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Preface

The Fifth International Workshop devoted to the Group Analysis of Differen-
tial Equations and Integrable Systems (GADEIS-V) was conducted at Pro-
taras, Cyprus, during the period June 6-10, 2010. There were 50 participants
from nineteen countries (Australia, Austria, Canada, Cyprus, Czech Repub-
lic, Egypt, Germany, Israel, Italy, People’s Republic of China, Poland, Ro-
mania, Russia, South Africa, Spain, Switzerland, The Netherlands, Ukraine
and United States of America) and thirty-three lectures were presented.
The topics covered ranged from theoretical developments in group analysis
of differential equations and the integrability theory to applications in a wide
variety of disparate fields including fluid mechanics, classical mechanics, rel-
ativity, control theory, quantum mechanics, physiology and finance. Twenty
papers are presented in this proceedings.

The Workshops are a joint initiative by the Department of Mathemat-
ics and Statistics, University of Cyprus, and the Department of Applied
Research of the Institute of Mathematics, National Academy of Sciences,
Ukraine. The Workshops evolved from close collaboration among Cypriot
and Ukrainian scientists. The first three meetings were held at the Athalassa
campus of the University of Cyprus (October 27, 2005, September 25-28,
2006, and October 4-5, 2007). The fourth (October 26-30, 2008) and fifth
meetings were held at the Tetyk Hotel in the coastal resort of Protaras.

All of the papers in this volume have been reviewed by two independent
referees. We express our appreciation of the care taken by the referees and
thank them for making some suggestions for improvement to most of the
papers. The importance of peer review in the maintenance of high standards
of scholarship can never be overstated.
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Solution of Burgers’ equation
with time-dependent kinematic viscosity
via Lie-group analysis
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Lie-group method is applied for determining symmetry reductions of a bound-
ary value problem for the Burgers’ equation with time-dependent kinematic
viscosity. The resulting ordinary differential equations are solved numerically
using shooting method coupled with Runge-Kutta scheme and the results are
plotted.

1 Introduction

Burgers’ equation [1] is a one dimensional model of the Navier-Stokes’ hydrody-
namical equations [2]. It used as a simplified model for turbulence. It describes a
variety of nonlinear wave phenomena arising in the theory of wave propagation,
acoustics, plasma physics, modeling of gas dynamics, traffic flow and other areas.
Burgers’ equation first introduced by Bateman [3] who derived it in a physical
context and later treated by Burgers [1]. Exact and numerical solutions studies
of Burgers’ equation have received considerable attention of scientists. Cole [4]
concluded that, the Burgers’ equation can be transformed to the linear heat equa-
tion. Hopf [5] concluded the same result that Cole discovered. From which, it
is known as Hopf—Cole transformation. About thirty-five distinct solutions for
initial-value problem of Burgers’ equation were surveyed by Benton and Platz-
man [6] in the infinite domain. Without taking into consideration the auxiliary
conditions, Ames [7] studied how the Morgan—Michal method could be applied
for determining the proper groups for Burgers’ equation.

Peralta-Fabi and Plaschko [2] studied the stability and the bifurcation of the
equilibrium solution of a controlled Burgers’ equation. An integral term which rep-
resents a non-local behaviour has been added to the normal form of the equation
describing flow through porous media. They found that, a supercritical bifur-
cation from the rest solution occurs when the viscosity reduced below a critical
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value. This critical value was calculated as a function of the porosity coefficient
and the corresponding bifurcation solution is derived using perturbation forms up
to fourth order.

Vorus [8] generated an exact solution to Burgers'nonlinear diffusion equation on
a convective stream with sinusoidal excitation applied at the upstream boundary.
He applied Hopf—Cole transformation in achieving the analytical solution after in-
tegrating the equation and its conditions to avoid nonlinearity in the transformed
upstream boundary condition. He deduced a very simple limiting solution valid
for high Reynolds number from the exact solution. This approximate solution
was found to be amenable to an elegant geometrical interpretation.

