

Development of an electron-tracking Compton camera using SOI pixel sensor for sub-MeV gamma-ray observations

Mika Kagaya,^{a,*} Hideaki Katagiri,^b Ryo Kato,^b Naomi Tojo,^b Yasuo Arai,^c Takeshi Go Tsuru,^d Ayaki Takeda^e and Kenji Shimazoe^f

^a*National Institute of Technology, Sendai College, Department of General Engineering
4-16-1, Ayashi-chuou, Aoba-ku, Sendai city, Miyagi, Japan*

^b*Ibaraki University, Graduate School of Science and Engineering,
2-1-1, Bunkyo, Mito city, Ibaraki, Japan*

^c*High Energy Accelerator Research Organization, Open Innovation Promotion Department,
1-1, Oho, Tsukuba city, Ibaraki, Japan*

^d*Kyoto University, Graduate School of Faculty of Science,
Yoshida-honmachi, Sakyo-ku, Kyoto city, Kyoto, Japan*

^e*University of Miyazaki, Faculty of Engineering,
1-1, Gakuen Kibanadai-nishi, Miyazaki city, Miyazaki, Japan*

^f*University of Tokyo, Graduate School of Engineering
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan*

E-mail: mikagaya@sendai-nct.ac.jp

^{*}Speaker

We have been developing an electron-tracking Compton camera (ETCC) using an SOI pixel semiconductor detector for observation sub-MeV gamma rays. An electron tracking Compton camera can reconstruct arrival directions of gamma rays each event as a point using the recoil directions of electron tracks, therefore, this camera does not increase false spot comparing with a conventional Compton camera. Also, an ETCC can discriminate between the gamma rays and backgrounds by detecting the track length and energy of recoil electrons. In addition, ETCC using a semiconductor detector is useful for detecting line gamma rays because of its high-energy resolution. To detect recoiled electron tracks, we focused on an SOI pixel semiconductor detector XRPIX2b, which was developed by Kyoto University. The sensor has a small pixel pitch $30\text{ }\mu\text{m}$ and a trigger circuit mounted on each pixel, therefore we can select only candidate gamma-ray events and readout only the selected pixels. We developed a prototype electron-tracking Compton camera using XRPIX2b sensor. We evaluated the detection capability of recoil electron due to 511 keV gamma rays. From the results of the evaluation in the laboratory, we succeeded in detecting recoil-electron tracks and estimating the recoil directions using the track image. Furthermore, we confirmed to be able to detect the radioisotope position using back-projection method. We obtained sufficient quantitative detailed performance data of the current sensor to develop a novel sensor for ETCC.

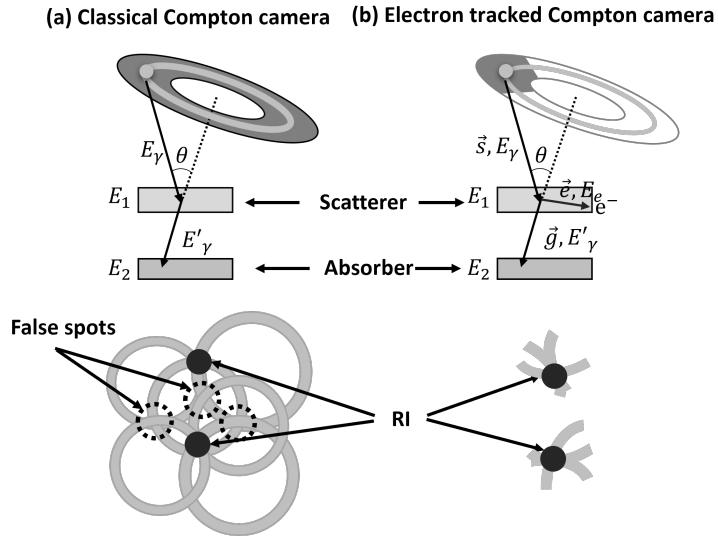
1. Sub-MeV gamma-ray observations

The observation of sub-MeV/MeV gamma rays is an important probe to elucidate various high-energy phenomena in astrophysics. For example, radioisotopes such as ^{56}Ni emits 847-keV gamma-ray emission [1, 2]. Furthermore, positrons are released via nucleosynthesis due to supernova explosions. These positrons collide with electrons and produce 511-keV gamma rays. We can elucidate a mechanism of nucleosynthesis due to a supernova explosion by observing the types of line gamma rays and these amounts. Several gamma-ray detectors including the INTEGRAL/SPI, have previously observed 511-keV and sub-MeV gamma-ray lines from galactic plane [3]. Various candidate phenomena have been proposed to produce the positrons from which the 511-keV gamma-ray originate [4], but the origins have not yet been identified. Therefore, to achieve a high-sensitivity observations in these energy bands, the background reduction is essential for the sub-MeV gamma-ray observation.

