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Abstract

Resonance is a powerful e�ect that occurs throughout nature. For example, the e�ect is
key to the excitement of playground swings and it underpins technologies ranging from
musical instruments to atomic clocks. In optics, microresonators are extensively used to
provide such enhancement and are employed in a number of areas including sensing, met-
rology, optomechanics, and quantum optics to name a few prominent examples.

�is thesis comprises twomain parts. One part expands the opticalmicroresonator control
toolbox by demonstrating suppression of backscattering.�e other part uses a whispering-
gallery-mode microresonator for resonant enhancement of a Brillouin optomechanical
interaction to prepare and characterise non-Gaussian mechanical states.

�e �rst part explores a technique for coherently controlling backscattering in mi-
croresonators by introducing a sub-wavelength-size scatterer within the near �eld of the
resonator.�e scatterer’s position determines the phase and amplitude of the induced
backscattering, and by tuning its position, destructive interference between the induced
and intrinsic backscattering can reduce unwanted optical back re�ections.�e presented
experiment demonstrates a suppression exceeding 34 dB of the intrinsic backscattering
level, limited by photodetector noise.�e technique can be applied to experiments where
backscattering is currently limiting performance, such as optical gyroscopes.

�e second part of this thesis presents an experiment preparing non-Gaussian states
of mechanical motion via heralded single- and double-phonon subtraction from a laser-
cooled thermal mechanical state.�e experiment utilises a combination of single-photon
detection for heralded state-preparation, and heterodyne detection for veri�cation and
characterisation of the prepared states.�e work advances the state of the art for optics-
based tomography of mechanical states by showing more than one order of magnitude
improvement in the s-parameter, which captures the e�ects of measurement ine�ciencies
and added noise in tomography and state reconstruction experiments. Further improving
the measurement e�ciency provides a path towards tomography of non-classical mech-
anical states via optomechanics.
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[..] whispering-gallery mi-
croresonators can open the
way to realize Feynman’s
quantum-mechanical
computer.
— Braginsky et al. [1]

chapter 1

Introduction and thesis overview

Since optical whispering-gallery-mode (wgm) microresonators were experimentally intro-
duced in 1989 by Braginsky et al. [1], an extensive research �eld has emerged, as covered
in reviews [2–7], textbooks [8–11], and a number of dissertations.�e micrometre-size
geometric features of the resonators con�ne the light to small volumes, which, combined
with low optical losses, means high optical intensities build up inside the resonators for
comparatively low input powers.�e high optical intensity gives access to nonlinear op-
tical e�ects at relatively low optical input powers. And like so many things in life and
physics, when something is nonlinear, it is usually more interesting.
Nonlinear optics refers to phenomena occurring when a dielectric material’s response

to an optical �eld depends on the applied electromagnetic �eld in a nonlinear manner [12,
13]. In a classical picture, this means that the dipole moment per volume, called the polar-
isation density, depends nonlinearly on the applied �eld.�e nonlinearly induced dipole
moment from the �eld can act as a classical source for the �eld, for instance generating
light at twice the frequency of the applied �eld, or a�ect the optical properties of the ma-
terial such as modifying the index of refraction. In a quantum picture, where the �elds are
quantised, the notion of photons is helpful for understanding nonlinear e�ects as photons
of di�erent frequencies being created and destroyed, with the total momentum and en-
ergy being conserved. A quantum representation is necessary for describing spontaneous
processes – those where spontaneous emission occurs due to vacuum �uctuations [14].

�e quantumpicture is also useful for describing nonlinear phenomenawhere photons
interact with quantised vibrations in a medium, called phonons [15]. To observe and study
this form of exchange of momentum and energy between optical �elds and mechanical
waves, high optical powers are typically needed to drive the interaction due to the relatively
low coupling between the light and mechanical vibrations. Microresonators can provide
these high optical powers combined with appreciable coupling and low damping of the
mechanical vibrations, meaning microresonators can be a compact experimental platform
for these types of studies.
Over the last three decades, a range of nonlinear optical e�ects have been observed

in microresonators such as spontaneous symmetry breaking [16, 17], parametric oscilla-
tions [18], Raman lasing [19], four-wave mixing [20], and frequency doubling [21] and
tripling [22]. Also optomechanical phenomena have been studied in microresonators, in-
cluding radiation-pressure-based [23–26] and Brillouin-scattering-based systems [27–31],
with the latter type �rst reported for wgm resonators in 2009 by Grudinin et al. [32] and
Tomes and Carmon [33].
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�e investigation is not so
complete as I should wish
it to be; but it has been
carried forward as far as
my limited time and means
would allow.
— Kerr [51]

With the broad range of e�ects observed in microresonators, these devices have be-
come a platform for studying optical phenomena, and have found numerous applications
within sensing [2, 7, 8, 34–39], ranging from detection of a single virus [40] to displace-
ments of attometres [41], metrology [42–44], quantum optics [45, 46], and classical and
quantum information processing [47–50], to name a few.

�e work presented in this thesis aims to expand the body of research onwgm resonat-
ors, in particular demonstrating a technique for reducing unwanted optical backscattering
and investigating applications of the platform for sensing and quantum state preparation
of acoustic modes.�e work is split into two parts: one part focussing on backscattering
suppression and near-�eld sensing using the Kerr nonlinearity, and the second part on
Brillouin quantum optomechanics.

1.1 wgm resonator backscattering control

As microresonators are becoming an optical component increasingly used for various ap-
plications, including commercial applications in out-of-lab environments, research seeking
to improve the performance, stability, and other key parameters is �ourishing. One avenue
for improvement is to exploit new ideas and e�ects to introduce novel protocols, another is
to better control properties currently limiting an application. One such limiting property
is the phase and magnitude of backre�ection inside the microresonator, which is crucial
to control for some applications.
A range of di�erent microresonator geometries exist, and they can be made from a

variety of dielectric materials, both crystalline and amorphous. For chip-based resonat-
ors, fabrication usually involves complex cleanroom processes [52, 53], whereas for other
geometries, time-consuming manual polishing [21, 54] is o�en needed. In 2013, Del’Haye
et al. [55] introduced laser-machined fused silica rods, permitting fabrication time of the
order of minutes, using relatively inexpensive equipment, with high reproducibility and
low optical losses.
However, for all fabrication methods and materials, imperfections in the resonator

surface or bulk material can cause scattering of some portion of the light circulating in the
resonator into the counter-propagating whispering-gallerymode through Rayleigh scatter-
ing [56].�e backscattered light can reduce the performance of the device for some applica-
tions and experiments, and thus methods for suppressing these backre�ections are sought
in the community. Recently, Kim et al. [57] demonstrated a Brillouin-optomechanical
method to reduce backscattering, showing ≃13 dB suppression.�e method is elegant but
sets some experimental requirements that can be challenging to ful�l, and the backscatter-
ing suppression scales in an unfavourable fashion with optomechanical coupling if high
suppression is desired.
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this thesis. Here, a method for suppressing backscattering in microresonators using
a near-�eld probe is presented, along with results from an experimental demonstration
showing a record >34 dB reduction in the backscattered optical power.�e method works
by the near-�eld probe coherently inducing backscattering with a controllable phase and
amplitude, which can be made to interfere destructively with the intrinsic backscattering,
eliminating the total backscattered power.�is work is the �rst experimental investiga-
tion of backscattering suppression with this method, and the technique and experimental
results are published in Svela et al. [58].

�e presented method can be applied not only to the microrod wgm resonator used
here but also to on-chip optical resonators. �e control scatterer can be permanently
integrated on-chip for better stability and for example microelectromechanical actuators
can provide tuning.
For this work, silica rodmicroresonators with exceptionally high optical quality factors

(≥109) were fabricated using a – to the best of the author’s knowledge – novel modi�ca-
tion to the laser-lathe fabrication technique of Del’Haye et al. [55].�e resonators were
fabricated in a nitrogen atmosphere to avoid the possible formation of absorbing hydroxyl
groups, with data suggesting an improvement in the achieved quality factor by approxim-
ately a factor of three. Furthermore, a rig for fabrication of tungsten tip near-�eld probes
was built. By computer-controlling the voltage cuto� time for the electrochemical etch-
ing process, sub-100-nm tips were successfully fabricated.�e tip size versus delay in the
voltage cuto� was explored and was used to control the tip size.

1.2 cavity quantum optomechanics with brillouin scattering

It has been known for a century that particles of light carry momentum, which can be
transferred to matter, and vice versa. �is insight led Ashkin [59] to utilise radiation
pressure for optical trapping of dielectric particles, and later live bacteria [60], an important
technique used inmany labs for research and applications around the world, and awarded a
Nobel Prize for its signi�cant contribution to science. Another recentNobel Prize, awarded
for the detection of gravitational waves using optomechanical displacement sensing [61],
further highlights the impact of research in the area of momentum transfer between light
and mechanical degrees of freedom.
What is now commonly called optomechanics – the momentum exchange between

light and matter – has become an increasingly studied subject, with the realisation that
performing optomechanical experiments in optical cavities signi�cantly increases the
interaction. Microresonators have greatly improved the accessibility of optomechanical
experiments because they provide low optical and mechanical losses with appreciable
optomechanical coupling in compact systems. Together with advances in microfabrica-
tion techniques and cryogenic systems being more widely available, the research �eld has
developed quickly over the last decades.
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optomechanics with wgm resonators. �e term ‘whispering-gallery mode’ used to
describe a type of optical microresonators actually originates from a phenomenon in the
acoustic domain: whispering galleries are found in many round buildings across the globe,
where a whisper close to the gallery circumference can be clearly heard along the arc, even
at long distances from the whisperer. It was this discovery that prompted the theoretical
work on the extension of wgms to the electromagnetic domain [62, 63].
Unsurprisingly then, optical wgm resonators can also support acoustic whispering-

gallery modes. Over the last decade, optomechanics using the Brillouin-scattering interac-
tion has emerged, where optical and high-frequency acoustic modes interact through elec-
trostriction and photoelasticity.�e GHz-frequency acoustic modes can be excited by the
thermal surrounding environment or by optical stimulation. Recently, strong optomechan-
ical coupling mediated via Brillouin scattering between an optical and a GHz-mechanical
mode of awgm resonator was demonstrated [64].�e combination of strong optomechan-
ical coupling, high-frequency phonons, and long phonon lifetimes is a promising platform
for further optomechanical experiments with quantum control of the mechanical motion
in mind.

hybrid systems for quantum technologies. �e coupling of coherent light �elds
and mechanical degrees of freedom allows one to probe the quantum nature of the mech-
anics, mapping the mechanical motion onto the light �eld; or conversely, provide coherent
control over the mechanical motion. In the optomechanics literature, a main focus is on
controlling and exploring the quantum states of massive objects, where generation of
macroscopic non-classical states is a main goal.
Coherent coupling between photons and phonons has proven useful in the context of

the current rapid advance in quantum technologies for sensing, metrology, and informa-
tion transfer and processing, with a recent review by Barzanjeh et al. [65] devoted to this
topic. One use-case,where promising results have already been demonstrated in optomech-
anical experiments, is the transduction of quantum information from optical frequencies
to microwave frequencies compatible with electronics [66], as well as between di�erent op-
tical frequencies, mediated by optomechanics [67].�is type of frequency conversion for
quantum information might prove essential for future quantum networks [68], as photons,
for their many favourable properties as information carriers, will most likely be the choice
of transmitted carrier, but locally, computing steps might involve microwave qubits in
for instance superconducting qubit systems [69]. Phononic circuits with optomechanical
interfaces have also been demonstrated [70–73].�e �delity, i.e., the likeness of the input
state to the output state, of such conversion must be high for a quantum network to work
e�ciently and reliably, and there is still a long way to go to boost the �delity and operation
rates. An important step towards better quantum control and measurement of mechan-
ical states within optomechanics is to generate and characterise non-classical mechanical
states.
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this thesis. �is work contributes toward the goal of non-classical mechanical state gen-
eration and characterisation by experimentally demonstrating a photon-counting method
for multi-phonon subtraction and advancing the state-of-the-art overall measurement
e�ciency of the mechanical state. Building on techniques from quantum optics and recent
work demonstrating single-phonon subtraction from a thermal mechanical state [74], the
phase-space distributions of non-Gaussian phonon-subtracted mechanical thermal states
aremeasured using photon counting for state preparation and simultaneous optical hetero-
dyne detection for characterisation.�e measurements show that the initial thermal state
is transformed by the phonon subtraction events from an initial Gaussian in phase space
into a ring shape with a diameter that increases with the number of phonons subtracted.
�e experiment is the �rst observation of the e�ect that the mean phonon occupation
triples when a two-phonon subtraction is performed to the thermal mechanical state.�e
work has recently been published, Enzian, Freisem, Price, Svela et al. [75], where the four
�rst authors contributed equally and are listed alphabetically.

�e work presented expands the toolkit for optical control and readout of mechan-
ical states, and can be applied to future room-temperature or cryogenic experiments to
exploit and characterise the non-Gaussian and non-classical properties these operations
generate.�e experiment represents an advance in the state of the art for optics-based
tomography of mechanical states and will be useful not only for Brillouin-based cavity
optomechanics, but for a broad range of both applied and fundamental studies of mech-
anical quantum-state engineering and tomography. Pursuing this line of research will
facilitate the development of mechanical-oscillator-based quantum technology such as
quantum memories exploiting the long coherence times available.

1.3 outline of the thesis

�is thesis is comprised of two main parts as outlined above. Additionally, there is an
introductory part with material serving as a background for all following chapters.

background: Fundamentals & experimental techniques
Chapter 2 covers the fundamentals of whispering-gallery-mode resonators, explaining

key concepts and deriving results used elsewhere in the thesis. For those
working with wgm resonators this will largely be familiar material.

Chapter 3 describes fabrication methods for the custom-made components used in the
work presented in this thesis, as well as some experimental methods used.
�is includes the two types of rod optical resonators, tapered optical �bres
for coupling to resonators and sub-optical-wavelength-size tungsten tips to
be used as near-�eld probes.

part i: Backscattering control in microresonators
Chapter 4 presents amethod, theoreticalmodel and experimental results for suppression

of backscattering in wgm resonators.�e chapter is based on a publication
by Svela et al. [58].
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part ii: Towards quantum applications with Brillouin cavity optomechanics
Chapter 5 serves as an introduction to optomechanics, focussing on electrostriction-

mediated Brillouin optomechanics.�e chapter motivates the direction of
research, de�nes important �gures of merit for an optomechanical system,
and then describes Brillouin optomechanics in whispering-gallery-mode res-
onators.

Chapter 6 describes an optomechanical experiment in which non-Gaussian states of
motion are generated by subtraction of phonons from a thermal state.�e
subtracted states are characterised via heterodyne tomography.�e chapter
is based on a publication by Enzian, Freisem, Price, Svela et al. [75].
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i Coincidentally, Rayleigh
was the chair of the com-
mittee that in 1897 recom-
mended the establishment
of the National Physical
Laboratory in Teddington
where most of the work
described in Chapter 4 of
this thesis was carried out.
From npl’s establishment
in 1899 until 1919, Rayleigh
was the chair of its execut-
ive committee [77].

Figure 2.1. Rayleigh’s labor-
atory: St. Paul’s whispering
gallery.

ii On a very di�erent scale
than the one this thesis is
exploring, other examples
of electromagnetic and
acousticwgms include the
ionosphere that can act
as waveguide supporting
low frequency radio wave
wgms [81], or the earth
itself supporting seismic
wgmmodes [82], where
waves lasting for more than
100 hours with a one-hour
roundtrip time have been
observed [83].

chapter 2

Fundamentals of whispering-gallery-mode
microresonators

Awhispering-gallerymodemight sound like it has little to dowith optics.�e name comes
from a phenomenon in the acoustic domain known as whispering galleries, which can be
found in many buildings with circular structures, o�en in temples or cathedral domes. In
these galleries, if one whispers close to the wall, the whisper can be clearly heard along
the gallery arc, even far from the whisperer.
Although the phenomenon of whispering galleries has been well-known for centuries,

up until the late nineteenth century the “acoustical authorities [were] not entirely agreed,”
as Lord Rayleigh [76] wrote in 1878, about these galleries’ “precise mode of action.” Some
believed the sound was re�ected in the domes above them. Rayleighi wanted to settle the
question, spent some time in St. Paul’s cathedral in London to study the phenomenon, and
wrote:

Judging from some observations I have made in St. Paul’s whispering gallery,
I am disposed to think that the phenomenon is to be explained somewhat
di�erently. [..]�e whisper seems to creep round the gallery horizontally.
[76, p. 127, emphasis added]

His theory was indeed correct; the longitudinal pressure waves we know as sound are
guided along the gallery wall, decaying slower than the typical inverse square distance.
�is kind of pressure waves will be important later in this thesis, but in this chapter, it is
the optical equivalent of the whispering gallery that is described.
Rayleigh extended his theory from the acoustic to the electromagnetic domain in the

1910s [62, 78], and Raman and Sutherland [79, 80] provided corrections revealing more
complex radial modal structures, now known as whispering-gallery modes (wgm).ii A
couple of decades later, in 1939, Richtmyer [63] proposed dielectric wgm resonators for
electromagnetic �elds. However, it was �rst a few years a�er the advent of the laser by
Maiman [84] in 1960 that the �rst experimental observation of opticalwgms was reported:
Garrett et al. [85] observed stimulated emission from wgms in millimetre-sized, doped
calcium �uoride spheres. Opticalwgms were encountered in optical experiments over the
years, but it was �rst in 1989 that Braginsky et al. [1] introduced the �rst optical whispering-
gallery-mode resonators with high-e�ciency coupling to external light �elds.

Since the �rstwgmmicroresonator experiments three decades ago, opticalwgm resonators
have enabled optical research in many directions, probing interesting physics and �nding
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a range of research and commercial applications, with some examples listed in the opening
chapter of this thesis. As whispering-gallery-mode resonators are central to all aspects of
the work described in this thesis, this chapter gives an introduction to the physics ofwgm
resonators, serving as a base for the other parts of this thesis.

chapter contents
2.1 �e cavity resonance criterium, losses, and �gures of merit . . . . . . . . 23

2.1.1 Cavity lifetime, linewidth, and losses . . . . . . . . . . . . . . . . 23
2.1.2 �e quality factor and �nesse of a cavity . . . . . . . . . . . . . . 25

2.2 Optical whispering-gallery modes . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Material and waveguide dispersion . . . . . . . . . . . . . . . . . 27
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2.2.3 Propagation-direction degeneracy and backscattering . . . . . . 30
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2.3 Coupling of light towgm resonators and their spectral pro�les . . . . . . 32
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2.6 �e Kerr nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 �e intensity-dependent refractive index . . . . . . . . . . . . . . 42
2.6.2 Self-phase and cross-phase modulation . . . . . . . . . . . . . . . 44
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2.6.4 Resonance shi�s for counterpropagating modes . . . . . . . . . . 46
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mode number m

phase velocity vph

free spectral range υFSR

roundtrip time Trt

cavity lifetime τ

2.1 the cavity resonance criterium, losses, and figures of merit

Optical microresonators are optical cavities where light is con�ned to micrometre-scale
volumes and can sustain propagation over multiple roundtrips. �e optical modes of
the resonator are de�ned by the frequencies that interfere constructively over a cavity
roundtrip, and with the appropriate polarisation.�e constructively interfering frequen-
cies are those with an integer number of wavelengths λ for a roundtrip, thus for a cavity
of e�ective roundtrip length L′, the modes are given by the resonance criterium

mλm = L′ = nL , (2.1)

where themode number m is an integer corresponding to the number wavelengths over
a roundtrip.�e wavelength λm is given as a vacuum wavelength, which gives the e�ect-
ive roundtrip length L′ = nL for a resonator of geometric roundtrip length L and with
refractive index n. Note that throughout this thesis, optical wavelengths are always given
as vacuum wavelengths.�e corresponding resonance frequencies are given by

υm = m c
nL
, (2.2)

where c is the vacuum speed of light, and c/n = vph the phase velocity of the optical �eld
in the resonator material.�e spectral separation between resonances,

υm+1 − υm = c
nL

≡ υFSR , (2.3)

is called the free spectral range (fsr) of the cavity. Note that nL/c is the time it takes for
the light to make a roundtrip of the cavity, and thus the fsr is the inverse of the cavity
roundtrip time, Trt = υ−1FSR.

2.1.1 Cavity lifetime, linewidth, and losses

�e light circulating in the cavity has a �nite lifetime due to energy dissipation.�e losses
are usually categorised as intrinsic or extrinsic losses: Intrinsic loss sources are for instance
material absorption or scattering (see Section 2.4), whereas the extrinsic losses are related
to the deliberate coupling of the resonator to the environment to interact with it (see
Section 2.3).�e cavity lifetime τ is de�ned as the time it takes for the energy of the �eld
to be reduced by Euler’s number, e, and is given by the ratio of the energy stored in the
cavity and the dissipated power,

τ = Ecav
−Ėcav

= Ecav
Pdis

, (2.4)

where the dot represents the time-derivative of the quantity.
To show that this de�nition of the lifetime corresponds to the time of reduction of the

�eld by a factor of e, consider an intra-cavity energy attenuation parameter αatt for the
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fwhm linewidth ∆υ

amplitude decay rate κ

electric �eld E so that a�er N cavity roundtrips, the cavity energy Ecav is proportional to

∣EN ∣2 = exp(−αattL) ∣EN−1∣2 = exp(−αattNL) ∣E0∣2 , (2.5)

where ∣E0∣2 is the initial �eld energy up to the same proportionality factor as ∣EN ∣2.�e en-
ergy is reducedby a factorof e a�erNe roundtrips, and can be calculated fromexp(−αattNeL) =
exp(−1), which yields

Ne = (αattL)−1 . (2.6)

To �nd the dissipated power loss Pdis, the time derivative of ∣EN ∣2 can be calculated

d∣EN ∣2
dt

= d∣EN ∣2
dN

dN
dt

= −αattL ∣EN ∣2
1
Trt
, (2.7)

where Trt is the roundtrip time, and the derivative d ∣EN ∣2/dN is calculated from Eq. (2.5)
considering N to be a continuous variable as it is expected to be large – an assumption
valid for low-loss resonators.�en, following the de�nition of the lifetime Eq. (2.4) as the
ratio of the of the energy a�er N roundtrips and the power dissipation at that time and
plugging in the two above equations,

τ = ∣EN ∣2
−d ∣EN ∣2/dt

= Trt
αattL

= NeTrt , (2.8)

showing that τ is the time a�er the number of roundtrips reducing the �eld energy by a
factor of e.

�e �nite lifetime of the cavity light corresponds to a �nite linewidth of the resonance
in frequency space.�e linewidth is o�en given as the 3-dB bandwidth of the resonance,
i.e., the full-width-at-half-maximum (fwhm) linewidth, ∆υ.�e fwhm linewidth is pro-
portional to the inverse of the lifetime, 2π∆υ = τ−1.

�e optical losses are o�en given as a decay rate, typically the amplitude decay rate κ
(see Eq. (2.44) for why it is the amplitude decay rate), which is related to the linewidth and
lifetime by

2κ = 2π∆υ = τ−1 . (2.9)

�e decay rate κ is o�en split into two contributing factors, the intrinsic and extrinsic
contributions: the intrinsic losses are related to dampingmechanisms in the resonator, and
the extrinsic losses comes from the deliberate coupling of the resonator to the environment
to interact with the resonator.�e two independent contributions can simply be added
together:

κ = κ0 + κex . (2.10)

Couplingmethods and coupling operating regimes, given by the ratio between the intrinsic
and extrinsic losses, are described in Section 2.3, whereas intrinsic loss mechanism are
discussed in Section 2.4.
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quality factor Q

�nesse F

2.1.2 �e quality factor and �nesse of a cavity

Low optical losses are generally desired in resonator applications, and especially two ratios
are o�en used to quantify the relative losses of an optical cavity:�e quality factor and the
�nesse.

�e quality factor Q is de�ned as the amount of energy in the cavity compared to the
dissipated energy over one optical cycle [e.g. 10].�is is a useful quantity for instance
when working with nonlinear e�ects as it e�ectively gives the number of cycles over which
the cavity interaction takes place before the �eld is depleted. For many applications of
microresonators, the performance scales linearly or even quadratically with the q factor,
see e.g., examples in Gao et al. [86].
For a cavity resonance frequency υcav, the quality factor is de�ned as

Q ≡ 2π Ecav
Pdis/υcav

= 2πυcavτ = ωcavτ , (2.11)

where ωcav = 2πυcav is the angular frequency of the cavity, showing that q factor is propor-
tional to the product of the cavity lifetime and the �eld’s oscillation frequency, i.e., giving
the number of cycles over which it propagates in the resonator.

�e q factor can also be de�ned as the sharpness of the resonance relative to its central
frequency,

Q = υcav
∆υ

= ωcav
2κ
. (2.12)

Plugging in the lifetime–decay-rate-relation, Eq. (2.9), this quality factor de�nition is con-
sistent with Eq. (2.11).

�e other important �gure of merit for a resonator is the cavity �nesse. It describes the
number of cavity roundtrips before the �eld is depleted, in contrast to the q factor, which
is proportional to the number of optical cycles before the �eld is depleted.�e �nesse
is typically de�ned as the ratio of the free spectral range to the spectral linewidth of the
cavity [e.g. 10],

F ≡ υFSR
∆υ

= ωFSR
2κ

, (2.13)

which, by inserting Eqs. (2.3) and (2.8), can be written

F = 2π c
nL

NeTrt = 2πNe , (2.14)

showing that the �nesse is the number of roundtrips before the �eld is reduced by a factor
of e. Comparing Eqs. (2.12) and (2.13), the q factor and �nesse can shown to be related by
the mode number,

Q = nLF
λ

= mF . (2.15)

Both the q factor and �nesse can be separated into their intrinsic and extrinsic parts, which
add reciprocally:

Q−1 = Q−1
0 + Q−1

ex =
2κ0
ωcav

+ 2κex
ωcav

, (2.16)
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Figure 2.2. Examples of whispering-gallery-mode optical resonators. (a) Silica on silicon microtor-
oid by Del’Haye et al. [44]. Copyright Nature Publishing Group, reprinted with permission from
Springer Nature.�e light �eld propagates in the toroidal structure. (b) Silica sphere at the end of
an optical �bre.�e light �eld is con�ned in a band along the equator. (c) Silica rod resonator with
inset showing the ‘bulge’ con�ning the �eld.

iii Micropillars have also
been used as wgm reson-
ators along the curved
surface [93].

as is consistent with Eq. (2.10).�e total q factor is sometimes referred to as the loaded q
factor, whereas Q0 is referred to as the unloaded q factor.

�e achievable �nesse and quality factors vary for di�erent microresonator platforms,
with whispering-gallery-mode resonators showing quality factors of up to several billion,
see e.g. Refs. 58, 87–89.

2.2 optical whispering-gallery modes

A range of di�erent types and sizes of optical microresonators made from di�erent dielec-
tric materials exist. A few examples of geometries used are disks [53], spheres [1, 90],
toroids [52], rods [54, 55], Bragg grated micropillars [91], and rings [92] – some of which
are shown in Fig. 2.2. For disk, toroid, ring, and pillar resonators, fabrication techniques
o�en involve lithography and cleanroom processes. For rod resonators either mechanical
lathe machining and polishing [21, 54] or laser lathes are used [55]. Fabrication of spheres
can be easily done using an electric arc to melt a �bre tip.�e fabrication processes for
the resonators used in this work are presented in Chapter 3.
With the exception of micropillarsiii and ring resonators, the resonator types listed

above are whispering-gallery-mode (wgm) resonators. In wgm resonators, the electromag-
netic �eld propagates close to the surface of a circular structure due to total internal
re�ection at the interface between the resonator material and the surrounding medium [1].
�e guiding mechanism is similar to other waveguides where the di�erence between the
refractive indices of the waveguide n and surroundings ns causes total internal re�ection:
In the optical ray picture, if the angle of incidence of a ray to the boundary between the
waveguide and the surrounding medium is at the critical angle or greater, ϑ ≥ ϑcrit, the ray
will be fully re�ected inside the waveguide surface.�e critical angle is given by

ϑcrit = arcsin
ns
n
, (2.17)

which gives ϑcrit = 43.8° for silica in air at a wavelength of 1550 nm (nSiO2 = 1.4440 [94],
ns ≃ 1). If a ray is tangential to the media interface in a circular geometry the re�ection
process is close to continuous, trapping the light close to the surface inside the structure.
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chromatic/material
dispersion

propagation constant β

wavenumber k

Shi�ing back to the wave description of the optical �eld, if the lightmaking a roundtrip
interferes constructively with itself, the wgm is resonant. For a resonator of radius r, the
cavity roundtrip length is L = 2πr, resulting in the resonance criterium

ωm = m c
nr

(2.18)

for themode withm number ofmaxima in the �eld along the resonance path [cf. Eq. (2.2)].
Resonators typically have a wide spectral range of resonance frequencies, and can be made
to cover the full transparencywindowof the dielectric chosen as the resonatormaterial [45].
�e free spectral range of a resonator can be engineered by choosing its radius:

ωFSR =
c
nr
. (2.19)

For example, for a silica resonator with r = 1000 µm, υFSR ≃ 33GHz when the vacuum
wavelength λ = 1.55 µm.
However, the expressions for the resonance frequency and other derived parameters

assume a dispersion-less medium and knowledge of the radius of the whispering-gallery
mode itself.�e next two sections brie�y explains how the material and waveguide disper-
sion a�ects the wgms, imposing a frequency dependence to the refractive index and to
the wgm radius.

2.2.1 Material and waveguide dispersion

In general, the refractive index of a dielectric medium is frequency dependent, a phe-
nomenon called chromatic or material dispersion.�e e�ect comes from the structure
of the dielectric medium interacting at di�erent strengths with the electromagnetic �eld
depending on the frequency of the �eld.�e function n(ω) can be well approximated by
the Sellmeier equation, a function built from the dielectric’s resonance frequencies and
their strengths, see Agrawal [95, Ch. 1].

�e dispersion is o�en expressed as the lower-order coe�cients in a series expan-
sion of the propagation constant in terms of angular optical frequency in a medium.�e
propagation constant β is the wavenumber k = 2π/λ (sometimes referred to as the free-
space propagation constant) multiplied by the frequency dependent refractive index n(ω),
giving the Taylor expansion

β(ω) = k n(ω) = ω
c
n(ω) (2.20)

= β0 + β1(ω − ω0) +
β2
2
(ω − ω0)2 + . . . (2.21)

for a central frequency ω0 [95, Ch. 1], where the expansion coe�cients are

β0 =
ω0
c

n(ω0) ; β j>0 =
d jβ
dω j ∣

ω=ω0
. (2.22)
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geometric dispersion

modal dispersion

iv See for instance Del’Haye
[96, Ch. 4] for a compre-
hensive review on disper-
sion in wgm resonators.

�e �rst-orderdispersion β1 is the inverse of the group velocity vg = dω/dβ.Whenworking
with pulsed experiments, the �rst-order dispersion results in group delay, whereas the
second-order dispersion β2 causes spatial pulse broadening.�e accumulated phase of
the �eld a�er propagating a length L is

ϕ(L;ω) = β(ω)L = 2π n(ω)L
λ

. (2.23)

For wgm resonators, the frequency-dependent refractive index causes di�erent e�ect-
ive resonator lengths for di�erent frequencies, resulting in a non-uniform free-spectral
range over the transparency of the dielectric. Furthermore, the chromatic dispersion can
be a limitation for nonlinear interactions in the resonator, as all the involved frequencies
need to be phase matched for the contributions from the di�erent parts of the resonator to
add coherently – Section 5.3.3 discusses a similar phase matching challenge for Brillouin
scattering in a resonator with mechanical anisotropy.
In addition to the material dispersion for a plane wave due to the response of the

medium to di�erent wavelengths, waveguiding gives rise to other forms of dispersion:
geometric dispersion andmodal dispersion.iv In an optical ray picture, these can be under-
stood as di�erent frequencies or spatial mode structures might take di�erent spatial paths
in the resonator, and thus a�ecting the e�ective radius of the wgm. For example, shorter
wavelengths are re�ected closer to the surface than longer wavelengths, resulting in dif-
ferent optical path lengths [96].�e next section covers the modal degeneracies resulting
from the waveguide dispersion.

2.2.2 wgm �eld distribution and modal degeneracies

Even before Richtmyer [63] introduced the idea of high-q optical wgm resonators, ana-
lytical expressions for the �eld distribution of wgms in dielectric spheres were known
from solving the vector Helmholtz equation with a spatial dependence of the refractive
index, as �rst done by Mie [97] and Debye [98] (see e.g. the review by Oraevsky [6]). Nu-
merical �nite-element-method approaches have been widely used since Oxborrow [99]
introduced a method for using commercially available �nite-element-method solvers to
�nd eigenmodes of arbitrary axisymmetrical resonator shapes.
For each azimuthal mode number m, there is a number of degenerate modes with

di�erent spatial pro�les. In addition to the fundamental mode with one maximum in the
polar and radial directions, there is a set of higher-order modes with multiple maxima
in the polar and/or radial directions. A �nite-element-method simulation result showing
one fundamental and higher-order mode for a silica rod resonator is shown in Fig. 2.3.
Furthermore, applying Maxwell’s equations for appropriate boundary conditions reveal
two possible polarisations for each of the degenerate wgms: Either the electric or the
magnetic �eld is parallel to the surface, called transversal electric (te) and transversal
magnetic (tm) modes, respectively [100, 101].
Analytical approximations for the eigenfrequencies of themodes have been found [100,

102], andalso analytical approximations formore generalised axisymmetric geometries [103–
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Figure 2.3. Examplewgm pro�les and their evanescent �elds for a silica rod resonator. (a–b) Radial
cross sections of the electric �eld norm of the fundamental and a higher-order optical mode of
a silica rod resonator calculated using the �nite-element-method solver comsol.�e resonator
has a (major) radius of 1000 µm and a con�nement (minor) radius of 50 µm. Both modes are of
the te type have azimuthal mode number m = 5805, with the eigenfrequency of the fundamental
mode [(p, q) = (0, 1)] being υ = 192.94THz, and the higher-order mode [(p, q) = (2, 2)] has
υ = 194.10THz.�e blue lines indicate the position of the cross sections in the top panels. (c–
d)�e normalised �eld magnitude (∣E∣ normalised by the maximum magnitude ∣E∣max) along
the resonator plane, plotted both linearly (blue) and logarithmically (golden) to better show the
exponential decay of the evanescent �eld outside the resonator surface.�e evanescent �eld is
�tted with dashed black lines, giving penetration depths [Eq. (2.27)] for the �eld of 237 nm and
238 nm, respectively.

v �e arguments for the
�rst four zeros of the Airy
function (to four digits):
–2.338, –4.088, –5.520,
–6.788 [106, Tab. 10.13].

105].�e mode-number-degenerate modes typically have di�erent resonance frequencies
as their e�ective path-lengths in the resonator are di�erent. For a disk structure in air with
major radius r andminor radius %, combining the approximation from Breunig et al. [104]
and a polarisation correction term from Righini et al. [2], the resonance frequencies for
mode with azimuthal mode number m, polar mode number p, and radial mode number
q, and polarisation p, can be approximated by

ωm,p,q,p =
mc

n(ω)r
⎡⎢⎢⎢⎣
1 + (p + 1

2
) 1
m

√
r

√
%
+

∣ζq∣
21/3m2/3

− ξ(p,ω)
m
√
n(ω)2 − 1

⎤⎥⎥⎥⎦
≡ mc
nre�m,p,q,p

(2.24)

when r/%≪ m2/3.�e symbol ζq is the argument of the q-th zero of the Airy function,v

and the polarisation-dependent factor is

ξ(p,ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n(ω) for p = te

n(ω)−1 for p = tm
. (2.25)

In the right-most part of Eq. (2.24), the corrections are absorbed into an e�ective radius,
re�m,p,q,p for the particular mode.�e above equation reduces to the simpler Eq. (2.18) when
the material dispersion is not taken into account [n(ω) → n], polarisation e�ects not
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backscattering

taken into account (ξ → 0), the geometric dispersion neglected [the radial structure is not
accounted for (ζq → 0), and the resonator is a large sphere r = % with m ≫ p].
Comparing the analytical expression Eq. (2.24) to the simulation result displayed in

Fig. 2.3, the simulation gives a resonance frequency formode (m, p, q, p) = (5805, 0, 1, te)
of 192.948 THz compared to 192.966 THz from the formula, which is a typical 10−4 relative
error of the analytical expression compared to the simulation result [104].�e frequency
shi� fromone polarmode order to the next is 154GHz from the simulation versus 148GHz
from the analytic expression, and from one radial order to the next the shi� is 831 GHz
and 825GHz from the simulation and the formula, respectively.�e shi� between the te
and tm polarisation modes for a particular mode (m, p, q) is typically much smaller: in
the simulation the shi� between them is 21 GHz, whereas from the analytical expression
24GHz.

2.2.3 Propagation-direction degeneracy and backscattering

Light can propagate in either direction around the cavity, clockwise (cw) or counter-
clockwise (ccw).�us, for each mode (m, p, q) of a certain polarisation there is a pair
of counterpropagating modes. Under time-reversal symmetry, these counterpropagating
modes are normally frequency degenerate, exhibiting the same resonance frequency for
both directions, but the degeneracy can be li�ed through coupling of the counterpropagat-
ing modes. Coupling can occur as a result of nonlinearities such as the Kerr-e�ect [Sec-
tion 2.6.3], optomechanical coupling [Section 4.1.1], or if the azimuthal symmetry is broken
by a perturbation in polarisability such as surface roughness, material inhomogeneities or
a scatterer introduced within the mode volume [107–109].
Coupling by scatterers can be understood by considering the scattered optical power:

some of the scattered power is lost to the environment, and the remaining power is coupled
back into the cavity.�e back-coupled power can enter non-propagating modes, or scatter
quasi-elastically into the counterpropagating mode, called backscattering.�e coupling of
the cw and ccwmodes can be strong enough to cause appreciable build-up of power in
both directions even when the resonator is pumped only in one direction, and can result
in mode-splitting. Mode-splitting was �rst observed in wgms by Weiss et al. [56] in silica
sphere resonators (and the phenomenon was already well-known at the time in the context
of ring resonators [e.g. 110, 111]).
Since the �rst experimental discovery in wgm resonators, the literature has explored

and exploited backscattering, with examples such as control over the mode-splitting [112,
113], using the mode-splitting for sensing [40, 114, 115], controlling the modal coupling
through backscattering to manipulate light propagation [116, 117], sensing using the backs-
cattered power [118], estimation of refractive index variation [119], and suppression of
backscattering [57]. Chapter 4 of this thesis concerns backscattering control and demon-
strates a near-�eld-scatterer technique for this purpose.
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evanescent �eld

�eld penetration depth

2.2.4 �e evanescent �eld and its penetration depth

For any waveguide, a portion of the guided electromagnetic �eld extends outside the
waveguide material. As the top panels of Fig. 2.3 show, wgms are no exception, with an
exponentially decaying �eld outside the resonator surface.
For a general waveguide, the evanescent �eld’s strength decreases in an exponential

manner with the distance x from a waveguide’s surface,

E(x) = Esurf e−αdecx , (2.26)

where Esurf is the �eld strength at the surface. For a waveguide in air, the decay constant
αdec is

αdec = k
√
n2 sin2 ϑ − 1 ϑ→π/2= 2π

λ
√
n2 − 1 , (2.27)

where k is the free-space wavenumber, n is the refractive index of the waveguide material,
and ϑ ∈ (ϑcrit, π/2] the angle of incidence [120, Ch. 1]. For a wgm resonator, the angle is
close to π/2, and the rightmost expression can be used with good approximation [121]. For
high-order modes, the decay constant is typically smaller than what this approximation
gives, which can be understood in a ray picture as the mode being deeper in the resonator
requires a smaller angle ϑ, reducing the decay constant.

�e inverse of the decay constant is called the �eld penetration depth, describing how
deep into the surroundings the evanescent �eld extends before it is reduced by a factor of
Euler’s number.�e penetration depth is smaller than one wavelength; for instance, for
λ = 1550nm and the approximation of Eq. (2.27), the penetration depth is α−1

dec = 237nm
for silica or α−1

dec = 230nm for barium �uoride (nBaF2 = 1.4661 [122]).�e value for silica
agrees with the �nite-element-method simulation for a silica resonator shown in Fig. 2.3(c-
d), where the the �tted penetration depths are 237 nm and 238 nm for a fundamental and
�rst radial mode, respectively.�e larger penetration depth for the higher-order mode is
as expected due to its slightly lower decay constant.
As the next section will show, the evanescent �eld provides coupling of the intra-

cavity optical modes to the resonator’s surroundings, allowing light to be transmitted into
the cavity, and the cavity response to be studied. Furthermore, later chapters will show
how external perturbations in the evanescent �eld, such as introducing a scatterer within
the evanescent �eld, a�ects the intra-cavity �eld. If the intra-cavity �eld response to a
perturbation is accurately monitored, the resonator can be used for sensing applications,
o�en called near-�eld sensing [e.g. 8].
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frustrated total internal
re�ection

2.3 coupling of light to wgm resonators and their spectral profiles

Coupling light e�ciently and reliably to a resonator is critical for experiments. Because
the total internal re�ection generally re�ects nearly all the light with no net energy �ow
across the boundary of the waveguide material, coupling �elds e�ciently in and out of the
resonator was the most signi�cant challenge Braginsky et al. [1] solved in their seminal
paper from 1989.�e couplingmechanism they used,which this work also uses, is based on
frustrated total internal re�ection, an e�ect seen when amediumwith an evanescent �eld is
su�ciently close to another dielectric material of high refractive index, for instance awgm
resonator. Normally, the evanescent �eld does not constitute a net �ow of energy across the
waveguide material boundary; however, with a dielectric material within the evanescent
�eld of the waveguide, the evanescent �eld can be strong enough to drive electrons in the
other dielectric, allowing energy to �ow across the gap between the media [123, Ch. 4].
Evanescent coupling for transmission of light from one waveguide to another is widely

used, and there are multiple geometries that can be used for generating an evanescent �eld
close enough to awgm for coupling purposes, such as prisms [1], angle-cleaved �bres [124],
or adiabatically tapered �bres [125, 126]. For chip based resonators integrated waveguides
are o�en used for coupling [127, 128].
Little et al. [101] give a detailed description and analytical treatment of evanescent

coupling into microresonators. For a tapered �bre, the three most important parameters
for the achieved coupling are (a) the distance between the taper and the resonator, (b) the
polarisation of the coupler matching the resonator mode, and (c) the phase matching of
the coupling, i.e., the di�erence between the propagation constants of the desiredwgm and
the evanescent coupler. For tapered optical �bres, the evanescent �eld strength increases
as the �bre diameter decreases, giving a stronger interaction with the wgm; however, as
the propagation constant of the �bre decreases with a decreasing �bre radius, there is an
optimum �bre radius for achieving maximum coupling to a resonator mode.
For a tapered �bre with radius rf < 3 µm, the propagation constant in the �bre for

optical wavelengths can be approximated by

β2f ≈ [kn(ω)]2 − (2.405
rf

)
2

(2.28)

(for si units) [129], where the numerical factor represents the correction to the refractive
index as a result of the reduced e�ective refractive index experienced by the mode as
it increasingly extends into the near �eld with a smaller taper radius.�e propagation
constant of the resonator can be expressed as

βm,p,q,p =
m

re�m,p,q,p
(2.29)

by inserting Eq. (2.24) into Eq. (2.20).�e coupling-rate depends on the mismatch ∆β =
βf − βm,p,q,p in an exponential fashion exp[−(∆β)2/α′

f], where α′
f is the ratio of the �bre’s

evanescent �eld decay constant to the wgm radius, reducing the maximum possible coup-
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vi Cf. the description earlier,
αrt = exp(−αattL).

ling rapidly with a propagation constant mismatch [101].�ere are techniques for improv-
ing the propagation-constant/phase matching by for instance coating the tapered �bre
with a liquid polymer to adjust its propagation constant [130].
As discussed in Section 2.2.2, for eachmode given by (m, p, q), there is a pair ofmodes

of orthogonal polarisations in the resonator.�e coupling e�ciency to a certain wgm is
highly dependent on whether the polarisation of the light in the coupling region of the
waveguide matches that of the wgm.

�e coupling rate is usually controlled by tuning the gap between the coupling wave-
guide and the resonator [131].�ree di�erent coupling regimes can be observed depending
on the balance of the losses in the resonator to the coupling to the waveguide:
(i) undercoupling, where the internal losses per round trip are higher than the losses
due to coupling out to the �bre;

(ii) critical coupling where the out-coupled �eld and internal losses per round trip are
equal, leading to the highest intra-cavity power; and

(iii) overcoupling, where the �eld leaks out into the �bre at a faster rate than it dissipates
in the resonator.

Well phase-matched tapers with diameters close to the wavelength are found to be able to
provide overcoupling to a mode if the taper position is adjusted appropriately.�e next
section will give a quantitative treatment of the coupling and coupling regimes.

2.3.1 �e coupling equation and coupling regimes

To describe the coupling quantitatively, consider a tapered �bre waveguide coupling to
one resonator mode with an intrinsic roundtrip loss parameter αrt (αrt = 1 corresponds
to zero lossesvi) and electric �elds as shown in Fig. 2.4. Following the description of Yariv
[132], let the electric �eld amplitudes be complex and normalised so that ∣ Ẽ ∣2 = P , the
optical power; the amplitudes are then described by

⎛
⎝
Ẽt1
Ẽt2

⎞
⎠
=
⎛
⎝

t ϰ
−ϰ∗ t∗

⎞
⎠
⎛
⎝
Ẽi1
Ẽi2

⎞
⎠
, (2.30)

where z∗ denotes the complex conjugate of z, given a coupling parameter ϰ and a trans-
mission parameter t.�e model assumes a lossless coupling mechanism,

∣ϰ∣2 + ∣t∣2 = 1 , (2.31)

and no frequency dependence in the two parameters.
During one roundtrip in the cavity, the �eld acquires a phase ϕ = βL and it is attenuated

according to the intrinsic losses of the resonator,

Ẽi2 = αrteiϕẼt2 . (2.32)
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Figure 2.4.Model of evanescent coup-
ling from a tapered �bre to a wgm
resonator. �e transmission para-
meters t, ϰ with subscripts i and t for
incoming and transmitted �eld amp-
litudes to the coupling region in the
taper and resonator. �e fractional
intrinsic roundtrip losses are given
by αrt.

critical coupling

Inserting this relation into Eq. (2.30) yields

Ẽt1 =
−αrt + te−iϕ

−αrtt∗ + e−iϕ
Ẽi1 . (2.33)

�e transmission parameter can be expressed t = ∣t∣ exp(iθt), where ∣t∣ represents the amp-
litude of transmittance (i.e., ∣t∣ = 1 would correspond to the �eld being fully transmitted,
and thus no coupling from the resonator to the waveguide and vice versa) and θt the
coupling phase shi�.�en, the following expression for the power transmitted in the �bre
is obtained by squaring Ẽt1:

Pt1 =
α2rt − 2αrt∣t∣ cos(ϕ + θt) + ∣t∣2
1 − 2αrt∣t∣ cos(ϕ + θ t) + α2rt∣t∣2

Pi1 . (2.34)

On resonance, the total phase acquired over the roundtrip and transmission inside the
resonator must be an integer number of 2π, making cos(ϕ + θt) = 1, and thus

P rest1 = ( αrt − ∣t∣
1 − αrt∣t∣

)
2

Pi1 . (2.35)

From this equation it is evident that when αrt = ∣t∣, the transmitted power in the �bre
at resonance is zero, which is the de�nition of critical coupling. It can be understood as
a balance of the losses and coupling; the relation αrt = ∣t∣ is equivalent to the coupling
∣ϰ∣2 = 1 − ∣t∣2 (in power, thus squared) being equal to the power losses over one roundtrip,
1 − α2rt.

�e per-roundtrip parameters αrt, ∣t∣ are related to their rate counterparts κ0, κex, re-
spectively. To �nd their relationship, consider the amplitude losses over a roundtrip, 1−αrt.
As the roundtrip time of the cavity is υ−1FSR, the angular amplitude rate of intrinsic losses
is (1 − αrt)ωFSR = κ0. Similarly, the angular coupling amplitude rate is ∣ϰ∣ωFSR = κex.
Rearranging these gives

αrt = 1 −
κ0

ωFSR
; ∣t∣ = 1 − κex

ωFSR
, (2.36)
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where κ = κ0 + κex. Inserting these expressions into Eq. (2.35), the transmitted power can
be expressed

P rest1 = ( κex − κ0
κex + κ0 − 2κ0κex/ωFSR

)
2

Pi1 , (2.37)

and assuming a resonator with a large mode-spacing and low loss, κ0κex ≪ ωFSR, the third
term in the denominator can be discarded:

P rest1 ≈ (κex − κ0
κ

)
2
Pi1 . (2.38)

Figure 2.5(a) shows the relative power at the output of the tapered �bre as a function of
the ratio of the coupling losses to the intrinsic losses, showing how the �eld in the taper
vanishes when the ratio is one.�e three coupling regimes can now be rephrased as
(i) κ0 > κex undercoupling,
(ii) κ0 = κex critical coupling, and
(iii) κ0 < κex overcoupling.
�e on-resonance transmission, i.e., the transmitted power in the �bre at resonance relative
to the input power, can be expressed

T res = P rest1
Pi1

= (1 − 2κ0
κ

)
2
. (2.39)

Using the binomial expansion to the second-order and noting that κex − κ0 = κ − 2κ0, the
transmission can be approximated to

T res ≈ 1 − 4κ0
κ

+ 4κ
2
0

κ2
= 1 − 4κ0

κ
κ − κ0

κ
= 1 − 4κ0κex

κ2
, (2.40)

which is unity if the taper is not coupled to the resonator, κex = 0, and is zero when critically
coupled, κex = κ0 = κ/2, as all the power is coupled into the resonator. Alternatively, the
coupling contrast at resonance can be expressed

K res = 1 − T res = P rest1
Pi1

≈ 4κ0κex
κ2

, (2.41)

which is unity when critically coupled and zero when there is no coupling.
In terms of experimental parameters, the transmission and total linewidth are easy to

measure from monitoring the transmitted light on a photodiode as a laser is swept across
the resonance at low optical power. To calculate the extrinsic coupling rate from these two
parameters, Eq. (2.39) can be rearranged to give

κex =
κ
2
(1 ±

√
T res) , (2.42)

where the sign is chosen according to the coupling regime: plus for over-coupling and
minus for under-coupling.



36 a. ø. svela— near-field-scattering-based optical control and . . .

Figure 2.5. Coupling regimes, resonator buildup, and transmission pro�les. (a) Le� axis:�e power
in the tapered �bre output at resonance relative to the input power, P res

t1 /Pi1, for varying coupling
strength relative to intrinsic losses, as in Eq. (2.38).�e transmitted power in the tapered �bre
vanishes for critical coupling κ0 = κex.�e loss ratios for the resonances in panel (b) are indicated
with dashed lines. Right axis:�e intracavity buildup at resonance B res [Eq. (2.47)] for a resonator
with intrinsic q factor Q0 = 1 ⋅ 108 [κ0/(2π) ≃ 1MHz] and fsr corresponding to a 1-mm-radius
resonator (33GHz). (b) Transmission pro�les [Eq. (2.53)] for three selected ratios of extrinsic to
intrinsic losses in the resonator, showing a resonance being undercoupled, critically coupled, and
overcoupled.

2.3.2 �e intra-cavity power

�e time-domain dynamics of the intra-cavity �eld is typically described using rate equa-
tions, treating the resonator as a damped harmonic oscillator with resonance frequency
ωcav driven by the input optical �eld coupled into the resonator and simultaneously leaking
to the waveguide causing losses κex.
First, consider the non-driven case. Let the intra-cavity energy Ecav(t) = ∣e(t)∣2. Due

to the intrinsic damping and leakage to the waveguide κ = κ0 + κex, the time derivative of
the energy amplitude e is [133, 134]

ė(t) = (iωcav − κ) e(t) . (2.43)

Now, adding also the driving term consisting of a normalised input power Pi1 = ∣pi1∣2 and
a coupling parameter ϰ̃ (in units of

√
1/s), the rate of change in the energy amplitude is

ė(t) = (iωcav − κ) e(t) + ϰ̃pi1(t) . (2.44)

For a drive with frequency ω, the power term can be written pi1(t) = ∣pi1∣ exp(iωt), and
the solution to the di�erential equation (2.44) is

e(t,ω) = ϰ̃pi1(t)
i(ω − ωcav) + κ

. (2.45)

From time reversibility considerations at zero intrinsic losses [134, Ch. 7], or a similar
power conservation argument [129], it can be shown that ∣ϰ̃∣ =

√
2κex. Noting that the

circulating power in the cavity Pcav is given by the intra-cavity energy ∣e∣2 divided by the
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detuning δ

build-up factor B

vii Broadening e�ects are
considered later in this
chapter, and Zhu et al. [135]
give an in-depth treatment.

viii For a derivation of
the below result directly
from the rate equations in
the previous section, see
Sedlmeir [121].

roundtrip time Trt = υ−1FSR, the circulating power in the resonator can be expressed

Pcav(ω) = 2κexυFSR
(ω − ωcav)2 + κ2

Pi1 . (2.46)

�e detuning of the input �eld relative to the cavity resonance, ω − ωcav ≡ δ, giving the
maximum circulating power for zero detuning.

build-up factor. At zero detuning, Pcav(ω = ωcav) = P rescav , the power enhancement of
the cavity is

B res = P rescav
Pi1

= 2κexυFSR
κ2

= 2κex
κ
1
π

ωFSR
2κ

= 2κex
κ

F
π
. (2.47)

�is quantity is called the (power) build-up factor B, and is proportional to the cavity �n-
esse.�e proportionality constant between the build-up factor and �nesse is the coupling
e�ciency of the taper to the cavity,

ηc =
2κex

κ
, (2.48)

which is unity at critical coupling, κex = κ0 = κ/2. At critical coupling the build-up factor
simpli�es to

B rescrit =
F
π
crit= F0
2π
, (2.49)

where F0 = πυFSR/κ0 is the intrinsic �nesse of the cavity. Figure 2.5(a) shows the build-up
at resonance for varying coupling to aQ0 = 1 ⋅ 108, 1-mm-radius resonator (υFSR = 33GHz).

intra-cavity photon number. �e number of intra-cavity photons at resonance can be
estimated from the intra-cavity energy divided by the photon energy ħω.�e intra-cavity
energy is the circulating power integrated over the round-trip time, Ecav = Pcav/υFSR, and
thus

Ncav ħω = Ecav =
B resPi1

υFSR
= 2κex

κ2
Pi1 =

ηc
κ
Pi1 , (2.50)

giving

Ncav =
1
ħω

ηcPi1
κ
. (2.51)

2.3.3 �e Lorentzian spectral shape of the resonance

Neglecting thermal and nonlinear optical e�ects and backscattering,vii the transmission
spectrum of a resonance from wgm resonator is approximately a Lorentzian. Modelling
a resonator mode as a damped harmonic oscillator yields a Lorentzian lineshape. To mo-
tivateviii the transmission pro�le shape at the output of the tapered �bre based on the
derivations so far, the Lorentzian expression for the circulating power (2.46) is gives the
frequency dependence of the power coupled into the resonator Pcoup:

Pcoup(ω)∝ 1
κ2 + (ω − ωcav)2

Pi1 ∝
1

1 + δ2/κ2 Pi1 . (2.52)
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Figure 2.6. Approximate
contribution to the q factor
from radiation losses as a
function of the azimuthal
mode number [Eq. (2.55)]
valid form ≫ 1. Note
that the y axis is log10 of
the associated radiation
q, and then plotted on a
logarithmic scale.