Kingston and Sophocleous [9] classified all finite point transformations between
generalized Burgers’ equation. They found all the well-known invariant infinites-
imal transformations and also the reciprocal point transformation that leave the
Burgers’ equation invariant, which is symmetry additional to the Lie point sym-
metries obtained from the classical approach. In their work, they did not take
into consideration the invariance of the initial and boundary conditions.

Abd-el-Malek and El-Mansi [10] applied the one-parameter group of transfor-
mation to the Burgers’ equation with unity kinematic viscosity associated with
the initial and boundary conditions. Under this transformation, the given partial
differential equation with the auxiliary conditions is reduced to an ordinary differ-
ential equation with the appropriate corresponding conditions. The obtained dif-
ferential equation was solved analytically and the solution obtained in closed form.

Many other authors have used different numerical techniques to solve Burgers’
equation such as the finite difference method, the finite element method and
spectral methods, [11-21].

In this work, the Lie symmetry method is applied to the one-dimensional Burg-
ers’ equation with time-dependent kinematic viscosity, for determining symmetry
reductions of the given partial differential equation, [22-31]. The resulting nonlin-
ear ordinary differential equation is solved numerically using the shooting method
coupled with Runge-Kutta scheme and the results are plotted. A particular case
of our results is compared with those obtained by Abd-el-Malek and El-Mansi [10].

2 Mathematical formulation of the problem

For the one-dimensional velocity field w(z, t), with time-dependent kinematic vis-
cosity, the governing equation is given by
ow ow 0w

together with the initial and boundary conditions
(i) w(zx,0) =0,
(i)  w(0,t) = ag(t), t >0, a#0, (2)
(iii)  lim w(z,t) =0.

r—00
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Lighthill [32] stated that the kinematic viscosity coefficient f(t) of the diffusion
term 9%w/0x? is not normally a constant in applications, even approximately;
the coefficient may actually be a function of the time. For bounded smooth time-
dependent coefficient, i.e. f(t) may be viewed as an approximation of a smoothly
decaying diffusion.

A normalization of the boundary condition (2ii) is obtained by setting

w(z,t) = q(t)u(z,1), (3)

where u(z,t) is the normalize one-dimensional velocity field and ¢(¢) is an un-
known function.
Substitution from (3) into (1) yields

ou dg 5 Ou O*u
LY = _ = 0, t > 0. 4
8t+udt+qu fq8x2 0, z>0,t> (4)

The initial and boundary conditions (2) will be

(i) u(x,0) =0,

(i)  w(0,t)=a, t>0, a#0, (5)
(iii) mlingo u(z,t) = 0.

3 Solution of the problem

At first, we derive the similarity solutions using Lie-group method under which
(4) and the initial and boundary conditions (5) are invariant, and then we use
these symmetries to determine the similarity variables.

3.1 Lie point symmetries

Consider the one-parameter Lie group of infinitesimal transformations in the space
of (z,t;u,q, f) given by

¥ =z +eX(z,t;u,q, f) + O(e2),

t* =t+4eT(x,t;u,q, f) + O(?),

u =u+eU(z,tu,q, f) + O(e?), (6)
¢ =q+eQ(z, t;u,q, f) + O(?),

f=f+eF(x,t;u,q, f)+ 0(82),

where ¢ is the group parameter. The partial differential equation (4) is said to
admit a symmetry generated by the vector field

o 0 9 )
r= X%JrTatJrUa—JrQ AR (7)
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if it is left invariant by the transformation (z,t;u,q, f) — (z*,t*;u*, ¢*, f*). As-
sume A = quy +uq; + ¢>uty — fqug,, where subscripts denote partial derivatives.
A vector field I" given by (7) is a Lie symmetry vector field for (4) if

TP (A)|acp =0, (8)
where
0 0 0 0
2] — z Y t Y t Y zx Y
T F+U€)ux+U8ut+Q8qt+U B

is the essential part of the second prolongation of I'.

