tracking and Energy

The term tracking usually refers to reconstructing the trajectory a particle followed as it traveled

through the detector. Tracking is a task which requires knowledge of the particle’s interactions in

the detector with the same considerations discussed in Sec. 3.2. Typically, on NOvA, we are inter-

ested in the details of the trajectory of muons and hadrons with higher importance, since they do

not induce showers, as electrons and photons do at these energies. Our NOvA tracking algorithm,

which also incorporates momentum reconstruction is called Break Point Fitter or BPF. It approaches

the problem of tracking as different for protons, muons and pions by employing the understanding of

multiple scattering, and the fact that it is different for each of these three. This tracking algorithmwas

developed byM.Baird [72] based on the tracking described in [66], following my initial investigations

of muon multiple scattering for energy reconstruction on NOvA [73].

As a particle travels through the detector material it undergoes multiple Coulomb scattering.
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Figure 5.13: Cumulative energy profile as a function of path length along a prong for 3Dmatch candidates, with the
preferred being the upper-left and lower-right panels (matched due to having the smallest gap). From [67].
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Figure 5.14: Break Point Fitter Track Building Diagram

Specifically, after traveling a distance s, in units of radiation length X0, it is expected to scatter by

an angle θ given by:

θ0 ≈
13.6

(pcβ)

√
x

X0

×
[
1 + 0.038 ln

(
x

X0

)]
. (5.7)

Note that this also depends on the momentum of the particle and that the angle is assumed to be

gaussian-distributed around θ0.

The procedure followed for each 3D cluster, constructed as detailed in Sec. 5.1.3, is depicted in

Fig.5.14. It begins by counting from the end of the track back, and computing the distance traveled

in units of radiation lengths X0 as well as the deposited energy and the fraction of material (PVC or

scintillator) which the particle has crossed.3 The transverse location ξi of the particle’s trajectory at
3Given the cell structure of the detectors shown in Fig.4.9, the fraction of crossed scintillator versus PVC is a function

of the direction and angle of the trajectory at that point.
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the z location of the ith measurement can be expressed as

ξi = a+ bzi +
M∑
J=1

αJ(zi − ZJ)Θ(zi − ZJ), (5.8)

where a and b are the intercept and slope of the initial track direction, αJ is the scattering angle at the

J th scattering plane (assumed to be small), and the Heaviside step function is used to account only for

scattering planes upstream of the measurement plane. Here, the measurements shown in Fig.5.14 are

the positions of hits in the detector.

Eq. 5.8 gives a measure of the change in momentum of the particle as it travels through the mate-

rial, which is different for muons, protons, and pions, which are the main contributors to the event

energy apart from electromagnetic energy. After these ξi are computed from the end of the track on-

ward, the algorithm places an “allowed plane of scattering” perpendicular to the direction of the track

whenever one of the following conditions are met:

• The predicted transverse scattering distance, d× θ, exceeds 3 mm

• d becomes greater than 100 cm or greater than 2X0

These choices are to optimize the location of the scattering planes. Once the scattering planes

have been set, the trajectory is built, allowing the trajectory to be deflected by an expected scattering

angle at each scattering plane. Because the fraction of the lost momentum given the distance traveled

is different for protons, pions, and muons, so is the location of the scattering planes. Thus, BPF goes

through the process three times, assuming each of the particle types. It produces a proton track, a pion

track, and a muon track, each made under the corresponding assumption. In addition to producing

tracks, BPF also computes amomentum estimate for each particle assumption, based on the integrated

dE/dx along the reconstructed track.
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Figure 5.15: Break Point Fitter Planes
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5.2 Identification with Deep Learning

Image identification is a well studied problem in the field of image processing, and is adaptable to

other classification problems, such as event identification in physics experiments. Whether it is an

object represented in a picture or a particle track in a projection of our detector, these techniques are

designed to exploit topological correlations in objects of the same kind. Thus, the same set of tools

are natural options for identification of particle detector data and other reconstruction tasks, provided

that the detector readout as inputed by the algorithm retains the existing topological correlations.

In NOvA, we employ deep learning techniques for two tasks in the reconstruction and analysis.

We use convolutional neural networks for event classification into different classes of neutrino inter-

actions or cosmic rays and for particle classification starting from individual clusters. The latter is later

used in energy reconstruction (see Sec. 5.3). This section contains a basic description of Convolutional

Neural Networks or CNNs, as well as a description of our implementations on NOvA events.

5.2.1 Convolutional Neural Networks

The principle behind convolutional neural networks is to take advantage of the fact that images can

be mapped onto matrices of numbers corresponding to pixel contents. Specifically, images are treated

asw×h× d arrays where the widthw and the height h are the dimensions of the image in pixels and

the depth d is the number of channels, commonly colors in RGB space. The content of each matrix

element corresponds to a color in the image, which preserves the features and spatial correlations for

analysis.

101



IMAGES AND PIXELMAPS

In the context of CNN applications in particle physics, the term image is sometimes used loosely and

there are many ways in which data from a physics detector can be mapped unto an N×N matrix of

values, or as it is typically done, three matrices of values between 0 and 255 in order to mimic the RGB

input channels for which these types of networks have been originally designed as implied in Fig.5.16.

Figure 5.16: Cartoon of RGB chan-
nels.

While this constraint is not necessary for implementation, it allows

for simpler adaptations of existing open-source toolsets and for com-

parisons with network performance on benchmark datasets in the

image vision community like the well known MNIST dataset [74].

Many physics experiments have implemented CNNs for their own

classification problems and interestingly different ways tomap detec-

tor raw data have emerged, like the mapping onto a θ vs η coordinate

plane for LHC jets and the mapping of PMT signals onto a 2D projection for Daya Bay events, both

shown in Fig.5.17.

The three channels used in place of the RBG channels vary for different implementations and can

sometimes combine similar topological information, or other correlated data. In the case of NOvA

events, it is straightforward to map directly onto matrices called pixel maps corresponding to cell lo-

cations inXZ or Y Z planes, as depicted in the event displays shown throughout this document. For

the conversion to pixel maps, one for each detector view, the cell and plane location of the hits corre-

spond to one element of a 80×200 matrix, mimicking an image of these dimensions. Fig.5.18 shows

an example of these pixel maps where the values for each pixel are calibrated hit energies converted

to a scale of 256 discrete values.
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Figure 5.17: Other approlaches at making pixel maps. Left: Daya Bay ”pixel map” is a mapping of charge deposits
in PMTs along a cylinder unwrapped into a 2D (8 “ring” x 24 “column”) pixel image. [75] Right: ATLAS maps jet
structures into a binned azimuth θ vs pseudo-rapidity η [76] converted so all jet structures point in the same direction
in θ.

Figure 5.18: Left: The deposited energy (inMeV) in hits converted to the 256 scale values (8 bit precision). Center and
Right: Examples of Pixel Maps for a νµ simulated event from the top and side views, respectively.
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FEATURES AND FEATURE EXTRACTION

CNNs analyze an image by applying matrix filter operations across it. These matrix filters, also called

kernels, are different matrix operations which when applied over the image extract features consistent

with their size. Convolutions, the application of an image kernel across the image (typically from left to

right repeatedly by rows as depicted in Fig.5.19), are uniquely defined by the operation they perform

as well as three parameters: kernel size, stride, and pad which define the dimensions of the kernel

matrix, the number of pixels to skip between operations, and the number of pixels to skip at the edges

of the image, respectively.

Figure 5.19: Convolutions: The application of
an image kernel across an image.

In a way, feature extraction is the additional step to what

is done by commonly used fully connected NNs like the ones

detailed in Appendix A. These simpler networks will typi-

cally take in a vector of values as input, where the values

are usually parameters known to be correlated with the tar-

get task. Extracted features, on the other hand, are learned

rather than set a priori. Nevertheless, Deep CNNs and tra-

ditional NNs approach learning tasks in fundamentally the same way and there is great commonality

between the structure and the learning process of the two types of networks. Fig.5.20 describes the

basic components of a CNN but a more complete glossary of common NN concepts and CNN partic-

ularities is included in Appendix A.

One of the important subtleties in the use of CNNs is that not only are the kernels not pre-defined

by the user but they also evolve throughout the training. This means that the set of features that the

network uses to classify objects is learned rather than limited to the extracted physical quantities which
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are commonly used on KNNs or other fully connected networks. The process of feature extraction is,

thus, decoupled from traditional reconstruction and, as such, unaffected by the inefficiencies of every

step of the reconstruction. Contrasting the advantages of decoupling from pre-defined reconstructed

features is the fact that there is no knowledge of what physics quantities are used for this classification

a-priori. It falls on the analyzer to perform the relevant investigations to understand the inefficiencies

of the algorithm and to introduce physics knowledge as necessary.

NETWORK COMPONENTS

The process of training networks for classification requires understanding of the typical components

of a CNN, shown in the diagram in Fig.5.20.

Convolutional Layers: These layers apply learned kernels of fixed dimensions to the image, as shown

in Fig.5.19. Their output is of the same dimensions as the input image.

PoolingLayers: These layers are functionally similar to convolutional layers but focus on reducing the

size of the output. Adding or averaging pieces of the image are examples of simple pooling operations.

Fully Connected Layer: Typically CNNs include a fully connected layer at a final stage. At this point

the features extracted by the previous layers have been turned into sets of variables and weights which

can be fed to a traditional network.

Learning Minimization Function: One important component not depicted in diagram but visible

in real network architectures like the one in Fig.5.21 is the minimization function. This function is

customizable and the choice influences network performance and propensities to reach local versus

global minima, overtraining, etc.
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Figure 5.20: Basic Structure of a Convolutional Neural Network: Convolutional Layers (pink). Pooling Layers
(gray).Fully Connected Layer (red).

The number of convolutional layers, pooling layers and their characteristics, as well as the learning

rates and minimization functions vary for different implementations. These hyperparameters can be

optimized for networks solving particular problems for images of different sizes, as well as the specific

target the network is being trained for 4, number of categories to classify, etc. The network architec-

tures used for classification on NOvA employ two key elements which serve our image classification

task well: the siamese architecture structure and the concept of inception module.

The Inception module: In an implementation first employed by the GoogLeNet [77], these modules

are layers that not only perform one convolution over the image but combine many convolutions

of different sizes in a network-in-network structure. This allows for the extraction and merging of

features of different dimensions at the same step.

Siamese structure: Typically for image recognition a same set of operations is performed on all three

channels, R, G and B. In a siamese tower structure like the one depicted in Fig. 5.21, the network

learns from each channel independently, thus, learning different operations for each one.

4While the implementations shown in this dissertation focus on classification of particles and events it is possible to
specify different targets as the output of the network. For instance, energy reconstruction and vertex finding are some of
the applications which we are currently exploring.
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Figure 5.21: Event CVNNetwork Structure Diagram. The siamese (two-branch) structure receives the XZ (top) and
YZ (side) views as independent inputs (top blue boxes). The fully connected layer computes softmax output (bottom
red box). Full details of the architecture are available in Appendix A.
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�e CC
Top Side

Figure 5.22: EventCVN Input: Twoviews of the full
event and a particle label.

Itmay seemnatural to use the two views onNOvA

events as different channels of an image, and there are

some implementations which attempt this approach

[78]. However, the lack of spatial correlation between

the XZ and Y Z views motivates the choice of a two-pronged network architecture instead. The

input to the network (shown in Fig. 5.23) consists of the two views separately, such that each view is

operated on by one of the siamese towers throughout most of the learning process. This means that

part of the network architecture is divided into two main branches, which encourages the learning

of features in each view independently before combining the features at later steps. The intention of

using a siamese architecture like the one depicted in Fig.5.21 is both to maximize the amount of useful

information extracted from each view and to utilize information uniquely available to one view like

the incoming angle of cosmic ray muons.

5.2.2 Event Classification with CVN

The event identification network, which we call EventCVN for Convolutional Visual Network, is a

two-prong siamese architecture and it is depicted in Fig.5.21. The full details of the architecture, in-

cluding the structure of each of the layers, is included in Appendix A. The EventCVN network was

inspired by the GoogLeNet network architecture for image recognition [77]. Our network was de-

signed and trained using the open-source Caffe [79] framework, a set of libraries andmethods to train

CNNs. Given the computationally intensive task that convolutions on millions of images represent,

these networks are more efficiently handled by graphics processing units or GPUs. The event clas-

sification network was trained in the Wilson GPU Cluster at Fermilab and further optimized at the

BigRedII supercomputer cluster at Indiana University.
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Figure 5.23: EventCVN training sample composition.

EventCVN was trained on approximately 4.7 million events distributed as indicated in Fig.5.23

where all the neutrino interactions come from simulated events and all cosmic ray events come from

minimum bias data taken at the far detector. The input for the network (per event) are two pixel maps

(one for the top view, one for the side view) and a label in one of the categories listed in Fig.5.23.

This work was implemented for the first time in a high energy physics result on NOvA’s 2016

νe appearance analysis [80]. More details of the event classifier can be found in our publication, “A

Convolutional Visual Network Neutrino Event Classifier” [81], and an implementation for the νµ

disappearance analysis is explored by D. Rocco [82].
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NETWORK PERFORMANCE

Many approaches can be taken to evaluate the performance of the classification network, either during

training or at the analysis stages. A typical metric for the performance of the network, regardless of the

task it is designed for, is to look at the evolution of losses and overall accuracy as a function of training

iterations. As detailed in Appendix A, the loss is a metric of how closely the current performance of the

networkmaps the real behavior of a known test sample. More details of the loss function can be found

in Appendix A but it is sufficient to understand it conceptually as a difference between the probability

assigned to the data for the true class they belong to and the true probability to be in that class. In other

words, the distance between the approximate classification score function built by the network and

the true one from simulated data. Losses are computed with some set frequency in terms of number

of training iterations as well as for the test sample, independently. Fig.5.24 shows the evolution of the

loss and accuracy during the training of the event classifier.

In general, the loss and accuracy are monitored during training to detect simple errors like over-

training or abnormal behavior of the losses, which could indicate either a poorly chosen loss rate or an

unevenly populated training sample. However useful, thesemetrics are onlymeasures of the network’s

performance at learning a given task. The physics implications and the performance differences for

different categories must be explored in more detail post-training.

The output of EventCVN is a vector of scores which can be interpreted as a probability for each

category. This is called softmax output and is described in Appendix A. This output vector contains a

score between 0 and 1 for each of the categories trained for, in this case those shown in Fig.5.23. Being

normalized to add up to 1, the scores can also be interpreted as PID values the same way the output

of other NNs is typically treated. Furthermore, the assignment of scores beyond the highest one may
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Figure 5.24: Loss and Accuracy plot

provide additional information about the event. The two main approaches to use the softmax output

are to take the largest score in the vector as the selected class, as is done in Fig.5.25, or to use only the

value of interest for specific signal events, as is done in Fig.5.26.

Classification matrices, like the ones shown in Fig. 5.25 are useful to evaluate efficiency or purity

(depending on how they are normalized) for a simple selection based on the largest score, and they

are also used as a first order check of the algorithm’s performance compared with one’s intuition. For

instance, Fig. 5.25 left shows the best performance on the simplest topologies like cosmics and CCQE

events, and Fig. 5.25 right shows poor performance for ντ CC events, mostly being misidentified as

NC. This is expected feature given that these events are above the τ production energy threshold and

the τ lifetime. ντ CC events mimic νµ events given the rapid τ decay into a muon, and they generally

display large fractions of hadronic activity, which is consistent with NC events.

Another subtlety of the treatment of scores for analysis is that the classes chosen for training subdi-
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Figure 5.25: Classification Matrix. This plot shows the true class of events (on the x axis) and the class selected by
the network on the y axis. In this case the selection is done by choosing the largest value from the output softmax
vector. That is, the selected class iswhichever class got the highest score on the output vector. Left: All the categories
trained for. Right: Reduced categories used for analysis.

vide the categories of interest (νe CC, νµ CC, ντ CC, NC and Cosmic backgrounds) into more specific

categories, in this case associated to the interaction label given by the simulator. The GENIE simula-

tion assigns the interaction types Quasi-elastic, Resonance, Deep Inelastic Scattering for the processes

discussed in Sec. 3.1, however, not all of these result in topological differences in the final state. Thus,

the scores for subcategories have been added together, which preserves the normalization and reduces

the set of scores to those shown on the right side of Fig.5.25.

The performance of the network was also evaluated both in the figures of merit for the main anal-

yses shown in Table 5.1 and Table 5.2 as well as accuracy for the top category which is common in

network training of this kind. The results shown in the tables correspond to a simple selection used

for comparisons between different optimizations. For the optimized analysis selections, the use of

EventCVN represented a 30% increase in exposure for νe CC signal events back when first imple-
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Figure 5.26: PID values for main analyses signal and background. In this case only one score from the output vector
is used for selection. The νe CC on the left and νµ CC on the right. This comparison contains simulated events only,
for which the most prominent inefficiency comes from the neutral current (blue) and beam νe (pink) backgrounds
for the νe CC events, as expected given the topology of these events discussed in Section 6.1
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mented [80], with respect to a selection based on an electron dE/dx likelihood identifier [65]. The

introduction of CVN for selection of νµ CC events represents a 10% increase in exposure for the

analysis presented here, with respect to a muon identification kNN-based selection utilizing muon-

like track characteristics. The details of this selection will be discussed in Chapter 6.

CVN Selection Value νe sig Tot bkg NC νµ CC Beam νe Signal Efficiency Purity
Contained Events − 88.4 509.0 344.8 132.1 32.1 − 14.8%

s/
√
b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%

s/
√
s+ b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

Table 5.1: This table shows relative selected event numbers for the various components of the NuMI beam, effi-
ciency, and purity for two different optimizations for the selection of appearing electron neutrino CC interactions.
Efficiency is shown here relative to the true contained signal. The numbers are scaled to an exposure of 18 × 1020

protons on target, full 14-kton Far Detector.

CVN Selection Value νµ sig Tot bkg NC Appeared νe Beam νe Signal Efficiency Purity
Contained Events − 355.5 1269.8 1099.7 135.7 34.4 − 21.9%

s/
√
b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%

s/
√
s+ b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 5.2: This table shows relative selected event numbers for the various components of the NuMI beam, effi-
ciency, and purity for two different optimizations for the selection of surviving muon neutrino CC interactions.
Efficiency here is shown here relative to the pre selected sample. The numbers are scaled to an exposure of 18×1020

protons on target, full 14-kton Far Detector.

The performance of the network was also evaluated for an improved architecture (shown in Ap-

pendix A) earlier this year. This short network (half in weight depth) was trained independently for

forward and reverse horn currentMC (where FHC ismostly neutrino and RHC ismostly antineutrino

events). The network shows comparable purity and efficiency on FHC and up to 10% improvement

in efficiency for the RHC trained network.

In addition to the information that can be extracted from the features seen in Fig.5.26 and Fig.5.25,

an interesting tool to visualize the performance of these networks is the t-SNE [83]. The t-SNE
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Figure 5.27: A t-SNE visualization of EventCVN. Each color represents one of the main categories.

method (which stands for t-distributed StochasticNeighbor Embedding) is amethod of dimensionality

reduction which converts high dimensional Euclidean distances (like the distance between two classes

of events in a classifier) into two dimensional probabilities which represent similarities. In essence,

this method displays a set of classified events in a two dimensional space where the 2D separation be-

tween points corresponds to the ability of the network to separate them in a higher dimensional space.

A t-SNE graphic for the event classifier can be seen in Fig.5.27, where some overlap is observed in

expected categories, such as νe CC (light blue) and NC (brown), and good separation is observed by

topologically distinct events, such as νe CC and νµ CC (dark blue).
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5.2.3 Particle Classification with CVN

Another task for which we employ CNNs on NOvA is that of classifying individual particle contribu-

tions to the event. This process is especially important in order to be able to use other reconstruction

objects like BPF energy estimates and especially for cross sections analyses searching for specific final

states. Applications for energy reconstruction in particular are detailed in Sec. 5.4 and 5.5 and studies

of event selection for cross sections analyses are ongoing within the collaboration.

The implementation of the particle classifier, called ParticleCVN or ProngCVN, is similar to the

EventCVN described in the previous section, with the following improvements:

Multi-prong siamese architecture. While it is the individual particle contribution which will be

classified by this network, the complete neutrino interaction is provided to the network as well, as it

contains useful information which serves as context for the individual particles. The particle classifi-

cation network uses four views in total, two of the full event and two of the individual prong with the

additional hits removed, as shown in Fig.5.28. This requires an extension of the siamese architecture

into a network with two branches depicted in Fig.5.29.

Further Network Optimizations. The details of the four branch network trained for ParticleCVN

can be found in Appendix A. The main optimizations are a reduction of the number of inception

modules as well as a reduction of the number of weights, making it a shallower network than that

used by EventCVN.

Coupling to existing reconstruction. ParticleCVN is not completely decoupled from traditional re-

construction. It employs the FuzzyK clusters described in Sec. 5.1.3. These clusters are constructed

and matched between views by traditional reconstruction upstream of the classifier.
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Figure 5.28: ProngCVN Input: Two views of the full event, two views of the FuzzyK prong and a particle label.

Figure 5.29: ProngCVNNetwork: A four branch siamese-type networkwith one inceptionmodule per branch. Full
architecture details are in Appendix A.
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Figure 5.30: Overlap in FuzzyK prongs.

The main impact of coupling to upstream recon-

struction comes from the contamination that exists in

prongs, that is, hits which do not correspond to the

same particle. Fig.5.30 shows a zoomed-in version of

one such case, where prongs are close enough to the

vertex that it is difficult to disentangle individual com-

ponents. This will cause prongs to be incomplete (not

contain all the hits from one particle) or impure (con-

taminated with hits from other particles).

ParticleCVN classifies individual prongs by the

type of particle which produced most of the hits in it.

Fig.5.31 shows the prong purity, which is defined as the largest fraction of energy in a prong cor-

responding to the same particle. From the figure it is clear that protons and pions will be the least

well defined, which is expected given that the short tracks they make will stay close to the vertex,

where most of the inefficiencies are concentrated. Interestingly, the distributions for pion and proton

prong purity in Fig.5.31 peak below 50%, a feature that arises from either incorrect matching of 2D

prongs into a 3D object or—most prominently— contamination from other particle contributions to

the prong, both of which are more common near the event vertex.

The selection of prongs used to train the network passed the following cuts:

Minimum prong purity: This cut selects only prongs above some threshold purity which is chosen

to be inclusive of a similar fraction of the total number of prongs in each category. This is 35% for

protons and pions, and 50% for electrons, muons, and photons.
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Figure 5.31: FuzzyK prong purity by particle type.
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Figure 5.32: FuzzyK prong length by particle type.
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Figure 5.33: Input sample composition for Prong CVN (pink) and output score composition (blue).

Short prongs: Prong length below 500cm. This leaves out all longmuon tracks, which have extremely

low backgrounds from protons and pions, as seen in Fig.5.32.

ParticleCVNwas trained on approximately 3.5million prongs distributed into categories as shown

in Fig.5.33 and coming from neutrino interactions from simulated events. Only prongs with better

purity than a set threshold were used for training, where the threshold was chosen to retain a similar

fraction of prongs of each type, with respect to the total. The network was trained and optimized on

the Big Red II cluster at Indiana University.
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NETWORK PERFORMANCE

While the network was trained on the five categories shown in Fig.5.34, the first implementations for

energy estimation require only a distinction between electromagnetic and hadronic activity. Thus,

the performance of ParticleCVN is evaluated from two slightly different standpoints; as a three-class

network and a five-class network. The classification matrices and PID distributions shown in Figures

5.34 and 5.35 for the five categories, and in Figures 5.37 and 5.36 for the reduced categories, give an

overview of the performance of the network for the different categories. Events are distributed in bins

of true versus selected ID, where the largest of the scores has been chosen for the selection. The top

and bottom matrices in each figure contain information from the same events, but are normalized to

show efficiency and purity, respectively. Thus, the numbers in the top matrix are fractions of the true

particles indicated for each column, while the numbers of the bottom (purity) matrices are fractions

of the events selected as indicated for each row.

ParticleCVN is the first single particle classifier developed for NOvA events and, as such, compar-

isons with other algorithms are not available. However, performance for single electron identification

compared with a technique based on likelihoods for transverse and longitudinal depositions (LID) is

possible. The matrices shown in Fig.5.34, the performance for electrons is 81% purity and 65% ef-

ficiency, which yields a 7% increase in purity for the same efficiency from LID. The classification

matrices also show other interesting features. For instance, Fig. 5.34 top shows misidentification at

10% for true electrons as identified as photons and 10% true muons as charged pions, both expected

from the known dE/dx profiles of these particles, discussed in Sec. 3.2. The misidentification rate of

charged pions as protons is 35%, which is not inconsistent with the lesser quality of the prongs cor-

responding to these particles, as discussed in the previous section. Despite the lesser performance for
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Figure 5.34: ClassificationMatrix for all classes trained for. Top: The diagonal elements are efficiency. Bottom: The
diagonal elements are purity. The sample is FDMC neutrino events.
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Figure 5.35: Prong CVN PID values for all categories. The sample is FDMC neutrino events.
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Figure 5.36: ClassificationMatrix for reduced labels. Top: The diagonal elements are efficiency. Bottom: The diago-
nal elements are purity. The sample is FDMC neutrino events.
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Figure 5.37: Prong CVN PID values for reduced categories. The sample is FDMC neutrino events.
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Figure 5.38: Particle CNN PID values for selected events in the ND. Top: νeCC selection (left) and νµCC selection
(right). Middle and bottom: Neutral current event selection.
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Figure 5.39: t-sne for cluster classifier. A clear separation can be seen between muons (blue) and electrons (green).
The expected overlap is visible between pions (yellow) and protons (red). [83]
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pion identification indicated by the classification matrices, the PID distribbutions shown in Fig. 5.35

suggest that a higher purity pion selection can be achieved with further optimization.