From steady-state power conservation,Pt1 = Pi1−Pcoup when assuming a lossless coupling
mechanism, and from the relative on-resonance coupling contrast, (2.41) the normalised
transmission spectrum for the steady-state resonance can then be expressed

T (δ) = Pt1
Pi1

= 1 −
Pcoup
Pi1

= 1 − K res
1 + δ2/κ2 , (2.53)

i.e., a background of one with a Lorentzian dip at ωcav of contrastK res and half-linewidth
κ. Transmission pro�les for a resonance with di�erent coupling e�ciency due to di�erent
ratios of extrinsic to intrinsic losses are shown in Fig. 2.5(b).

2.4 intrinsic resonator losses

�e previous section treats the coupling of the resonator to a tapered �bre or some other
waveguide, which represents losses for the intra-cavity �eld, and how the balance between
the intrinsic and coupling losses is important for resonance build-up of optical power. So
far the intrinsic losses have been assumed to be low, but themotivation for this assumption
or the mechanisms for intrinsic losses have not been discussed.
Typically, the intrinsic loss mechanisms for wgm resonators are grouped into three

categories [87, 108, 136]:
(i) radiative losses due to the curved surface guiding the light;
(ii) bulk material absorption and scattering from defects; and
(iii) surface scattering due to surface roughness, and inhomogeneities and contaminants,

such as material deposited on the surface during or a�er fabrication.
Similarly to how the total losses can be separated into intrinsic and extrinsic contributions,
the intrinsic q factor can be split into the contributing terms

Q−1
0 = Q−1

rad + Q−1
mat + Q−1

scatt , (2.54)

where, for most wgm resonators, one of the two last terms is the main limitation of Q0.
�e radiation losses, sometimes called bending losses, arise due to the curved surface

of the resonator. For a �at interface between materials, light incident at the critical angle
[Eq. (2.17)] or greater is totally internally re�ected, but for a curved interface the re�ection
is only quasi-total, with some of the �eld being transmitted. As the transmittance vanishes
when the interface is straight, the larger the resonator is compared to the wavelength, the
smaller the losses.�e azimuthal mode number is proportional to the size–wavelength
ratio, m ∝ r/λ, i.e., with a large m the curved surface is closer to being straight over a
wavelength. Form ≫ 1, the order-of-magnitude quality factor associatedwith the radiation
losses is given by [85]

Qrad ∼ me2m , (2.55)

which is an exponential function that increases rapidly for large mode numbers as shown
in Fig. 2.6. For small mode numbers, the radiation losses are much larger than Eq. (2.55)
predicts. Nevertheless, numerical work for low for mode numbers [137] shows that for
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m ≥ 60, the quality factor associated with the radiation losses is ≥108, which corresponds
to a wgm radius of roughly 12 µm for light of vacuum wavelength 1550 nm in silica.�e
resonators used in the work presented in this thesis have radiuses that are more than an
order ofmagnitude larger than 12 µm and thus the radiative losses are very small compared
to other loss mechanisms.

�e material q factor related to absorption and scattering o� material defects can
be estimated from the material’s optical energy/power attenuation factor αmat of relative
losses per length at the resonance wavelength. When considering only material losses,
the dissipated energy over a roundtrip ∆Ecav ≈ −αmatLEcav, giving an approximate power
dissipation of Ėcav ≈ −αmatLEcav/Trt over a round trip. Using the de�nition of the q factor
[Eq. (2.11)], the material contribution to the q factor is then

Qmat =
Ecav
−Ėcav

ω ≈ Ecav
αmatLEcav/Trt

2πυ = 1
αmat

2πυTrt
L

= 1
αmat

2πn
λ
, (2.56)

where it has been used that the resonator length over the round trip time is the phase
velocity of the light �eld, L/Trt = vph = c/n. At λ = 1550nm the attenuation factor for
fused silica is 0.2 dBkm−1 = 1 ⋅ 10−5m−1 [2, 101], giving QSiO2mat ∼ 1011. For barium �uoride
the attenuation factor ∼10−3m−1 [89], giving QBaF2mat ∼ 109.
Lastly, there are typically imperfections in the resonator surface or contamination that

can limit the quality factorbeyond the limit imposedby thematerialq. Quality factors close
to the material absorption limit have been reported for instance for silica microspheres
(Q = 3 ⋅ 109 [87]) and barium �uoride disk resonators (Q = 1.3 ⋅ 109 [89]), noting that
Gorodetsky et al. [87] found a 100-second timescale of adsorption of atmospheric water
onto their silica spheres, reducing from the material limited q to about 20%. Keeping the
resonators clean is critical to ensure that the q is not reduced over time.

2.5 the thermo-optic and thermoelastic effects

When the temperature of awgm resonator changes, either through optical absorptive heat-
ing or external heat sources/cooling, the cavity modes are a�ected.�ere are two di�erent
temperature-related e�ects with di�erent associated timescales: the fast thermo-optic ef-
fect that causes a local change in the refractive index as the temperature of the mode
volume changes, and the slower thermoelastic e�ect that causes expansion or contraction
of the bulk material, resulting in a geometrical path-length change [138, 139].�ese e�ects
will both contribute to a change in the resonance frequencies. As absorptive heating in-
creases with optical power, these e�ects are thus nonlinear e�ects in �eld strength and
o�en referred to as thermal nonlinearities.

�e temperature dependence can be an issue for some applications for instance due
to dri�s in absolute frequency, but the temperature dependence is also a powerful tool;
temperature control can be used for instance to tune resonance frequencies, and for ma-
terials with a positive thermo-optic coe�cient it can provide a means for passive, thermal
locking to a resonance, as covered in Section 3.6.1.



40 a. ø. svela— near-field-scattering-based optical control and . . .

ix �e terms fused
silica/quartz and vitreous
silica are o�en used inter-
changeably to describe
SiO2 heated up to >1600 °C,
causing a fused, amorphous
structure.

To �rst order, the frequency change of a mode due to a change in the refractive index
or resonator radius can be expressed

∆ω ≃ ∂ω
∂n
∆n + ∂ω

∂r
∆r . (2.57)

Using the simpli�ed resonance frequency expression (2.18), the relative shi� is

∆ω
ω0

≃ −∆n
n

− ∆r
r
. (2.58)

�e change in refractive index due to the mode temperature change ∆Tm for a thermo-
optic coe�cient Cn of the resonator material is

∆n
n

= 1
n
dn
dTm

∆Tm = Cn
n
∆Tm , (2.59)

and the radius change as a function of bulk temperature change ∆Tb and the thermal
expansion coe�cient Cr is

∆r
r

= 1
r
dr
dTb
∆Tb = Cr∆Tb . (2.60)

Together, this yields
∆ω
ω0

≃ −(Cn
n
∆Tm + Cr∆Tb) . (2.61)

As the mode volume for a wgm is typically small compared to the resonator size, the
thermo-optic e�ect is faster than the thermoelastic e�ect.�e balance between the mag-
nitudes and signs ofCr andCn determines a resonator’s frequency response to temperature
changes.�e response can be modi�ed by coating the resonator surface with a polymer,
see for instance He [140].
At room temperature, fused silicaix has a linear thermo-optic coe�cient of Cn =

1.05 ⋅ 10−5K−1 at λ = 1.55 µm, and a particularly small thermal expansion coe�cient Cr =
5.4 ⋅ 10−7K−1 [141]. In fact, the expansion coe�cient is so small that fused silica is some-
times used as a referencematerial for thermal expansion. As n is of order unity, the thermo-
optic e�ect is two orders of magnitude more pronounced than the thermal expansion, and
the thermo-optic e�ect is typically also faster given the smaller relevant volume.
For barium �uoride, the coe�cients are Cn = −1.7 ⋅ 10−5K−1 [142, 143] and Cr =

2.0 ⋅ 10−5K−1 [144] at room temperature and λ = 1.55 µm. Noting the negative sign of the
thermo-optic coe�cient, the two e�ects nearly cancel; however, the timescale di�erence
can give rise to dynamic interplay e�ects [140].

�e smaller the resonator, the smaller the heat capacity and thus the e�ect of heating is
generally more pronounced. Note also that the thermo-optic and thermal expansion coe�-
cients typically are temperature dependent. Figure 2.7 shows the temperature dependence
for the coe�cients from room temperature down to cryogenic temperatures for fused
silica: Cn decreases by about an order of magnitude over the range 300K to 30K, whereas
the thermal expansion coe�cient decreases with a zero crossing at 175 K to ≃ −8 ⋅ 10−7 K−1
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Figure 2.8. Spectral transmission pro�les of
a resonance (λcav ≃ 1.55 µm) scanning down-
wards in frequency at a rate of ≃ 90GHz s−1.
At low input power the resonance is close
to a Lorentzian lineshape, whereas at higher
powers thermal e�ects broaden the reson-
ance. �e coupling position is di�erent for
the low input power and the twohigherpower
measurements.

Figure 2.7. Temperature
dependence for fused
silica of (a) the thermo-
optic coe�cient at 1.5 µm
wavelength (experimental
values) [145], and (b) the
thermal expansion coef-
�cient (phenomeno-
logical model �t) [146].

at 40K, and then approaches zero as the temperature approaches zero kelvin. In addition
comes changes in the thermal conductivity, which can result in change of timescales and
resonance shi�s for the same input power at di�erent temperatures.

2.5.1 �ermal broadening of the resonance shape

When coupling in an optical �eld to a resonator, thewgm volume heats up as the resonator
material absorbs some of the light circulating in the resonator. As the heat di�uses into the
resonator structure, the bulk temperature also changes. For resonators with high absorp-
tion, small heat capacity, or when using high input powers, the heating from absorption
becomes signi�cant enough to cause resonance frequency changes beyond the linewidth of
the resonance, leading to the transmission spectrum changing from the normal Lorentzian
pro�le when scanning the pump laser across the resonance.
Carmon et al. [138] derive a model for the dynamic response of the resonator, but the

spectral response can be understood qualitatively from Eq. (2.61). If a silicawgm resonator
is heated, the resonance shi�s downwards in frequency (upwards in wavelength) because
both the coe�cients Cr and Cn are positive. If the heating increases with circulating power
and the pump laser frequency is swept across the resonance, the resonance pro�le shows
hysteresis with relation to the sweeping direction: as the frequency is approaching the
resonance from above, the increased heating from a larger in-coupled optical power shi�s
the resonance frequency downwards alongwith the pump,whereas if the pump is sweeping
upwards in frequency, the resonance frequency moves towards the pump laser.

�e result is a broadened transmission shape when scanning downwards in frequency,
or a compressed shape when scanning upwards. For the case of broadening: when the
maximum in-coupled power is reached, the maximum heating is occurring and thus also
maximum thermal shi�, when the coupling then decreases this reduces the thermal shi�
of the resonance and causes a jump out of resonance. Transmission spectra for a resonance
at di�erent input powers for a silica rod resonator is shown in Fig. 2.8, showing a signi�cant
broadening at higher input powers.
Note that this formof thermal broadening,o�en called a thermal triangle, is not present

in barium �uoride resonators as the thermo-optic coe�cient is negative, thus shi�ing the
resonance towards the pump as it is increasingly coupled in.
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optical susceptibility χ

x Assuming an instantan-
eous response is e�ectively
assuming a lossless and dis-
persionless medium, as can
be seen from the Kramers–
Kronig relations, see Boyd
[12, Ch. 1].

2.6 the kerr nonlinearity

When a su�ciently strong optical �eld is present in a dielectric material, the properties
of the material might change as a consequence of the �eld’s presence. When the material
response depends on the optical �eld in a nonlinear manner, the material is said to have a
nonlinear response. Many textbooks are devoted to this topic, see for instance Boyd [12] or
others [13, 95, 147]. Aswgm resonators have small optical mode volumes and the build-up
of optical power is high, the input power needed to observe nonlinear e�ects is relatively
small.�us, wgm resonators have been a key platform of choice for many experiments in
this domain for the last three decades, with examples given in the introduction chapter of
this thesis.

�is section explores the third-order optical nonlinearity resulting in an intensity-
dependent refractive index and its consequences for wgm resonators.�e third-order
nonlinearity is o�en referred to as the Kerr nonlinearity, named a�er the Scottish physicist
John Kerr who, in 1875, described the phenomenon now known as the dc Kerr e�ect [51]
where the presence of a static electric �eld changes the optical properties of a dielectric.
�is section, however, will focus on the ac Kerr e�ect, where a time-varying optical �eld
is changing the properties of the dielectric.

2.6.1 �e intensity-dependent refractive index

In a semi-classical description, a time-varying, monochromatic electromagnetic �eld E
induces an electric polarisation P (dipole moment per unit volume) in a dielectric. Nor-
mally, the induced polarisation is proportional to the �eld strength, P = ε0χE, where ε0
is the vacuum permittivity.�e proportionality factor χ is the optical susceptibility, from
which the refractive index is de�ned by [12]

n2(ω) = 1 + χ(ω) , (2.62)

where the frequency dependence of the susceptibility, the chromatic dispersion of the
material, is indicated.
When the induced polarisation also has terms of higher-order dependence on the

electric �eld, the medium’s response is nonlinear. Assuming an instantaneous polarisation
response,x the total polarisation induced in the dielectric as a result of the electric �eld is
given by the Taylor expansion in powers of E,

P = ε0(χ(1) ⋅ E + χ(2)∶EE + χ(3) ⋮EEE + . . . ) , (2.63)

where χ(1) is the linear susceptibility and χ(m) the m-th order nonlinear susceptibility
tensors [13]. Typically, the nonlinear susceptibilities are small so inmost cases the equation
can be linearised as the dominant contribution to the polarisation comes from the linear
term P(1) = ε0χ(1)E. However, if a the optical �eld is su�ciently strong, the nonlinear
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xi Note that also an instant-
aneous �eld response is
required for the follow-
ing argument, but it is in
fact generally valid that
centrosymmetric media do
not exhibit a second-order
susceptibility [12, Sec. 1.5].

nonlinear refraction

Kerr e�ect

contribution becomes important, as the nonlinear polarisation e�ectively acts as a source
for the electric �eld within the dielectric.1

�e higher-order susceptibilities are tensors as they detail the polarisation contribu-
tions from the �elds from di�erent directions. For instance, the third-order tensor is a
rank four tensor χ(3)i jkl with 81 elements. Fortunately, due to a range of di�erent symmetries,
the number of independent elements in the tensor is typically much smaller [12, Ch. 1]. For
optically isotropic media such as fused silica or barium �uoride, the linear susceptibility
is a scalar quantity, and the number of nonzero elements of the third-order tensor is 21,
with only four independent elements [13].
For amorphous dielectrics or crystalline dielectrics with crystallographic inversion

symmetry, the even-order susceptibilities must be zero:xi for instance for the second order,
P(2) = ε0χ(2)EE = −P(2) by inversion symmetry, which for a nonzero �eld can only
be satis�ed by χ(2) = 0 [12, Ch. 1]. Fused silica is amorphous, thus exhibits inversion
symmetry, and hence even-order nonlinear e�ects such as the second-order nonlinearity
cannot be observed in the resonators used here. However, centrosymmetric materials do
show odd-order nonlinearities, and particularly the third-order nonlinearity is important
in this work.
A non-zero third-order susceptibility causes nonlinear refraction, i.e., an intensity de-

pendent term for the refractive index,

n(ω, I) = n0(ω) + n2I , (2.65)

where I is the optical intensity in the medium [95, Ch. 2]. As the nonlinear refractive index
coe�cient n2 is typically small compared to n0, high optical intensities are needed for the
nonlinear term to contribute signi�cantly – formostmaterials n0 is of order unity, whereas
n2 ∼ 10−20m2W−1 for both fused silica [148] and barium �uoride [149] at near-infrared
wavelengths.

�e intensity-dependent refractive index, o�en called the optical (ac) Kerr e�ect,
comes from the third-order polarisation term and is thus a third-order e�ect. To derive
it, consider a monochromatic, linearly polarised electric �eld E in the spatial direction
i: the only involved element of the third-order susceptibility tensor is χ(3)iiii , which in the
below is denoted simply as the scalar χ(3). Writing the electric �eld as E = E0 cos(ω0t),
the third-order polarisation term is

P(3) = 1
4

ε0χ(3)E30 [cos(3ω0t) + 3 cos(ω0t)] . (2.66)

1�e e�ect of the nonlinear polarisation can be understood throughMaxwell’s equations, under the slowly
varying amplitude approximation and assuming a dispersionless, isotropic dielectric, the wave equation for
the electrical �eld can be expressed [12]

∇2E − n2

c2
∂2E
∂t2

= 1
ε0c2

∂2PNL
∂t2

, (2.64)

where PNL = ∑m P(m) − P(1).�e nonlinear polarisation term can be interpreted as a driving term in the
di�erential wave equation.
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self-phase modulation

cross-phase modulation

�e term represents third-harmonic generation, but for e�cient conversion from ω0 to
3ω0, the phase velocities of the two waves must be equal [13]. Generally this is not the case
because of material dispersion, n0(ω) ≠ n0(3ω), and thus the third-harmonic term can
be neglected.�e total polarisation up to the third order is then

P = P(1) + P(3) = ε0 (χ(1) + 3χ(3)E20
4

)E = ε0χe�E , (2.67)

where an e�ective susceptibility χe� has been introduced. Inserting the e�ective susceptib-
ility into the de�nition of the refractive index (2.62), an expression for the refractive index
including the nonlinear contribution is obtained:

n2 = 1 + χe� = (1 + χ(1)) + 3χ(3)E20
4

= n20 +
3χ(3)E20
4

. (2.68)

As the nonlinear contribution is assumed to be small, the approximation (1+x)1/2 ≈ 1+x/2
for x ≪ 1 can be used:

n = n0 (1 +
3χ(3)

4n20
E20)

1/2

≈ n0 +
3χ(3)

8n0
E20 . (2.69)

�e optical intensity is proportional to the square of the �eld amplitude, I = cn0ε0E20/2,
which gives a refractive index

n = n0 +
3χ(3)

4cε0n20
I ≡ n0 + n2I , (2.70)

i.e., a nonlinear refractive index coe�cient in units of m2W−1

n2 =
3χ(3)

4cε0n20
. (2.71)

2.6.2 Self-phase and cross-phase modulation

�e nonlinear contribution to the refractive index can also be seen as an increased phase
accumulation over a propagation length L: ϕ = (n0 + n2I) kL [Eq. (2.23)].�e intensity-
dependent term represents additional phase accumulation

ϕSPM = n2kL I (2.72)

to the linear phase.�is e�ect is called self-phase modulation (spm), as it is the �eld itself
that is causing the additional phase accumulation.�e term spm is also o�en used referring
to the self-induced refractive index change.
In addition to the self-induced phase shi�, other �elds spatially overlapping but at a

di�erent wavelength, in a di�erent polarisation state or direction, can also cause phase
shi�s. �is e�ect is called cross-phase modulation (xpm) and will also contribute to a
refractive index change.
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In fact, the refractive index change from xpm is twice as strong as the spm contribution.
Following the approach of Kaplan [150], the factor of two can be shown for the case of
two linearly polarised, counterpropagating �elds considering the third-order polarisation
term when the �elds are at the same frequency ω and propagating along the x-axis, i.e.,
with wavevectors k→ = −k← = k x̂.�e total �eld is then

E(t, x) = E→(t, x) + E←(t, x) (2.73)

= [A→eikx + A←e−ikx] e−iωt + c.c. , (2.74)

where the slowly varying �eld amplitudes A→,A← are complex and ‘c.c.’ denotes the com-
plex conjugate.�e third-ordernonlinearpolarisation P(3) ∝ E3 will have 20 terms for this
total �eld, some of which are components oscillating at 3ω or with wavenumbers ±3k. Be-
cause of material dispersion these frequency conversion processes are not phase-matched,
meaning those terms can be neglected. Leaving those terms out, only eight remain:

P(3) ∝ 3 [ (∣A→∣2 + 2∣A←∣2)A→eikx

(∣A←∣2 + 2∣A→∣2)A←e−ikx] e−iωt + c.c. . (2.75)

�e polarisation for the right-propagating component can be identi�ed,

P(3)
→ ∝ (∣A→∣2 + 2∣A←∣2)E→ ,

where the factor of two in front of the counterpropagating squared amplitude term is what
gives the twice as strong power dependence in the xpm compared to the spm.
By similar arguments as in the case of only spm in Eq. (2.67) to Eq. (2.70), one �nds

there is an additional xpm-induced refraction term for the �eld → due to the counter-
propagating �eld← and vice versa.�e refractive indices counting both the spm and xpm
terms are then

n⇌(ω, I⇌, I⇋) = n0(ω) + n2(I⇌ + 2I⇋) . (2.76)

�e nonlinear phase shi�s resulting from the spm and xpm interactions is therefore

ϕNL⇌ = n2kL(I⇌ + 2I⇋) . (2.77)

From the full nonlinear refractive index in Eq. (2.76), it is apparent that in the case of
two counterpropagating light �elds of the same vacuumwavelengthbutdi�erent intensities
outside a χ(3) material, they will experience di�erent refractive indices inside the material
and thus di�erent wavelengths, illustrated in Fig. 2.9.�e wavelength di�erence can be
seen as di�erent optical path-lengths through thematerial, having important consequences
in the context of counterprogating light in microresonators.
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Figure 2.9. Illustration of the Kerr e�ect for
counterpropagating electric �elds. Two spa-
tially overlapping (o�set in the �gure for clar-
ity) �elds of equal vacuum wavelength are
counterpropagating in a χ(3) material. When
the intensities are unequal, the two beams ex-
perience di�erent nonlinear contributions to
the refractive indices (nNL), giving di�erent
wavelengths within the material for the two
propagation directions. Adapted from Del
Bino et al. [16] under a cc-by licence.

Kerr shi�

xii Cao et al. [17, supp.mat.]
roughly estimates the ra-
tio of the shi� caused by
thermal e�ects to the Kerr
shi� in a silica wgmmicro-
sphere, showing that the
shi� caused by thermal ef-
fects exceed the third-order
nonlinear e�ects by one
order of magnitude. He
[140] reports two orders of
magnitude for silica wgm
microtoroids.

2.6.3 �e Kerr-induced resonance frequency shi�

Forwgm resonators, the intensity-dependent refractive index results in a power-dependent
resonance frequency. Considering only one propagation direction �rst, for an intra-cavity
power Pcav = IAe�, where Ae� is the e�ective area of the mode cross section, the change
in the refractive index can be found from the derivative of Eq. (2.65),

∂n
∂Pcav

= n2
Ae�

. (2.78)

�e refractive index change causes a shi� in the resonance frequency away from ω0 by

∂ω0
∂Pcav

= ∂ω0
∂n

∂n
∂Pcav

= −ω0
n

n2
Ae�

, (2.79)

where the �rst partial derivative is calculated from Eq. (2.18).�is resonance frequency
shi� is the Kerr shi�. Normally the nonlinear contribution to the refractive index is small,
n2I ≪ n0, and the shi� can be approximated via

∆ω
ω0

≈ − 1
n0

n2
Ae�

Pcav . (2.80)

Similarly to how the thermo-optic and thermoelastic shi�s changes the spectral shape
of a resonance, the Kerr shi� also distorts the resonance lineshape when scanning over
the resonance:xii when scanning a probe �eld towards the resonance, the resonance shi�s
downwards in frequency due to increasing intra-cavity power. In contrast to the thermal
e�ects, the Kerr e�ect is practically instantaneous for the work presented in this thesis [151].

2.6.4 Resonance shi�s for counterpropagating modes

Due to cross-phase modulation between counterpropagating beams, the resonance fre-
quency of the clockwise direction of a spatially degenerate wgm is not only dependent
on the optical power in the cw direction, but also the power in the ccw direction, and
vice versa. Because of the factor of two di�erence between the strength of spm and xpm
contributions in a dielectric, the initially frequency-degenerate counterpropagatingmodes
frequency split when pumped at unequal intensities – and even when pumped with equal
intensities for su�ciently high powers.
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xiii �e author of this thesis
is a co-author on this work.

With the optical powers Pcw,Pccw counterpropagating in a wgm, the resonance fre-
quency shi� of the cw resonance of frequency ωcw due to spm and xpm can be found
from the expression for the intensity-dependent refractive index for counterpropagating
�elds (2.76),

∂ωcw
∂Pcw

≈ − ω0n2
n0Ae�

; ∂ωcw
∂Pccw

≈ −2 ω0n2
n0Ae�

, (2.81)

where ω0 is the common, unshi�ed resonance frequency.�e factor of two between the
self-Kerr-induced and the cross-Kerr-induced shi�s couples the two resonance frequencies
with unequal weights, opening for several interesting e�ects. Ghalanos et al. [152]xiii shows
direct spectroscopymeasurements of the shi�ed resonances, using beatnotemeasurements
of a �xed, strong optical pump and weak co- and counterpropagating probes to detect
the resonance shi�s.�is form of splitting can for instance be exploited for tuning the
resonance frequency of a mode through pumping on the counterpropagating mode, and
the authors demonstrate a 35-fwhm-linewidth splitting between the two propagation
directions.
Furthermore, as a consequence of the imbalance between the spm and xpm contri-

butions, for higher powers, even equal-intensity pumping of the two directions can lead
to frequency splitting.�e solutions to the coupled steady-state equations for the optical
power reveals an optical bistability for su�cient optical input powers. Phenomena such as
spontaneous symmetry breaking [16, 153, 154] and self-switching [155] can be observed.
Spontaneous symmetry breaking was utilised in Svela et al. [156] for enhancing the re-
sponsivity of near-�eld sensing with a wgm resonator.
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chapter 3

Fabrication methods and experimental techniques

�e experimental work presented in this thesis relies on specialised optical devices, cus-
tommade to suit the particular experiments.�e development of experimental techniques
for reliable and reproducible fabrication processes for high-quality devices that meet ne-
cessary optical performance, but also with su�cient rigidity, lifetime, thermalisation for
cryogenic experiments, et cetera, is key to this research programme.�is typically requires
an iterative approach with improvements to the design and construction of the setups or
characterisation techniques. Sometimes these procedures involve hours and hours of trial
and error in parameter hunting, troubleshooting, readjusting, and trying again.�ankfully,
with the e�orts put down by others in the past, not everything has to be reinvented or
developed from scratch; many of the devices used in this thesis are well-known devices in
the literature, but with their particularities and special requirements for the experiments
presented here. All the important small details and tricks cannot be conveyed in a paper,
and sometimes that magical pair of experienced hands is needed to get a setup working.

�is chapter describes the fabrication procedures for the optical devices used in this work
made by the author or collaborators. Additionally, some experimental techniques that are
used extensively throughout this work are also described.
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i Optical isotropy is de�ned
as the refractive index (or,
equivalently, the phase ve-
locity of a wave) being the
same in all spatial direc-
tions inside the material.

Figure 3.2. E�ect on the q
factor of resonator given
fabrication atmosphere.
Box plot of the highest in-
trinsic q factors obtained
for ten resonators fabric-
ated in ambient air and
three resonators fabricated
in a nitrogen atmosphere
(box extends from �rst to
third quartile, whiskers
cover the whole data range).
�e medians are marked
as horizontal lines.�e
median for the nitrogen-
atmosphere fabricated
resonators is approximately
three times higher.

3.1 fused silica optical rod microresonators

�e rod resonators used for the work described in Chapter 4 were made from fused silica
owing to its low optical losses at telecom wavelengths, ease of machining, and phase-
matched evanescent coupling to silica tapered �bres. Fused silica is also optically isotropic,i

ensuring optical properties do not vary over a roundtrip in the optical resonator.�e silica
rod resonators used in this thesis were machined in-house at the National Physical Labor-
atory on an existing machining setup.

�e machining procedure is based on the method introduced by Del’Haye et al. [55],
using a high-power CO2 laser beam to mill silica glass rods. To reach the state-of-the-
art optical quality factors of 109, the resonators are fabricated in a nitrogen atmosphere,
seeking to avoid the formation of near-ir-absorbing OH groups from water vapour in
ambient air being trapped in the resonator during fabrication [157, Ch. 4]. To the best of
the author’s knowledge, the nitrogen-atmosphere technique has not been demonstrated
previously in the literature. Figure 3.2 shows a box plot for the intrinsic q factors for 13
resonators of diameters in the range [1.55, 1.87]mm, where the medians suggest a ≃ 3
times improvement in the q factor by fabrication in a nitrogen atmosphere.�e q factors
measured for these resonators are amongst the highest reported in the literature for fused
silica rod resonators.

�e resonators’ q factors were measured under atmospheric conditions, therefore
OH-absorption losses caused by post-fabrication adsorption of water to the resonator
surface could have reduced the q factor for the nitrogen-atmosphere-fabricated resonators
compared to their initial state.�e duration of this adsorption process is reported to be
about 100 seconds [87] from the time the resonator comes into contact with atmospheric
air, a time window during which the resonators were notmeasured. However, there was no
signi�cant reduction in the q factor observed in the �rst few days of use, indicating that if
there was a reduction in q, the adsorption happens on a shorter timescale as reported in the
literature. Operating the resonator in a nitrogen atmosphere or under vacuum without air
exposure can possibly increase the q factor even further. Normally, q factors of a resonator

Figure 3.1.Micrographof a
fused silica rod resonator
of diameter 2730(2)µm,
with inset of the reson-
ator pro�le con�ning the
wgm. �e indicated dis-
tance between the grooves
con�ning the optical �eld
is ≃110 µm.
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ii For the [111] axis, the
relative variation of the
speed of sound is ≃ 5 ⋅ 10−6,
compared to orders of
magnitude higher relative
variation for other crystal
axes such as [001] or [121],
see Section 5.3.2.

degrade over timescales of weeks or months due to deposition of dust or other impurities
on the surface unless under vacuum or other precautions are taken.
To fabricate a resonator, a 3-mm-diameter silica rod is �xed to a spindle motor, and

set to spin at 2500 revolutions per minute. Gold-coated galvanometer mirrors provide
a means to control the position of the laser beam during the three stages of the milling
procedure. First, a laser beam of power in the range 5 to 8W is swept along the rod surface
to evaporate the silica in order to mill the rod to the required diameter.�is creates a
symmetrical rod with respect to the rotational axis and removes any surface contaminants
or air bubbles. Next, the laser beam position is alternated between two points separated
by ∼0.1mm along the axis of rotation, cutting grooves at these positions, creating the
resonator bulge as shown in Fig. 3.1 in between them. Lastly, the laser power is reduced
and swept along the rotation axis, melting the surface to ensure a smooth surface and a
high-q-factor resonator.

�e resonators used in this work had diameters in the range 1.7mm to 2.7mm, with
optical quality factors in the range 105 to 109.

3.2 crystalline barium fluoride optical rod microresonators

�e rod resonator used for the Brillouin optomechanical work described in Chapter 6
needed to comply with two additional requirements to low optical losses, namely, low
acoustic losses and high isotropic elasticity to facilitate optomechanical coupling by elec-
trostriction. Crystalline structures generally have lower phononic damping rates than
amorphous ones [158, 159], making crystalline structures attractive to ensure low acoustic
losses. Furthermore, crystalline materials also show reductions in mechanical damping
rates at cryogenic temperatures [160, 161], as the material contribution phonon dissipation
is reduced [162, 163].
However, in contrast to amorphous materials, crystalline materials are generally mech-

anically anisotropic, resulting in directional dependence of the speed of sound in the
crystal.�is is disadvantageous for Brillouin optomechanics as it reduces the coupling
between light and mechanics and thus the Brillouin gain, see Section 5.3.2 for a detailed
description. Generally, cubic and hexagonal crystals show the lowest mechanical aniso-
tropy [164] and are also optically isotropic [12].
Based on these considerations, Enzian [165] identi�ed crystalline barium �uoride,

BaF2, as a good candidate for cavity Brillouin optomechanics because of its low optical
losses at 1550 nm and relatively high and low-anisotropy elasticity. Moreover, Enzian [165]
found that a resonator plane normal to the [111] crystal axis would yield the smallest
variation in the speed of sound over the course of a roundtrip along the azimuth,ii making
this the optimal axis for resonator fabrication to avoid reduced optomechanical coupling.
Barium �uoride has opposite signs of the thermo-optic and thermo-elastic nonlinear-

ities, which makes passive thermal locking unviable, see Section 3.6.1. Furthermore, the
di�erent timescales and signs of the Kerr and thermal nonlinearities can lead to oscillatory
instabilities in the resonance frequency at high optical powers [96, 166].
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Figure 3.3. (a) Crystalline barium �uoride rod with diameter 0.9mm with �ve microresonators.�e machining pro�le (not to
scale) is indicated in blue. (b) Plot showing the machined resonator pro�le for a single resonator bulge, with an orange dashed
line indicating a its radius of curvature of 40 µm. (c) Positions of the optical �bre taper when light is coupled into the resonator
in comparison to the machining pro�le, indicating a similar �nal shape of the resonator bulge as the machining pro�le.

iii Moore Nanotech 250
UPL

iv Stycast 2850FT with 23LV
catalyst

v Polycrystalline diamond
compounds of 0.1 µm and
0.05 µm sizes from Allied
High Tech mixed with
glycol.

�e barium �uoride resonator used in this thesis [Fig. 3.3(a)] was machined by col-
laborators at the Ultra-precision machining facility at the Australian National University
in Canberra. In order to keep the desirable crystalline structure, a mechanical machining
setup is used rather than laser ablation as that would result in an amorphous material
structure on the surface. �erefore, a nanometre precision diamond latheiii is used to
machine down commercially available barium �uoride single-crystal rods with the [111]
crystal axis aligned with the cylinder’s symmetrical axis.
In contrast to the machining procedure for the silica rods where grooves are cut and

thereby creating a resonator ‘bulge’ between them, for the BaF2 resonators, material is
removed cylinder symmetrically along the rod, only leaving material to form a set of �ve
resonator ‘bulges’ spaced by 350 µm on a crystal.�e machining pro�les of two resonators
can be seen in Fig. 3.3(b), indicating the 40 µm radius of curvature of the bulge.
Before machining, the crystal is glued with a cryo-compatible epoxyiv onto the end

of an oxygen-free copper cylinder to facilitate mounting in our cryostat setup and ensure
good thermalisation of the crystal to the cryostat temperature. During machining, the
crystal is rotated at 2000 revolutions per minute, and at a 3mmmin−1 feed rate in the
axial direction, i.e., rate at which the diamond tool moves along the crystal.�e particular
machining speed is selected as it is su�ciently slow to ensure no slipping of the tool, and
su�ciently fast to avoid large cracks in the crystal.�e crystal is �rst machined to a perfect
cylinder with the same axis as the lathe, then the lathe is set to trace out the custom path
corresponding to the desired resonator shape, as shown in Fig. 3.3(b).�e �nal lathe steps
use a new diamond tool to ensure its sharpness for a smooth surface, making double cuts
for each of the depths 10, 5, 2, and 1 µm.
A�er using the nano-lathe tool for the cutting the shape, diamond slurries of pro-

gressively �ne particle sizesv are used for �nal polishing to provide the necessary surface
smoothness needed for high optical q factors. A�er polishing, the samples are shipped
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vi Bronkhorst EL-FLOW
Base F-201CB

vii using�orlabs T711/M-
250

viii �orlabs MTS50/M-Z8
with KST101 controllers

ix Spetec SuSi

to the uk in custom made aluminium boxes to protect the resonators in transit and keep
them pristine.

�e resonator used in this work has a major diameter of 953(1)µm and radius of
curvature for the bulge con�ning the light �eld of 40.0(1) µm.�e resonator machining
pro�le matches recorded positions for which a tapered optical �bre couples to the wgms,
see Fig. 3.3(c).�e resonators show optical quality factors up to 108.

3.3 micron-waist-size tapered optical fibres for resonator coupling

Tapered optical �bres have been used to couple into microresonators since Knight et al.
[125] demonstrated the techniquemore than two decades ago. It is still a challenging device
to make because of its thin, long nature and large parameter space with small tolerances
for what yields a high-transmission, durable taper or a taper that does not exhibit these
characteristics.
For the work described in the �rst part of this thesis, the tapered �bres for coupling

to microresonators were produced in-house at the National Physical Laboratory using an
existing setup. For the Brillouin optomechanics projects, a similar setup was replicated
under a laminar �ow box, to avoid any contamination on the tapered �bres during and
a�er fabrication.�e author played a signi�cant role in building and optimising this setup,
including contributions to writing a comprehensive graphical user interface controlling
all the components, and providing convenient control over the involved components and
automation of the whole pulling procedure.

3.3.1 Hydrogen �ame tapering setup

To fabricate the �bres, a �ame is placed close to the �bre, heating the silica whilst sim-
ultaneously the �bre is pulled symmetrically from both sides until the desired thickness
is reached. A mass �ow controllervi is used to control hydrogen �ow through a 0.4-mm-
diameter copper nozzle, with multiple �ashback arrestors in the hydrogen piping.�e
hydrogen gas is ignited by an arc between two copper electrode tips, providing a clean
∼2000 °C �ame. To pull the �bre, it is clampedvii to two stepper motor stages.viii�e hepa-
�lter �ow boxix over the setup provides a clean environment so that dust and other con-
taminants are prevented from sticking to the taper during and a�er fabrication.�is is
critical to ensure the tapered �bre will not heat when being pumped with milliwatt levels
of laser power, as under vacuum this can cause the taper to break.
A 1550 nm laser source and a photodiode is used to monitor the transmission whilst

the �bre is pulled to provide a means of determining when the �bre is single mode. As
the �bre is pulled, the diameter of the high-index core changes, and the single-modedness
of the �bre is lost. When the core becomes too small to support the optical mode, light
leaks into the �bre cladding and light is lost to the environment or guided by the refractive
index di�erence between the surrounding air and the cladding silica [125].�e changing
diameter results in a varying ability to guide the light and interference, which can be
observed as change in the transmission of the 1550-nm light passing through the taper as it
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Figure 3.4. Tapered �bre fabrication. (a) Photo of a pulled �bre in the tapering setup before glueing
onto the bracket. Note that since this photo was taken the nozzle has been rotated 180°, so the
outlet of the nozzle is facing upwards.�e �bre clamps are mounted onto stepper motors and the
hydrogen gas �ow rate is controlled by a mass �ow controller.�e copper electrodes providing the
arc for igniting the hydrogen are removed in this photo. (b) Transmission of the �bre as it is pulled
simultaneously from both sides.

x �orlabs FTS4

xi Norland Optical Adhesive
81, cured by exposing to a
5W ultraviolet handheld
torch for 30 s.

is pulled thinner.When the taper-waist diameter is so small that only onemode propagates
through, the oscillation in the transmission ceases and the pulling is stopped. At this �bre
diameter, the evanescent �eld is signi�cant and the �bre is well-suited for coupling into
wgm resonators.

3.3.2 Pulling procedure

�e �bres are made from a stripped 125-µm-diameter standard single-mode silica optical
�bre (smf-28). A�er stripping o� the polymer coating using a a pair of manual strippers,x

the exposed silica is cleaned with ipa and clamped in place.�e �ow box is turned o�
during the pulling procedure to avoid the �ame shape being a�ected by the air �ow.
A hydrogen �ow of 80 to 110 mL/min is used. A delay of 15 s is used between when the

hydrogen is ignited and the motors start pulling at a constant speed of 20 µms−1.�e taper
transmission is recorded throughout the pulling procedure. When a steady transmission
is reached, the motors are stopped and the hydrogen �ow is simultaneously cut o�.
Due to the upwards push from the �ame during pulling and the so�ness of the hot

silica, the �bre is not straight when the �ame is cut o�.�erefore, a small tensioning of
80 µm to 160 µm is applied to ensure a straight and tensioned �bre to avoid taper vibrations,
providing stable coupling control.
A�er tensioning, the �bre is glued in-place onto a custom designed metal bracket,

making sure that both the exposed silica part and the polymer coating is glued onto the
bracket for optimal tensioning and robustness. For room temperature experiments, a
fast-curing glue is used,xi allowing for the taper be to used right away. For cryogenic
experiments, however, a few additional factorsmust be considered. To avoid the tensioning
of the �bre changing with temperature for cryogenic experiments, invar is chosen as the
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xii Stycast 2850FT with
24LV catalyst, 18 hours
curing time at room tem-
perature.

xiii �e works of Ibe et al.
[168], Lucier [169], and
Hagedorn et al. [170] in
particular have shaped the
procedure detailed below.

bracket material.2 As the fast-curing glue is not cryo-compatible, the uv glue is covered
with a slow-curing two-component cryo-compatible epoxy.xii As we have observed that
the epoxy typically releases from the bracket a�er a few thermal cycles between room
temperature and 4K regardless of whether uv glue or not is used underneath the epoxy, a
di�erent cryogenic glue better matched to the small thermal contraction of invar over the
temperature range in question is now being tested.
Finally, the �bre ends are spliced onto smf-28 pigtails with apc �bre connectors to

interface with the optical setups.

3.4 sub-wavelength-size tungsten tips for near-field perturbation

�e tungsten tips used in this work’s Chapter 4 were made in-house, based on an elec-
tromechanical etching method used for the fabrication of tips for scanning tunnelling
electron microscopy and atomic force microscopy tips.xiii�e author built a setup at the
National Physical Laboratory for the fabrication of tips, and subsequently built another one
with improved etching voltage cut-o� control at the Max Planck Institute for the Science
of Light.
In this section, the fabrication principle, procedure, and e�ect of delayed etching-

voltage cuto� is explored.

3.4.1 Electrochemical reaction and etching setup

�e tips are made by electrochemically etching a piece of high-purity, polycrystalline
tungsten wire. �e process relies on capillary action and the aqueous electrochemical
reaction

W(solid) + 2OH− + 2H2OÐÐ→WO42− + 3H2(gas), (3.1)

in which the solid tungsten (W) anode is etched through oxidation, as shown schematically
in Fig. 3.5 and explained below.
When the tungsten wire is inserted into the solution, capillary forces cause an upwards

meniscus to form around the wire. When a voltage is applied across the tungsten and some
other electrode in the electrolyte, the etching reaction runs when the 1.43V minimum
potential di�erence for the reaction is overcome [170]. Importantly, the rate of the reaction
varies along the wire: the etching rate is small at the top of the meniscus as the hydroxide
in�ux is increasingly lowerwhere themeniscus gets smaller, and similarly, furtherdown the
wire, there is also a gradient in the etching rate, but there because the tungstate (WO42– )
ions that fall along the sides of thewire form an increasingly dense laminar layer, protecting
the lower end of the wire from being etched.�e etching rate gradient causes a waist to
be formed at the point of highest etching rate. When the waist diameter has decreased

2�e relative thermal expansion of this iron-nickel alloy over a temperature change from 300K to 4K
is −40 ⋅ 10−5 (all of which is attributed to the 100K, from there on there is no change). For comparison,
aluminium has a relative expansion of −460 ⋅ 10−5 over the same temperature range [167]. For a 36mm
bracket this corresponds to a change of ≃ −14 µm for invar or ≃ −170 µm for aluminium, which is substantial
compared to the tensioning applied.
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Figure 3.5. Tungsten tip etching process. (a) A meniscus is formed around tungsten wire due to
surface tension. (b-d)When the voltage supply is turned on, the electrochemical etching starts, the
concentration gradient of OH– gives lower etching speed at the top of the meniscus; as WO42 – is
formed, it slides down along the tungsten wire and protects it from being etched. (e) Drop-o� of
the lower tip happens due to gravity as the thin centre part of the wire ruptures.

xiv Alternatively, an ac
voltage source can be used;
however, in general, ac-
etched tips are conically
shaped and longer than
the hyperbolically shaped
and sharper dc etched
tips [168].

su�ciently, gravity will break o� the lower part of the wire, leaving a sharp tip on the
tungsten wire.

�e time between the lower wire drop-o� and turning o� the voltage across the two
electrodes is critical for tip sharpness: as long as the voltage is su�cient for driving the
reaction, the etching continues and the tip’s shape changes, becoming less sharp. To control
this voltage cuto� time delay on a millisecond level, a computer controlled setup was built
using an Arduino, a shunt resistor, and a relay.
A diagram for the etching setup is shown in Fig. 3.6. A computer reads the voltages

of the two Arduino pins at a sampling rate of 2.0 kS/s, calculating the etching current
from the voltage drop across the shunt resistor. When gravity pulls o� the lower part of
the tungsten wire, the step change in the tungsten electrode area causes a step change in
the current, falling to the noise limit of the current measurement. To stop the reaction
completely, the current drop triggers the computer to send a command to the Arduino to
set the relays to their normally closed state and thus the voltage across the electrodes drops
to zero.�e delay between wire drop-o� and voltage cuto� can be controlled, allowing to
study the tip radius of curvature in relation to the voltage cuto� delay.

3.4.2 Fabrication procedure and cuto�-delay-radius relationship

Temper-annealed, 250-µm-diameter, 99.95% purity polycrystalline tungsten wire was
used in the fabrication.�e electrolyte is made by dissolving potassium hydroxide (KOH)
in deionised water, creating a 7.5mol L−1 concentration aqueous solution. A tinned copper
electrical wire of diameter 0.3mm is used as the cathode.

�e tungsten wire is cleaned using a tissue with ipa and then inserted approximately
vertically into the solution, 3.5mmdeep. Adc power supply set to output of 3.0 V is turned
on to start the etching.xiv To further clean the part of the wire forming the �nal meniscus
and to reduce the surface roughness, the wire is li�ed by 1mm a�er ≃ 10 s of etching.�e
etching current falls as the contact area of the tungsten electrode to the electrolyte reduces
as a result of the etching, and abruptly drops to the noise level of the current measurement
when the part below the waist drops o�, as can be seen in Fig. 3.7(a).�e total etching time
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Figure 3.6. Schematic of the computer-controlled tungsten tip etching setup during etching. A tungsten tip is mounted on a
translation stage to control its position in an OH– solution. A 3.0V power supply is connected to the tungsten tip via the
normally open (no) port of a relay.�e relay is controlled by an Arduino, allowing millisecond-timescale control over the
etching time.�e Arduino measures the voltage drop across the solution by the di�erence between the voltages on its pins
0 and 5 (scaled for R2/R1 = 3.2 times ampli�cation), and the current is measured by the (scaled) voltage drop over the 10 Ω
shunt resistor: I = V/Rshunt. For better sensitivity, an op-amp is used to amplify the shunt resistor voltage drop, as shown in
the righthand-side circuit diagram.�e relays switch from the normally open (etching reaction driven) to the normally closed
(no etching) when a computer sends a command to the Arduino, turning o� its voltage output on port 7.

xv Hitachi S-4800 at the
Max-Planck Institute for
the Science of Light, Erlan-
gen

xvi �e logarithm of the
radius and delay are used
in a linear �t, i.e. log r =
a1 log td + a0 Ô⇒ r =
10a0(td)a1 , where a0 , a1 are
free parameters.

xvii Keeping in mind this
statement by Ekvall et al.
[171]: Possibly there are
as many tip-preparation
procedures as there are
people making tips.

is typically two minutes. A�er etching, the tip is removed from the solution and cleaned
with ipa and le� to dry.
Scanning electron microscopexv (sem) images of a tip fabricated using the setup are

show in Fig. 3.8. From sem imaging 10 tips, the relationship between the voltage cuto�
delay and the size of the tip is explored in Fig. 3.7(b). A phenomenological power law
relation is �tted to the data,xvi showing that the cuto� delay is a critical parameter in
determining the radius of curvature of the �nal tip. A simple motivation for a power law
relation is that the amount of material that has to be removed for a change in the radius
of curvature is increasingly larger as the radius increases.

3.4.3 Tip yield & reliability and sharpness improvements

�e method presented in this section is found to reliably produce sub-wavelength-size
tips,xvii and the tip-size can be controlled by the etching-voltage cuto� delay. As long as
the electrolyte is free of contaminants, the tips do not show signs of contamination and
the yield of those tips selected for sem imaging is close to 100%.
Improvements that can be made to the setup include simple changes to increase the

reproducibility and reliability further such as (i) inserting a bubble barrier to avoid H2
gas bubbles disturbing the meniscus; (ii) covering the setup to avoid contaminants in the
electrolyte; and (iii) using a better clamping mechanism to ensure the tungsten wire is
perpendicular to the electrolyte. To improve tip sharpness beyond the 30 nm achieved
here, implementing a shorter voltage cuto� delay [168] will probably have the most signi-
�cant e�ect. Additionally, using crystalline tungsten wire [170], or employing post-etching
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Figure 3.7. Tungsten tip etching current pro�le, and etching voltage-cuto� delay versus size. (a)�e
etching current over the course of an etching procedure. A reduction in the current around 15 s
etching time can be observed, which is when the tip is moved 1mm out of the electrolyte (end of
pre-etching), reducing the etching area and thus the current.�e tip drop-o� occurs at t = tb, and
the inset shows the etching current and voltage drop across the solution in the time a�er the drop-
o�, where the delay time td between the drop-o� and the voltage cuto� is annotated. (b) Radius
of curvature of etched tips measured from sem images plotted as a function of the delay time td
between the tip drop-o� and voltage cuto�. A linear �t to the logarithm of the radius and delay is
shown (a power law �t).�e uncertainties of 3ms and 10% on the radius is indicated.

Figure 3.8. Scanning electron microscope images (inverted colours) of a tungsten tip.�e tip’s
radius of curvature at the tip is annotated.

sharpening techniques such as heating [171], �eld-ion-microscope-driven reaction with
nitrogen [172], or ion milling [173], can be considered.

3.5 measuring the optical quality factor of a resonance

�ere are several approaches tomeasuring the q factor of a resonance, for instance through
cavity ring-downmeasurements [e.g. 174]. Here, however, a direct linewidthmeasurement
is used, where the loaded q factor is calculated from the ratio of the resonance frequency
to the fwhm linewidth of the resonance [Eq. (2.16)].
To measure the linewidth of a resonance, a setup like the one shown in Fig. 3.9(a) can

be used.�e frequency of a narrow-linewidth, tuneable laser coupled to the resonator is
swept over the resonance and the transmission is recorded on a photodiode (pd). To avoid
Kerr or thermal broadening or compression of the resonances [Section 2.5.1], a low input
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Figure 3.9. Frequency sweep calibration and optical q factor measurement using sidebands. (a) Schematic of a setup for meas-
uring the optical q factor.�e laser frequency is scanned as a linear ramp downwards in frequency and passed through a
phase modulating (pm) eom before it is coupled into the microresonator (µres).�e transmission is recorded by a photo-
diode (pd). Polarisation controllers before the eom and resonator, necessary to ensure correct polarisations for maximum
transmission, are omitted from the schematic.�e rf signal modulating the light causes sidebands spaced by the modulation
frequency. (b) Sweeping the probe laser carrier (υ = 193.38GHz) downwards in frequency with eom generated sidebands
at ±υmod = ±15.0MHz across the resonance (dots).�e data is �tted with the sum of three Lorentzian lineshapes (line) to
determine the separation of the sideband resonances from the carrier, which is used to calculate a time–frequency calibration
for the laser scan. To determine the optical coupling e�ciency, the voltage for when there is no optical input to the pd is used
(vacuum, grey line). (c) A �tted Lorentzian (line) gives a fwhm linewidth of 0.68MHz for the resonance scan (dots), where
the linewidth is indicated by dashed lines. From the optical coupling e�ciency, the intrinsic q factor can be calculated, giving
Qin = 2.9 ⋅ 108.�e uncertainty of these values can be around a percent level due to the nonlinearity of the piezo scan.

xviii A scanning frequency
of for instance 1 kHz will
ensure no thermal broad-
ening for milliwatt input
powers, but if the scanning
frequency is too high, ring-
down signals will distort
the resonance shape.

power must be used to obtain a Lorentzian resonance shape for an accurate linewidth to
be measured. Alternatively, if intermediate input powers are needed, a sweep faster than
the thermal e�ect will ensure a near-unbroadened linewidth.xviii To ensure that the e�ects
of broadening or compression are negligible, the resonance pro�le should be equal for
laser frequency scans in both directions.
In order to calibrate sweep of the laser, i.e., the frequency sweep per time, an electro-

optical modulator (eom) driven by an rf signal in the MHz range can be inserted before
the tapered �bre.�e laser probe acquires sidebands at the modulation frequency ±υmod,
resulting in three resonances with a known separation equal to the eom modulation
frequency, as shown in Fig. 3.9(b). By �tting a sum of three Lorentzians to the transmission
spectrum, the time separation between the sidebands is determined, which, together with
the known sideband frequency, gives the time-to-frequency calibration for the laser sweep.
Note that if using a piezo to scan the laser, one should preferably be scanning over a small
part of the middle of the piezo range to avoid a nonlinear response from the piezo.
Alternatively, to sweep the output frequency of a diode laser and avoid the (small)

nonlinearity of a piezo a�ecting the sweep, the current of the diode can be swept.�e
current across the junction e�ectively controls the junction temperature, and the output
wavelength responds rapidly and linearly to changes in the junction temperature. To avoid
changes in the optical power as a consequence of the current sweep, the laser output can
be directed through an optical ampli�er, such as an erbium doped �bre ampli�er (edfa),
operating in saturation, which keeps the power stable. Figure 3.10 shows such a calibration
for a Toptica ctl 1500,where the swept optical frequency per time and per scanned current
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Figure 3.10. Measured laser current sweep
calibration. Sweeping the current of the
laser linearly at a frequency of 1007Hz, the
frequency sweep per time per current can
be calculated from �tting spectra with eom
generated sidebands. �e data points are
given with a 2% error.

for a particular scanning speed is given across some of the laser’s output spectrum.�e
linear �t to the data points gives a sweep calibration of 8.17(6)MHzs−1mA−1 at 1550 nm
when the current is swept at 1007Hz.�e response of the junction can be di�erent for
a di�erent speed of the current sweep, so similar calibrations can be made for di�erent
scanning speeds.
When the laser calibration has been obtained, another spectrum without modulation

sidebands is taken to avoid any distortion of the resonance shape. From knowing the
voltage reading of the pd when there is no incident light, the spectrum can be normalised
to transmission values between 0 and 1. A Lorentzian dip from a background of 1, with
depth ηopt, fwhm ∆υ, and central frequency υ0,

T (υ) = 1 − Kres
1 + [2(υ − υ0)/∆υ]2 , (3.2)

is then �tted, giving the linewidth of the resonance.
When measuring the q factor, the coupling to the taper increases the losses as light

leaks out of the cavity, thus themeasured q factor is the q factor of the combined resonator-
taper system, o�en called the loaded q factor.�e intrinsic Qin can be deduced from the
loaded Q(tot) for a known optical coupling contrast at resonanceKres:

Qin =
2Q(tot)

1 ±
√
1 −Kres

, (3.3)

where the sign is chosen according to the coupling regime:+ (−) for an under(over)coupled
resonator [16]. �e coupling depth is the depth of the resonance in the transmission
spectrum, whereKres = 1 corresponds to critical coupling when no light is transmitted at
the resonance.
An example of a �ttedLorentzian is shown in Fig. 3.9(c), resulting in the linewidth∆υ =

2κ/(2π) = 0.68MHz, corresponding to a loaded Q ≃ 2.8 ⋅ 108.�e �t gives Kres = 0.106,
and thus, by Eq. (3.3), Qin ≃ 2.9 ⋅ 108 for this undercoupled resonance.�e uncertainty of
the linewidth and q factor values can be around the percent level due to the nonlinearity
of the piezo scan.
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3.6 locking to optical microresonator modes

When working with optical resonances it is o�en desirable to �x the pump laser to a
particular o�set from a resonance frequency, typically zero o�set for maximal intracavity
build-up. Two di�erent approaches can be chosen: either change the laser frequency to
follow the resonance frequency, or change the resonance frequency to follow the laser.
For some materials and situations, the physics of the system allows for passive lock-

ing, where the resonator is self-stabilised to keep the particular coupled power for small
perturbations. In other situations active locking techniques are used to keep the laser fre-
quency o�set from the resonance �xed.�is section will brie�y explain qualitatively the
basis of two standard locking methods.