To calculate the prolongation of the given transformation, we need to differen-
tiate (6) with respect to each of the variables, x and ¢. To do this, we introduce
the following total derivatives

D, = a:c + uxau + uxxauz + u:ttaut + -,
Dt = (9,5 + Utau + Qtaq + ftaf + uttf)ut + httﬁqt + um@uz + e

Equation (8) gives the following condition

th + UQQUQ: + Qut + QQQ’U,’UJI - qumm - Fquazm

9
+ PuU® + qUt + uQt — fqU™ =0, )

which should be satisfied in view of the equation (4). The components U, U?,
Q! and U** can be determined from the following expressions

U = DgU — uyDgX — u;DgT,

Q' = DvQ — q:DiT,

U’ = DU’ —uy,DsX — uyDsT,
where S stands for x and ¢ and J stands for x. The substitution of these ex-

pressions into (9) leads to a cumbersome equation, then, equating to zero the
coefficients of ugt, UzUzt, Urqr, Ut ft, Uzpts, Uzqr and ug ft, gives

T, =T, =T, =Tf = X, = X, = X; = 0. (10)

The substitution of (10) into (9) removes many terms. Then, equating to zero the
coefficients of w2, q;, Uz, u¢, fr and the remaining terms, leads to the following
system of determining equations:

Uuu = 0,

U—qluQ — fluF + qUq +uQq — uTy — ulU, + 2uX, = 0,

U¢* + Qqu — [ q*uF — ¢ Xy + fqXoz + ¢*uXy — 2fqUsu = 0,

uQu +2¢ Xz — Ty — f1qF =0,

qUy +uQy =0,

qUs + ¢*uly + uQ; — fqUss = 0.
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We solve the system of determining equations, in view of the invariance of the
initial and boundary conditions as well as using the facts that ¢, = 0 and f, =
0. So, the nonlinear equation (4) has the four-parameter Lie group of point
symmetries generated by

2 o o 0
T t— P 9 9,9
1= T +ff 2= e, Ty Ty an
e
ST o YT o

The one-parameter groups generated by I'y and I's consist of scaling, whereas I's
and I'y generate translations.

The solutions v = u(z,t), ¢ = ¢q(t) and f = f(t) are invariant under the
symmetry (7)if ®* =U —Tu; — Xup, =0,81=Q -Tq; =0, d  =F-Tf, =0.
These equations are called the invariant surface conditions.

Table 1 illustrates the solutions of the invariant surface conditions for some
operators of the four-parameter Lie group of point symmetries.

Table 1. Solutions of the invariant surface conditions.

Generator Characteristic Solution of the invariant surface
® = (9“9, ®7) conditions
Iy (—zup — tug, —tqe, f — tft) f)y=t
Iy (acul + 2tu, ¢ + 2tqe, 2t f1) f@e)y=c
I's (—uz,0,0) u = u(t)
L'y (—ue, —qe, — fe) u=u(z), q=f=C
Iy + 0T " = (B — Daus + (26 — Dtuy | u=u(h)
7 = Bq+ (26— Vtqs alt) = Kyt
® = [+ (26— Dtf, f(t) = Kot ™

As seen from Table 1, the solutions of the invariant surface conditions under
I'y and I'y are f(t) =t and f(t) = C, respectively. Practically, these solutions are
not acceptable because for bounded smooth time-dependent coefficient, f(¢) may
be viewed as an approximation of a smoothly decaying diffusion, as mentioned
before.

The solution of the invariant surface conditions under I's is u = w(t) which
contradicts the boundary conditions.

The solutions of the invariant surface conditions under I'y are v = u(z) and
q = f = C which are the solutions of (4), even though they are not particularly
interesting since they contradicts the initial condition.