The PID values for both the full categories shown in Fig.5.35 also reflects the inefficiency for pions

in the corresponding distribution. The efficiencies discussed can also be matched to the observed

features in the t-SNE space in Fig.5.40, where it is visible that good separation is achieved for the

leptons, protons and photons, also shown in the data/MC comparisons seen in Fig.5.35. Fig.5.40 also

shows the expected overlap in this “separation power” space of the pion category, especially on the

regions populated by protons and photons.

π0 MASSWITH PRONGCVN SELECTION

One handle on both the network’s performance in data and our detector energy response is the recon-

struction of the π0 invariantmass. This quantity is a common standard candle inmany particle physics

experiments given the abundance of π0 production in particle interactions, its main decay channel to

γγ, and the well known mass of the π0. The electromagnetic showers left by the photons from this

decay are characteristically displaced from the interaction point (see Fig. 5.40) and, thus, expected to

be some distance away from the reconstructed vertex in the event.

Figure 5.40: The event topology for a π0 decay in a ND data event. The π0 originates from the neutrino interaction
and then decays promptly into two photons, which travel for one radiation length on average before pair producing.
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The procedure consists of selecting events with two FuzzyK prongs consistent with two photon

showers at high efficiency. Under the assumption that these two photons are produced in the same

decay, the invariant mass of the mother particle is given by:

Minv. =
√

2Eγ1Eγ2(1− cosθ) (5.9)

whereEγ1 andEγ2 are the energy of the first and second photons, respectively and θ is the opening

angle between the two photons. For event reconstruction we take Ei as the sum of the calorimetric

energy from the hits in prong, and the reconstructed opening angle ebtween the prongs as θ.

For a selection of π0 → γγ events with suficiently high efficiency a peak corresponding toM
π
0 =

134.9MeV, theπ0 invariantmass, will emerge in the distribution. This peak, however, will be initially

located bellowM
π
0 , as some of the energy will be lost as particles cross the inactive PVC regions of

the detector. The necessary correction on the calorimetric energy to shift the peak to the correct value

ofM
π
0 yields a measure of the fraction of the energy which is lost in “dead” material.

The original selection used for identification of events with two γs was used kNN based cuts to

remove νµCC-like events, as well as a cut on dE
dx

to remove events with predominantly hadronic-like

depositions.

The following selection was used to identify these events in ND data and MC:

Containment: Reconstructed vertex and prong activity at least one radiation length ( 40 cm) away

from the front and back of the active region of the ND and half a radiation length from the sides of

the detector.

Prong Quality : No gaps (planes without activity) within either prongs and no prongs crossing more

130



Selection Dataset Data MC Background Purity Efficiency Dead Material
Old Selection FHC 19560 20108 4072.5 0.797 0.244 0.357

ProngCVN Selection FHC 17409 18268.4 1461.2 0.920 0.256 0.355
ProngCVN Selection RHC 3701 3915.1 235.1 0.940 0.316 0.337

Table 5.3: The purity, efficiency, and deadmaterial correction for the old selection, the CVN selection for FHC (neu-
trino mode), and the CVN selection for RHC (antineutrino mode).

than four planes per view.

ProngCVN: Photon PID value > 0.75.

The purity and efficiency of the two selections can be seen in table 5.3. The result is an increase in

purity of about 12% over the old selection at the same efficiency. The cuts presented have not yet been

optimized for efficiency, butwere chosen to perform a comparison of prongCVNperformance on data

and MC with respect to the known selection. Hand-scanning of events revealed that the prongCVN

selection at removing backgrounds was primarily from rejection of events with hadronic activity and

events with showers starting near the vertex.

Fig.5.41 shows the correctedM
π
0 peak, reconstructed with events selected with traditional selec-

tion as well as a selection based on the ParticleCVN output for neutrino and antineutrino running

modes.
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Figure 5.41: Corrected π0 mass peak for the old (top) and prongCVN (middle and bottom) selection. The bottom plot
shows events from reverse horn current (RHC) mode, thus, contains predominantly antineutrinos events.
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5.3 Energy Reconstruction

The key measurable for neutrino oscillations is the energy of the incoming neutrino, Eν , which in-

teracts in the detector material. Since the only handle on Eν are the energy and momenta of the

neutrino daughters (see Sec. 3.1), a reconstructed energy is obtained from the depositions of these

outgoing particles and our knowledge of how they interact in the detector described in Sec. 3.2.

In NOvA, the process of energy calibrationmakes corrections in order to standardize the light sig-

nal conversion into deposited energy. After calibration, we develop specific methods to reconstruct

the energy of signal events by combining the reconstructed objects discussed in Sec. 5.1 and the iden-

tification methods discussed in Sec. 5.2. This section details the methods used to calibrate the energy

response of the NOvA detectors in Subsections 5.3.1 and 5.3.2, as well as the methods to reconstruct

the energy of signal events in 5.4 and 5.5.

5.3.1 Calibration

The response of the detectors to energy depositions depends on many factors such as the type of par-

ticle and its energy, the distance from the hits to the readout electronics, the light yield of the liquid

scintillator, the quantum efficiency of the APDs, and the amount of dead material the particles tra-

verse in the form of PVC. Thus, corrections must be made to account for these losses or inefficiencies

introduced by all of these factors, in order to reconstruct the energy of the events of interest.

As discussed in Sec. 3.2, the energy deposition of muons at the energies seen in our detectors is

well-described by the Bethe-Bloch curve shown in Fig.3.6. The high rate of cosmic ray muons in our

detectors (approximately 150 kHz in the FD) allows for the use of this well known signature in order

to get a handle on the corrections necessary for energy calibration. The two methods in which cosmic
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ray muons are used for calibration are the attenuation calibration, a correction for the attenuation of the

signals as a function of distance to the readout, and the absolute energy calibration, a determination of

the energy scale to convert the signal in PE (photo-electrons) into deposited energy.

The attenuation calibration is a cell-by-cell correction using through-going muon tracks to avoid

the stopping muon behavior explained in Fig.5.42. The correction function for each cell is calculated

from the distribution of the signal in PE/cm vs distance from the readout. This is depicted in Fig.5.42

whose shape is given by:

y = C + A
(
ex/X + e−(3L/2+x)/X

)
, (5.10)

where L is the length of the cell, x is the distance away from the cell center,X is the attenuation

length. Here, the factor 3L/2 accounts for the fact that the light propagates in both directions along

the fiber.

The behavior at the extrema of the function corresponds to light reflection near the ends of the

cells. This behavior is corrected by the factor 1−α(x−xend) where α is a factor found empirically for

each end.

The absolute energy calibration is done by examining the dE/dx at the end of muon tracks across

the detector. This is another well known distribution shown in Fig.5.42. By selecting the end of muon

tracks and comparing with the expected behavior an absolute conversion from PECorr (attenuation

corrected PE) to GeV of total deposited energy in the cell.

The selection of muon hits used for the absolute energy calibration is called tri-cell. These are

triplets of adjacent hits along the muon’s path. Tri-cell hits are also a handle on detection efficiency.

The middle of three cells where hits are visible is expected to see a signal of magnitude correlated

with the other two. Thus, a measure of efficiency comes from the comparison between the energy
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Figure 5.42: The charge deposited at the end of muon tracks as a function of the distance to the track ends. This
well-known behavior of muon energy depositions is used for calibration.
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Figure 5.43: Calibration performance in terms of mean reconstructed/true energy as a function of position on the
cell. The largest x value corresponds to the side closest to the readout for the FD (left) and ND (right). Note that the
binning on right and left is different, with 5 bins-per-meter on the left and 20 bins per-meter-on the left.
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Figure 5.44: Efficiency as a function of distance to the readout electronics for horizontal planes (left) and vertical
planes (right). The two distributions correspond to two gain settings for the APDs Blue: Gain 100. Pink: Gain 150.

deposition on themiddle cell with the expectation given the other two hits. Fig.5.44 shows the change

in this efficiency as a function of distance to the readout as well as the gain set on the APDs.

5.3.2 Energy Response

After the calibration conversion of raw signal into deposited energy, the task of estimating the event

energy starts with an approximation of the energy losses as a fraction of the total deposited energy in

the active regions. Given that the losses are small and well understood for electrons and photons as

explained in Sec. 3.2, techniques like the π0 invariantmass reconstruction can be employed to estimate

the fraction of losses to dead material in the detector. Specifically, for the distributions shown in

Fig.5.41, a dead material correction of 35.7% was found for the traditional (νµ anti-PID) selection.

The correction for the CVN based selection was 35.5%.

A typical signal event has both electromagnetic and hadronic depositions, as seen in Fig.5.45.

Thus, the conversion from the π0 invariant mass reconstruction is appropriate for mostly electro-

magnetic depositions in the near detector, but it is not sufficient to make a correction for the whole

event. When reconstructing the energy of our signal events and in particular in the case of charge
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Figure 5.45: Left: The composition of simulated νe events in fraction of energy from different particles. Electrons
(red), dominate the energy content, but protons (yellow) and charged pions (orange) can contribute up to 40% of the
event’s energy as well.

current interactions a different treatment is necessary for the leptonic and the hadronic components

of the event due to their differences in energy losses.

The response of calorimeters, the fraction of energy deposited which is detected, is different for

electromagnetic and hadronic depositions. The fractional difference between these responses is mea-

sured in calorimetry by the factor e/h, the ratio of electromagnetic to hadronic detector response. If

e/h is known it can be used for energy reconstruction, provided that the fraction of electromagnetic

depositions in the event fem is also known.

Given that our reconstruction approaches must deal with both the hadronic and electromagnetic

components of the neutrino interactions in the same slice a study was done to focus on determining

the detector response as a function of fem.

In this study, fem was defined for each interaction as:
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Figure 5.46: Detector response as a function of fem. The e/h fraction is calculated from the value of this distribution
at 0 and 1.

Figure 5.47: Contributions to detector response as a function of fem from CC and NC interactions.

fem =
Energy deposited by electrons or photons
Total energy deposited in the interaction.

(5.11)
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e/h was calculated from the ratio of the detector response, or fraction of true visible energy seen

in deposited energy for fem = 1 and fem = 0. Where events with fem = 1 are mostly electromagnetic

and fem = 0 are mostly hadronic, shown in Fig.5.46.

The study was done for simulated electron neutrino interactions in the far detector after contain-

ment and basic quality pre-selection as well as slice efficiency (see Sec. 5.1.1) above 90%.

The value obtained from this study was e/h = 1.26± 0.02.

5.4 Electron Neutrino Energy Reconstruction

The approach at reconstructing the energy of signal events for the νe appearance analysis is based on

the knowledge that, as discussed in the previous section, the response of the detectors is inherently

different for electromagnetic and hadronic depositions. Both of these are present in our signal events.

While the reconstruction algorithms detailed in Sec. 5.1 aim to separate the contribution of each par-

ticle into individual clusters, the inefficiencies in such process and the inefficiencies in identification

prevent us from simply applying e/h as a correction for each component of the event energy.

Figure 5.48: νe Energy Diagram

The energy reconstruction developed for the νe

signal events aims to account for these inefficiencies

while also accounting for both types of energy depo-

sitions separately.

The ParticleCVN classifier is used to identify

prongs as hadronic or electromagnetic. This is done by

taking the reduced categories shown in Fig.5.34 and assigning a label (hadronic or electromagnetic)

corresponding to the largest CVN score for the prong. Clusters are classified into electromagnetic or
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Figure 5.49: νe energy reconstruction is done with the function obtained from fitting a quadratic function to this
distribution of hadronic energy (y axis) vs electromagnetic energy (x axis). The color is the average true energy per
bin.

hadronic and the rest of the energy in the event (coming from un-matched prongs or unclustered hits)

is identified as hadronic.

Rather than reconstructing the hadronic and electromagnetic components independently, in order

to reconstruct the energy of signal events we make a fit to true neutrino energy as a function of the

reconstructed electromagnetic and hadronic energy shown in Fig.5.48. In this case this is the sum of

the calibrated energy deposited in the prongs or hits identified for each kind.

A quadratic function is fit to the distribution on Fig.5.49 and the resulting function is:

Etrue ≈ 1
1+0.057

(0.996EEM + 0.869EHAD + 0.025E2
EM + 0.504E2

HAD)GeV

To ameliorate the shaping of the resulting distribution to that of the training sample, the function

is also corrected by weighting the contributions of events according to the energy spectrum of the

sample used for training. This yields a worse resolution overall, but yields a more even resolution as

a function of true energy, across the 1-4 GeV range of interest.
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Figure 5.50: νe Energy Resolution (reconstructed - true / true energy).

This function is then used to reconstruct the energy of data and MC events. The performance of

this fit can be seen in Fig.5.50.

5.5 Muon Neutrino Energy Reconstruction

Figure 5.51: νµ Energy Diagram

For the νµ disappearance channel, the signal events are

characterized by the presence of a muon. The presence

of muons in these events represent an advantage from

the standpoint of energy reconstruction given the well

understood losses of muons at these energies, as de-

scribed in Sec. 3.2. In this section two approaches at

energy reconstruction are described, both separating the contribution of the muon for the rest of the

event, but whose treatment of the remaining energy is different for each.
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Figure 5.52: Muon energy reconstruction is done with the relation from this MC distribution of true muon energy
vs reconstructed muon track length.

5.5.1 Muon Energy Reconstruction

The 0.5 to 5 GeV energy range of neutrino events on NOvA is within the minimum ionization re-

gion of muons on the Bethe-Bloch curve shown in Fig.3.6. This MIP behavior makes for well defined

muon trajectories in the detectors. The length of muon tracks is related the true energy of the muons

and is expected to be mostly linear. Fig.5.52 shows this relation in the MonteCarlo, which we use

to reconstruct the energy of muons. The resolution of the muon energy is 3.5% with this simple

method, which uses no information about the amount of energy deposited along the track for energy

reconstruction. Two factors contribute to the small resolution of muon energies: the well understood

deposition profile of MIPs, and the large rates of cosmic ray muons in the detectors, which are used

for hit calibration prior to this reconstruction as described in Sec. 5.3.1. While the energy calibra-

tion does not contribute to this method for energy estimation directly, it does allow for better track

reconstruction and identification of the muon hits.
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Figure 5.53: νµ energy reconstruction is done with the relation from this MC distribution of true neutrino - recon-
structed muon energy versus visible hadronic energy.

5.5.2 Hadronic Energy Reconstruction

The simplest approach to reconstructing the energy of the neutrino is by fitting the visible deposited

energy in the rest of the event to the missing energy in the neutrino interaction, once the muon has

been accounted for and its hits removed. A linear fit is done to this distribution, as depicted in Fig.5.53.

It is visible from the comparison of the distributions from Fig.5.52 and Fig.5.53, that the resolution

in hadronic energy is substantially worse than it is for the muon track.

The energy resolution of the hadronic component is 30%, which yields a total neutrino energy of

11% overall.

The substantial difference in energy resolution between the two components can be attributed to

both the well understood behavior of muons as MIPs, and the poorly reconstructed energy of protons

and charged pions under the global reconstruction of all the hadronic energy. The energy deposition

profiles for protons and pions are distinct, as is their scattering behavior. An improved reconstruction

approach using ProngCVN and BPF is currently being developed to separate the contributions from
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protons an pions, and employ the BPF energy estimate for the corresponding particle assumption.
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Chapter 6

Analysis of Neutrino Oscilla-
tions
The analysis presented in the rest of this document is a measurement of oscillations in the νµ → νe

and νµ → νµ channels.

In the following sections, I describe the methodology for the νe appearance and νµ disappearance

channels. The methodology which is common to both is described in Sec. 6.1, followed by the de-

tails of event selection and expected signal prediction for each channel. The treatment of systematic

uncertainties is detailed in Sec. 6.6.

6.1 Methodology

Neutrino oscillation analyses require information of the signal spectrum in two locations. In the case

of NOvA, this is a measurement of the νµ spectrum at the near detector, and a measurement of the

spectrum of signal events at the far detector. Signal events for the νµ → νe channel (or νe appearance)

are νe CC (charged current) interactions, and for the νµ → νµ channel (or νµ disappearance) are νµ

CC interactions, as described in Sec. 3.1. Given that the measurable is the neutrino energy, the main

steps of the methodology are common to both analyses, as are the processing of the data, calibration,

and basic reconstruction.
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The common methodology for both channels is as follows:

i Simulation The flux delivered by the NuMI beam, the neutrino interactions and the detector

response are all modeled by simulations.

ii Measurement ofνµ spectrum at the near detector. This yields an energy spectrum of selected

events, which is used as the initial flux in the analysis or |να >= e−iEkt at t = 0.

iii Produce extrapolated prediction for the far detector. Start from themeasurementmade from

step i, make an assumption for its breakdown in different background components and extrap-

olate it to the far detector location to make a prediction.

iv UncertaintyCalculation. Systematic uncertainties are studied to account for detector response

and other variables. See Sec. 6.6.

v Measure the signal events νsignal at the far detector. For details of the selection for signal

events see Sec. 6.3. The result for this analysis is shown in Chapter 7.

vi Fit tomodel. Fit the observed spectra to the PMNSmodel using known constraints to measure

the parameters of interest. Details of the fit can be found on Sec. 7.2.

6.2 Simulation

Simulations are necessary to qualify our understanding of the underlying physics of our experiment.

On NOvA, we use a suite of software and techniques to produce simulations of mainly the flux from

the beam, the neutrino interactions, the propagation of particles through different materials in our

detectors, and the detector response to these interactions. The following are the main pieces of our

simulation:
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Figure 6.1: Parents of muon neutrinos (left) and electron neutrinos (right) in the NOvA near detector. Neutrinos up
to 7 GeV come mostly from pions and higher energy neutrinos come mostly from kaons.

NUMI FLUX SIMULATION

Wemodel the flux expected from the NuMI beam, as described in Chapter 4, at both the near and far

detectors. This is done using G4NuMI [84], which is a Geant4 [85] based Monte Carlo simulation.

G4NuMI incorporates the knowledge of the proton beam, the geometry and composition of the target,

aswell as the geometry and physics of theNuMI beamline. These simulations start from the generation

of the hadrons produced in the collision and simulate their decay and interaction within the NuMI

beamline. Package to Predict the FluX, or PPFX [86], is used to weight the hadron production. This

package combines external data from multiple sources to constrain and quantify the uncertainties on

hadron production from the NuMI target. PPFX provides a set of weights, which are then applied to

the Geant4 simulation.

A central value for the NuMI flux is used, derived from the combination of Geant4 simulation

and PPFX weights. The output contains information about the neutrino flux, including parentage, as

shown in Fig.6.1.
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INTERACTION SIMULATION

We use the GENIE [87] event generator to simulate neutrino interactions. GENIE uses the G4NuMI

flux, as well as models of neutrino interaction cross sections to generate neutrino interactions in a

volume larger than and centered on each detector. The simulated interactions retain the parentage

information, the generated vertex (interaction location) and type of interaction, as well as information

of direction and momenta of the daughter particles produced in the interaction.

Geant4 is also used to propagate the generated secondaries, this time through the rock/building

surrounding the detector as well as the detector itself, whose detailed geometry is an input to Geant4

at this step. The output of this step are simulated hits, which are true energy depositions throughout

the detector geometry.

DETECTOR SIMULATION

The detector response is simulated with NOvA internal software [88,89], which takes the true hits as

input and simulates scintillation and Cherenkov light, APD response, and signal processing. It uses

the measured response of our liquid scintillator and the measured reflectivity of the PVC (see Chapter

4) to simulate the scintillation light and then transport it to the electronics. This software also uses

our knowledge of the APD response to simulate noise and other effects of the electronics. The output

of the detector simulation, apart from the MC truth information from the simulation, are timed raw

hits in the same format as the raw data taken from the detector.
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6.3 Event Selection

This section details the data quality selection for NOvA data as well as the event selection for each

channel. The selection for both channels includes cuts to ensure data quality, background rejection

and signal selection. Each analysis has a different optimization as well as different challenges for back-

ground rejection.

6.3.1 Data Quality

The data quality selection is applied on a file-by-file basis, as it relates to data-taking conditions at the

time the data was recorded, such as detector operating conditions and beam quality.

The following data quality requirements are shown in Fig.6.2:

Number of active diblocks > 4: Ensures that a region of the detector large enough to contain events

was active for data taking.

Timestamp: Correctly timed data synchronized with the NuMI beam spills.

Live Time: Stable data-taking for more than a minimum continuous time.

Hit Rate: Overall hit rate stable with respect to the averages shown in Sec. 4.2.4 for the maintenance

system. This ensures a noise rate within expected values and a data-taking rate consistent with the

average for the trigger used.

Tracking: A high fraction of 3D tracks shows stability in the DCM to DCM timing synchronization.

Given that tracks are reconstructed in 2D and then matched, a region out of time with the rest of the

detector would impact view matching.

Slicing: Average number of slices (see Sec. 5.1.1) ensures complete readouts were taken as well as

stable timing resolution.
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Figure 6.2: Data quality metrics with subruns (files) failing cuts highlighted in the corresponding color in all dis-
tributions. Top Left: Number of contiguous diblocks. Top Right: Total accumulated livetime calculated from the
exposure of each event stored. Bottom left: Hit rate in the MIP region of ADC, as seen in Sec. 5.3.1. Bottom right:
Slices per trigger, whose value is roughly constant for triggers of the same length.
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6.3.2 νe Event Selection

The characteristic topology of the electron shower is themain feature of these signal events. Themain

sources of background are misidentified neutral current events, especially those containing electro-

magnetic showers, as well as neutrons from cosmic ray particle interactions in the barite overburden

of the far detector, which may resemble the νe CC topology in a similar way. Another source of

background is the original νe contamination in the NuMI beam, for which there is no handle in the

selection from topology. Fig.6.3 shows an example of these backgrounds compared to a signal event.
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Figure 6.3: νe CC signal (right) and background topologies from neutral current events (center) and cosmic ray neu-
trons (left).

The selection for these events is done using the score for the νe CC category from the CVN event

classifier, described in Sec. 5.2.2. A cut on this value is made after quality cuts and cuts for cosmic

rejection are applied to the data collected in coincidence with the 10 µsec spills from the NuMI beam.

The cuts, in the order they are applied, are the following:

BASIC CUTS

A set of basic cuts are applied to the analysis sample. Veto is applied before the reconstruction phase

to eliminate obvious cosmic ray muon events and reconstruction failures.

Veto: Basic cosmic ray rejection is done by removing vertical tracks and through-going tracks.

Analysis Mask: Only periods with four or more contiguous diblocks are included in the analysis.
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Figure 6.4: Left: Slice Max Y vs Pt/p for signal (color) and cosmic ray (black) events. Right: BDT score vs CVN score
for signal (color) and cosmic ray (black) events. Red line delimits cut values.

Event Quality: A set of cuts to remove events with reconstruction failures or APD saturation effects.

It checks for the existence of a reconstructed vertex and prongs, as well as no more than 8 hits per

plane.

COSMIC REJECTION

Containment: Removes events for which any hit in reconstructed prongs is near one of the 6 detector

walls. This removes events that pass through the walls of the detector as well as uncontained events.

• Distance to the Top > 63 cm and Bottom > 12 cm

• Distance to the Front > 18 cm and Back > 18 cm

• Distance to the East > 12 cm andWest > 12 cm

Pt/p A cut on the transverse momentum, pT/p, removes events that are not aligned with the NuMI

beam axis. pT/p < 0.58, or 0.58 < pT/p < 0.8 and all hits within 590 cm from the top, or pT/p > 0.8

and all hits within 350 cm from the top.

Backward photon: Rejects cosmic photon events that occur in the back 200 cm of the detector with

a positive value for sparseness asymmetry, which is defined as the difference divided by sum of planes

without any hits in the first 8 and the last 8 planes of the prong.
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PRESELECTION

These cuts are applied to select events in the most signal-like region.

• Deposited energy in the range 1-4 GeV.

• Number of hits within 30-150.

• Length of longest prong between 100 and 500 cm.

νe CC - LIKE TOPOLOGY

CVN: Events are selected using the νe CC score from the event classifier discussed in Sec. 5.2.2 greater

than 0.75.

NEAREST SLICE

Cut on the nearest slice to the selected event. This slice must be at least 100 ns or 500 cm from the

event or 50 cm from the top of the detector if CVN > 0.87 or 400 cm from the top of the detector.

Events that pass all of these cutsmake up the core sample of the analysis. The expected distribution

of core sample events with this selection and assuming the best fit values from our 2016 analysis is

shown in Fig.6.5. Table 6.1 and Fig.6.7 show the surviving signal and background for each cut.

FAILED CORE CUTS

In addition to the core sample, events which fail either the cosmic rejection or preselection cuts are

included in the analysis. This peripheral sample consists of events that fail some core cuts, but have

high CVN event classifier scores. The cuts used for the peripheral differ from the core sample after

the basic cuts as follows:

Events that pass basic core sample cuts but fail any of the cosmic rejection cuts or preselection.
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PRESELECTION

For the peripheral sample the preselection is a cut on the reconstructed νe energy. Higher energy

events are allowed in the peripheral than in the core sample, up to 4.5 GeV.

νe CC - LIKE TOPOLOGY

CVN and Cosmic BDT: Two types of events are allowed in the peripheral sample. Events with νe

event scores greater than 0.99 or 0.95 passing a cut given by a boosted decision tree trained for cosmic

ray discrimination. The cosmic BDT uses sparseness asymmetry, CVN, number of hits, and distance

to the top as discriminators.