3.6.1 Passive thermal locking

For a resonator that has the same sign for the thermo-optic and thermoelastic coe�cients,
an equilibrium between the heating-induced resonance frequency shi� and the laser fre-
quency shi�s can create a self-stable system where small perturbations to the laser fre-
quency will make the resonance frequency follow the laser [138].

�e qualitative description of the locking mechanism depends on the sign of the
thermal nonlinearity. For a resonator with negative frequency shi� for increasing temper-
ature, ∂ω/∂T < 0, such as silica: if the laser is on the high-frequency side of the resonance,
a slight decrease in the laser frequency leads to increased in-coupled power due to the de-
creased detuning, heating the resonator, which shi�s the resonance frequency downwards
[Eq. (2.61)], i.e., pushed in the same direction as the laser is moving. Conversely, if the
laser frequency increases, the resonator cools down, shi�ing the resonance frequency up
to match the laser’s frequency increase.�us, resonance frequency is locked to the laser
for small perturbations.
Note that this form of locking of the resonator works only on one side of the resonance,

and cannot be used to lock to the resonance point exactly, due to the turning point in
coupled power versus frequency. Which side the locking can be used depends on the
thermal coe�cients: the laser must be blue (red) detuned for a resonator with positive
(negative) thermal coe�cients.

�is experimentally simple, passive technique can be useful for experiments or quick
tests without stringent lock-performance requirements.
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xix Carmon et al. [138] re-
ports a few-milliseconds
response time for the
thermal shi� in a 0.14-
mm-diameter silica sphere.

error signal

xx Agilent 33250A

xxi �orlabs LN65S-FC

xxii Minicircuits ZMF-3H+

xxiii Minicircuits BLP-1.9+

xxiv Newport LB1005-S

3.6.2 Active Pound–Drever–Hall locking

For resonators with thermal coe�cients of opposite signs, such as thosemade from barium
�uoride, thermal locking is not possible.�ere might also be times where a passive lock is
not an option for other reasons, for instance because it might be too slowxix or temperature
�uctuations are causing instabilities. In these situations active locking techniques can be
used, for instance the Pound–Drever–Hall (pdh) locking technique [175, 176] is widely
used.
To implement an active lock of the laser to a cavity resonance, a feedback system

is set up to adjust the laser frequency so that the frequency o�set between the laser and
resonance is stable.�is is implemented by supplying an error signal – a signal proportional
to the deviation from the chosen resonance lock point – to a servo like a proportional-
integral-derivative (pid) controller, which continuously controls the laser frequency. For
an external-cavity diode laser (ecdl), the frequency is typically tuned through applying a
voltage to the piezo which adjusts the grating position, or by changing the laser current.
A canonical pdh lock uses the phase shi� of the light transmitted through the cavity,

shown in Eq. (2.33), as the error signal. It can be shown [176] that the phase shi� is approx-
imately linear around the resonance frequency, and zero at resonance, thus, ful�lling the
two requirements for an error signal.

�e phase shi� information is obtained by modulating the phase of the laser carrier
much faster than the cavity decay time and mixing down the electronic signal from the
detected transmitted light with the modulation signal, extracting the relative phase of the
input �eld with respect to the cavity �eld. If the phase of the modulation signal is shi�ed
by π/2 before it reaches the mixer, the power in the mixed-down signal will be zero at
resonance, giving the zero crossing for the locking point. An example error signal is shown
in Fig. 3.11.

�e speci�c hardware and modulation frequencies and powers used for the pdh locks
used in the experiments described in this thesis have varied. For the example shown in
Fig. 3.11, the rf signal was a 17.5MHz, 1.2 Vpp sinusoid supplied by a function generatorxx

to a phase-modulating eom.xxi�e electrical signal of the pdmeasuring the transmitted
light is mixed downxxii with the modulation signal phase-shi�ed by π/2.�e phase shi�
to the modulation signal before the mixer was ensured by simply adding the appropriate
amount of bnc cable for the signal to propagate. A low pass �lterxxiii is used to �lter out
higher harmonics in the mixed-down signal. A proportional-integral controllerxxiv is used
to keep the resonator locked, allowing tuning of the locking point.
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Figure 3.11. pdh locking to a cavity resonance. (a) Schematic of a setup for pdh locking of laser to a
microresonator (µres).�e laser light is phase modulated (pm) by an eom before coupling into the
cavity, and the transmission is recorded by a photodiode (pd).�e rf signal modulating the light
is o�set in phase by a delay loop before the signal is mixed with the transmission signal to form
the error signal. To �lter out the harmonics in the mixed down signal, a low pass �lter with cuto�
lower than the �rst harmonic is used before feeding the signal to a proportional-integral (pi) servo,
which controls the laser wavelength. Polarisation controllers to optimise the transmission of the
eom and coupling to the resonator are not shown. (b) Transmission spectrum for a resonance at
low optical power with sidebands at the modulation frequency ±17.5MHz.�e pdh error signal
is obtained by mixing the transmission spectrum with the rf modulation signal and shows a
monotonically increasing signal within the central part of the resonance, a zero crossing at the
resonance frequency.

3.7 balanced homodyne and heterodyne detection

Balanced photo-ddetection is widely used in quantum optics as it is, in principle, a form
of shot-noise-limited detection, where a �eld quadrature can be detected with an accuracy
limited only by the vacuum �uctuations.�e below is meant as a short summary outlining
some important points related to how heterodyne detection is used in Chapter 6. Many
textbooks treat dyne detection in detail, for instance Refs. 177–179.

3.7.1 Homodyne detection

�e principle of homodyne detection is to interfere a weak signal of interest with a strong
coherent �eld on a beamsplitter with equal transmittance and re�ectivity, and then de-
tecting the optical power at the two output ports of the detector. By taking the di�erence
between the photodetector currents, the resulting signal is proportional to the di�erence
in photon number at the two detectors (Fox [177] gives a practical description how such
a detector can be made). To see this, consider a 50:50 beam splitter with inputs âLO, âsig
[Fig. 3.12(a)].�e �eld at the output ports follow the transformation [179, Ch. 4]

âo1 = 2−1/2(âsig − âLO) , (3.4a)

âo2 = 2−1/2(âsig + âLO) . (3.4b)
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Figure 3.12. Homodyne detection schematic. (a) A lossless beam splitter with equal probability for
re�ecting as transmitting an incoming photon at one of its ports. (b) A homodyne detection setup
where a weak state is interfered with a strong, coherent local oscillator, allowing a quadrature of
the signal �eld to be measured.

�e di�erence photocurrent is proportional to the di�erence in photon number at each
detector

i−(t)∝ n̂2(t) − n̂1(t) (3.5)

∝ â†o2 âo2 − â†o1 âo1 = â†sig âLO + â†LO âsig , (3.6)

where the time dependencies of the �eld operators have been omitted for compactness.
Now letting the local oscillator be a strong coherent state with phase θ and power propor-
tional to ∣α∣2

âLO → ∣α∣ exp(iθ) , (3.7)

then
i−(t)∝ â†sig(t) ∣α∣eiθ + ∣α∣e−iθ âsig(t) (3.8)

which, by Euler’s formula can be written

i−(t)∝ 2∣α∣ {[â†sig(t) + âsig(t)] cos(θ) + i [â†sig(t) − âsig(t)] sin θ} (3.9)

∝
√
2∣α∣ {Xsig(t) cos θ + Psig(t) sin θ} (3.10)

∝
√
2∣α∣Xsig(t, θ) , (3.11)

where the de�nition of the optical quadratures of the input signal Xsig, Psig have been
used.�is shows that the balanced homodyne setup is able to measure the weak signal in
an arbitrary rotated quadrature basis X(θ) as given by the local oscillator phase θ, and
that the signal is ampli�ed according to the strength of the local oscillator.�e balanced
setup removes the in�uence of classical noise sources compared to using a single detector
where not only would the weak signal be very challenging to detect, and thus noise in the
measurement is given by the uncorrelated quantum shot-noise of the light.

�rough repeated measurements for a set of known θ, the homodyne measurement
provides a means for tomography of the quantum state.
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3.7.2 Heterodyne detection

When instead of using a local oscillator at the same frequency as the signal of interest, but at
some detuning ωhet = ωsig −ωLO ≠ 0, the detection scheme is called heterodyne detection.
In principle, this can be thought of as a homodyne detection setup where themeasurement
basis rotates at a speed ωhet, simultaneously measuring two �eld quadratures.
In the quantum optics theory framework, heterodyne detection projects the input

optical state ρ̂ entering the detector onto the local oscillator coherent state ∣α⟩. An outcome
α = Xopt + iPopt occurs with probability proportional to Tr(∣α⟩ ⟨α∣ ρ̂) = ⟨α∣ρ̂∣α⟩.�is is
proportional to the de�nition of the Husimi-Q function

Q(α) = 1
2π

⟨α∣ρ̂∣α⟩ , (3.12)

which means that heterodyne detection measures the real-valued and non-negative Q
function of the optical state ρ̂ up to a proportionality factor.�e Husimi Q function is a
smoothened representation of the state’s Wigner function due to the added vacuum noise
from simultaneously measuring both optical quadratures [179]. In contrast, a homodyne
setup projects the state onto a single chosen quadrature, and can thus measure theWigner
function of the state given a detection setup with unity e�ciency.

�eWigner quasiprobability function fully describes the quantum state in phase space,
and the expectation value of any observable can be computed from it.�e Q function
is equivalent to the Wigner function convolved with with a two-dimensional Gaussian
representing the vacuum noise, and also provides a powerful tool to represent states and
compute statistics. A more detailed description of the di�erent distributions and what it
means for the computed probability marginals, see Appendix B.
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chapter 4

Coherent backscattering control using a near-�eld probe

As light propagates in a waveguide, a fraction of the �eld can be re�ected quasi-elastically
by scatterers smaller than the wavelength of the light, known as Rayleigh scatterers. Given
the name of these scatterers, it comes as no surprise that the omnipresent baron was
involved in the early days of describing this form of scattering.
In the late 1860s, the colour and polarisation of light from the sky was a hot and unex-

plained topic. Scientist John Tyndall noted that these questions constitute, in the opinion of
our most eminent authorities, the two great standing enigmas of meteorology [as quoted in
180]. As a young scientist at Cambridge in 1871, the same year as he got married, Rayleigh
went on to essentially solve not one but both of these meteorological enigmas. Rayleigh
did so by working through the maths of density variations in the elastic-solid “lumini-
ferous aether” [181] that he and many colleagues at the time believed existed. It was ten
years later that Rayleigh applied his calculations to variations in the electric permittivity
following Maxwell’s electromagnetic theory [182], arriving at the same conclusions, one
of which was that the intensity of light scattered o� sub-wavelength particles is inversely
proportional to the incident light’s wavelength to the fourth power.�is relation explained
the blue hue of the sky, as the smaller wavelength of blue light scatters at a much higher
rate than larger-wavelength red light, di�using more of the blue light over the sky making
it appear blue. For a longer history lesson on Rayleigh’s contributions to what we know
about scattering of light see Young [180], or for a more comprehensive review see Twersky
[183].
Back to optical waveguides: Rayleigh scattering can be problematic for various reas-

ons. In optical whispering-gallery-mode microresonators, sub-wavelength imperfections
and defects in the surface or bulk material act as Rayleigh scatterers, causing losses and
re�ections. When pumping the resonator in one direction, the scatterers cause some level
of scattering from the pump direction to the opposite-direction wgm, referred to as back-
scattering. Controlling the amount of backscattering as a tuneable parameter can be useful
for several types of microresonator-based experiments and applications, and in particular
minimising backscattering is important for some applications like optical gyroscopes.
Optical wgm resonators were not something Rayleigh got to see in his lifetime, and

he probably did not contemplate the e�ect of scattering in them or think about their near
�elds. When Rayleigh considered the problem of scattering, the experiments available to
him were only those studying the far �eld – the �eld far away from the scatterer relative
to the wavelength. Such far-�eld experiments could for instance be measurements of the
polarisation of light passing through a vapour cloud, but studying the �eld around a single
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i Particularly the subject
of nanoplasmonics [184],
where electronic oscilla-
tions at the surface of metal
nanoparticles are excited
by optical �elds, has re-
ceived a lot of attention.
�e metal nanoparticles
con�ne the electrical �elds
to volumes the size a frac-
tion of a wavelength cubed.
�ese surface plasmons
have a multitude of ap-
plications, for example
can they provide orders
of magnitude sensing en-
hancements when coupled
to wgm resonators [8].

ii In the process of the ex-
perimental work, the author
developed an open-source
Python package for Keysight
In�niiVision oscilloscopes
– available under the name
keyoscacquire on PyPi and
Github [188] with a com-
prehensive documentation
– which at the time of writ-
ing is downloaded >50 per
month.

scatterer in the vapour was unattainable to Rayleigh. With the signi�cant advances in
nanofabrication and detection techniques over the last three or so decades, experiments
studying optical near �elds have proliferated,i including those of whispering-gallery-mode
resonators.�emicroresonators’ near �eld is what couple them to their surroundings,mak-
ing it possible to couple in light through for instance a tapered �bre, but this coupling can
also be used to manipulate the properties of the wgmmodes.

In this chapter, it is demonstrated that the controlled introduction of a Rayleigh scat-
terer into the near �eld of a high-quality-factor microresonator can coherently suppress
the amount of backscattering in the microresonator by at least 34 dB. �e method re-
lies on controlling the scatterer’s position such that the intrinsic and scatterer-induced
backpropagating �elds destructively interfere.�is technique is useful in microresonator
applications where backscattering is currently limiting the performance of devices, for in-
stance ring-laser gyroscopes and dual frequency combs, which both su�er from injection
locking. Moreover, these �ndings are of interest for integrated photonic circuits in which
back re�ections could negatively impact the stability of laser sources or other components.

�is chapter is an adapted and expanded version of the main text and supplementary
information of the publication Svela et al. [58].�e work has been presented by the author
at several conferences with published abstracts [185–187]. �e experimental work was
carried out in Dr Pascal Del’Haye’s group in the Time and Frequency department of the
National Physical Laboratory in Teddington, uk. From the initial idea stage to the �nal
publication, this research project was driven by the author of this thesis, with important
contributions from the coauthors.�is included device fabrication of microresonators
and tapered �bres with S. Zhang, fabrication of tungsten tips, building and modifying the
experimental setup with J. Silver and L. Del Bino, performing the measurements,ii and
the data analysis.�e theoretical model was developed by J. Silver with support from the
author.

https://pypi.org/project/keyoscacquire/
https://github.com/asvela/keyoscacquire
https://keyoscacquire.rtfd.io
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backscattering

mode splitting

Figure 4.1. Illustrations of
transmission spectra of
mode split resonances.�e
examples have di�erent
combinations of splittings
fs and linewidths κ1 , κ2 .

4.1 background, motivation and principle for backscattering control

Low optical losses is generally desirable forwgm resonators, for instance because the long
photon lifetime gives a large intracavity buildup or because the �eld can interact over a
larger number of oscillation periods. As outlined in Section 2.4, there are three main loss
mechanisms for wgm resonators (typically ascending order of contribution): (i) radiative
losses due to the curved surface guiding the light; (ii) bulk material scattering and absorp-
tion; and (iii) surface scattering or absorption due to surface roughness,material deposited
on the surface during or a�er fabrication. Typically, low-loss resonators are sought, but
low losses alone might not be su�cient for applications; it might also be crucial where the
lost light travels.

�e losses related to sub-wavelength imperfections in the surface or bulk material of
the resonator can cause light to quasi-elastically Rayleigh scatter into non-propagating
modes, to the environment, or to be re�ected into the frequency- and polarisation-degene-
rate, counterpropagating mode.�e latter of these categories are what is referred to as
backscattering.�ese imperfections are typically distributed around the cavity, but for low
scattering, as the coherence length of the circulating �eld is much longer than the cavity
round-trip length, the imperfections scattering light into the counterpropagatingmode can
be approximated as a single scatterer, scattering light with a speci�c amplitude at a speci�c
point along the cavity circumference (or equivalently with a speci�c phase in relation to
the pump �eld) into the counterpropagating mode [189–191].�is coherent scattering
e�ectively couples the two modes, causing light to build up in the counterpropagating
mode [108].
When the two counterpropagating, travelling-wave modes are coupled by scattering,

the frequency degeneracy between the modes can be li�ed, resulting in modes with di�er-
ent central frequencies and/or losses. For high levels of backscattering, thismode splitting
may be spectrally resolvable, i.e., detected as two separate resonances as shown in Fig. 4.1.
�is was �rst observed in wgm resonators by Weiss et al. [56].
If the system of all scatterers breaks the mirror symmetry by unequal scattering amp-

litude for the two directions and introduce loss, this results in eigenmodes that are super-
positions of unequal weight of the two travelling-wave modes [112, 192, 193],

E± = aEcw ± bEccw, (4.1)

where a and b are complex coe�cients and the clockwise and counterclockwise travelling
waves are Ecw and Eccw, respectively. As, in general, ∣a∣ ≠ ∣b∣, the superposition modes E±
modes are not standing waves, but non-orthogonal, chiral modes. By manipulating the
scatterer, the coupling and thus the mode structure can change.
Backscattered light in wgm resonators can limit the performance of applications, for

example by causing unwanted injection locking in laser gyroscopes operating at low rota-
tional speeds [194–198], or in dual frequency combs [199, 200], as well as causing instabil-
ities for frequency combs [201]. Backscattering also reduces the nonlinear enhancement
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iii Note also the recent pub-
lication on backscattering
suppression in free-space
ring resonators by polarisa-
tion engineering [213].

iv Two years prior to Kim et
al.’s work, Miri et al. [214]
had theoretically investig-
ated optomechanical time-
reversal symmetry breaking
for introducing controlled
chirality in di�erent op-
tomechanical systems. Op-
tical circulation [215] and
isolation [216] via radiation
pressure optomechanics in
wgm resonators had also
been demonstrated prior.

and contributes to back-re�ections in devices relying on symmetry breaking of coun-
terpropagating �elds [16] for sensing [202–204], optical logic [205], memory [206] or
isolation/circulation [207] applications. Furthermore, control over backscattering permits
tuning of the standing wave pattern to maximise coupling by moving an anti-node of the
standing wave along the resonator perimeter, which can be bene�cial for systems relying
on evanescent coupling, such as evanescent optomechanics [208], or biomedical near-�eld
sensors [8, 209]. In addition, telecom applications of wgm resonators [50, 210] or applica-
tions wherewgm resonators are used in quantum state preparation can bene�t from lower
backscattering levels to ensure high �delity [211].
In this chapter, an unprecedented ≥34 dB suppression of the backscattered light from

a wgm resonator is shown, where the suppression �gure is limited by the detection noise
level.�e suppression is achieved by manipulating the position of a sub-wavelength-size
scatterer within the near �eld of a cavity mode, coherently controlling the e�ective back-
scattering.�e e�ect is demonstrated in three silica rodmicroresonators with low intrinsic
backscattering,meaning neither resonator shows resolved frequencymode splitting before
the technique is applied.

4.1.1 Existing literature on backscattering control

Experimental work in the literature related to backscattering in wgm optical resonators
has previously focussed on controlling and changing backscattering in resonators with
relatively high intrinsic backscattering rates, tuning the resulting mode splitting with a
near-�eld scatterer [112, 113, 212] or tuning chirality for light �ow control [116, 117], without
investigating backscattering suppression speci�cally. Monitoring backscattering as a sens-
ing method has also been shown [118]. Now, the backscattering problem is attracting more
interest in the community, with a recent publication showing suppression from resolved
to unresolved mode splitting using a Brillouin-optomechanical method [57].iii

brillouin method. Kim et al. [57] suppress backscattering by exploiting a Brillouin
cavity mode-trio as explained in Section 5.3 (see in particular Fig. 5.7).�e suppression
is caused by breaking time-reversal symmetryiv for the two counterpropagating optical
modes by optomechanically coupling the optical mode that is not of interest, say the ccw
mode, to its Stokes mode through optically pumping on the Stokes mode.�e hybridisa-
tion of the mechanical mode and the ccwmode e�ectively reduces the density of states of
the ccwmode at its unperturbed frequency, resulting in a weaker backscattering coupling
between the cw and ccwmodes. Hence the backscattering from the cwmode of interest
into the ccwmode is reduced.

�is Brillouin-based method is elegant and can in principle be used for any resonator
of any dielectricmaterial, andwith the convenience of simply turning on a pump. However,
to use this technique, a number of relatively challenging experimental requirements must
be satis�ed. Firstly, a suitable mode-trio obeying Brillouin phase-matching conditions
for momentum and energy conservation (see Section 5.3.1), in addition to a su�cient
spatial mode overlap, must be identi�ed, which in itself can be an experimental challenge.
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Figure 4.2. Performance of
the Brillouin backscatter-
ing suppression method in
Kim et al. [209]. (a)�e-
oretical suppression as a
function of optomechanical
coupling (black) for the
mode trio used, assuming
zero optomechanical de-
tuning. Green dashed lines
indicate the maximum
coupling and suppression
demonstrated in [209]
(0.5MHz, 13 dB), golden
dashed lines indicate the ne-
cessary coupling to achieve
the suppression as demon-
strated here (5.8MHz,
34 dB). (b)�e logarithm
of the re�ection coe�cient
across the resonance at zero
optomechanical coupling
(grey), at the maximum
coupling achieved in [209]
(green), and for the coup-
ling needed to achieve
34 dB suppression (golden).

Furthermore, thismode triomust also obeywhatever other requirements the experimenter
might need for a certain application, limiting the chances of �nding a suitable mode-trio
further. In addition comes the requirement for an extra pump frequency,whichmight have
undesirable implications, such as thermal e�ects, interference, experimental complications
for readout, et cetera.
When a suitable mode-trio has been identi�ed, the suppression bandwidth and para-

meter couplingmust be considered. As the bandwidth of suppression is set by the linewidth
of themechanical resonance, and the Brillouin linewidth is usually smaller than the optical
linewidth even for high-q resonators, the backscattering is suppressed only in a narrow
band of the optical resonance.�is might not be desirable, but there are also other im-
plications: as the total optomechanical detuning of the mechanical and optical modes is
optical-power dependent, the o�set of where within the optical resonance bandwidth the
suppression occurs will be linked to the optical power, and furthermore, so will also the
optomechanical coupling strength, which e�ectively controls the amount of suppression
achieved.�is coupling of parameters can potentially be challenging to work with as for
instance by increasing the pump to achieve a larger suppression from increased optomech-
anical coupling, the suppression decreases because the optomechanical detuning increases,
and the suppression band moves.

�e maximum suppression achieved by Kim et al. [57] is not explicitly given, but it
can be estimated from the reduction in the measured re�ection or from the theoretical
model to approximately 13 dB and 7 dB for the two separate mode trios used. Plotting the
theoretical suppression as a function of optomechanical coupling for the parameters of
mode-trio of used in the highest suppression case, Fig. 4.2 shows that the optomechanical
coupling would need to be increased by an order of magnitude to achieve a suppression
similar to the one presented in this chapter.�is higher couplingmight not be unattainable
in itself, but because of the strong thermal e�ect in the silica resonator, increasing the
pump power to reach the su�cient optomechanical coupling would signi�cantly change
the optomechanical detuning, severely decreasing the suppression gain expected from
the increased coupling.�e method by Kim et al. can prove useful for some applications,
but other methods that do not su�er from the complications outlined in the above give
increased �exibility and should be explored.

mode manipulation literature. Other publications related to backscattering control
inwgm resonators have explored the use of near-�eld probes formanipulation of the coup-
ling between the counterpropagating modes. In the group of V. Sandoghdar, Götzinger
et al. [217] �rst studied the e�ect sharp tip scatterers within the near �eld of a wgm res-
onator. In 2007, the group demonstrated control of mode splitting and linewidths using a
single silica-tip near-�eld probe, studying the transmitted �eld as well as the �eld coupling
to the �bre tip scatterer [112], but the backscattering was not studied.

�e group of L. Yang at Washington University at St. Louis has worked on light �ow
manipulation inwgm resonators for more than a decade. In 2010, the group demonstrated
mode-coupling control using two silica tip near-�eld scatterers [113], althoughnot studying
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the backscattering explicitly.�e two scatterers tuned the resonator close to an exceptional
point [218], which is brie�y explained in the following. For a wgm resonator with no
coupling between optical modes, for a given resonance frequency there are two perfectly
frequency-degenerate optical modes, one for each direction of travel, i.e., the energy levels
are twofold degenerate, but the associated eigenstates are not the same; this is sometimes
referred to as a diabolic point [219]; however, by manipulation of the coupling and losses
of the two optical modes, they can be brought to an exceptional point, which is when also
the eigenstates coalesce, thus the system has only one direction of propagation, i.e., there
can be no backscattering as light can only propagate in the forward direction.

�is chiral symmetry breaking, where only one propagation direction is sustained can
be used to suppress backscattering, similarly to how the optomechanical time-reversal
symmetry breaking of Kim et al. [57] prohibits the propagation in the backwards direction.
In 2016, the L. Yang group demonstrated that tuning a doped, lasing wgm resonator to
an exceptional point using two silica tips, they could control its emission direction [116].
In 2020, the same group demonstrated that by tuning a passive wgm to an exceptional
point using a nanoscatterer and coupling it to another wgm, the equivalent of what in
the atomic physics community [220] is called electromagnetically induced transparency
(eit) can occur [117].�e broad de�nition of an eit is a medium becoming transparent
over a narrow spectral window within a wide absorption spectrum background – for a
microresonator this would mean its transmission increases within a narrow band of a
resonance – due to destructive interference between excitation pathways. �e narrow
transparency window gives a sharp phase change, which is equivalent to a large dispersion
of the light within the narrow band, resulting in a small group velocity causing what
is known as slow light [221].3When tuning the resonator to the exceptional point, the
chiral symmetry between the pair of counterpropagating modes breaks, allowing only one
propagation direction in that resonator.�e chiral asymmetry is used by Wang et al. [117]
to create a loop coupling between the two resonators, where the phase di�erence between
the pump light coupled in from the taper and that making a loop-roundtrip can interfere
destructively resulting in a transparency window of width given by the coupling rates. All
of this to say, they successfully control the amount of backscattering in the resonator using
nanotips, but there is no discussion on the achieved backscattering suppression.

3�e optomechanical equivalent of eit, called optomechanically induced transparency or omit, was �rst
demonstrated by Weis et al. [222] and later shown to slow down light [223]. It can be achieved by pumping
on the red side at a detuning equal to the mechanical frequency: a probe swept over the resonance will have a
transparency window of width given by the mechanical linewidth at the mechanical frequency as photons
are scattered from the pump into the probed resonance.
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waveguide ring resonators. Also in wgm resonators’ close cousin, waveguide ring
resonators [133], modal coupling due to intrinsic scatterers also occurs [189, 224] and
backscattering suppression is sought. Waveguide ring resonators are typically lithography-
based micron-size structures on chips, making them attractive for compact, commercial
applications. Previously, waveguide ring resonators would typically be made of silicon on
insulator chips, not achieving similarly high q factors as wgm resonators; however, devel-
opment in fabrication techniques and the use of materials such as silicon nitride [225] and
others [86] have changed this, and waveguide ring resonators are now on par with wgm
resonators in terms of achieved q factors. Backscattering is typically higher than in wgm
resonators due to relatively higher surface roughness and other imperfections, which is
a�ecting the performance of several types of ring-resonator applications [226–228]. In
2013, an extra-cavity interference technique, where the transmitted and re�ected output of
a waveguide ring resonator are combined on a beamsplitter with tuneable phase di�erence
between them, was shown to selectively choose to transmit only one of the superposi-
tion modes, E± [229]. However, the intracavity backscattering is not directly cancelled
with this technique, but rather masked to avoid a split resonance in the output spectrum.
Furthermore, the linewidth of the selected superposition mode is generally broader than
the intrinsic, unsplit linewidth.�e method also results in signi�cantly reduced output
optical power and would not be suitable for high-q wgm resonators due to the relatively
low backscattering rates found in these resonators.
A more recent demonstration from 2017 showed suppression of backscattering in a

waveguide resonator using a more similar method to the one presented in this chapter:
Li and Bogaerts [230] introduced a tuneable re�ector inside a silicon ring resonator to
destructively interfere the intrinsic backscattering by controlling the re�ector-induced
backscattering.�e intracavity re�ector used is a tuneable Mach–Zehnder interferometer
with a loop at one end, giving a controllable re�ector.�e maximum suppression demon-
strated with this technique is approximately 10 dB, and with this suppression the authors
recover unsplit modes of the resonator, bringing all the optical modes simultaneously back
to the unsplit regime.�ere are some technical disadvantages with the method such as
the increased complexity in fabrication (multiple lithography steps and materials) and op-
eration (electrical drive), and that the Mach–Zehnder e�ectively increasing the resonator
length by at least about 25%, which increases losses and decreases the free spectral range,
which is o�en undesirable as it decreases the �nesse of the cavity. However,nanofabrication
techniques and the state-of-the-art silicon-on-insulator resonators have improved since Li
and Bogaerts carried out their work, and the integrated, on-chip method is convenient for
suppression backscattering in waveguide ring resonators in the split to non-split regime.
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Figure 4.3. Principle for backscattering control using a near-�eld scatterer. (a–b) Micrographs of the microresonator and
tungsten tip with the axes of tip movement annotated. (c) Cartoon of the propagation directions of the �elds and scatterers.
�e green pump �eld circulates in the cavity, scattering o� the e�ective intrinsic scatterer (black dot) and the near-�eld scatterer
(tip), resulting in the scattered waves in black and grey, respectively. With an appropriate azimuthal position of the near-�eld
scatterer, ϕ, the intrinsic and induced scattering destructively interfere (golden). (d) Illustration of the phase of the pump �eld
around the cavity (cavity size and wavelengths not to scale). (e) Illustration of wave pro�les along the azimuth when the tip
scatterer is far away from the cavity, showing the counterclockwise-propagating backscattered waves due to the clockwise-
propagating pump �eld.�e backscattered �eld amplitudes are small compared to the pump as only a small fraction of the
light is backscattered. (f) Wave pro�les for the backscattered waves when the tip is critically coupled (equal amplitudes for
intrinsic and induced backscattered waves) for di�erent near-�eld scatterer positions ϕ i .�e di�erent azimuthal positions
correspond to phase o�sets between the e�ective intrinsic scatterer and the induced scatterer (2m + q)π for an integer m and
q = 1/3, 5/6, 1, respectively, showing both constructive and destructive interference between the waves.�e tip position ϕ3
gives full backscattering suppression.

this work. �e method presented in this chapter contrasts the methods described in the
above, using a single near-�eld probe to control the backscattering in a wgm resonator.
�e method expands the toolbox for backscattering control and suppression, focussing on
suppressing backscattering beyond recovery of unsplitmodes. Unprecedented suppression
levels are shown, limited by optical detector noise.�e present implementation of the
technique does require delicate �ne positioning of a near-�eld scatterer, but it does not
su�er from many of the complications and limitations other methods mentioned in the
above are associated with, representing an alternative to other methods available.

4.1.2 Principle for backscattering suppression via a near-�eld probe

To control the backscattering in the wgm resonator, a sub-wavelength-size tungsten tip
is positioned in the near �eld of the resonator [Fig. 4.3(a,b)].�e technique is based on
interference,where the tip is coherently scattering light from the pumpedopticalmode into
the counterpropagating mode [Fig. 4.3(c)], leading to interference between the intrinsic
backscattering and that caused by the tip [192]. With su�cient induced backscattering
and an appropriate phase o�set between the intrinsic and induced backscatter, the net
backscattering can be made to vanish.
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critical tip coupling

�e amplitude and phase of the induced backscattering can be controlled by the tip’s
position: the radial position of the tip, r, controls how strongly the tip couples the two
propagation directions and thus the induced backscattering amplitude, whereas the azi-
muthal position, ϕ, governs the phase o�set between the intrinsic and induced backscatter
[Fig. 4.3(d)]. �us, the tip position can coherently control the net backscattered �eld
[Fig. 4.3(f)].�e situation when the tip is inducing backscattering of equal magnitude
to the intrinsic backscattering is called critical tip coupling. As long the tip scatters su�-
ciently for critical tip coupling to occur, the method can be used for complete suppression
of backscattering. By choosing the tip position, the backscattering can also be increased
beyond the intrinsic backscattering level.

�e presence of the tipwill cause increased optical losses for themode of interest, as the
tip scatters also to free-space modes and other non-propagating modes in the resonator;
however, for a small tip size, the reduction in the optical quality factor is relatively small,
as is shown here and in Refs. 112, 217, 231.

�emethod presented in this chapter enables full control of the amplitude and phase of
the backscattering in a microresonator, and it is shown experimentally that the total back-
scattering can be reduced by orders ofmagnitude below the unresolved frequency splitting
level, whilst the optical quality factor is reduced by less than one order of magnitude.

4.2 the near-field decay and tip-influence on the optical linewidth

In this work, the interest is primarily to control the backscattering in the resonator; how-
ever, not only the backscattering changes when the probe is placedwithin the near �eld. Un-
derstanding the e�ect of the tip on thewhispering-gallerymodes, including their linewidth,
will be important for interpreting the experimental data.�is section presents a model
for the wgm linewidth as a function of the tip-position. In short, given a linear coupling
between the evanescent wgm near �eld and the tip, the linewidth of the wgm is expected
to increase proportionally to the energy density in the near �eld at the tip position as the
tip is moved closer to the resonator surface due to scattering and absorption.

scattering and absorption. When a light �eld is incident on a particle small com-
pared to the wavelength, charges in the particle will to some extent be accelerated into
oscillatory movement due to the electromagnetic oscillations that are the �eld.�e ac-
celerated charges reradiate some of this energy captured from the �eld into all spatial
directions, called scattering. Many textbooks are devoted to describing light scattering,
see for instance Refs. 232–235. Some of the energy that accelerates the charges is not rera-
diated but converted into other forms energy, for example via damping mechanisms of
the movement of the charges to thermal energy.�is non-reradiated energy is referred to
as absorbed light.
How much of the incident light that is absorbed and scattered is dependent on the

electric permittivity contrast of the particle compared to the surroundings, the shape and
size of the particle. An experimental observable is o�en used to describe how much of



76 a. ø. svela— near-field-scattering-based optical control and . . .

extinction cross section

v In the following, assump-
tions made are explicitly
stated in the spirit of Bo-
hren and Hu�man [232]:
“Unfortunately, as so o�en
happens in physics, each
successive author in a chain
extending from the source
of a theory tends to omit
more of the �ne print un-
derlying its validity.”

quasi-static approximation

vi Many scientists made
important contributions to
scattering theory, resulting
in somewhat arbitrary and
inconsistent naming by dif-
ferent authors. Bohren and
Hu�man [232] wrote the
following about Rayleigh–
Gans theory: “Any day now
we can expect scholars to
announce that the theory
has been found scribbled
in the margins of one of
Gauss’s unpublished manu-
scripts; or in the notebooks
of Leonardo; or implicit in
the writings of Aristotle; or
painted in brilliant colors
on the walls of a French
cave by Paleolithic men.”

the incident light a scatterer removes from an incident beam: for a known intensity of
incident light, power per area, the power detected on the shadow side of the particle can
be measured, whose ratio with the incident intensity is called an extinction cross section –
an area corresponding to the area of the beam that was e�ectively removed by the particle.
�e extinction cross section can be several times larger than the geometric cross section
of the particle, this dimensionless ratio of the extinction to geometric cross section is
o�en referred to as the extinction e�ciency factor.�e extinction cross section can be
split into an absorption cross section and a scattering cross section, denoting the areas
corresponding to the absorbed power and scattered power, respectively.

�e process of scattering can change both the direction and the wavelength of the light.
Scattering due to small particles is responsible for a range of everyday phenomena, from
the rainbow to zodiacal light. In the context of this work, the tip represents an element
that will both absorb light from the near �eld and also scatter light into other propagation
directions. Similarly to how intrinsic scatterers in the resonator cause optical losses due
to scattering into modes that for the purpose of the experiment are considered losses –
like non-propagating modes in the resonator structure and free-space modes, sometimes
referred to as reservoirmodes – also the tip will scatter into these lossymodes.�us, the tip
will contribute to increasing the losses both via absorption and scattering in the near-�eld.

near-field scatters and wgms in the literature. �e near �eld distribution of
wgm resonators is well understood from analytical theory, numerical �nite-element sim-
ulations, and experiments. Studies have also contributed to the understanding of the in-
�uence of scatters within the near �eld of wgm resonators.�ese studies are o�en presen-
ted in the context of sensing [e.g. 115, 118, 236–239], but also for other purposes such
as optomechanical systems with dielectric beams near-�eld-coupled to wgms [240, 241];
optoplasmonical systems with metal nanoparticles coupled to wgms [242–246]; or for
the inverse of sensing, namely deliberately manipulating properties of wgms using near-
�eld probes [112, 113, 116, 117, 217].�e work presented in this chapter falls into the latter
category.
When considering scattering and absorption of a probe, the size and material type of

the probe is essential. When the probe is a dielectric particle smaller than the wavelength,
Rayleigh’s scattering theory where the scatterer is treated as a single dipole that is in equi-
librium with an external �eld at any instant of time, is in general valid provided that the
�eld intensity is uniform over the scatterer.v And as electrodynamics need not be con-
sidered under this approximation, this regime is sometimes called the quasi-static approx-
imation [8, 247]. However, if the dielectric scatterer is large compared to the wavelength,
(Lorentz–)Mievi scattering theory should be used as the resonances in the scatterer itself
should be taken into consideration, see for instance the reviews by Fan et al. [247] or
Tzarouchis and Sihvola [248].
For metal scatterers, however, the conductive nature can make the Rayleigh-scatterer

model insu�cient also for scatterers small compared to the wavelength. When a metal
scatterer becomes su�ciently small so that the penetration depth of the electrical �eld is
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localised surface plasmon
resonances

optoplasmonic systems

biosensing

comparable to its size, but larger than the distance an electron moves within an optical
oscillation, electronic oscillations of conduction electrons at the surface of the scatterer
can be excited by the optical incident �eld.�ese electronic resonances are called localised
surface plasmon resonances, and the �eld of study is referred to as nanoplasmonics [184].
�e size range of metallic particles for which nanoplasmonic phenomena can be observed
is typically in the 2 nm to 20 nm range. Localised surface plasmons can be described with
a Drude model of metals and Lorentz–Mie theory for the small-sphere resonance, and for
instance the aforementioned reviews [247, 248] and Kolwas et al. [249] give introductions
to localised surface plasmons and scattering.
When plasmonic nanoparticles are put close to a wgm, they can couple strongly to

the resonator, leading to hybridised wgm-plasmonic modes. Doeleman [250] provides
an instructive introduction to such hybridised modes, or see recent reviews of optoplas-
monic systems [251] and wgm-optoplasmonic systems in particular [242]. Foreman and
Vollmer [252] show that a silver nanoparticle will not only induce a larger wavelength shi�
than a silica nanoparticle of the same size due to the higher relative electric permittivity
of silver, but the silver particle will also more easily induce frequency splitting, as plas-
monic resonances hybridise with the optical modes. Experimental demonstrations have
shown that depending on the size and pitch of an array of gold nanoparticles, the optical
linewidth of a wgm resonator can broaden or narrow when it couples to the array [244],
and that by tuning the azimutal o�set between two nanoparticles, the resonance frequency
and linewidth of the hybridised modes can be tuned [243]. Due to the very strong con-
�nement of the electric �eld, plasmonic particles coupled to wgm resonators can act as
high-e�ciency optical antennas for increased coupling to for instance a quantum emit-
ter [245, 246], or conversely, can provide electric �eld “hot spots,” which can give orders
of magnitude enhancements in near-�eld-sensing applications [8, 253].
Aside from the plasmonic literature, studies on the in�uence on a wgm of a scatterer

in the near �eld typically use dielectric Rayleigh scatterers. Many of these studies usewgm
resonators for sensing applications, particularly biosensing; early work in this �eld include
an experimental demonstration of protein [114, 254], bacteria [255], and single-virus [40]
detection, and theoretical work describing the resonance frequency shi� and broadening
by an arbitrarily shaped dielectric scatterer in the near �eld [256].�e reviews by Kim
et al. [209] or Yu et al. [7], or the recent textbook by Vollmer and Yu [8] coverwgm-based
biosensing in detail.

key assumptions of this work. Similarly to the majority of biosensing literature, the
size of the near-�eld-probe tip in the work presented in this chapter is assumed be to
su�ciently small compared to the wavelength for the Rayleigh/quasi-static approximation
to be used. However, in contrast to most of the sensing and wgmmanipulation literature
listed so far, a metal tungsten tip is used in this work rather than a dielectric probe.
A metal tip is chosen not only for its relatively easy and reproducible fabrication,

but also because metals generally scatter more e�ectively than dielectrics in air, and to
maximise the scattering to absorption ratio:�e scattering cross section is typically much
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vii As far as the author is
aware, there is currently no
literature on localised sur-
face plasmons in metallic
tungsten, only in so-called
quasi-metallic tungsten
oxide nanocrystals [e.g.
258]. For optically excited
plasmonic resonances to be
signi�cant, the bulk plasma
frequency must usually be
in the uv or blue part of
the spectrum as the plasma
frequency typically reduces
for nanoparticles [257].
�e plasma frequency of
bulk tungsten is reported
to be 26 THz [259], i.e.,
signi�cantly below optical
frequencies.

Figure 4.4. Cartoon of the
near �eld decay from the
resonator surface at r0 and
the tungsten tip.

larger than the absorption cross section for metal particles of a diameter of ≳100 nm [257].
�e e�ect of a metal perturbation in the near-�eld is stronger than a dielectric as the
contrast in the permittivity between the metal tip and the environment it displaces – air in
this case – is larger since the permittivity of a metal like tungsten is orders of magnitude
larger than a dielectric. Calculations by Foreman and Vollmer [252] on the in�uence of
a silver nanoparticle on a wgm resonance give similar results when treating the silver
particle as a dielectric with complex permittivity within the Rayleigh regime compared to
a more fundamental Mie-theory approach considering the metallic nature of the particle.
As the tip diameter used in this work is >50 nm, plasmonic resonances are assumed to

be negligible.vii Furthermore, Bohren and Hu�man [232] note that surface charges a�ect
the e�ective scattering and absorption cross sections only slightly for metallic particles
that are small compared to the wavelength. Hence, the tip in this work is assumed to act
as a single dipole scatterer making the theory of dipole scatterers in the Rayleigh regime
available for use.
In the following, the wgm near-�eld decay is recapitulated, before the absorption and

scattering losses in the wgm induced by the tip depending on its position in relation to
the resonator surface will be explored.�e purpose of the section is not to numerically
predict the exact optical linewidth broadening due to the tip, but to understand the func-
tional relationship between tip position and broadening.�e section concludes with an
expression for the optical linewidth’s dependence on the distance between the tip and the
resonator surface.

4.2.1 Whispering-gallery-mode near-�eld decay

�e evanescent electric �eld from a waveguide decays exponentially with respect to the
perpendicular distance from the surface – i.e., for a wgm resonator, the radial distance
from the surface, r. As previously stated in Eqs. (2.26) and (2.27), the evanescent near �eld
for a wgm can be expressed

ENF(r) = Esurf exp [−αNF(r − r0)] , (4.2)

where Esurf is the �eld strength at the surface (r0), and the decay length is

α−1
NF =

λ
2π

√
n2 − 1

, (4.3)

for a �eld of vacuum wavelength λ in a resonator with refractive index n surrounded by
air. Note that the evanescent �eld energy density is proportional to the squaredmagnitude
of the �eld, ∣ENF(r)∣2 ∝ exp[−2αNF(r − r0)], which means that

(2αNF)−1 ≡ dNF = 118.4 nm (4.4)

is the penetration depth into the surroundings of the optical energy density in the near
�eld of a silica (n = 1.444) resonator at λ = 1550nm.
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reactive sensing principle

viii �e reactive sensing
principle was not derived
fromMaxwell’s equations
and Mie theory and has
been criticised [262, 263],
but it has later been shown
that the principle does
emerge from �rst principles
considerations under the
right approximations, see
e.g. Deych and Shuvayev
[264].

ix �e complex dielectric
function for metals

ε = εRe + iεIm (4.5)

is related to the refractive
index and the extinction
coe�cient (the latter o�en
labelled κ but here K to
avoid confusion with the
optical linewidth) by [8]

ε = (n + iK)2 . (4.6)

x �e listed references
present di�erent deriva-
tions of the result. Equa-
tion (4.8) is also used in
the context of describing
intrinsic scatterers, for in-
stance in Srinivasan and
Painter [266] and Borselli
et al. [136].

xi When integrating over all
of space the contributions
from the whole wgmmode
volume, both inside and
outside the resonator ma-
terial, is considered. O�en,
the approximation of only
integrating over the volume
in the resonator is made as
this allows using a constant
permittivity in the integral.

4.2.2 Tip-induced absorption losses

When a probe is placed within the evanescent �eld of thewgm resonator, the probe can in-
crease the rate of energy dissipation from awgm by absorption. To calculate the increased
absorption, an approachwidely used in the biosensing literature for dipole scatterers called
the reactive sensing principle can be used, which is based on theory originally developed
for microwave cavities [260, 261].�e principle refers to the shi� in the wgm resonance
due to the change in the e�ective refractive index in the resonator’s surroundings that
probe represents:�e relative frequency shi� is the negative of the excess energy required
to polarise the probe instead of the surrounding medium replaced by the probe, divided
by the energy in the cavity [253].viii If the probe is metallic, the relative electric permittivity
of the probe is a complex numberix where the imaginary part represents the Ohmic losses
in the probe, and the increased losses from this absorption can be extracted from the
imaginary part of the frequency shi� [252].
If the coupling between the probe and the resonator is weak – that is, the resulting shi�

in resonance frequency and linewidth is small – and the probe’s size is smaller than the
wavelength (quasi-static/Rayleigh approximation), a �rst-order perturbative approxima-
tion for the frequency shi� of the resonance can be given: for a probe of relative electric
permittivity εs, the relative shi� from the complex unperturbed frequency

Ω = ω − iκ , (4.7)

is given by [e.g. 8, 108, 240, 244, 256, 264, 265]x

Ω′ −Ω
Ω

≈ − 1
2
∫Vs E

∗(r)(εs − εenv)ε0E′(r)d3r
∫V ε(r) ∣E(r)∣2 d3r , (4.8)

where Ω′ = ω′ − iκ′ are the perturbed frequency and linewidth, E(r) and E′(r) are the
unperturbed and perturbed slowly varying wgm �elds, V denotes all of space,xi Vs is the
volume of the probe, and ε(r) is the value of the electric permittivity at rwithout the probe
present, i.e.,

ε(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε0εres r ∈ inside the resonator
ε0εenv r ∈ outside the resonator

. (4.9)

�e integral in the denominator of Eq. (4.8) is constant for any probe shape or distance
from the wgm, so for brevity let the energy stored in the unperturbed cavity �eld

∫V ε(r) ∣E(r)∣2 d3r ≡ UV . (4.10)

To calculate the relative shi�s in the real frequency and linewidth with respect to the real
frequency, note that by the de�nition (4.7)

∆Ω
Ω

= ω′ − ω − i(κ′ − κ)
ω − iκ = −(ω2 + κ2) + ω′ω + κ′κ

ω2 + κ2
+ iω

′κ − κ′ω
ω2 + κ2

, (4.11)
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local-�eld correction factor

xii Polarisability expresses
how easily an object is
polarised in a uniform
�eld – the proportionality
constant between the total
dipole moment (volume
integral of the polarisation)
and the applied �eld:

p = ∫ P(r)dr3 ≡ ΥEapplied .
(4.16)

Note that here the po-
larisability includes the
environment’s permit-
tivity, but some authors
leave it out.�e polar-
isability has units of
F/m ⋅m3 = C/(Vm) ⋅m3 .

from which it follows that

∆ω
ω

= +Re(∆Ω
Ω

) + κ
ω
Im(∆Ω

Ω
) ≈ +Re(∆Ω

Ω
) , (4.12)

∆κ
ω

= −Im(∆Ω
Ω

) + κ
ω
Re(∆Ω

Ω
) ≈ −Im(∆Ω

Ω
) , (4.13)

where the approximation can be made for high-q resonators as the �rst factor will dom-
inate because κ/ω = (2Q)−1. �us, by calculating the shi� in the complex resonance
frequency, the change in the wgm losses due to the scatterer can be found by considering
the imaginary part of the complex frequency shi�. From Eq. (4.8) it can be seen that in-
duced losses increase with a larger overlap between the scatterer and wgmmode volume,
i.e., determined by the scatterer’s geometric size relative to themode volume and how close
to the resonator surface the scatterer is. Numerical work [e.g. 252, 267] and experimental
results [e.g. 112, 217] have shown how increasing size and increasing proximity results in
increased broadening.

uniform-field approximation. �e probe is typically assumed to be small compared
to the penetration depth of thewgm evanescent �eld into the surroundings, which means
the �eld across the probe can be approximated uniform and constant, Ec. In the dipole
approximation, the �eldwithin the probe is that of a dipole,which for a sphere in a uniform
�eld is [232, 256, 257, 268, 269]

∣E(r ∈ Vs)∣ =
3εenv

εs + 2εenv
∣Ec∣ . (4.14)

�e proportionality constant between the �eld experienced by the dipole (local �eld) and
the applied �eld is o�en called the local-�eld correction factor [269, 270]. Assuming the
external �eld across the probe is equal to the unperturbed wgm �eld, the integral in the
numerator of Eq. (4.8) then simpli�es to

(εs − εenv)ε0 ∫Vs E∗c
3εenv

εs + 2εenv
Ec d3r =

3(εs − εenv)ε0εenv
εs + 2εenv

Vs∣Ec∣2 , (4.15)

where the fraction is known from the Clausius–Mossotti relation as related to the po-
larisabilityxii of the perturbing element. For a sphere of radius ρs, the polarisability is
de�ned [8, 232, 271]

Υsphere = 4πρ3s
εs − εenv
εs + 2εenv

ε0εenv , (4.17)

which means that Eq. (4.8) can be rewritten

∆Ω
Ω

≈ −
Υsphere
2

∣E(rs)∣2
UV

(4.18)

when the probe is a sphere with radius ρs ≪ λ at position rs. If the probe is not a sphere, a
tensorial treatment of the polarisability of the probe can be done to re�ect a non-symmetric
geometry, see e.g. Bohren andHu�man [232],Xu et al. [272],or the supplementarymaterial
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of Baaske et al. [265].4 Ruesink [273, Ch. 2] shows a detailed derivation of this expression
including its approximations, limitations and a far-�eld correction term due to radiation
seldom included in cavity perturbation analysis, and the backaction on the polarisability
from the cavity has been investigated [274].
From the shi� in the complex frequency, the relative wgm linewidth broadening can

be found according to Eq. (4.13) by calculating the imaginary part of Eq. (4.18). Only the
polarisability has a complex contribution due to the imaginary component of the electric
permittivity of the scatterermaterial and therefore the relative broadening can be expressed

∆κabs
ω

≈ −
Im(Υsphere)

2
∣E(rs)∣2
UV

. (4.20)

Alternatively, the shi� can also be expressed using the absorption cross section of the
sphere, σabs = nωIm(Υsphere)/(cε0) [232, 257], giving

∆κabs
ω

≈ − cε0σabs
2nω

∣E(rs)∣2
UV

. (4.21)

In conclusion, under the uniform-�eld approximation for a spherical Rayleigh scat-
terer as outlined above, the relative broadening of the wgm related to absorption can be
expressed

∆κabs
ω

∝ −Im(Υsphere)∣E(rs)∣2 (4.22)

as a function of the scatter position rs, where the imaginary component of the polarisability
comes from the imaginary component of the electric permittivity of the scatterer material;
for tungsten εW = −198−84i (<10% uncertainty) [275]. As the broadening is proportional
to the energy density of the near-�eld at the probe position, the near-�eld expression
Eq. (4.2) can be inserted, giving

∆κabs(rs)∝ exp[−2αNF(rs − r0)] , (4.23)

for probe positions rs ≥ r0, which shows that as the distance between the probe and the
resonator surface at r0 decreases, the linewidth will increase exponentially.