On the other hand, the solutions of the invariant surface conditions under
I'y + B9 are

u = u(h), q(t) = Kltﬁ, ft) = Kztﬁ, (12)
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where 6 = x t~7 is the similarity variable, v = (1 —3)/(1 —20), 8, K1 and K5 are
constants. As mentioned before, for bounded smooth time-dependent coefficient,
i.e. f(t) may be viewed as an approximation of a smoothly decaying diffusion,
so, 1/(1 — 2/3) should be negative. Also, from the similarity variable to avoid the
contradiction in the initial and boundary conditions, v = (1 — ) /(1 — 2/3) should
be positive. From which, we get G > 1.

Substitution from (12) into (4) yields

d’*u du J6]

K2@+[79—K1u]@—1_2ﬂu:

0. (13)

The initial and boundary conditions (5) will be

(i) w=a at 6=0,

14
(i) uw—0 as 60— co. (14)

3.2 Numerical solution

The ordinary differential equation (13) with the appropriate conditions (14) is
solved numerically using the shooting method coupled with Runge-Kutta scheme
for different values of Ky, K5, 8 and a.

Assume K; = Ky = 1, equation (13) will be

d*u du I6]

o 1o (15)

As f — oo, and assume K1 = Ky = 1, equation (12) will be
u=u(l), ) =1Vt ft)=1, (16)

where 6§ = x//t.

These solutions are the same as Abd-el-Malek and El-Mansi [10] obtained for
the case of unity kinematic viscosity, where the solution shows the existence of
shock waves.

Figures 1a and 1b illustrate the effect of the parameters 5 and a on the velocity
field w(x,t) at K1 = Ko = 1 and t = 1 with a = 4 and § = 5, respectively.
As seen from these figures, the velocity w(z,t) oscillates and it diminishes with
increasing x. The decrease is more rapid near the infinity. Also, it is clear from
the two figures the effect of the viscous term f(t)wy,. It reduces the amplitude of
the wave and prevents multivalued solutions from developing. Figures 1c and 1d
illustrate the effect of the parameter 5 and a on the velocity field w(z,t) at K7 =
and Ko =4 and t = 1 with ¢« =4 and 8 = 5, respectively.



12 M.B. Abd-el-Malek and H.S. Hassan

(2,0)

w
1
0
2

—_p=5
-10 = B=10 b -10
-12 B -12
14 B 14
16 | | | | | | | | | T 16 | | | | | | | | | T
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Figure 1. Velocity field profiles (a) with different values of 8 at K1 = K> = 1 and ¢t = 1 with
a = 4; (b) with different values of a at K1 = K = 1 and ¢t = 1 with 8 = 5; (¢) with different
values of 8 at K1 = 2 and Ky =4 and t = 1 with a = 4; (d) with different values of a at K1 = 2
and Ko =4 and t = 1 with 8 = 5.

4 Conclusion

We have used Lie-group method to obtain the similarity reductions of the Burgers’
equation with time-dependent kinematic viscosity. By determining the transfor-
mation group under which the given partial differential equation and its initial and
boundary conditions are invariant, we obtained the invariants and the symmetries
of this equation. In turn, we used these invariants and symmetries to determine
the similarity variables that reduced the number of independent variables. The
resulting differential equation is solved numerically using shooting method cou-
pled with Runge-Kutta scheme and the results are plotted. We have studied the
effect of the parameters 3 and a on the velocity field w(z,t). We found that,
the velocity w(x,t) oscillates and it diminishes with increasing z. The decrease is
more rapid near the infinity. Also, the effect of the viscous term f(¢)wy, reduces
the amplitude of the wave and prevents multivalued solutions from developing.
Particular case of our results is compared with those obtained by Abd-el-Malek
and El-Mansi [10], it was found in complete agreement.
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The complete point symmetry group of the barotropic vorticity equation on
the B-plane is computed using the direct method supplemented with two dif-
ferent techniques. The first technique is based upon the preservation of any
megaideal of the maximal Lie invariance algebra of a differential equation by
the push-forwards of point symmetries of the same equation. The second tech-
nique involves a priori knowledge on normalization properties of a class of dif-
ferential equations containing the equation under consideration. Both of these
techniques are briefly outlined.