Events that pass these cuts make up the peripheral sample of the analysis. The expected distribu-

tion of peripheral events with this selection and assuming the best fit values from our 2016 analysis is

shown in Fig.6.6. Table 6.2 and Fig.6.7 show the signal and background efficiencies for each cut.

Cut νe CC beam νe ν̄e CC NC νµ CC ντ CC cosmic
No Cuts 55.44 1.11 15.87 424.95 242.50 2.98 3.26e+06
Basic Cuts 53.50 1.08 15.12 304.79 222.14 2.79 2.88e+06
Cosmic Rejection 40.02 0.82 9.98 215.97 101.49 1.69 71734.5
Preselection 38.28 0.71 7.47 108.43 43.75 1.07 15734.7
CVN 31.09 0.58 5.76 5.08 0.93 0.31 2.34
Nearest Slice 30.98 0.58 5.74 5.05 0.92 0.31 2.02

Table 6.1: νe CC core signal selection. This table shows the surviving events after each cut as shown in Fig.6.7.

Cut νe CC ν̄e CC beam νe NC νµ CC ντ CC cosmic
Peripheral before cuts 15.22 0.37 7.65 196.37 178.39 1.72 2.87e+06
Peripheral Preselection 14.98 0.33 6.30 188.62 156.32 1.42 2.76e+06
BDT+CVN 4.51 0.07 0.94 0.15 0.06 0.03 2.25
Nearest Slice 4.49 0.07 0.94 0.15 0.06 0.03 2.23

Table 6.2: νe CC peripheral sample signal selection. This table shows the surviving events after each cut as shown
in Fig.6.8.
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Figure 6.5: Expected CVN PID (left) and reconstructed energy (right) for νeCC Core sample. Background has been
separated by component.
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Figure 6.7: Selection survival counts for νeCC signal, beam backgrounds and cosmic ray backgrounds in the core
sample.
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6.3.3 νµ Event Selection

The characteristic topology of νµ CC signal events is themuon track, characterized by the length of the

tracks, and minimum ionizing depositions. The main sources of background in this case come from

muons from cosmic rays as well as neutral current events, especially those containing long tracks for

pionswhichmimic low energymuon tracks. Fig.6.9 shows an example of these backgrounds compared

to a signal event.
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Figure 6.9: νµ CC signal (right) and background topologies from neutral current event (center) and from selected
cosmic ray event (left).

Two track builder algorithms are used for some of the cuts applied to these events. One is aKalman

filter [90], the other is a simple straight line fitter. Additionally, a Nearest Neighbors algorithm called

ReMID is used for this selection. This uses characteristics of the Kalman tracks to select events with

tracks which mostly resemble muons in length, angle, and other variables [91].

Similar to the νe selection, the νµ CC event selection is done using the νµ CC score from the CVN

event classifier, shown in Sec. 5.2.2 in combination with ReMID. The cuts are applied in the following

order:
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QUALITY

A set of cuts are applied to ensure complete events with reconstruction applied.

Event Quality: Events with problems in the DCMs are cut. This includes events with blank DCMs,

such as those that are out of sync, or with hit pattern discontinuities at the DCM boundaries.

Reconstruction Quality: Require that a minimum number of hits in the slice, and that hits exist in

at least four continuous planes. Also requires that at least one reconstructed track have non-zero PID

scores.

CONTAINMENT

Removes events for which any hit in the event, prongs or tracks is near one of the 6 detector walls.

This rejects cosmic ray events and ensures that all the energy from the νµ interaction is contained

within the detector volume. The values for the containment cuts are:

• Kalman Track Forward Cell > 6 (cells)

• Kalman Track Backward Cell > 6 (cells)

• Simple Track Forward Cell > 0 (cells)

• Simple Track Backward Cell > 7 (cells)

• Planes to Front > 1 (planes)

• Planes to Back > 1 (planes)

• Min Prong Distance to FD Top > 60 (cm)

• Min Prong Distance to FD Bottom > 12 (cm)

• Min Prong Distance to FD East > 16 (cm)

• Min Prong Distance to FDWest > 12 (cm)

• Min Prong Distance to FD Front > 18 (cm)

• Min Prong Distance to FD Back > 18 (cm)
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Figure 6.10: Expected reconstructed energy for νµCC. Background has been separated by component.

νµ CC-LIKE

Number of hits in the slice less than 400 plus two cuts to select νµ CC topologies.

CVN: Events are selected using the νµ CC score from the event classifier with scores greater than 0.5.

ReMID: Events are also required to have a ReMID score greater than 0.5. This cut helps to reduce the

cosmic background.

COSMIC REJECTION

Cosmic BDT: The same style cosmic BDT used in selecting peripheral events for the νe appearance

analysis is used to reject cosmic rays.

KalmanAngle: A cut is placed on the angle of the Kalman track to remove events that are not aligned

with the beam axis.

Events that pass these cuts make up the νµ disappearance analysis sample. The analysis binning is

discussed in Sec. 6.4. Fig.6.11 shows the surviving events for each cut.
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Figure 6.11: Selection survival counts for νµCC signal, beam backgrounds and cosmic ray backgrounds.

Cut νµ CC νe to νµ CC νe NC ντ CC cosmic
NoCut 385.01 0.56 83.25 500.57 4.55 4.82e+06
Quality 365.34 0.54 78.93 323.03 4.32 4.25e+06
Containment 151.13 0.30 54.66 219.73 2.47 19760.3
Particle ID 123.63 0.26 0.30 2.96 0.44 27.95
Cosmic Rej 117.91 0.25 0.24 2.49 0.42 5.79

Table 6.3: νµ CC signal selection. Surviving events after each cut.
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6.4 Binning Optimization

Further optimization to the projected sensitivity of the results through studies of binning effects was

performed for both channels.

νe BINNING

For νe signal, the optimization used treats the signal in a two dimensional spectrum of reconstructed

energy and CVN score cut, where the three bins of selection correspond to different regions of the

PID (CVN) value .These bins are 0.75–0.87, 0.87–0.95, and 0.95–1.0 for the core sample. The fourth

bin corresponds to a peripheral sample, for which cuts have been relaxed, as described in Sec. 6.3.2.

Fig.6.12 shows a breakdown of the energy by component in the expected far detector spectrum, pre-

sented in this binning. The peripheral sample is shown in one bin in the figure and in the results

section. Given that some events in the peripheral sample might not be fully contained, this sample is

included in the fits as a counting experiment, rather than an energy distribution.
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νµ ENERGY BINNING

For νµ signal events, there are two optimizations on the binning: bin size in the energy region of 1-2

GeV and energy resolution binning. Given that a maximal value of the amplitude of the νµ → νµ

oscillation probability (sin2θ23 ) is still allowed under our current experimental constraints, smaller

bins were used in the region were the largest disappearance is expected, for an increase in sensitivity

to maximal mixing.

As discussed in Sec. 5.5, the overall energy resolution (percent difference between reconstructed

and true energy) for νµ CC selected events is 9% overall. However, the fraction of each component

(muonic or hadronic) which contributes to the total neutrino energy varies largely event by event,

mapping to different resolution for total neutrino energy. Splitting the events into regions of energy

resolution increases the sensitivity and splits the sample roughly into regions of fraction of hadronic

energy in the event. Resulting from studies of the sensitivity of the appearance analysis for different

regions of the EHad./Eν phase space [92], a separation into four energy quantiles was chosen for the

analysis for it’s optimal performance in sensitivity. As seen in Fig.6.13, the energy resolution is 6%,

8%, 10%, and 12%, for events in quantiles 1-4, respectively.
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Figure 6.13: Overall νµ Energy Resolution. The difference in resolution in each quantile correlates with the fraction
of hadronic energy in each one.
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Figure 6.14: Extrapolation diagram

6.5 Prediction of the Energy Spectrum

The methodology followed to make predictions uses the near detector data and Monte Carlo (MC) to

produce a prediction of the energy spectrum at the far detector (FD). FD predictions are reconstructed

energy spectra from FDMC, which have been corrected using extrapolated ND energy spectra and an

assumption for the oscillation probability.

6.5.1 Extrapolation

Fig.6.14 depicts the methodology of the extrapolation. Using a matrix conversion which relates true

neutrino energy to reconstructed energy (MND in the figure), the reconstructed energy spectra in ND

data and MC are converted into true energy spectra bin-by-bin (A in the figure).

The converted energy spectra are then extrapolated using a FD/ND ratios from the simulation.

This yields binned true energy spectra, which are then converted to reconstructed energy spectra using

corresponding conversion matrices (MFD in the figure).

The extrapolation is done component by component for each signal and background on both anal-
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Figure 6.15: Left: Number of Michel electrons for each background component. Right: Corrected MC for back-
grounds in the near detector, after corrections fromMichel decomposition.

yses. As such, it depends on appropriately decomposing the spectra from the ND before extrapolating.

Different decomposition methods are used for separating the selected events in data.

PROPORTIONAL DECOMPOSITION

This method, used for the νµ sample, assumes the composition of theMC for each type of background

is the same in the data.

BEN DECOMPOSITION

This method uses truth information from ND selected νµ CC events, specifically, whether they come

from kaon or pion decay, in order to estimate the νe backgrounds coming from the NuMI beam [93].

MICHEL DECOMPOSITION

This methodmeasures the number ofMichel electrons in selected νµ events in the near detector. This

metric gives a handle on the fraction of events which are NC backgrounds, as shown in Fig.6.15.
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6.6 Treatment of Systematics

The approach for calculating systematic uncertainties utilizes both far and near detector simulations,

with the advantage (by design) that the functionally equivalent technology in the near and far detectors

reduces, and in some cases cancels, these uncertainties. The uncertainty calculations are made using

far detector predictions made with nominal versus “shifted” Monte Carlo samples produced for this

purpose.

The effect of each systematic shift is evaluated through bin-by-bin comparisons of spectra of se-

lected events from the shifted predictions, with respect to the nominal. For νµ disappearance, these

comparisons are made on the reconstructed energy spectrum, separated by quantiles, and for νe ap-

pearance the comparisons aremade on the CVNx reconstructed energy spectra. Here, “shifted”Monte

Carlo refers to a sample made by systematically shifting the quantity of interest, corresponding to the

uncertainty which is to be calculated. These shifts are made by either reweighting events according

to the change in value of the parameter of interest, or by direct changes in its simulated value event

by event. Both the generation of shifted samples and the comparisons to the nominal are performed

independently for each systematic.

The shifted predictions are produced with the same method as the nominal, as described in Sec.

6.5. In the case of the shifted predictions, however, the near detector data is extrapolated to the far

detector using the systematically modified samples, except for the evaluation of relative near-to-far

effects, where only one of the samples is shifted.

All far detector predictions (nominal and shifted) were made assuming the following oscillation

parameters: L = 810km, ρ = 2.84g/cm3, ∆m2
32 = 2.67e − 03 eV2, ∆m2

12 = 7.53e − 05 eV2,

sin2 2θ12 = 0.851, sin2 2θ13 = 0.082, sin2 θ23 = 0.404, δCP = 1.48π.
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The effect of each systematic uncertainty is quantified and reported as the percentage change in the

far detector prediction of the number of background events and that of signal events independently.

The uncertainties presented here were evaluated for a set of effects which can be divided into the

following categories:

• Both νe and νµ

– Calibration

– Light levels and Cerenkov light

– Beam transport

– Hadron production

– Cross section uncertainties

• νe only

– Extrapolation systematics

– Rock uncertainty

– Normalization

• νµ only

– Energy scale shifts for both muons and hadrons.

The following sections describe the dominant systematic uncertainties, Appendix B contains tables

for the remaining small uncertainties.

6.7 Calibration

In order to cover data-MC discrepancies post-calibration, deliberate mis-calibrations are introduced

to the events in the nominal MC. This method preserves the number of hits and other simulation

information in order to assess the effects of the mis-calibration in isolation from other effects. These
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artificial mis-calibrations take the form of an absolute calibration shift and a calibration ”shape” un-

certainty. These shifts are motivated by data-driven studies, like the one shown in Fig.5.41, which

have shown both flat and spatially dependent disagreement in the detector response in data and MC

after calibration corrections have been applied [94].

The effect of a 5% absolute calibration uncertainty was studied, as well as the shape effects seen in

Fig.5.43.

6.8 Cherenkov and Light Levels

The light yield of the scintillator as charged particles travel through it is modeled by two effects: scin-

tillation, the main detection mode, and Cherenkov radiation. NOvA’s light yield simulation includes

a correction to the dE/dx dependence of the scintillation yield to account for quenching at high ener-

gies. This quenching factor is incorporated though Birks attenuation [95], an empirical relationship

that describes the light yield

LY ∝
dE
dx

1 + kB
dE
dx

+ kC
(
dE
dx

)2 , (6.1)

where kB and kC are material dependent parameters.

We account for uncertainties related to light levels and thresholds by altering the light level by

±10% with a compensating change made to the absolute calibration constants [96]. In addition, an

adjustment to the Cherenkov model that shifts proton response down by 2.6% [96].
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6.9 Flux Uncertainties

Two main categories of flux uncertainties were considered: beam transport, which refer to possible

differences between the simulation and the actual working conditions of the NuMI beam (e.g. small

shifts in the positions of some components), and hadron production, an uncertainty concerning the

production of pions and kaons in the simulation.

6.9.1 Beam transport uncertainties

These uncertainties include the horn and target position, the horn current, the position of the beam

on the target and the beam spot size. The effect of each uncertainty is below 5% on the flux spectrum

at the near or far detector for most cases. Given that the effect of each individual beam systematic

uncertainty was evaluated separately and found to be small, their total effect is summed in quadrature.

6.9.2 Hadron Production Uncertainties

These uncertainties are assessed by generating an number of alternative weightings where the con-

straints from the fixed target data and theoretical assumptions are allowed to float within their uncer-

tainty. Uncertainties are treated by choosing a statistical ensemble of randomly generated universes,

each of which has interaction parameters allowed by the data uncertainty. These universes are then

propagated through the simulation chain in order to estimate the variance in each neutrino energy bin

as well as the correlations between different bins and build the covariance matrix shown in Fig.6.16.

Diagonalizing this covariance matrix from Fig.6.16 yields a set of uncorrelated weights or prin-

cipal components for these uncertainties. Four of these principal components are used in the fit as

uncertainties, the rest are taken as one uncertainty, summed in quadrature with other small effects.
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Figure 6.16: PPFX Covariance Matrix.
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6.10 GENIE Systematics

Several neutrino interaction systematics are evaluated by using the reweighting tools built into GE-

NIE. These tools compute a weighting factor that can be applied to simulated events to enhance or

suppress a particular type of interaction. The size of the systematic modification of each parameter is

the recommendation of the GENIE authors, based on a careful survey of the interaction model. The

effects considered fall into three categories: cross-section uncertainties, hadronization model uncer-

tainties, and uncertainties due to final state interactions. The GENIE systematics being considered for

this analysis include:

• An uncertainty in the shape of the MEC (meson exchange current) cross-section by allowing

its q0 (∼hadronic energy) shape to vary between quasielastic-like and resonance-like.

• Systematic uncertainties on the shape of the RPA suppression, one when applied to quasielastic

events, and another one when the suppression, calculated for QE, is extrapolated to resonance

events.

• An uncorrelated 2% uncertainty on the νe/νµ cross section ratio to account for radiative cor-

rections [97].

• A 2% uncertainty anticorrelated between νe and ν̄e to allow for second class currents [97].

• Adjust MA in the Rein-Sehgal resonance cross section model by ±20% for both CC and NC

interactions.

• AdjustMV in the Rein-Sehgal resonance cross section model by±10% for CC interactions.

• Various components of the DIS cross section (see Appendix B) .

• Adjust theMA in the Llewellyn-Smith quasielastic cross section by±5%.

• The additional cross section systematics can be found Appendix B are summed together in

quadrature and added as an additional systematic.
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6.10.1 Rock Contamination (νe only)

Neutrinos coming from the beam represent additional backgrounds when they interact in the build-

ing or rock surrounding the detector hall. These, called rock events, are not included in any of the

systematics samples, instead it is added to the final result when fitting, applying 100% uncertainty to

it.

6.10.2 Normalization

The νe normalization systematic accounts for uncertainties in POT accounting, detector mass, and

near detector reconstruction efficiency.

6.10.3 Extrapolation systematics

While the near and far detectors are very similar, they do differ; most obviously in their sizes. For

instance, kinematic distributions are sculpted given the smaller size of the ND in a way which does

not happen in the large FD volume. Two types of such uncertainties are considered for this analysis:

Background uncertainty: The flux difference in different regions of the ND (east/west, top/bot-

tom, front/back, inside/outside) can cause the background predictions in the FD to be different. The

maximum 1.3% deviation of any detector region for the nominal prediction is taken as a systematic

uncertainty.

Signal uncertainty: The FD νe signal distribution is estimated from selected ND νµ events. These

two samples have somewhat different kinematics (particularly in Q2), which could affect the extrap-

olation. This effect is estimated by reweighting the ND data and MC to match the FD Monte Carlo

signal kinematics.
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6.10.4 Energy scale (νµ only)

There are three energy scale shifts which are considered for the νµ signal.

• A 5% absolute hadronic energy scale shift.

• A 1% absolute muon energy scale shift in both detectors.

• A roughly 0.27% relative muon energy scale shift in the FD only.

The muon energy scale shifts are applied to the reconstructed track length of the muon, and were

determined after a detailed literature review and GEANT4 study which is detailed in [98, 99].

The hadronic energy scale shift was determined by studying the calibration calorimetric responses

of the detectors, it is motivated by a discrepancy for protons in the ND in both MC and data.
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6.10.5 Systematic Uncertainties

6.10.6 νe Systematics Tables

The following figures and table show a summary of the predominant systematic effects on the νe signal

and background:

Extrap. Bkg Bin1 Bin2 Bin3 Bin4 Tot Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
SmallXsecsJoint +4.92 -9.55 +6.98 -9.41 +4.32 -6.63 +3.89 -4.56 +5.14 -8.08 0.046 0.134
Lightlevel +2.34 +0.08 -1.41 +6.02 -0.75 -3.92 +0.54 -4.89 +0.15 -0.38 0.096 0.124
Calibration -1.65 -1.17 -0.30 +1.52 -1.32 +3.72 -4.83 +4.68 -1.44 +1.72 0.074 0.100
Cherenkov +4.49 – +2.57 – -1.60 – -1.17 – +1.31 – 0.073 –
CalibShape +4.13 – +1.02 – +1.22 – -4.23 – +1.65 – 0.047 –
MECq0Shape +1.03 +0.94 +1.50 +1.07 +3.23 +0.01 +2.96 -1.04 +2.09 +0.48 0.015 0.005
extrapsignalkin -1.16 +1.38 +1.86 -1.65 +1.60 -1.66 +1.26 -1.28 +0.77 -0.68 0.010 0.011
MaCCRES -0.18 +0.36 +1.44 -1.32 +2.91 -2.84 +3.58 -3.12 +1.63 -1.48 0.009 0.008
MvCCRES -0.10 +0.16 +0.86 -0.79 +1.66 -1.49 +1.98 -1.68 +0.94 -0.82 0.003 0.002
extrapbkg +1.21 -1.19 +1.32 -1.09 +1.11 -1.28 +1.24 -1.36 +1.21 -1.21 0.002 0.002

Extrap. Sig Bin1 Bin2 Bin3 Bin4 Tot Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
Calibration -0.95 +1.20 +0.85 -0.50 +1.83 -3.56 +2.08 -3.27 +1.48 -2.67 1.326 1.375
SmallXsecsJoint +2.23 -6.23 +0.26 -1.26 -3.94 +11.54 -4.61 +13.62 -2.88 +8.41 0.057 0.491
MECq0Shape +4.23 +1.44 +3.27 +1.94 -4.19 +8.94 -3.43 +9.37 -2.29 +7.33 0.072 0.274
CalibShape -0.40 – -0.68 – -1.12 – -3.05 – -1.23 – 0.113 –
Lightlevel +1.52 +1.25 +0.71 +1.02 +0.82 +0.20 +2.56 -2.27 +1.07 +0.11 0.036 0.108
RPAShapeRES +4.23 +0.00 +3.28 +0.00 +4.01 +0.01 +4.55 +0.01 +3.99 +0.01 0.069 0.000
MaCCRES +5.52 -4.84 +4.69 -4.37 +0.82 -0.24 +1.25 -0.62 +1.84 -1.28 0.029 0.022
radcorrnue +1.95 -1.95 +1.94 -1.94 +1.97 -1.97 +1.97 -1.97 +1.96 -1.96 0.016 0.016
2ndclasscurr +1.90 -1.90 +1.89 -1.89 +1.94 -1.94 +1.94 -1.94 +1.93 -1.93 0.016 0.016
MvCCRES +3.48 -3.03 +2.96 -2.62 +0.62 -0.42 +0.89 -0.66 +1.24 -1.00 0.012 0.009
RPAShapeenh +0.21 +1.04 +0.59 +0.42 +1.68 -1.02 +1.90 -1.14 +1.42 -0.65 0.010 0.004
Cherenkov +0.03 – +0.50 – +0.03 – +0.11 – +0.11 – 0.009 –
DISvnCC1pi +3.09 -3.12 +2.16 -2.19 +0.52 -0.53 +0.63 -0.63 +0.99 -1.00 0.008 0.008
MaCCQEreduced +0.08 +0.17 +0.25 -0.03 +1.21 -1.05 +1.44 -1.22 +1.00 -0.82 0.005 0.004
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Figure 6.18: Sizes of νe systematic uncertainties.
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6.10.7 νµ Systematics Tables

Extrap. Sig Quant1 Quant2 Quant3 Quant4 Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
MECq0Shape -1.92 +3.45 -5.26 +12.00 -3.63 +7.94 -0.41 -0.61 0.182 0.734
Calibration -4.59 +1.63 -4.47 +3.13 -5.65 +4.98 -3.99 +4.08 0.528 0.442
RelHadEScale +5.36 -5.06 +0.47 -0.30 -3.26 +3.22 -5.70 +6.13 0.413 0.441
CalibrationEnergy -4.03 +2.61 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.426 0.321
AbsHadEScale -1.62 +1.65 -2.71 +3.23 -4.43 +4.78 -4.69 +5.79 0.321 0.410
SmallXsecsNumu -0.88 +3.15 -1.23 +5.29 -0.87 +5.55 -1.73 +3.67 0.026 0.312
RPAShapeRES +1.67 +0.00 +4.61 +0.00 +6.06 +0.00 +2.21 +0.00 0.197 0.000
RelHadEScaleE -0.78 +0.78 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.178 0.178
RPAShapeRESE +3.46 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.151 0.000
CalibShape -3.30 – -0.80 – +0.03 – +0.70 – 0.129 –
MaCCRES -0.05 +0.21 +1.31 -0.76 +3.81 -2.44 +2.21 -1.34 0.103 0.057
MaCCRESEnergy +2.23 -1.49 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.098 0.058
AbsMuEScale +2.19 -1.99 +1.50 -1.40 +1.09 -1.06 +0.98 -0.95 0.081 0.069

Extrap. Bkg Quant1 Quant2 Quant3 Quant4 Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
SmallXsecsNumu +46.56 -45.83 +51.03 -49.60 +58.67 -57.21 +69.29 -65.81 1.448 1.322
Calibration -13.29 +13.77 -11.82 +11.06 -13.41 +11.22 -19.38 +21.87 0.124 0.154
MECq0Shape -8.76 +14.18 +10.55 +8.99 +12.90 +2.83 +1.91 +0.35 0.044 0.014
MaNCRES +6.58 -6.11 +8.44 -7.36 +8.22 -6.67 +8.44 -6.05 0.038 0.025
MaNCRESEnergy +8.29 -6.26 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.037 0.025
Lightlevel +6.81 +6.09 +1.86 +1.64 +2.88 +2.76 +7.09 +3.30 0.026 0.016
Cherenkov +4.25 – -0.47 – +1.17 – +3.33 – 0.018 –
ppfxpc01 -7.39 +7.39 -7.34 +7.34 -7.18 +7.18 -7.08 +7.08 0.017 0.017
AbsHadEScale -7.32 +7.65 -5.17 +5.16 -3.95 +4.66 +0.88 -1.14 0.012 0.014
MaCCRES +1.81 -2.03 +6.15 -5.61 +6.72 -5.13 +2.90 -2.15 0.010 0.006
AllBeamTransport +4.59 -4.71 +4.72 -4.75 +5.00 -4.92 +5.35 -5.22 0.009 0.009
RelHadEScale +4.12 -3.66 +2.27 -2.73 +2.51 -2.34 -0.64 +0.55 0.004 0.004
MvCCRES +0.89 -0.83 +3.28 -2.76 +3.48 -2.71 +1.52 -1.19 0.003 0.002

It is clear that statistical uncertainties dominate with the amount of data considered for the present

analysis (see next chapter). The leading systematic uncertainties on both channels are the calibration

and cross-setions uncertainties. While these summary tables are useful indications of the relative size

of the systematics, they are applied as a shape to the fits described in Sec. 7.2.
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Figure 6.19: Sizes νµ systematic uncertainties. Quantiles 1-4 shown from top to bottom.
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Chapter 7

Results and Discussion
This analysis, presented on January 2018 at [100], implemented the contributions detailed in this

document and is NOvA’s official analysis for 2017. This chapter presents the resulting spectra of

observed appeared νe events and surviving νµ events at the far detector, with the selection detailed in

Secs. 6.3.2 and 6.3.3, with the binning described in Secs. 6.4 and 6.4, respectively.