4For instance, in the description and notation of Bohren and Hu�man [232, pp. 145–147], an ellipsoid of
size a > b > c has a polarisability along the j axis of

Υj =
4πabc
3

εs − εenv
εenv + L j(εs − εenv)

ε0εenv , (4.19)

where L j , known as the depolarisation factor, depends on the ratios between a, b, c. For a sphere, L j = 1/3,
consistent with Eq. (4.17).
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xiii Note that corrections
and alternative approaches
to the approximations
outlined in this chapter is
an active �eld of research.
Some recent papers in addi-
tion to the literature listed
so far include Refs. 279–281.
�ere is also theoretical
[282, 283] and experimental
[284] work on slab sub-
strates perturbing wgms.

Figure 4.5.�e near �eld
decays only radially over
the volume of a small scat-
terer when d ≫ ρs: when
a spherical scatterer is at
some distance d from the
centre of the minor circle of
the resonator, the increased
distance δ for the part
furthest from the centre
of the scatterer is negli-
gible compared to the near
�eld decay. By Pythagoras,
d2+ρ2s = (d+δ)2 , which, to
�rst approximation, means
δ ≈ ρ2s /(2d). For a typical
resonator and scatterer com-
bination ρs ≃ 0.1 µm and
d ≃ 100 µm, δ ≃ 0.05 nm,
which is much smaller than
the near �eld decay.

accounting for the non-uniformity of the near-field. Even though the probe
size can be small compared to the wavelength and consequently be in the Rayleigh regime,
the evanescent �eld of thewgmmight decay signi�cantly over the size of the probe, which
the uniform-�eld approximation does not account for. To address the non-uniformity, for
instance a displaced dipole model [276] could be developed, where the e�ective centre of
the dipole is shi�ed as a result of the evanescent �eld decay; or a coupled dipole approx-
imation model can be used, where the scatterer is divided into subunits and the scattered
�eld from from all subunits considered, see e.g. Lakhtakia [277] or Novotny and Hecht
[278, Ch. 15].

�ere are a couple of existing approaches in the literature for wgm resonators:xiii

Kaplan et al. [267] presents a method for numerically solving these types of problems us-
ing �nite-element-method simulations (but do not provide linewidth vs probe–resonator
separation results). Keng et al. [237] multiplies the expression in Eq. (4.18) with a size-
dependent geometry correction factor, whereas Anetsberger et al. [240] performs the over-
lap integral between the probe volume and the unperturbed evanescent �eld in Eq. (4.8).
A more recent paper by Foreman et al. [285] performs the overlap integral between the
perturbed �eld and the probe, comparing the typical dipole approximation to their more
rigorous Green’s function-based approach [e.g. 233, 278], showing there is a less than 10%
error in the frequency shi� given by the dipole approximation for probe sizes kρs ≲ 0.8,
corresponding to ρs ≲ 200nm at λ = 1550nm.
For all of these cases, the unperturbed the evanescent �eld over the probe can be

assumed to vary only in the radial axis passing through the centre of the probe when the
size of the probe is much smaller than the minor radius of the resonator con�ning the
light, see Fig. 4.5.�us the expression for the evanescent �eld [Eq. (4.2)] can used for the
unperturbed �eld in the integral in the numerator of Eq. (4.8) without having to account
for polar or azimuthal variation in the �eld across the probe volume.
To explore if the near-�eld decay a�ects the probe’s absorption as a function of the

resonator surface–probe distance, the geometric volume overlap between the �eld intensity
and the spherical probe can be calculated. For a typical penetration depth of the near-�eld
energy density dNF = 118.4 nm for silica, the near �eld decays signi�cantly over a probe
approximated as a sphere of radius of for instance ρs = 300nm. Ignoring any local �eld
corrections, i.e., using the unperturbed near �eld in the calculation, the numerator of
Eq. (4.8) becomes

∫Vs(εs − εenv)ε0∣E(r)∣2 d3r = (εs − εenv)ε0 ∣Esurf∣2 ∫ r2

r1
e−2αNF(r−r0)4πρ2(r)dr , (4.24)

≡ (εs − εenv)ε0 ∣Esurf∣2 I(r1, ρs; r0, αNF) , (4.25)

when the probe is a sphere with its centre on the r axis with a cross-section radius from the
axis of ρ(r) over the interval r ∈ [r1, r2] = [r1, r1 + 2ρs], see Fig. 4.6(a).�e cross-section
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Figure 4.6.Numerical integration of �eld-intensity–sphere-volume overlap for various sizes and positions of a sphere. (a) Schem-
atic of the sphere in the near-�eld with the relevant variables annotated.�e �eld-intensity overlap is calculated from r1 to
r2 = r1 + 2ρs for various sphere radii ρs, where the radius of the cross section at r is ρ(r). (b)�e integrand of Eq. (4.24):
Product of the sphere’s cross section and �eld intensity (intensity cross section) for a sphere with radius ρs = 300nm at four
di�erent distances from the resonator surface.�e distance is given from the point of the sphere closest to the resonator surface.
�e exponential �eld decay causes the intensity cross section to become exponentially smaller with increasing distance from
the resonator. (c)�e value of the integral (4.24) of the intensity cross sections given the distance from the resonator surface
for spheres of three di�erent sizes.�e exponential decay of the integrated cross section is the same as the near-�eld decay for
all three tip radii, indicating that the sphere size relative to the near-�eld decay does not change the overlap as a function of
sphere position. Using other tip shapes such as a cone or half-sphere tip on a cone gives the same decay length.

radius is given by the equation for a circle of radius ρs centred at r1 + ρs,

ρ2(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ2s − [r − (r1 + ρs)]2 for r1 ≤ r ≤ r2
0 otherwise

. (4.26)

In this work, it is primarily the functional dependence of the absorption on the tip–
resonator distance that is of interest, not the particular proportionality factors.�e ima-
ginary part of Eq. (4.24) is proportional to the wgm linewidth change:

∆κ(rs)∝ −Im(εs)I(rs, ρs) , (4.27)

where the point of the sphere closest to the resonator has been relabelled, r1 = rs. Perform-
ing the integration I for spheres of di�erent sizes for positions approaching the resonator
indicates if a sphere of size comparable to or larger than the near-�eld penetration depth
will deviate from the uniform theory result (4.23),where the induced linewidth broadening
follows the near-�eld intensity’s exponential pro�le. Figure 4.6 shows the result of numer-
ical integration in Eq. (4.24), where for three sphere sizes, the integral was performed for
a range of positions within the closest 1 µm of the resonator surface (only 500 nm shown
in the plot).�e lines in Fig. 4.6(c) are proportional to the expected linewidth increase
given a position of the sphere.�e three lines all have slopes corresponding to exponential
decay lengths 118.40(1) nm, which is the same as the penetration depth of the near-�eld
intensity, suggesting that the uniform-�eld approximation holds also for probes larger
than the near-�eld decay when the e�ect of the probe up to some proportionality factor
is considered. To explore whether other scatterer shapes that more closely resembles the
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xiv Foreman and Vollmer
[252] do not give the numer-
ical value of the discrepancy
between the perturbation
theory andMie-theory
result, but from extracting
data from their plots (for a
wgm of radius 4 µm with
refractive index 1.59 per-
turbed by a silver sphere of
radius 32 nm) and �tting
the extracted values, the
perturbation-theory result
is show to over-estimate the
inverse of the exponential
decay factor by about 15%
for both tm and temodes.
�is number may be di�er-
ent for other scatterer and
wgm sizes.

tip used in the experiment, alternative expressions to Eq. (4.26) can be used to investigate
other axisymmetric scatterers of various sizes. Using a cone or a half-sphere on a cone
extending into the far-�eld gives the same decay length as a spherical scatterer, indicat-
ing that the decay of the near �eld over the probe volume makes little di�erence in the
functional form of the linewidth broadening.
Note that local �eld e�ects such as a nonlinear �eld enhancement at the tip when

moving closer to a resonator has been ignored in this calculation. Furthermore, the calcu-
lation builds on the �rst-order perturbation theory of the reactive sensing principle.�e
results of Foreman and Vollmer [252] show that the slope of the broadening induced by a
silver nanosphere is in fact steeper for a (plasmonically non-resonant) silver sphere than
what the perturbation theory result gives,xiv i.e., that the exponential decay length of the
linewidth broadening with increasing probe–resonator distance is smaller than the decay
length dNF of the near-�eld intensity.
It should also be noted that it has been shown that in the case of even a 0.1 % deviation

from a perfectly spherical resonator, the relative corrections to the predicted resonance
frequency shi�s from perturbation theory are orders of magnitude larger [281]; however,
in this work it is not a goal to predict the absolute broadening caused by the tip, but
understand its functional dependence on the probe–resonator distance, which should not
be a�ected by such e�ects.

conclusion for absorption losses. For a non-plasmonically resonant scatterer of a
size that is small compared to the wavelength, the dipole approximation result, Eq. (4.23),
is expected to performwell for estimating the functional shape of the linewidth broadening
with respect to the tip–resonator distance, also when the scatterer is large compared to
the evanescent �eld’s decay length.

4.2.3 Tip-induced scattering losses

Asmentioned at the beginning of this section, the tip will not just contribute to broadening
the resonator linewidth by absorption of light, but also scatter light in all directions. Some
light can scatter back into the same mode, but from the forward-propagating mode’s point
of view, scattered light is largely lost and will contribute to broadening of the resonance.
�e consequence of the light scattering into the counterpropagating wgm – which is
the very reason the tip is introduced into the near �eld – will be covered in the next
section, Section 4.3.�is section discusses the broadening of the forward-propagating
mode caused by tip scattering.
Metals typically have a large negative electric permittivity at optical frequencies com-

pared to free space. Generally, the larger the contrast between a scatterer and its surround-
ings, the more e�ciently it scatters, resulting in a larger scattering cross section. For metal
particles larger than around 100 nm in diameter the scattering cross section is much larger
than the absorption cross section [257], and thus the e�ect of scattering is typically more
important than absorption.�is makes a metal tip a convenient choice for this experiment
because the tip is introduced to tune the coupling between the forward- and backward-
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propagating modes via scattering, and thus scattering is desired, whereas absorption only
degrades the optical q factor without making a di�erence to the backscattering.
Where does the scattered light go? Assuming quasi-elastic scattering,meaning that the

scattered light from the tip has the same or close to the same frequency as the incident light,
light does not couple into propagating wgmmodes of di�erent orders than the mode in
question as these have di�erent resonance frequencies.5�erefore, the tip-induced losses
stem from coupling into free-space modes and into non-guided modes within the fused
silica, as well as into the counterpropagating wgm.

�ere are a number of di�erent approaches to deriving an expression for the induced
broadening due to a scatterer, with some examples found in the supplementary materials
of Refs. 112, 115, 265. Mazzei et al. [112] and Zhu et al. [115] use a Weisskopf–Wigner
semiclassical approach, generalised by Yi et al. [212] formultiple scatterers,whereas Baaske
et al. [265] base their derivation on Larmor’s formula for the radiated power from an
accelerated charge.
Following the same approach as Baaske et al. [265] to calculate the scattering losses,

the optical q factor of the wgm with the tip present can be expressed as the sum of all
contributing q factors [Section 2.1.2],

Q−1 = Q−1
0 + Q−1

ex + Q−1
tip abs + Q−1

tip scatt , (4.28)

namely the intrinsic, taper coupling, and two tip-related q factors, respectively. From the
de�nition of the quality factor as the energy in the mode per dissipated power [Eq. (2.11)],
the total q can be expressed by the dissipated power due to each contribution,

Q−1 =
P0 +Pex +Ptip abs +Ptip scatt

ωUV
. (4.29)

Similarly, the total q factor can be expressed in terms of the linewidth contribution for
each loss channel,

Q−1 = 2
κ0 + κex + κtip abs + κtip scatt

ω
, (4.30)

which means that the scattering-related q is

Q−1
tip scatt =

Ptip scatt
ωUV

=
2κtip scatt

ω
. (4.31)

5�is so-called backscattering coupling picture has been criticised by some authors in a set of papers [262–
264, 281, 286] for failing to capture the coupling to other wgms than the counterpropagating mode.�ese
authors are seeking to build �rst-principles models from Maxwell’s equations valid for idealised spherical
resonators rather than basing the models on observations and a simple experimental picture. �ey have
shown that a �rst-principle model recovers that of the reactive sensing principle [264]. For the resonators
used in this work, the geometry deviates drastically from a perfect sphere, and therefore the frequency spacing
between resonances is larger than for a spherical resonator, and the coupling to modes of di�erent orders can
be ignored.
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From this expression, the contribution to the linewidth from the tip scattering in terms of
the power dissipated through tip scattering is

κtip scatt =
Ptip scatt
2UV

. (4.32)

Now, by relating the scattered power to known quantities such as the polarisability of
the tip, the broadening due to scattering can be expressed in a similar fashion as the tip
absorption.�e scattered power from the tip is caused by the oscillation of the charges
in the tip due to the wgm �eld. Under the dipole approximation, the scatterer is treated
as a dipole with dipole moment p = ΥE(rs) [Sidenote xii] where all quantities are slowly
varying with respect to the optical frequency. Considering the time-dependence e−iωt

of the wgm �eld, the time-dependent dipole moment is p̃(t) = ΥE(rs)e−iωt , giving a
charge–acceleration product

¨̃p(t) = d
2

dt2
[ΥE(rs)e−iωt] = (−iω)2ΥE(rs)e−iωt , (4.33)

�e Larmor formula gives the radiated power due to an acceleration of a charge as propor-
tional to the square of the product of the charge and its acceleration [268]. For a dipole,
the Larmor formula is

Ptip scatt =
n3∣p̈∣2
6πε0c3

= n3ω4∣Υ∣2
6πε0c3

∣E(rs)∣2 (4.34)

when inserting Eq. (4.33) and moving back to slowly varying quantities. Inserting this
result into Eq. (4.32), the relative linewidth broadening due to the tip scattering can be
expressed

∆κscatt
ω

= n3ω3∣Υ∣2
12πε0c3

∣E(rs)∣2
UV

, (4.35)

where the ∆ denotes that this quantity is the change in the linewidth compared to when the
tip is not present.�e scattering cross section of a sphere is σscatt = n4ω4∣Υ∣2/(6πε20c4) [278,
287], thus the broadening can be expressed

∆κscatt
ω

= cε0σscatt
2nω

∣E(rs)∣2
UV

, (4.36)

which is the same expression as for the absorption broadening, Eq. (4.21), except replacing
the absorption cross section with the scattering cross section.

�is �nally shows that, similarly to the absorption broadening, the scattering-related
broadening is also proportional to the near-�eld energy density at the tip’s position:

∆κscatt(rs)∝ exp[−2αNF(rs − r0)] . (4.37)

�e derivation above does not take into account that some of the radiatedpower can reenter
the forward-propagating mode, but this is assumed to be a linear correction with respect
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to the resonator–tip distance and thus only changes the prefactors, not the functional
dependence.

4.2.4 �e resulting tip-position dependent optical linewidth

As discussed in the previous two sections, the presence of the tip within the near �eld
will broaden the optical linewidth by absorption and scattering to free-space and other
modes than thewgm of interest. In short, the discussion shows that when there is a linear
coupling between the evanescent near �eld and the tip, both the absorption (4.23) and
scattering (4.37) contributions to the linewidth broadening will exponentially increase as
the tip is approaching the resonator surface, following the same functional dependence as
the energy density in the near �eld.
In the experiment, a piezowith the tip attached is raster scannedover a grid of positions,

including positions corresponding to the tip being inside the resonator. For these piezo
positions, the tip will hit the resonator surface and bend and/or slide along the resonator
surface. For these piezo positions, the linewidth will not change exponentially as the tip
is nominally moved deeper into the resonator, but the linewidth may change as the tip is
sliding along the surface and its e�ective extinction cross section changes.�is linewidth
change for tip positions nominally inside the resonator can be approximated to be linear.
Based on the expected behaviour in the two domains of tip positions outside and

nominally inside the resonator, the linewidth change ∆κ from the intrinsic, unperturbed
linewidth κ0 can be expressed as a piecewise function comprising an exponential decay
from the resonator surface and a linear plateau for the tip positions where it is touching the
resonator surface. In a coordinate system where r is pointing outwards from the resonator
in the radial direction and the resonator boundary is at r0, the function describing the
scatterer-in�uenced linewidth is then

κ (r) = κin +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ap + s(r − r0) for r − r0 < 0
ap exp[−(r − r0)/dκ] for r − r0 ≥ 0

, (4.38)

where dκ the decay length of the tip in�uence, ap the amplitude of the exponential decay,
and s a linear slope of the plateau at the resonator surface.�is model is consistent with
the experimental results of Azeem et al. [284] where the optical linewidth of an wgm
resonator is monitored as the mode is approached by a slab substrate.
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4.3 influence by the probe on the backscattering in the resonator

A�er presenting in the previous section how the expected optical linewidth broadening
as the probe is approaching the resonator, the focus now turns to the tip’s in�uence on the
backscattering in the resonator.
As covered in Section 2.4, the intrinsic scatterers in the resonator contribute to optical

losses by scattering light from a wgm into non-propagating and free-space modes, but
they also scatter some light into the counterpropagating mode, coupling the wgm pair
by scattering. Similarly, when a tip scatterer is present in the near �eld of a resonator, the
light scattering o� it increases losses as covered in Section 4.2.3, but also couples the two
counterpropagating optical modes in the resonator.�e coupling strength will depend on
the scattering cross section of the tip, which increases with the overlap between the tip’s
geometrical cross section with the wgm’s near �eld.
In order tomodel the e�ect of the tip, the spectral line shape of the back-re�ected signal

due to the coupling between themodes is �rst established, then the tip-position-dependent
backscattered optical power at resonance is hypothesised.

4.3.1 �e coupled pump and backscatter line shapes

Given some coupling between two resonances, the line shapes of the resonances might
di�er from their normal Lorentzian line shapes. In the following the line shapes of two
coupled resonances are derived following a time-dependent rate-equation approach (see
for instance Refs. 109, 133, 192, 266, 288 for examples of literature discussing coupling in
wgm resonators using the rate-equation approach).
Let the clockwise mode ecw of a wgm resonator be pumped by a �eld Eincw at some

frequency detuning δ from its resonance frequency. Introducing coupling between the
mode and its counterpropagating, frequency-degenerate mode eccw, optical power builds
up in both modes. Using the complex scattering coe�cients g jk to describe the coupling
from mode j to k, the steady-state equations of motion for the two circulating �elds can
be expressed

⎛
⎝
ėcw
ėccw

⎞
⎠
=
⎛
⎝
−κ − iδ + ig11 ig21

ig12 −κ − iδ + ig22
⎞
⎠
⎛
⎝
ecw
eccw

⎞
⎠
+
⎛
⎝
E incw
0
⎞
⎠
= 0 (4.39)

where E inccw = 0 as there is no pumping on the ccwmode.�e coupling between the two
counterpropagating modes can in general be non-symmetric ∣g12∣ ≠ ∣g21∣ but are typically
assumed to be equal [112, 272]. Inverting the matrix gives

⎛
⎝
ecw
eccw

⎞
⎠
= E incw
(κ + iδ − ig11)(κ + iδ − ig22) + g12g21

⎛
⎝

κ + iδ − ig22
ig12

⎞
⎠
. (4.40)
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In the small-backscattering regime, ∣g jk ∣≪ κ, this gives

ecw = E incw
κ + iδ ; eccw = ig12E incw

(κ + iδ)2 , (4.41)

where ∣ecw∣2, ∣eccw∣2 are proportional to the powers circulating in the respective directions.
As themeasurements obtained in the experiment are of the optical power in the tapered

�bre, the output �elds in the taper from the cw and ccw directions must be found.�ese
can be expressed using the taper coupling rate κex [133]:

E outcw = E incw − 2κexecw ; E outccw = E inccw − 2κexeccw = −2κexeccw , (4.42)

where E inccw = 0 as there is no pumping in the ccw direction. To �nd the line shapes of the
output �elds, insert Eq. (4.41) and take the modulus squared to obtain

∣E outcw ∣2 = ∣E incw∣2 [1 −
4κex(κ − κex)

κ2 + δ2
] ; ∣E outccw∣2 = ∣g12∣2∣E incw∣2

4κ2ex
(κ2 + δ2)2 . (4.43)

Expressing the total losses as the sum of the intrinsic losses κin and the taper coupling κex,
κ = κin + κex, and using the coupling contrastKres = 4κexκin/κ2 [Eq. (2.41)],

∣E outcw ∣2 = ∣E incw∣2 [1 −
Kres

1 + δ2/κ2 ] ; ∣E outccw∣2 = ∣g12∣2∣E incw∣2
4κ2ex/κ4

(1 + δ2/κ2)2 . (4.44)

�ese expressions for the optical power in the �bre taper shows that the transmitted clock-
wise pump spectrum is a normal Lorentzian line shape dip, whereas the backscattered
spectrum will exhibit a peak with a squared Lorentzian line shape with its amplitude given
by the coupling parameters and the input pump power.

4.3.2 Backscattering power given the position of the near-�eld probe

Knowing the line shape of the backscattered light Eq. (4.44), the expected backscattered
power at resonance when the tip is present can be modelled. As will be shown, the backs-
cattered power is dependent on the tip’s radial and azimuthal position in relation to the
resonator surface.
Assuming a constant taper coupling κex and input power ∣E incw∣2, the on-resonance

backscattered power exhibits the proportionality relation

Ab ∝
∣g12∣2

κ4
. (4.45)

�e complex coupling coe�cient g12 has two contributions, an intrinsic coupling g0 between
the two modes due to intrinsic scatterers and inhomogeneities and an additional tip-
induced coupling gtip [288].
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critical tip-coupling distance

tip-induced coupling. �e tip-induced coupling is expected to be proportional to the
tip scattering considered in Section 4.2.3 and therefore exponentially increase as the tip is
approaching the resonator. However, the phase of the light coupled from the cw to ccw
mode by the tip will vary with the azimuthal position of the tip, as the phase is a function
of the phase of cwmode at that position. By a suitable choice of the relative phase between
the cw and ccw basis states, the intrinsic coupling g0 can be made to be real, and the
phase relationship between the light coupled from the intrinsic (e�ective) scatterer and
the light coupled by the tip is described by a complex phase factor in gtip. In the polar
coordinate system where R = r− r0 ≥ 0 is the distance of the tip from the resonator surface
and the azimuthal position is ϕ, the tip-induced coupling can be expressed as a function
of the tip’s position:

gtip(R, ϕ) = atip exp(−R/db) exp[iΘ(R, ϕ)] , (4.46)

where the tip-position-dependent coupling phase

Θ(R, ϕ) = kfrϕ + θ0 + θRR (4.47)

accounts for how the phase of the light in the mode being scattered from changes as the tip
is moved. As the next paragraphs will show, when the tip is close enough to the resonator
for the tip coupling to be signi�cant, this phase causes an azimuthal fringe pattern in
the backscattered power due to the interference between the tip-induced and intrinsic
backscattered light,where the constant kfr represents the wavenumber of the fringe pattern.
In addition to the azimuthal phase dependence kfrϕ, a parameter for a �xed o�set θ0 is
included, and a radially dependent, linear phase contribution θR accounting for phase dri�
over the course of the measurement and any tip-shape e�ects (discussed in Section 4.6.3).

�e e�ective backscattering in the resonator can be tuned by controlling the coupling
phase and amplitude of the light scattering via the tip from the forward- to the backward-
propagating mode. When the radial position of the tip is su�ciently close for the tip to
couple the twomodes as strongly as the intrinsic scatterer does, ∣gtip∣ = g0, a suitable phase
o�set between the light coupled by the two mechanisms makes the light destructively
interfere, resulting in zero e�ective backscattering.�is phase o�set is governed by the
azimuthal position of the tip, see Eq. (4.47).
Assuming there is a tip position forwhich ∣gtip∣ = g0, the notion of a critical tip-coupling

distance Rcrit can be introduced by forcing the coupling amplitude to be equal to the
intrinsic coupling at this position:

gtip(R, ϕ) = g0 exp [−(R − Rcrit)/db] exp [iΘ(R, ϕ)] , (4.48)

which evaluates to g0 at Rcrit.
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Figure 4.7.�e on-
resonance backscattering
power as a function of
tip position calculated by
evaluating Eq. (4.51) when
the critical tip coupling is
at Rcrit/db = 0.5 (dashed
line), and the linewidth
broadens by 10% as the tip
approaches the resonator.

xv Another notable prior
paper by Blaize et al. [291]
studied the phase and amp-
litude of the �eld scattered
into the far-�eld as a snom
tip was scanned within a
microresonator’s near �eld.

total coupling due to both tip and intrinsic scattering. �e total coupling can
be found by coherently adding the two coupling contributions

∣g12∣2 = ∣g0 + gtip∣2 = g20 [1 + 2e−R
′/db cos(Θ) + e−2R′/db] . (4.49)

where R−Rcrit ≡ R′ for compactness of notation.When the tip is critically coupled (R′ = 0),
this expression becomes

∣g12∣2crit = g20 [2 + 2 cos(Θ)] , (4.50)

where it is clear that for Θ = ±π, the total coupling from the cw to the ccwmode is zero
when the tip is critically coupled. If the tip coupling is insu�cient for any position in the
near �eld to match that of the intrinsic coupling, the critical tip-coupling position will be
negative, corresponding to an (unrealisable) tip position inside the resonator.
Inserting the tip-coupling parameter (4.49) into Eq. (4.45), the expected proportion-

ality of the on-resonance backscattered power can be expressed

Ab(R ≥ 0, ϕ)∝ g20
κ4(r) {1 + 2e

−R′/db cos [Θ(R, ϕ)] + e−2R′/db} , (4.51)

where only the tip positions up to where the tip touches the resonator are considered,
r − r0 = R ≥ 0, and in which κ(r) is the tip-position-dependent linewidth from Eq. (4.38).
Figure 4.7 shows an example of how the backscattered power varies with the tip position.
�e intrinsic backscatteredpower corresponds towhen the tip is far away,Ab(R →∞, ϕ) ≡
Ab,0, and in this work the intrinsic backscattered power is normalised to 1.

4.3.3 Period of the fringe pattern in the backscattered power

�e fringe pattern in the backscattered power arises as consequence of the interference
between the tip-induced and intrinsic backscattering, expressed by the cos(Θ) term in
Eq. (4.51), where Θ(R, ϕ) ∝ kfrϕ represents the phase of the backscattered light from
the tip relative to the phase of the intrinsically scattered light. Note that if the phase of
the pump light changes, the phase di�erence between the intrinsic and tip-induced light
should stay constant as their phases are both given by the pump phase at their respective
scattering points.
Such a fringe pattern in the backscattered power from amicrorestonator has previously

been observed in a context of scanning near-�eld microscopy (snom) [e.g. 289], where
Schmidt et al. [290] presentedmeasurements of the re�ected power from awgm resonator
as a metal-coated �bre-snom tip was scanned in the resonator’s near �eld.xv Also Mazzei
et al. [112] essentially observed a fringe pattern of the same origin, but did so bymeasuring
the transmitted �eld in a mode-split regime where they measured the relative peaks of the
hybridised modes as a tip was scanned azimuthally.
To calculate the periodicity of the fringe pattern with respect to the azimuthal position

of the tip, ϕ, the change in the phase di�erence between the induced and intrinsic light as
a function of tip position must be considered.�e periodicity is by de�nition given by the
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fringe wavenumber in Eq. (4.47), Λfr = 2π/kfr. By relating the fringe pattern wavenumber
kfr to the optical propagation constant, the fringe pattern period can be expressed in terms
of the vacuum wavelength of the pump light.
First, consider the change in the phase of the scattered light as the tip is moving: the

phase of the tip-induced backscattered light is given by the phase of the pump light at
the tip’s position, which varies along the azimuth by βoptϕ, where βopt ≈ 2πn/λ is the
propagation constant of the pump light.�e change in the phase of the light re�ected by
the tip at the tip’s position as the tip moves from position ϕ1 to ϕ2 is

∆Θp = βopt(ϕ2 − ϕ1) . (4.52)

However, the change in the phase di�erence between the intrinsic and scatterer-induced
light is not just ∆Θp, because the change in the tip’s position in relation to the intrinsic
scatterermust also be accounted for. Assuming that the phase of the intrinsic backscattered
light is unchanged as the tip moves, the phase-di�erence change due to the tip’s movement
is an additional βopt(ϕ2 − ϕ1).�us, the total change in the phase di�erence between the
tip-induced and intrinsic backscattering when the tip moves from one position to another
is

∆Θ = 2∆Θp = 2βopt(ϕ2 − ϕ1) . (4.53)

From this result and the de�nition of the coupling phase, Eq. (4.47), the fringe pattern
wavenumber can be identi�ed to be kfr = 2βopt, and thus Λfr = 2π/(2βopt).
Alternatively, consider the tip moving the distance equivalent to the fringe separa-

tion distance Λfr, for example from one backscattering maximum ϕm to a subsequent
maximum in the fringe pattern ϕm+1, the change in Θ is

Θm+1 −Θm = 2βopt(ϕm+1 − ϕm) = 2βoptΛfr . (4.54)

where, by de�nition, the phase di�erence between subsequent maxima is

Θm+1 −Θm = 2π . (4.55)

�us, for a resonator of material with refractive index n, the fringe period is

Λfr =
2π
2βopt

≈ λ
2n
. (4.56)
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xvi Toptica CTL 1500

xvii �orlabs NanoMax 300

xviii �orlabs FPC562

xix Haphit FCIR-1550-3

xx �orlabs PDA10CF-EC

xxi Keysight DSOX2024A

xxii Agilent 33250A

xxiii Pritel FA-33-IO

xxiv Haphit PMVA-1550-M

xxv PI P-611.3 NanoCube

4.4 experimental setup and measurement procedure

To experimentally investigate the e�ect of a near-�eld probe on the backscattering from
a resonator, the re�ected power and resonance linewidth are studied as functions of the
distance of a tungsten tip from the resonator surface r and its azimuthal position ϕ [co-
ordinates as shown in Fig. 4.3(a)].�e tungsten tip is fabricated as described in Section 3.4.
�e experiment was performed with three di�erent silica rod resonators with diameters of
2.7mm, 1.72mm, and 1.74mm, and q factors of various resonances in the 108 to 109 range.
�e laser-lathe technique described in Section 3.1 is used to fabricated the resonators, with
two higher-q resonators fabricated in a nitrogen atmosphere to increase the q by reducing
the formation of light-absorbing hydroxide [292, 293]. In the following, results from a
measurement using the 2.7-mm resonator will be discussed �rst.
A schematic of the experimental setup is shown in Fig. 4.8(a).�e setup allows the

resonator to be pumped whilst taking spectral measurements of the transmitted and back-
re�ected signals simultaneously, and controlling the position of the near-�eld scatterer.

�e optical setup is all-�bre and single mode. �e microrod resonator is pumped
with a 1.55-µm, continuous-wave, external-cavity diode laserxvi using a tapered optical
�bre mounted on a translation stagexvii controlling the coupling of light into the cavity.
A polarisation controllerxviii is used for further optimising the coupling to a particular
resonatormode. An optical circulatorxix directs the backscattered light from the cavity onto
an ampli�ed photodetector,xx so the optical power can be recordedwith an oscilloscope.xxi

�e cavity transmission is simultaneously recorded using a photodetector connected to
the oscilloscope.
In order to obtain optical transmission and backre�ection spectra, the frequency of

the light source is scanned by modulating the laser current with a triangular wave signal
supplied by a waveform generator.xxii To avoid power �uctuations, the light is subsequently
fed into an erbium-doped �bre optical ampli�erxxiii operating in saturation, and a variable
optical attenuatorxxiv is then used to set the input optical power to the cavity to 20mW.
�e laser frequency is scanned at a rate of −330GHz s−1 to avoid thermal broadening of
the resonance [Section 2.5.1].�e nonlinear Kerr e�ect is practically instantaneous, which
means it is faster than the scanning rate and hence causing some broadening; however,
with low input powers, this broadening is small and Lorentzian line shapes are observed
for both directions of scanning.

�e part of the setup with the resonator, tapered �bre, tungsten tip and translation
stages is kept in an acrylic box to protect the components against contamination and
draughts. A photograph of the components can be seen in Fig. 4.9. �e tungsten tip
near-�eld probe was �xed to a polylactic acid (pla) plastic mount, attached to a computer-
controlled, three-axis piezoelectric positioner.xxv A manual translation stage underneath
provides coarse positioning.
When performing the measurements, the tip position is raster scanned in steps of

50 nm (results presented in Fig. 4.10) or 25 nm (results presented in Fig. 4.14) over a
1 µm× 1.5 µm area in the resonator plane. As the tip position is raster scanned, at each pos-
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Figure 4.8. Experimental setup for backscattering measurements. (a) Schematic of the setup: A 1.55-µm, �bre-coupled external
cavity diode (ecdl) laser ampli�ed by an erbium-doped �bre ampli�er (edfa), a polarisation controller (pc) optimises the
coupling to the desired resonator mode, a circulator separates the light based on its propagation direction, and photodetectors
monitor the backscattering (pd1) and transmission of the resonator (pd2). An optical isolator at the ecdl output, variable
attenuators, eom for laser frequency scan calibration are not shown for simplicity.�e tungsten tip near-�eld probe is �xed
to a computer-controlled piezo nano-positioner.�e automated measurement procedure moves the tip and acquires spectral
measurements using an oscilloscope for each tip position. Spectra of the backscattered light (b), and transmitted light (c)
for when the tip is far away from the resonator is shown, with �tted Lorentzians (dashed).�e Lorentzian amplitude of the
backscattering Ab and transmission linewidth 2κ/(2π) are annotated. (d)�e measurement procedure de�nes a grid of tip
positions to raster scan over (�gure not to scale), where at each position, optical spectra are obtained.

Figure 4.9. Photograph of the experimental setup inside the protective acrylic box to shield the setup from dust, contaminants
and draughts.�e box contains the optical resonator, a tapered optical �bre for coupling into the resonator, and the tungsten
tip.�e tapered �bre and tungsten tip are mounted on coarse and �ne translation stages for control over their optical coupling
to the resonator.�e tungsten tip bracket is 3D printed with a pla �lament.�e scale bar indicates the size in the plane of the
resonator and tungsten tip.�e remaining optical components and electronics are outside the acrylic box.�is part of the
setup was originally designed by L.DB. and M.T.M.W.; the author built the optical and electronic circuitry and modi�ed the
setup with changes and additions to perform the measurements of this chapter.�e resonator, �bre taper, and tungsten tip
were all fabricated by the author.



coherent backscattering control using a near-field probe 95

ition, transmission and backscattering spectra are simultaneously recorded, with example
spectra shown in Fig. 4.8(b,c). By computer control of the tip positioner and oscilloscope,
the capture time for a measurement set of 600 di�erent tip positions, corresponding to
pixels in Fig. 4.10, is only a few minutes.�e short measurement time reduces the impact
of slow dri�s that can occur due to for example temperature changes causing thermal
expansion of parts in the setup.
To extract the backscattered power and pump-resonance half-linewidth κ given each

of the positions of the tip, the obtained spectra are �tted with Lorentzian functions, as
given in the next section, Section 4.5.�e resulting grids of on-resonance backscattering
power and linewidth data over the two spatial coordinates are then numerically �tted
with functions also described in the next section. Using these datasets, the position of
the resonator surface in the grid is determined, the tip coupling positional dependence
is studied, and the periodicity the backscattered power with azimuthal tip movement as
well as the achieved backscattering suppression are calculated.

4.5 data analysis methods and numerical fitting

To extract the parameters of interest from the dataset, least squares �tting procedures
are applied to the spectra obtained for each tip position in the raster-scan measurement.
For the pump transmission spectra, the half-linewidth κ and on-resonance Lorentzian
amplitude Ap are of interest to determine the resonator boundary and the optical coupling
for q factor calculations. For the re�ection spectra, the on-resonance backscattered power
Ab is of interest to determine the backscattering level. No spectrally resolvable mode
splitting was observed for any of the measurements in this work.
To �t the the pump transmission resonance, a normal Lorentzian dip from a back-

ground B is used,

Pp(δ) = Bp −
Ap

1 + δ2/κ2 , (4.57)

where the detuning with respect to the resonance angular frequency ω0 is δ = ω − ω0.
However, the spectral shape for the backscattering is distorted as it is e�ectively pumped
by a Lorentzian (the pump resonance), resulting in a line shape,

Pb(δ) = Bb +
Ab

(1 + δ2/κ2)2 , (4.58)

in the limit of small backscattering, as shown in Section 4.3.1.
Subsequent to �tting the individual spectra to extract the parameters with estimated

errors for each tip position, the grid data of linewidth and backscattering amplitude meas-
urements are �tted.�e functions used for the grid data �tting are expressed in a rotated
(cartesian) coordinate system (r, ϕ) at an angle ϑ to the measurement coordinate system
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xxvi For a resonator of ra-
diusR = 2.7mm/2, the
maximum radial correction
between the cord and arc
for a cord of length 1.5 µm
can be found using �rst the
law of cosines to �nd the
angle γarc over which the
arc spans (0.064°), then cal-
culating the max correction
byR[1 − cos(γarc/2)] =
0.2 nm.

(x , y), where the coordinate transformation is given by

⎛
⎝
r
ϕ
⎞
⎠
=
⎛
⎝
cos ϑ − sin ϑ
sin ϑ cos ϑ

⎞
⎠
⎛
⎝
x
y
⎞
⎠
. (4.59)

In this coordinate system, the r axis is normal to the resonator surface, and ϕ can be
approximated as the azimuthal position over a short distance compared to the resonator’s
radius of curvature.xxvi�e rotation angle ϑ is determined as one of the free parameters
of the linewidth grid �t, where the linewidth function expressed in the (r, ϕ) coordinate
system as shown in Eq. (4.38),

κ (r) = κ0 +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ap + s(r − r0) for r − r0 < 0
ap exp[−(r − r0)/dκ] for r − r0 ≥ 0

, (4.60)

with the unperturbed linewidth κ0, decay length dκ , amplitude of the exponential decay
ap, linear slope of the plateau at the resonator surface s, and the coordinate system o�set
r0 as free parameters.�e �tted parameter r0 determines the resonator surface.

�e on-resonance backscattered power grid data is subsequently �tted with the co-
ordinate system rotation parameter ϑ and resonator surface parameter r0 �xed to the
values obtained from the linewidth �t. Only the portion of data outside the resonator
boundary, r − r0 = R ≥ 0, is �tted according to Eq. (4.51):

Ab(R, ϕ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

not �tted for R < 0
∣g∣2/κ4(r) for R ≥ 0

, (4.61)

where κ(r) is the �tted linewidth function, and the coupling from the forward- to the
backward-propagating mode

∣g∣2 = g20 [1 + 2 exp(−R′/db) cos(Θ) + exp(−2R′/db)] , (4.62)

where g0 the intrinsic backscattering coupling,Θ = kfrϕ+θ0+θRR′ the position-dependent
phase responsible for the fringe pattern, in which θR is a radially dependent phase account-
ing for dri�s, which will be justi�ed in Section 4.6.3.�e tip-critical-coupling distance
is given by Rcrit = R − R′, and can be negative if critical tip coupling is not achieved in
the near �eld. From the �t, the period Λfr of the fringe pattern can be calculated from
kfr = 2π/Λfr, as shown in Section 4.3.3.
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xxvii �e detection noise
level is taken to be the
standard deviation of the
photodetector output when
the pump is far o� reson-
ance.

4.6 experimental results and discussion

To investigate the experimental viability of the backscattering suppression technique and
compare results to the theory, the tip-position raster-scan experiment was performed
with three di�erent microresonators and two di�erent tungsten tips.�e microresonators
varied in diameters and optical quality factors. Multiple datasets were obtained and are
presented in this section.

�e measurement set presented in Fig. 4.10 was obtained with a 2.7-mm-diameter
resonator, raster-scanning the tip in steps of 50 nm.�e resulting linewidth andbackscatter
optical power grids from �tting the transmission and backscattering spectra from each
tip position are shown in Fig. 4.10(a) and (b), respectively, where each pixel of the images
corresponds to a position on the raster-scan measurement grid.�is measurement set
has a maximum backscattering suppression of a moderate 12 dB, limited by the detection
noise level,xxvii but the measurement serves as a clear example of how the tip in�uences
the wgm and displays a prominent fringe pattern.

�e second measurement set, presented in Fig. 4.14, achieves a higher suppression in
a 1.72-mm-diameter resonator. Because the suppression changes by orders of magnitude
over small distances near the minimum backscattering points, this measurement set was
obtained with a higher spatial resolution (steps of 25 nm) to increase the chance of get-
ting a measurement in a position that results in higher suppression. Furthermore, this
measurement allows a larger suppression to be measured because the photodetector noise
level relative to the intrinsic backscattering level is lower: the standard deviation of the
o�-resonance signal is −34 dB of the on-resonance intrinsic scattering, resulting in a max-
imum noise-limited suppression of 34 dB.

4.6.1 Linewidth broadening caused by the tip

By extracting the Lorentzian linewidth for the transmission spectra for each tip posi-
tion, the transmission linewidth data grid, such as the one shown in Fig. 4.10(a) is as-
sembled.�is grid is used for three purposes: (i) to determine the resonator surface from
the exponential-to-linear transition, (ii) to �t the backscattering amplitude [Eq. (4.51)],
and (iii) to calculate the optical coupling e�ciency of each position in order to calculate
the intrinsic optical quality factor of the resonance.
By �tting the linewidth data with Eq. (4.60), the resonator surface R = 0 is determ-

ined by the �tted interface between the plateau and the exponential decay.�e surface is
shown as solid black lines in Fig. 4.10(a,b,e). For comparing cross sections of the �t to the
measured data, the relatively low resolution grid data is interpolated linearly in order to
sample arbitrary lines in the two-dimensional grid of measurement data. Figure 4.10(e)
shows cross sections of the �t (solid lines) and interpolated measured values (circles) for
the linewidth data along the radial direction. �e error bars show the linewidth error
estimated by the least-squares �tting of the spectrum for that tip position.�e standard
deviation in the residual between the position of the tip as given by the piezo-positioner’s
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Figure 4.10.�e whispering-gallery mode’s response to the tungsten tip in the near �eld. (a,b) Grids
of (a) �tted linewidths of the transmission and (b) backscatter power for tip positions in the res-
onator plane.�e black lines (R = 0) indicate the �tted resonator surface based on the transition
from exponential to linear change in the linewidth; measurements shown as R < 0 were obtained
while the tip was touching the resonator surface, resulting in the tip sliding along the surface. Max-
imum backscattering suppression occurs at the dashed line representing the critical tip coupling
distance Rcrit.�e backscattered power is normalised by the intrinsic backscattering power Ab,0.
(c,d) Optical spectra of the (c) transmission and (d) backscattering for four selected tip positions,
as annotated in panels (a) and (b). (e) Radial cross sections of the transmission linewidth change.
�e lines show the �tted tip-dependency over the full grid, and the circles are interpolated from
the grid with errors given by the estimated linewidth �ts for the transmission spectra.
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Figure 4.11. Comparisons of �tted parameters for thirteen di�erent measurement sets using three
di�erent resonators and two di�erent tungsten tips. (a) Comparison of the �tted decay lengths for
the change in linewidth (dκ) and change in backscattering (db) as the tip moves away from the
resonator surface with errors as estimated from the least squares �tting.�e value of the near-�eld
intensity penetration depth dNF is shown as a dashed grey line, and the solid black line marks the
point at which the resonator was changed from a 2.7- to a 1.72-mm-diameter resonator, the dotted
line is where a new 1.74-mm resonator was installed. Note that the decay lengths from di�erent
measurement sets are not expected to be the same due to di�erences in mode pro�les and polar
positions. (b) Boxplot of the values of the �tted fringe distance in the backscattering data for the
same thirteen measurement sets as in panel (a).�e �tted value per measurement set is overlaid.
�e boxes extend from the �rst to the third quartile, with weighted, best-estimate lines shown,
and whiskers spanning the full data range.�e fringe pattern is �tted both for the linearly scaled
data and for the logarithmically scaled suppression.�e dashed line indicates the expected value
λ/(2n) from theory.

sensor compared to the target of the raster grid is 7.2 nm, and thus small compared to the
uncertainty in the linewidth.

�e �t of the perturbed linewidth expression Eq. (4.60) to the linewidth data gives
the exponential decay length for the linewidth dependence on the tip position as dκ =
92(3)nm for themeasurement set presented in Fig. 4.10(a). Repeating the experimentwith
di�erent resonances in the two resonators, the decay length of the linewidth dependence
can be extracted for each measurement set. Figure 4.11(a) shows the �tted decay lengths
across thirteen di�erent measurement sets with errors as estimated from the least-square
�ts.�e variation in the �tted decay length is expected because the measurement sets
involved di�erent resonances and resonators with a variation in their mode pro�les, two
di�erent tungsten tips, and variation in the polar position as well as variations in the tip
angle. Nevertheless, even not directly comparable, the mean at d̄κ = 75nm is indicated by
a dashed line.
Similarly to the numerical �ndings of Foreman and Vollmer [252], the �tted decay

lengths are all smaller than the calculated near-�eld intensity decay length dNF = 118.6 nm
using Eq. (4.3) for silica, n = 1.444, at λ = 1553 nm. Any dri� in the tip position whilst the
measurement is running can also arti�cially reduce or increase the decay length, this will
be treated in Section 4.6.3.
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Figure 4.12. Fitted critical
tip-coupling distances, i.e.,
the distance from the res-
onator surface at which the
amplitude of the induced
backscattering is equal to
the intrinsic backscattering.
�e negative values repres-
ent measurements in which
critical tip coupling was not
achieved.

4.6.2 Analysis of the backscattered power and optical quality factor

�e on-resonance backscattered power for each tip position is shown in Fig. 4.10(b).�e
data for up towhen the tip is touching the resonator (R ≥ 0, as de�ned by the linewidth grid
data �t) is �tted by Eq. (4.61), which is e�ectively a function comprising an exponential
decay length db multiplied with a fringe pattern. Radial and azimuthal cross sections of
the data and �t of the measurement set can be seen in Fig. 4.13.

�e radial cross sections in Fig. 4.13(a) show the intrinsic backscattering level when
the tip is far away from the resonator. As the tip approaches, the e�ect of the tip becomes
apparent, reducing or increasing the total backscattering depending on its azimuthal po-
sition.�e �tted decay length of the in�uence of the tip as given by Eq. (4.61) for this
measurement set is db = 97(2)nm. A comparison of the �tted decay lengths for the back-
scattering power across all the measurement sets is shown in Fig. 4.11(a), giving a mean of
d̄b = 90nm. Similarly to the decay lengths for the linewidth in�uence, the backscattering
decay lengths are expected to vary between measurement sets due to di�erences in the
mode pro�le of the modes and change in the scatterer geometry, and also temperature
dri�s as will be discussed in the next section. Because the linewidth change is driven by
both tip absorption and scattering, whereas the backscattering change is purely due to
scattering and thus have di�erent physical origins, two decay lengths db and dκ are not
expected to be the same.

�e grid in Fig. 4.10(b) shows minima in the backscattering when the tip is at some
distance from the resonator.�is distance, referred to as the critical tip-coupling distance
Rcrit, is where the amplitudes of the induced and intrinsic scattering are the same and a
suitable phase o�set leads to destructive interference. For distances closer to the surface
than Rcrit, the tip is over-coupled – i.e., the induced backscattering due to the tip exceeds
the intrinsic backscattering. As the critical tip-coupling distance depends on the coupling
strength of the tip to the wgm, it will vary between di�erent modes and scatterers. For
the measurement set presented in Fig. 4.10, Rcrit = 111(1)nm, i.e., the critical tip coupling
is at comparable distance to the near-�eld penetration depth.�e Rcrit value for all the
measurements are shown in Fig. 4.12. For some measurement sets, Rcrit < 0, meaning
the induced coupling due to the tip was not su�cient to match the intrinsic coupling for
any position in the near �eld, meaning complete backscattering suppression could not be
realised for these measurement sets.�e reason the tip coupling was not su�cient in these
cases can be due to the spatial pro�le of the chosen wgm or slight variations in the polar
(z) position of the tip.

�e azimuthal cross sections in Fig. 4.13(b, c) show a fringe pattern in the backscattered
power.�e fringes are a result of the relative phase change of the induced backscattering
relative to the intrinsic backscattering as the tip is translated parallel to the surface (along
the azimuthal direction).�e expected periodicity of the fringe pattern can be calculated
from Eq. (4.56), which yields

Λtheoryfr = λ
2n

= 537.7 nm , (4.63)
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Figure 4.13.Cross sections through the backscattered
powermeasurement grids of Fig. 4.10.�e lines show
the �tted backscattering dependence on the tip pos-
ition, and the circles are interpolated from the grid
data, with error bars given by the vacuum noise on
the photodetector.�e data is normalised by the in-
trinsic backscattering Ab,0.�e insets show the pos-
itions of the cross sections in the data grid.
(a) Backscattered power as a function of the radial
tip-position at some azimuthal positions. Maximum
backscattering suppression occurs at the dashed line
representing the critical tip coupling distance Rcrit,
for positions closer to the resonator surface, the in-
duced backscattering is larger than the intrinsic scat-
tering and thus the suppression decreases from its
maximum value.
(b,c) Backscattered power as a function of the azi-
muthal tip-position at given some radial positions
R > Rcrit.�e two panels show the data on a linear
scale (a), and a logarithmic scale (b) given in terms
of suppression compared to the intrinsic value, and
the �ts are performed on their respective scales.�e
dashed line represents the photodetector noise level.
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xxviii �e combined estimate
for a parameter given a set
values ξ i with errors σi is
the normalised, weighted
sum [294, Ch. 4],

ξest =
∑i w i ξ i
∑i w i

(4.64)

where the weights
w i = σ−2

i .�e error in
the combined estimate is
σest = (∑i w−2

i )−1/2 .

xxix �e standard error
can be estimated from
the (estimated) standard
deviation divided by the
square root of the number
of samples.

xxx If the input light fre-
quency is swept faster than
the cavity lifetime, the cav-
ity is not pumped in steady
state and temporal phenom-
ena are exhibited as a con-
sequence of the di�erent
phases of the light that have
undergone di�erent num-
ber of roundtrips [174, 295].
�e result is an overshoot
in the transmission signal
due to the constructive in-
terference with a decaying,
oscillatory structure.

for silica at the pumpwavelengthused.�e �t for themeasurement set presented in Fig. 4.10
gives a fringe separation of Λfr = 513(2)nm, where the error given is estimated from the
least squares �t.�is error is small compared to the discrepancy from its theory value,
and looking at this measurement in isolation it could suggest that some systematic error is
present in this measurement set. When comparing the �tted values of the fringe separation
across all thirteenmeasurement sets, as shown in the box plot of Fig. 4.11(b), this hypothesis
is reinforced; the large spread of the �tted values compared to the magnitude in their
estimated errors indicates that the statistical error in the �t for each set is underestimating
the real error of each measurement set.�e random errors between the measurement sets
can be explained by random di�erence in systematic dri� for each measurement set, such
as di�erent thermal expansion for each measurement set, as considered in Section 4.6.3.
Using the �tted fringe separation fromall thirteenmeasurement sets, an error-weighted

combined estimatexxviii is calculated to be Λlinfr = 535.1(6)nm.�is combined estimate is
close to the theoretical value of 537.7 nm, further strengthening the interpretation that
there are random errors between themeasurement sets. Note that the±0.6 nm uncertainty
given for the best estimate is based on the arti�cially small errors as given by the �ts of the
measurement sets; the estimated standard errorxxix is 20.8 nm/131/2 = 6nm.
Because this work focuses on the suppression aspect of this experiment, it is desirable

to emphasise the small backscattering values corresponding to high suppression. A least-
squares �t minimises the absolute residuals, and thus normally, a small relative residual
for a higher backscattering value will be emphasised much more than the same relative
residual for a smaller value.�erefore, the logarithmic suppression is �tted to optimise the
�t for the high-suppression part of the fringe pattern.�ese logarithmic �ts give a smaller
spread in the fringe separation parameter, with a combined estimate Λlogfr = 537.5(5)nm,
which contains the theoretical value for the fringe separation within its error.

higher-suppression measurement set. Figure 4.14 shows data from a measurement
set with higher spatial resolution in the tip-position grid.�is measurement is obtained us-
ing a smaller resonatorof diameter 1.74mmwith a higher-optical-q resonatorof 9.8(2) ⋅ 108.
Because of the extraordinary high q factor, the measurement is performed with a lower
scanning speed of the optical frequency of the pump laser (−8.96GHz s−1) to avoid ring-
down signals.xxx To avoid thermal broadening [Section 2.5.1] at this lower scanning speed,
the optical input power is reduced to ≃40 µW.

�e relative suppression compared to the intrinsic level is presented in Fig. 4.14(a-d),
as a grid corresponding to the tip raster-scan positions as well as cross sections through the
grid.�e maximum backscattering suppression is measured to 44+∞−10 dB, which is below
the 34 dB noise �oor, blowing up the upper limit on the error and limiting the suppression
claim to 34 dB. In contrast to the measurement set presented earlier, the backscattered
power here decreases compared to the intrinsic level for all azimuthal positions as the tip
approaches the resonator.�is is because the backscattering level is linewidth dependent
(see Section 4.3.2) and for this measurement set, the linewidth decreases relatively more
compared to its intrinsic level than for the measurement set shown in Fig. 4.10. However,
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Figure 4.14. Backscattering suppression and Q0 in a high-suppression measurement. (a)�e sup-
pression along radial lines (circles, interpolated measurement; lines, �t), with a zoom-in inset on
the high suppression area.�e photodetector noise level is indicated by the dashed grey line, and
error bars are estimated by the photodetector noise.�e inset also shows error bars in the R dir-
ection given by standard deviation of the piezo-stage actual versus target position. (b) Measured
backscattering suppression for all tip positions, with the radial lines in (a) shown, as well as the
resonator boundary line and critical tip-coupling distance. (c)�e same plots for the suppression
along azimuthal lines as shown in (d). (e,f)�e optical quality factor of the combined resonator–
tip system along radial lines calculated from the transmission linewidth.�e q at the critical tip
coupling can be inferred from the intersection with Rcrit.



104 a. ø. svela— near-field-scattering-based optical control and . . .