1 Introduction

It is well known that it is much easier to determine the continuous part of the
complete point symmetry group of a differential equation than the entire group
including discrete symmetries. The computation of continuous (Lie) symmetries
is possible using infinitesimal techniques, which amounts to solving an overdeter-
mined system of linear partial differential equations (referred to as determining
equations) for coefficients of vector fields generating one-parameter Lie symmetry
groups. Owing to the algorithmic nature of this problem, the automatic computa-
tion of Lie symmetries is already implemented in a number of symbolic calculation
packages, see, e.g., papers [7,9,29] for detailed descriptions of certain packages
and reviews [6,10].

The relative simplicity of finding Lie symmetries of differential equations is
also a primary reason why the overwhelming part of research on symmetries is
devoted to symmetries of this kind. See, e.g., the textbooks [4,5,19-21] for general
theory and numerous examples and additionally the works [1-3,8, 18] for several
applications of Lie methods in hydrodynamics and meteorology.

As is the case with continuous symmetries, also discrete symmetries are of
practical relevance in a number of fields such as dynamical systems theory, quan-
tum mechanics, crystallography and solid state physics. They can also be helpful
in some issues related to Lie symmetries, e.g. allowing for a simplification of op-
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timal lists of inequivalent subalgebras, and due to enabling the construction of
new solutions of differential equations from known ones. It is not possible, in
general, to determine the whole point symmetry group in terms of finite trans-
formations by usage of infinitesimal techniques. On the other hand the direct
computation of point symmetries based upon their definition boils down to solv-
ing a cumbersome nonlinear system of determining equations, which is difficult
to be integrated. Similar determining equations also arise under calculations of
equivalence groups and sets of admissible transformations of classes of differential
equations by means of employing the direct method. In order to simplify the
derivation of the determining equations, different special techniques have been
developed involving, in particular, the implicit representation of unknown func-
tions, the combined splitting with respect to old and new variables and the inverse
expression of old derivative via new ones [23,25,28].

There exist two particular techniques that can be applied for a priori sim-
plification of calculations concerning the point symmetry groups of differential
equations.

The first technique was presented in [11] for equations the maximal Lie invari-
ance algebras of whhich are finite dimensional. It is based on the fact that the
push-forwards of point symmetries of a given system of differential equations to
vector fields on the space of dependent and independent variables are automor-
phisms of the maximal Lie invariance algebra of the same system. This condition
yields restrictions for those point transformations that can qualify as symme-
tries of the system of differential equations under consideration. We adapt this
technique to the infinite-dimensional case using the notion of megaideals of Lie
algebras, which are the most invariant algebraic structures.

The second technique involves available information on the set of admissible
transformations of a class of differential equations [25], which contains the inves-
tigated equation.

In the present paper we demonstrate both of these techniques by computing
the complete point symmetry group of the barotropic vorticity equation on the
B-plane. This is one of the most classical models which are used in geophysical
fluid dynamics. The techniques to be employed are briefly described in Section 2.
The actual computations using the method based on the corresponding Lie invari-
ance algebra and that involving a priori knowledge on admissible transformations
of a class of generalized vorticity equations are presented in Section 3 and 4,
respectively. A short summary concludes the paper.

2 Techniques of calculation
of complete point symmetry groups

Both the techniques described in this section should be considered merely as tools
for deriving preliminary restrictions on point symmetries. In either case calcula-
tions must finally be carried out within the framework of the direct approach.
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2.1 Using megaideals of Lie invariance algebra

The most refined version of the technique involving Lie symmetries in the calcu-
lations of complete point symmetry groups was applied in [11]. It is outlined as
follows: Given a system of differential equations £ the maximal Lie invariance
algebra of which, g, is n-dimensional with a basis {e1,...,e,}, n < oo, one has
to compute the entire automorphism group of g, Aut(g). Supposing that 7 is
a transformation from the complete point symmetry group G of £, one has the
condition Tye; = > 1" | e;a;; for j = 1,...,n, where 7, denotes the push-forward
of vector fields induced by 7 and (a;;) is the matrix of an automorphism of g
in the chosen basis. This condition implies constraints on the transformation 7°
which are then taken into account in further calculations with the direct method.