Using an advanced Compton camera with semiconductor detector is suitable to observe sub-MeV line gamma rays because it can exclude continuum gamma-ray background and particle background by its good energy resolution. Moreover, it can estimate an arrival direction of a gamma-ray each event by detecting recoil electron tracks. For detecting the complicated recoil directions of electrons, a small-pitch pixel sensor is required. Herein, we focused on fine pixel-pitch (a few ten μm) semiconductor detectors using the silicon-on-insulator (SOI) technique [5]. An SOI pixel sensor is a monolithic semiconductor detector, which has a small pixel pitch (a few tens μm), wide-band energy detection, a high tolerance for radiation damage, and low-power requirements. Furthermore, the sensor has a good time resolution (a few μs) compared with the CCD sensor. A good time resolution is essential for a Compton camera to detect coincidence events.

In a previous study, an advanced Compton camera using an SOI pixel sensor was developed for nuclear medicine diagnostics [6]. They demonstrated its ability to detect recoil-electron tracks produced by gamma rays with energies ranging from a few hundred keV to 1 MeV. As a result of this finding, we anticipate using an advanced Compton camera with an SOI pixel sensor for astrophysical sub-MeV gamma-ray studies. In this study, we developed a prototype Compton camera and quantitatively investigated the detection capability of the pixel sensor for the sub-MeV astrophysical observation.

2. Electron tracking Compton camera


A Compton camera is a technique for visualizing that is used to specify the gamma-ray arrival directions. Such a camera is suitable to observe sub-MeV gamma rays because Compton scattering dominates these energies. A Compton camera has typically comprises a scatterer and an absorber which are both position sensitive detectors (Fig. 1). A conventional Compton camera, the scatterer detects the interaction position, energy, and the absorber detects the interaction position and energy of the scattered gamma ray. An incident direction of a gamma ray is estimated by a ring shape whose size corresponds to the scattering angle. The scattering angle calculated by Compton kinematics θ_k is as follows:

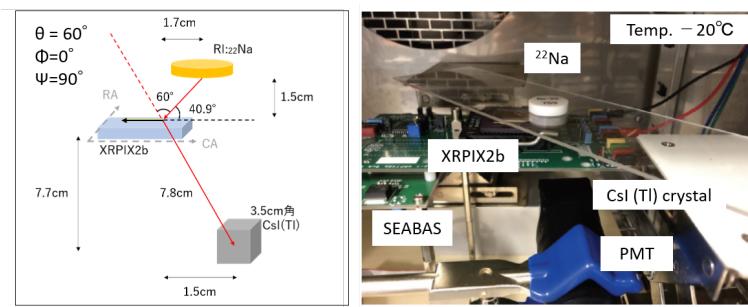
$$\cos \theta_k = 1 - \frac{m_e c^2}{E_2} - \frac{m_e c^2}{E_1 + E_2}, \quad (1)$$

where E_1, E_2, m_e, c denote energy of the recoiled electron in the scatterer, energy of the scattered gamma-ray photon in the absorber, electron mass, speed of light, respectively. In particular, the quantities E_1 and E_2 correspond to the kinematic energy of the recoiled electron E_e and the energy of the scattered gamma-ray photon E'_γ , if the event includes only one Compton scattering event and one photoabsorption event. Then, we obtain the position of a gamma-ray source by accumulating the multiple rings. This type of Compton camera produces false spots in a reconstructed image, because the back-projection method estimates the probability distribution of the location of a radiation source as a smeared ring shape (Fig. 1 left). In contrast, an electron-tracking Compton camera can detect the direction of the incident gamma-ray as a point for each event by detecting the recoil-electron track at a scatterer (Fig. 1 right). The arrival direction \vec{s}_{rcs} of the incident gamma-ray is calculated as follows:

$$\vec{s}_{\text{rcs}} = \frac{E_2}{E_1 + E_2} \vec{g} + \frac{\sqrt{E_1(E_1 + 2m_e c^2)}}{E_1 + E_2} \vec{e}, \quad (2)$$

where \vec{g} , and \vec{e} denote the unit vector of the scattered gamma-ray, and unit vector of the recoiled electron, respectively. The arrival direction of a gamma-ray can be reconstructed as a point, and an electron-tracking Compton camera can reduce the false spots by detecting the electron tracks.

Figure 1: Principle of a conventional Compton camera (left) and an electron-tracking Compton camera (right). A reconstructed image measured by a conventional Compton camera has false spots. In contrast, an advanced Compton camera can reduce the false spots because the probability distribution of the location of a radiation source is estimated by the back projection as a point (like an arc shape).