The dataset which was analyzed constitutes 8.85 × 1020 POT equivalent, which corresponds to

the data collected in the period starting on February 2014 and up to March 2017, as shown in Fig.7.1.
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shows that themost common failure is theHit Rate and LiveTime, both ofwhich occur commonly on short Subruns,
which happen when a run is stopped or started incorrectly, but are still fairly rare (less than 3%).
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The anti-neutrino data shown in the figure is not included in this result, but will be included in the

analysis to be presented by the collaboration in the summer of 2018.

In the period corresponding to this dataset, the fraction of collected POT was 95%, including the

commissioning era (gray Fig.7.1) and the fraction of data used in the analysis was 97.6% after data

quality, as shown in Fig.7.2.

7.1 Results

νe APPEARANCE RESULTS

The energy spectra at the far detector are shown in Figs.7.4 and 7.3 for appeared νe events selected

as detailed in Sec. 6.3.2. The energy of events in the core sample has been reconstructed with the

method outlined in Sec. 5.4, and binned according to the optimization described in Sec. 6.4. The

energy spectrum for the peripheral sample is shown in Fig.7.3, but the sample is only taken as an

event count into the fit, since the selection allows for uncontained events.

In this channel we see 66 events over 20.5 expected background. There are distributed as seen in

the Table 7.1. The following figures and tables show the data compared to the best fit prediction.

NOvA has seen unambiguous appearance of electron neutrinos in a muon neutrino beam since

our first result in 2014, but the increase of statistics and the improvements in the analysis have an

impact in our sensitivity to the mass hierarchy, δCP and the octant of θ23. Details of the fit to this

observation are described in Sec. 7.2.
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Figure 7.3: Selected data and MC reconstructed energy for νeCC Core sample in bins of CVN, and event count for
peripheral sample.

Total Min PID Mid PID High PID Periph.
Observed Events 66 14 8 35 14
Predicted Total 66.8 10 11 36 9.8
Background Exp 20.5 6 4.5 5 4

Table 7.1: Observed appeared νe events at the far detector, compared to predictions.
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Figure 7.5: Selected data andMC reconstructed energy for νµCC.

Total Quantile 1 Quantile 2 Quantile 3 Quantile 4
Observed Events 126 36 24 26 40
Predicted Total 120.2 34.35 25.35 26.8 33.7
Background Exp 9.2 0.35 0.45 0.95 7.4

Table 7.2: Observed surviving νµ events at the far detector, compared to predictions.
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Figure 7.6: Signal and reconstructed energy for νµCC for each quantile.
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νµ DISAPPEARANCE RESULTS

The event spectra at the far detector are shown in Figs.7.5 and 7.6 for surviving νµ events. In this

channel we see 126 events over 9.2 expected background. Events are distributed in the four quantiles

of fraction of hadronic energy as seen in the Table 7.2. The following figures and tables show the data

compared to the best fit prediction.

One interesting characteristic to observe in the quantile distributions is that the background is

mostly expected in the fourth quantile, and that the events in the region of maximal mixing (around

1.4 GeV) are distributed amongst all samples. Naturally, the closest this mixing is to maximal, the

fewer events will be expected in that energy region and the higher precision will be needed to resolve

this question.

Disappearance of muon neutrinos from NuMI had been observed unambiguously by NOvA since

our first result in 2014, but the increase of statistics and the improvements in the analysis have an

impact in our sensitivity to∆m2
32 , sin

2θ23 and whether this mixing is maximal.

Details of the fit to this observation are described in Sec. 7.2, where results are shown for a fit

including the results from both the appearance and the disappearance channels. Even without a joint

fit, the disappearance channel has sensitivity to the parameters∆m2
32 and sin

2θ23 , which is shown in

Fig.7.7.
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7.2 Fit to oscillations
“It is not unscientific to make a guess, although
many people who are not in science think it is.”

– Richard Feynman

The resulting constraints on the parameters of the mixing matrix were computed from the results

from both measurements in combination with the existing limits from other experimental results for

the well known parameters.

This section presents the results of fits made to the appearance and disappearance results shown

in the previous section, in order to constrain the values of the oscillation parameters∆m2
32 , sin

2θ23 ,

and δCP . Fig.7.7 shows a comparison of the limits to∆m2
32 and sin

2θ23 from a fit to the disappearance

data only, in comparison with results from other experiments.
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Figure 7.7: Results: 90% CL constraints for sin2 θ23×∆m2
32 from a fit to the νµ disappearance only (black solid line),

compared with results from T2K [101] in pink dashed, MINOS [17] in purple dotted and IceCube [102] in blue dashed.
All contours are 90% confidence levels.

185



Figures 7.8, 7.9, and 7.9 show constraints obtained from joint fits of the dissappearance and ap-

pearance results, and Fig.7.11 shows the exclusion significance over the full range of δCP and for best

fit values. The values used for the remaining oscillation parameters are the best fit values given by [43],

including the world average for sin2 2θ13 = 0.082 ± 0.004 as a constraint, currently driven by the

results of reactor experiments.

The best fits were obtained by profiling over sin2 2θ13, δCP ,∆m2
32, and the systematic uncertain-

ties shown in Sec. 6.10.6, and include corrections made with the Feldman-Cousins procedure [103].

The best fit points are reported in the following table:

Ordering θ23 Octant δCP sin2θ23 ∆m2
32 sin2 2θ13 LL

Normal Upper 1.21 π 0.558 2.445 0.082 84.57
Normal Lower 1.46 π 0.474 2.435 0.082 84.70
Inverted Upper 1.47 π 0.558 -2.510 0.083 87.11
Inverted Upper - - - - -

Table 7.3: Best fit values of the oscillation parameters.

This result achieves an rejection of the inverted ordering with δCP = π/2 above 3σ, and is ap-

proaching a 2σ rejection of the inverted ordering over the whole region of δCP values. The values

obtained for∆m2
32 are competitive with existing limits, and the best fit value of sin

2θ23 is consistent

with maximal mixing. NOvA will continue to take data until 2024, alternating between neutrino and

anti-neutrino beam running. For the assumed best fits on the normal hierarchy and the upper octant,

this yields a sensitivity larger than 4σ for the determination of the hierarchy and larger than 2σ for

CP violation.
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7.3 Conclusions

In this dissertation I have shown NOvA’s current results for three-flavor oscillations, which are nar-

rowing down the allowed values of the remaining oscillation parameters available at long baselines.

While the hierarchy of the neutrino masses may be determined by NOvA in the coming years, the

question of CP violation may remain for experiments like Hyper-K and DUNE to resolve at high

significance.

NOvA has not only contributed these results to the understanding of neutrinos, we have also

contributed the new deep learning based analysis techniques which I have shown here. While I have

shown the improvements in terms of signal selection and single particle identification provided by

these techniques, their development was always intended to benefit the reconstruction capabilities of

NOvA as a whole, beyond the analyses here presented.

The techniques presented in this document are used on NOvA’s sterile neutrino searches [104],

and are being implemented in signal selection of specific final states for cross sections measurements.

Since our first application of CVN, similar techniques have also been employed in other neutrino

experiments [78, 105–107].
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APPENDIX A

CNNConcepts, Glossary and
Architectures
This appendix includes a description of elements common to artificial neural networks NNs and con-

volutional neural networks CNNs. It starts from a brief description of the functions performed by

nodes in simple NN architectures as well as the basic concepts of learning methods, loss functions, etc.

A.0.1 Basic Structure of Neural Networks

Neural Networks are computing algorithms that progressively improve their own performance at—

or in other words, learn—a given task. There are many tasks for which NNs can be designed but in

practice all tasks are to approximate an unknown functionF ofmultiple input parameters x0, x1, ...xn

given a collection of data to learn from. Data to learn from is usually a collection of examples for which

xi and F (x0i) are known or have been simulated. Regression tasks involve approximating a function

whose output is a single value (like estimating the total energy of a particle) while classification tasks

approximate functions whose output is a vector of probabilities to belong to each of multiple classes.1

1Note that knowing the form of the target function is not necessarily important. What NNs try to do in practice is
produce the same output given the same set of inputs. For example, a NN trained to reproduce the invariant mass of an
initial state does not need to know decay kinematics but it learns to reproduce the same principles by training on final state
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A good way to illustrate the training process is to explain it in the context of a binary classifica-

tion task. The behavior of NNs as they train to improve at binary (signal or background, for example)

classification tasks can be understood in three steps which they will iterate on: compute scores or

probabilities i.e. propose an estimated function f(xi), evaluate its performance, and readjust the es-

timate.

COMPUTING PROBABILITIES

The basic structure of a fully connected network. The output (also called score) depicted is a probability

of belonging to one of the two categories, signal and background in this example.

f(xi;wj, b) = psig (A.1)

In this case let’s assume that f(xi;wj, b) = 1 is 100% probability of being signal, rather than

background, and vice-versa. The way in which each node computes it’s contribution to this score is

through an activation function fn(xi;wn,i, bn). At each iteration, the output from a neuron is computed

for a set of values ai from the training data.

Activation functionswhich compute scores as inner products of vectors of weightsw and variables

x are common for classification tasks. An example, which we use in the classification tasks described

in Sec. 5.2.1 is the softmax activation function. This functions computes the inner product describes

and includes an additional normalization function to guarantee score values between 0 and 1. This

normalization factor is given by

σ(z)j =
ezj∑K
k=1 e

zk
(A.2)

vectors with corresponding invariant mass values.
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which is what is referred to as the softmax fuction in the literature. Here z is a vector of the inputs to

the output layer (if you have 10 output units, then there are 10 elements in z). And again, j indexes

the output units, so j = 1, 2, ..., K.

A.0.2 Calculating Losses

Given the above description, the goal of training a network is to learn how to perform the task (in

this case, classify as signal or background) by modifying the weights w according to the performance

of f(xi;wj, b) or how closely it maps the behavior psig(xi, c), which is the function we are trying to

approximate where c is the true class for an example with parameters xi. In other words, the goal is

to minimize a function L(psig(xi, c), f(xi;wj, b)) called the loss function by varying wi and b. A loss

function is designed to give a measure of the performance or goodness of fit of f with respect to psig

in general, but which incorporates other considerations:

• The output value ofLmust be smaller for better agreement between the true function psig(xi, c)

and the modeled estimate f(xi;wj, b). Usually a positive valued function is used.

• Lmust not be degenerate for different values of wi and b.

• L is to be calculated over a number N of examples or test data.

A common form for a loss function which satisfies these considerations is

L =
1

N

N∑
n

Ln + λR(wi) (A.3)

where the first term is the loss calculation over the data and the second term is a penalty called reg-

ularization, which ensures L is singled valued for a given set of weights and λ controls the relative

variation of the weight regularization with respect to the data loss.
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In practice for the case of a softmax classifier typically use ]it cross-entropy loss functions. This

function, in terms of the real probability for each class indexed k, pk and the approximation made by

the NN fk is given by:

Ln = −log

 epk=c(xj ,c)

K∑
k

efk(xi,wj)

 . (A.4)

A.0.3 Network Architectures

The following pages contain the caffe network architectures described in Sec. 5.2.2 and 5.2.3. The

input data layers for these networks consist of pixel maps of dimensions 80×200 pixels, in the scale

shown in Fig.5.18. The following architectures are shown in caffe prototxt format:

Siamese 2-tower Architecture. This is the original network from [81], used for neutrino event clas-

sification. The input data to the towers are event views, as shown in Fig.5.23.

Siamese 2-tower Architecture v2. This is the optimized network used for neutrino event classifica-

tion on neutrino (fhc) and antineutrino (rhc) events. The number of inception modules is lower and

the depth of the network is reduced with respect to the v1 network. The input data to the towers are

event views, as shown in Fig.5.23.

Siamese-Siamese (4-tower) Architecture. This network is used for single particle classification. The

input data to the four towers are prong views and full event views, as shown in Fig.5.28.
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name: "Siamese-Siamese (4-tower) Architecture
       for Prong Classification"
 
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
  }
  data_param {
    source: "CVN_TRAINSAMPLE_PATH"
    batch_size: 16
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  data_param {
    source: "CVN_TESTSAMPLE_PATH"
    batch_size: 64
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TRAIN
  }
  dummy_data_param {
    data_filler {
       type: "gaussian"
       mean: 1.0
       std:  0.01
      }
    shape {
       dim: 16
       dim: 4
       dim: 100
       dim: 80
      }
   }
}
 
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TEST
  }
  dummy_data_param {
    data_filler {
       type: "constant"
       value:  1.0
      }
    shape {
       dim: 64
       dim: 4
       dim: 100
       dim: 80
      }
   }
}
layer {
  name: "jitteredData"
  type: "Eltwise"
  bottom: "data"
  bottom: "jitter"
  top: "jitteredData"
  eltwise_param {
   operation:PROD
  }
}
 
layer {
  name: "slice"
  type: "Slice"
  bottom: "jitteredData"
  top: "data_x"
  top: "data_y"
  top: "data_px"
  top: "data_py"
  slice_param {
     slice_dim: 1
     slice_point: 1
     slice_point: 2
     slice_point: 3
 }
}
 
########X view######
 
layer {
  name: "conv1/7x7_s2_x"
  type: "Convolution"
  bottom: "data_x"
  top: "conv1/7x7_s2_x"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
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layer {
  name: "conv1/relu_7x7_x"
  type: "ReLU"
  bottom: "conv1/7x7_s2_x"
  top: "conv1/7x7_s2_x"
}
 
 
layer {
  name: "pool1/3x3_s2_x"
  type: "Pooling"
  bottom: "conv1/7x7_s2_x"
  top: "pool1/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_x"
  type: "LRN"
  bottom: "pool1/3x3_s2_x"
  top: "pool1/norm1_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool1/norm1_x"
  top: "conv2/3x3_reduce_x"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3_reduce_x"
}
 
layer {
  name: "conv2/3x3a_x"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3a_x"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_x"
  type: "ReLU"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3a_x"
}
 
layer {
  name: "conv2/3x3_x"
  type: "Convolution"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3_x"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_x"
  type: "ReLU"
  bottom: "conv2/3x3_x"
  top: "conv2/3x3_x"
}
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}
layer {
  name: "conv2/norm2_x"
  type: "LRN"
  bottom: "conv2/3x3_x"
  top: "conv2/norm2_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_x"
  type: "Pooling"
  bottom: "conv2/norm2_x"
  top: "pool2/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/1x1_x"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_3a/1x1_x"
  top: "inception_3a/1x1_x"
}
layer {
  name: "inception_3a/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/3x3_reduce_x"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_reduce_x"
}
layer {
  name: "inception_3a/3x3_x"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_x"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_x"
  top: "inception_3a/3x3_x"
}
 
layer {
  name: "inception_3a/5x5_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/5x5_reduce_x"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
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    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_reduce_x"
}
 
layer {
  name: "inception_3a/5x5_x"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_x"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_x"
  top: "inception_3a/5x5_x"
}
 
layer {
  name: "inception_3a/pool_x"
  type: "Pooling"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_x"
  type: "Convolution"
  bottom: "inception_3a/pool_x"
  top: "inception_3a/pool_proj_x"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/pool_proj_x"
}
layer {
  name: "inception_3a/output_x"
  type: "Concat"
  bottom: "inception_3a/1x1_x"
  bottom: "inception_3a/3x3_x"
  bottom: "inception_3a/5x5_x"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/output_x"
}
 
layer {
  name: "pool3a/3x3_s2_x"
  type: "Pooling"
  bottom: "inception_3a/output_x"
  top: "pool3a/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
########Y view######
 
layer {
  name: "conv1/7x7_s2_y"
  type: "Convolution"
  bottom: "data_y"
  top: "conv1/7x7_s2_y"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
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name: "Siamese-Siamese (4-tower) Architecture
       for Prong Classification"
 
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
  }
  data_param {
    source: "CVN_TRAINSAMPLE_PATH"
    batch_size: 16
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  data_param {
    source: "CVN_TESTSAMPLE_PATH"
    batch_size: 64
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TRAIN
  }
  dummy_data_param {
    data_filler {
       type: "gaussian"
       mean: 1.0
       std:  0.01
      }
    shape {
       dim: 16
       dim: 4
       dim: 100
       dim: 80
      }
   }
}
 
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TEST
  }
  dummy_data_param {
    data_filler {
       type: "constant"
       value:  1.0
      }
    shape {
       dim: 64
       dim: 4
       dim: 100
       dim: 80
      }
   }
}
layer {
  name: "jitteredData"
  type: "Eltwise"
  bottom: "data"
  bottom: "jitter"
  top: "jitteredData"
  eltwise_param {
   operation:PROD
  }
}
 
layer {
  name: "slice"
  type: "Slice"
  bottom: "jitteredData"
  top: "data_x"
  top: "data_y"
  top: "data_px"
  top: "data_py"
  slice_param {
     slice_dim: 1
     slice_point: 1
     slice_point: 2
     slice_point: 3
 }
}
 
########X view######
 
layer {
  name: "conv1/7x7_s2_x"
  type: "Convolution"
  bottom: "data_x"
  top: "conv1/7x7_s2_x"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
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layer {
  name: "conv1/relu_7x7_x"
  type: "ReLU"
  bottom: "conv1/7x7_s2_x"
  top: "conv1/7x7_s2_x"
}
 
 
layer {
  name: "pool1/3x3_s2_x"
  type: "Pooling"
  bottom: "conv1/7x7_s2_x"
  top: "pool1/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_x"
  type: "LRN"
  bottom: "pool1/3x3_s2_x"
  top: "pool1/norm1_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool1/norm1_x"
  top: "conv2/3x3_reduce_x"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3_reduce_x"
}
 
layer {
  name: "conv2/3x3a_x"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3a_x"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_x"
  type: "ReLU"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3a_x"
}
 
layer {
  name: "conv2/3x3_x"
  type: "Convolution"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3_x"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_x"
  type: "ReLU"
  bottom: "conv2/3x3_x"
  top: "conv2/3x3_x"
}
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}
layer {
  name: "conv2/norm2_x"
  type: "LRN"
  bottom: "conv2/3x3_x"
  top: "conv2/norm2_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_x"
  type: "Pooling"
  bottom: "conv2/norm2_x"
  top: "pool2/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/1x1_x"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_3a/1x1_x"
  top: "inception_3a/1x1_x"
}
layer {
  name: "inception_3a/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/3x3_reduce_x"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_reduce_x"
}
layer {
  name: "inception_3a/3x3_x"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_x"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_x"
  top: "inception_3a/3x3_x"
}
 
layer {
  name: "inception_3a/5x5_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/5x5_reduce_x"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
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    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_reduce_x"
}
 
layer {
  name: "inception_3a/5x5_x"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_x"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_x"
  top: "inception_3a/5x5_x"
}
 
layer {
  name: "inception_3a/pool_x"
  type: "Pooling"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_x"
  type: "Convolution"
  bottom: "inception_3a/pool_x"
  top: "inception_3a/pool_proj_x"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/pool_proj_x"
}
layer {
  name: "inception_3a/output_x"
  type: "Concat"
  bottom: "inception_3a/1x1_x"
  bottom: "inception_3a/3x3_x"
  bottom: "inception_3a/5x5_x"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/output_x"
}
 
layer {
  name: "pool3a/3x3_s2_x"
  type: "Pooling"
  bottom: "inception_3a/output_x"
  top: "pool3a/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
########Y view######
 
layer {
  name: "conv1/7x7_s2_y"
  type: "Convolution"
  bottom: "data_y"
  top: "conv1/7x7_s2_y"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
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    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_y"
  type: "ReLU"
  bottom: "conv1/7x7_s2_y"
  top: "conv1/7x7_s2_y"
}
 
layer {
  name: "pool1/3x3_s2_y"
  type: "Pooling"
  bottom: "conv1/7x7_s2_y"
  top: "pool1/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_y"
  type: "LRN"
  bottom: "pool1/3x3_s2_y"
  top: "pool1/norm1_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool1/norm1_y"
  top: "conv2/3x3_reduce_y"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3_reduce_y"
}
 
layer {
  name: "conv2/3x3a_y"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3a_y"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_y"
  type: "ReLU"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3a_y"
}
 
layer {
  name: "conv2/3x3_y"
  type: "Convolution"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3_y"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
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    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_y"
  type: "ReLU"
  bottom: "conv2/3x3_y"
  top: "conv2/3x3_y"
}
layer {
  name: "conv2/norm2_y"
  type: "LRN"
  bottom: "conv2/3x3_y"
  top: "conv2/norm2_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_y"
  type: "Pooling"
  bottom: "conv2/norm2_y"
  top: "pool2/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/1x1_y"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_3a/1x1_y"
  top: "inception_3a/1x1_y"
}
layer {
  name: "inception_3a/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/3x3_reduce_y"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_reduce_y"
}
layer {
  name: "inception_3a/3x3_y"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_y"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
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    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_y"
  top: "inception_3a/3x3_y"
}
 
layer {
  name: "inception_3a/5x5_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/5x5_reduce_y"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_reduce_y"
}
 
layer {
  name: "inception_3a/5x5_y"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_y"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_y"
  top: "inception_3a/5x5_y"
}
 
layer {
  name: "inception_3a/pool_y"
  type: "Pooling"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_y"
  type: "Convolution"
  bottom: "inception_3a/pool_y"
  top: "inception_3a/pool_proj_y"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/pool_proj_y"
}
layer {
  name: "inception_3a/output_y"
  type: "Concat"
  bottom: "inception_3a/1x1_y"
  bottom: "inception_3a/3x3_y"
  bottom: "inception_3a/5x5_y"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/output_y"
}
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layer {
  name: "pool3a/3x3_s2_y"
  type: "Pooling"
  bottom: "inception_3a/output_y"
  top: "pool3a/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## PX view ######
 
layer {
  name: "conv1/7x7_s2_px"
  type: "Convolution"
  bottom: "data_px"
  top: "conv1/7x7_s2_px"
  param {
    name: "conv1/7x7_s2_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_px"
  type: "ReLU"
  bottom: "conv1/7x7_s2_px"
  top: "conv1/7x7_s2_px"
}
 
 
layer {
  name: "pool1/3x3_s2_px"
  type: "Pooling"
  bottom: "conv1/7x7_s2_px"
  top: "pool1/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_px"
  type: "LRN"
  bottom: "pool1/3x3_s2_px"
  top: "pool1/norm1_px"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_px"
  type: "Convolution"
  bottom: "pool1/norm1_px"
  top: "conv2/3x3_reduce_px"
  param {
    name: "conv2/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_px"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_px"
  top: "conv2/3x3_reduce_px"
}
 
layer {
  name: "conv2/3x3a_px"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_px"
  top: "conv2/3x3a_px"
  param {
    name: "conv2/3x3a_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
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    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_y"
  type: "ReLU"
  bottom: "conv1/7x7_s2_y"
  top: "conv1/7x7_s2_y"
}
 
layer {
  name: "pool1/3x3_s2_y"
  type: "Pooling"
  bottom: "conv1/7x7_s2_y"
  top: "pool1/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_y"
  type: "LRN"
  bottom: "pool1/3x3_s2_y"
  top: "pool1/norm1_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool1/norm1_y"
  top: "conv2/3x3_reduce_y"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3_reduce_y"
}
 
layer {
  name: "conv2/3x3a_y"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3a_y"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_y"
  type: "ReLU"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3a_y"
}
 
layer {
  name: "conv2/3x3_y"
  type: "Convolution"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3_y"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
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    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_y"
  type: "ReLU"
  bottom: "conv2/3x3_y"
  top: "conv2/3x3_y"
}
layer {
  name: "conv2/norm2_y"
  type: "LRN"
  bottom: "conv2/3x3_y"
  top: "conv2/norm2_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_y"
  type: "Pooling"
  bottom: "conv2/norm2_y"
  top: "pool2/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/1x1_y"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_3a/1x1_y"
  top: "inception_3a/1x1_y"
}
layer {
  name: "inception_3a/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/3x3_reduce_y"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_reduce_y"
}
layer {
  name: "inception_3a/3x3_y"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_y"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
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    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_y"
  top: "inception_3a/3x3_y"
}
 
layer {
  name: "inception_3a/5x5_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/5x5_reduce_y"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_reduce_y"
}
 
layer {
  name: "inception_3a/5x5_y"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_y"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_y"
  top: "inception_3a/5x5_y"
}
 
layer {
  name: "inception_3a/pool_y"
  type: "Pooling"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_y"
  type: "Convolution"
  bottom: "inception_3a/pool_y"
  top: "inception_3a/pool_proj_y"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/pool_proj_y"
}
layer {
  name: "inception_3a/output_y"
  type: "Concat"
  bottom: "inception_3a/1x1_y"
  bottom: "inception_3a/3x3_y"
  bottom: "inception_3a/5x5_y"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/output_y"
}
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layer {
  name: "pool3a/3x3_s2_y"
  type: "Pooling"
  bottom: "inception_3a/output_y"
  top: "pool3a/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## PX view ######
 
layer {
  name: "conv1/7x7_s2_px"
  type: "Convolution"
  bottom: "data_px"
  top: "conv1/7x7_s2_px"
  param {
    name: "conv1/7x7_s2_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_px"
  type: "ReLU"
  bottom: "conv1/7x7_s2_px"
  top: "conv1/7x7_s2_px"
}
 
 
layer {
  name: "pool1/3x3_s2_px"
  type: "Pooling"
  bottom: "conv1/7x7_s2_px"
  top: "pool1/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_px"
  type: "LRN"
  bottom: "pool1/3x3_s2_px"
  top: "pool1/norm1_px"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_px"
  type: "Convolution"
  bottom: "pool1/norm1_px"
  top: "conv2/3x3_reduce_px"
  param {
    name: "conv2/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_px"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_px"
  top: "conv2/3x3_reduce_px"
}
 