Figure 4.15. Comparison of the optical quality factor and the maximummeasured backscattering
suppression across the measurement sets. (a) Maximum suppression measured for each measure-
ment set, with error bars given by the photodetector noise level. For measurements where the
Lorentzian amplitude is below the noise level, the error bar extends to in�nity as the measured
suppression is limited by the detector noise. (b) Corresponding q factors for the measurement
sets, where the q factor with no tip present and at maximum measured suppression are shown.
(c)�e maximum measured backscattering suppression compared to the relative reduction in
the q factor from its value when the tip is not present.�is plot is not suggesting a functional
relationship between the two parameters, as the errors in the suppression are far too large, but it
shows signi�cant reduction in the backscattering compared to the reduction in the q factor. All
experimental values are above the dashed line representing equal suppression to reduction in the
q factor.

the relative reduction in backscattering surpasses the reduction in the optical quality factor
of the resonance by orders of magnitude.
For each tip position, the total and corresponding intrinsic q factors of the system can

be calculated using the expressions given in Section 2.1.2.�e total q factor is

Q(r, ϕ) =
ωpump
2κ(r, ϕ) , (4.65)

where κ denotes the total optical half-linewidth and the pump frequency used is ωp =
2π × 193.1 THz. Given the coupling contrastKres extracted from the Lorentzian amplitude
of the transmission spectra [Eq. (2.41)], the quality factor Q0 of the resonator with the tip
present excluding the extrinsic taper coupling losses can be estimated

Q0(r, ϕ) =
2Q(r, ϕ)

1 +
√
1 −Kres(r, ϕ)

. (4.66)

�is q factor is calculated and shown in Fig. 4.14(d,e). At the tip position for which the
maximum suppression occurs, the intrinsic q factor is calculated to be Q0 = 1.6(1) ⋅ 108

from the �tted linewidth of that position.�at is a reduction by approximately 80% or
7.7 dB from the unperturbed Q0 value, however, this reduction is small compared to the
≥34 dB reduction in the backscattered optical power.

�e maximum suppression achieved and the change in the q factor from when the tip
is not present to the point of maximum suppression are shown in Fig. 4.15 for all obtained
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measurement sets. Figure 4.15(c) shows that for several measurements >20 dB reduction
in the backscattering is possible with only a <3 dB (<50%) reduction in the optical q. As
mostmeasurement sets are noise limited, the true suppression achieved can be signi�cantly
higher. Furthermore, there is a potential for optimising the scatterer material, shape and
size for low absorption and high scattering to minimise the linewidth broadening for a
given suppression.

4.6.3 Stability considerations

To control the backscattering over time, stability in the tip position is required.�is work
has not experimentally addressed this issue, but a few points are discussed below, particu-
larly temperature stability.
In the measurement sets performed for this work, the longest time duration of a meas-

urement set was approximately 45minutes for a raster scan of the tip and obtaining spectra,
but most lasted a fewminutes. Any dri� happening over the timescale of the measurement
will in�uence the result, so the measurement results indicate how stable the current exper-
imental setup is.�e stability beyond these <1 hr measurement time scales has not been
investigated in these experiments, neither has the reproducibility in achieving the same
suppression for a given tip position at some later time a�er an initial measurement set is
obtained.

pump and intrinsic scatterer drifts. �e required azimuthal position of the tip for
suppressing backscattering should stay unchanged for any dri�s in the phase of the optical
pump, as the relative optical phase between pump light at the intrinsic and tip scatterer
positions will remain the same, and thus also the destructive interference of the intrinsic
and tip-induced scattering.
However, a change in the e�ective intrinsic scatterer will require to move the tip to

compensate in order to keep the backscattering level unchanged. Such a change can be
caused by for example temperature �uctuations, changes in the resonator’s environment,
or contaminants attaching or releasing from its surface, as these a�ect the position and
amplitude of the e�ective intrinsic scatterer. If the e�ective intrinsic scatterer position
changes, the relative phase between the intrinsic and tip-induced scattering changes, and
to keep the suppression stable, the azimuthal tip positionmust be adjusted. Similarly, if the
e�ective intrinsic scatterer’s amplitude changes, the critical tip-coupling distance willmove
and the tip must move accordingly to compensate for the altered intrinsic backscattered
power.
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xxxi National Instruments
NI9211

tip position drift. Temperature is not only a possible source of instability for the reson-
ator itself: dri� in the ambient temperature can a�ect the tungsten tip position. In fact, this
is likely to be the limiting factor in the current experimental setup, because the thermal
expansion of the bracket holding the tungsten tip is large compared to the scale of the
features of the fringe pattern. Figure 4.11(b) shows a relatively large spread in the �tted
fringe separations (approximately ±40 nm) compared to the statistically estimated error
of each measurement set (approximately ±2 nm), suggesting that some systematic error
is a�ecting the measurements within each measurement set. As the next paragraphs will
show, a linear dri� in the tip position will systematically a�ect the �tted parameters such
as fringe separation and decay lengths because the perceived fringe pattern di�ers from
the actual fringe pattern.
To understand how ambient temperature changes impacts the setup, consider the item

with the largest thermal expansion and estimate its impact.�e tungsten tip holder is 3D
printed from pla �lament.�e linear thermal expansion coe�cient of 3D printed pla
of a density comparable to the one used here is CPLA = 4.36 ⋅ 10−4K−1 at room temperat-
ure [296], almost 20 times larger than that of aluminium (0.255 ⋅ 10−4 K−1 [297]), which
most of the other components of the setup ismade from. From the de�nition of the thermal
expansion coe�cient for a piece of material of length ` and temperature denoted T ,

C` =
1
`

d`
dT

Ô⇒ ∆` ≈ `0C`∆T , (4.67)

to �rst order. For the tip-holder bracket, which has a nominal length of `0 = 41mm from
the edge of the piezo positioner to the position of the tip, for example a 1.0mK temperature
change causes a 18 nm change in the bracket length, and thus also the tip position, ignoring
themuch smaller contribution from the aluminium parts.�is change in the tip position is
signi�cant compared to the size of the fringe-pattern features such as the fringe separation
and decay length.
To estimate the order-of-magnitude rate of the temperature-related tip-position change

in the experiment, a temperature measurement is carried out. Using a thermocouple and
digital thermocouple input modulexxxi for digitisation, the temperature at the piezo posi-
tioner on which the pla tip-holder bracket is mounted, and is measured over the course
of three days of normal lab occupancy.�e cold-junction reference of the thermocouple
is stabilised, but can slowly dri� over time making the absolute temperature measurement
over long times uncertain; however, the derivative over short timescales should not su�er
much from this dri�.
To analyse the obtained temperature data and estimate the resulting tip dri�, the data

is �rst �ltered.�e 2-Hz absolute temperature data is downsampled by averaging to a rate
of 2 min−1, and then the approximate per-minute time derivative of the temperature is
calculated by the discrete di�erence between consecutive elements. Scaling the time deriv-
ative by `0C` gives the approximate per-minute bracket-length time derivative [Eq. (4.67)],
as presented in Fig. 4.16. It is evident that the presence of people in the lab during the
daytime and evening causes �uctuations in the temperature. With a bracket length change
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Figure 4.16. Estimate of the length �uctuations of the tungsten tip bracket over three days with normal lab occupancy.�e
temperature of the metal body on which the tip holder bracket sits is measured with a thermocouple, providing the data for the
two panels. (a)�e right axis shows the calculated time derivative of the temperature for each minute of the day. By scaling the
right axis by the expansion coe�cient of the material and the nominal length of the tungsten tip bracket, the bracket’s length
change per minute is estimated. To suppress the noise in the temperature measurement, the temperature data is smoothened
using a centred moving average before the time derivative is calculated. (b)�e cumulated temperature change (right axis) and
length change (le� axis) during each day. Note that changes in the cold-junction reference temperature for the thermocouple
can cause dri�s in the absolute temperature, but the derivative over a short time window is less impacted by this.

of tens of nanometres per minute, the cumulative bracket-length change may be as much a
few hundred nanometres over the time corresponding to the duration of a measurement.
A dri� in the tip position of tens of nanometres during ameasurement can signi�cantly

impact the results. In Fig. 4.17, an example of tip-dri� e�ects is shown qualitatively. To
�rst order, the dri� can be assumed to be linear, which e�ectively skews the raster-scan
measurement grid, meaning spectral data is obtained at di�erent positions than intended,
and thus the attributed position to a datapoint is wrong.�is skew in the measurement
grid due to a dri�ing tip causes the perceived fringe separation distance to change from
its actual value, and introduces an angle between the fringe pattern phase and perceived
resonator surface, as can be seen in Fig. 4.17.�is angle is equivalent to a radial dependence
of the phase in the fringe pattern Θ [Eq. (4.47)].�us, to allow for dri� e�ects in the �tting
of the measured data, a radial dependence in the fringe pattern phase is introduced by
adding a radially dependent, linear term RθR, where θR is a free parameter.
Furthermore, these dri�swill also impact the �tted decay lengths of the tip in�uence on

the optical linewidth and backscattering, contributing to the large spread in the �tted decay
lengths as the temperature dri� could have varied between the measurements. Generally,
if the tip dri�s towards the resonator, the perceived decay length would be smaller than
its real value as the tip is moving further than the data analysis expects. However, �tting
the decay length along the axis normal to the perceived resonator surface, which can be at
an angle with respect to the real radial axis R†, can make the perceived decay slope less
steep than it is in reality, and thus result in a longer decay length.
Linear dri� can be parametrised by two independent parameters, for instance the dri�

in x and y, or themagnitude of the dri� and angle with respect to the real resonator surface.
From the parametrised distortion, the resulting rest-frame-interpreted coordinate system
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Figure 4.17. A qualitative analysis of the e�ect on a measurement of dri� in the tip position. Here
the e�ect on the backscattering measurement is considered, but a similar analysis for the linewidth
measurement can be done. (a)�e backscattering pattern resulting from a tip at that position with
the planned measurement grid overlaid. (b) Over the course of a 10-minute measurement, dri�
in the tip position of 40 nm/min changes the shape of the actual measurement grid, causing the
measured backscattering values to be according to the values in the distorted grid. Here shown
for a tip dri�ing towards the resonator. (c)�e result from the measurement as interpreted in
the non-dri� reference frame.�e fringe pattern separation in the data Λ†fr is larger than the real
fringe separation Λfr, and the fringe pattern is not normal to the perceived resonator surface (the
normal axis denoted R is not parallel to the fringe pattern, but the modi�ed axis R† is). To best �t
the backscattering pattern to the measured data allowing for dri� e�ects, a radial dependence in
the fringe pattern phase Θ can be introduced by adding a radially dependent term RθR , where θR
is a free parameter.

can be found, and the dri� can then be estimated from the experimental data.�is will not
be attempted here because from the present data, any estimated tip dri� cannot be veri�ed
by other data, and secondly because a better strategy would be to rather experimentally
reduce this dri� in later experiments.
Temperature measurements were not performed whilst obtaining the optical meas-

urements presented in this chapter and thus cannot be used to correct for any possible
temperature related e�ects for those measurement sets.�e measurement sets were typ-
ically obtained late in the evening or night when the building and lab were quiet, but
inevitably, to operate the experiment, the author would be present in the lab, representing
a thermal load moving in the vicinity of the experiment.
To mitigate the temperature e�ects, the bracket material can easily be changed to

for instance aluminium, which would reduce the temperature e�ect to approximately a
twentieth. Furthermore, the current setup was not built with high temperature stability in
mind, and simple improvements in the thermal isolation of the setup can bemade. Amore
substantial change can be to move to a chip-based resonator with a scatterer integrated
on the chip, eliminating the distance between the tip mount and resonator.
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4.7 summary and outlook

Optical microresonators provide prospects for miniaturised sensing and communications
systems; however, backscattering compromises the performance of some microresonator-
based systems.�is problem has attracted more attention over the last years, with publica-
tions showing suppression techniques for waveguide ring resonators andwgm resonators.
In this chapter, a method for coherently suppressing the intrinsic backscattering in an
optical wgmmicroresonator has been presented, demonstrating a record suppression ex-
ceeding 34 dB (noise limited) from an already low level where frequency splitting is not
resolved.
Backscattering control enables chiral, pure travelling-wave resonators, where optical

power �ows in one direction only in the cavity and there is no standing-wave-mode com-
ponent, without the challenge of tuning the system to an exceptional point. For some
microresonator applications, backscattering is a factor limiting the performance.�ese
applications include symmetry-breaking-based sensing, optomechanics applications, laser
gyroscopes and dual frequency combs.�e backscattering suppression technique demon-
strated here can both improve existing systems and enable the development of new high-
accuracy, portable optical spectroscopy systems, gyroscopes, and other sensors.
Multiplemeasurements across three di�erent resonators demonstrate the experimental

viability of the presented technique, and the results align with the theoretical framework
and model.�e measured impact on the optical quality factor due to the presence of the
tip is orders of magnitude smaller than the achieved suppression, and optimisation of the
scatterer size and material can help to improve this ratio even further.
Longer term stability of the suppression and reproducibility for a given scatterer po-

sition has not been investigated as a part of this work. A more suitable mounting of the
scatterer for higher precision and to mitigate thermal-expansion e�ects is desirable and
will be important for a stability study. Active feedback on the scatterer position in order
to keep the suppression at a desirable level can be implemented.

�e technique presented is of particular interest for on-chipwgm and waveguide ring
resonators, where a scatterer can be permanently integrated on the chip to coherently
suppress back re�ections. Waveguide ring resonators designs and fabrication procedures
have been rapidly improved over the past decade as they are favoured for commercial ap-
plications due to their so-called all-waveguide structures where the coupling waveguide is
integrated on the chip with the resonator.�e all-waveguide structure gives fewer moving
parts and full chip-integration, as well as compatibility with existing commercial silicon
electronics manufacturing technology, see e.g. Puckett et al. [225] for a state-of-the-art
example of such resonators or Gao et al. [86] for a discussion on materials for these reson-
ators.
For thesemass-producedon-chip resonators, a scatterer can be permanently integrated

either during fabrication or in post. �is will give improved stability by reducing any
thermal-expansion e�ects to a minimum and because the miniaturised system allows
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better vibrational and environmental isolation. An integrated mems-based scatterer for
tuneable backscattering suppression and control can also be envisaged.



part ii

Towards quantum applications with Brillouin cavity optomechanics
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[concentrated rays from an
electric lamp] falling on a
thin metallic disc, delicately
suspended in a vacuum,
might perhaps produce an
observable mechanical e�ect.
—Maxwell [301]

chapter 5

A brief introduction to cavity quantum optomechanics

As early as the seventeenth century, Johannes Kepler speculated whether sunlight was
exerting a force on comets’ tails, causing the tails to point away from the sun [298, 299],
and even speculated on the possible use of solar propulsion in correspondence with his
contemporary, Galilei: [..] provide ships or sails adapted to the heavenly breezes, and there
will be some who will brave that void [as quoted in 300]. Although many scientists worked
on showing the radiation pressure force from light experimentally, it was not until centur-
ies later, in the early nineteen-hundreds, that experiments by Lebedew [302] and others
were able to show that light does carry momentum (the historical background and early
experiments are covered by Nichols and Hull [303]). Solar sails for space travel have since
become reality, being used as a secondary propulsion system for certain missions [300],
but there are other areas where radiation pressure has been of much larger signi�cance.
A�er Lebedew conducted his experiments in the early 1900s, it would take another

half century before the introduction of the laser made coherent light sources available,
enabling experimentalists to pursue further studies and to exploit the momentum carried
by light for applications. A prominent example of such an application is optical trapping
of dielectric particles �rst demonstrated by Ashkin [59] – a now-ubiquitous technique
called optical tweezers, enabling research in labs around the world, with its signi�cance
highlighted by a Nobel Prize awarded in part to Ashkin for his work. About a decade prior,
a Nobel Prize had been awarded to another use of the photon momentum: researchers
Chu, Cohen-Tannoudji and Phillips received the prize for the development of methods to
cool and trap atoms with laser light [304] where the momentum transfer from photons
to atoms can slow down the atoms’ movement [305]. Later, even another Nobel Prize was
awarded in part to Wineland for his work involving laser cooling of ions [306].�ese
techniques are all commonly used, especially in many quantum science experiments.
In the late 1960s, Braginsky and colleagues began their pioneering work in studying

the coupling between electromagnetic radiation and mechanical degrees of freedom in
cavities [e.g. 307], the very beginning of what is today called cavity optomechanics. In
the decades to follow, cavity optomechanics for displacement sensing was a hot topic, lay-
ing the foundation for the recent detection of gravitational waves with optomechanical
displacement sensing using interferometers with suspended mirrors in the ligo exper-
iment [61]. Using squeezed light for beyond-standard-quantum-limit sensitivity, ligo
reaches a maximum sensitivity of below 10−19mHz−1/2, corresponding to resolving dis-
placements of about a ten-thousandth of the diameter of a proton at its most sensitive
frequency [308, 309].�e importance of this experiment has also been recognised with a
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Quantumness has also
shi�ed from being the very
reason why experiments are
constructed to becoming a
resource for the investigation
of fundamental physics and
the creation of quantum
technologies.
— Barzanjeh et al. [65]

Nobel Prize shared between three of the most signi�cant contributors to ligo’s achieve-
ments.
What exciting science can be built on these achievements? Beyond optical trapping,

cooling, and mind-blowing displacement sensitivity, the coupling of coherent light �elds
and mechanical degrees of freedom allows to generate and probe quantum states of mech-
anical motion. In this lies a potential for tests of fundamental physics, such as the very in-
terpretation of quantummechanics, exploring the interface between gravity and quantum
physics, as well as a range of possible advances for quantum technologies.�e �rst section
of this chapter will expand on the motivation for continued research on optomechanics
and quantum acoustics with technological impact in mind.
Cavity optomechanics [15, 310], a term typically covering systems based on both mi-

crowave and optical frequencies of electromagnetic radiation, has developed quickly over
the last decades, fuelled by advances inmicrofabrication techniques, and cryogenic systems
being more widely available, amongst other drivers. Whispering-gallery-mode resonators
have been used as a platform for optomechanics experiments: the canonical radiation-
pressure coupling to vibrational modes has been studied [e.g. 24–26], and also other light-
matter coupling mechanisms such as Brillouin scattering [12, 28, 311], where light scatters
o� density waves in the wgm resonator [27, 29, 31]. Since the �rst Brillouin optomech-
anical experiments in wgm resonators were reported in 2009 [32, 33], strong optomech-
anical coupling via Brillouin scattering has been demonstrated in wgm resonators [64],
and a range of theoretical and experimental work has been published, see for instance
Refs. 29, 30, 57, 74, 312–315 and references therein.
Brillouin-based optomechanics is a promising platform for quantum science as it can

provide long-lived, high-frequency phonons inmaterials with low optical absorption: long
life times means longer coherence times and GHz frequencies means there is a low mean
thermal phonon occupation for �nite temperatures, which makes it easier to reach the
quantum ground state, an essential �rst-step for quantum control and engineering.

In this chapter, key concepts and theory for cavity optomechanics with focus on Brillouin-
based systems will be presented to serve as a foundation for the following chapter on
generation and measurement of non-Gaussian mechanical states realised by phonon sub-
traction from a thermal state. As an introduction, this chapter motivates the quantum
optomechanical research programme brie�y, then summarises a classical description of a
radiation-pressure-based device and important �gures of merit for an optomechanical sys-
tem, before describing Brillouin optomechanics in whispering-gallery-mode resonators.
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i �e 2016 demonstration
of satellite-based entangled-
photon distribution by Yin
et al. [316] has by some
been labelled a sputnik
moment, equating it with
the surprise and change
in military thinking in
especially the us a�er the
ussr’s launch of the �rst
arti�cial Earth satellite into
orbit in 1957.

ii Dowling andMilburn
[319] used this de�nition in
2003: Quantum technology
allows us to organize and
control the components of a
complex system governed by
the laws of quantum physics.

[n]ature isn’t classical, dam-
mit, and if you want to make
a simulation of nature, you’d
better make it quantum
mechanical, and by golly
it’s a wonderful problem,
because it doesn’t look so
easy.
— Feynman [328]

5.1 a broad motivation for quantum optomechanics

�e prelude of this chapter lists some achievements of optomechanical systems, such as
optical trapping and the detection of gravitational waves. Looking forward, coherent coup-
ling between photons and phonons is a useful process also in the context of the current
rapid advance in so-called quantum technologies for sensing, metrology, and informa-
tion transfer and processing. Over the last decades, research in the direction of quantum
technologies has �ourished, with advances in microfabrication methods, cryogenics, and
experimental control as important drivers – and perhaps some geopolitical risk mitiga-
tioni by governments [317], signi�cantly increasing research funding programmes in these
areas [e.g. 318].

�e ill-de�ned termquantum technologyii typically refers to the application of quantum
science for practical purposes within and beyond research, leveraging quantum phenom-
ena such as superposition, entanglement, and teleportation of quantum states. Some areas
of research with various degrees of demonstrated results, expected potential, and tech-
nical and fundamental challenges ahead, are quantum metrology [320, 321] and sens-
ing [322, 323], quantum communication [324], and quantum simulation [325, 326]. In
addition comes what is seen by many as the ultimate goal since its inception some forty
years ago: harnessing quantum technology for computation [327].�e idea of quantum
computing is o�en attributed to Feynman, and in particular his 1981 talk at the confer-
ence Physics of Computation [328], but many other prominent physicists and computer
scientists were central in the birth and early days of quantum computing [329].
Much has happened in physics and engineering since the 1980s, and the goal posts for

quantum computing have moved from simulating physics to a universal, fault-tolerant,
meaningfully scalable quantum computer [330–333], able to take advantage of the enorm-
ous parallel computing capacity qubits can provide.�e advantage over classical computers
has famously been theoretically demonstrated with examples such as Shor’s seminal al-
gorithm for factoring large prime numbers [334] or Grover’s algorithm for searching in
unsorted databases [335]. It has proven challenging to realise the vision of a quantum
computer, partially because of challenges related to scalability of potential experimental
platforms, but fundamentally because quantum states easily couple to their environment,
changing their state in what is practically an irreversible manner, losing their quantum
superpositions providing the quantum parallelism. �is e�ect, called (environmental)
decoherence, can be addressed by better isolating the quantum states from their envir-
onment – but isolating the quantum system perfectly from the environment makes it
increasingly harder to interact with it for performing the necessary manipulations and
result readout needed for meaningful computing.�erefore, hybrid quantum systems are
expected to be important, where resilient systems for transferring quantum information
are linked with systems that are convenient for manipulation and computation [336, 337].
Optomechanical systems are well suited to be such a mediator [338].
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5.1.1 Quantum-coherent transduction and other quantum technologies

Photons are excellent information carriers for a number of reasons, including their speed
and bandwidth, because they typically interact little with their environment and each other,
and their many degrees of freedom that can be used to encode information, spatially, spec-
trally, polarisation and intensity. Fibre optics has enabled internet as we know it today
and will, for the same reasons, also most likely underpin quantum networks [68, 339]. But
as the previous chapter of this thesis notes, photons interact weakly with each other – in
fact not at all in vacuum [340] – and achieving nonlinear e�ects associated with compu-
tation with photons requires a suitable medium and generally high optical intensities. A
quantum computer will need capabilities to process, store, and transmit quantum inform-
ation. Similarly to a classical computer whose chip processing the information is based
on electronic transistors, whereas the choice of platform for information transmission is
photons either in the radio frequency or optical bands, a quantum computer and other
quantum technologies will most likely employ hybrid combinations; for example, a system
can use superconducting qubits for computation [69] and photonic interconnects [341].
Mechanical motion can couple coherently with light through for instance radiation

pressure, and the coupling can be enhanced by an optical cavity.�e mechanical and op-
tical frequencies, as well as the coupling between light and mechanics, can be engineered
and tuned to various degrees depending on the implementation of an optomechanical
system. �is makes optomechanical systems attractive as interfaces between di�erent
quantum systems – between those that can be easily manipulated, like mechanical or
radio-frequency electronic systems, and those that are more robust, like photons. Prom-
ising results have already been demonstrated in optomechanical experiments for trans-
duction of quantum information from optical frequencies to microwave frequencies com-
patible with electronics (review on quantum transduction [66]; selected optomechanical
experiments [23, 341–350]), as well as transduction between di�erent optical frequencies
mediated by optomechanics [67].�e �delity of the transduction, i.e., the likeness of the
input state to the output state, of such conversion must be high for a quantum network
to work e�ciently and reliably, and there is still a long way to go to boost the �delity and
operation rates.
In addition to providing coherent transduction, optomechanical systems can also

process quantum information [351, 352], and are a promising candidate for quantum
memories. Quantum memories are far from trivial not only because of decoherence, but
amongst other reasons also because a quantum state cannot be directly copied (by the
no-cloning theorem [353]), and upon measurement a state can collapse to a state di�erent
from the initial state. To implement long-lived quantum memories, the long coherence
times of mechanical oscillators can be exploited with for instance a photonic quantum
state transferred onto a mechanical oscillator, storing the quantum information, and then
the state can be retrieved at a later time by transferring the state back onto an optical
mode [342, 354–356].�is type of quantum memory is expected to play an important
role in quantum networks in what are called quantum repeaters used in the famous dlcz
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iii Optomechanical strong
coupling and quantum co-
herent coupling is de�ned
in Section 5.2.2.

protocol [339], where entanglement [357] is used to transmit quantum information over
long distances to overcome the exponential loss associated with optical �bres and other
media [339, 358, 359].
Beyond quantum information applications, optomechanics is employed in research

in all the other major areas of quantum technology; a recent review by Barzanjeh et al.
[65] discusses optomechanics as an experimental platform for quantum technologies.
Within sensing, ligo is a prominent example, achieving below-shot-noise sensitivity using
squeezed light [309], but also examples of table-top optomechanical experiments showing
sensitivities close to or below the standard quantum limithave been shown for sensing
mechanical motion [41, 240, 360, 361], force [362], torque [363], and acceleration [364].
�e high sensitivity of optomechanical sensors has also been used for biosensing applica-
tions [8, 365, 366].
Other recent demonstrations related to quantum acoustics and optomechanics not-

able for their potential technological use are for example squeezed light generation from
an optomechanical experiment [367, 368], mechanical solitons [369], and phononic cir-
cuits [71–73] with phonon-number-resolving detectors [370–372] and optomechanical
interfaces [70].

5.1.2 Where the �eld is coming from and where it might be headed

Quantum cavity optomechanics as an area of research was born from cavity optomechan-
ics when Braginsky and others started considering the quantum limits to the sensitivity
of gravitational wave detectors [373]. Subsequently, much of the development within the
�eld was focusing on exploring quantum physics itself, especially on exploring superposi-
tions and entanglement of macroscopic objects towards probing the quantum-to-classical
transition.
In the late 1990s, seminal proposals how to generate non-classicality between a cavity

�eld and a mechanical oscillator were published [374, 375]. A�er the turn of the millen-
nium, proposals for optomechanical experiments that via radiation pressure can create
and study superposition states of a mechanical oscillator [376] and entanglement between
oscillators [377] were also published. Furthermore, proposals for quantum state trans-
duction [378, 379] and teleportation of a quantum state via entanglement of light and
mechanics [380] were also published at the time. For a review discussing the early theor-
etical developments see Genes et al. [381].

�e 2010s saw several important experimental milestones in optomechanics being
achieved.�e �rst experimental demonstration of optomechanical strong couplingiii was
reported [382], and later also quantum coherent coupling [23, 383].�e quantum ground
state was reached for various macroscopic mechanical oscillators, �rst via dilution re-
frigeration [384] and then via sideband cooling, both in the optical [385, 386] and mi-
crowave [387] domains; demonstrations of entanglement between mechanical motion
and microwave [388] and optical [389] �elds, as well as between mechanical oscillat-
ors [390, 391] and optical �elds [392, 393] via optomechanics; quantum-coherent transduc-
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iv Recently,Whittle et al.
[397] demonstrated cooling
of a 10-kg mirror in one
of ligos interferometer
arms down to an average
of 10.8 phonon occupancy
in its centre-of-mass mode.
Approaching the motional
ground state of a mass of
this scale is unprecedented,
representing a 13-orders-of-
magnitude increase in the
mass compared to previous
ground state cooling works.

tion was shown [23, 346]; and non-classical quadrature-squeezed states of motion [394]
and light [367, 368], as well as Fock states of motion were prepared in both optomechan-
ical [395] and quantum acoustical [396] systems.
So what will the 2020s bring?�e main focus on creating andmeasuring non-classical

states of macroscopic mechanical oscillatorsiv will still be an important direction for the
�eld, with further developments towards using these tools for probing fundamental phys-
ics [15, 398, 399]. Proposals for such experiments include exploring the interface between
quantum mechanics and gravity [400, 401], collapse models [402, 403] and the measure-
ment problem, and improve the understanding of quantum decoherence [65]. In addition
to further pursuing gravitational wave detection as a tool for astronomers, also proposals
for dark-matter detection using optomechanical systems exist [404].
Even though themany promising results listed in the section on quantum technologies

show the breadth of potential use of quantum optomechanical systems for technological
advances, it should be noted that these results are mostly early demonstrations, and even
with the �eld rapidly advancing, there are years of work to come to engineer more robust,
more compact systems with better performance, moving the systems from research labs
to customers.�us, the coming years will likely see improvements to many of the �rst-
time demonstrations of the 2010s, improving control, measurement e�ciencies, and other
performance parameters, as well as some of the same milestones reached for di�erent
experimental realisations.
When it comes to improving experimental control, the rise of so-called measurement-

based control [74, 208, 405–410] is promising, which is one of the two main approaches
for quantum control of mechanical motion. Typically, coherent control is used, where the
mechanical oscillator is coupled to an engineered controller system, ensuring the system of
interest converges to the quantum state sought. An example of coherent control is sideband-
cooling where the mechanical oscillator is coupled to a coherent light �eld in such a way
that it is e�ectively coupling the thermally excited mechanical motion to the essentially
zero-temperature thermal bath of the light �eld, and thus cooling themechanical oscillator.
Alternatively measurement-based techniques, where a combination of measurements and
feedback on the quantum system is used to bring the system to the desired state. As better
measurement e�ciencies are realised, measurement-based techniques can more easily be
used.
As the milestones listed above show, progress has beenmade in regard to non-classical

state generation, but there are still outstanding goals both in generation and measurement
of non-classical mechanical states. Many proposals for generation of more complex non-
classical states such as Schrödinger-cat states exist [409, 411–417]. Schemes for measuring
non-classical motional states of mechanical oscillators via optomechanics has been pro-
posed [418], but it is still an outstanding goal in optomechanics (it has been achieved
for the motion of a trapped ion [419, 420]). Over the last years, steps have been taken in
the direction of phase-space characterisation of a mechanical quantum state via tomo-
graphy in both quantum acoustics with superconducting qubits [396] and optomechan-
ics [75, 418, 421, 422] – Chapter 6 of this thesis describes the work in Ref. 75 in detail.



a brief introduction to cavity quantum optomechanics 119

v �e force imparted on
a mirror by an incoming
beam of optical power P is
F = 2P/c.

5.1.3 Summary

Quantum cavity optomechanics has developed rapidly over the past decades.�e interac-
tion between light and mechanics is a powerful tool providing insight into fundamental
physics and access to many of the quantum resources that make quantum technologies
quantum, such as entanglement.�e research is thusmotivated both by the valuable insight
gained formprobing quantummotion, as well as demonstrated andpotential technological
applications.
Over the previous decade a plethora of di�erent experimental realisations of optomech-

anical systems with di�erent properties and advantages have been demonstrated. Several
experimentalmilestones have been reached, showing increasingly better control over these
experimental realisations. With the many building blocks demonstrated – cooling to the
mechanical ground state, preparation of non-classical states, entanglement between oscil-
lators, et cetera – optomechanical systems will most likely see uses in all areas of quantum
technology. However, even with the �eld rapidly advancing, there are years of work to
come to engineer more robust, more compact systems with better performance, moving
the systems from research labs to customers.

5.2 the canonical cavity optomechanics device, and variants

�e canonical example of a cavity-optomechanical device is a Fabry–Pérot optical cavity,
where one end mirror is �xed and the other suspended, see Fig. 5.1.�e suspended mirror
is allowed to move in a damped, harmonic fashion along the x dimension, such that when
an optical �eld of angular frequency ωcav is coupled into the cavity, the moving endmirror
of the cavity will modulate the light �eld, and simultaneously, the radiation-pressure forcev

imparted by the light �eld on the suspended end mirror will change the movement of the
mirror.�is coupled system leads to non-trivial dynamics, opening the rich �eld of cavity
optomechanics.
Leaving aside the backaction from the light on the mechanics for now, consider the

e�ect of the moving end mirror for a single cavity mode with angular frequency ωcav: the
cavity frequency can be expanded in terms of the mechanical displacement x(t) from the

Figure 5.1. A canonical Fabry–Pérot-
type optomechanical system: a light
�eld is coupled into a cavity of
length Lwhere one endmirror is sus-
pended.�e optical coupling losses
κe, cavity losses κi and mechanical
damping rate γ are annotated.
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equilibrium position of the end mirror,

ωcav(x) = ωcav(0) + x ∂ωcav
∂x

∣
x=0

+ x2

2
∂2ωcav
∂x2

∣
x=0

+ . . . , (5.1)

where ωcav, x=0 is the unperturbed cavity frequency. Typically for radiation-pressure based
optomechanics, the expansion can be linearised by only considering the �rst-order fre-
quency shi� per mirror displacement,

d = − ∂ωcav
∂x

∣
x=0
, (5.2)

where the sign is chosen so that an increase in cavity length (x > 0) for a cavity with
positive coupling (d > 0) results in a frequency decrease. For a simple Fabry–Pérot-type
cavity of length L, Eq. (5.2) yields d = ωcav/L.

�e product of the frequency shi� per displacement and the zero-point motion of the
mechanical resonator is called the (bare) optomechanical coupling, g0 = dxzp, where the
zero-point �uctuations for an oscillator at angular frequency ωm and with e�ective mass
me� is xzp =

√
ħ/(2me�ωm).�e optomechanical coupling is thus how much the cavity

frequency shi�s if the mechanics is displaced by its zero-point motion.�e coupling rate
is typically much smaller than the optical and mechanical decay rates of the system, the
coupling rate can be enhanced by increasing the number of photons in the cavity.�e
cavity enhanced coupling G = g0

√
Ncav where Ncav is the number of intracavity photons.

5.2.1 Di�erent optomechanical systems

In addition to suspended mirror cavities [423, 424], a large range of other systems dif-
fering from the canonical Fabry–Pérot-type example can exhibit optomechanical coup-
ling between high-q optical and mechanical modes. For instance di�erent types of wgm
microresonators have mechanical vibrational modes that can interact with an optical
�eld [23, 26, 64, 360]. A non-exhaustive shortlist of other examples include di�erent
types of photonic-phononic nano-beam crystals [425] such as single-beam [385, 426],
double-beam zipper cavities [427], split-beam [428], or single-beam-double-cavity crys-
tals [429]; di�erent types of so-called membrane-in-the-middle systems [430] such as a
semi-transparent dielectric membrane suspended in a fp cavity [362, 405, 431], a levitated
particle [432, 433] or atoms [434] in a cavity; bulk crystalline resonators [163]; and shell-
resonators [435]. Also pressure-waves in super�uid helium in a fp cavity [436] and as a
coating layer on awgm resonator [437] has been used for optomechanical experiments. A
similar example of the oscillator being external to thewgm resonator is a nanoscale dielec-
tric oscillator placed within the evanescent �eld of a wgm resonator [240]. See Fig. 5.2 for
images and illustrations of selected examples from the literature.

�ese systems show di�erent implementations of coupling of optical �elds with mech-
anical vibrations. For the wgm resonators coupling can be mediated by the radiation-
pressure force at the resonator surface due to the internal re�ection [24–26], similarly to
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Figure 5.2. Examples ofmicro-optomechanical systems.�e selected systems are early demonstrations, andQ f products are not
necessarily state-of-the-art for similar systems today. (a) Gröblacher et al. [438]: A suspended Braggmirror (stack of alternating
Ta2O5 and SiO2) mounted on a Si3N4 beam forms one side of a fp cavity: ωm/(2π) ≃ 1MHz,Qm ≃ 104 ,Q ≃ 106. Exaggerated
fundamental and �rst higher-order vibrational modes shown in the right top and bottom, respectively. (b) Verhagen et al.
[23]: A 31-µm-diameter silica-on-silicon wgm toroidal resonator with vibrational modes excited by radiation pressure.�e
fundamental breathing mode is shown exaggerated in the bottom right panel, the top right indicates the phase of the light
�eld: ωm/(2π) ≃ 100MHz,Qm ≃ 104 ,Q ≃ 108. (c) Anetsberger et al. [240]: A 110-nm-thick nano-beam in the evanescent
�eld of a wgm resonator ωm/(2π) ≃ 10MHz,Qm ≃ 105 ,Q ≃ 107. (d) Chan et al. [385]: A silicon nano-beam optomechanical
crystal with ωm/(2π) ≃ 4GHz,Qm ≃ 105 ,Q ≃ 105. Bottom right panel illustrates the normalised electric �eld of the optical
cavity (top) as well as the normalised displacement co-located mechanical breathing mode (bottom). (e)�ompson et al. [431]:
A 50-nm-thick SiN membrane placed inside a fp cavity: ωm/(2π) ≃ 130 kHz,Qm ≃ 106 ,Q ≃ 106. (f) Kiesel et al. [439]: A
levitated silica sphere of radius 130 nm trapped in an optical fp cavity: ωm/(2π) ≃ 170 kHz,Qm ≃ 25,Q ≃ 109. Copyrights: (a–d)
Macmillan Publishers, each panel reprinted with permission from Springer Nature; (e) Nature Publishing Group, reprinted
with permission from Springer Nature; (f)�e article authors, reprinted according to pnas guidelines.
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vi �e interest in nonlin-
ear optomechanics, where
the second-order position-
coupling term in Eq. (5.1)
is signi�cant, makes these
membrane-in-the-middle
systems attractive, because
they e�ectively couple two
optical cavities with the
mechanical motion, but
a�ecting the cavities with
opposite signs, see for in-
stance Burgwal et al. [440].
Also other systems such
as levitated optomechan-
ical [432] or nano-beam
systems [441, 442] have
demonstrated nonlinear
optomechanical coupling.

strong coupling regime

the canonical case where the coupling strength is determined by the frequency shi� due
to mechanical displacement; or it can be due to Brillouin scattering [27–30, 32, 33], where
the optical �eld scatters o� a high-frequency acoustic wave due to the refractive index
change caused by the acoustic wave’s mechanical deformation of the material (which is the
basis for the work in this thesis, see Section 5.3). For nano-beam optomechanical crystals,
di�erent mechanical displacement modes (breathing, accordion, pinch) couple to the co-
localised photonic-crystal modes via radiation pressure, and the mechanical displacement
in turn modulates the light �eld. For the membrane-in-the-middle systems, the coupling
is, similarly to the canonical case, caused by the light �eld’s momentum transfer caused
by the semi-transparency of the membrane; and it is the membrane’s position in relation
to the cavity nodes that determines the coupling. vi Lastly, for the nanomechanical beams
coupled to awgm it is the evanescent �eld driving the oscillator and the e�ective refractive
index change induced by the beam that causes the coupling; the coupling is determined
by the distance separating the beam and the resonator.

5.2.2 Figures of merit and optomechanical coupling regimes

As for optical resonators, an important �gure of merit for a mechanical resonator is the
quality factor. It is de�ned similarly to an optical resonance’s quality factor,

Qm = ωm
2γ
, (5.3)

where ωm is the angular frequency of the mechanical oscillation and γ is its amplitude
decay rate.�e state-of-the-art mechanical q factors in optomechanical experiments are
in the billions, with Qm = 5 ⋅ 1010 achieved for an optomechanical-crystal nano-beam at
milli-kelvin temperatures [161]. Recent experimental work with crystalline strained silicon
nano-beams showed a mechanical q of 1 ⋅ 1010 at 7 K [443], and a mechanical q of 3 ⋅ 1010

at room temperature has been shown for so-called perimeter modes of silicon nitride
polygons vibrating at frequencies approaching megahertz [444].

strong and weak coupling regimes. When comparing the mechanical and optical
decay rates to the optomechanical coupling, two regimes are identi�ed, called the strong
and weak coupling regimes. When the optomechanical coupling is stronger than the op-
tical andmechanical loss rates,G > { κ, γ }, the system is in the strong coupling regime.�e
strong coupling makes it possible to manipulate the mechanical oscillator at a faster rate
than it dissipates energy which is important for some experimental protocols.�e cavity
enhancement available can increase the coupling via G ∝

√
Ncav, but for many systems,

optical heating makes reaching the strong coupling regime impractical.�e �rst experi-
mental demonstration of optomechanical strong coupling was performed by Gröblacher
et al. [382], and ten years later it was demonstrated also in a Brillouin optomechanical
system by Enzian et al. [64].



a brief introduction to cavity quantum optomechanics 123

thermal decoherence rate

vii In electromechanical sys-
tems, where rf oscillators
are coupled to mechan-
ical motion, the ground
state has been reached
using passive cooling for
GHz mechanical oscillat-
ors [384]. A recent demon-
stration even showed reach-
ing the ground state for its
15MHz fundamental vibra-
tional mode using passive
cooling down to 500 µK via
nuclear adiabatic demagnet-
isation cooling [446].

Q f product

decoherence. In the quantum domain it is not just the dissipation of the mechanical
oscillator that is of importance, but also its quantum decoherence [445] – a measure of
how long the resonator keeps its quantum properties and correlations before they are lost
via coupling to the environment.�e key to many quantum applications is to isolate the
state su�ciently from the environment to keep the quantum coherence but still be able to
perform measurements and manipulate the state.

�e quantum decoherence rate is state dependent, but in optomechanics, because the
mechanical oscillator is coupled to a thermal bath at a �nite temperature, the thermal
decoherence rate is a key parameter. It describes the rate at which quanta are �owing into
the mechanical oscillator from the thermal environment:

Γth = γ _nth , (5.4)

where
_nth is the mean occupation of the thermal bath the mechanical oscillator is coupled

to. Considering the decoherence contribution also from vacuum �uctuations, the total
decoherence can be written

Γ = γ [_nth +
1
2
] , (5.5)

where for
_nth ≫ 1/2, the thermal decoherence dominates and for _nth ≪ 1/2 vacuum

�uctuations dominate.
Like photons, quanta of vibration are bosons, and the mean occupation of the mech-

anical bath is given by the Bose–Einstein distribution,

_nth = [exp(ħωm
kBT

) − 1]
−1

≈ kBT
ħωm

, (5.6)

where kB is Boltzmann’s constant, and the approximation can be made for the classical
limit in which

_nth ≫ 1. For a 1 GHz mode at room temperature the mean occupation
is
_nth ≃ 6 ⋅ 103, which decreases to 5 ⋅ 102 for typical pulse-tube cryocooler temperatures

(4 K) and 0.1 for dilution refrigeration temperatures (20mK).vii

From Eqs. (5.5) and (5.6) it also becomes apparent why the thermal decoherence rate is
not relevant for optical modes at room temperature, as

_nth ∼ 10−20, which is much smaller
than the vacuum �uctuations.

qf product. A �gure of merit for comparing robustness to thermal decoherence for
mechanical oscillators is the product of the mechanical quality factor and mechanical
frequency, called the Q f product, as it essentially determines the ratio of the mechanical
frequency to the thermal decoherence rate and thus captures the number of coherent
mechanical oscillations:

ωm
2Γth

= ωm
2γ _nth

= ωm
2γ

ħωm
kBT

= Qmωm
ħ

kBT
∝ Qm fm . (5.7)

Note that Q f product is not independent of the temperature, and should be compared
to the value of kBT/ħ for a given operating temperature. For the state-of-the-art work by
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quantum coherent coupling
regime

MacCabe et al. [161], a mechanical Q f product of 1020Hz was demonstrated, compared
to kBT/ħ ∼ 109Hz. Brillouin optomechanical systems show state-of-the-art Q f products
of 1017Hz at cryogenic temperatures [163, 447].

quantum coherent coupling regime. In addition to distinguishing between the
strong and weak coupling regimes, also the more challenging quantum coherent coup-
ling regime where G > { κ, Γth } is used as a term to describe a regime where the quantum
state can e�ciently be transduced from mechanical oscillator to the light �eld, and vice
versa.�is has been achieved for radiation-pressure-based optomechanics by Verhagen
et al. [23] and electromechanics by Teufel et al. [383].

5.3 brillouin cavity optomechanics

A 100 years ago this year, the French physicist Brillouin predicted that light can inelastically
scatter o� density waves in a medium [311]. Today this phenomenon is referred to as Brill-
ouin scattering.�e density waves in the medium act as a moving di�raction grating for
the propagating light, changing the light’s momentum and energy. Since its prediction in
the early 20th century, and subsequent mid-century discovery [448], the process has been
extensively studied in the nonlinear optics community [12, 95], mostly as a troublesome
e�ect for optical �bre communications. However, over the last decade or so the Brillouin
coupling between the light �eld and mechanical movement has been utilised for cavity
optomechanical experiments.
Brillouin scattering has some properties making it attractive for optomechanics.�e

nonlinearity is present in any medium that exhibits a photoelastic response, which is
most media.�e acoustic waves involved in Brillouin scattering are typically in the GHz-
frequency-range, whichmeans bulk thermal cooling of high-frequencymechanical modes
is possible with commercial cryogenics. Furthermore, the system has an intrinsically large
frequency separation between the drive �eld and scattered light, and directional separation
makes it easier to distinguish the optical pump from the generated light at the Stokes or
anti-Stokes frequencies.

�e �rst Brillouin optomechanical experiments were realised in 2009,where the Stokes
scattering was studied in calcium �uoride [32] and silica [33] wgm microresonators. A
quantum theory of cooling by Brillouin scattering was published in 2011 [449] and sub-
sequently shown experimentally the year a�er [315]. Recently, Brillouin optomechanical
strong coupling was shown for a 11 GHz mechanical mode in a silica wgm resonator [64].
An early review by Bahl and Carmon [29] gives an overview over the �rst experiments,
and a more recent review, Wiederhecker et al. [27], shows the development since.
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viii And to complete the
optical scattering family:
Raman scattering is when
light scatters o� phonons
at optical frequencies [95,
Ch. 1].

5.3.1 Brillouin scattering

Brillouin scattering is a three-wave nonlinear interaction, coherently coupling two optical
�elds and one acoustic �eld.�e coupling is mediated by photoelasticity and electrostric-
tion: acoustic waves in the material locally changes the density and thus the refractive
index (photoelasticity), a�ecting the electromagnetic �eld; and the presence of a light �eld
locally changes the density of the material via electrostriction (Fig. 5.3). Brillouin scatter-
ing is di�erent from the formerly described Rayleigh scattering as the density modulation
in the material is a travelling wave in the case of Brillouin scattering, not stationary as in
Rayleigh scattering, which is an elastic process.viii Because the density �uctuations move,
the Brillouin scattering process is inelastic (as can be understood via the Doppler e�ect),
and results in higher and lower frequency light depending on the scattering conditions.
A classical derivation using the equation of motion for a pressure wave and an elec-

tromagnetic wave equation can be shown (e.g. Boyd [12, Ch. 9]), where the time-varying
densitymodulates the polarisation of thematerial and gives rise to sidebands in the optical
�eld spaced by the mechanical frequency,

ω± = ωp ± ωm , (5.8)

where ω± is the anti-Stokes and Stokes sidebands, respectively.�e pump light can scatter
o� either co- or counterpropagating acoustic waves, called forwards or backwards scatter-
ing.�is gives rise to four possible interactions: forward or backward scattering resulting
in either frequency up- or down-converted light. Conservation of momentum sets the
following requirements for the wave vectors

kfw± = kp − km , (5.9a)

kbw± = kp ∓ km , (5.9b)

where the superscripts fw and bw indicate forward and backward scattered light (with
respect to the pump light) and plus and represent anti-Stokes and Stokes scattering, respect-
ively.�e conservation equations (5.8) and (5.9) are o�en referred to as phase-matching
conditions. Figure 5.3(a) illustrates the phase matching for backwards anti-Stokes scatter-
ing via the optical dispersion relation.

�e density waves in the medium can be excited thermally (also referred to as spon-
taneous Brillouin scattering in the literature), or stimulated optically via electrostriction: a
strong pump optical �eld beats with the thermally Brillouin scattered optical �eld, causing
increased density waves at the Brillouin frequency.�e pump �eld will in turn scatter o�
the stronger refractive indexmodulation caused by the stronger density waves, which adds
to the already scattered light, amplifying the process. How e�ectively light scatters can be
described by a Brillouin gain parameter, see Boyd [12].
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Figure 5.3.�e Brillouin anti-Stokes backwards scattering process. (a) Dispersion relation for the
two involved optical modes, showing the phase matching condition for the backwards scattering
between the two where a phonon is absorbed in the process. (b) Illustration of thermal anti-Stokes
scattering, where a thermally excited density wave via photoelasticity changes the refractive index
of the medium, creating a propagating, Bragg mirror-like modulation. �e optical pump �eld
non-elastically scatters o� the refractive index modulation, resulting in a counterpropagating anti-
Stokes �eld.�e waves are o�set in the �gure but in reality they overlap. Panel (a) is adapted from
Price [450] (cc by-nc licence).

the brillouin frequency. �e Brillouin frequency can be deduced from themomentum
conservation requirement Eq. (5.9) and the mechanical and optical dispersion relations

ωm = ∣km∣vph , (5.10)

ωi = ∣ki ∣
c
n
, (5.11)

For the backwards anti-Stokes scattering, inserting Eq. (5.9b) into Eq. (5.10)

ωm = ∣kp − kaS∣ vph ≈ 2∣kp∣ vph , (5.12)

where the approximation is valid for ωm ≪ {ωaS,ωp }. Inserting the energy conservation
(5.8), gives the Brillouin frequency as a ratio of the phase velocities of sound to light in
the medium

ωm =
2vph
c/n ωp , (5.13)

which is typically in the GHz-range for Brillouin optomechanical systems [29].

interaction hamiltonian. In the quantum domain, Brillouin scattering is a three-
wave process coupling a phonon and two photons.�e interaction Hamiltonian can be
written [449]

Ĥint = ħg0(âblue â†redb̂
† + â†blue âredb̂) , (5.14)

where g0 denotes the single-photon coupling strength of the interaction, and â, b̂ are the
bosonic annihilation operators for the optical modes and mechanical mode, respectively,
and † is used to denote their creation operator counterparts.�e coupling rate g0 is related
to the Brillouin gain, see Van Laer et al. [28].�e Hamiltonian shows how lower-frequency
photons (red) are swapped for higher-frequency (blue) photons by absorbing a phonon,
or the reverse process where a red photon and a phonon is created from a blue photon.
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Figure 5.4. Pro�les of coupled optical andmechanical modes. Finite-element-method simulation of mode pro�les for a 150-µm-
radius silica sphere.�e pump mode is a fundamental mode and the anti-Stokes mode the �rst radial order mode, with darker
colours corresponding to a larger electric �eld norm.�e quasi-longitudinal acoustic mode providing the coupling between
them is distributed over a much larger area, going deep into the silica sphere.�e high displacement magnitude at around
95 µm is not an artefact of the simulation, but can be understood as the transversal component of the wave propagates along a
cord through the sphere, and with the deepest point set by the central angle of the cord. At the deepest point, the density of
overlapping cords is high giving a high total displacement. Finite-element-method simulation data courtesy of L. Freisem.

ix It should be noted that
also Raman and Suther-
land [79, 80] made im-
portant contributions to
understanding the acoustic
whispering-gallery mode
phenomenon.

5.3.2 Mechanical whispering-gallery modes

�e opening of Chapter 2 described Rayleigh’six acoustic whispering-gallery modes in St.
Paul’s Cathedral, and now the acoustic domain features again. Optical wgmmicroreson-
ators can also support acoustic wgmmodes, such that optical and mechanical wgms can
interact if they overlap spatially and satisfy the imposed phase-matching conditions.
Analytical treatment of acoustic wgms in optical microresonators reveals three di�er-

ent wave polarisations, one pseudo-longitudinal and two transversal modes, where the
polar transverse is fast and the radial transverse (also called Rayleigh type) is slow [312,
451].�e pseudo pre�x is because the longitudinal modes are in fact hybrid transverse-
longitudinal as they are slightly re�ected inwards in the resonator structure as they propag-
ate. Similarly to the optical wgms, the acoustic wgms also have families of modes, with
higher radial andpolarorders. A�nite-element-method simulation of a pseudo-longitudinal
wgm is shown in Fig. 5.4.
Knowing the speed of sound for a longitudinal wave, the approximate Brillouin fre-

quency for a quasi-longitudinal mode can be found using Eq. (5.13). In barium �uoride
at room temperature, the speed of sound for the pseudo-longitudinal modes is vph =
4.38 kms−1 [314], which for 1550 nm light means that the approximate Brillouin frequency
is ωm/(2π) ≃ 8.3GHz.
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Figure 5.5. Temperature
dependence of the sti�ness
tensor elements of BaF2
relative to 0K according to
Varshni [453].�e change
of the third independent
tensor element, c44, is negli-
gible over the temperature
range considered.

5.3.3 Mechanical anisotropy and the Brillouin gain

If Brillouin scattering is occurring in a wgm resonator made from an optically isotropic
medium, the beat note of the two optical modes is constant with the azimuthal angle over a
round trip of the resonator. However, if themedium is acoustically anisotropic and exhibits
any variation in the speed of sound along the azimuth, this corresponds to a varying
Brillouin frequency shi� along the azimuth.When the Brillouin frequency is changing, the
mechanical excitations at di�erent azimuthal angles will to some extent cancel each other
out, resulting in a reduced Brillouin gain and thus a reduced optomechanical coupling.
�erefore, a low mechanical anisotropy in the resonator material is important to ensure
good optomechanical coupling. Cubic and hexagonal crystals typically show the lowest
mechanical anisotropy [164] and are also optically isotropic [12].
Based on these considerations, Enzian [165] identi�ed crystalline barium �uoride,

BaF2, as a good candidate for cavity Brillouin optomechanics due to its low optical losses at
1550 nm and relatively high and isotropic elasticity, and low acoustic losses [89]. Moreover,
Enzian [165] and Diallo et al. [313] independently found that a resonator plane normal to
the [111] crystal axis would yield the smallest variation in the speed of soundover the course
of a roundtrip along the azimuth, making this the optimal axis for resonator fabrication
to avoid dephasing along the azimuth.
To show that the [111]-axis plane is the optimal resonator plane, the velocity variation

for any chosen resonator plane is computed.�e phase velocity for a given crystal direction
can be found via solving the the Christo�el equation for a given sti�ness/elasticity tensor
and material density [452].�e equation gives three solutions corresponding to the three
acoustic wave polarisations, one pseudo-longitudinal and two transversal, fast and slow.
As BaF2 is a cubic crystal, there are only three independent entries in the sti�ness tensor,
c11, c12, c44, the two �rst ofwhich showa temperature change of about−10% from cryogenic
to room temperature, see Fig. 5.5.