3. Development of prototype ETCC

In this study, we adopted an SOI pixel sensor as the scatterer. As an absorber, a CsI (Tl) scintillation detector was adopted for the prototype because we need a high detection efficiency to obtain significant statistics of coincidence events in the laboratory experiments. SOIPIX is a

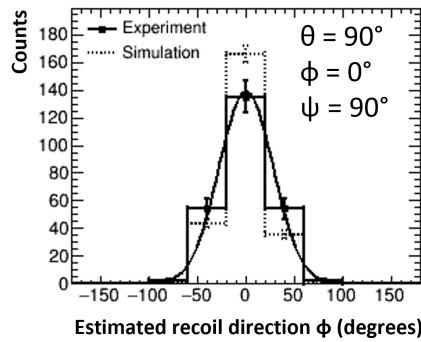
semiconductor pixel sensor using a wafer with a high-speed and low-power large-scale integration circuit with SOI complementary metal-oxide semiconductor (CMOS) technology [7]. Among SOIPIX sensors, we focused on the XRPIX2b developed for X-ray astronomy by Kyoto University as each pixel has both a charge-integrating circuit and a trigger circuit [8], [9]. XRPIX2b consists of 152×152 pixels on a $300 \mu\text{m}$ thick wafer, and its pixel size is $30 \mu\text{m} \times 30 \mu\text{m}$. Furthermore, we can obtain only signal events by mounting a trigger circuit at each pixel and this sensor can access selected pixels to read out a signal. As a basic performance, the energy resolution at 13.9 keV was 1.8 keV (FWHM). The signals are readout and digitized by a soi evaluation board with SiTCP (SEABAS) [10]. For an absorber, we used CsI (Tl) scintillation detector. The scintillation detector consists of a CsI (Tl) cube 3.5 cm on a side and a photomultiplier tube (PMT). The PMT is H11432-100 manufactured by Hamamatsu Photonics K. K. The output signal is amplified by a non-inverting amplifier AD8009 manufactured by Analog Device. We used a 16-channel flash ADC board with the SiTCP technology manufactured by Bee Beans Technologies Co., Ltd., which was developed by the KEK Open-It project [10]. The energy resolution of this detector was 52 keV at 511 keV (FWHM).

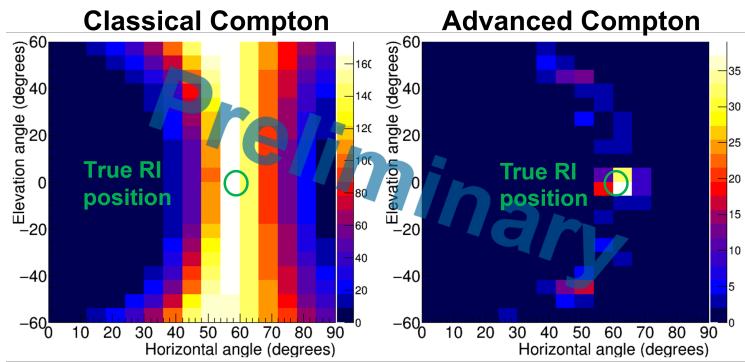
4. Evaluation of the detection capability of the prototype Compton camera

We investigated the detection capability of a sensor using the prototype Compton camera. We employed 511-keV gamma rays as typical energy in the sub-MeV energy bands. In this evaluation, we estimated a recoil direction using the reconstructed images of electron tracks while changing various conditions for running electrons, such as scattering angles (θ), rotation angles (ϕ), and inclination angle (ψ). Fig. 2 shows the arrangement of the detectors and a radiation source. We used ^{22}Na radioisotope (511 keV) and the temperature was -20°C . In this test, we fixed $\theta = 90^\circ$, $\phi = 0^\circ$ and $\psi = 90^\circ$, which a recoil-electron track travels along the detection plane in this condition. The effective time was 5 h and the actual measurement time was approximately 20 h. Also, we compared the results obtained the tests with the results of Monte Carlo simulation using Geant4 simulator [11].

Figure 2: Arrangement of the detectors.

We created images of the recoil-electron tracks. We selected coincidence events as follows: first, we set the energy threshold of the scatterer at 3 keV, which corresponds to approximately 10σ , here, σ is the standard deviation of the distribution of the electrical noise. For absorber, the energy threshold was 20σ . Next, we selected recoil-electron events using track images obtained from


scatterer. To distinguish a track image from defective pixels, we defined a track to consist of more than two adjacent pixels. After that, we selected time coincidence events using the difference in the detection timing between the scatterer and absorber. We selected events within the time difference range of ± 400 ns. Finally, we used energy constraint $E_\gamma = E_1 + E_2$. We estimated the deposited energy to be 256 keV when the scattering angle of the incident gamma ray was $\theta = 90^\circ$. In this test, we selected events for which the absorbed energy was within the range of 256 ± 40 keV and the total energy was within 511 ± 40 keV. We determined the range of ± 40 keV based on the energy resolution of the absorber. After the event selections, we obtained the track images due to Compton scattering, presented in Fig. 3. We succeeded in detecting recoil-electron tracks and confirmed that the track images are similar to those expected from Geant4 simulation.