layer {
  name: "conv2/3x3a_px"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_px"
  top: "conv2/3x3a_px"
  param {
    name: "conv2/3x3a_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
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}
 
layer {
  name: "conv2/relu_3x3a_px"
  type: "ReLU"
  bottom: "conv2/3x3a_px"
  top: "conv2/3x3a_px"
}
 
layer {
  name: "conv2/3x3_px"
  type: "Convolution"
  bottom: "conv2/3x3a_px"
  top: "conv2/3x3_px"
  param {
    name: "conv2/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_px"
  type: "ReLU"
  bottom: "conv2/3x3_px"
  top: "conv2/3x3_px"
}
layer {
  name: "conv2/norm2_px"
  type: "LRN"
  bottom: "conv2/3x3_px"
  top: "conv2/norm2_px"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_px"
  type: "Pooling"
  bottom: "conv2/norm2_px"
  top: "pool2/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/1x1_px"
  param {
    name: "inception_3a/1x1_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_px"
  type: "ReLU"
  bottom: "inception_3a/1x1_px"
  top: "inception_3a/1x1_px"
}
layer {
  name: "inception_3a/3x3_reduce_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/3x3_reduce_px"
  param {
    name: "inception_3a/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_px"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_px"
  top: "inception_3a/3x3_reduce_px"
}
layer {
  name: "inception_3a/3x3_px"
  type: "Convolution"
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  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_px"
  top: "inception_3a/3x3_px"
  param {
    name: "inception_3a/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_px"
  type: "ReLU"
  bottom: "inception_3a/3x3_px"
  top: "inception_3a/3x3_px"
}
 
layer {
  name: "inception_3a/5x5_reduce_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/5x5_reduce_px"
  param {
    name: "inception_3a/5x5_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_px"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_px"
  top: "inception_3a/5x5_reduce_px"
}
 
layer {
  name: "inception_3a/5x5_px"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_px"
  top: "inception_3a/5x5_px"
  param {
    name: "inception_3a/5x5_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_px"
  type: "ReLU"
  bottom: "inception_3a/5x5_px"
  top: "inception_3a/5x5_px"
}
 
 
layer {
  name: "inception_3a/pool_px"
  type: "Pooling"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/pool_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_px"
  type: "Convolution"
  bottom: "inception_3a/pool_px"
  top: "inception_3a/pool_proj_px"
  param {
    name: "inception_3a/pool_proj_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
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      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_px"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_px"
  top: "inception_3a/pool_proj_px"
}
layer {
  name: "inception_3a/output_px"
  type: "Concat"
  bottom: "inception_3a/1x1_px"
  bottom: "inception_3a/3x3_px"
  bottom: "inception_3a/5x5_px"
  bottom: "inception_3a/pool_proj_px"
  top: "inception_3a/output_px"
}
 
layer {
  name: "pool3a/3x3_s2_px"
  type: "Pooling"
  bottom: "inception_3a/output_px"
  top: "pool3a/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## PY view ######
 
layer {
  name: "conv1/7x7_s2_py"
  type: "Convolution"
  bottom: "data_py"
  top: "conv1/7x7_s2_py"
  param {
    name: "conv1/7x7_s2_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_py"
  type: "ReLU"
  bottom: "conv1/7x7_s2_py"
  top: "conv1/7x7_s2_py"
}
 
layer {
  name: "pool1/3x3_s2_py"
  type: "Pooling"
  bottom: "conv1/7x7_s2_py"
  top: "pool1/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_py"
  type: "LRN"
  bottom: "pool1/3x3_s2_py"
  top: "pool1/norm1_py"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_py"
  type: "Convolution"
  bottom: "pool1/norm1_py"
  top: "conv2/3x3_reduce_py"
  param {
    name: "conv2/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_py"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_py"
  top: "conv2/3x3_reduce_py"
}
 
layer {
  name: "conv2/3x3a_py"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_py"
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  top: "conv2/3x3a_py"
  param {
    name: "conv2/3x3a_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_py"
  type: "ReLU"
  bottom: "conv2/3x3a_py"
  top: "conv2/3x3a_py"
}
 
layer {
  name: "conv2/3x3_py"
  type: "Convolution"
  bottom: "conv2/3x3a_py"
  top: "conv2/3x3_py"
  param {
    name: "conv2/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_py"
  type: "ReLU"
  bottom: "conv2/3x3_py"
  top: "conv2/3x3_py"
}
layer {
  name: "conv2/norm2_py"
  type: "LRN"
  bottom: "conv2/3x3_py"
  top: "conv2/norm2_py"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_py"
  type: "Pooling"
  bottom: "conv2/norm2_py"
  top: "pool2/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/1x1_py"
  param {
    name: "inception_3a/1x1_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_py"
  type: "ReLU"
  bottom: "inception_3a/1x1_py"
  top: "inception_3a/1x1_py"
}
layer {
  name: "inception_3a/3x3_reduce_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/3x3_reduce_py"
  param {
    name: "inception_3a/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
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layer {
  name: "conv2/relu_3x3a_px"
  type: "ReLU"
  bottom: "conv2/3x3a_px"
  top: "conv2/3x3a_px"
}
 
layer {
  name: "conv2/3x3_px"
  type: "Convolution"
  bottom: "conv2/3x3a_px"
  top: "conv2/3x3_px"
  param {
    name: "conv2/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_px"
  type: "ReLU"
  bottom: "conv2/3x3_px"
  top: "conv2/3x3_px"
}
layer {
  name: "conv2/norm2_px"
  type: "LRN"
  bottom: "conv2/3x3_px"
  top: "conv2/norm2_px"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_px"
  type: "Pooling"
  bottom: "conv2/norm2_px"
  top: "pool2/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/1x1_px"
  param {
    name: "inception_3a/1x1_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_px"
  type: "ReLU"
  bottom: "inception_3a/1x1_px"
  top: "inception_3a/1x1_px"
}
layer {
  name: "inception_3a/3x3_reduce_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/3x3_reduce_px"
  param {
    name: "inception_3a/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_px"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_px"
  top: "inception_3a/3x3_reduce_px"
}
layer {
  name: "inception_3a/3x3_px"
  type: "Convolution"
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  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_px"
  top: "inception_3a/3x3_px"
  param {
    name: "inception_3a/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_px"
  type: "ReLU"
  bottom: "inception_3a/3x3_px"
  top: "inception_3a/3x3_px"
}
 
layer {
  name: "inception_3a/5x5_reduce_px"
  type: "Convolution"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/5x5_reduce_px"
  param {
    name: "inception_3a/5x5_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_px"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_px"
  top: "inception_3a/5x5_reduce_px"
}
 
layer {
  name: "inception_3a/5x5_px"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_px"
  top: "inception_3a/5x5_px"
  param {
    name: "inception_3a/5x5_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_px"
  type: "ReLU"
  bottom: "inception_3a/5x5_px"
  top: "inception_3a/5x5_px"
}
 
 
layer {
  name: "inception_3a/pool_px"
  type: "Pooling"
  bottom: "pool2/3x3_s2_px"
  top: "inception_3a/pool_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_px"
  type: "Convolution"
  bottom: "inception_3a/pool_px"
  top: "inception_3a/pool_proj_px"
  param {
    name: "inception_3a/pool_proj_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
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      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_px"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_px"
  top: "inception_3a/pool_proj_px"
}
layer {
  name: "inception_3a/output_px"
  type: "Concat"
  bottom: "inception_3a/1x1_px"
  bottom: "inception_3a/3x3_px"
  bottom: "inception_3a/5x5_px"
  bottom: "inception_3a/pool_proj_px"
  top: "inception_3a/output_px"
}
 
layer {
  name: "pool3a/3x3_s2_px"
  type: "Pooling"
  bottom: "inception_3a/output_px"
  top: "pool3a/3x3_s2_px"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## PY view ######
 
layer {
  name: "conv1/7x7_s2_py"
  type: "Convolution"
  bottom: "data_py"
  top: "conv1/7x7_s2_py"
  param {
    name: "conv1/7x7_s2_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_py"
  type: "ReLU"
  bottom: "conv1/7x7_s2_py"
  top: "conv1/7x7_s2_py"
}
 
layer {
  name: "pool1/3x3_s2_py"
  type: "Pooling"
  bottom: "conv1/7x7_s2_py"
  top: "pool1/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_py"
  type: "LRN"
  bottom: "pool1/3x3_s2_py"
  top: "pool1/norm1_py"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_py"
  type: "Convolution"
  bottom: "pool1/norm1_py"
  top: "conv2/3x3_reduce_py"
  param {
    name: "conv2/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_py"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_py"
  top: "conv2/3x3_reduce_py"
}
 
layer {
  name: "conv2/3x3a_py"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_py"
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  top: "conv2/3x3a_py"
  param {
    name: "conv2/3x3a_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_py"
  type: "ReLU"
  bottom: "conv2/3x3a_py"
  top: "conv2/3x3a_py"
}
 
layer {
  name: "conv2/3x3_py"
  type: "Convolution"
  bottom: "conv2/3x3a_py"
  top: "conv2/3x3_py"
  param {
    name: "conv2/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_py"
  type: "ReLU"
  bottom: "conv2/3x3_py"
  top: "conv2/3x3_py"
}
layer {
  name: "conv2/norm2_py"
  type: "LRN"
  bottom: "conv2/3x3_py"
  top: "conv2/norm2_py"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_py"
  type: "Pooling"
  bottom: "conv2/norm2_py"
  top: "pool2/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/1x1_py"
  param {
    name: "inception_3a/1x1_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_py"
  type: "ReLU"
  bottom: "inception_3a/1x1_py"
  top: "inception_3a/1x1_py"
}
layer {
  name: "inception_3a/3x3_reduce_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/3x3_reduce_py"
  param {
    name: "inception_3a/3x3_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_bp"
    lr_mult: 2
    decay_mult: 0
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    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_py"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_py"
  top: "inception_3a/3x3_reduce_py"
}
layer {
  name: "inception_3a/3x3_py"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_py"
  top: "inception_3a/3x3_py"
  param {
    name: "inception_3a/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_py"
  type: "ReLU"
  bottom: "inception_3a/3x3_py"
  top: "inception_3a/3x3_py"
}
 
layer {
  name: "inception_3a/5x5_reduce_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/5x5_reduce_py"
  param {
    name: "inception_3a/5x5_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_py"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_py"
  top: "inception_3a/5x5_reduce_py"
}
 
 
layer {
  name: "inception_3a/5x5_py"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_py"
  top: "inception_3a/5x5_py"
  param {
    name: "inception_3a/5x5_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_py"
  type: "ReLU"
  bottom: "inception_3a/5x5_py"
  top: "inception_3a/5x5_py"
}
 
layer {
  name: "inception_3a/pool_py"
  type: "Pooling"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/pool_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
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    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_py"
  type: "Convolution"
  bottom: "inception_3a/pool_py"
  top: "inception_3a/pool_proj_py"
  param {
    name: "inception_3a/pool_proj_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_py"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_py"
  top: "inception_3a/pool_proj_py"
}
layer {
  name: "inception_3a/output_py"
  type: "Concat"
  bottom: "inception_3a/1x1_py"
  bottom: "inception_3a/3x3_py"
  bottom: "inception_3a/5x5_py"
  bottom: "inception_3a/pool_proj_py"
  top: "inception_3a/output_py"
}
 
layer {
  name: "pool3a/3x3_s2_py"
  type: "Pooling"
  bottom: "inception_3a/output_py"
  top: "pool3a/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## Combine Towers ######
 
layer {
  name: "merge_x_y"
  type: "Concat"
  bottom: "pool3a/3x3_s2_x"
  bottom: "pool3a/3x3_s2_y"
  bottom: "pool3a/3x3_s2_px"
  bottom: "pool3a/3x3_s2_py"
  top: "merge_x_y"
  concat_param {
    axis: 1
  }
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
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layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
 
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
 
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "merge_x_y"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
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layer {

  name: "inception_5b/relu_pool_proj"

  type: "ReLU"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/pool_proj"

}

layer {

  name: "inception_5b/output"

  type: "Concat"

  bottom: "inception_5b/1x1"

  bottom: "inception_5b/3x3"

  bottom: "inception_5b/5x5"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/output"

}

layer {

  name: "pool5/7x7_s1"

  type: "Pooling"

  bottom: "inception_5b/output"

  top: "pool5/7x7_s1"

  pooling_param {

    pool: AVE

    ## Adapted!!! Originally kernel_size: 7

    kernel_h: 6

    kernel_w: 5

    stride: 1

  }

}

layer {

  name: "pool5/drop_7x7_s1"

  type: "Dropout"

  bottom: "pool5/7x7_s1"

  top: "pool5/7x7_s1"

  dropout_param {

    dropout_ratio: 0.4

  }

}

layer {

  name: "loss3/classifier15"

  type: "InnerProduct"

  bottom: "pool5/7x7_s1"

  top: "loss3/classifier15"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  inner_product_param {

    num_output: 8

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0

    }

  }

}

layer {

  name: "loss3/loss3"

  type: "SoftmaxWithLoss"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/loss3"

  loss_weight: 1

}

layer {

  name: "loss3/top-1"

  type: "Accuracy"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/top-1"

  include {

    phase: TEST

  }

}

layer {

  name: "loss3/top-5"

  type: "Accuracy"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/top-5"

  include {

    phase: TEST

  }

  accuracy_param {

    top_k: 5

  }

}
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    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_py"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_py"
  top: "inception_3a/3x3_reduce_py"
}
layer {
  name: "inception_3a/3x3_py"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_py"
  top: "inception_3a/3x3_py"
  param {
    name: "inception_3a/3x3_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_py"
  type: "ReLU"
  bottom: "inception_3a/3x3_py"
  top: "inception_3a/3x3_py"
}
 
layer {
  name: "inception_3a/5x5_reduce_py"
  type: "Convolution"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/5x5_reduce_py"
  param {
    name: "inception_3a/5x5_reduce_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_py"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_py"
  top: "inception_3a/5x5_reduce_py"
}
 
 
layer {
  name: "inception_3a/5x5_py"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_py"
  top: "inception_3a/5x5_py"
  param {
    name: "inception_3a/5x5_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_py"
  type: "ReLU"
  bottom: "inception_3a/5x5_py"
  top: "inception_3a/5x5_py"
}
 
layer {
  name: "inception_3a/pool_py"
  type: "Pooling"
  bottom: "pool2/3x3_s2_py"
  top: "inception_3a/pool_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
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    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_py"
  type: "Convolution"
  bottom: "inception_3a/pool_py"
  top: "inception_3a/pool_proj_py"
  param {
    name: "inception_3a/pool_proj_wp"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_bp"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_py"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_py"
  top: "inception_3a/pool_proj_py"
}
layer {
  name: "inception_3a/output_py"
  type: "Concat"
  bottom: "inception_3a/1x1_py"
  bottom: "inception_3a/3x3_py"
  bottom: "inception_3a/5x5_py"
  bottom: "inception_3a/pool_proj_py"
  top: "inception_3a/output_py"
}
 
layer {
  name: "pool3a/3x3_s2_py"
  type: "Pooling"
  bottom: "inception_3a/output_py"
  top: "pool3a/3x3_s2_py"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
######## Combine Towers ######
 
layer {
  name: "merge_x_y"
  type: "Concat"
  bottom: "pool3a/3x3_s2_x"
  bottom: "pool3a/3x3_s2_y"
  bottom: "pool3a/3x3_s2_px"
  bottom: "pool3a/3x3_s2_py"
  top: "merge_x_y"
  concat_param {
    axis: 1
  }
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
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layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
 
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
 
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "merge_x_y"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
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layer {

  name: "inception_5b/relu_pool_proj"

  type: "ReLU"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/pool_proj"

}

layer {

  name: "inception_5b/output"

  type: "Concat"

  bottom: "inception_5b/1x1"

  bottom: "inception_5b/3x3"

  bottom: "inception_5b/5x5"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/output"

}

layer {

  name: "pool5/7x7_s1"

  type: "Pooling"

  bottom: "inception_5b/output"

  top: "pool5/7x7_s1"

  pooling_param {

    pool: AVE

    ## Adapted!!! Originally kernel_size: 7

    kernel_h: 6

    kernel_w: 5

    stride: 1

  }

}

layer {

  name: "pool5/drop_7x7_s1"

  type: "Dropout"

  bottom: "pool5/7x7_s1"

  top: "pool5/7x7_s1"

  dropout_param {

    dropout_ratio: 0.4

  }

}

layer {

  name: "loss3/classifier15"

  type: "InnerProduct"

  bottom: "pool5/7x7_s1"

  top: "loss3/classifier15"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  inner_product_param {

    num_output: 8

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0

    }

  }

}

layer {

  name: "loss3/loss3"

  type: "SoftmaxWithLoss"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/loss3"

  loss_weight: 1

}

layer {

  name: "loss3/top-1"

  type: "Accuracy"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/top-1"

  include {

    phase: TEST

  }

}

layer {

  name: "loss3/top-5"

  type: "Accuracy"

  bottom: "loss3/classifier15"

  bottom: "label"

  top: "loss3/top-5"

  include {

    phase: TEST

  }

  accuracy_param {

    top_k: 5

  }

}
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name: "Siamese Architecture
       for Event Classification"
 
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    #scale: 0.00390625
  }
  data_param {
    source: "CVN_TRAINSAMPLE_PATH"
    batch_size: 16
    prefetch: 40
    backend: LEVELDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  data_param {
    source: "CVN_TESTSAMPLE_PATH"
    batch_size: 64
    prefetch: 400
    backend: LEVELDB
  }
}
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TRAIN
  }
  dummy_data_param {
    data_filler {
       type: "gaussian"
       mean: 1.0
       std:  0.01
      }
    shape {
       dim: 16
       dim: 2
       dim: 100
       dim: 80
      }
   }
}
 
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TEST
  }
  dummy_data_param {
    data_filler {
       type: "constant"
       value:  1.0
      }
    shape {
       dim: 64
       dim: 2
       dim: 100
       dim: 80
      }
   }
}
layer {
  name: "jitteredData"
  type: "Eltwise"
  bottom: "data"
  bottom: "jitter"
  top: "jitteredData"
  eltwise_param {
   operation:PROD
  }
}
 
layer {
  name: "slice"
  type: "Slice"
  bottom: "jitteredData"
  top: "data_x"
  top: "data_y"
  slice_param {
     slice_dim: 1
     slice_point: 1
 }
}
 
######################################
# X view #############################
 
layer {
  name: "conv1/7x7_s2_x"
  type: "Convolution"
  bottom: "data_x"
  top: "conv1/7x7_s2_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv1/relu_7x7_x"
  type: "ReLU"
  bottom: "conv1/7x7_s2_x"
  top: "conv1/7x7_s2_x"
}
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}
layer {
  name: "pool1/3x3_s2_x"
  type: "Pooling"
  bottom: "conv1/7x7_s2_x"
  top: "pool1/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_x"
  type: "LRN"
  bottom: "pool1/3x3_s2_x"
  top: "pool1/norm1_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool1/norm1_x"
  top: "conv2/3x3_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3_reduce_x"
}
layer {
  name: "conv2/3x3_x"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3_x"
  type: "ReLU"
  bottom: "conv2/3x3_x"
  top: "conv2/3x3_x"
}
layer {
  name: "conv2/norm2_x"
  type: "LRN"
  bottom: "conv2/3x3_x"
  top: "conv2/norm2_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_x"
  type: "Pooling"
  bottom: "conv2/norm2_x"
  top: "pool2/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/1x1_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_3a/1x1_x"
  top: "inception_3a/1x1_x"
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  top: "inception_3a/1x1_x"
}
layer {
  name: "inception_3a/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/3x3_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_reduce_x"
}
layer {
  name: "inception_3a/3x3_x"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_x"
  top: "inception_3a/3x3_x"
}
layer {
  name: "inception_3a/5x5_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/5x5_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_reduce_x"
}
layer {
  name: "inception_3a/5x5_x"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_x"
  top: "inception_3a/5x5_x"
}
layer {
  name: "inception_3a/pool_x"
  type: "Pooling"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
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  }
}
layer {
  name: "inception_3a/pool_proj_x"
  type: "Convolution"
  bottom: "inception_3a/pool_x"
  top: "inception_3a/pool_proj_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/pool_proj_x"
}
layer {
  name: "inception_3a/output_x"
  type: "Concat"
  bottom: "inception_3a/1x1_x"
  bottom: "inception_3a/3x3_x"
  bottom: "inception_3a/5x5_x"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/output_x"
}
layer {
  name: "inception_3b/1x1_x"
  type: "Convolution"
  bottom: "inception_3a/output_x"
  top: "inception_3b/1x1_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_3b/1x1_x"
  top: "inception_3b/1x1_x"
}
layer {
  name: "inception_3b/3x3_reduce_x"
  type: "Convolution"
  bottom: "inception_3a/output_x"
  top: "inception_3b/3x3_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce_x"
  top: "inception_3b/3x3_reduce_x"
}
layer {
  name: "inception_3b/3x3_x"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce_x"
  top: "inception_3b/3x3_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_3b/3x3_x"
  top: "inception_3b/3x3_x"
}
layer {
  name: "inception_3b/5x5_reduce_x"
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  name: "inception_3b/5x5_reduce_x"
  type: "Convolution"
  bottom: "inception_3a/output_x"
  top: "inception_3b/5x5_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce_x"
  top: "inception_3b/5x5_reduce_x"
}
layer {
  name: "inception_3b/5x5_x"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce_x"
  top: "inception_3b/5x5_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_3b/5x5_x"
  top: "inception_3b/5x5_x"
}
layer {
  name: "inception_3b/pool_x"
  type: "Pooling"
  bottom: "inception_3a/output_x"
  top: "inception_3b/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj_x"
  type: "Convolution"
  bottom: "inception_3b/pool_x"
  top: "inception_3b/pool_proj_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_3b/pool_proj_x"
  top: "inception_3b/pool_proj_x"
}
layer {
  name: "inception_3b/output_x"
  type: "Concat"
  bottom: "inception_3b/1x1_x"
  bottom: "inception_3b/3x3_x"
  bottom: "inception_3b/5x5_x"
  bottom: "inception_3b/pool_proj_x"
  top: "inception_3b/output_x"
}
layer {
  name: "pool3/3x3_s2_x"
  type: "Pooling"
  bottom: "inception_3b/output_x"
  top: "pool3/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_4a/1x1_x"
  type: "Convolution"
  bottom: "pool3/3x3_s2_x"
  top: "inception_4a/1x1_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
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  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_4a/1x1_x"
  top: "inception_4a/1x1_x"
}
layer {
  name: "inception_4a/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool3/3x3_s2_x"
  top: "inception_4a/3x3_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce_x"
  top: "inception_4a/3x3_reduce_x"
}
layer {
  name: "inception_4a/3x3_x"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce_x"
  top: "inception_4a/3x3_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_4a/3x3_x"
  top: "inception_4a/3x3_x"
}
layer {
  name: "inception_4a/5x5_reduce_x"
  type: "Convolution"
  bottom: "pool3/3x3_s2_x"
  top: "inception_4a/5x5_reduce_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce_x"
  top: "inception_4a/5x5_reduce_x"
}
layer {
  name: "inception_4a/5x5_x"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce_x"
  top: "inception_4a/5x5_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
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}
layer {
  name: "inception_4a/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_4a/5x5_x"
  top: "inception_4a/5x5_x"
}
layer {
  name: "inception_4a/pool_x"
  type: "Pooling"
  bottom: "pool3/3x3_s2_x"
  top: "inception_4a/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj_x"
  type: "Convolution"
  bottom: "inception_4a/pool_x"
  top: "inception_4a/pool_proj_x"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_4a/pool_proj_x"
  top: "inception_4a/pool_proj_x"
}
layer {
  name: "inception_4a/output_x"
  type: "Concat"
  bottom: "inception_4a/1x1_x"
  bottom: "inception_4a/3x3_x"
  bottom: "inception_4a/5x5_x"
  bottom: "inception_4a/pool_proj_x"
  top: "inception_4a/output_x"
}
 