�e Christo�el equation can be conveniently solved using the published so�ware by
Jaeken and Cottenier [452].�e sti�ness tensor values used in these calculations are taken
from Jain et al. [454] as found in de Jong et al. [455] – the values are for the material at 0 K,
which are practically the same as close to the 4K cryostat operating temperature [453, 456].
Solving the eigenvalue problem, the phase velocity along any crystallographic direction
can be calculated, as shown in Fig. 5.6(a) for the phase velocity of pseudo-longitudinal
waves. From the phase velocities from crystal all directions, the variation across a wgm
path for a given resonator–crystal orientation can be calculated from the phase velocities at
the intersection between a resonator plane with normal vector (a, b, c) and the unit circle,
and the alignment of the crystal axis resulting in the smallest variation can be chosen.
To parametrise the intersection circle along its roundtrip angle β ∈ [0, 2π), two normal

unit vectors in the resonator plane v1, v2 can be used,

r(β) = v1 cos(β) + v2 sin(β). (5.15)
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resolved sideband regime

To �nd the unit vectors, start by choosing β = 0 so that v1 = r(0) = (0, y1, z1).�en note
that the resonator plane can be expressed

ax + by + cz = 0 ⇔ z = −ax + by
c

(5.16)

using the entries from its normal vector. Togetherwith the unit circle equation x2+y2+z2 =
1, z can be eliminated whilst simultaneously plugging in x = 0:

y21 + (−by1
c
)
2
= 1 ⇒ y1 =

c√
b2 + c2

. (5.17)

�en z1 = −b/
√
b2 + c2, resulting in v1 = (0, c,−b)/

√
b2 + c2, which is of unit length. To

obtain the other unit vector in the resonator plane, calculate the cross product (a, b, c)×v1
and normalise it to obtain v2 = (b2 + c2,−ab, ac)/

√
b2 + c2.

A few intersection rings for selected crystal orientations can be seen in Fig. 5.6(a), and
the velocity variation along these circles plotted in Fig. 5.6(b) and (c). Figure 5.6(d) shows
the maximum phase velocity for a resonator plane for all orientations, showing that the
[111] orientation is the most favourable. Note also that the [111] direction is the resonator
plane with the least variation in the phase velocity also for the fast transversal waves, but
has a higher relative variation of 3 ⋅ 10−3.

5.3.4 Brillouin scattering in a cavity and selective driving

For Brillouin scattering to occur in a cavity, not only do the phase-matching conditions
need to be satis�ed, but to have an appreciable rate of the scattering, the resonator must
have an appreciable density of optical states at the optical frequencies involved in the
interaction. If the cavity is in the resolved sideband regime where the Brillouin frequency
is much larger than the cavity linewidth, ωm ≫ κ, this means that the spacing between
the involved optical resonances must be approximately equal to the Brillouin frequency.
Unless the free-spectral range of the resonator matches the Brillouin frequency, a pair of
modes spaced by the Brillouin frequency will not have a third, equidistant optical mode
available to scatter into, see Fig. 5.7.�is allows to selectively drive the Stokes or anti-Stokes
interaction by pumping on the higher or lower frequency mode in the pair, respectively.
When selectively driving the anti-Stokes process with a strong, coherent pump �eld

at the red resonance, the quantum �uctuations in the pump �eld can be neglected and
the pump �eld operator is swapped for a coherent amplitude âred → ∣α∣. In this linearised
regime, the interaction Hamiltonian Eq. (5.14) can be rewritten

Ĥbs = ħg0∣α∣(âaSb̂† + â†aSb̂) , (5.18)

where the pump-enhanced optomechanical coupling rate can be identi�ed,

G = g0∣α∣ = g0
√
Ncav . (5.19)
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Figure 5.6. Phase velocity variation of quasi-longitudinal pressure waves along crystallographic axes in barium �uoride at 0 K.
(a) Phase velocity for a pressure wave along a direction given in spherical coordinates on a unit sphere – for instance the speed
along the [001] crystallographic direction corresponds to the value found at (θ , ϕ) = (0, 0).�e lines indicate the paths of
wgms traversing a crystal oriented so that the resonator plane is normal to the given crystallographic directions (i.e., the line
plotted is the intersection between a plane whose normal vector is pointing in the crystallographic axis speci�ed and the unit
circle). Due to symmetry, the octants are equal, but all octants are shown to better visualise the paths. (b)�e phase velocities
sampled over a half-roundtrip for a few selected resonator plane choices (it is symmetric about π), and (c) zoomed in on the
[111] resonator orientation line. (d) Maximum phase velocity variation over the course of a roundtrip of a resonator plane
with a normal vector pointing in the (θ , ϕ) direction.�e markers show the crystallographic directions of the lines drawn
in the other panels.�e smallest variation is found for the [111] (= [–111] = [1–11] = . . . ) direction, varying only by 0.02ms−1
over the course of a roundtrip, corresponding to a 4.8 ⋅ 10−6 relative variation. At 300K, the variation increases by an order of
magnitude to 0.37ms−1 (relative variation 9.1 ⋅ 10−5) for the [111] axis.
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Figure 5.7. Cavity Brill-
ouin optomechanics in
the resolved sideband re-
gime. Selectively driving
the (a) anti-Stokes or (b)
Brillouin interaction in
a cavity in the resolved
sideband regime.

�is interaction is similar to that of an optical beam splitter [179, Ch. 4], and is therefore
called a beam-splitter-type Hamiltonian. Phonons and pump photons are swapped for
anti-Stokes photons,whichmeans themean occupancy of themechanicalmode is reduced,
corresponding to an e�ective reduced temperature of themechanicalmode. To understand
the time dynamics of the optical and mechanical state, the full Hamiltonian should be
identi�ed and the quantum Langevin equations of motion can be solved.

cavity hamiltonian. Equation (5.14) gives the interaction Hamiltonian, but also the
harmonic oscillator terms contribute to the full Hamiltonian. When Stokes resonance is
pumped with a strong coherent �eld ∣α∣eiωp t , the full Hamiltonian can be written [450]

Ĥfull = ħ [∣α∣g0(âaSb̂†e−iωp t + â†aSb̂e
iωp t) + ωaS â†aS âaS + ωmb̂†b̂] . (5.20)

By moving to a rotating frame and de�ning ∆ = ωaS − ωp − ωm, the Hamiltonian is [450]

Ĥrot = ħ [G(âaSb̂† + â†aSb̂) + ∆b̂
†b̂] . (5.21)

5.3.5 Quantum Langevin equations of motion

�e time evolution of the coupled optical and mechanical system can be described in
the Heisenberg picture where the operators are time dependent.�e quantum Langevin
equations govern the time evolution of the operators [457, 458]. For a closed, dissipation-
free system they read

˙̂a = − i
ħ
[â, Ĥbs] = −iGb̂ , (5.22a)

˙̂b = − i
ħ
[b̂, Ĥbs] = −iGâ . (5.22b)

�e solution to the coupled equations show that the time evolution of the beam splitter
anti-Stokes interaction swaps the the initial optical anti-Stokes state and the mechanical
states in an oscillatory manner, with complete swaps at Gt = 2πm for m ∈ N.
However, the optical resonator is not a closed, dissipation-free system.�e mechanical

state is coupled to a thermal bath and the coupling of the optical mode to the tapered �bre
for interacting with the resonator in�uences the occupation and adds noise. Using input–
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output theory [457] the system can be described by

˙̂a = − i
ħ
[â, Ĥrot] − κaS â +

√
2κeaS âin , (5.23a)

˙̂b = − i
ħ
[b̂, Ĥrot] − γb̂ +

√
2γb̂in . (5.23b)

where κeaS is the extrinsic coupling rate of the optical resonance and âin, b̂in are stochastic
noise operators in units of s−1/2, with expectation values

⟨â†in(t)âin(t′)⟩ = 0 ⟨b̂†in(t)b̂in(t′)⟩ =
_nthδ(t − t′)

⟨âin(t)â†in(t′)⟩ = δ(t − t′) ⟨b̂in(t)b̂†in(t′)⟩ = (_nth + 1)δ(t − t′)
(5.24)

�e full solutions to Eq. (5.23) in both the time and frequency domains are calculated in
Refs. 165, 450 and the lengthy calculation and will not be repeated here.
To �nd the power spectrum of the heterodyne signal, the de�nition of the power

spectrum of a Fourier transform of the operator X(t), X̃(ω), is used [459, Ch. 1]:

SXX(ω) = ∫ ∞

−∞
dω′ ⟨X̃†(ω′)X̃(ω′)⟩ . (5.25)

From this de�nition and the known quadrature of the optical �eld on the heterodyne
detector, X̃(ω) = 2−1/2[ ˜̂a†(ω + ωhet) + ˜̂a(ω + ωhet)] the spectrum can be calculated from
the Fourier transformed solution to Eq. (5.23) [165]

SXX(ω) = 1 + 2ηdetκeaSγG2
_nth [∣D(−ω − ωhet)∣2 + ∣D(ω − ωhet)∣2] , (5.26)

in which ηdet represents the e�ciency of the detection and

D(ω) = 1
(−iω + κaS)[−i(ω + ∆) + γ] +G2

. (5.27)
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i Other techniques demon-
strated for generating
optical cat-like states in-
clude squeezing of number
states [462, 463].

ii Note that non-classical
states of mechanical mo-
tion have been generated
in for instance trapped
ions [467], including cat-
like states [468, 469].

chapter 6

Non-Gaussian mechanical motion via phonon
subtraction from a thermal state

�e broad motivation for optomechanics in the beginning of the previous chapter touches
on many examples of optomechanics advancing as a platform for quantum experiments
and for quantum technology. From both a scienti�c and technological standpoint, prepar-
ing and characterising states of mechanical motion exhibiting non-classical behaviour, is
an important goal, enabling development of mechanical-oscillator-based quantum tech-
nology components as well as tests of fundamental physics.
It is more than two decades ago that the �rst proposal for using optomechanics as

a means for preparation of non-classical mechanical states was published by Bose et al.
[374]. Since then many schemes for optomechanical generation of such states have been
proposed, for instance Refs. 413, 414 and references therein. One approach is to subtract
one or several phonons from a mechanical squeezed state to generate non-classical states
that closely approximate a Schrödinger cat state [416] – a quantum superposition of mac-
roscopically distinguishable states [460]. In quantum optics, a similar technique for gener-
ating optical cat states via heralding photon subtraction events from a squeezed-vacuum
state impinging on a weak beamsplitter was proposed [461] just before Bose et al.’s op-
tomechanical proposal.�is technique and other methodsi were demonstrated a decade
later [464–466], but generating such states is still an outstanding goal within optomech-
anics.ii

When it comes to measuring non-classical states, quantum optics experiments have
also led the way, from earlyWigner function reconstruction of squeezed states [470] to cat
state reconstruction [462]. Building on this quantum optics state characterisation work,
a promising route to perform mechanical quantum state characterisation is to e�ciently
transfer the mechanical state to the optical �eld via an optomechanical interaction, then
use optical homodyne or heterodyne tomography to characterise the optical state.�e
tomography is performed by measuring the phase space quadratures for an ensemble of
identically prepared states.
Experimentally determining the phase-space distribution for the mechanical states is

valuable as it fully characterises the state, allowing any statistic ormeasurement probability
to be determined, and will aid greatly in mechanical quantum state engineering research
directions.

In this chapter, a combination of photon counting and optical heterodyne measurement
is utilised to subtract phonons from a thermal mechanical state and measure the resulting
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iii As a part of the project,
the author developed an
open-source Python mod-
ule for Tektronix function
generators; it is available
under the name tektronix-
func-gen on Github [472],
with api documentation.

mechanical phase-space distribution via tomography.�e experiment prepares heralded
non-Gaussian mechanical states in a laser-cooled, Brillouin optomechanical system at
room temperature.�e experimental techniques developed advance the state of the art
for optics-based tomography of mechanical states and will be useful not only for Brillouin-
based cavity optomechanics, but for a broad range of both applied and fundamental studies
of mechanical quantum-state engineering and tomography.

�e work presented in this chapter is based on the main text and supplementary in-
formation of the published manuscript Enzian, Price, Freisem, Svela et al. [75] – where
the �rst four authors contributed equally and are listed alphabetically.�e author of this
thesis has also presented the work at a conference with a published abstract [471].�e
experimental work was carried out at the Department of Materials and the Clarendon
Laboratory, Department of Physics at the University of Oxford, as well as in the Blackett
Laboratory at Imperial College London.�e project involves both experimental and the-
oretical advances.�e idea for the experiment was conceived byM. Vanner and G. Enzian
before I joined the team. As a joint-�rst author in a team of both experimentalists and
theorists, my contributions to this project have primarily concerned the experimental
side, including jointly designing and implementing the experimental protocols to run the
experiment and to obtain the data, and developing the data analysis methods and so�ware.
Furthermore, I contributed to rebuilding and making additions and improvements to the
experimental setup, building the setup for and fabrication of tapered optical �bres, and
experimental engineering such as instrument interfacing and control so�ware.iii

https://github.com/asvela/tektronix-func-gen
https://asvela.github.io/tektronix-func-gen/
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6.1 background and motivation for this experiment

�roughout facets of quantum optics, non-Gaussian state preparation of a bosonic mode
followed by phase-space characterisation has been performed with a wide spectrum of
di�erent experimental platforms. As an early notable example, a single-phonon Fock state
of motion of a trapped ion was prepared and reconstructed [419], and further work with
trapped ions has generated multi-component superposition states of motion for quantum-
information applications [473]. In optics, heralded single-photon addition and subtraction
followed by homodyne tomography has been utilised to generate and reconstruct several
di�erent quantum states that are now being explored for quantum science and technology
applications. For instance, theWigner function of a heralded single-photon state has been
reconstructed [474], single-photon subtraction to squeezed states has been performed to
generate small superposition states [464, 465], which have a superposition separation size
that is enhanced by multi-photon subtraction [475], and the non-Gaussianity of photon-
added and photon-subtracted thermal states has been studied [476–478]. Other notable ex-
amples of non-Gaussian quantum states with other physical systems include: studying the
decoherence of a superposition state of a microwave �eld inside a cavity [479], generating
non-Gaussian states of atomic-spin ensembles [480], creating and reconstructing arbitrary
quantum states in a microwave superconducting circuit [481], and creating non-classical
states of high-frequency acoustic waves coupled to superconducting qubits [396, 482].
Within optomechanics there have been several recent developments in this direction,

with di�erent experimental approaches being utilised to take advantage of the paramet-
ers and capabilities provided by fully engineered optomechanical devices. For instance,
experiments exploiting quantummeasurements with single-photon detectors include gen-
erating non-classical states of high-frequency vibrations in diamond crystals [483–485]
and photonic-crystal structures [389], second-order-coherence measurements of mechan-
ical modes [371, 372], the generation of mechanical interference fringes [486], and single-
phonon addition or subtraction to a thermal state that results in a doubling of the mean
thermal occupation [74].

�ere is also signi�cant progress towards developing the experimental tools needed
for mechanical phase-space tomography or reconstruction [421, 486–489]; however, none
of these experiments have su�cient sensitivity to resolve features below the mechanical
zero-point motion, and phase-space characterisation [418] of a mechanical quantum state
remains as an outstanding goal in optomechanics. One promising route to achieving this
goal in the resolved sideband regime is to perform single-phonon addition or subtraction
for quantum state preparation and then utilise a red-sideband drive and optical state
tomography with a balanced detector, such as homodyne or heterodyne detection.

�is work is contributing towards the goal of non-classical mechanical state charac-
terisation by advancing the state of the art in the overall measurement e�ciency of the
mechanical state. Via photon counting and simultaneous optical heterodyne detection, the
s-parameterised Wigner phase-space distribution of non-Gaussian phonon-subtracted
mechanical thermal states is measured.�e measurements show that the initial thermal
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state is transformed by the phonon subtraction events from an initial Gaussian in phase
space into a ring shape with a diameter that increases with the number of phonons subtrac-
ted.�e experiment is the �rst observation of the e�ect that the mean phonon occupation
triples when a two-phonon subtraction is performed to the thermal mechanical state.

�e work presented in this chapter expands the toolkit for optical control and readout
of mechanical states, and can be applied to future room-temperature or cryogenic experi-
ments to exploit and characterise the non-Gaussian andnon-classical properties these oper-
ations generate. Pursuing this line of researchwill facilitate the development ofmechanical-
oscillator-basedquantum technology such as quantummemories exploiting the long coher-
ence times available [161–163], coherent transducers [341, 346], and sensors [363, 364, 404].
Additionally, such state generation and characterisation capabilities will help explore fun-
damental physics including the quantum-to-classical transition [376, 402, 490] and even
the interface between quantum mechanics and gravity [401, 491, 492].

6.2 single- and multi-quanta subtraction from a thermal state

�e state of a bosonic system at equilibrium with a thermal reservoir of �nite temperature
is called a thermal state. When performing single- ormulti-quanta subtraction such a state
of large mean thermal occupation, one may expect very little change to the state. However,
as this section will show, these operations signi�cantly change the mean occupation of the
state and also give rise to highly non-Gaussian distributions in phase space. Towards the
end of the section the implementation of a phonon subtraction operation in a Brillouin
optomechanical system is discussed.

6.2.1 Quanta subtraction from a thermal state

For a harmonic oscillator of frequency ω in equilibrium with a bath at temperature T , the
mean occupation of the oscillator is given by

_n = [exp( ħω
kbT

) − 1]
−1
, (6.1)

and the state can be described by a diagonal density matrix in the number basis ∣m⟩,

ρ̂ _n =
∞

∑
m=0
Pr(m∣_n) ∣m⟩ ⟨m∣ , (6.2)

where the probability for each number state is given the Bose–Einstein distribution [493,
Ch. 3]

Pr(m∣_n) =
_nm

(_n + 1)m+1 . (6.3)

When n quanta are subtracted from an initial thermal state ρ _n, the state following a
subtraction operation is given by

ρ̂n− ∝ b̂n ρ̂ _n b̂†n , (6.4)
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Figure 6.1. Occupation probability dis-
tributions for thermal and subtracted
thermal states for an initial thermal state
with mean occupation _n = 500.�e mean
occupation increases by (n + 1)-fold for
n subtractions as shown by the vertical
dashed lines. �e inset shows the distri-
butions for a smaller initial thermal state
with _n = 1. Note that the ordinate axis in
the inset is in units of unity, not scaled like
the main axis.

iv De�nition of the bino-
mial coe�cient

(x
y
) = x!

y!(x − y)!
(6.7)

Calculating the normalised density matrix of the n-subtracted state in the number basis
(shown in Appendix A) gives

ρ̂n− =
∞

∑
m=0
Pr(m∣n, _n) ∣m⟩ ⟨m∣ , (6.5)

where the number-state probabilities are given by

Pr(m∣n, _n) = (1 − q)n+1qm(m + n
n

) , (6.6)

in which q ≡ _n/(_n + 1) and the binomial coe�cientiv is used.
Figure 6.1 shows the number distributions for the thermal and �rst three n-subtracted

thermal states. Curiously, the mean occupations of the subtracted states increase when
quanta are subtracted, even increasingly with the number of subtracted quanta!

change in mean occupation after subtraction. To calculate the new mean occu-
pation number a�er n-quanta subtraction, the expectation value for the number operator
must be calculated. Considering amodewith annihilation operator b̂, the number operator
is b̂†b̂ and the expectation value of the n-subtracted state is

⟨b̂†b̂⟩n− = Tr (ρ̂n−b̂†b̂) =
Tr (b̂n ρ̂ _n b̂†n b̂†b̂)
Tr (b̂n ρ̂ _n b̂†n)

. (6.8)

It can be shown that the trace over the n-subtracted state is [Appendix A]

Tr (b̂n ρ̂ _n b̂†n) =
n!

(1 − q)n q
n , (6.9)

and thus, with cyclical permutation of the operators in Eq. (6.8) and some algebra,

⟨b̂†b̂⟩n− = (n + 1) _n , (6.10)

showing that for n-quanta subtraction from a thermal state, the mean occupation trans-
forms as

_n → (n + 1) _n . (6.11)
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A similar change is observed for n-quanta addition, where _n → (n + 1)_n + n. In the
limit where the initial thermal state is much larger than the number of subtracted quanta,
_n ≫

√
n, the expressions for the mean occupation approach the same values for both

subtraction and addition operations [74]: the mean occupation doubles for both single-
quantum subtraction and addition.�is has been experimentally observed for thermal
optical �elds [476, 478, 494] and recently for a mechanical thermal state [74].

�e surprising result that themean occupation increases by (n+1)-fold for an n quanta
subtraction can be understood via Bayesian inference, where the information obtained
by heralding a subtraction event gives a conditional probability of the occupation of the
conditioned state. Put di�erently, subtracting a quantum is more likely if there are many
quanta to subtract, thus successfully subtracting a quantum makes it a posteriori more
likely that the initial state had a high occupation.
Barnett et al. [495] use the following toy example to motivate the increase in the

quantumnumberdue to subtraction. Amode is prepared in amixture (or superposition) of
the ground state and the 100-quanta Fock number state such that there is a 50% probability
associated with each of the two outcomes if the state was measured:

ρ̂ = 1
2
∣0⟩ ⟨0∣ + 1

2
∣100⟩ ⟨100∣ , (6.12)

which has a mean occupation number
_n = Tr(b̂†b̂ρ̂) = 50. If a single subtraction is

successfully performed andheralded, 100 quantawere present initially, and the conditioned
state has amean occupation of 99 ≈ 2_n, i.e., approximately double of the initial expectation
value. A similar redistribution of the probability associated with the ground state happens
for a thermal state that undergoes subtraction.
Moreover, in addition to the signi�cant change to the mean occupation, the states

generated by subtraction from a thermal state show non-Gaussian ring-shape features in
phase space [478, 496].�e radius of the ring for a n-quanta subtraction is approximately
proportional to the increased occupation

√
(n + 1)_n in zero-point units [478].�e non-

Gaussian states are phase-invariant,meaning they are symmetric about the origin in phase
space, because the initial thermal state itself is phase-invariant, and so is the subtraction
operations, preserving the phase-independence (as shown by computing the Glauber–
Sudarshan P function of the state in Appendix B).
In the limit where the initial occupation

_n is low, addition and subtraction operations
can generate not only non-Gaussian states but also non-classical states [495].�is has
been shown for addition and subtraction of single quanta from squeezed [464, 465, 497]
and Gaussian states [498].
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6.2.2 �e quadrature variance as a measure of the mean occupation

For a thermal state, the variance of the quadrature x̂ = 2−1/2(b̂† + b̂), where b̂ is the
annihilation operator of the mode, is related to the mean occupation. In general, the
quadrature variance is de�ned

σ2x̂ = ⟨x̂2⟩ − ⟨x̂⟩2 , (6.13)

where for the thermal state, the expectation value

⟨x̂⟩_n = Tr(ρ̂ _n x̂) =
1√
2

∞

∑
m=0
Pr(m∣_n) ⟨m∣(b̂† + b̂)∣m⟩ = 0 , (6.14)

when using the cyclical property of the trace. To calculate the second moment, ⟨x̂2⟩, use
the commutation relation [b̂, b̂†] = 1 to express x̂2 = 1/2(b̂†2 + 1 + 2b̂†b̂ + b̂2), and thus

Tr(ρ̂ _n x̂2) =
1
2

∞

∑
m=0
Pr(m∣_n) ⟨m∣(b̂†2 + 1 + 2b̂†b̂ + b̂2)∣m⟩ (6.15)

= 1
2

∞

∑
m=0
Pr(m∣_n) (1 +m) = 1

2
+ _n . (6.16)

Which means that the quadrature variance for a thermal state is

σ2x̂ = ⟨x̂2⟩_n =
1
2
+ _n , (6.17)

in which the +1/2 is due to the zero-point �uctuations. By the same calculation for the
subtracted state using Eq. (6.10), its quadrature variance is

σ2x̂ = ⟨x̂2⟩n− = 1
2
+ (n + 1) _n . (6.18)

�us, measuring the quadrature variance gives a means to verify the change to the mean
occupancy of the subtracted state.

6.2.3 Implementation of subtraction operations in Brillouin cavity optomechanics

In this work, n-quanta subtraction from the mechanical motion of a Brillouin acoustic
mode is performed by driving an optomechanical anti-Stokes interaction, swapping phon-
ons for energy-upconverted photons. To herald the subtraction operations, single-photon
detection of the resulting anti-Stokes photons is utilised.�e scheme is a multi-phonon
generalisation to the single-phonon subtraction (and addition) operation(s) considered
theoretically by Vanner et al. [487] and later demonstrated experimentally by Enzian et al.
[74] shortly before the author of this thesis joined the team.
Figure 6.2 shows a schematic of the process, where the Brillouin optomechanical

interaction is resonantly enhanced by using an optical microresonator. A pair of optical
cavity modes that are spaced by approximately the mechanical Brillouin frequency is used.
Each optical mode has a linewidth much narrower than the mechanical frequency, which
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Figure 6.2. Optical pumping and heralding scheme for multi-phonon subtraction via Brillouin
optomechanics. (a) A pair of optical resonances spaced by the mechanical angular frequency ωm
are used to resonantly enhance the optomechanical three-wave interaction: A pump �eld drives
the mode at ωp creating an anti-Stokes signal at ωaS. An n-photon detection scheme (here simply
represented by one detector) is then used to herald n-phonon subtraction to themechanicalmotion.
�e same scheme can be used for n-phonon addition by instead pumping on the high-frequency
optical mode, driving the Stokes interaction, and detecting photons in the lower-frequency mode
for heralding addition operations.�e local oscillator tone at ωLO used for heterodyne detection
is also illustrated. (b)�e corresponding Λ-type schematic.

means that the experiment operates deepwithin the resolved sideband regime. By optically
pumping the lower-frequency mode of the pair, at ωp, the anti-Stokes scattering process is
selected,with a highprobability forpumpphotons to scatter o� amechanical excitation and
thus generate a signal �eld in the higher-frequency cavity mode,ωaS, where ωaS−ωp = ωm.
Importantly, there is no optical mode spaced by the mechanical frequency on the lower
frequency side of the pump mode, ensuring the Stokes interaction is suppressed.

�e anti-Stokes scattering process is described by a light-mechanics beamsplitter-type
interaction with Hamiltonian [Eq. (5.18)]

Ĥbs = ħG(â†b̂ + âb̂†) , (6.19)

where G = g0
√
Ncav is the pump-enhanced, linearised optomechanical coupling rate, â is

the �eld operator of the optical anti-Stokes signal �eld, and b̂ is themechanical annihilation
operator.�e Hamiltonian shows that this interaction can subtract a phonon via b̂†, which
results in a higher-frequency anti-Stokes photon being created â. Forweakoptomechanical
coupling, meaning the coupling rate between the light and mechanics is smaller than the
optical and mechanical loss rates (G < {κaS, γ}), detecting n anti-Stokes photons heralds
an n-phonon subtraction operation to the mechanical state. As the mechanical state is
initially in a thermal state due to its coupling to a �nite-temperature bath, the resulting
state can be described by ρ̂n− ∝ b̂n ρ̂ _n b̂†n.
Note also that by optically driving the upper-frequency mode of the pair, the phonon-

adding Stokes scattering process is instead selected.�is process corresponds to a two-
mode squeezing Hamiltonian,

Ĥtms = ħG(âb̂ + â†b̂†) , (6.20)

whichmeans that detecting n photons in the frequency-down-shi�ed Stokes signal heralds
an n-phonon addition process, ρ̂n+ ∝ b̂†n ρ̂ _n b̂n. In this work, only the n-phonon subtrac-
tion operation is considered as the anti-Stokes process is the best suited for mechanical
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state readout because it does not give rise to lasing and instability when the interaction is
strongly driven, and the optical �eld is a high-�delity proxy for the mechanical state in
the limit of high e�ciency.

6.3 mechanical state characterisation via heterodyne measurement

As the previous section describes, detecting n simultaneous anti-Stokes photons heralds
an n-subtraction operation to themechanical state. To characterise the subtractedmechan-
ical state, heterodyne measurements of the anti-Stokes light around the heralding time is
performed.�e quadrature components of the time-domain heterodyne signal are extrac-
ted and can then be used for two types of analysis for characterising the mechanical state.
Firstly, the quadrature variance of the ensemble of measurements for each time about the
herald event is computed, which is a proxy for the change in the mean occupation of the
mechanical state. Secondly, a two-dimensional histogram of the quadrature distribution
at the heralding time is obtained, which, due to measurement ine�ciencies, corresponds
to a smoothened Wigner function of the mechanical state.

6.3.1 �e impact of measurement ine�ciencies

In the experiment, there is no access to measure the mechanical state directly. However,
the light-mechanics-beam-splitter interaction maps the mechanical state onto the anti-
Stokes light �eld, which can be used to infer an approximate phase-space distribution of
the mechanical state via tomography.
In the absence of optical losses and ine�ciencies, if an ensemble of optical homodyne

measurements are performed on the anti-Stokes �eld, the obtained marginals allow the
mechanical Wigner function to be tomographically reconstructed by varying the homo-
dyne angle [179]. If a heterodyne measurement is performed instead, owing to the vacuum
noise introduced with the simultaneous measurement of the two conjugate optical quad-
ratures, it is the Husimi Q function of the impinging light �eld that is determined, which
in the limit of perfect e�ciencies is the same as the Q function of the mechanical state, as
discussed in Appendix B.
However, in practice, losses and ine�ciencies are present, and these a�ect how ac-

curately the phase-space distribution of the mechanical state can be obtained. More spe-
ci�cally, optical losses result in the state of interest being convolved in phase space with
vacuum noise, thus degrading the signal.�e added noise can eliminate any non-classical
or non-Gaussian features present if the e�ciency is poor, see Fig. 6.3.�is fact has been
highlighted by many quantum optics experiments, and for instance, an overall e�ciency
of greater than 50% was required to see the Wigner negativity of a single-photon Fock
state in work by Lvovsky et al. [474]. A high overall measurement e�ciency is therefore a
key ingredient for state tomography experiments.
In this work, the e�ciency is imperfect due to the limited e�ciency of the state swap

at the optomechanical beamsplitter, and because of subsequent optical losses as the anti-
Stokes light travels from the resonator to the heterodyne detector, as illustrated in Fig. 6.4.
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Figure 6.3. Phase-space marginals for varied measurement e�ciency.�e plots show marginals of the obtained phase space via
heterodyne detection for the thermal and �rst three subtracted states. (a) When η = 1 the obtained phase space corresponds
to the Q function of the respective states. Note the increasingly non-Gaussian shape of the subtracted states. (b) For η < 1
the obtained phase space corresponds to the s-parameterised Wigner function Ws with s < −1, here shown for η = 0.01
(s = −199), which is approximately the e�ciency achieved in this experiment. Note the lower contrast in the non-Gaussian
features compared to (a) due to the smoothening from the added noise.�e quadrature is also scaled due to the associated
amplitude losses. (c) A comparison of marginals computed fromWs for varying η where the each marginal is scaled to its
maximum for comparable scales. For the lowest e�ciencies the bimodality cannot be resolved.

�e reconstructed phase space determined by the heterodyne measurement of the anti-
Stokes light �eld corresponds to an s-parametrised Wigner function of the mechanical
state, with further details presented in Appendix B.

�e remainder of this section will brie�y explain how the signal on the heterodyne
detector is related to the mechanical state for the purpose of characterising the prepared
mechanical states.

6.3.2 Dynamics of the mechanical state and the measured heterodyne signal

As shown in Eqs. (6.17) and (6.18), the quadrature variance of the mechanical state cor-
responds to the mean occupation of the state (+1/2 from the zero-point �uctuations).
However, this quadrature cannot be measured directly, and it is instead the optical anti-
Stokes quadrature that is measured by heterodyne detection, from which the dynamics
of the mechanical state can be inferred. By considering the optical and mechanical state
a�er heralding n anti-Stokes photons, the dynamics can be calculated via the Langevin
equations governing the evolution of the mechanical and anti-Stokes �eld operators.�e
calculation for the one-phonon subtraction (and addition) case was performed by Enzian
et al. [74] before it was subsequently expanded to the two-phonon case in Enzian et al. [75].
An outline of the calculation following that of Price [450] is presented in the following.



144 a. ø. svela— near-field-scattering-based optical control and . . .

Figure 6.4. Heterodyne detection scheme for state characterisation. �e optomechanical light-
mechanics-beamsplitter interaction in the cavity weakly couples the mechanical mode (b̂) and
the anti-Stokes light �eld (â) up to some e�ciency set by the optomechanical coupling G.�e
anti-Stokes �eld is ine�ciently coupled out of the optical cavity and further attenuated due to lossy
optical components, which can be treated as a single beam splitter introducing additional vacuum
noise (optical mode ĉ) and attenuation. When the attenuated �eld reaches the heterodyne detector
it is mixed with a strong local oscillator, allowing the Husimi Q function of the optical state âout
to be determined, which is a smoothened Q function of the mechanical state.

the heralded state. To express the heralded optical state consider �rst the initial state
of the system.�e initial thermal state of the mechanics ρ̂th and the anti-Stokes vacuum
∣0⟩ ⟨0∣a can be described as the bipartite system

ρ̂init = ρ̂th ⊗ ∣0⟩ ⟨0∣a . (6.21)

In the Schrödinger picture, the initial state evolves as governed by the light-mechanics
beam splitter unitary Ûab(t)

ρ̂evolv(t) = Ûab(t)ρ̂initÛ†ab(t) . (6.22)

�e single photon heralding process can be expressed via a measurement operator applied
to this initial state.�e beam splitter used for heralding in Fig. 6.4 with re�ectivity r can
be described by the Hamiltonian Ĥac/ħ = r(âĉ† + ĉ â†), whose unitary B̂ac is

B̂ac = exp(−iĤac/ħ) =
∞

∑
k=0

(−iĤac/ħ)k
k!

≈ 1 − ir(âĉ† + ĉ â†) , (6.23)

where higher order terms are not relevant as this derivation is restricted to the case of
single-photon heralding.�e heralding of one photon at time t0 in the output mode ĉ for
vacuum input on the open ports can be expressed as a non-unitary measurement operator

Υ̂t0 = ⟨1∣c B̂ac ∣0⟩c = −irâ (6.24)

where the ⟨1∣c is the detector measuring one photon, and ∣0⟩c represents the vacuum
entering at the unused port of the beam splitter.
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Applying the measurement to the evolving state, the full light-mechanics heralded
state can be expressed

ρ̂herald(t, t0) =
1
N Υ̂t0 ρ̂evolv(t)Υ̂

†
t0 = r2

N âρ̂evolv(t)â† , (6.25)

where the normalisationN = r2 ⟨â† â⟩ is the trace over the heralded state, i.e., the heralding
probability.

intracavity dynamics. To describe time dynamics of the occupation of the mechanical
state around the heralding time, the quadrature variance of the optical anti-Stokes �eld
can be used as proxy. Similarly to the mechanical �eld, the intracavity �eld itself is not
directly accessible, as it needs to be coupled out of the cavity, but this is le� aside for now.
�e time evolution of the variance of the intracavity quadrature X̂cav = 2−1/2(â† + â) can
be found by the expectation value of the time-dependent heralded state and moving to
the Heisenberg picture,

⟨X̂2cav(t)⟩ = Tr [ρ̂herald(t)X̂2cav] (6.26)

= r2

N Tr [ρ̂init â
†(t0)X̂2cav(t)â(t0)] , (6.27)

where the cyclical property of the trace has been used. Working in time relative to the
heralding time, τ = t − t0, the quadrature variance can be expressed

⟨X̂2cav(τ)⟩ = r2

N ⟨â†(0)X̂2cav(τ)â(0)⟩ . (6.28)

where the timedependence of the operators is governedby the Langevin equations [Eq. (5.23)].
With the shorthand â(τ) = âτ ,

⟨X̂2cav(τ)⟩ =
⟨â†0 X̂2cav(τ)â0⟩

⟨â†0 â0⟩
=
⟨â†0 â†τ âτ â0⟩ + ⟨â†0 âτ â†τ â0⟩

2 ⟨â†0 â0⟩
, (6.29)

when substituting in the squared quadrature. It can be shown [165] via the Isserlis–Wick
theorem that Eq. (6.29) can be written

⟨X̂2cav(τ)⟩ = 1
2
+ ⟨â†0 â0⟩ +

∣ ⟨â†0 âτ⟩ ∣2

⟨â†0 â0⟩
. (6.30)

By inserting the solutions to the Langevin equations into this expression, it can be shown [165]
that

⟨X̂2cav(τ)⟩ = 1
2
+ _nth

G2

κaS(κaS + γ)

⎡⎢⎢⎢⎢⎣
1 + (κaSe−γ∣τ∣ − γe−κaS ∣τ∣

κaS − γ
)
2⎤⎥⎥⎥⎥⎦
, (6.31)

giving an expression for the intracavity variance with time about the single-phonon sub-
traction heralding event τ = 0 with system parameters that can be characterised: G is
the cavity-enhanced optomechanical coupling, κaS optical decay rate of the of the anti-
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v �e noise operator has
zero average occupation
and thus the expectation
values [457]

⟨â†in(t)âin(t′)⟩ = 0

⟨âin(t)â†in(t′)⟩ = δ(t − t′)

Stokes resonance, γ the intrinsic mechanical decay rate, and _nth the initial mean phonon
occupation. Evaluating the expression at the heralding event and far away from the event
gives

⟨X̂2cav(τ = 0)⟩ = 1
2
+ 2_nth

G2

κaS(κaS + γ) , (6.32)

⟨X̂2cav(τ → ±∞)⟩ = 1
2
+ _nth

G2

κaS(κaS + γ) , (6.33)

showing that the quadrature variance grows as themechanical occupation doubles at τ = 0,
as expected from Eq. (6.18).

extracavity quadrature variance and the heterodyne signal. It is the light
leaking out from the cavity that can be measured.�e out-coupled anti-Stokes light is
related to the intracavity light via cavity quantum input–output theory. Considering a
situation with no optical losses, the coupling is [499]

âout(t; ηopt = 1) =
√
2κeaS â(t) − âin(t) , (6.34)

where â(t) is the dimensionless intracavity �eld operator with evolution described by the
solution to the Langevin equations, and âout, âin are in units of s−1/2.�e operator âin is a
stochastic noise operatorv representing vacuum noise input to the cavity as a result of the
coupling. Accounting for the optical losses to the �eld before it reaches the detector can
be done by adding a virtual beam splitter [179] with transmission ηopt, which adds more
added noise due to the unused port (in Fig. 6.4 these losses are captured by the real beam
splitter used for the heralding):

âout(t) =
√ηopt [

√
2κeaS â(t) − âin(t)] +

√
1 − ηopt ĉin(t) , (6.35)

where ĉin(t) represents the vacuum entering through open beam splitter port.
�is result is related to the voltage signal from the heterodyne detector via Eq. (3.10),

noting that the voltage signal is proportional to the di�erence current i−(t). Letting θ →
ωhett for a heterodyne measurement, the di�erence current is

i−(t)∝ a†dout cos(ωhett) + aout sin(ωhett) , (6.36)

which corresponds to a rotating quadrature of the optical �eld impinging on the hetero-
dyne detector

i−(t)∝ Xout cos(ωhett) + Pout sin(ωhett) . (6.37)

As both the initial thermal and subtracted states are symmetric in phase space about the ori-
gin and thus not phase dependent, the rotation does not need to be considered to calculate
the quadrature variance as any rotated quadrature will yield the same answer.�erefore,
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the variance in the heterodyne di�erence current for a ensemble of measurements is

σ2i−(t)∝ ⟨X2out(t)⟩ − ⟨Xout(t)⟩2 . (6.38)

By inserting Eq. (6.35) and the solution to the Langevin equation, and performing a sim-
ilar calculation to the one for the intracavity variance, it can be shown [165] that when
normalised to the optical vacuum noise on the heterodyne detector, the heterodyne signal
ensemble variance is

σ2i−(τ) = 1 + η _nth
⎡⎢⎢⎢⎢⎣
1 + (κaSe−γ∣τ∣ − γe−κaS ∣τ∣

κaS − γ
)
2⎤⎥⎥⎥⎥⎦
, (6.39)

where the parameter η captures the overall measurement e�ciency, both the optomechan-
ical state transfer onto the anti-Stokes �eld and the optical losses.�e ensemble variance
increases from the far-away value of 1 + η _nth to the value 1 + 2η

_nth at τ = 0, showing the
doubling in the mechanical mean occupation.�e supplementary material in Enzian et
al. [75] shows the extension to two-phonon subtraction, giving

σ2i−(τ; n) = 1 + η _nth
⎡⎢⎢⎢⎢⎣
1 + n (κaSe−γ∣τ∣ − γe−κaS ∣τ∣

κaS − γ
)
2⎤⎥⎥⎥⎥⎦

(6.40)

for n ∈ { 1, 2}, where at τ = 0 the variance increases to 1+ (n + 1)η _nth, i.e., an (n + 1)-fold
increase in the occupation.

6.3.3 Tomography of the mechanical state: the s-parametrised Wigner function

Measuring the variance and calculating the ensemble variance gives a means for verifying
the increase in the mechanical occupation at the time of subtraction. To see the non-
Gaussian nature of the subtracted states, the state is characterised via tomography at the
heralding time.
Lossless homodyne detection canmeasure an optical quadraturewithquantum-limited

accuracy. In this experiment, however, a heterodyne measurement is used, which via sim-
ultaneous measurement of two quadratures adds noise compared to a homodyne measure-
ment. In addition, the state swap from the mechanics to the anti-Stokes light is imperfect
and subsequent optical losses adds more noise as expressed by the overall e�ciency para-
meter η in Eq. (6.39).
A versatile way to mathematically quantify the performance of a tomography experi-

ment is to use the s-parameterisedWigner functionWs [500], as it captures the unwanted
e�ects of noise and ine�ciency in a single parameter.�e s-parametrised Wigner func-
tion can be written as a two-dimensional convolution between the Glauber–Sudarshan
P function of the state of interest and and a Gaussian.�us for the n-phonon subtracted
state, the s-parametrised Wigner function can be written:

Ws(Xm, Pm) = (Pn− ∗ Gs) (Xm, Pm) . (6.41)
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where Xm, Pm are the mechanical state quadratures, and the n-phonon subtracted state’s
P function is [Appendix B]

Pn− = 2
−n _n−n−1

πn!
(X2m + P2m)

n exp [−X2m + P2m
2
_n

] , (6.42)

Gs =
1

π(1 − s) exp [−
X2m + P2m
1 − s

] (6.43)

�e Gaussian represents the smoothening from the added noise. For heterodyne detection,
the s-parameter is de�ned as [179]

s = η − 2
η
, (6.44)

where η is the overallmeasurement e�ciency of themechanical state including themechanics-
light transduction e�ciency, out-coupling e�ciency and subsequent losses.
From the expression (6.44) for s, it is clear that for η = 1 one obtains s = −1, which

corresponds to the Husimi Q function, and η < 1 implies s < −1, corresponding to a
distribution that is smoothed more than the Q function. Experimentally determiningWs

for the mechanical state is valuable as it fully characterises the state, allowing any statistic
or measurement probability to be determined.

measuredmarginal distributions. �e quadraturemarginal distributions taking into
account the measurement e�ciency are calculated in Appendix B, where the expressions
for the quadratures are given for an arbitrary overall measurement e�ciency. Figure 6.3(b)
shows plots of the marginals for an overall measurement e�ciency of 1%, which is approx-
imately the e�ciency achieved in the experiment presented in this chapter, showing the
non-Gaussian shape of the expected obtained marginal.

6.4 experimental setup and system characterisation

�e n-phonon subtraction is investigated experimentally in a barium �uoride optical mi-
croresonator (Fig. 6.5) at room temperature, building on earlier work from the group [64,
74]. A number of upgrades to the resonator design, the experimental setup, and the control
capabilities were necessary to perform the measurements in this work compared to the
previous publications. In particular, the increased overall measurement e�ciency com-
pared to earlier experiments is what allows this work to resolve the non-Gaussian features
of the phonon-subtracted mechanical thermal states.

�e �rst part of this section gives an overview of the setup.�e following parts are
more detailed descriptions of di�erent aspects about the setup, experimental procedures
and characterisation.�e section covers how a suitable optomechanicalmode-trio is found
and characterised, presents the heralding and heterodyne parts of the setup in detail, and
lastly, covers some additional experimental techniques for stabilisation of the setup for
increased performance.
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6.4.1 Overview of the setup

Figure 6.6 gives a stripped down overview of the experimental setup, and Fig. 6.7 shows a
more detailed schematic of the setup.�e experiment is mainly divided into three parts:
the optical microresonator in which the optomechanical interaction happens, the herald-
ing of the interaction, and the heterodyne measurement. Key system and experimental
parameters are found in Tables 6.1 and 6.2.

�e barium �uoride resonator is fabricated as described in Section 3.2, where the mo-
tivation for using a resonator fabricated from this crystalline material are also described
in detail. In brief, the low optical [89] and acoustic losses [160, 163] enable signi�cant
enhancement of Brillouin optomechanical interaction.�e mechanical losses in a crys-
talline material will be even lower at cryogenic temperatures [162], promising for future
experiments.�is experiment, however, is performed at 300K, corresponding to a mean
mechanical thermal occupation of

_nth ≃ 766. Note that via the optomechanical coupling,
the initial thermal state is sideband-cooled to

_n = 4.5(1) ⋅ 102, as described in Section 6.4.3.
A suitable pair of a pump and anti-Stokes optical resonances spaced by the mechanical

frequency is identi�ed as explained in Section 6.4.2. To drive the anti-Stokes interaction,
a tuneable continuous-wave, �bre laservi is locked to the pump resonance via a pdh lock
[Section 3.6.2].�e pump �eld of wavelength ≃1550 nm is evanescently coupled to the
resonator via a tapered silica �bre with 89% transmission. Measurements to characterise
the system are described and discussed in Section 6.4.3. In summary, the linewidth of the
optical mode at the anti-Stokes frequency is 2κaS/(2π) = 93.7(1)MHz, the mechanical
linewidth is 2γ/(2π) = 6.6(2)MHz, and the single-photon optomechanical coupling is
g0 = 0.29(8)kHz. Using an input pump power of ≃9mW, the corresponding intra-cavity
pump photon number is Ncav = 1.19(3) ⋅ 109, resulting in a pump-enhanced optomechan-
ical coupling rate ofG/(2π) = 10.2(4)MHz. Hence, the the system is operated well within
the weak coupling regime (2G < κaS + γ).

�e backscattered anti-Stokes Brillouin light is coupled out of the cavity by the tapered
�bre and separated from the forwards-propagating pump �eld using an optical circulator.
�e back-re�ected light is then split into two optical arms using a 25:75 beamsplitter: one
for heralding via photon counting and one for heterodyne detection, see Fig. 6.6.

Figure 6.5. Photograph
of the resonator and
tapered �bre mounted
inside a 4K cryostat
(open for sample
swap). �e resonator
is mounted on a stack
of translation stages
providing control over
the coupling to the
tapered �bre. �e dia-
meter of the resonator
is ≃1mm.



150 a. ø. svela— near-field-scattering-based optical control and . . .

Figure 6.6. Overview schematic of the
experimental setup. A tuneable laser
drives the anti-Stokes interaction in a
microresonator.�e backscattered anti-
Stokes signal is separated from the pump
with an optical circulator.�e signal is
split into two arms for heralding and
characterisation purposes. In the herald-
ing arm, single-photon avalanche detect-
ors (spads) detect anti-Stokes photons,
heralding one- or two-phonon subtrac-
tion events. In the characterisation
arm, an oscilloscope captures a time-
domain measurement of the heterodyne
signal when triggered by spad detec-
tion events. �e two-phonon subtrac-
tion case is shown here, using a two-
photon-coincidence triggering setup.

vii ID Quantique id210

viii Insight BPD-1
(400MHz bandwidth)

ix Tektronix MSO64
(4GHz bandwidth)

In the 25% arm, single- and two-phonon subtraction events are heralded via single-
photon detection using two single-photon avalanche detectorsvii (spads). Two Fabry–
Pérot optical �lters are used in series before the detectors to �lter out any backscattered
pump light, ensuring that only anti-Stokes photons reach the spads.�e rate of single
photonsmeasured at a detector when driving the anti-Stokes interaction is about 0.28 kHz,
signi�cantly higher than themeasured dark count rate of∼1 Hz.When a one detector clicks,
this heralds a single-phonon subtraction event, and when both detectors click simultan-
eously, this heralds a two-phonon subtraction event.

�e 75% arm is directed to a heterodyne detection setup to estimate the quadrat-
ure components of the conditioned mechanical states.�e anti-Stokes signal interferes
with a strong local oscillator, frequency-detuned by ωhet/(2π) = 214MHz with respect to
the signal, on a 50:50 beamsplitter, and the output is measured using a balanced photode-
tector.viii To obtain time domain data of the heterodyne signal around phonon-subtraction
events, the single-photon and two-photon coincidences in the heralding arm trigger a high-
bandwidth oscilloscopeix to record a time trace of the output from the balanced detector.
In order to acquire su�cient statistics to characterise the phase-space distributions and
temporal dynamics of the mechanical states for the unconditioned, single-phonon sub-
tracted, and two-phonon subtracted thermal states, 2.4 ⋅ 105 time traces are recorded for
each case.
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Figure 6.7. Simpli�ed schematic of the experimental setup, with the constituent parts described in
the text. Abbreviations can be found in the text and the list of abbreviations at the beginning of
the document. Some abbreviations have so far not been used: polarisation controller, pc; variable
optical attenuator, voa; and thermoelectric-cooler controller, tecc.�e optical �bre in the setup is
mostly polarisation maintaining �bre, but some components are normal single mode as indicated
by yellow lines.�e modulated local oscillator has been set up a�er the data presented here was
captured, but gives increased frequency stability for the lo with respect to the pump frequency.
Adapted from Price [450] (cc by-nc licence).
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Table 6.1. Summary of the key system and experimental parameters.

Parameter Symbol Value

Pump wavelength λp 1549.79 nm
Pump mode linewidth 2κp/(2π) 14.1(1)MHz
Pump mode external coupling 2κep/(2π) 5.3(1)MHz
asmode linewidth 2κaS/(2π) 93.7(1)MHz
asmode external coupling 2κeaS/(2π) 11.7(1)MHz
asmode taper coupling e�ciency ηaSc 0.250(4)
Mechanical frequency ωm/(2π) 8.16(1)GHz
Mechanical linewidth 2γ/(2π) 6.6(2)MHz
Mechanical Qf product Qm fm 1013Hz
Optomechanical coupling rate g0/(2π) 0.29(8) kHz
Input pump power Pin 9.00(5)mW
Intra-cavity pump photon number Ncav 1.19(3) ⋅ 109
Pump-enhanced coupling rate G/(2π) 10.3(3)MHz
Optomechanical cooperativity C 0.69(4)
Resonator temperature T 300(1)K
Mean initial phonon number

_nth 766(2)
Sideband-cooled mean phonon number

_n 4.5(1) ⋅ 102

Overall measurement e�ciency η 0.908(2)%
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Table 6.2.Measurement and additional system parameters.

Parameter Value

Resonator major diameter 936(1) µm
Resonator minor radius 40.0(1) µm
Optical �bre taper transmission 0.89
Filtering arm transmission 0.15
Heterodyne arm detection e�ciency 0.365
fp �lter fwhm linewidth 120MHz
fp �lter free spectral range 25GHz
spad quantum e�ciency 0.125
spad gate rate 50 kHz
spad gate length 3.5 ns
spad dead time 18 µs
spad dark count rate ≃ 1Hz
Single-photon count rate 0.28 kHz
Two-photon coincidence rate ≃ 2Hz
Heterodyne frequency ωhet/(2π) 214MHz
Balanced detector bandwidth 400MHz
Recorded time trace length 4000 ns
Oscilloscope sampling rate 3.125 GSs−1
Number of time traces per operation 2.4 ⋅ 105

x To ensure the perform-
ance of this technique, the
algorithm also uses the sim-
ultaneously obtained spec-
trum of a �bre-loop cavity
with multiple fsrs within
the piezo scanning range,
representing a frequency
ruler with spacing equal to
the �bre cavity’s fsr.�e
�bre cavity is formed by a
99:1 beamsplitter with two
ports connected to a loop.

6.4.2 Mode trio-identi�cation

Identifying a suitable pair of optical resonances separated by the Brillouin frequency and
with appreciable optomechanical coupling is a time consuming and probabilistic exercise.
Signi�cant time has been put into streamlining this procedure by writing so�ware for
making it easy and quick to identify mode pair candidates and test their properties.�e
approach is to obtain a spectrum of the resonator over the full laser bandwidth and look
for optical modes separated by the Brillouin frequency, and pump on the lower-frequency
mode to see if the modes optomechanically couple.
First, the spectral landscape for a chosen tapered �bre position is obtained for the

full ∼1 nm (∼125GHz) range of the pump laser, as shown in Fig. 6.8(a).�e laser range
covers just over two free-spectral ranges of the microresonator, υFSR ≃ 69.5GHz, giving
an overview of the densely populated spectrum, with optical modes of varying linewidths
and degrees of coupling to the taper.�e full spectrum is obtained by slowly temperat-
ure tuning the pump �bre laser frequency over its entire frequency range (a process that
takes approximately 2.5 minutes, corresponding to ∼0.74GHz s−1) whilst simultaneously
scanning its piezo at a much faster rate (∼0.73 THz s−1) and continuously obtaining trans-
mission spectra at a rate of 75Hz using an oscilloscope.�e 12 500 obtained spectra overlap
signi�cantly, and by correlation, their overlaps can be determined to form one continuous
spectrum of the resonator.x

To �nd potential mode pair, the optical modes with an appreciable taper coupling
that are spaced by roughly the Brillouin frequency are identi�ed by inspection of the full
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Figure 6.8. Optical spectrum of the microresonator with the pump–anti-Stokes mode pair. (a)�e spectrum of across the
full pump laser bandwidth, stitched together from 12 500 partially overlapping spectra obtained whilst the laser is thermally
tuned over its full range.�e pump and anti-Stokes resonances used are marked in (b) Zoomed in view on a section of the
spectrum. (c,d)�e anti-Stokes (c) and pump (d) modes with �tted Lorentzian lineshapes. Note that for an accurate linewidth
measurement, a short-range, more accurately calibrated spectrum is obtained and �tted to extract the linewidths.

xi Rohde & Schwarz
FPC1000 (1 GHz band-
width)

spectrum. One such pair is the pair shown in Fig. 6.8(b).�e optomechanical coupling of
the pair candidates is then investigated by optically pumping the lower-frequency mode
and directing the backscattered light from the cavity to the heterodyne detector. If the
backscattered light has frequency components shi�ed by the Brillouin frequency from the
pump, the modes couple via Brillouin scattering. By inspecting the heterodyne spectrum
using an electronic spectrum analyserxi (esa) connected to the balanced detector, the
strength of the coupling can be gauged from the signal-to-noise of the feature in the
heterodyne spectrum and an estimate for the mechanical linewidth is given by the spectral
feature’s width, see Fig. 6.9. If the optomechanical coupling is small or themechanicalmode
is broad, the mode trio is discarded. For the modes that seem favourable, the optical pump
power is increased whilst the heterodyne spectrum is monitored to see the characteristic
mechanical linewidth broadening to con�rm it is indeed a Brillouin signal.
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Figure 6.9. Example heterodyne spec-
trum and noise levels as obtained by
an esa (with resolution bw 30 kHz and
video bw 100Hz).�e electronic noise
(spectrum obtained with no input to the
esa) is far below the optical spectra and
not the principal noise source. Instead,
the noise �oor is given by the shot noise
of the lo laser, as shown by the spectrum
obtained when optical vacuum is input
to the heterodyne beam splitter instead
of the anti-Stokes signal.�e �tted e�ect-
ive mechanical linewidth is annotated.