Figure 3: Comparisons of the recoil-electron tracks obtained from the simulations (left) and from the experiments (right) when 511-keV gamma rays are incident on the sensor at $\theta = 90^\circ$, $\phi = 0^\circ$, and $\psi = 90^\circ$. The color bar indicates the deposited energy (keV). The arrows show the estimated recoil directions of the electrons on the detection plane.

Using the track image, we estimated the recoil direction. We calculated the recoil direction toward the energy centroid of adjacent impact pixels around the interaction position. The interaction position was defined as the farthest hit pixel from Bragg peak, which was defined as the highest energy pixel in the track. The recoil direction toward the energy centroid of the pixel surrounding the interaction location was calculated. Fig. 4 shows the estimated recoil directions (degrees). The solid line and dotted line indicate the recoil direction obtained from the experiments and simulations, respectively. From this result, we succeeded to estimate the recoil direction using the track image.

We reconstructed the gamma-ray image using the obtained data. The arrival directions were calculated by Compton kinematics using Eq. 2. We projected the calculated gamma-ray source position on the screen. We compared the classical Compton camera and an advanced Compton camera as presented in Fig. 5. For a classical Compton camera, the location of a radiation source was estimated only as a smeared ring shape in this test. Conversely, an advanced Compton camera can estimate the arrival direction of gamma-ray each event, thus, we succeeded to obtain the location of a radiation source.

Figure 4: Distribution of recoil directions when $\theta = 90^\circ$, $\phi = 0^\circ$ and $\psi = 90^\circ$. The solid line and dotted line indicate the recoil direction obtained from the experiments and simulations, respectively

Figure 5: Comparisons of the reconstructed images using a classical Compton reconstruction method and an advanced Compton reconstruction method.

5. Conclusion

We developed a prototype advanced Compton camera for sub-MeV gamma-ray observation. We adopted an Kyoto University's XRPIX2b sensor for detecting the recoil electron tracks of gamma rays caused by Compton scattering. We succeeded to detect recoil-electron tracks created by Compton scattering of 511-keV gamma rays using the the experiments and simulations. Furthermore, we demonstrated that we can estimate the recoil direction using images of electron tracks. Also, we succeeded to detected a location of a radiation source using back-projection reconstruction method as an advanced Compton camera. For future plans, we need to evaluate the detection capability and the detail performance of Compton camera quantitatively. After evaluation of the current SOI pixel sensor, we will develop an optimal sensor to adopt an advanced Compton camera for sub-MeV astrophysical observations.

6. Acknowledgment

This work was supported JSPS KAKENHI Grant-in-Aid for Young Scientists Number 17K14264,19K14743 and the Sasakawa Scientific Research Grant 2019-2025 from the Japan Science Society. This work

was partially carried out by the joint research program of the Institute for Cosmic Ray Research, the University of Tokyo. We would like to thank the Open source consortium of instrumentation (Open-It), Japan, SOI quantum imaging sensor consortium, and Enago (www.enago.jp) for its English language review.

References

- [1] M. Steven et al., "Gamma-ray line emission from SN1987A", *Nature*, 331 (6155) (1988), 416-418
- [2] R. Diehl et al., "Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion", *Science*, 345 (6201) (2014), 1162-1165
- [3] J. Knödlseder et al., "The all-sky distribution of 511 keV electron-positron annihilation emission", *A & A*, 441(2) (2005), 513-532
- [4] T. Siegert et al., "Search for 511 keV emission in satellite galaxies of the Milky Way with INTEGRAL SPI", *A & A*, 595 (2016), A25
- [5] Y. Arai et al., "Development of SOI pixel process technology", *NIM A*, 636 (2011), S31-S36
- [6] Y. Yoshihara et al., "Development of electron-tracking Compton imaging system with 30- μ m SOI pixel sensor", *Journal of Instrumentation*, 12 (2017), C01045
- [7] Y. Arai et al., "Development of SOI pixel process technology", *NIM A*, 636 (2011), S31-S36
- [8] A. Takeda et al., "Design and Evaluation of an SOI Pixel Sensor for Trigger-Driven X-Ray Readout", *IEEE Transactions on Nuclear Science*, 60(2) (2013) 586-591
- [9] A. Takeda et al., "Improvement of spectroscopic performance using a charge-sensitive amplifier circuit for an X-ray astronomical SOI pixel detector", *Journal of Instrumentation*, 10(6) (2015) C06005
- [10] T. Uchida, "Hardware-based TCP processor for gigabit Ethernet", *IEEE Transactions on Nuclear Science*, 55 (2008), 1631-1637
- [11] S. Agostinelli et al., "Geant4: A Simulation toolkit", *NIM A*, 506 (2003) 250-303