######################################
# Y view #############################
 
layer {
  name: "conv1/7x7_s2_y"
  type: "Convolution"
  bottom: "data_y"
  top: "conv1/7x7_s2_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv1/relu_7x7_y"
  type: "ReLU"
  bottom: "conv1/7x7_s2_y"
  top: "conv1/7x7_s2_y"
}
layer {
  name: "pool1/3x3_s2_y"
  type: "Pooling"
  bottom: "conv1/7x7_s2_y"
  top: "pool1/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_y"
  type: "LRN"
  bottom: "pool1/3x3_s2_y"
  top: "pool1/norm1_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool1/norm1_y"
  top: "conv2/3x3_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
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    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3_reduce_y"
}
layer {
  name: "conv2/3x3_y"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3_y"
  type: "ReLU"
  bottom: "conv2/3x3_y"
  top: "conv2/3x3_y"
}
layer {
  name: "conv2/norm2_y"
  type: "LRN"
  bottom: "conv2/3x3_y"
  top: "conv2/norm2_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_y"
  type: "Pooling"
  bottom: "conv2/norm2_y"
  top: "pool2/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/1x1_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_3a/1x1_y"
  top: "inception_3a/1x1_y"
}
layer {
  name: "inception_3a/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/3x3_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_reduce_y"
}
layer {
  name: "inception_3a/3x3_y"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
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    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_y"
  top: "inception_3a/3x3_y"
}
layer {
  name: "inception_3a/5x5_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/5x5_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_reduce_y"
}
layer {
  name: "inception_3a/5x5_y"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_y"
  top: "inception_3a/5x5_y"
}
layer {
  name: "inception_3a/pool_y"
  type: "Pooling"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_y"
  type: "Convolution"
  bottom: "inception_3a/pool_y"
  top: "inception_3a/pool_proj_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/pool_proj_y"
}
layer {
  name: "inception_3a/output_y"
  type: "Concat"
  bottom: "inception_3a/1x1_y"
  bottom: "inception_3a/3x3_y"
  bottom: "inception_3a/5x5_y"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/output_y"
}
layer {
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layer {
  name: "inception_3b/1x1_y"
  type: "Convolution"
  bottom: "inception_3a/output_y"
  top: "inception_3b/1x1_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_3b/1x1_y"
  top: "inception_3b/1x1_y"
}
layer {
  name: "inception_3b/3x3_reduce_y"
  type: "Convolution"
  bottom: "inception_3a/output_y"
  top: "inception_3b/3x3_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce_y"
  top: "inception_3b/3x3_reduce_y"
}
layer {
  name: "inception_3b/3x3_y"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce_y"
  top: "inception_3b/3x3_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_3b/3x3_y"
  top: "inception_3b/3x3_y"
}
layer {
  name: "inception_3b/5x5_reduce_y"
  type: "Convolution"
  bottom: "inception_3a/output_y"
  top: "inception_3b/5x5_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce_y"
  top: "inception_3b/5x5_reduce_y"
}
layer {
  name: "inception_3b/5x5_y"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce_y"
  top: "inception_3b/5x5_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
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  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_3b/5x5_y"
  top: "inception_3b/5x5_y"
}
layer {
  name: "inception_3b/pool_y"
  type: "Pooling"
  bottom: "inception_3a/output_y"
  top: "inception_3b/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj_y"
  type: "Convolution"
  bottom: "inception_3b/pool_y"
  top: "inception_3b/pool_proj_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_3b/pool_proj_y"
  top: "inception_3b/pool_proj_y"
}
layer {
  name: "inception_3b/output_y"
  type: "Concat"
  bottom: "inception_3b/1x1_y"
  bottom: "inception_3b/3x3_y"
  bottom: "inception_3b/5x5_y"
  bottom: "inception_3b/pool_proj_y"
  top: "inception_3b/output_y"
}
layer {
  name: "pool3/3x3_s2_y"
  type: "Pooling"
  bottom: "inception_3b/output_y"
  top: "pool3/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_4a/1x1_y"
  type: "Convolution"
  bottom: "pool3/3x3_s2_y"
  top: "inception_4a/1x1_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_4a/1x1_y"
  top: "inception_4a/1x1_y"
}
layer {
  name: "inception_4a/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool3/3x3_s2_y"
  top: "inception_4a/3x3_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
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}
layer {
  name: "inception_4a/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce_y"
  top: "inception_4a/3x3_reduce_y"
}
layer {
  name: "inception_4a/3x3_y"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce_y"
  top: "inception_4a/3x3_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_4a/3x3_y"
  top: "inception_4a/3x3_y"
}
layer {
  name: "inception_4a/5x5_reduce_y"
  type: "Convolution"
  bottom: "pool3/3x3_s2_y"
  top: "inception_4a/5x5_reduce_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce_y"
  top: "inception_4a/5x5_reduce_y"
}
layer {
  name: "inception_4a/5x5_y"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce_y"
  top: "inception_4a/5x5_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_4a/5x5_y"
  top: "inception_4a/5x5_y"
}
layer {
  name: "inception_4a/pool_y"
  type: "Pooling"
  bottom: "pool3/3x3_s2_y"
  top: "inception_4a/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj_y"
  type: "Convolution"
  bottom: "inception_4a/pool_y"
  top: "inception_4a/pool_proj_y"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
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  }
}
layer {
  name: "inception_4a/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_4a/pool_proj_y"
  top: "inception_4a/pool_proj_y"
}
layer {
  name: "inception_4a/output_y"
  type: "Concat"
  bottom: "inception_4a/1x1_y"
  bottom: "inception_4a/3x3_y"
  bottom: "inception_4a/5x5_y"
  bottom: "inception_4a/pool_proj_y"
  top: "inception_4a/output_y"
}
 
#####################################
# Combo #############################
 
layer {
  name: "merge_x_y"
  type: "Concat"
  bottom: "inception_4a/output_x"
  bottom: "inception_4a/output_y"
  top: "merge_x_y"
  concat_param {
    axis: 1
  }
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
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  }

  convolution_param {

    num_output: 48

    kernel_size: 1

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

layer {

  name: "inception_5b/relu_5x5_reduce"

  type: "ReLU"

  bottom: "inception_5b/5x5_reduce"

  top: "inception_5b/5x5_reduce"

}

layer {

  name: "inception_5b/5x5"

  type: "Convolution"

  bottom: "inception_5b/5x5_reduce"

  top: "inception_5b/5x5"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 128

    pad: 2

    kernel_size: 5

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

layer {

  name: "inception_5b/relu_5x5"

  type: "ReLU"

  bottom: "inception_5b/5x5"

  top: "inception_5b/5x5"

}

layer {

  name: "inception_5b/pool"

  type: "Pooling"

  bottom: "merge_x_y"

  top: "inception_5b/pool"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 1

    pad: 1

  }

}

layer {

  name: "inception_5b/pool_proj"

  type: "Convolution"

  bottom: "inception_5b/pool"

  top: "inception_5b/pool_proj"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 128

    kernel_size: 1

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

layer {

  name: "inception_5b/relu_pool_proj"

  type: "ReLU"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/pool_proj"

}

layer {

  name: "inception_5b/output"

  type: "Concat"

  bottom: "inception_5b/1x1"

  bottom: "inception_5b/3x3"

  bottom: "inception_5b/5x5"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/output"

}

layer {

  name: "pool5/7x7_s1"

  type: "Pooling"

  bottom: "inception_5b/output"

  top: "pool5/7x7_s1"

  pooling_param {

    pool: AVE

    ## Adapted!!! Originally kernel_size: 7

    kernel_h: 6

    kernel_w: 5

    stride: 1

  }

}

layer {

  name: "pool5/drop_7x7_s1"

  type: "Dropout"

  bottom: "pool5/7x7_s1"

  top: "pool5/7x7_s1"

  dropout_param {

    dropout_ratio: 0.4

  }

}

layer {

  name: "loss3/classifier15"

  type: "InnerProduct"

  bottom: "pool5/7x7_s1"

  top: "loss3/classifier15"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }
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  inner_product_param {
    num_output: 392
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss3/loss3"
  type: "SoftmaxWithLoss"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/loss3"
  loss_weight: 1
}
layer {
  name: "loss3/top-1"
  type: "Accuracy"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/top-1"
  include {
    phase: TEST
  }
}
layer {
  name: "loss3/top-5"
  type: "Accuracy"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/top-5"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k: 5
  }
}
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name: "name: "Siamese Architecture
       for Event Classification v2"
 
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    #scale: 0.00390625
  }
  data_param {
    source: "CVN_TRAINSAMPLE_PATH"
    batch_size: 16
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  data_param {
    source: "CVN_TESTSAMPLE_PATH"
    batch_size: 64
    prefetch: 10
    backend: LEVELDB
  }
}
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TRAIN
  }
  dummy_data_param {
    data_filler {
       type: "gaussian"
       mean: 1.0
       std:  0.01
      }
    shape {
       dim: 16
       dim: 2
       dim: 100
       dim: 80
      }
   }
}
 
layer {
  name: "jitter"
  type: "DummyData"
  top: "jitter"
  include {
    phase: TEST
  }
  dummy_data_param {
    data_filler {
       type: "constant"
       value:  1.0
      }
    shape {
       dim: 64
       dim: 2
       dim: 100
       dim: 80
      }
   }
}
layer {
  name: "jitteredData"
  type: "Eltwise"
  bottom: "data"
  bottom: "jitter"
  top: "jitteredData"
  eltwise_param {
   operation:PROD
  }
}
 
layer {
  name: "slice"
  type: "Slice"
  bottom: "jitteredData"
  top: "data_x"
  top: "data_y"
  slice_param {
     slice_dim: 1
     slice_point: 1
 }
}
 
######################################
# X view #############################
 
layer {
  name: "conv1/7x7_s2_x"
  type: "Convolution"
  bottom: "data_x"
  top: "conv1/7x7_s2_x"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_x"
  type: "ReLU"
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  type: "ReLU"
  bottom: "conv1/7x7_s2_x"
  top: "conv1/7x7_s2_x"
}
 
layer {
  name: "pool1/3x3_s2_x"
  type: "Pooling"
  bottom: "conv1/7x7_s2_x"
  top: "pool1/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_x"
  type: "LRN"
  bottom: "pool1/3x3_s2_x"
  top: "pool1/norm1_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool1/norm1_x"
  top: "conv2/3x3_reduce_x"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3_reduce_x"
}
 
layer {
  name: "conv2/3x3a_x"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_x"
  top: "conv2/3x3a_x"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_x"
  type: "ReLU"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3a_x"
}
 
layer {
  name: "conv2/3x3_x"
  type: "Convolution"
  bottom: "conv2/3x3a_x"
  top: "conv2/3x3_x"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_x"
  type: "ReLU"
  bottom: "conv2/3x3_x"
  top: "conv2/3x3_x"
}
layer {
  name: "conv2/norm2_x"
  type: "LRN"
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  type: "LRN"
  bottom: "conv2/3x3_x"
  top: "conv2/norm2_x"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_x"
  type: "Pooling"
  bottom: "conv2/norm2_x"
  top: "pool2/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/1x1_x"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_x"
  type: "ReLU"
  bottom: "inception_3a/1x1_x"
  top: "inception_3a/1x1_x"
}
layer {
  name: "inception_3a/3x3_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/3x3_reduce_x"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_reduce_x"
}
layer {
  name: "inception_3a/3x3_x"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_x"
  top: "inception_3a/3x3_x"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_x"
  type: "ReLU"
  bottom: "inception_3a/3x3_x"
  top: "inception_3a/3x3_x"
}
 
layer {
  name: "inception_3a/5x5_reduce_x"
  type: "Convolution"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/5x5_reduce_x"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
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  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
 
layer {
  name: "inception_3a/relu_5x5_reduce_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_reduce_x"
}
 
layer {
  name: "inception_3a/5x5_x"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_x"
  top: "inception_3a/5x5_x"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_x"
  type: "ReLU"
  bottom: "inception_3a/5x5_x"
  top: "inception_3a/5x5_x"
}
 
layer {
  name: "inception_3a/pool_x"
  type: "Pooling"
  bottom: "pool2/3x3_s2_x"
  top: "inception_3a/pool_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_x"
  type: "Convolution"
  bottom: "inception_3a/pool_x"
  top: "inception_3a/pool_proj_x"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_x"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/pool_proj_x"
}
layer {
  name: "inception_3a/output_x"
  type: "Concat"
  bottom: "inception_3a/1x1_x"
  bottom: "inception_3a/3x3_x"
  bottom: "inception_3a/5x5_x"
  bottom: "inception_3a/pool_proj_x"
  top: "inception_3a/output_x"
}
 
layer {
  name: "pool3a/3x3_s2_x"
  type: "Pooling"
  bottom: "inception_3a/output_x"
  top: "pool3a/3x3_s2_x"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
##################################
# Y view #########################
 
layer {
  name: "conv1/7x7_s2_y"
  type: "Convolution"
  bottom: "data_y"
  top: "conv1/7x7_s2_y"
  param {
    name: "conv1/7x7_s2_w"
    lr_mult: 1
    decay_mult: 1
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    decay_mult: 1
  }
  param {
    name: "conv1/7x7_s2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv1/relu_7x7_y"
  type: "ReLU"
  bottom: "conv1/7x7_s2_y"
  top: "conv1/7x7_s2_y"
}
 
layer {
  name: "pool1/3x3_s2_y"
  type: "Pooling"
  bottom: "conv1/7x7_s2_y"
  top: "pool1/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1_y"
  type: "LRN"
  bottom: "pool1/3x3_s2_y"
  top: "pool1/norm1_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
 
layer {
  name: "conv2/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool1/norm1_y"
  top: "conv2/3x3_reduce_y"
  param {
    name: "conv2/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3_reduce_y"
}
 
layer {
  name: "conv2/3x3a_y"
  type: "Convolution"
  bottom: "conv2/3x3_reduce_y"
  top: "conv2/3x3a_y"
  param {
    name: "conv2/3x3a_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3a_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3a_y"
  type: "ReLU"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3a_y"
}
 
layer {
  name: "conv2/3x3_y"
  type: "Convolution"
  bottom: "conv2/3x3a_y"
  top: "conv2/3x3_y"
  param {
    name: "conv2/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
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  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "conv2/relu_3x3_y"
  type: "ReLU"
  bottom: "conv2/3x3_y"
  top: "conv2/3x3_y"
}
layer {
  name: "conv2/norm2_y"
  type: "LRN"
  bottom: "conv2/3x3_y"
  top: "conv2/norm2_y"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2_y"
  type: "Pooling"
  bottom: "conv2/norm2_y"
  top: "pool2/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/1x1_y"
  param {
    name: "inception_3a/1x1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/1x1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_1x1_y"
  type: "ReLU"
  bottom: "inception_3a/1x1_y"
  top: "inception_3a/1x1_y"
}
layer {
  name: "inception_3a/3x3_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/3x3_reduce_y"
  param {
    name: "inception_3a/3x3_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_3x3_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_reduce_y"
}
layer {
  name: "inception_3a/3x3_y"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce_y"
  top: "inception_3a/3x3_y"
  param {
    name: "inception_3a/3x3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/3x3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
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  }
}
 
layer {
  name: "inception_3a/relu_3x3_y"
  type: "ReLU"
  bottom: "inception_3a/3x3_y"
  top: "inception_3a/3x3_y"
}
 
layer {
  name: "inception_3a/5x5_reduce_y"
  type: "Convolution"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/5x5_reduce_y"
  param {
    name: "inception_3a/5x5_reduce_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_reduce_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_reduce_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_reduce_y"
}
 
layer {
  name: "inception_3a/5x5_y"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce_y"
  top: "inception_3a/5x5_y"
  param {
    name: "inception_3a/5x5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/5x5_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_5x5_y"
  type: "ReLU"
  bottom: "inception_3a/5x5_y"
  top: "inception_3a/5x5_y"
}
 
layer {
  name: "inception_3a/pool_y"
  type: "Pooling"
  bottom: "pool2/3x3_s2_y"
  top: "inception_3a/pool_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj_y"
  type: "Convolution"
  bottom: "inception_3a/pool_y"
  top: "inception_3a/pool_proj_y"
  param {
    name: "inception_3a/pool_proj_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "inception_3a/pool_proj_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_3a/relu_pool_proj_y"
  type: "ReLU"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/pool_proj_y"
}
layer {
  name: "inception_3a/output_y"
  type: "Concat"
  bottom: "inception_3a/1x1_y"
  bottom: "inception_3a/3x3_y"
  bottom: "inception_3a/5x5_y"
  bottom: "inception_3a/pool_proj_y"
  top: "inception_3a/output_y"
}
 
layer {
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layer {
  name: "pool3a/3x3_s2_y"
  type: "Pooling"
  bottom: "inception_3a/output_y"
  top: "pool3a/3x3_s2_y"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
 
###############################
# Combo #######################
 
layer {
  name: "merge_x_y"
  type: "Concat"
  bottom: "pool3a/3x3_s2_x"
  bottom: "pool3a/3x3_s2_y"
  top: "merge_x_y"
  concat_param {
    axis: 1
  }
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
 
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
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    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

 

layer {

  name: "inception_5b/relu_5x5_reduce"

  type: "ReLU"

  bottom: "inception_5b/5x5_reduce"

  top: "inception_5b/5x5_reduce"

}

 

layer {

  name: "inception_5b/5x5"

  type: "Convolution"

  bottom: "inception_5b/5x5_reduce"

  top: "inception_5b/5x5"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 128

    pad: 2

    kernel_size: 5

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

 

layer {

  name: "inception_5b/relu_5x5"

  type: "ReLU"

  bottom: "inception_5b/5x5"

  top: "inception_5b/5x5"

}

 

layer {

  name: "inception_5b/pool"

  type: "Pooling"

  bottom: "merge_x_y"

  top: "inception_5b/pool"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 1

    pad: 1

  }

}

layer {

  name: "inception_5b/pool_proj"

  type: "Convolution"

  bottom: "inception_5b/pool"

  top: "inception_5b/pool_proj"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 128

    kernel_size: 1

    weight_filler {

      type: "xavier"

    }

    bias_filler {

      type: "constant"

      value: 0.2

    }

  }

}

 

layer {

  name: "inception_5b/relu_pool_proj"

  type: "ReLU"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/pool_proj"

}

layer {

  name: "inception_5b/output"

  type: "Concat"

  bottom: "inception_5b/1x1"

  bottom: "inception_5b/3x3"

  bottom: "inception_5b/5x5"

  bottom: "inception_5b/pool_proj"

  top: "inception_5b/output"

}

layer {

  name: "pool5/7x7_s1"

  type: "Pooling"

  bottom: "inception_5b/output"

  top: "pool5/7x7_s1"

  pooling_param {

    pool: AVE

    ## Adapted!!! Originally kernel_size: 7

    kernel_h: 6

    kernel_w: 5

    stride: 1

  }

}

layer {

  name: "pool5/drop_7x7_s1"

  type: "Dropout"

  bottom: "pool5/7x7_s1"

  top: "pool5/7x7_s1"

  dropout_param {

    dropout_ratio: 0.4

  }

}

layer {

  name: "loss3/classifier15"

  type: "InnerProduct"

  bottom: "pool5/7x7_s1"

  top: "loss3/classifier15"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0
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    decay_mult: 0
  }
  inner_product_param {
    num_output: 392
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss3/loss3"
  type: "SoftmaxWithLoss"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/loss3"
  loss_weight: 1
}
layer {
  name: "loss3/top-1"
  type: "Accuracy"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/top-1"
  include {
    phase: TEST
  }
}
layer {
  name: "loss3/top-5"
  type: "Accuracy"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/top-5"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k: 5
  }
}
layer {
  name: "loss3/top-10"
  type: "Accuracy"
  bottom: "loss3/classifier15"
  bottom: "label"
  top: "loss3/top-10"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k: 10
  }
}
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APPENDIX B

Systematics Details
“There are sadistic scientists who hurry

to hunt down errors instead of establishing the truth”

– Marie Curie

This appendix contains the full details of the systematic uncertainties. For each uncertainty con-

sidered there are plots showing the shape difference applied to the fits in Chapter 7, followed by a

table, detailing the average effect on each bin (or quantile) of the analyses. The following pages show

the full detailed information for the largest contributing systematics and contain summary tables for

all the systematics studied, the smallest of which are combined into larger categories and applied in

combination.

ALL νe SYSTEMATICS

Extrap. Sig Bin1 Bin2 Bin3 Bin4 Tot Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
Calibration -0.95 +1.20 +0.85 -0.50 +1.83 -3.56 +2.08 -3.27 +1.48 -2.67 1.326 1.375
SmallXsecsJoint +2.23 -6.23 +0.26 -1.26 -3.94 +11.54 -4.61 +13.62 -2.88 +8.41 0.057 0.491
MECq0Shape +4.23 +1.44 +3.27 +1.94 -4.19 +8.94 -3.43 +9.37 -2.29 +7.33 0.072 0.274
CalibShape -0.40 – -0.68 – -1.12 – -3.05 – -1.23 – 0.113 –
Lightlevel +1.52 +1.25 +0.71 +1.02 +0.82 +0.20 +2.56 -2.27 +1.07 +0.11 0.036 0.108
RPAShapeRES +4.23 +0.00 +3.28 +0.00 +4.01 +0.01 +4.55 +0.01 +3.99 +0.01 0.069 0.000
MaCCRES +5.52 -4.84 +4.69 -4.37 +0.82 -0.24 +1.25 -0.62 +1.84 -1.28 0.029 0.022
radcorrnue +1.95 -1.95 +1.94 -1.94 +1.97 -1.97 +1.97 -1.97 +1.96 -1.96 0.016 0.016
2ndclasscurr +1.90 -1.90 +1.89 -1.89 +1.94 -1.94 +1.94 -1.94 +1.93 -1.93 0.016 0.016
MvCCRES +3.48 -3.03 +2.96 -2.62 +0.62 -0.42 +0.89 -0.66 +1.24 -1.00 0.012 0.009
RPAShapeenh +0.21 +1.04 +0.59 +0.42 +1.68 -1.02 +1.90 -1.14 +1.42 -0.65 0.010 0.004
Cherenkov +0.03 – +0.50 – +0.03 – +0.11 – +0.11 – 0.009 –
DISvnCC1pi +3.09 -3.12 +2.16 -2.19 +0.52 -0.53 +0.63 -0.63 +0.99 -1.00 0.008 0.008
MaCCQEreduced +0.08 +0.17 +0.25 -0.03 +1.21 -1.05 +1.44 -1.22 +1.00 -0.82 0.005 0.004
extrapsignalkin +0.42 -0.37 +0.37 -0.32 +0.32 -0.28 +0.35 -0.31 +0.34 -0.30 0.003 0.003
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AllBeamTransport +0.45 -0.40 +0.47 -0.42 +0.63 -0.53 +0.73 -0.61 +0.60 -0.52 0.002 0.001
ppfxpc01 +0.23 -0.20 +0.22 -0.19 +0.26 -0.23 +0.30 -0.26 +0.25 -0.23 0.000 0.000
ppfxpc04 +0.15 -0.14 +0.15 -0.14 +0.22 -0.21 +0.24 -0.23 +0.21 -0.19 0.000 0.000
ppfxpc00 -0.05 +0.05 -0.05 +0.05 -0.15 +0.15 -0.18 +0.18 -0.13 +0.13 0.000 0.000
ppfxpc03 +0.13 -0.13 +0.13 -0.14 +0.11 -0.11 +0.10 -0.10 +0.11 -0.12 0.000 0.000
ppfxpc02 +0.03 -0.04 +0.02 -0.03 -0.03 +0.03 -0.06 +0.07 -0.02 +0.02 0.000 0.000
MaNCRES -0.06 +0.04 -0.06 +0.04 -0.05 +0.04 -0.06 +0.04 -0.06 +0.04 0.000 0.000
radcorrnuebar +0.05 -0.05 +0.06 -0.06 +0.03 -0.03 +0.03 -0.03 +0.04 -0.04 0.000 0.000
extrapbkg +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 0.000 0.000

Extrap. Bkg Bin1 Bin2 Bin3 Bin4 Tot Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
SmallXsecsJoint +4.92 -9.55 +6.98 -9.41 +4.32 -6.63 +3.89 -4.56 +5.14 -8.08 0.046 0.134
Lightlevel +2.34 +0.08 -1.41 +6.02 -0.75 -3.92 +0.54 -4.89 +0.15 -0.38 0.096 0.124
Calibration -1.65 -1.17 -0.30 +1.52 -1.32 +3.72 -4.83 +4.68 -1.44 +1.72 0.074 0.100
Cherenkov +4.49 – +2.57 – -1.60 – -1.17 – +1.31 – 0.073 –
CalibShape +4.13 – +1.02 – +1.22 – -4.23 – +1.65 – 0.047 –
MECq0Shape +1.03 +0.94 +1.50 +1.07 +3.23 +0.01 +2.96 -1.04 +2.09 +0.48 0.015 0.005
extrapsignalkin -1.16 +1.38 +1.86 -1.65 +1.60 -1.66 +1.26 -1.28 +0.77 -0.68 0.010 0.011
MaCCRES -0.18 +0.36 +1.44 -1.32 +2.91 -2.84 +3.58 -3.12 +1.63 -1.48 0.009 0.008
MvCCRES -0.10 +0.16 +0.86 -0.79 +1.66 -1.49 +1.98 -1.68 +0.94 -0.82 0.003 0.002
extrapbkg +1.21 -1.19 +1.32 -1.09 +1.11 -1.28 +1.24 -1.36 +1.21 -1.21 0.002 0.002
DISvnCC1pi -0.57 +0.79 -0.46 +0.60 +0.06 -0.03 +0.26 -0.21 -0.25 +0.37 0.001 0.001
RPAShapeRES +0.13 +0.01 +0.29 +0.11 -0.10 -0.08 +0.67 -0.06 +0.13 -0.00 0.001 0.000
MaNCRES -0.74 +0.79 -0.19 +0.16 +0.41 -0.36 -0.14 +0.13 -0.14 +0.17 0.001 0.001
AllBeamTransport +0.28 -0.07 +0.41 -0.02 +0.35 -0.50 +0.23 -0.38 +0.33 -0.24 0.000 0.001
RPAShapeenh +0.08 -0.01 +0.39 +0.23 +0.29 +0.10 +0.71 +0.05 +0.28 +0.10 0.000 0.000
MaCCQEreduced -0.01 +0.04 +0.12 +0.12 -0.03 -0.01 +0.35 -0.25 +0.04 +0.02 0.000 0.000
ppfxpc00 -0.01 -0.02 -0.10 +0.08 -0.37 +0.39 -0.08 +0.09 -0.17 +0.16 0.000 0.000
ppfxpc03 +0.24 -0.24 +0.23 -0.24 +0.17 -0.17 +0.07 -0.07 +0.20 -0.21 0.000 0.000
ppfxpc02 +0.01 +0.01 +0.11 -0.12 +0.16 -0.17 -0.03 +0.03 +0.09 -0.09 0.000 0.000
ppfxpc01 +0.10 -0.04 +0.04 +0.03 +0.23 -0.12 +0.19 -0.09 +0.14 -0.06 0.000 0.000
2ndclasscurr +0.03 -0.03 +0.10 -0.12 +0.09 -0.09 +0.19 -0.19 +0.08 -0.09 0.000 0.000
radcorrnue +0.01 -0.00 +0.09 -0.11 +0.06 -0.06 +0.17 -0.17 +0.06 -0.06 0.000 0.000
ppfxpc04 +0.10 -0.09 +0.06 -0.04 +0.11 -0.08 +0.15 -0.12 +0.10 -0.08 0.000 0.000
radcorrnuebar -0.00 +0.00 -0.05 +0.03 -0.04 +0.04 -0.02 +0.02 -0.03 +0.02 0.000 0.000