6.4.3 System characterisation

In order to analyse and understand the experimental results, relevant optical, mechanical
and optomechanical properties of the system must be characterised.�e characterisation
measurements and results are described below. A summary of the results can be found in
Table 6.1.

optical linewidths and separation. �e linewidths of the optical resonances are
determined as described in Section 3.5, i.e., by sweeping the pump laser across the reson-
ances at low power to avoid broadening, and �tting the resulting spectra. Figure 6.8(c,d)
shows the anti-Stokes and pump optical lines, respectively.�e pump mode’s amplitude
decay rate is �tted to κp/(2π) = 7.1(1)MHz, and for the anti-Stokes mode the decay rate is
�tted to κaS/(2π) = 46.9(1)MHz.�e uncertainties are given by the �t and uncertainty in
the laser calibration.�e separation of the two optical modes is pump-power dependent
due to the Kerr e�ect, but is approximately equal to the mechanical frequency – which is
measured as described in the next paragraph.

mechanical frequency. �e mechanical frequency can be determined from the fre-
quency separation between the pump light and anti-Stokes light. Naïvely, one could inter-
fere the light backscattered from the cavity directly with the pump and measure the beat
note between the two; however, as the anti-Stokes signal is very weak, this is not directly
feasible. Another approach could be to use heterodyne detection between the pump and
anti-Stokes light, but the ∼8GHz spectral separation between the two �elds is far beyond
the bandwidth of the balanced detector.�erefore, a more convoluted measurement is in-
stead performed: the strong local oscillator laser is ensured to be at the same frequency as
the anti-Stokes lightwith opticalmodes, and then comparable powers of lo and pump light
are interfered to produce a clean beat note on a high bandwidth photodiode, determining
the optical frequency separation between the two.
In detail, the measurement works as follows.�e frequency of the lo is tuned so it

is roughly the same as the anti-Stokes light, then interfering the two at the heterodyne
beam splitter, the di�erence current is within the balanced detector’s bandwidth.�e lo
can then be brought to exactly the anti-Stokes frequency by tuning the lo frequency so
that the heterodyne signal is at zero frequency.�en, by interfering the pump light with
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the lo on a beam splitter and detecting the resulting light on a high-bandwidth photode-
tector,xii the optical beat note can be measured by a high-bandwidth esa.xiii�e detected
beat note is equal to the frequency separation between the pump and anti-Stokes light,
which corresponds to the mechanical frequency.�e measured mechanical frequency is
ωm/(2π) = 8.16(1)GHz, corresponding to a pseudo-longitudinal mechanical whispering-
gallery mode.�e uncertainty is set by the ability to keep the laser beat notes stable.

mechanical linewidth and optomechanical coupling. �e characterisation meas-
urements to �nd the mechanical linewidth and the optomechanical parameters are more
involved because the access to the mechanics is not direct, but via the optical coupling.
To determine the mechanical linewidth, the linear scaling of the e�ective mechanical

linewidth with an increasing number of intracavity photons (due to increasing optomech-
anical coupling) can be used. By extrapolating the e�ective linewidth to zero pumpphotons,
the intrinsic mechanical linewidth can be found.
In the limit of weak coupling, it can be shown that the power spectral density of the

anti-Stokes signal is given by [Eq. (5.26)]

SXX(ω) = ∫ ∞

−∞
dω ⟨X̃†(ω)X̃(ω)⟩ (6.45)

∝ ∣χbb(ω − ωhet)∣2 + ∣χbb(−ω − ωhet)∣2 , (6.46)

where X̃ is the Fourier transform of the X quadrature, ωhet is the heterodyne frequency,
and the mechanical susceptibility is

χbb(ω) ≈
√
2γ

iω + γe�
(6.47)

in the limit where γ ≪ κaS. �is limit is crucial for this measurement and can be un-
derstood by considering the frequency domain overlap between the optical mechanical
resonances: if the optical mode is narrower than the mechanical mode, it e�ectively �lters
the anti-Stokes light generated across the mechanical resonance’s linewidth due to the
lack of optical density of states in the optical resonator, resulting in a heterodyne signal
of linewidth limited by κaS. In this experiment γ/κaS ≃ 0.07, and thus it is the mechanical
linewidth that determines the linewidth of the heterodyne power spectrum.
In the weak coupling regime, the e�ective mechanical amplitude decay rate scales with

the optomechanical cooperativity C:

γe� = γ(1 + C) , (6.48)

which is given by

C = G2

κaSγ
= g20Ncav

κaSγ
∝ Ncav . (6.49)

�erefore, as this experiment is operated in the weak-coupling regime and γ ≪ κaS, the
spectrum of the backscattered anti-Stokes signal can be approximated by a Lorentzian
function with fwhm given by 2γe� [Eq. (6.46) and Eq. (6.47)]. As the e�ective linewidth
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scales linearly with the number of intra-cavity pump photons, the e�ective linewidth can
be extrapolated to zero optical pump to extract the intrinsic mechanical linewidth.

�e measurement is performed comparing power density spectra of the heterodyne
signal at di�erent pump powers.�e spectra are obtained by Fourier-transforming time
traces from the output of the balanced heterodyne detector at eleven input powers in
the approximate interval 1mW to 10mW.�e resulting spectra are shown in Fig. 6.10(a)
and the �tted e�ective linewidths in Fig. 6.10(b). By �tting a linearly increasing γe� to
the e�ective linewidths, an intrinsic mechanical decay rate of 2γ/(2π) = 6.6(2)MHz by
extrapolating to zero.�is linewidth is in agreement with room-temperature Brillouin
linewidths reported in similar crystalline materials [501].
To also estimate the bare optomechanical coupling rate g0, the intra-cavity pump

photon number is calculated [Eq. (2.51)]:

Ncav =
1

ħωp
ηcPin

κp
= 1.19(3) ⋅ 109 , (6.50)

where the taper coupling ηc = 2κep/κp [Eq. (2.48)].�e pumpmode’s extrinsic optical decay
rate, κep, is calculated from the mode’s on-resonance transmission and total linewidth, see
Eq. (2.42).xiv �e single-photon optomechanical coupling rate can be calculated from
Eqs. (6.48) and (6.49):

C = γe� − γ
γ

Ô⇒ g20
κaS

= γe� − γ
Ncav

. (6.51)

�e term on the right-hand side of the right equation can be identi�ed as the gradient of
the linear �t in Fig. 6.10(b), ∂γe�/∂Ncav.�us

g0 =
√

∂γe�
∂Ncav

κaS = 2π ⋅ 0.29(8)kHz . (6.52)

From the single-photon coupling rate and the intracavity photon number for the pump
power used in the experiment, the optomechanical coupling rate and cooperativity are
calculated to be

G
2π

= 10.3(3)MHz , C = 0.69(4) . (6.53)

a model incorporating kerr detuning. Alternatively, a more comprehensive model
can be used to extract the mechanical linewidth and coupling rate, a model describing
not only the mechanical broadening but also the change in the optomechanical detuning
change due to the Kerr e�ect. With increasing pump power, the pump resonance shi�s in
frequency relative to the readout resonance, and thus the detuning ∆ between the readout
resonance (referred to as the anti-Stokes resonance) and the frequency of the anti-Stokes
light changes:

ωaS = ωp(Pin) + ωm = ωresp + ∆(Pin) + ωm . (6.54)
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Figure 6.10. Determining the mechanical linewidth and optomechanical coupling from comparing
spectra for increasing pump powers. For each pump power, 2000 heterodyne spectra are obtained.
(a)�e median spectrum for each pump power (normalised to vacuum noise), with darker shades
corresponding to higher input powers, up to a maximum of ≃11mW.�e spectra are o�set to
the same centre frequency and plotted in units of the �tted intrinsic mechanical linewidth 2γ,
as determined by panel (b). (b)�e e�ective mechanical linewidth of the spectra in (a) given
as a function of the intra-cavity pump photon number.�e intercept of the linear �t gives the
intrinsicmechanical linewidth 2γ/(2π) = 6.6(2)MHz, and the slope is used to calculate g0/(2π) =
0.29(8)kHz.

Figure 6.11. Full power spectrum model with detuning for obtaining mechanical linewidth and op-
tomechanical coupling, using a subset of the data in Fig. 6.10. (a) A power spectrummodel account-
ing for the change in detuning with increasing power is �tted simultaneously to the eight highest
powers (the dataset is truncated due to dri� in the local oscillator laser for the lowest powers).
�e �t gives both the intrinsic linewidth and coupling rate directly, 2γ/(2π) = 6.68(3)MHz and
g0/(2π) = 309(1)Hz. (b) .
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�is change in the optomechanical detuning a�ects the centre frequency of the power
spectra, as shown in Eq. (5.26). Note that any thermal shi� can be assumed to a�ect the
two modes equally as they have signi�cant spatial overlap in the resonator.
If the heterodyne local oscillator is kept at a constant frequency, the change in the

optomechanical detuning can be extracted from the change in the heterodyne carrier
frequency, which changes as it is the di�erence between the frequency of the static lo
and the changing anti-Stokes light. As the Kerr e�ect is linear with power [Eq. (2.80)],
optomechanical detuning can be expressed as

∆(Pin) = ∆0 + ∆1Pin , (6.55)

where the proportionality constant ∆1 is negative, as can be seen from Eq. (2.80), which
gives ∆1 ∝ −n2/n, where n2 is the non-linear refractive index of the material.
With thismethod, all the power spectra are simultaneously �tted,with the result shown

in Fig. 6.11.�e �t gives both the intrinsic linewidth and coupling rate directly, 2γ/(2π) =
6.68(3)MHz and g0/(2π) = 309(1)Hz, where the uncertainties are smaller as the multi-
dimensional �tting takes into accountmore data points for a single �tting operation, rather
than a linear �t to twelve data points as in Fig. 6.10. Both values arewithin the errormargins
of the values obtained via Fig. 6.10.�emethod also estimates the absolute optomechanical
detuning for the experiment.

initial thermal occupation and sideband cooling. Due to the �nite temperature
of the resonator, there is a thermal occupation of phonons in the mode.�e experiment
is performed at T = 300K, giving a thermal occupation of [Eq. (6.1)]

_nth = [exp(ħωm
kbT

) − 1]
−1

≈ kbT
ħωm

= 766(2) , (6.56)

where kb is the Boltzmann constant, and the approximation to the limit of high temper-
ature (kbT ≫ ħωm) is made. However, as the optomechanical interaction is driven, the
mechanical state is sideband cooled to a lower occupation. In the limit of weak optomech-
anical coupling, the e�ective mechanical occupancy in the steady-state is given by [450]

_n =
_nth
2π ∫ ∞

−∞
dω ∣χbb(ω)∣2 =

_nth
1 + C

, (6.57)

where the optomechanical cooperativity is as given in Eq. (6.49).�is results in a steady-
state mean occupancy of the unconditioned mechanical state of

_ne� = 4.5(1) ⋅ 102, corres-
ponding to a sideband-cooling factor of ≃ 1.7.
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xv ID Quantique id210

Figure 6.12. Subtraction
operation heralding arm.

xvi �e detector works by
biasing an InGaAs/InP
junction so that when a
photon is absorbed in the
InGaAs layer, the resulting
electron hole is multiplied
due to the high voltage,
creating an avalanche of car-
riers before the avalanche is
quenched.�e gating can
be performed by biasing
the junction only for a set
gate time at some rate.�is
reduces dark counts due to
thermal excitations or a�er-
pulsing. See for instance
Refs. 503 or 504 for more
about spads.

6.4.4 Phonon subtraction heralding and �delity

Each time a phonon is subtracted via the optomechanical interaction, an anti-Stokes
photon is created, and detection of this photon heralds the subtraction operation. De-
tecting a two-photon coincidence heralds a simultaneous two-phonon subtraction.�e
following explains how the heralding is performed in the experiment.

�e created anti-Stokes photons couple out of the cavity and into the taper with an
e�ciency given by the resonator linewidth and taper coupling.�e backscattered light
from the resonator is separated out using a circulator and a portion of the light used for her-
alding to condition the heterodyne measurement, see Fig. 6.12. Because the single-photon
avalanche photodetectorsxv (spad)s used are not photon-number resolving, another beam
splitter is used so that coincident photons are directed to separate detectors for coincidence
detection. With this setup, a click on one spad heralds a single-phonon subtraction and
simultaneous clicks on both detectors heralds a two-phonon subtraction, as illustrated in
Fig. 6.12.
To ensure the �delity of the heralding measurement, the number of spurious detector

clicks must be low to avoid false heralding. �ere are three main sources of spurious
clicks that will decrease the �delity of the heralding: (i) dark counts from the detectors,
(ii) maskedmulti-photon events on one detector as the detectors are not photon-resolving
and thus gives only one click for such events, and (iii) pump photons hitting the detectors.
All three sources are minimised as described below. Optical losses in the heralding process
in practice a�ects only the heralding probability, meaning the time between heralding
events is longer, but the �delity is unchanged.

dark counts. Spurious clicks when no photon is incident on a detector are referred to as
dark counts, and in the context of this experiment these dark clicks reduce the �delity of the
heralding operation.�e rate of dark counts on detector is typically an increasing function
of the detector’s quantum e�ciency, where the quantum e�ciency is the ratio of time-
averaged clicks to incident photons [177, 502]. For the spads used here, the combination
of a gated operationxvi with a long deadtime a�er a detection event, and a 12.5% quantum
e�ciency, gives a rate of spurious dark counts of ∼1 Hz, which is much smaller than the
∼0.3 kHz rate of single-photon clicks on each detector. With these rates, one in about 300
single-clicks is a spurious click, ensuring a high heralding �delity (300/(1+ 300) ≃ 0.996).
Also, note that the anti-Stokes photons not resulting in a detector click due to the low
quantum e�ciency do not reduce the �delity of the heralding – they do not in�uence
validity of the measured clicks.
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suppressing multi-photon events. �e rate of photons hitting the detectors must
small enough to avoid multi-photon events on one detector resulting in a single click from
that detector.�e detectors are operated in gated mode, where the detector is sensitive to
incoming photons for only a short amount of time at a �xed rate, sending a click detection
signal if at least one photon has been detected in this time window. With a known gate
time duration and known rate of anti-Stokes photons impinging on a detector, an estimate
of the probability of multi-photon events at a detector can be calculated.
To calculate the probabilities, �rstly, calculate the time-averaged photon rate emerging

from the cavity

⟨Rcav⟩ = ⟨â†out(t)âout(t)⟩ = ηopt
_nth

G2

κaS + γ
∼ 108Hz , (6.58)

for the system parameters of this experiment. Accounting for various optical losses due to
component imperfection and beam splitters, the time-averaged rate of photons impinging
on a detector is

⟨Rdet⟩ = ηpathηBS1η�ltersηBS2 ⟨Rcav⟩ ∼ 106Hz , (6.59)

where the losses from the cavity up to the �rst beam splitter (see Fig. 6.12) due to the tapered
�bre and insertion losses can be expressed by a transmission e�ciency ηpath ≃ 0.67, the
�lters have a transmission of η�lters ≃ 0.15, and the beam splitters have transmissions
according to their ratios, ηBS1 = 0.25 and ηBS2 = 0.50.
A�er determining the anti-Stokes photon �ux at the detector, consider the number of

photons impinging on the detector over the gate time window which is when a click can
be measured. Using an e�ective gate length of tgate = 3.5 ns (at a 50 kHz gate rate, dead
time a�er detection event 18 µs), the time-averaged photon number over a gate window is

_
Ndet = ηSPAD ⟨Rdet⟩ tgate ∼ 10−3 , (6.60)

where ηSPAD = 0.125 is the quantum e�ciency of the detectors. Note also that a 3.5 ns
gate at a 50 kHz rate means the detector is active 175 µs s−1 or about 0.2% of the time.�e
rate of impinging photons multiplied by the quantum e�ciency and the active time gives
⟨Rdet⟩ ηSPAD ⋅ 2 ⋅ 10−4 = ∼25Hz, compared to the observed 0.3 kHz count rate.
As the light from the cavity originates from a thermal state, the anti-Stokes photon

statistics follows the Bose–Einstein distribution [Eq. (6.3)], and the probability for Ndet
photons to impinge on a detector can be calculated given the time-averaged number

_
Ndet,

Pr(N ∣
_
N) =

_
N

n

(
_
N + 1)N+1

∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.997 for N = 0
10−3 for N = 1
10−6 for N = 2

, (6.61)

showing a three orders of magnitude smaller probability for two photons rather than one
photon impinging on a detector over the gate time.�is means that one in thousand clicks
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xvii A 9mW input power
corresponds to a rate of
9mW/(ħωp) ∼ 1017
photons/s �owing in the
setup. A re�ection of only
1 ppm gives ∼1011 photons/s
of re�ected photons, which
is comparable to the ∼108
photons/s rate of anti-
Stokes photons emerging
from the cavity [Eq. (6.58)].
By suppressing the pump by
for instance 80 dB the rate
reduces to ∼103 photons/s.

xviii Micron Optics FFPI

xix �e insertion losses of
an optimally tuned �lter is
at the 1 dB level.

Figure 6.13.�e calculated
transmission of a single
Fabry–Pérot �lter with
25GHz fsr and 120MHz
fwhm bandwidth.�e
pump frequency (red) and
anti-Stokes frequency are
annotated for a perfectly
tuned �lter.

xx �orlabs TED200C

is due to a multi-photon event at one detector, which will have a small impact on the
heralding �delity.

suppressing pump photons via filtering. Optical �lters are used to make sure only
anti-Stokes photons reach the spads to ensure high �delity heralding.�e detection band
of the spads covers a broad wavelength range and any photon reaching the spads in the
heralding arm that is not an anti-Stokes photon results in a spurious heralding event,
which incorrectly triggers the heterodyne measurement.
In particular, photons at the pump wavelength are likely to cause spurious clicks as

the pump is very strong, meaning that very small imperfections in the setup, for instance
a small back-re�ection from a �bre connection, can cause a signi�cant number of pump
photons in the heralding arm.xvii Furthermore, it is not only the anti-Stokes signal �eld that
is backscattered in the resonator, but also pump light is backscattering due to imperfections
in the resonator – as discussed in Chapter 4 on backscattering suppression.
To �lter out pump photons spads, Fabry–Pérot optical �ltersxviii with fwhm band-

width 120MHz and tuneable centre frequencies are used.�e �lters are used in series
to doubly suppress the pump, and a circulator is used between the two to avoid a cavity
being formed between the two �lters because of backre�ections.�e free spectral range of
the �lters is 25GHz, ensuring that when the centre frequency is tuned to the anti-Stokes
signal, the suppression of the pump ≃8GHz away from the anti-Stokes is high, as is the
suppression for any higher harmonics anti-Stokes light.
To estimate the suppression of the pump provided by the two �lters, the relative trans-

missionxix of one �lter can be calculated from its free spectral range and linewidth [505]

T(υ) =
⎡⎢⎢⎢⎢⎣
1 + (2F

�lt

π
)
2

sin2 (π υ
υ�ltFSR

)
⎤⎥⎥⎥⎥⎦

−1

, (6.62)

where the �nesse is the ratio of the fsr to the linewidth,F�lt = υ�ltFSR/∆υ�lt = 208 [Eq. (2.13)].
A plot of the relative transmission for one �lter is shown in Fig. 6.13. At the pump frequency
T(8GHz) = −41 dB for one �lter, doubling to −82 dB for two �lters in series. If only one
�lter is used, the count rate roughly doubles compared to using two �lters, suggesting
the second �lter removes roughly 300 pump photons per second (and implying that the
�rst �lter removes ∼106 pump photons per second). Based on the coarse estimate that
−41 dB suppression removes 300 photons per second at the last �lter, the number of pump
photons making it through to the detector is ∼2 ⋅ 10−2Hz compared to the eight orders
of magnitude higher ∼106Hz anti-Stokes photos [Eq. (6.59)], ensuring good heralding
�delity.

�e �lters’ centre frequencies are temperature tuned (∼1.6 GHzK−1) by thermoelectric
cooler elements, and thermistors provide temperature sensing for feedback control. To
control the �lter temperature, thermoelectric-cooler controllerxx (teccs) are used. Each
tecc has an internal pid loop, stabilising the temperature by reading the resistance of the
thermistor in the connected �lter and applying a current to the thermoelectric element
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xxi Tektronix MSO64
(4GHz bandwidth)

xxii Insight BPD-1

Figure 6.14. Heterodyne
detection arm. Illustrating
the triggering setup for
two-phonon subtraction
measurements.

to keep the thermistor resistance at the desired setpoint. However, due to �uctuations in
the laboratory environment at minute and hour timescales, the setpoints of the teccs
must be continuously tuned to keep the �lters’ centre frequencies stable with respect to
the frequency of the anti-Stokes signal.�is procedure is described in Section 6.4.7.
To initially tune the �lters, the local oscillator laser is brought to the anti-Stokes fre-

quency and connected to the �lters one by one optimising their transmission on a photo-
diode and/or using an optical spectrum analyser.

6.4.5 Heterodyne detection for state characterisation

A heterodyne detection setup is used to obtain information about the click-conditioned
mechanical state.�e schematic in Fig. 6.14 shows how the click signals from the herald-
ing arm triggers an oscilloscopexxi to measure the heterodyne signal from the balanced
photodetector.xxii

Ideally, the light from the cavity-locked pump laserwould be used as the local oscillator
in the heterodyne setup for frequency stability; however, because the bandwidth of the
balanced detector is only 400MHz, the local oscillator must be separated by less than
400MHz from the anti-Stokes signal in frequency.�erefore a separate laser to the pump
laser is used as the local oscillator for the heterodyne setup, and this lo laser is locked to the
pump laser frequency as described in Section 6.4.7. In the experiment, a high heterodyne
frequency is desirable so that the state evolves little per rotation of the measurement basis,
but the frequencymust be low enough to keep the heterodyne signal within the bandwidth
of the detector. A heterodyne frequency of ωhet/(2π) = 214MHz is chosen.

sampling rate. To perform the state tomography at the time of subtraction and observe
the time-domain change in the mean phonon occupancy, the sampling rate of the meas-
urement must be su�ciently high to resolve the time-domain feature.�e decay time of
the subtraction feature is approximately given by the inverse of the e�ective mechanical
linewidth, [(γ + G2/κaS)]−1 ≃ 29ns, giving approximately 90 sampling points over the
feature when the oscilloscope is operated at a sampling rate of 3.125 GSs−1. In order to
digitally bandpass �lter the time-domain data as described in the data analysis section 6.5.1,
the frequency resolutionmust be �ner than the bandwidth of the heterodyne signal. At the
high sampling rate used, a large number of points per trace is needed to ensure a su�cient
frequency resolution.�erefore, each time trace captured is 4.00 µs long, giving 12.5 ⋅ 103

points per trace, which corresponds to a frequency resolution of 250 kHz – a meaningful
resolution for bandpass-�ltering the heterodyne signal with a bandwidth comparable to
the e�ective mechanical linewidth, ∼11MHz.
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Figure 6.15. Click signals
from spads.�e oscillo-
scope triggers when both
channels are above the
trigger level of 750mV.

xxiii Tektronix AFG1062

triggering of the heterodyne measurement. In addition to a su�ciently high het-
erodyne sampling rate, the click conditioning must be accurately timed to resolve the
subtraction feature. A �xed o�set between the heralding event and triggering of the hetero-
dyne can be calculated and corrected for in the analysis, but any jitter in the conditioning
timing will smear out the subtraction feature in time and cause mis-conditioned values to
contribute to the tomogram.
Considering one-phonon subtraction events �rst, the single-photon click signals from

one spad can be used directly as a trigger for the oscilloscope.�e jitter of the click sig-
nal compared to the arrival time of the photon is ∼0.2 ns, which is in fact smaller than
the 0.320 ns separation between samples as set by the oscilloscope sampling rate. As the
oscilloscope’s trigger jitter is <40 ps, it is currently the sampling rate that limits the tim-
ing resolution of the single-photon heralding, but the resolution is much �ner than the
subtraction-feature decay time of ≃29 ns and the e�ect should be small.
For characterising two-phonon subtraction events, the heterodynemeasurement should

trigger o� two-photon coincidence events. To implement the coincidence triggering, the
detectors are synchronisedly gated, meaning that the time window over which the detect-
ors are active is the same. With the gated operation, simple and logic on the click signals
from the two detectors can be used for heralding the two-photon coincidences with good
approximation, with timings as described below. Using this implementation, the rate of
two-photon coincidences is ∼2Hz.
Due to the synchronised operation, the 3.5 ns gate time sets the maximum time sep-

aration between click signals from the two detectors within the same gate, and the 100 ns
width of the click signal (Fig. 6.15) guarantees that if both detectors click for a gate, their
click signals overlap in time. As the system is gated at 50 kHz, there is a minimum time
of 20 µs between clicks from di�erent gates, guaranteeing that click signals from separate
gates will not overlap. Ensuring equal-length cabling from the gating signal sourcexxiii to
the spads, and equal lengths from the spads to the oscilloscope where the and logic is
performed, the time window over which clicks are considered simultaneous is the same as
the e�ective gate length, 3.5 ns which is short compared to the subtraction-feature decay
time. If a greater timing resolution is required, post-selection of smaller click-separation
can be performed.

note on the number of anti-stokes photons and sideband cooling. �e number
of anti-Stokes photons impinging on the heterodyne beam splitter can be calculated by
a similar analysis to the one showing the time-averaged number of photons at the spads
[Eqs. (6.58) to (6.60)]. Accounting for the optical circuit losses and detector e�ciency,
less than one anti-Stokes photon is on average being used for state tomography in the
heterodyne measurement within the timescale that the mechanical oscillator is taken out
of equilibrium (≃ 2 ⋅ 29ns).
It is important to note that the heterodyne detection does not condition or change the

mechanical state.�e heterodyne measurement is a linear measurement, giving inform-
ation about the �eld quadratures, not the number of photons or the optical power – i.e.,
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the heterodyne measurement is linear in operators (â) versus the nonlinear click detec-
tion (â† â) performed in the other arm of the setup. An ensemble of heterodyne signal
measurements can be used to describe the prepared mechanical states through statistical
methods given high-�delity heralding of the prepared states.

�e heralding of subtraction events is used to trigger the heterodyne measurements,
aligning data from thousands of measurements where the time of subtraction is known.
However, the rate of scattering events taking place in the resonator is high compared
to the length of the time traces, which means that over the duration of a single time-
trace measurement, many photons scatter o� phonons, not only the heralded one.�e
many scattering events reduce the ensemble’s mean occupation below the initial thermal
occupation everywhere else than where the heralded subtractions are aligned in time.�is
e�ect is the sideband cooling of the state,

_nth →
_n =

_nth
1 + C

. (6.63)

6.4.6 Interleaved measurement protocol

To obtain su�cient statistics for a good signal-to-noise ratio in both the time-domain
analysis and the state tomography, 2.4 ⋅ 105 events are measured for each of the one- and
two-phonon-subtracted states. In addition, the same number of randomly triggered events
are obtained to measure the initial, laser-cooled thermal state, and another 2.4 ⋅ 105 ran-
domly triggered events are captured with the heterodyne port that is normally connected
to the cavity disconnected to measure the shot noise level.
Because of the relatively small probability of detecting a click [Eq. (6.61)], and themuch

smaller square of the former probability for a double click, acquiring tens of thousands
of measurements takes time. At a rate of roughly 300 single clicks per second, obtaining
2.4 ⋅ 105 measurements for single-phonon subtraction events takes about 13 minutes. How-
ever, the double click rate is much lower at about two coincidences per second, meaning
it takes about 30 hours to obtain.
Over the course of 30 hours the experimental conditions can change a�ecting losses

and other parameters to such an extent that the measurements obtained at the beginning
are di�erent from those obtained at the end – e�ectively sampling a set of experimental
conditions, which the analysis will subsequently average over. To make sure the measure-
ments are sampling the same conditions, a protocol considering the substantial event rate
di�erence is used.

�e one- and two-click measurements are interleaved in smaller batches to make sure
they both sample the same experimental conditions.�e measurements are split up in
alternating batches of 5000 measurements. Obtaining 5000 coincidences takes roughly 35
minutes. Tomake sure the following 5000 single-photon events are obtained over a similar
timescale to sample the experimental conditions, the measurement is arti�cially slowed
down by dividing the batch into even smaller batches of 100 traces, each batch obtained in
less than a second, but with delays between them to space them out.�e delays are random,
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sampled from a Poissonian distribution with a mean corresponding to the average delay
time needed for the 5000 single-click measurements to take the same amount of time as
the coincidences.

�e whole measurement procedure for obtaining 2.4 ⋅ 105 measurements of each one-
and two-click data takes about 60 hours.

6.4.7 Feedback loops for experimental stability

A lab environment is seldom as static as the experimentalist wants it to be. For precision
measurements there are typically three ways to circumvent the problems related to dri�s
or �uctuations in the experiment: measure faster than the timescale of the disturbance,
averaging many measurements over a long time to sample the range of the dri�s and
converge to an average value, or to try to counteract the disturbances by stabilising the
experiment. In this work, a combination of the latter two is used.
As described in the previous subsection, the measurement runs over hours to obtain

the necessary statistics to get a good signal-to-noise ratio, and over this long averaging time,
dri�s can change important experimental parameters like the optomechanical coupling
or the heterodyne frequency. Even though these parameters can be averaged over, it is
preferable to reduce disturbances to the experiment.

�e laboratory ambient temperature is a very challenging parameter to control within
a narrow and stable range. In this laboratory, the temperature is controlled by the inlet
air temperature and an additional control by a circulation unit in the lab providing local
cooling and, in principle, �ne control. However, accurate temperature control is challen-
ging, and the pid settings and sensor-position of the local cooling unit causes fairly regular
oscillations in the lab temperature with an average period of 15minutes, in addition to slow
dri�s over the day, Fig. 6.16. In particular, these temperature �uctuations are a challenge for
the narrow bandwidth Fabry–Pérot optical �lters, as their centre frequency is temperature
tuned, and moves more than one fwhm bandwidth per 0.1 K change in temperature.
To mitigate the impact of the temperature and other environmental �uctuations, the

optical �bre-based setup is built using polarisation maintaining �bre when possible, and
a number of stabilisation loops are used.�e pump laser frequency is locked to the pump
cavity resonance using a pdh lock scheme as described in Section 3.6.2.�e other loops
are described in the following, and includes the centre frequency of the optical �lters in
the heralding arm, the pump optical power, and the local oscillator frequency.
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Figure 6.16. Lab temperature stability. (a)�e air temperature as measured at the outlet of the air-conditioning unit oscillates
with a peak-to-peak amplitude of up to 1 K with a period of 15 minutes. (b) A sensor close to the experiment measures the air
temperature over the same time period, and the strong oscillations from the air-conditioning unit can be seen as a ∼0.05K
oscillation on top of a larger dri� over the eight hour period. (c) From 60 weeks of time-domain data for the sensor close to
the experiment, the spectral density of the �uctuations over the time period is calculated.�e spectrum shows a tall peak at 15
minutes, with a lobe of dri�, as well as higher harmonics of the 15 minute peak. In the lower-frequency end of the spectrum, the
daily 24 hour peak is strong and with small modulation sidebands due to the strong 15 minute cycle. Also the harmonics of the
daily cycle can be seen, with the 12 hour half-daily peak easily visible. Finally the 15 minute modulation by the air conditioning
can be seen as sidepeaks about the 24 hour peak.�e data was obtained at a 0.1 Hz rate between January 2021 and March 2022.

xxiv Tektronix AFG3022C

stabilising the optical filters for anti-stokes heralding. �e Fabry–Pérot op-
tical �lters used for ensuring heralding �delity are temperature tuned, and thus sensitive
to the environment.�e tec controllers used for temperature tuning stabilise the ther-
mistor resistance, which in principle stabilises the temperature and thus the �lter’s centre
frequency. However, when running the experiment, it is clear that despite the teccs’ pid
loops, the centre frequencies of the �lters change with respect to the anti-Stokes light.
In order to keep the �lters tuned to the anti-Stokes light to ensure a high count rate

and keep the suppression of the pump high, the setpoints of the teccs must be tuned
at a faster rate than the �uctuations. Each tecc has an analogue input that changes the
setpoint of the tecc but only accepts sub-Hz modulation, setting a limit on how fast any
feedback can be implemented.
A slow feedback loop is implemented by feeding the count rate back to the tecc, as

shown in Fig. 6.7.�e count rate is read o� one of the spads by a computer that controls
two outputs of amV-leveldc sourcexxiv connected to the respective teccs.�e teccs have
a 2 ΩmV−1 setpoint tuning for the 10 kΩ thermistor used in this experiment.�e loop
has a simple implementation, addressing one tecc at the time doing these steps: (1) reads
the current count rate from the spad, (2) changes the voltage by 2mV, (3) waits for 3 s,
(4) reads the count rate again and keeps the new voltage if the count rate has increased or
reverts to the previous voltage if not. A�er completing this procedure for both �lters in
sequence, the procedure is repeated but with a voltage change of −2mV.

�e long wait time of 3 s between changes in the setpoint is due to the limit on the
speed of the modulation set by the tecc.�e full cycle takes 12 seconds, meaning only
small changes over slow timescales can be compensated for by this sub-Hz, gentle lock.
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Figure 6.17. Count rate stability and ambient temperature. (a)�e single-click count rate of one
spad when both �lters are in place in the heterodyne arm, controlled by teccs and their setpoints
dynamically tuned.�e dips in the count rate happens over timescale that is short comparable
to the feedback loop bandwidth. (b) A histogram of the measured count rate, showing that even
though the count rate has deep dips as shown in (a), the distribution is skewed towards high count
rates. In fact, 98% of the time is spent measuring the 10% highest count rates. (c)�e ambient
temperature in the room over the same time period as panel (a). (d)�e normalised spectral
density of the count rate and temperature over the same 15 hour period, showing features around
a 15 minute period.

Figure 6.17 shows the count rate whilst the feedback loop is running, where the impact of
the ambient temperature �uctuations is evident.�e deep dips in the count rate coincide
in time with when the fan in the air-conditioning ramps up, giving a rush of cold air.�is
e�ect happens at a fast timescale that the lock does not work well to counteract. However,
these events typically have a width of <30 s, and thus over time have little impact. As the
histogram in Fig. 6.17(b) shows, the count rate is in the top 10% for more than 98% of the
time.

pump input power stabilisation. �e power of the pump �eld can �uctuate due to
for instance temperature changes.�is is unwanted as the intracavity photon number is
linearly dependent on the pump power, and the optomechanical coupling rateG ∝

√
Ncav,

meaning that the heterodyne signal will be a�ected [the sideband cooling and variance
baseline changes, see Eq. (6.40)]. As the experiment runs for approximately 60 hours to
obtain the measurement data, the dri� in the power can be signi�cant over this time, and
therefore stabilising the power is bene�cial.
To stabilise the pump power a computer controlled pid feedback loop is set up, as

shown in Fig. 6.18.�e pump laser is ampli�ed by an edfa due to the many taps and
multiple decibels of insertion losses before the pump reaches the cavity, so by controlling
the ampli�cation, the pump power can be stabilised. In order to measure the pump power,
a weakly re�ecting beamsplitter is inserted just before the pump reaches the cavity to
make sure power �uctuations are suppressed (only the circulator for separating out the
backscattered anti-Stokes and a polarisation controller comes a�er the power stabilisation
loop). Feeding back the measured optical power to the edfa current completes the loop.
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Figure 6.19.Measurement of optical pump power stability. (a)�e deviation in the measured power from the pid setpoint of
500 µW power shown for the �rst seconds as the pid is turned on.�e pid loop operates every 21ms on average, corresponding
to a 47Hz rate. (b)�e edfa current as set by the pid for over the same time window as panel (a). (c,d) Long term optical power
deviation from setpoint and edfa current for the locked and free running system.�e dashed line indicates the time at which
the pid is turned o�, letting the power run free, and thus the edfa current kept constant as there is no feedback. (e) Histograms
of the optical power deviation from the setpoint for the stabilised (top) and free running (bottom).�e standard deviation of
the locked power is 41 nW or 8 ⋅ 10−5 relative to the setpoint.

xxv �orlabs PM100D with
a S155C probe

xxvi �orlabs EDFA100P

Figure 6.18. Schematic of
the optical pump power
stabilisation.�e variable
optical attenuator is used
to ensure the edfa does
not operate close to its low
threshold or maximum
ampli�cation.

�e pid controller is implemented in Python, reading optical power from a power
meterxxv and tuning the current on the edfaxxvi accordingly. As there is no friction or
hysteresis in the system, only a proportional control is needed, and the values of the integ-
rative and derivative coe�cients are set to zero.�e speed of the Python loop is limited
to approximately 21ms by the readout time of the optical power meter. If a faster loop is
needed, the power meter could be swapped for an analogue photodiode connected to a
pid controller and a voltage-controlled variable optical attenuator.�e feedback speed
will then be limited by the bandwidths of the pd and voa.
To test the performance of this power locking setup, the optical power readings are

logged with the lock engaged and free running to compare. Figure 6.19 shows the result
from just under 10 hours of logging.�e histogram of the deviation from the setpoint
whilst locking [Fig. 6.19(e)] shows a distribution around the setpoint with a standard
deviation of 41 nW, which means the lock keeps the power within a relative deviation of
approximately 1.6 ⋅ 10−4 to the setpoint for 68% of the time.

localoscillatorlaser frequency stabilisation. When performing the heterodyne
detection, the frequency separation between the anti-Stokes signal and the heterodyne
local oscillator (lo) should be constant between each captured trace to ensure a uniform
heterodyne frequency over the course of the measurement.�is is bene�cial so that the
time-traces can be e�ectively bandpass �ltered to suppress shot noise, as well as to mix
down the signal correctly for the tomography of the mechanical state, as explained in the
next section, Section 6.5.
At the time these experiments were performed, a second laser was used as the hetero-

dyne lo, so ensuring a constant frequency between the pump and lo lasers is desirable.
As the pump laser is locked to the pumpmode of the cavity, the absolute wavelength of the
pump laser can dri� over time due to for instance temperature changes in the resonator,
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Figure 6.20. Locking of the
heterodyne local oscillator
frequency.

xxvii �orlabs DET08CFC

xxviii HP 8562E

xxix Tektronix AFG1062

causing the pump resonance to move in absolute frequency. When the absolute frequency
of the pump light changes, the anti-Stokes photons change their frequency correspond-
ingly, and thus the lo laser must change its frequency to keep the heterodyne frequency
stable.
A slow frequency lock of the lo laser to the pump laser is implemented by measuring

the beat note between the two lasers and feeding any deviation from the desired beat
note the back to the lo laser frequency, see Fig. 6.20.�e beat note is measured on fast
photodiodexxvii using an electronic spectrum analyser.xxviii�e lo laser is tuned so that the
beat note with the pump is at the desired frequency separation υbeat = (ωm+ωhet)/(2π) =
8.16GHz+214MHz, then the beat note is remeasured every seconda pid uses the di�erence
between the measured and the desired υbeat to control a dc voltagexxix fed to the piezo on
the laser.�e pid is computer-implemented with only the proportional coe�cient enabled.
Since the data for this work was obtained, an alternative approach for generating the

lo with better frequency stability was based on using an optical modulator on the pump
laser local oscillator, see Fig. 6.7.�e modulated lo has been used in subsequent work,
including an extension to the work here, described brie�y in the outlook section of this
chapter.

6.5 data analysis, results and discussion

A�er having described the experimental setup, how the system is characterised, and how
the data is captured in the previous section, the focus now turns to how the data is pro-
cessed and interpreted.�e goal is to obtain the evolving quadratures of the mechanical
state for each measurement in the ensemble, for each of the event types. From the quad-
ratures, the dynamics of each of the generated states can be inferred by averaging over the
corresponding ensemble of measurements, and the generated states can be characterised
in phase space by building a two-dimensional histogram of the quadrature values at the
time of the event.

�is section �rst describes how the captured heterodyne signal is �ltered and demodu-
lated to extract the mechanical quadratures. With knowledge of the time domain quad-
ratures, the dynamics of the mean occupation of the mechanical state is inferred, and via
tomography, the Gaussian initial thermal and non-Gaussian phonon-subtracted mechan-
ical states are characterised in phase space by their s-parametrised Wigner functions.
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Figure 6.21. Filtering and demodulation of the heterodyne signal. (a) Schematic of the analysis procedure, all performed digitally
in post-processing. (b,c) Six example time domain traces overlaid for each step of the procedure. (d) Frequency domain by
Fourier transformation of the time domain data.

6.5.1 Calculating the mechanical quadratures by demodulation

�e heterodyne signal gives information about the quadrature of the anti-Stokes light emer-
ging from the resonator, and because the mechanical state is mapped onto the scattered
anti-Stokes light, the signal is correlated to the mechanical state.�e details of how the
measured quadratures on the heterodyne relate to the mechanical quadratures, see Ap-
pendix B.�is section considers technically how the signal from the balanced detector
can be demodulated to give its quadratures components via a demodulation technique.
�e demodulation mixes down the heterodyne signal with quadrature signals at the het-
erodyne frequency. To improve the signal-to-noise ratio of the anti-Stokes signal and thus
achieve a greater overall measurement e�ciency, the heterodyne signal is �rst digitally
�ltered in post-processing to remove broadband vacuum noise.

�e procedure for the �ltering and demodulation is shown in Fig. 6.21 and is described
in the following.
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Figure 6.22. Butterworth
bandpass �lter for initial
�ltering of heterodyne
signal: centre 214MHz,
3-dB-bandwidth 50MHz,
order 2.

xxx �e digital �lters and
the discrete Fourier trans-
formation used in this work
are performed in Python
using the Scipy package
(which relies mostly on
Fortran implementations
for its routines).

xxxi iq modulation is a
widely used technique, for
example underpinning
many digital communica-
tion systems, such as the
Wi-Fi standard.

pre-demodulation digital bandpass filtering. �e measured heterodyne signal
contains frequency components over a wide range set by the GHz-bandwidth of the meas-
urement,but only a small portion of the spectrum contains the anti-Stokes signal of interest.
�erefore, by �ltering the heterodyne signal in a narrow band around the anti-Stokes car-
rier frequency reduces the frequency components that are adding noise.�is improves
the signal-to-noise ratio of the heterodyne measurement, allowing to extract more precise
quadratures.�is step is essential to resolve the non-Gaussianity of the phonon-subtracted
thermal states – a comparison between �ltered and un�ltered results is shown later in
Fig. 6.31.

�e spectral part of interest in the heterodyne signal is the anti-Stokes signal, which
is primarily within a band given by the e�ective mechanical linewidth of ∼10MHz at
the heterodyne frequency ωhet/(2π) = 214MHz. �e bandwidth of the time domain
measurement is set by the oscilloscope sampling rate and the heterodyne detector. Using a
sampling rate of 3.125GSs−1, the heterodynemeasurement contains frequency components
up to half this frequency, as shown in Fig. 6.23(a).�e bandwidth of heterodyne detector
is an e�ective 400-MHz lowpass �lter on the heterodyne data resulting in a roll-o� in the
spectrum from 400MHz. Because the anti-Stokes signal is below the cuto� frequency of
the detector and also much narrower than the detector bandwidth, the e�ective �ltering
of the detector does not in�uence the anti-Stokes signal (Enzian [165] discusses this in
more detail).
Knowing the bandwidth and centre frequency of the anti-Stokes signal, a suitable

bandpass �lter is chosen to keep the anti-Stokes signal and remove broadband noise. A
Butterworth �lterxxx in a bandpass con�guration with a centre frequency equal to the
heterodyne frequency, 3-dB-bandwidth of 50MHz and of order two is used, see Fig. 6.22
for the �lter’s transmission spectrum. Figure 6.23 shows the e�ect of the �lter, displaying
spectra before and a�er the bandpass �ltering.�e �lter bandwidth is chosen to be broader
than the e�ective mechanical linewidth, 2γe� = 11MHz, to ensure the signal itself if not
�ltered out [406].

demodulation to obtain the quadratures. �e term quadrature is borrowed from
signal processing and electrical engineering where a signal at some frequency can be
decomposed into its orthogonal components, the so-called in-phase and (out-of-phase)
quadrature signals. To extract the optical quadrature of the anti-Stokes light that is emer-
ging from the cavity, the quadratures at the heterodyne carrier frequency can be computed
via a technique o�en referred to as in-phase–quadrature (iq) demodulation [506].xxxi�e
procedure is shown in Fig. 6.21(a).
To explain the demodulation technique and how it enables tomography of the mech-

anical state it is important to understand the characteristics of the generated states and
the technical details of the heterodyne measurement – the latter is illustrated in Fig. 6.24.
Technically, there are three subtleties that must be examined, the rotating measurement
basis of the heterodyne measurement, the (lack of a) phase reference for the local oscil-
lator light �eld, and the �xed phase o�set between the heterodyne signal carrier and the
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Figure 6.23. Spectral content of the heterodyne signal before and a�er bandpass �ltering. (a) Pre
�ltering, showing 25 individual anti-Stokes spectra and the mean of 2000 spectra in a darker shade.
�e mean of 2 ⋅ 104 spectra for vacuum input to the heterodyne is shown in black.�e dashed line
indicates the heterodyne frequency and the grey dashed lines in the inset indicates the bandwidth
of the bandpass �lter. (b)�e same data as in panel (a) a�er passing the data through the bandpass
�lter shown in Fig. 6.22.

Figure 6.24. Pictorial illus-
tration of the heterodyne
measurement bases for
a single time trace.�e
measurement basis X′′ , P′′

is rotating with the het-
erodyne frequency ωhet
compared to the anti-Stokes
light �eld quadrature X′ , P′.
When mixing-down, the un-
known phase between the
carrier and down-mixing
lo causes a �xed phase ϕ
between basis of the mixed
down quadratures and the
measured, rotating quadrat-
ure.

demodulation local oscillator used in post-processing. A�er describing the demodulation
in words, a calculation follows.
Considering the rotating measurement basis �rst: because of the di�erence in fre-

quency between the anti-Stokes carrier and local oscillator �elds, the heterodyne measure-
ment can be thought of as a homodyne measurement with a rotating measurement basis.
�e output of the heterodyne measurement corresponds to a quadrature of the anti-Stokes
light �eld in a basis given by the the phase θ = ωhett between the two light �elds incident
at the heterodyne beam splitter, which is changing with time at a speed equal to the het-
erodyne frequency. In the notation of the cartoon picture in Fig. 6.24, the measurement
basis X′′, P′′ is rotating with respect to the anti-Stokes light quadratures X′, P′.
When the heterodyne frequency is faster than the evolution of the mechanical state,

this measurement can resolve how both of the quadratures are moving in phase space, as
the rotation of the measurement basis is faster than the state, hence enabling the measure-
ment to sample the state across a range of di�erent basis rotations before the state moves.
�e timescale of the mechanical state evolution in the experiment can be inferred from
the Langevin equations [Eq. (5.23)] to be at a rate of order γ, which is small in comparison
to the heterodyne frequency: γ/ωhet ≃ 1.5 ⋅ 10−2, and therefore the experiment is within
the regime where the heterodyne signal describes the state evolution for a rotating basis.

�e stability of measurement basis rotation speed is important for the demodulation
procedure, as a change in the speed will result in attributing a datapoint to the wrong
position in phase space.�e variability of the rotation speed is given by the frequency
stability of the lo �eld over the time scale of each time trace.�e linewidth of the lo
laser is <0.1 kHz, corresponding to a coherence time of ∼10ms, which is several orders
of magnitude longer than the measurement time of 4 µs.�us, the measurement basis
rotation speed can be considered constant over a single time trace.

�e second subtlety, the lack of a phase reference for the local oscillator �eld in the
heterodyne measurement, does not pose an issue for the current experiment because
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Figure 6.25. Butterworth
lowpass �lter for for remov-
ing the harmonic from the
demodulated signal: cut-
o� frequency 112.5MHz,
order 7.

the generated states are symmetric around the origin in phase space. To perform phase-
sensitive tomography in order to characterise states with angular dependence in phase
space, the phase of the lo �eld must be known so that for each measurement, not only
is the measurement basis rotation is constant in speed over the measurement, but the
starting point is known. Consider a single time-trace measurement: when the oscilloscope
is triggered, if the phase of the lo �eld is unknown, the start rotation θ0 of the rotating
measurement basis in relation to some choice of an optical quadrature is unknown. If an
ensemble of measurements is used to populate a two-dimensional histogram, but the basis
of the measurements are uncorrelated and unknown, any angular dependence in phase
space is washed out. However, for a symmetric state like in this work, there is no angular
dependence and thus random θ0s have no e�ect on the tomogram.
Lastly and similarly, because of the lack of a phase reference for the lo optical �eld, the

phase o�set between the laser lo and demodulation lo is unknown.�is adds another
random o�set in the starting phase for each measurement in the ensemble, called ϕ in
Fig. 6.24. As the states characterised in this work have no angular dependence in phase
space, this o�set is not of importance.

demodulation calculation. �e following calculation shows that the demodulation
procedure indeed yields the mechanical quadratures and illustrates mathematically the
points above.

�e heterodyne voltage signal can be expressed in terms of the �eld operators of the
light emerging from the cavity âout [Eq. (6.36)]

U(t)∝ âout(t)e−iωhet t + â†out(t)eiωhet t . (6.64)

As shown in Fig. 6.21, the demodulation procedure mixes down (multiplies) the hetero-
dyne signal with the quadrature signals cos(ωhett + ϕ) and sin(ωhett + ϕ), where the ϕ
accounts for the unknown phase between the heterodyne carrier and the quadrature sig-
nals to bemultipliedwith the heterodyne signal. Performing themultiplication for the case
of the cosine, de�ning the shorthand θ ≡ ωhett, the demodulated signal can be expressed

scos(t) ≡ U(t) cos(θ + ϕ)∝ A(θ , ϕ) âout(t) + A∗(θ , ϕ) â†out(t) , (6.65)

where, using the identity cos(x) = [eix + e−ix]/2,

A(θ , ϕ) =e
i(θ+ϕ) + e−i(θ+ϕ)

2
e−iθ = e

iϕ

2
[1 + e−i2(θ+ϕ)] . (6.66)

Using a lowpass �lter with cuto� frequency ωhet/2 (Fig. 6.25) a�er the down-mixing re-
moves terms oscillating at 2ωhet. Hence, the second term can be discarded, resulting in

ALP = cos(ϕ) + i sin(ϕ) , (6.67)
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by Euler’s formula. Inserting this result back into the expression for the demodulated
signal (6.65),

scos(t)∝ [âout(t) + â†out(t)] cos(ϕ) + [âout(t) − â†out(t)] i sin(ϕ) . (6.68)

By the de�nition, the quadratures of the anti-Stokes �eld from the cavity in terms of its
creation and annihilation operators are

Xout = 2−1/2(â†out + âout) (6.69)

Pout = 2−1/2i(â†out − âout) , (6.70)

and thus the demodulated signal Eq. (6.68) can be expressed in terms of the output �eld
quadratures

scos(t)∝ Xout(t) cos(ϕ) − Pout(t) sin(ϕ) , (6.71)

which means the demodulated signal is proportional to a quadrature in a basis rotated by
ϕ with respect to the optical quadrature. As long as ϕ does not vary over the timescale of a
single trace (which is guaranteed by the milli-second coherence time of the lo laser in this
experiment), the demodulated signal represents the evolution of the rotated quadrature.
A similar analysis for demodulating with the sinusoid local oscillator sin(ωhett + ϕ)

can be done, resulting in

ssin(t)∝ Xout(t) sin(ϕ) + Pout(t) cos(ϕ) , (6.72)

i.e., the sinusoidally demodulated signal gives the orthogonal, similarly rotated quadrature.
�us, the demodulated, low-passed quadrature signals are proportional to the rotated
optical quadratures of the incoming light. Because of the milli-second coherence time of
the lo laser and the practically in�nite coherence time of the demodulation signal, ϕ will
be constant over the duration of a single time trace.�at means that for each time trace
i captured on the oscilloscope, the demodulated quadratures represent the mechanical
quadratures up to some phase ϕi .

�e rotations ϕi of the demodulated versus mechanical quadratures would be import-
ant if the generated states to be characterised where non-symmetric about the origin in
phase space. If that were the case, the demodulation phases ϕi would have needed to be
known for each individual time trace in order to rotate each measurement to a common
basis before using the measurement ensemble to build a phase space histogram. But be-
cause the states characterised in this work are symmetric in phase space they have no
angular dependence in phase space and thus the phase ϕ is not of importance as long as
it is constant over a single trace: for an ensemble with a large number of measurements,
randomly assigned ϕis will ensure the measurements are distributed over all rotations.
Figure 6.26 shows the evolution in phase space for a vacuum trace and a one-phonon-

subtraction event trace as determined by this demodulation technique.
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Figure 6.26. Phase space evolu-
tion for a single time trace of
duration 4 µs, 1.25 ⋅ 104 points.
(a) Evolution for a trace where
the vacuum is measured on
the heterodyne beamsplitter,
start and end points annot-
ated. (b) Evolution for a trace
where the anti-Stokes signal is
measured for a one-phonon-
subtraction event occurring at
t = t0.

note on computer ram use. Due to the large dataset considered in this work, the
analysis requires a computer with generous memory. Considering only one event type,
the full dataset is 2.4 ⋅ 105 time traces with 1.25 ⋅ 104 data points each, giving a total of
3 ⋅ 109 data points. A typical �oating number representation uses 64 bits per �oat, giving
a total of 25 GB for storing a single copy of the time-domain data for one event type.
Considering the �ltering operations require Fourier transforming the data, then mixing
down to two quadratures, et cetera, it is clear that the memory requirements are signi�cant.
Using a computer with 64 GB memory and with some compression of data and memory
management, the analysis can be performed for one event type at the time.

6.5.2 Dynamics of the mechanical occupation and the overall measurement e�ciency

From the demodulated quadratures, the dynamics of the mean occupation about the
di�erent heralding event types can be calculated from the ensemble variance at each time
step. Furthermore, the ensemble variance also gives the overall measurement e�ciency η,
a measure of how e�ectively the mechanical state is transduced onto the anti-Stokes light
and then detected by the heterodyne measurement.

�e computed ensemble variance in the heterodyne signal for each time step, σ2(t),
is shown in Fig. 6.27 for a small ensemble of 104 time traces for one-phonon subtraction
events, as well for a vacuum input to the heterodyne setup.�e ensemble variance is plot-
ted as function in time about the heralding time t0 for the subtraction events, whereas
the vacuummeasurements are semi-randomly conditioned simply by triggering the meas-
urement at a �xed rate. �e vacuum measurement is used to normalise the obtained
quadratures to units of vacuum noise.

�e parameter t0 is the o�set between the time when the oscilloscope is triggered and
the time when the heterodyne detector measures the one-phonon subtraction events. It is
a global o�set for all traces of the one-subtraction event type, depending primarily on the
oscilloscope trigger level used, cable lengths from the spad to the oscilloscope and spad
processing delays.�e parameter is determined by the ensemble variance, set to the time
when the ensemble variance reaches its maximum. For the one-subtraction measurement
t0 ≃ −33ns.
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Figure 6.27.�e dynamics of the heterodyne signal variance and its relation to the measurement
e�ciency. (a) 100 individual time traces measuring the optical vacuum noise on the heterodyne.
�e ensemble standard deviation for each time for 104 traces is shown. (b) Similar plot as (a) but
for single-phonon subtraction, i.e., with anti-Stokes light impinging on the heterodyne detector
and triggering o� single-photon events. (c)�e ensemble variance of the vacuum and anti-Stokes
signals, normalised so that the vacuum noise has a value of 1.�e height of the signal above the
vacuum far away from the click event is the product of the initial thermal occupation and the
measurement e�ciency, h = η _nth. Comparing the height far away from the subtraction event to
the height of the peak at the heralding time t = t0, the variance nearly doubles.�e deviation from
the expected doubling is attributed to spurious clicks lowering the �delity of the heralding as well
as the digital �ltering of the heterodyne signal. Using only 104 traces for this calculation, some
noise can be seen on the variance curve.�e symmetry of the ensemble variance with respect to
the heralding time is captured by the theoretical model (6.40), essentially due to the coherence
time of the anti-Stokes photons.

In Fig. 6.27, it can be seen that the variance above the vacuum noise at maximum
variance roughly doubles compared to the variance far from the heralding time. At times
far from the heralding time, the variance of the heterodyne signal above vacuum re�ects
the mean occupation of the randomly conditioned state, thus the initial sideband cooled
state’s occupation. Similarly, at the heralding time, the height above the vacuum noise
re�ects the subtracted state’s mean occupation. De�ning the value of the variance far
away from the heralding time σ2init ≡ σ2(t → ±∞), the expected factor of increase for n
subtracted phonons can be expressed via Eq. (6.40),

Vn− = σ2n−(t = t0) − 1
σ2n−(t → ±∞) − 1 = n + 1 , (6.73)

for n ∈ { 1, 2}. For the one-phonon subtraction event the experimentally observed en-
semble variance increase factor is V1− = 1.94, close to the predicted doubling of the mean
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xxxii Muhonen et al. [421]
demonstrate a single-pulse
imprecision for the mech-
anical state of nine times
the mechanical zero-point
motion. However, due to
coupling to other mechan-
ical modes, the conditioned
state width is limited to 58
times the mechanical zero-
point motion, which corres-
ponds to an s-parameter of
−(582) = −3364 [418].

thermal occupation.�e di�erence between the experimentally determined variance and
the theoretical prediction is attributed primarily to the pre-�ltering before the quadrature
demodulation (see Section 6.5.4 for the impact of �ltering), as well as the small in�delity
of the heralding operations due to the spurious spad clicks from dark counts and pump
photons incident on the detectors.
Figure 6.27 also shows that the ensemble variance is essentially symmetric around

the heralding time, as expected from the theoretical model (6.40). A qualitative picture
for understanding the shape of the ensemble variance is similar to that of a correlation
measurement: the coherence time of the anti-Stokes photons used for click measurements
is related to the optical andmechanical decay rates of the system,and the temporal envelope
of the photons leaving the cavity is symmetric around the heralding time.

determining the overall measurement efficiency. �e height of the anti-Stokes
ensemble variance above the vacuum noise gives information about how e�ciently the
heterodyne detector measures the mechanical state. As a simple picture, for a heterodyne
measurement in the steady state and normalised to the vacuum noise, a perfect measure-
ment e�ciency η = 1 wouldmean an average occupation of _nth phonons in themechanical
mode gives an ensemble variance of

_nth above the vacuum on the heterodyne. Conversely,
if no di�erence is observed in the ensemble variance between vacuum and the signal
inputs to the heterodyne, there is no measurement e�ciency, η = 0.

�erefore the measurement of the initial thermal state far from the heralding event
and the vacuum measurement can be used to determine the overall e�ciency [Eq. (6.39)]

σ2init = η _nth + 1, Ô⇒ η = σ2init − 1_nth
= 0.908(2)% , (6.74)

for the data presented in this work.
�e overall e�ciency can be used to calculate the smoothening parameter s of the

experiment, which indicates how much the phase-space distribution smoothed compared
theWigner and Husimi Q functions. A perfectly e�cient measurement η = 1 would result
in the Husimi Q function of the mechanics being measured by the heterodyne.�e s
parameter for a heterodyne setup is given by

s = η − 2
η

= −219.3(5) , (6.75)

for this experiment [Eq. (6.44)]. �e value corresponds to a total added noise corres-
ponding to ∣s∣/2 ≃ 110 mechanical quanta by the measurement. At the time when this
experiment was carried out, the achieved s parameter constituted a 15 times improvement
to the forefront of optics-based mechanical tomography set by Muhonen et al. [421],xxxii

where fast, pulsedmeasurements outside the resolved sideband regimewere used. A recent
publication by Patel et al. [422] demonstrated phonon-subtraction to a thermal state in
optomechanical crystals in an experiment similar to the work presented here but only for
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Figure 6.28. Dynamics of the mechanical occupation about the heralding time. For the single- and
two-phonon subtraction cases the variance increases by factors of 1.94 and 2.94, respectively, at
the time of the herald event compared to the initial variance of 7.96.�e Poissonian error bars of
relative size (2.4 ⋅ 105)−1/2 ∼ 10−3 are not shown.

single-quanta operations, showing s ≃ −1340, or about six times higher added noise than
the work described here.

scaling to units of the mechanical zero-point. With a known overall measure-
ment e�ciency η and a known initial mean occupation due to sideband cooling, the units
of the obtained quadratures can be scaled from vacuum units to themechanical zero-point
�uctuations, xzp.�e cooling factor

_nth/
_n ≃ 1.69 must be taken into account because the

experiment does not provide an independent readout of the mechanical state, but instead
the mechanical state is sideband-cooled during readout, scaling the mean variance on the
heterodyne signal.�e mechanical zero-point �uctuations are given by

σ2init − 1 =
_nthη = _nx2zp , (6.76)

where Eq. (6.74) has been used.�us, the factor to be applied to the quadratures to cast
them from units of vacuum noise to mechanical zero point is

N = [η
_nth
_n
]
−1/2

. (6.77)

multi-subtraction ensemble variance. Figure 6.28 shows the full ensemble vari-
ances for both the one- and two-phonon-subtracted mechanical states, as well as for an
ensemble of randomly conditioned initial thermal state measurements and for the vacuum
measurement.�e measurement of the initial thermal state is useful to characterise the
initial Gaussian state, and con�rm that it agrees with the data for the one- and two-phonon-
subtracted states far away from the heralding time t0. Because the number of time traces
per event type used to compute each time step is nsamp = 2.4 ⋅ 105, the statistical Poissonian
error bars are very small – of relative size n−1/2samp ∼ 10−3 – and thus not shown.
For the single- and two-phonon subtraction cases, it is observed that at the time of the

herald event, the variance increases by factors of 1.94 and2.94, respectively, compared to the
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initial variance of 7.96.�ese numbers are close to the doubling and tripling of the variance
above the vacuum as expected from Eq. (6.40).�e initial bandpass �ltering is the main
source of discrepancy due to the smoothening it represents (see Section 6.5.4). Curves of
the expected dynamic response of the ensemble variance of an obtained quadrature as the
mechanical state is taken out of equilibrium [Eq. (6.40)] are overlaid for each event type.
�e theoretical curves use the heralding time t0 as the only free �tting parameter, other
parameters are inferred from separate measurements.

6.5.3 Tomography of the mechanical state at the time of subtraction

Having calculated the mechanical quadratures of an ensemble of measurements, a two-
dimensional histogram of the values of the quadratures at a given time can be produced.
Such a histogram corresponds to the s-parameterised Wigner function of the heralded
state at the chosen time. �is is a tomographic technique because the histograms are
produced by varying the state of the detector (here the phase between the heterodyne lo
and the anti-Stokes light) such that the state is projected onto a range of bases, sampling
the state at a range of angles in phase space [507].�e statistical error in the histograms
is Poissonian as there is an integer number of measurements distributed over an integer
number of bins [179, Ch. 5].
For a thermal state, the phase space is a Gaussian feature centred at the origin, whereas

for the subtracted states the distribution becomes non-Gaussian displaying a ring-like
shape centred around the origin.�e experimentally determinedphase-space distributions
Ws are plotted in Fig. 6.29 for the initial thermal state, the single-phonon subtracted state,
and the two-phonon subtracted state.�e single- and two-phonon subtracted cases show
the highly non-Gaussian nature of the states.

radii of the ring-structures in phase space. As the states are phase invariant and
thus symmetric around the origin, the non-Gaussianity can be quanti�ed in terms of the
radius of the ring shape,which increases with the number of subtracted quanta.�eoretical
predictions for the radii of the phase-space rings are calculated in Appendix B.2.4. For
one-phonon subtracted state the radius is

X1− =
¿
ÁÁÀ 1 + η _n

η _n
(η _n − 2) , (6.78)

when η _n > 2 and for the two-subtracted state

X2− =
¿
ÁÁÀ 1 + η _n

η _n
[−4 + η _n +

√
2(4 + (η _n)2)] . (6.79)

forη _n > 2
√
6−4.�e respective radii are indicatedby the dash-dotted lines in Fig. 6.29(c,d),

which agree with the phase-space distributionsWs experimentally obtained.�e bounds
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Figure 6.29. Phase-space tomograms for the four di�erently conditioned states. (a) As a reference, the phase-space distribution
(HusimiQ function) of the optical vacuum,measured when no optomechanical signal is impinging on the heterodyne detector.
(b-d) Reconstructed s-parameterisedWigner functionsWs for the (b) initial, (c) single-phonon subtracted and (d) two-phonon
subtracted mechanical thermal states.�e axes are plotted in units of the mechanical zero-point �uctuations xzp [Eq. (6.77)].
For single- and two-phonon subtraction, the increasingly non-Gaussian shape of the phase space is observed, with the dash-
dotted lines indicating the theoretically predicted maxima for theWs functions. All panels show slices of the phase space at
Pm = 0 on the top, and the standard deviation of the �tted Gaussians to the vacuum and initial thermal state, ς, are annotated.
�e error bars in the histograms are Poissonian error bars.
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Figure 6.30. Dynamics and non-Gaussian marginals at the heralding time. (a,b) Marginal distributions for the X-quadrature
of the mechanical oscillator as a function of time for (a) one- and (b) two-photon subtraction. (c)�e marginal distributions
at heralding event, t = t0, for the di�erently conditioned mechanical states.�e histograms are constructed from the observed
values of the heterodyne signal at t0, whereas the dashed lines represent the theoretical prediction of the marginals given the
measurement e�ciency and initial mechanical occupation.�e indicated errors in the histograms are Poissonian.

determine the overall e�ciencies needed to resolve the phase-space rings, namely

η1− > 2_n ≃ 0.62% , η2− > 2
√
6 − 4
_n

≃ 0.28% (6.80)

for the one- and two-phonon subtracted states.

probability density marginals. Like the density operator of a quantum state, the
Wigner quasiprobability distribution fully characterises a quantum state, and the expect-
ation value of any observable can be computed from it [179]. Here, due to ine�ciencies
in the measurement, it is the s-parameterised Wigner function that is obtained, which
is a smoothened Wigner function where the degree of smoothening is captured by the s
parameter. Due to the imperfect reconstruction of theWigner function, the probability dis-
tributions calculated fromWs are also smoothened in comparison to the true probability
marginals.
From theWs tomograms, the smoothened probability distributions of the mechanical

quadratures can be computed. Figure 6.30(a,b) show the experimentally obtained and
predicted marginals of the Xm-quadrature distribution,

Pr(Xm)∝ ∫ ∞

−∞
dPmWs(Xm, Pm) , (6.81)

as a function of time about the herald event.�e plots illustrate how the mechanical state
transforms by the single- and two-phonon subtraction operations from an initial Gaussian
state to a non-Gaussian state with a bimodal quadrature probability distribution, and then
returns back to equilibrium, similarly the dynamics of the mean occupation.

�e non-Gaussianity generated by the subtractions is most pronounced at the herald-
ing time, and the marginals at this time are compared in Fig. 6.30(c).�e bimodal nature
of the distribution is more distinct for the two-phonon subtracted state in comparison
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Figure 6.31.Comparison of initial �ltering passbandwidths.�e bandpass �ltering of the heterodyne signal before demodulation
reduces the contribution of the vacuum noise. No �ltering is compared to 50MHz and 25MHz �lter widths. (a) Tomograms
of the resulting parametrised Wigner functionsWs given the three di�erent �ltering conditions. When no �lter is applied, the
ring shape of the state cannot be distinguished. (b) Computed marginal distributions for the corresponding tomograms in (a).
�e dark lines show the expected distribution given the computed measurement e�ciency. (c)�e time domain ensemble
variance normalised to the the optical vacuum noise for the three �ltering bandwidths (measurement data as solid lines and
theoretical curves in dashed lines). With decreasing bandpass width, the vacuum noise is reduced in absolute terms, giving a
comparatively larger variance in the signal.�e measurement e�ciency is increasing as the separation between the vacuum
noise and signal baseline is increasing. However, narrow-bandwidth �ltering smoothens the ensemble variance, increasingly
distorting the measurement ensembles compared to the theoretical curves.

to the single-phonon subtracted case, in line with the overlaid theoretical predictions as
derived in Appendix B.

6.5.4 Impact of the bandpass pre-�ltering

�e initial bandpass �ltering of the heterodyne signal reduces the broadband vacuum
noise relative to the signal, increasing the measurement e�ciency. Figure 6.31 compares
the results when no �lter is applied to two di�erent �lter bandwidths.
If the initial bandpass �ltering is not applied, the overall measurement e�ciency is

reduced to about one quarter, ηun�lt ≃ 0.25%. �is results in an s parameter of larger
magnitude, sun�lt ≃ −814, corresponding to about 407 added noise quanta compared to 110
when the �ltering for the results presented earlier is applied. With the higher number of
added noise quanta for the un�ltered case, theWs distribution is smoothened to an extent
where ring-like structure in phase space cannot be resolved for one-phonon subtraction
events, as in shown in Fig. 6.31(a). �at ηun�lt is insu�cient to resolve the ring in the
phase space is as expected from Eq. (6.80), where the minimum e�ciency for resolving
the circle was calculated to be 0.62%.�e position marginal of theWs distribution shows
no bimodality, see Fig. 6.31(b).
Conversely, �ltering more aggressively than what was done for the results presented

earlier, using a passband of only 25MHz instead of 50MHz, the overall e�ciency ηnarrow ≃
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1.59%, giving approximately 62 added quanta of noise.�e contrast of the ring to the
surroundings is improved as shown in Fig. 6.31(a).

�e question becomes how aggressively can one �lter, will the e�ciency keep increas-
ing? In the limit of narrowing the �lter, as long as there is any signal in the band, there
will also be some residual vacuum noise le� in the same band, which means the e�ciency
must converge to a �nite value. However, before reaching this limit, the impact of narrower
�ltering will decrease the anti-Stokes signal itself, and the signal-to-noise will not improve
as both the signal and vacuum is �ltered equally in relative terms. But even before that,
the �ltering starts to a�ect the ability to resolve the quadrature dynamics, resulting in a
reduced height of the peak in the heterodyne variance.
Figure 6.31(c) shows that narrower �lter increases the contrast in signal variance to

vacuum variance, but comes at the expense of smoothening the ensemble variance. As the
bandpass width decreases, the vacuum noise is reduced, resulting in a smaller ensemble
variance in the vacuummeasurement.�e ensemble variance in the signal is also reduced
as the �lter pass band is narrowing, but relatively less than for the vacuum because most
of the signal peak is unchanged by the �ltering, and thus the relative signal-to-noise is
improving.When the �lter bandwidth becomes narrower than the bandwidth of the signal,
the �ltering will not improve the signal to noise any further.

6.6 conclusion and outlook

�is chapter demonstrates preparation and characterisation of non-Gaussian states of
mechanicalmotion via optomechanics.�e experiment utilises photon counting for condi-
tioning optical heterodyne measurements to perform tomography on the generated states.
Together with the simultaneous work by Patel et al. [422], it is the �rst experiment to show
generation of non-Gaussian mechanical states via single- and two-phonon subtraction
from a thermal state.�is work advances the state of the art in optics-based mechanical
phase-space tomography by setting a new record for minimising the measurement noise,
achieving an added noise corresponding to only 110 mechanical quanta, which is more
than an order of magnitude compared to the previous record [421]. As measurement noise
masks non-classicality of states, the reduction in added noise represents a step closer to
the currently outstanding goal of tomography of non-classical mechanical states within
optomechanics.
Furthermore, the techniques developed here can be utilised for a range of mechanical

quantum state engineering applications taking advantage of single- and multiple-phonon
addition and subtraction operations. In particular, these operations can be applied to a
mechanical squeezed state for superposition state preparation [416], using for instance
reservoir engineering promising route to generate the squeezing in such protocols [413,
508]. A high-e�ciency anti-Stokes interaction provides a means to implement a quantum
memory device that can e�ciently write and read quantum states to and from the acoustic
mode [450].
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xxxiii �e snspds were used
for click detection in re-
lated experimental work:
An optical interferometer
with phase control in one
arm was inserted before the
heralding detectors, erasing
information about the time
of phonon-subtraction.
Interference between the
subtraction events can
then be observed in the
heterodyne quadrature
measurement. A manu-
script on this project is
currently in preparation.

�ere are several routes to be pursued in parallel to improve the experiment towards
non-classical state generation and characterisation. To generate non-classical mechanical
states, it is an advantage to be close to the mechanical ground state. Operation at cryogenic
temperatures reduces the initial thermal occupation, butmore importantly, it improves the
mechanical linewidth as material contributions to the mechanical decay rate are reduced
at low temperatures [160–163]. With a smaller mechanical linewidth, the optomechanical
cooperativity improves, yielding better control over the mechanical motion.
In order to make the experiment able to characterise non-classical states, the meas-

urement e�ciency must be improved in order for the s-parameter for the tomography
to improve to avoid the non-classical features to be smoothened out.�e next section
outlines some possible improvements.

6.6.1 Avenues for increasing the measurement e�ciency

A non-unity overall measurement e�ciency limits the ability to measure non-classical
features in phase space. For an optomechanical tomography experiment the e�ciency is
fundamentally set by two parameters: the strength of the optomechanical interaction as
it sets how e�ciently the mechanical state transfers onto the optical state, and the optical
losses before detection of the optical state.

�ere are six main routes for increasing the important overall measurement e�ciency
parameter in this experiment.

�e e�ciency of the mechanical state transfer can be improved by increasing the
optical drive strength, utilising the optomechanical strong coupling available for Brillouin
optomechanical systems [64].

�e state transfer e�ciency is also enhanced by a lower mechanical decay rate. For
the crystalline barium �uoride resonator, this decay rate will be signi�cantly reduced by
operation at cryogenic temperatures.
Better optical coupling of the microresonator to the optical taper with respect to the

intrinsic cavity losses improves the readout of the optical state. To achieve this, better phase
matching between the resonator and taper is necessary, which is currently limited by the
propagation constantmismatch between the barium �uoride resonator and the silica taper.
Optimised tapered �bres or prism coupling can improve the phasematching. Furthermore,
using an anti-Stokes mode with a spatial distribution that enables particularly good taper
coupling can also yield e�ciency gains.
Using highly e�cient superconducting-nanowire single-photon detectors (snspds)

instead of the avalanche detectors currently used will allow the re�ectivity of the beam
splitter dividing the anti-Stokes light into the heralding and heterodyne arms to be reduced,
thus representing lower optical losses for the heterodyne detection setup.�e group now
has this ability as the author set up a commercial, sorption-fridge-cooled snspd system
a�er this work was carried out.xxxiii

Alternatively, an independent readout scheme, utilising a Stokes interaction for mech-
anical state preparation, followed by an anti-Stokes interaction for the readout, provides
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a route to remove the beam-splitter for state heralding completely, reducing the optical
losses further.
Lastly, implementing homodyne detection instead of heterodyne detection improves

the tomography by avoiding the added noise due to simultaneous measurement of both
quadratures.�is e�ectively relaxes the measurement e�ciency requirement, and makes
it possible to achieve an s-parameter of s > −1 for resolving non-classical features in phase
space.
Implementing these improvements provides a promising path to achieving an overall

anti-Stokes readout measurement e�ciency of >50%, which is required to observe neg-
ativity of a quantum phase-space distribution – a key signature of non-classicality and a
powerful resource for quantum-enhanced technologies.

6.6.2 Measurement cooling:�e mechanical state conditioned on no subtraction

In this work, the mechanical state is measured at phonon-subtraction events, which leads
to a substantial increase in themean occupation at the heralding time given by the number
of subtracted phonons. What if, instead, measurements were made when no phonon is
subtracted?
By the same Bayesian argument as for the one- and multi-subtraction events – where

the obtained knowledge of a subtraction event updates the probability estimation of the
state to have a larger occupation – a high-�delity no-subtraction event gives a lower occu-
pation.�at no subtraction occurred increases the probability of the state having a lower
occupation.�e absence of an anti-Stokes-photon click e�ectively heralds a cooled state.
In the current experiment, the rate of subtractions is high because of the high optical

pump power that sideband-cools the thermal state.�erefore, the measured mean occupa-
tion far away from the heralding events represents the sideband-cooled state. Considering
a single heterodyne measurement, it is conditioned on a subtraction event that happened
at a speci�c time with high �delity, but that does not mean there were no other subtraction
events over the duration of the time trace. In fact, at a mean rate of ∼108 subtractions per
second [Eq. (6.58)], a subtraction occurs on average every ∼10 ns.�ese subtractions aver-
age out across the ensemble, and the calculated ensemble variance at time steps away from
the time of the conditioning click-event can be interpreted as the occupation resulting
from a probability-weighted average of zero-subtraction and any multi-subtraction event.
�us, if the experiment could condition on zero-subtraction events, the ensemble variance
should be reduced at the heralding time.
Preliminary theory work led by colleagues J. Clarke and E. Cryer-Jenkins shows that in

the absence of open-system dynamics and dissipation, the relative mean phonon-number
varies with time as _nn=0

_n
(t) = T(t)2

1 + _n[1 − T(t)2] , (6.82)

where T(t) = cos ζ = cos(Gt) is the transmission of the optomechanical beamsplitter
and G the optomechanical coupling.�is function is plotted in Fig. 6.32, showing that the
state swap between light and mechanics is di�erent than the typical sinusoid evolution.
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Figure 6.32. Cooling ratio _nn=0/
_n for

zero subtractions in a closed system with
no dissipation for varying values of the
sideband-cooled mean occupation _n and
ζ = Gt.

By performing a similar intracavity variance analysis as for the phonon-subtraction
case, at the time of no subtraction τ = t − t0, the variance of the intracavity quadrature for
an initial occupation

_n is

⟨X2cav(τ)⟩ = 1
2
+ ηOM

_n
⎧⎪⎪⎨⎪⎪⎩
1 − ξ(1 − ξ)
1 + ξ(−1 + ξ/2 + r2/4) [

γe−κaS ∣τ∣ − κaSe−γ∣τ∣

γ − κaS
]
2⎫⎪⎪⎬⎪⎪⎭
, (6.83)

where ξ = r2ηOM
_n, in which r is the re�ectivity of the heralding beam splitter (the real

transmission coe�cient to the heralding arm), and the optomechanical e�ciency is

ηOM = G2

κaS(γ + κaS)
. (6.84)

Equation (6.83) is valid when ξ ≪ 1, i.e., for the weak optomechanical coupling regime and
low beamsplitter re�ectivity. Plots of this expression as a function of time for various beam
splitter re�ectivities and the system parameters in this work (Table 6.1) shows reduction
in the occupation, Fig. 6.33.

experimental considerations. Despite the dip feature in Fig. 6.33, the experimental
implementation is challenging, and some initial considerations are presented in the fol-
lowing.

�e section on subtraction operation �delity, Section 6.4.4, shows that in the present
measurement, the rate of subtraction events is much higher than the rate of clicks at the
heralding detectors. In the work presented in this chapter, the heralding �delity is largely
una�ected by these high losses, and the e�ective discarding of heralding events onlymakes
a measurement take more time.�is changes when seeking to condition the state on times
of no-subtraction: the heralding setup must guarantee with high certainty that there was
no scattering event at a certain time to avoid measuring the heterodyne signal at times
where no click was detected but a scattering event occurred. Currently, the setup does the
opposite, as it guarantees a high �delity for the click events (≃0.996), but the �delity of a
no-scattering event when there is no click is very low.

�e main limitation in the heralding setup for increasing the heralding probability
of subtraction events and thus improving the �delity of zero-subtraction events is the
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Figure 6.33. Intracavity quadrature variance for a zero-subtraction event. (a) Time dynamic of the
variance, showing the decrease in the occupation at the time of the time of zero-subtraction for
various values of the heralding beam splitter re�ection coe�cient r. (b)�e change in the mean
occupation at the no-subtraction heralding time compared to times far away.

single-photon detectors. Firstly, due to the gating of the detectors, they are measuring only
0.02% of the time, meaning that by con�guration there is no click 99.98% of the time
regardless of the number of incident photons. By synchronising the oscilloscope triggering
to the gating of the spads, making sure measurements are obtained only at times where
there is a gate and the detectors do not click, the �delity of heralding zero-click states is
greatly improved. Furthermore, in the context of increasing the �delity of no clicks, the
quantum e�ciency of the detectors can be increased as the number of dark counts now
do not reduce the �delity, but takes the role of losses in the subtraction experiment; they
reduce the probability of heralding an event as zero click, but do not reduce the validity
of a heralded zero-click event. However, the maximum quantum e�ciency of the spads is
only 20%, meaning only every 5th photon gives a click.
Superconducting-nanowire single-photon detectors can reach quantum e�ciencies

upwards of 90%.�ey are also bene�cial because they have a down time of only approx-
imately 100 ns between detection events, making them able to operate at a rate orders of
magnitude higher than spads.�ese detectors will greatly improve the quantum e�ciency
by several multiples and be helpful for increasing the zero-subtraction �delity.

�e zero-subtraction heralding �delity can be increased further by increasing the
out-coupling rate of anti-Stokes photons from the cavity and by reducing the losses of
these photons from the cavity to the single-photon detectors. More e�cient out-coupling
of anti-Stokes light can be achieved by the steps outlined earlier for increasing the taper
coupling e�ciency. Also a pair of optical resonances with more favourable properties for
out-coupling can be selected.
Implementing the changes described above to improve the heralding �delity of zero-

click operations, the additional cooling beyond initial laser cooling might be possible to
observe as a dip in the variance of the heterodyne signal at the zero-click time.



part iii

Conclusions, appendices & references



190

chapter 7

Concluding remarks

Optical microresonators are extensively utilised in optics, providing resonant enhance-
ment that enables research into and application of nonlinear optical e�ects. Scienti�c and
technological advances over the past decades have resulted in the development of several
di�erent types of microresonators that are employed in a range of areas including sensing,
metrology, communications, optomechanics, and quantum optics to name a few prom-
inent examples. A widely used type of microresonator is the whispering-gallery-mode
resonator, where optical �elds propagate along the perimeter of a circular structure.�ese
resonators can support counterpropagating optical modes, central to both parts of the
work presented in this thesis.

7.1 coherent control of backscattering in optical microresonators

Light propagating in a wgm resonator can couple from one propagation direction to
the other via re�ecting o� scatterers that can be intrinsic or extrinsic to the resonator.
�ese backre�ections are o�en unwanted as they can compromise the performance of mi-
croresonator experiments and applications, for instance symmetry-breaking-based sens-
ing, optomechanics applications, laser gyroscopes and dual frequency combs.�erefore
the backscattering problem has attracted more attention over the last years, with public-
ations showing suppression techniques for backscattering in waveguide ring resonators
and wgm resonators.

�is thesis presents a method for coherently suppressing the intrinsic backscattering
in optical wgmmicroresonators.�e work described in this thesis demonstrates a record
suppression exceeding 34 dB (noise limited) from an already low backscattering level
where frequency splitting of the optical resonance is not resolved. �e backscattering
is coherently controlled by introducing a sub-wavelength-size scatterer within the near-
�eld of the resonator.�e scatterer’s position determines the phase and amplitude of the
induced backscattering, and by tuning its position, destructive interference between the
induced and intrinsic backscattering can reduce unwanted optical backre�ections.
Multiplemeasurements across three di�erent resonators demonstrate the experimental

viability of the presented technique, and the results align with the theoretical framework
and model.�e measured impact on the optical quality factor due to the presence of the
tip is orders of magnitude smaller than the achieved suppression, and optimisation of the
scatterer size and material can help to improve this ratio even further.
Longer term stability of the suppression and reproducibility for a given scatterer po-

sition has not been investigated as a part of this work. An integrated approach will give



concluding remarks 191

improved stability by reducing any thermal-expansion e�ects a�ecting the present work
to a minimum and because the miniaturised system allows better vibrational and en-
vironmental isolation. An integrated mems-based scatterer for tuneable backscattering
suppression and control can also be envisaged, where active feedback on the scatterer
position in order to keep the suppression at a desirable level can be implemented.

�is work expands the microresonator control toolbox by adding a method that shows
unprecedented backscattering reduction and over a broad bandwidth compared to alternat-
ive, optomechanicalmethods.�e technique demonstrated here can both improve existing
systems and enable the development of new high-accuracy, portable optical spectroscopy
systems, gyroscopes, and other sensors.�e technique is of particular interest for on-chip
wgm and waveguide ring resonators, where a scatterer may be permanently integrated on
the chip during fabrication or in post, reducing the complexity of the suppression method.
�e work might be useful for improving and optimising systems for research as well as
out-of-lab uses of microresonators beyond the proof-of-concept stage.

7.2 generation and characterisation of non-gaussian states
of mechanical motion via brillouin optomechanics

�e coupling of coherent light �elds and mechanical degrees of freedom allows one to
generate and probe quantum states of motion, mapping the mechanical motion onto the
light �eld; or conversely, providing coherent control over themechanicalmotion. Coherent
coupling between photons and phonons has proven useful in the context of the current
rapid advance in quantum technologies for sensing, metrology, and information transfer
and processing. One use-case, where promising results have already been demonstrated
in optomechanical experiments, is the transduction of quantum information from optical
frequencies to microwave frequencies compatible with electronics.�is type of frequency
conversion for quantum information might prove essential for future quantum networks.
�e �delity of the transduction, i.e., the likeness of the input state to the output state, must
be high for a quantum network to work e�ciently and reliably, and there is still a long way
to go to boost the �delity and operation rates. An important step toward better quantum
control and measurement of mechanical states within optomechanics is to generate and
characterise non-classical mechanical states.

�e second part of this thesis contributes toward the goal of non-classical mechanical
state generation and characterisation via optomechanics by demonstrating multi-phonon
subtraction and advancing the state-of-the-art overallmeasurement e�ciency of amechan-
ical state via optics-based tomography. Building on techniques from quantum optics, the
phase-space distributions of non-Gaussian, phonon-subtracted mechanical thermal states
are measured via Brillouin optomechanics using photon counting for state preparation
and simultaneous optical heterodyne detection for state characterisation.

�e room-temperature measurements show that the laser-cooled, initial thermal state
is transformed by the phonon subtraction events from an initial Gaussian in phase space
into a ring shape with a diameter that increases with the number of phonons subtracted.
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�e experiment is the �rst observation of the e�ect that when two phonons are subtracted
from a thermal mechanical state, the mean phonon occupation triples.

�ework advances the state of the art for optics-based tomography ofmechanical states
by showing more than one order of magnitude improvement in the s-parameter, which
captures the e�ects of measurement ine�ciencies and added noise in tomography and
state reconstruction experiments. Further improving the overall measurement e�ciency
provides a path towards tomography of non-classical mechanical states via optomechanics,
an important outstanding goal in the optomechanics community.

�e protocols used in this work can be applied to future room-temperature or cryo-
genic experiments to exploit and characterise the non-Gaussian and non-classical proper-
ties these operations generate.�e advance in themeasurement e�ciency for optics-based
tomography of mechanical states will be useful not only for Brillouin-based cavity opto-
mechanics but for a broad range of both applied and fundamental studies of mechanical
quantum-state engineering and tomography. Pursuing this line of research will facilitate
the development of mechanical-oscillator-based quantum technology such as quantum
memories exploiting the long coherence times available, and help explore fundamental
physics including the quantum-to-classical transition.
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appendix a

�e n-quanta-subtracted thermal state

�e density matrix of the resulting state when n quanta are subtracted from or added to
a thermal state is calculated, and the change to the mean occupation is computed.�e
result is valid for any bosonic system, but it is presented here as subtraction or addition of
phonons to mechanical thermal state.�e calculation follows that of the supplementary
material of G. Enzian,∗ L. Freisem,∗ J. J. Price,∗ A. Ø. Svela∗ et al. [75].
A thermal state ρ _n of a mechanical oscillator with mean occupation number

_n can be
expressed in the number basis as

ρ _n =
∞

∑
m=0

_nm

(_n + 1)m+1 ∣m⟩ ⟨m∣ (A.1)

= (1 − q)
∞

∑
m=0

qm ∣m⟩ ⟨m∣ , (A.2)

where the shorthand q ≡ _n/(_n + 1) < 1.
An n-phonon subtraction operation to the thermal state ρ _n generates the state

ρn− = bnρ _nb†n

Tr(bnρ _nb†n)
, (A.3)

whereas for an n-phonon addition operation to ρ _n, the resulting state is

ρn+ = b†nρ _nbn

Tr(b†nρ _nbn)
. (A.4)

a.1 multi-phonon subtraction density matrix and mean occupation

�e mean phonon number of the n-phonon-subtracted state ρn− is given by

⟨b†b⟩n− = Tr (ρn−b†b) =
Tr (bnρ _nb†n b†b)
Tr (bnρ _nb†n)

. (A.5)

First calculate the trace termsTr (bkρ _nb†k). Inserting the densitymatrix in the number
basis (A.2) in Eq. (A.5) and using

bk ∣m⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
m!/(m − k)!∣m − k⟩ for m ≥ k

0 otherwise
(A.6)
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(valid for k ∈ N), gives

Tr (bkρ _nb†k) = (1 − q)
∞

∑
m=0

qm ⟨m∣ b†nbn ∣m⟩ (A.7)

= (1 − q)qk
∞

∑
m=0

m!
(m − k)!q

m−k . (A.8)

Noting that the factorial fraction can be rewritten

m!
(m − k)! =

m(m − 1)⋯ 1
(m − k)(m − k − 1)⋯ 1 = m(m − 1)⋯ (m − k + 1) , (A.9)

for m ≥ k, the contents of the sum in Eq. (A.8) can be written

m(m − 1)⋯ (m − k + 1)qm−k = m(m − 1)⋯ (m − k + 2) d
dq

qm−k+1 (A.10)

⋮

= d
k

dqk
qm , (A.11)

Inserting this result into Eq. (A.8) gives

Tr (bkρ _nb†k) = (1 − q)qk
∞

∑
m=0

dk

dqk
qm (A.12)

= (1 − q)qk d
k

dqk
∞

∑
m=0

qm (A.13)

= (1 − q)qk d
k

dqk
( 1
1 − q

) , (A.14)

where the sum of the geometric series when ∣q∣ < 1 was used. Performing the subsequent
derivatives,

dk

dqk
( 1
1 − q

) = d
k−1

dqk−1
( 1
(1 − q)2) (A.15)

= d
k−2

dqk−2
( 1 ⋅ 2
(1 − q)3) (A.16)

⋮

= k!
(1 − q)k+1 , (A.17)

the trace terms can �nally be expressed

Tr (bkρ _nb†k) =
k!

(1 − q)k q
k . (A.18)
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Figure A.1. Occupation probability dis-
tributions for thermal and subtracted
thermal states for an initial thermal state
with mean occupation _n = 500.�e mean
occupation increases by (n + 1)-fold for
n subtractions as shown by the dashed
lines.�e inset shows the distributions for
a smaller initial thermal state with _n = 1.
Note that the ordinate axis in the inset is
in units of unity, not scaled like the main
axis.

i (xy) = x!/[y!(x − y)!]

number-basis density operator for the subtracted state. �is expression for the
trace, Eq. (A.18), may be inserted into Eq. (A.3) to give the explicit form of the density
operator for the subtracted state

ρn− = (1 − q)n
n! qn

(1 − q)
∞

∑
m=0

qmbn ∣m⟩ ⟨m∣ b†n (A.19)

= (1 − q)n+1
n! qn

∞

∑
m=0

qm m!
(m − n + 1)! ∣m⟩ ⟨m∣ (A.20)

= (1 − q)n+1
n! qn

∞

∑
m=n

qm m!
(m − n)! ∣m − n⟩ ⟨m − n∣ (A.21)

= (1 − q)n+1
n! qn

∞

∑
m=0

qm+n (m + n)!
m!

∣m⟩ ⟨m∣ (A.22)

=
∞

∑
m=0

(1 − q)n+1qm (m + n)!
n!m!

∣m⟩ ⟨m∣ (A.23)

=
∞

∑
m=0

pn−(m) ∣m⟩ ⟨m∣ , (A.24)

where
pn−(m) = (1 − q)n+1qm(m + n

n
), (A.25)

when using the de�nition of the binomial coe�cient.i Plots of the number distributions
for the thermal and �rst three subtracted states is shown in Fig. A.1.

mean occupation number. To �nally calculate the mean phonon occupation of the
subtracted state, the result of the general trace termEq. (A.18) can be inserted into Eq. (A.5)
(where the trace in the numerator has been cyclically permutated)

⟨b†b⟩n− =
Tr (bn+1ρ _nb†n+1)
Tr (bnρ _nb†n)

(A.26)

= (n + 1)! qn+1/(1 − q)n+2
n! qn/(1 − q)n+1 (A.27)

= (n + 1) q
1 − q

= (n + 1)_n. (A.28)
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�us, for n-phonon subtraction the mean occupation increases by a factor of n + 1

_n → (n + 1) _n . (A.29)

a.2 the case of multi-phonon addition

A similar calculation allows one to calculate the density operator and the mean phonon
number of the n-phonon-added state ρn+, which are given by

ρn+ =
∞

∑
m=0

pn+(m) ∣m⟩ ⟨m∣ , (A.30)

pn+(m) = (1 − q)n+1qm−n(m
n
) , (A.31)

⟨b†b⟩n+ = (n + 1)_n + n . (A.32)

Here, the binomial coe�cient (mn) = 0 for m < n, such that phonon-number states ∣m⟩
with m < n of ρn+ are unoccupied.�is property also leads to the observation that the
phonon-number distribution of ρn+ and ρn− are equal up to a shi� pn+(m) = pn−(m−n).
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i �e coherent state is the
eigenstate of the annihila-
tion operator, b̂ ∣β⟩ = β ∣β⟩,
where β ∈ C and can be
expressed by the phase-
space quadratures x , p as
β = 2−1/2(x + ip).

appendix b

Phase-space distribution of a phonon-subtracted
thermal state

�e phase-space distribution of the phonon-subtracted thermal state is presented taking
into account experimental ine�ciencies. Colleagues J. Clarke and L. Freisem took a lead
on performing these calculations.
A perfect heterodyne detection scheme measures the Husimi Q function of the mech-

anical state, but considering the ine�ciencies and losses in the measurement, the Q func-
tion is smoothened to an s-parametrisedWigner functionWs with s < −1.�e calculations
obtain the marginal distributions for theWs function for the subtracted states.

b.1 marginal quadrature distributions of the mechanical state

�is section calculates an expression for the n-subtracted state’s position quadrature mar-
ginal of given an e�ciency η up to the heterodyne detection: prn−(Xm; η).

b.1.1 �e Glauber–Sudarshan P function of the subtracted state

�e Glauber–Sudarshan P representation of phase space is useful when working with
coherent statesi as the density operator ρ̂ of a quantum state can be diagonalised in the
coherent state basis using the P function [179]

ρ̂ = ∫ d2β P(β) ∣β⟩ ⟨β∣ . (B.1)

where β = 2−1/2(Xm + iPm) for the mechanical quadratures Xm, Pm.�e P function of the
thermal state ρ̂th with mean occupation

_n is given by

Pth(β) = 1
π _n
exp(− ∣β∣

2
_n
) . (B.2)

By using the density operator of the subtracted state as expressed in terms of the thermal
state as given in Eq. (A.3), the P function of ρ̂n− can be obtained

Pn−(β) = 1
n!_nn

∣β∣2nPth(β). (B.3)

Note that Pn−(β) only depends on the magnitude of β, which demonstrates the rotational
symmetry of the subtracted thermal state in phase space.
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b.1.2 �e position quadrature marginal

�e marginal of the position quadrature Xm for the subtracted state ρ̂n− can be calculated
from ⟨Xm∣ρ̂n−∣Xm⟩, which gives

prn−(Xm) = ∫ d2β Pn−(β) ∣ ⟨Xm∣β⟩ ∣2 (B.4)

=
exp (− X2m

1+2
_n)

n!π
3
2
√
1 + 2_n

n
∑
k=0

k
∑
l=0

(n
k
)(2k
2l
)Γ [n − k + 1

2
] Γ [l + 1

2
]X2(k−l)m

(2_n)k−l
(1 + 2_n)2k−l , (B.5)

where
Γ [m + 1

2
] = (2m)!
4mm!

√
π (B.6)

for m ∈ N.�e marginal prn−(Xm) is corresponds to the position marginal of the Wigner
function ∫ dPmW(Xm, Pm).
Note that due to the rotational symmetry of the state, also the probability marginals

are invariant under the transformation

Xm → Xm(θ) = Xm cos θ + Pm sin θ , (B.7)

which allows the heterodyne detection in Chapter 6 to have no phase reference.

b.1.3 �e in�uence of ine�ciencies in measurement

�e experiment does not give access to the mechanical state directly, but the anti-Stokes
light is used as a proxy for the mechanical state.�e proxy is not a perfect representation
of the mechanical state because of ine�ciencies such as the non-perfect mechanics-light
transduction e�ciency and optical losses.
Describing the overall measurement e�ciency η, the quadrature marginal given losses,

pr(Xm; η), can be described by a beamsplitter model for loss [179, Ch. 4]

pr(Xm; η) =
1√

π(1 − η) ∫
+∞

−∞
dX′ pr(X′) exp

⎡⎢⎢⎢⎢⎣
− η
1 − η

(X′ − Xm√η
)
2⎤⎥⎥⎥⎥⎦
, (B.8)

which is essentially the convolution of the lossless marginal pr(Xm) with a Gaussian due
to the vacuum entering at the port of the virtual beam splitter, and a rescaling of the
amplitude due to the lost photons. Inserting prn−(Xm) from Eq. (B.5) into Eq. (B.8) yields

prn−(Xm; η) =
exp [−X2m ( 1

1−η − B2
A )]

n!π2
√
(1 + 2_n)(1 − η)A

n
∑
k=0

k
∑
l=0

k−l
∑
p=0

(n
k
)(2k
2l
)(2(k − l)

2r
)Γ [n − k + 1

2
]

Γ [l + 1
2
] Γ [r + 1

2
](BXm

A
)
2(k−l−r) (2_n)k−l

(1 + 2_n)2k−l A
−r , (B.9)

where A = 1/(1 + 2_n) + η/(1 − η) and B =√η(1 − η).
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b.2 heterodyne detection and the measured phase space

�e description so far takes into account the optical losses and optomechanical e�ciency
in how well the optical state of the anti-Stokes light at the input port of the heterodyne
detector represents the mechanical state.�is section also takes into account how that
optical state impinging on the heterodyne detector is measured, thus a full picture of how
the mechanical state is measured by the heterodyne detection.

b.2.1 �e Husimi Q function and smoothening

Heterodyne detection projects an optical state ρ̂ entering the detector onto a coherent
state ∣α⟩. An outcome α = 2−1/2(Xopt + iPopt) occurs with probability proportional to
Tr(∣α⟩ ⟨α∣ ρ̂) = ⟨α∣ρ̂∣α⟩.�e outcome is proportional to the de�nition of the Husimi Q
function [179, Ch. 3]

Q(α) = 1
2π

⟨α∣ρ̂∣α⟩ , (B.10)

which means that heterodyne detection measures the real-valued and non-negative Q
function of the optical state ρ̂ up to a proportionality factor.�e Q function can be un-
derstood as a smoothened Wigner function, referred to as an s-parameterised Wigner
functionWs where s = 0 is the Wigner function and s = −1 is the Q function.

�e marginals of the Q function are smoothened compared to the quadrature margin-
als of the optical state that is to be measured, which can be understood as added noise due
to the simultaneous measurement of two orthogonal quadratures [500].�e marginal of
the Q function

pr(Xopt; s = −1) = ∫ dPopt Q(Xopt, Popt) (B.11)

can be expressed as the true marginal for the state that is measured convolved with a
Gaussian of width equal to the vacuum noise entering at the heterodyne frequency:

pr(Xopt; s = −1) = 1√
π ∫ dX′ pr(X′) exp [−(Xopt − X′)2] . (B.12)

Note that the smoothened marginal is phase-invariant.
�us, for the experiment considered here, in the case of a lossless transduction of the

mechanical state onto the optical state impinging on the detector, η = 1, the optical het-
erodyne detection measures the Q function of the mechanical state, Q(Xm, Pm) perfectly,
which is the smoothened Wigner function Ws=−1, whose marginals are smoothened in
comparison to the mechanical state’s true marginals.
In the case of measurement ine�ciencies, η < 1, the s parameter is not −1, and thus it

is not the Q function of the mechanical state that is obtained by the heterodyne detector,
but an s-parameterised Wigner functionWs with the s parameter given by [179, Ch. 4]

s = 1
η
(η − 2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

= −1 for η = 1
< −1 for η < 1

. (B.13)
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Note that the s parameter accounts only for the smoothening of the measured phase space
due to the ine�ciencies, but losses also means the quadratures are rescaled accordingly
due to the reduced �eld amplitude, which will be accounted for in Eq. (B.20).

b.2.2 �e s-parameterised Wigner function for the subtracted state

So far, it is clear that when performing heterodyne detection with ine�ciencies, the ob-
tained phase space representation is smoothenedmore than theQ function of the mechan-
ical stateQ(Xm, Pm).�e additional smoothening is accounted for by the s-parameterised
Wigner function. To compute the smoothened marginals as measured for the phonon-
subtracted state given arbitrary e�ciency η,Ws in terms of the derived Pn− function is
computed.
For a general (non-symmetric) quantum statewithquadratures x , p, the s-parametrised

Wigner function can be computed by convolving the P function with a two-dimensional
Gaussian

Ws(x , p) = (P ∗ Gs) (x , p) , (B.14)

where ∗ represents the two-dimensional convolution and the Gaussian is

Gs(x , p) =
1

π(1 − s)exp(−
x2 + p2

1 − s
) . (B.15)

Written out, the s-parametrised Wigner function is

Ws(x , p) =
1

π(1 − s) ∫∫
∞

−∞
dx′dp′ P(x′, p′)

× exp(−(x − x′)2 + (p − p′)2
1 − s

) . (B.16)

In the case of n-phonon subtraction, the s-parametrised Wigner function is given by
convolution of Pn− and a Gaussian

Ws(Xm, Pm) = (Pn− ∗ Gs) (Xm, Pm) . (B.17)

By substituting in Eq. (B.3) for the P function in Eq. (B.16) and using β = 2−1/2(Xm + iPm),
the full form for the n-phonon subtracted state is then

Ws,n−(Xm, Pm) =
2−n

_n−1−n

π2(1 − s)n! ∫∫
∞

−∞
dX′
mdP′

m[ (X′2
m + P′2

m)
n

× exp(−X′2
m + P′2

m
2
_n

− (X′
m − Xm)2 + (P′

m − Pm)2
1 − s

)] ,

(B.18)

which describes the phase space as measured by the heterodyne detection for arbitrary
e�ciency η via the s parameter as de�ned in Eq. (B.13).
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b.2.3 �e measured marginal distributions

Finally, the position marginal of the ine�ciently captured mechanical state as measured
via heterodyne detection, Pr(Xm), is calculated.�is corresponds to the marginals that
are obtained from the experimental data by taking the sum across one axis of the Ws

tomograms for the states generated in the experiment:

Pr(Xm) ≈
1
N ∑

Pm
Ws(Xm, Pm) , (B.19)

normalised byN = ∑Xm Pr(Xm).
To calculate the expected marginal probability distribution Pr(Xm) as measured by

the heterodyne, the loss-rescaledWs [500] can be integrated

Pr(Xm) =
1
η ∫ dPm Ws(Xmη−1/2, Pmη−1/2) , (B.20)

which can be recast

Pr(Xm) =
1

√η ∫ dp Ws(Xmη−1/2, p) (B.21)

= 1√
π∣s∣η ∫ dX′ pr(X′) exp [−

(X′ − Xm/
√η)2

∣s∣ ] , (B.22)

by using the relation between the true marginal distribution pr(Xm) and the marginal of
the s-parameterised Wigner function pr(Xm; s) for s < 0,

pr(Xm; s) =
1√
π∣s∣ ∫ dX

′ pr(X′) exp [−(Xm − X′)2
∣s∣ ] . (B.23)

Alternatively, Pr(Xm) can be computed by inserting the mechanical quadrature marginal
considering losses Eq. (B.9) into the expression for the heterodyne marginal Eq. (B.12).
Both methods give the following expression for the measured marginal of the n-

phonon subtracted state:

Prn−(Xm) =
1√
π ∫ dX′ prn−(X′; η) exp [−(Xm − X′)2] (B.24)

=
exp(− X2m

2(1+η _n))

n!π2
√
2(1 + η _n)

n
∑
k=0

k
∑
l=0

k−l
∑
r=0

(n
k
)(2k
2l
)(2(k − l)

2r
)Γ [n − k + 1

2
] Γ [l + 1

2
] Γ [r + 1

2
]

X2(k−l−r)m
(2η _n)k−l

(1 + 2η _n)l+r[2(1 + η _n)]2(k−l)−r
. (B.25)
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Figure B.1. Phase-space marginals for varied measurement e�ciency.�e plots show marginals of the obtained phase space via
heterodyne detection for the thermal and �rst three subtracted states. (a) When η = 1 the obtained phase space corresponds
to the Q function of the respective states. Note the increasingly non-Gaussian shape of the subtracted states. (b) For η < 1
the obtained phase space corresponds to the s-parameterised Wigner function Ws with s < −1, here shown for η = 0.01
(s = −199), which is approximately the e�ciency achieved in this experiment. Note the lower contrast in the non-Gaussian
features compared to (a) due to the smoothening from the added noise.�e quadrature is also scaled due to the associated
amplitude losses. (c) A comparison of marginals computed fromWs for varying η where the each marginal is scaled to its
maximum for comparable scales. For the lowest e�ciencies the bimodality cannot be resolved.

�e measured marginal distributions of the thermal state ρ̂ _n, single-phonon subtracted
state ρ̂1−, and two-phonon subtracted state ρ̂2− are then

Prth(Xm) =
1√

2π(1 + _n′)
exp [− X2m

2(1 + _n′)
] (B.26a)

Pr1−(Xm) =
1
2
Prth(Xm){

2 + _n′

1 + _n′
+ 4

_n′

[2(1 + _n′)]2
X2m} (B.26b)

Pr2−(Xm) =
1
2
Prth(Xm){

8 + 8_n′ + 3(_n′)2

4(1 + _n′)2
+ 4

_n′ + (_n′)2

2(1 + _n′)3
X2m + (2_n′)2

[2(1 + _n′)]4
X4m}

(B.26c)

where
_n′ = η _n.�ese expressions simplify to the marginals of the mechanical Q function

when η = 1, as expected when the mechanical state is perfectly transduced onto the optical
state reaching the heterodyne detector.
Figure B.1 shows plots of the marginals Eq. (B.26) for varying e�ciencies.

b.2.4 Location of maxima of the marginals and phase-space

If the detection e�ciency is su�ciently high, a non-Gaussian state with a dip at the origin
can be observed in phase space.
For the single-phonon subtracted state, if the detection e�ciency such that η _n > 2,

the maxima for the measured distribution Pr1−(Xm) occur at Xm = ±X1, where

X1 =
¿
ÁÁÀ(1 + η _n)(η _n − 2)

η _n
. (B.27)

�e location of the maxima of Pr1−(Xm) can be related to the radius at which the
maxima occur inWs. First, consider the expression for the P function of the single-phonon
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subtracted state by choosing n = 1 in Eq. (B.3).�emaxima ofP1−(β) occur at a radius
√
2
_n

from the origin. Integrating P1−(β) over one quadrature gives an expression for marginal
of this P function: pr1−(Xm; s= + 1).�e maxima of pr1−(Xm; s= + 1) occur at Xm = ±

√_n.
Hence, there is a factor of

√
2 di�erence between the distance of the maxima from the

origin of pr1−(Xm; s= + 1) and P1−(β). Second, using Eq. (B.23) and a two-dimensional
convolution to get from the P function toWs, the factor of

√
2 di�erence persists at the

level of Pr1−(Xm) andWs. Hence, for ρ̂1− the maxima ofWs(Xm, Pm) occur at a radius of
r1 =

√
2X1.

For the two-phonon subtracted state and η _n > −4+2
√
6, themaxima for themeasured

distribution of two-phonon subtracted state Pr2−(Xm) occur at Xm = ±X2, where

X2 =
¿
ÁÁÀ 1 + η _n

η _n
[−4 + η _n +

√
2(4 + (η _n)2)] . (B.28)

A similar calculation to the one sketchedabove gives that for ρ̂2− themaximaofWs(Xm, Pm)
occur at a radius r2 =

√
2X2.
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