Extrap. Sig Quant1 Quant2 Quant3 Quant4 Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
MECq0Shape -1.92 +3.45 -5.26 +12.00 -3.63 +7.94 -0.41 -0.61 0.182 0.734
Calibration -4.59 +1.63 -4.47 +3.13 -5.65 +4.98 -3.99 +4.08 0.528 0.442
RelHadEScale +5.36 -5.06 +0.47 -0.30 -3.26 +3.22 -5.70 +6.13 0.413 0.441
CalibrationEnergy -4.03 +2.61 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.426 0.321
AbsHadEScale -1.62 +1.65 -2.71 +3.23 -4.43 +4.78 -4.69 +5.79 0.321 0.410
SmallXsecsNumu -0.88 +3.15 -1.23 +5.29 -0.87 +5.55 -1.73 +3.67 0.026 0.312
SmallXsecsJoint -0.88 +3.15 -1.23 +5.29 -0.87 +5.55 -1.73 +3.67 0.026 0.312
RPAShapeRES +1.67 +0.00 +4.61 +0.00 +6.06 +0.00 +2.21 +0.00 0.197 0.000
RelHadEScaleE -0.78 +0.78 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.178 0.178
RPAShapeRESEnergy+3.46 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.151 0.000
CalibShape -3.30 – -0.80 – +0.03 – +0.70 – 0.129 –
MaCCRES -0.05 +0.21 +1.31 -0.76 +3.81 -2.44 +2.21 -1.34 0.103 0.057
MaCCRESEnergy +2.23 -1.49 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.098 0.058
Lightlevel +0.59 +0.09 +1.42 +0.71 +1.95 +0.55 +2.38 -0.77 0.068 0.028
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Cherenkov -1.00 – +0.32 – +0.91 – +0.13 – 0.052 –
MvCCRES +0.02 +0.01 +0.91 -0.70 +2.25 -1.71 +1.12 -0.80 0.034 0.022
RelMuEScale +0.95 -0.93 +0.45 -0.46 +0.06 -0.05 -0.27 +0.30 0.013 0.013
beamTranspComb +0.03 +0.05 +0.03 +0.06 +0.04 +0.07 +0.14 -0.03 0.013 0.013
RPAShapeenh +0.49 -0.34 +1.30 -0.86 +1.16 +0.15 +0.27 +0.55 0.011 0.010
DISvnCC1pi -0.07 +0.07 +0.07 -0.07 +0.66 -0.70 +0.70 -0.78 0.009 0.011
ppfxpc00 +0.29 -0.29 +0.31 -0.31 +0.34 -0.35 +0.24 -0.25 0.006 0.006

Extrap. Bkg Quant1 Quant2 Quant3 Quant4 Chi2Test
Syst +(%) - (%) +(%) - (%) +(%) - (%) +(%) - (%) + -
SmallXsecsNumu +46.56 -45.83 +51.03 -49.60 +58.67 -57.21 +69.29 -65.81 1.448 1.322
SmallXsecsNumuE +64.68 -61.86 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 1.428 1.306
Calibration -13.29 +13.77 -11.82 +11.06 -13.41 +11.22 -19.38 +21.87 0.124 0.154
CalibrationEnergy -17.45 +18.81 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.113 0.132
MECq0Shape -8.76 +14.18 +10.55 +8.99 +12.90 +2.83 +1.91 +0.35 0.044 0.014
MaNCRES +6.58 -6.11 +8.44 -7.36 +8.22 -6.67 +8.44 -6.05 0.038 0.025
MaNCRESEnergy +8.29 -6.26 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.037 0.025
Lightlevel +6.81 +6.09 +1.86 +1.64 +2.88 +2.76 +7.09 +3.30 0.026 0.016
Cherenkov +4.25 – -0.47 – +1.17 – +3.33 – 0.018 –
ppfxpc01 -7.39 +7.39 -7.34 +7.34 -7.18 +7.18 -7.08 +7.08 0.017 0.017
ppfxpc01Energy -7.14 +7.14 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.017 0.017
]LightlevelEnergy +5.97 +3.25 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.016 0.008
AbsHadEScale -7.32 +7.65 -5.17 +5.16 -3.95 +4.66 +0.88 -1.14 0.012 0.014
MaCCRES +1.81 -2.03 +6.15 -5.61 +6.72 -5.13 +2.90 -2.15 0.010 0.006
AllBeamTransport +4.59 -4.71 +4.72 -4.75 +5.00 -4.92 +5.35 -5.22 0.009 0.009
AllBeamTransportE +5.19 -5.10 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.009 0.009
AbsHadEScaleE -0.88 +0.83 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.008 0.009
MECq0ShapeEnergy +3.66 +2.34 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.008 0.002
CherenkovEnergy +2.73 – +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.008 –
MaCCRESEnergy +3.69 -2.89 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.007 0.004
CalibShape -0.19 – +1.26 – -1.63 – +1.66 – 0.006 –
RelHadEScale2017 +4.12 -3.66 +2.27 -2.73 +2.51 -2.34 -0.64 +0.55 0.004 0.004
ppfxpc04 -3.58 +3.58 -3.53 +3.53 -3.41 +3.41 -3.33 +3.33 0.004 0.004
MvCCRES +0.89 -0.83 +3.28 -2.76 +3.48 -2.71 +1.52 -1.19 0.003 0.002
CalibShapeEnergy +1.01 – +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 0.002 –
MvCCRESEnergy +1.93 -1.53 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.002 0.001
RPAShapeenh +3.84 -3.19 +4.01 -2.88 +2.25 -0.84 +0.75 -0.18 0.002 0.001
AbsMuEScale -0.88 +1.32 -1.11 +0.33 -0.83 +1.16 +0.54 -0.58 0.001 0.001
ppfxpc00 +1.85 -1.85 +1.78 -1.78 +1.58 -1.58 +1.47 -1.47 0.001 0.001
ppfxpc00Energy +1.54 -1.54 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.001 0.001
ppfxpc02 +1.64 -1.64 +1.64 -1.64 +1.65 -1.65 +1.61 -1.61 0.001 0.001
RPAShapeenhE +1.45 -0.70 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.001 0.000
ppfxpc03 +1.31 -1.31 +1.42 -1.42 +1.48 -1.48 +1.44 -1.44 0.001 0.001
ppfxpc03Energy +1.43 -1.43 +0.00 +0.00 +0.00 +0.00 +450.00 +0.00 0.001 0.001
DISvnCC1pi +0.28 -0.28 +0.54 -0.54 +1.02 -1.02 +1.09 -1.09 0.000 0.000
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B.1 Systematic Uncertainties

Table B.5: Calibration shape - νe

Bin 1

Nom. Shift % Diff.

νe signal 3.6 3.6 -0.4

Tot beam bkg 4.7 4.9 +4.1

Beam νe CC 0.85 0.86 +1.0

NC 3.2 3.4 +4.0

νµ CC 0.49 0.55 +12.3

ντ CC 0.11 0.1 -4.1

Bin 2

Nom. Shift % Diff.

6.2 6.2 -0.7

3.8 3.8 +1.0

1.5 1.5 +0.0

1.8 1.9 +0.5

0.28 0.31 +8.5

0.13 0.13 +3.0

Bin 3

Nom. Shift % Diff.

27 27 -1.1

5.4 5.4 +1.2

3.9 4 +0.9

1.1 1.1 +3.8

0.16 0.15 -6.2

0.17 0.17 -0.2

Bin 4

Nom. Shift % Diff.

5.2 5.1 -3.0

1.2 1.1 -4.2

0.89 0.83 -6.7

0.2 0.21 +7.6

0.055 0.055 +0.4

0.033 0.027 -16.0

Table B.6: Calibration Shape - νµ

(a)Quantile 1

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 34.053 32.928 – -3.3 –

Tot beam bkg 0.211 0.210 – -0.2 –

νe CC 0.000 0.000 – -11.8 –

NC 0.078 0.077 – -0.9 –

νµApp 0.041 0.041 – +0.8 –

ντ CC 0.092 0.092 – +0.0 –

(b)Quantile 2

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 25.435 25.231 – -0.8 –

Tot beam bkg 0.295 0.298 – +1.3 –

νe CC 0.002 0.002 – -3.6 –

NC 0.139 0.144 – +3.3 –

νµApp 0.040 0.040 – +0.0 –

ντ CC 0.113 0.113 – -0.7 –

(c)Quantile 3

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 26.638 26.646 – +0.0 –

Tot beam bkg 0.515 0.507 – -1.6 –

νe CC 0.015 0.015 – +0.9 –

NC 0.330 0.324 – -2.0 –

νµApp 0.039 0.038 – -2.1 –

ντ CC 0.131 0.130 – -0.8 –

(d)Quantile 4

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 32.445 32.671 – +0.7 –

Tot beam bkg 2.377 2.417 – +1.7 –

νe CC 0.234 0.247 – +5.5 –

NC 1.952 1.977 – +1.3 –

νµApp 0.043 0.042 – -1.9 –

ντ CC 0.149 0.151 – +1.5 –
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Table B.7: Absolute calibration - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 -0.9 +1.2 6.2 6.3 6.2 +0.8 -0.5 27 28 26 +1.8 -3.6 5.2 5.3 5.1 +2.1 -3.3

Tot beam bkg 4.7 4.6 4.6 -1.7 -1.2 3.8 3.8 3.8 -0.3 +1.5 5.4 5.3 5.6 -1.3 +3.7 1.2 1.1 1.2 -4.8 +4.7

Beam νe CC 0.85 0.81 0.91 -5.0 +6.5 1.5 1.4 1.6 -4.7 +2.8 3.9 3.7 4.2 -4.9 +7.4 0.89 0.83 0.95 -7.3 +6.7

NC 3.2 3.3 3.1 +0.4 -5.8 1.8 1.9 1.8 +4.5 +0.2 1.1 1.2 1 +12.6 -7.8 0.2 0.21 0.2 +5.6 -0.5

νµ CC 0.49 0.45 0.57 -9.0 +16.6 0.28 0.27 0.29 -5.3 +0.1 0.16 0.15 0.15 -3.9 -8.0 0.055 0.055 0.05 +0.5 -8.1

ντ CC 0.11 0.1 0.1 -1.9 -2.1 0.13 0.12 0.14 -5.8 +8.0 0.17 0.16 0.18 -4.0 +3.3 0.033 0.029 0.033 -10.2 +2.4

Table B.8: Absolute calibration - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 32 35 -4.6 +1.6

Tot beam bkg 0.21 0.18 0.24 -13.3 +13.8

NC 0.078 0.063 0.093 -18.6 +19.7

νµ App 0.041 0.037 0.045 -10.1 +8.6

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.082 0.1 -10.1 +11.1

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 24 26 -4.5 +3.1

Tot beam bkg 0.29 0.26 0.33 -11.8 +11.1

NC 0.14 0.11 0.17 -20.8 +20.0

νµ App 0.04 0.04 0.041 +0.4 +2.6

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.11 0.12 -4.7 +2.5

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 25 28 -5.6 +5.0

Tot beam bkg 0.52 0.45 0.57 -13.4 +11.2

NC 0.33 0.27 0.39 -19.5 +17.6

νµ App 0.039 0.039 0.036 +1.7 -8.3

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.13 0.13 -1.4 -0.5

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 31 34 -4.0 +4.1

Tot beam bkg 2.4 1.9 2.9 -19.4 +21.9

NC 2 1.6 2.4 -20.6 +22.7

νµ App 0.043 0.041 0.041 -4.0 -2.9

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.14 0.16 -7.9 +7.6
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Table B.9: Cherenkov - νe

Bin 1

Nom. Shift % Diff.

νe signal 3.5 3.5 +0.0

Tot beam bkg 4.5 4.7 +4.5

Beam νe CC 0.87 0.9 +3.8

NC 3.1 3.2 +4.5

νµ CC 0.49 0.53 +6.4

ντ CC 0.11 0.11 +1.5

Bin 2

Nom. Shift % Diff.

6.1 6.1 +0.5

3.5 3.6 +2.6

1.5 1.5 +1.5

1.7 1.7 +3.3

0.28 0.29 +4.1

0.12 0.13 +2.0

Bin 3

Nom. Shift % Diff.

27 27 +0.0

5.4 5.4 -1.6

4 3.9 -1.7

1.2 1.2 -1.3

0.15 0.14 -4.1

0.17 0.17 +0.6

Bin 4

Nom. Shift % Diff.

5.1 5.1 +0.1

1.2 1.2 -1.2

0.91 0.89 -2.1

0.21 0.22 +4.1

0.046 0.043 -7.0

0.032 0.032 +0.3

Table B.10: Cherenkov - νµ

(a)Quantile 1

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 34.692 34.344 – -1.0 –

Tot beam bkg 0.216 0.225 – +4.2 –

νe CC 0.000 0.001 – +149.5 –

NC 0.082 0.091 – +10.7 –

νµApp 0.042 0.043 – +1.4 –

ντ CC 0.091 0.091 – -0.7 –

(b)Quantile 2

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 24.898 24.976 – +0.3 –

Tot beam bkg 0.297 0.295 – -0.5 –

νe CC 0.002 0.002 – -2.8 –

NC 0.144 0.142 – -1.2 –

νµApp 0.039 0.039 – +0.5 –

ντ CC 0.112 0.112 – +0.2 –

(c)Quantile 3

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 26.178 26.418 – +0.9 –

Tot beam bkg 0.536 0.542 – +1.2 –

νe CC 0.017 0.016 – -3.3 –

NC 0.348 0.355 – +2.0 –

νµApp 0.038 0.037 – -2.1 –

ντ CC 0.134 0.134 – +0.4 –

(d)Quantile 4

Nominal Sh(+) Sh(-) %(+) %(-)

νµ signal 31.915 31.957 – +0.1 –

Tot beam bkg 2.410 2.490 – +3.3 –

νe CC 0.227 0.244 – +7.5 –

NC 1.994 2.061 – +3.4 –

νµApp 0.042 0.041 – -1.8 –

ντ CC 0.147 0.145 – -2.0 –
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Table B.11: Light level - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.5 3.6 3.5 +1.5 +1.3 6.1 6.1 6.1 +0.7 +1.0 27 27 27 +0.8 +0.2 5.1 5.2 5 +2.6 -2.3

Tot beam bkg 4.5 4.6 4.5 +2.3 +0.1 3.5 3.5 3.7 -1.4 +6.0 5.4 5.4 5.2 -0.7 -3.9 1.2 1.2 1.1 +0.5 -4.9

Beam νe CC 0.87 0.88 0.94 +1.1 +7.8 1.5 1.5 1.5 -0.0 +3.0 4 4 3.9 +1.5 -1.2 0.91 0.91 0.88 -0.5 -3.6

NC 3.1 3.1 2.9 +1.8 -3.7 1.7 1.6 1.8 -3.0 +9.8 1.2 1.1 0.99 -8.4 -16.1 0.21 0.21 0.18 +1.6 -13.5

νµ CC 0.49 0.53 0.54 +7.8 +9.5 0.28 0.28 0.28 +1.8 +0.6 0.15 0.14 0.17 -2.4 +15.6 0.046 0.051 0.047 +11.1 +2.1

ντ CC 0.11 0.11 0.11 +2.1 +2.6 0.12 0.12 0.13 -3.7 +3.1 0.17 0.17 0.17 +2.1 +1.7 0.032 0.034 0.033 +8.1 +3.6

Table B.12: Light level - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 35 35 35 +0.6 +0.1

Tot beam bkg 0.22 0.23 0.23 +6.8 +6.1

NC 0.082 0.094 0.093 +14.5 +13.4

νµ App 0.042 0.043 0.043 +1.9 +1.4

νe CC 0.00026 0.00026 0.00026 +0.0 +0.0

ντ CC 0.091 0.093 0.093 +1.9 +1.4

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 25 25 +1.4 +0.7

Tot beam bkg 0.3 0.3 0.3 +1.9 +1.6

NC 0.14 0.15 0.15 +3.8 +2.2

νµ App 0.039 0.04 0.04 +1.8 +3.4

νe CC 0.002 0.002 0.002 +0.0 +0.0

ντ CC 0.11 0.11 0.11 -0.8 +0.4

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 26 27 26 +2.0 +0.5

Tot beam bkg 0.54 0.55 0.55 +2.9 +2.8

NC 0.35 0.36 0.36 +3.9 +3.2

νµ App 0.038 0.039 0.039 +2.3 +3.0

νe CC 0.017 0.017 0.017 +0.0 +0.0

ντ CC 0.13 0.13 0.13 -0.4 +0.5

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 32 +2.4 -0.8

Tot beam bkg 2.4 2.6 2.5 +7.1 +3.3

NC 2 2.1 2.1 +7.4 +2.9

νµ App 0.042 0.042 0.042 +1.0 +0.3

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.15 -0.5 -0.7
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Table B.13: MEC q0 Shape - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.7 3.6 +4.2 +1.4 6.2 6.4 6.3 +3.3 +1.9 27 26 30 -4.2 +8.9 5.2 5.1 5.7 -3.4 +9.4

Tot beam bkg 4.7 4.7 4.7 +1.0 +0.9 3.8 3.8 3.8 +1.5 +1.1 5.4 5.5 5.4 +3.2 +0.0 1.2 1.2 1.2 +3.0 -1.0

Beam νe CC 0.85 0.89 0.86 +4.2 +0.8 1.5 1.5 1.5 +0.7 -0.1 3.9 3.9 4.1 -0.9 +3.7 0.89 0.88 0.91 -1.7 +2.1

NC 3.2 3.2 3.3 -0.7 +0.5 1.8 1.9 1.9 +0.6 +0.7 1.1 1.3 0.89 +17.3 -18.2 0.2 0.23 0.16 +17.4 -18.6

νµ CC 0.49 0.49 0.49 +0.4 -0.6 0.28 0.28 0.28 -1.2 -0.5 0.16 0.16 0.17 -2.5 +3.2 0.055 0.062 0.054 +12.9 -1.3

ντ CC 0.11 0.14 0.13 +31.3 +22.9 0.13 0.16 0.16 +30.6 +24.4 0.17 0.2 0.22 +14.6 +26.1 0.033 0.041 0.039 +25.6 +20.8

Table B.14: MEC q0 Shape - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 33 35 -1.9 +3.4

Tot beam bkg 0.21 0.19 0.24 -8.8 +14.2

NC 0.078 0.077 0.077 -0.2 -0.2

νµ App 0.041 0.036 0.046 -13.5 +10.6

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.079 0.12 -13.9 +28.1

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 24 28 -5.3 +12.0

Tot beam bkg 0.29 0.33 0.32 +10.5 +9.0

NC 0.14 0.14 0.14 -0.3 -0.3

νµ App 0.04 0.041 0.038 +2.4 -4.2

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.14 0.14 +26.9 +25.2

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 26 29 -3.6 +7.9

Tot beam bkg 0.52 0.58 0.53 +12.9 +2.8

NC 0.33 0.33 0.33 -0.0 -0.0

νµ App 0.039 0.041 0.039 +5.3 -0.4

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.2 0.15 +49.3 +11.3

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 32 32 -0.4 -0.6

Tot beam bkg 2.4 2.4 2.4 +1.9 +0.4

NC 2 1.9 1.9 -0.1 -0.1

νµ App 0.043 0.043 0.043 +0.7 +0.2

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.2 0.16 +32.2 +7.5
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Table B.15: RPA Shape Resonance - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.7 3.6 +4.2 +0.0 6.2 6.4 6.2 +3.3 +0.0 27 28 27 +4.0 +0.0 5.2 5.5 5.2 +4.6 +0.0

Tot beam bkg 4.7 4.7 4.7 +0.1 +0.0 3.8 3.8 3.8 +0.3 +0.1 5.4 5.3 5.3 -0.1 -0.1 1.2 1.2 1.2 +0.7 -0.1

Beam νe CC 0.85 0.85 0.85 +0.5 +0.1 1.5 1.5 1.5 +0.0 -0.0 3.9 4 3.9 +0.7 +0.0 0.89 0.91 0.89 +1.5 +0.0

NC 3.2 3.2 3.2 -0.1 +0.0 1.8 1.9 1.8 +0.3 +0.3 1.1 1 1.1 -4.1 -0.5 0.2 0.19 0.2 -4.2 -0.5

νµ CC 0.49 0.49 0.49 +0.3 -0.1 0.28 0.29 0.28 +0.8 -0.0 0.16 0.17 0.16 +5.3 +0.2 0.055 0.057 0.055 +4.2 +0.3

ντ CC 0.11 0.11 0.11 +2.1 +0.0 0.13 0.13 0.13 +1.6 +0.0 0.17 0.17 0.17 +1.0 +0.0 0.033 0.033 0.033 +1.0 +0.0

Table B.16: RPA Shape Resonance - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 35 34 +1.7 +0.0

Tot beam bkg 0.21 0.21 0.21 -1.4 +0.0

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.039 0.041 -5.1 +0.0

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.091 0.092 -0.9 +0.0

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 27 25 +4.6 +0.0

Tot beam bkg 0.29 0.29 0.29 -0.4 +0.0

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.037 0.04 -6.3 +0.0

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.11 0.11 +1.2 +0.0

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 28 27 +6.1 +0.0

Tot beam bkg 0.52 0.52 0.52 +0.6 +0.0

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.038 0.039 -2.9 +0.0

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.14 0.13 +3.4 +0.0

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 32 +2.2 +0.0

Tot beam bkg 2.4 2.4 2.4 +0.2 +0.0

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.043 0.043 -0.0 +0.0

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.15 +3.4 +0.0
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Table B.17: Ma CC Resonance - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.8 3.4 +5.5 -4.8 6.2 6.5 5.9 +4.7 -4.4 27 27 27 +0.8 -0.2 5.2 5.3 5.2 +1.2 -0.6

Tot beam bkg 4.7 4.7 4.7 -0.2 +0.4 3.8 3.8 3.7 +1.4 -1.3 5.4 5.5 5.2 +2.9 -2.8 1.2 1.2 1.1 +3.6 -3.1

Beam νe CC 0.85 0.89 0.81 +5.1 -4.3 1.5 1.6 1.4 +5.0 -4.6 3.9 4.1 3.8 +3.6 -3.4 0.89 0.93 0.86 +4.4 -3.8

NC 3.2 3.2 3.3 -2.3 +2.1 1.8 1.8 1.9 -2.0 +1.7 1.1 1.1 1.1 +0.9 -1.8 0.2 0.2 0.19 +1.0 -1.9

νµ CC 0.49 0.5 0.48 +1.4 -0.9 0.28 0.29 0.29 +0.5 +0.3 0.16 0.15 0.17 -6.5 +8.2 0.055 0.051 0.059 -5.9 +7.3

ντ CC 0.11 0.12 0.095 +14.7 -10.9 0.13 0.14 0.11 +12.3 -9.5 0.17 0.19 0.16 +9.1 -7.3 0.033 0.036 0.03 +11.6 -8.4

Table B.18: Ma CC Resonance - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 -0.1 +0.2

Tot beam bkg 0.21 0.21 0.21 +1.8 -2.0

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.042 0.04 +2.5 -3.2

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.094 0.089 +3.0 -3.2

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 26 25 +1.3 -0.8

Tot beam bkg 0.29 0.31 0.28 +6.1 -5.6

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.043 0.036 +8.4 -9.2

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.13 0.1 +12.9 -11.2

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 28 26 +3.8 -2.4

Tot beam bkg 0.52 0.55 0.49 +6.7 -5.1

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.044 0.034 +14.0 -13.3

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.16 0.11 +21.3 -15.4

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 36 28 +12.1 -10.8

Tot beam bkg 2.4 2.4 2.3 +2.9 -2.2

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.048 0.038 +12.5 -10.6

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.19 0.12 +25.0 -16.0
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Table B.19: MaNC Resonance - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 -0.1 +0.0 6.2 6.2 6.2 -0.1 +0.0 27 27 27 -0.1 +0.0 5.2 5.2 5.2 -0.1 +0.0

Tot beam bkg 4.7 4.7 4.7 -0.7 +0.8 3.8 3.8 3.8 -0.2 +0.2 5.4 5.4 5.3 +0.4 -0.4 1.2 1.2 1.2 -0.1 +0.1

Beam νe CC 0.85 0.85 0.85 -0.5 +0.3 1.5 1.5 1.5 -0.4 +0.3 3.9 3.9 4 -0.5 +0.4 0.89 0.89 0.9 -0.5 +0.4

NC 3.2 3.2 3.3 -1.2 +1.3 1.8 1.8 1.8 -0.2 +0.2 1.1 1.1 1.1 +3.6 -3.1 0.2 0.2 0.2 +1.1 -0.8

νµ CC 0.49 0.5 0.48 +1.4 -1.5 0.28 0.29 0.28 +0.9 -0.9 0.16 0.16 0.16 +0.6 -0.4 0.055 0.055 0.054 +0.6 -0.4

ντ CC 0.11 0.11 0.11 +0.0 +0.0 0.13 0.13 0.13 +0.0 +0.0 0.17 0.17 0.17 +0.0 +0.0 0.033 0.033 0.033 +0.0 +0.0

Table B.20: MaNC Resonance - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 -0.0 +0.0

Tot beam bkg 0.21 0.22 0.2 +6.6 -6.1

NC 0.078 0.091 0.065 +17.9 -16.6

νµ App 0.041 0.041 0.041 +0.0 +0.0

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.092 0.092 +0.0 +0.0

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 25 25 -0.0 +0.0

Tot beam bkg 0.29 0.32 0.27 +8.4 -7.4

NC 0.14 0.16 0.12 +17.8 -15.5

νµ App 0.04 0.04 0.04 +0.0 +0.0

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.11 0.11 +0.0 +0.0

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 -0.1 +0.0

Tot beam bkg 0.52 0.56 0.48 +8.2 -6.7

NC 0.33 0.37 0.3 +12.8 -10.4

νµ App 0.039 0.039 0.039 +0.0 +0.0

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.13 0.13 +0.0 +0.0

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 32 32 -0.2 +0.1

Tot beam bkg 2.4 2.6 2.2 +8.4 -6.0

NC 2 2.2 1.8 +10.3 -7.4

νµ App 0.043 0.043 0.043 +0.0 +0.0

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.15 +0.0 +0.0
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Table B.21: Mv CC Resonance - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.7 3.5 +3.5 -3.0 6.2 6.4 6 +3.0 -2.6 27 27 27 +0.6 -0.4 5.2 5.3 5.2 +0.9 -0.7

Tot beam bkg 4.7 4.7 4.7 -0.1 +0.2 3.8 3.8 3.7 +0.9 -0.8 5.4 5.4 5.3 +1.7 -1.5 1.2 1.2 1.2 +2.0 -1.7

Beam νe CC 0.85 0.87 0.83 +2.7 -2.2 1.5 1.5 1.5 +2.7 -2.4 3.9 4 3.9 +2.1 -1.8 0.89 0.92 0.87 +2.5 -2.1

NC 3.2 3.2 3.3 -1.2 +1.1 1.8 1.8 1.9 -0.9 +0.6 1.1 1.1 1.1 +0.5 -0.8 0.2 0.2 0.2 +0.6 -0.8

νµ CC 0.49 0.49 0.49 +0.7 -0.5 0.28 0.28 0.29 -0.1 +0.2 0.16 0.15 0.17 -3.8 +3.8 0.055 0.053 0.057 -3.3 +3.4

ντ CC 0.11 0.11 0.1 +7.6 -5.8 0.13 0.13 0.12 +6.5 -5.0 0.17 0.18 0.17 +4.8 -3.8 0.033 0.035 0.031 +6.1 -4.5

Table B.22: Mv CC Resonance - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.0 +0.0

Tot beam bkg 0.21 0.21 0.21 +0.9 -0.8

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.042 0.041 +1.1 -1.2

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.093 0.09 +1.5 -1.4

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 26 25 +0.9 -0.7

Tot beam bkg 0.29 0.3 0.29 +3.3 -2.8

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.041 0.038 +4.4 -4.1

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.12 0.11 +6.9 -5.6

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 26 +2.2 -1.7

Tot beam bkg 0.52 0.53 0.5 +3.5 -2.7

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.042 0.036 +7.8 -6.8

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.15 0.12 +10.8 -8.2

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 32 +1.1 -0.8

Tot beam bkg 2.4 2.4 2.3 +1.5 -1.2

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.046 0.04 +6.8 -5.7

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.17 0.14 +12.2 -8.8
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Table B.23: RPA Shape Enh - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.2 +1.0 6.2 6.2 6.2 +0.6 +0.4 27 28 27 +1.7 -1.0 5.2 5.3 5.2 +1.9 -1.1

Tot beam bkg 4.7 4.7 4.7 +0.1 -0.0 3.8 3.8 3.8 +0.4 +0.2 5.4 5.4 5.4 +0.3 +0.1 1.2 1.2 1.2 +0.7 +0.1

Beam νe CC 0.85 0.86 0.85 +1.2 +0.2 1.5 1.5 1.5 +1.1 -0.1 3.9 4 3.9 +1.4 -0.6 0.89 0.91 0.89 +1.7 -0.5

NC 3.2 3.2 3.2 -0.4 +0.0 1.8 1.8 1.9 -0.6 +0.7 1.1 1 1.1 -4.8 +3.3 0.2 0.19 0.2 -4.9 +3.4

νµ CC 0.49 0.49 0.49 +0.1 +0.2 0.28 0.29 0.29 +0.1 +0.4 0.16 0.16 0.16 +0.4 -0.3 0.055 0.055 0.055 +1.2 -0.3

ντ CC 0.11 0.11 0.1 +7.3 -3.7 0.13 0.13 0.12 +7.2 -4.2 0.17 0.18 0.16 +7.0 -4.5 0.033 0.035 0.031 +6.8 -3.9

Table B.24: RPA Shape Enh - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.5 -0.3

Tot beam bkg 0.21 0.22 0.2 +3.8 -3.2

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.043 0.039 +4.9 -4.3

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.098 0.087 +6.6 -5.4

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 26 25 +1.3 -0.9

Tot beam bkg 0.29 0.31 0.29 +4.0 -2.9

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.042 0.038 +6.3 -5.0

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.12 0.11 +8.2 -5.7

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 +1.2 +0.2

Tot beam bkg 0.52 0.53 0.51 +2.2 -0.8

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.041 0.038 +5.3 -3.2

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.14 0.13 +6.9 -2.2

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 33 +0.3 +0.5

Tot beam bkg 2.4 2.4 2.4 +0.8 -0.2

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.044 0.042 +3.6 -1.7

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.16 0.15 +5.8 -0.6
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Table B.25: DIS vn CC 1π - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.7 3.5 +3.1 -3.1 6.2 6.3 6.1 +2.2 -2.2 27 27 27 +0.5 -0.5 5.2 5.3 5.2 +0.6 -0.6

Tot beam bkg 4.7 4.7 4.7 -0.6 +0.8 3.8 3.7 3.8 -0.5 +0.6 5.4 5.4 5.4 +0.1 -0.0 1.2 1.2 1.2 +0.3 -0.2

Beam νe CC 0.85 0.88 0.82 +3.5 -3.5 1.5 1.5 1.5 +1.6 -1.5 3.9 3.9 3.9 -0.1 +0.2 0.89 0.9 0.89 +0.2 -0.2

NC 3.2 3.2 3.3 -2.2 +2.6 1.8 1.8 1.9 -2.9 +3.3 1.1 1.1 1.1 -0.1 +0.1 0.2 0.2 0.2 -0.0 -0.0

νµ CC 0.49 0.5 0.47 +2.6 -3.2 0.28 0.3 0.27 +4.4 -5.2 0.16 0.17 0.15 +4.3 -5.1 0.055 0.055 0.054 +1.3 -1.2

ντ CC 0.11 0.11 0.11 +0.9 -0.9 0.13 0.13 0.12 +0.7 -0.7 0.17 0.17 0.17 +0.4 -0.4 0.033 0.033 0.032 +0.6 -0.6

Table B.26: DIS vn CC 1π - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 -0.1 +0.1

Tot beam bkg 0.21 0.21 0.21 +0.3 -0.3

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.041 0.041 +0.5 -0.5

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.092 0.091 +0.3 -0.3

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 25 25 +0.1 -0.1

Tot beam bkg 0.29 0.3 0.29 +0.5 -0.5

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.04 0.039 +1.1 -1.1

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.11 0.11 +0.6 -0.6

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 26 +0.7 -0.7

Tot beam bkg 0.52 0.52 0.51 +1.0 -1.0

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.04 0.037 +3.3 -3.3

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.13 0.13 +1.7 -1.7

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 32 +0.7 -0.8

Tot beam bkg 2.4 2.4 2.4 +1.1 -1.1

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.045 0.04 +6.1 -6.1

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.14 +3.0 -3.0
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Table B.27: Ma CC Quasi-elastic - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.1 +0.2 6.2 6.2 6.2 +0.3 -0.0 27 28 27 +1.2 -1.1 5.2 5.3 5.2 +1.4 -1.2

Tot beam bkg 4.7 4.7 4.7 -0.0 +0.0 3.8 3.8 3.8 +0.1 +0.1 5.4 5.4 5.4 -0.0 -0.0 1.2 1.2 1.2 +0.3 -0.2

Beam νe CC 0.85 0.85 0.85 +0.5 -0.1 1.5 1.5 1.5 +0.3 -0.3 3.9 4 3.9 +0.8 -0.6 0.89 0.9 0.89 +1.1 -0.8

NC 3.2 3.2 3.2 -0.2 +0.2 1.8 1.8 1.9 -0.2 +0.6 1.1 1 1.1 -3.5 +2.6 0.2 0.19 0.2 -3.5 +2.6

νµ CC 0.49 0.49 0.49 +0.1 -0.1 0.28 0.29 0.28 +0.2 -0.1 0.16 0.16 0.16 +1.0 -0.5 0.055 0.055 0.054 +1.2 -0.7

ντ CC 0.11 0.11 0.1 +2.7 -2.0 0.13 0.13 0.12 +2.7 -2.1 0.17 0.18 0.17 +2.7 -2.2 0.033 0.034 0.032 +2.8 -2.2

Table B.28: Ma CC Quasi-elastic - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.6 -0.5

Tot beam bkg 0.21 0.21 0.21 +1.8 -1.8

NC 0.078 0.078 0.078 +0.0 +0.0

νµ App 0.041 0.042 0.04 +1.9 -2.1

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.095 0.089 +3.2 -3.1

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 26 25 +0.9 -0.7

Tot beam bkg 0.29 0.3 0.29 +1.2 -1.0

NC 0.14 0.14 0.14 +0.0 +0.0

νµ App 0.04 0.04 0.039 +1.5 -1.3

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.12 0.11 +2.7 -2.1

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 +0.7 -0.5

Tot beam bkg 0.52 0.52 0.51 +0.7 -0.5

NC 0.33 0.33 0.33 +0.0 +0.0

νµ App 0.039 0.039 0.038 +1.0 -0.8

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.13 0.13 +2.2 -1.5

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 32 32 +0.1 -0.0

Tot beam bkg 2.4 2.4 2.4 +0.1 -0.1

NC 2 2 2 +0.0 +0.0

νµ App 0.043 0.043 0.043 +0.3 -0.2

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.15 +1.9 -1.2
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Table B.29: Other cross section systematics - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.7 3.4 +2.2 -6.2 6.2 6.2 6.1 +0.3 -1.3 27 26 30 -3.9 +11.5 5.2 5 6 -4.6 +13.6

Tot beam bkg 4.7 4.9 4.2 +4.9 -9.6 3.8 4 3.4 +7.0 -9.4 5.4 5.6 5 +4.3 -6.6 1.2 1.2 1.1 +3.9 -4.6

Beam νe CC 0.85 0.87 0.88 +2.4 +3.0 1.5 1.6 1.6 +2.8 +3.1 3.9 3.9 4.3 -0.8 +8.7 0.89 0.89 0.97 -0.5 +9.1

NC 3.2 3.4 2.8 +5.7 -14.4 1.8 2 1.5 +9.6 -19.5 1.1 1.3 0.43 +19.1 -60.4 0.2 0.24 0.072 +19.5 -63.8

νµ CC 0.49 0.47 0.52 -3.1 +7.1 0.28 0.28 0.29 -1.9 +2.0 0.16 0.15 0.18 -3.9 +10.5 0.055 0.055 0.058 -0.3 +6.4

ντ CC 0.11 0.15 0.065 +39.6 -38.7 0.13 0.17 0.079 +38.1 -37.3 0.17 0.23 0.11 +35.1 -34.3 0.033 0.045 0.021 +37.7 -37.0

Table B.30: Other cross section systematics - νe

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 31 44 17 +44.1 -44.3

Tot beam bkg 0.21 0.31 0.11 +46.6 -45.8

NC 0.078 0.12 0.035 +56.2 -54.4

νµ App 0.041 0.059 0.023 +43.4 -43.9

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.13 0.056 +39.8 -39.4

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 30 43 16 +44.9 -45.2

Tot beam bkg 0.29 0.44 0.15 +51.0 -49.6

NC 0.14 0.22 0.059 +60.5 -58.0

νµ App 0.04 0.057 0.022 +45.1 -45.3

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.16 0.067 +41.7 -40.8

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 30 45 15 +49.7 -49.6

Tot beam bkg 0.52 0.82 0.22 +58.7 -57.2

NC 0.33 0.55 0.12 +65.5 -63.3

νµ App 0.039 0.059 0.019 +51.1 -50.3

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.19 0.074 +44.7 -43.7

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 51 13 +59.6 -58.2

Tot beam bkg 2.4 4 0.81 +69.3 -65.8

NC 2 3.4 0.61 +72.7 -68.5

νµ App 0.043 0.069 0.017 +61.6 -59.8

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.22 0.08 +47.5 -46.4
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Table B.31: Summed beam transport systematics - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.5 -0.4 6.2 6.2 6.2 +0.5 -0.4 27 27 27 +0.6 -0.5 5.2 5.3 5.2 +0.7 -0.6

Tot beam bkg 4.7 4.7 4.7 +0.3 -0.1 3.8 3.8 3.8 +0.4 -0.0 5.4 5.4 5.3 +0.4 -0.5 1.2 1.2 1.2 +0.2 -0.4

Beam νe CC 0.85 0.84 0.86 -1.2 +0.8 1.5 1.5 1.5 -0.9 +0.5 3.9 3.9 4 -0.5 +0.5 0.89 0.89 0.9 -0.6 +0.5

NC 3.2 3.3 3.2 +0.4 -0.0 1.8 1.9 1.8 +1.0 +0.0 1.1 1.1 1 +2.4 -3.4 0.2 0.2 0.19 +2.4 -3.2

νµ CC 0.49 0.49 0.49 +1.1 -0.8 0.28 0.29 0.28 +1.6 -1.1 0.16 0.16 0.16 +2.6 -1.2 0.055 0.056 0.054 +2.7 -1.3

ντ CC 0.11 0.11 0.1 +4.9 -4.9 0.13 0.13 0.12 +4.9 -4.9 0.17 0.18 0.16 +4.9 -4.8 0.033 0.034 0.031 +4.8 -4.7

Table B.32: Summed beam transport systematics - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.0 +0.1

Tot beam bkg 0.21 0.22 0.2 +4.6 -4.7

NC 0.078 0.082 0.073 +5.4 -5.3

νµ App 0.041 0.042 0.04 +2.8 -3.6

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.096 0.087 +4.8 -4.7

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 25 25 +0.0 +0.1

Tot beam bkg 0.29 0.31 0.28 +4.7 -4.8

NC 0.14 0.15 0.13 +5.3 -5.2

νµ App 0.04 0.041 0.038 +2.8 -3.6

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.12 0.11 +4.7 -4.6

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 +0.0 +0.1

Tot beam bkg 0.52 0.54 0.49 +5.0 -4.9

NC 0.33 0.35 0.31 +5.4 -5.3

νµ App 0.039 0.04 0.037 +2.7 -3.6

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.14 0.13 +4.6 -4.4

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 32 32 +0.1 -0.0

Tot beam bkg 2.4 2.5 2.3 +5.3 -5.2

NC 2 2.1 1.8 +5.5 -5.3

νµ App 0.043 0.044 0.041 +2.7 -3.7

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.16 0.14 +4.5 -4.4
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Table B.33: PPFX Systematics (Principal component ”00”) - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 -0.1 +0.1 6.2 6.2 6.2 -0.1 +0.0 27 27 27 -0.2 +0.1 5.2 5.2 5.2 -0.2 +0.2

Tot beam bkg 4.7 4.7 4.7 -0.0 -0.0 3.8 3.8 3.8 -0.1 +0.1 5.4 5.3 5.4 -0.4 +0.4 1.2 1.2 1.2 -0.1 +0.1

Beam νe CC 0.85 0.85 0.85 +0.4 -0.3 1.5 1.5 1.5 +0.2 -0.2 3.9 3.9 3.9 -0.0 +0.1 0.89 0.89 0.89 +0.2 -0.1

NC 3.2 3.2 3.2 -0.2 +0.1 1.8 1.8 1.9 -0.5 +0.4 1.1 1.1 1.1 -2.1 +2.0 0.2 0.19 0.2 -1.8 +1.7

νµ CC 0.49 0.49 0.49 -0.3 +0.4 0.28 0.28 0.29 -0.6 +0.6 0.16 0.16 0.16 -0.6 +0.6 0.055 0.055 0.055 +0.3 -0.3

ντ CC 0.11 0.11 0.1 +2.9 -2.9 0.13 0.13 0.12 +2.8 -2.8 0.17 0.18 0.17 +2.7 -2.7 0.033 0.034 0.032 +3.0 -3.0

Table B.34: PPFX Systematics (Principal component ”00”) - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.3 -0.3

Tot beam bkg 0.21 0.21 0.21 +1.8 -1.8

NC 0.078 0.078 0.078 +0.1 -0.1

νµ App 0.041 0.042 0.04 +1.8 -1.8

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.095 0.088 +3.4 -3.4

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 26 25 +0.3 -0.3

Tot beam bkg 0.29 0.3 0.29 +1.8 -1.8

NC 0.14 0.14 0.14 +0.5 -0.5

νµ App 0.04 0.04 0.039 +1.7 -1.7

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.12 0.11 +3.4 -3.4

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 +0.3 -0.3

Tot beam bkg 0.52 0.52 0.51 +1.6 -1.6

NC 0.33 0.33 0.33 +0.9 -0.9

νµ App 0.039 0.039 0.038 +1.7 -1.7

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.14 0.13 +3.5 -3.5

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 33 32 +0.2 -0.2

Tot beam bkg 2.4 2.4 2.3 +1.5 -1.5

NC 2 2 1.9 +1.5 -1.5

νµ App 0.043 0.043 0.042 +1.7 -1.7

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.15 0.14 +3.5 -3.5
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Table B.35: PPFX Systematics (Principal component ”01”) - νe

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.2 -0.2 6.2 6.2 6.2 +0.2 -0.2 27 27 27 +0.3 -0.2 5.2 5.3 5.2 +0.3 -0.3

Tot beam bkg 4.7 4.7 4.7 +0.1 -0.0 3.8 3.8 3.8 +0.0 +0.0 5.4 5.4 5.3 +0.2 -0.1 1.2 1.2 1.2 +0.2 -0.1

Beam νe CC 0.85 0.85 0.85 +0.2 -0.1 1.5 1.5 1.5 +0.2 -0.1 3.9 4 3.9 +0.4 -0.3 0.89 0.9 0.89 +0.3 -0.2

NC 3.2 3.3 3.2 +0.4 -0.3 1.8 1.9 1.8 +0.5 -0.4 1.1 1.1 1.1 +1.0 -0.8 0.2 0.2 0.2 +1.0 -0.8

νµ CC 0.49 0.49 0.49 -0.1 +0.1 0.28 0.28 0.28 -0.1 +0.0 0.16 0.16 0.16 -0.0 +0.1 0.055 0.055 0.055 -0.3 +0.3

ντ CC 0.11 0.098 0.12 -8.1 +8.1 0.13 0.12 0.14 -8.1 +8.1 0.17 0.16 0.19 -8.0 +8.0 0.033 0.03 0.035 -7.9 +7.9

Table B.36: PPFX Systematics (Principal component ”01”) - νµ

(a)Quantile 1

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 34 34 34 +0.1 -0.1

Tot beam bkg 0.21 0.2 0.23 -7.4 +7.4

NC 0.078 0.072 0.083 -7.0 +7.0

νµ App 0.041 0.038 0.044 -6.6 +6.6

νe CC 0.00047 0.00047 0.00047 +0.0 +0.0

ντ CC 0.092 0.084 0.099 -8.1 +8.1

(b)Quantile 2

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 25 25 25 +0.1 -0.1

Tot beam bkg 0.29 0.27 0.32 -7.3 +7.3

NC 0.14 0.13 0.15 -7.1 +7.1

νµ App 0.04 0.037 0.042 -6.5 +6.5

νe CC 0.0022 0.0022 0.0022 +0.0 +0.0

ντ CC 0.11 0.1 0.12 -8.0 +8.0

(c)Quantile 3

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 27 27 27 +0.1 -0.1

Tot beam bkg 0.52 0.48 0.55 -7.2 +7.2

NC 0.33 0.31 0.35 -7.0 +7.0

νµ App 0.039 0.036 0.041 -6.5 +6.5

νe CC 0.015 0.015 0.015 +0.0 +0.0

ντ CC 0.13 0.12 0.14 -7.8 +7.8

(d)Quantile 4

Integral shift Nominal Shift (+) Shift (-) % Diff. (+) % Diff. (-)

νµ signal 32 32 32 +0.2 -0.2

Tot beam bkg 2.4 2.2 2.5 -7.1 +7.1

NC 2 1.8 2.1 -7.1 +7.1

νµ App 0.043 0.04 0.045 -6.5 +6.5

νe CC 0.23 0.23 0.23 +0.0 +0.0

ντ CC 0.15 0.14 0.16 -7.8 +7.8
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Table B.37: Extrapolation systematics - νe signal

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.0 +0.0 6.2 6.2 6.2 +0.0 +0.0 28 28 28 +0.0 +0.0 5.4 5.4 5.4 +0.0 +0.0

Tot beam bkg 4.1 4.1 4.1 +0.0 +0.0 3.6 3.6 3.6 +0.0 +0.0 4.8 4.8 4.8 +0.0 +0.0 1.2 1.2 1.2 +0.0 +0.0

Beam νe CC 0.82 0.82 0.82 +0.0 +0.0 1.5 1.5 1.5 +0.0 +0.0 3.7 3.7 3.7 +0.0 +0.0 0.98 0.98 0.98 +0.0 +0.0

NC 2.8 2.8 2.8 +0.0 +0.0 1.7 1.7 1.7 +0.0 +0.0 0.82 0.82 0.82 +0.0 +0.0 0.15 0.15 0.15 +0.0 +0.0

νµ CC 0.42 0.42 0.42 +0.0 +0.0 0.26 0.26 0.26 +0.0 +0.0 0.14 0.14 0.14 +0.0 +0.0 0.05 0.05 0.05 +0.0 +0.0

ντ CC 0.11 0.11 0.11 +0.0 +0.0 0.13 0.13 0.13 +0.0 +0.0 0.17 0.17 0.17 +0.0 +0.0 0.035 0.035 0.035 +0.0 +0.0

Table B.38: Extrapolation systematics - νe background

Bin 1 Bin 2 Bin 3 Bin 4

Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-) Nom. (+) (-) %(+) %(-)

νe signal 3.6 3.6 3.6 +0.0 +0.0 6.2 6.2 6.2 +0.0 +0.0 28 28 28 +0.0 +0.0 5.4 5.4 5.4 +0.0 +0.0

Tot beam bkg 4.1 4.2 4.1 +1.2 -1.2 3.6 3.6 3.5 +1.2 -1.2 4.8 4.9 4.8 +1.2 -1.2 1.2 1.2 1.2 +1.3 -1.3

Beam νe CC 0.82 0.83 0.81 +1.2 -1.2 1.5 1.5 1.5 +1.2 -1.2 3.7 3.8 3.7 +1.2 -1.2 0.98 0.99 0.97 +1.3 -1.3

NC 2.8 2.8 2.8 +1.2 -1.2 1.7 1.7 1.7 +1.2 -1.2 0.82 0.83 0.81 +1.2 -1.2 0.15 0.16 0.15 +1.3 -1.3

νµ CC 0.42 0.43 0.42 +1.2 -1.2 0.26 0.26 0.25 +1.2 -1.2 0.14 0.14 0.13 +1.2 -1.2 0.05 0.05 0.049 +1.3 -1.3

ντ CC 0.11 0.11 0.11 +1.2 -1.2 0.13 0.13 0.12 +1.2 -1.2 0.17 0.17 0.17 +1.2 -1.2 0.035 0.036 0.035 +1.3 -1.3
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APPENDIX C

Event Display Gallery
C.1 νe Core Sample Selected Events

Figure C.1: Selected νe core event.
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Figure C.2: Selected νe core event.

Figure C.3: Selected νe core event.
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Figure C.4: Selected νe core event.

Figure C.5: Selected νe core event.
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Figure C.6: Selected νe core event.

Figure C.7: Selected νe core event.
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Figure C.8: Selected νe core event.

Figure C.9: Selected νe core event.
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C.2 νe Peripheral Sample Selected Events

Figure C.10: Selected νe peripheral event.
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Figure C.11: Selected νe peripheral event.

Figure C.12: Selected νe peripheral event.
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Figure C.13: Selected νe peripheral event.

Figure C.14: Selected νe peripheral event.
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Figure C.15: Selected νe peripheral event.

Figure C.16: Selected νe peripheral event.
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Figure C.17: Selected νe peripheral event.

Figure C.18: Selected νe peripheral event.
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C.3 νµ Selected Events

Figure C.19: Selected νµ event.
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Figure C.20: Selected νµ event.

Figure C.21: Selected νµ event.
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Figure C.22: Selected νµ event.

Figure C.23: Selected νµ event.
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Figure C.24: Selected νµ event.

Figure C.25: Selected νµ event.
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Figure C.26: Selected νµ event.

Figure C.27: Selected νµ event.
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