The method we propose here is different to those described in the previous
paragraph. In fact it uses only the minimal information on the automorphism
group Aut(g) in the form of a set of megaideals of g. Due to this it is applicable also
in the case for which the maximal Lie invariance algebra is infinite dimensional.
The notion of megaideals was introduced in [24].

Definition 1. A megaideal i is a vector subspace of g that is invariant under any
transformation from the automorphism group Aut(g) of g.

That is, we have Ti = i for a megaideal i of g whenever ¥ is a transformation
from Aut(g). Any megaideal of g is an ideal and characteristic ideal of g. Both
the improper subalgebras of g (the zero subspace and g itself) are megaideals of g.
The following assertions are obvious.

Proposition 1. Ifiy and iy are megaideals of g, then so are i1+ia, i1Nig and [iy, i2],
i.e., sums, intersections and Lie products of megaideals are again megaideals.

Proposition 2. If iy is a megaideal of i1 and i1 is a megaideal of g, then iz is a
megaideal of g, i.e., megaideals of megaideals are also megaideals.

Corollary 1. All elements of the derived, upper and lower central series of a Lie
algebra are its megaideals. In particular the center and the derivative of a Lie
algebra are its megaideals.

Corollary 2. The radical v and nil-radical n (i.e. the maximal solvable and nilpo-
tent ideals, respectively) of g as well as different Lie products, sums and intersec-
tions involving g, v and n ([g,t], [v,t], [g,n], [t,n], [n,n] etc.) are megaideals of g.

Suppose that g is finite dimensional and possesses a megaideal i which, without
loss of generality, can be assumed to be spanned by the first &£ basis elements,
i = (e1,...,er). Then the matrix (a;;) of any automorphism of g has block
structure, namely, a;; = 0 for ¢ > k. In other words in the finite-dimensional
case we take into account only the block structure of automorphism matrices.
This is reasonable as the entire automorphism group Aut(g) (which should be
computed within the method from [11]) may be much wider than the group of
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automorphisms of g induced by elements of the point symmetry group G of L.
Moreover it seems difficult to find the entire group Aut(g) if the algebra g is
infinite dimensional. At the same time, in view of the above assertions, it is easy
to determine a set of megaideals for any Lie algebra.

2.2 Direct method and admissible transformations

The initial point of the second technique is to consider a given pth-order system £°
of [ differential equations for m unknown functions u = (u',...,u™) of n indepen-
dent variables x = (x1,...,x,) as an element of a class £|s of similar systems Ly:
L(z,u(y), 0(7, ugp)) = 0 parameterized by a tuple of pth-order differential func-
tions (arbitrary elements) 6 = (' (2, u(y)), ..., 0%(z, u(,))). Here ug, denotes the
set of all the derivatives of u with respect to x of order not greater than p, includ-
ing u as the derivatives of order zero. The class L|s is determined by two objects:
the tuple L = (L', ..., L") of [ fixed functions depending upon z, U(p) and ¢ and ¢
running through the set §. Within the framework of symmetry analysis of differ-
ential equations, the set S is defined as the set of solutions of an auxiliary system
consisting of a subsystem S(, u(,), 0(q) (7, u(y))) = 0 of differential equations with
respect to 6 and a no vanish condition ¥(x,u (), 0 (z,u))) # 0 with another
differential function 3 of ¢. In the auxiliary system x and u, play the role of
independent variables and 6, stands for the set of all the partial derivatives of
¢ of order not greater than g with respect to the variables z and u,). In view of
the purpose of our consideration we should have that £ = L4, for some ) € S.

Following [25], for 6,0 € S we denote by T(6,60) the set of point transforma-
tions which map the system Ly to the system L;. The maximal point symmetry
group Gy of the system Ly coincides with T(6,6).

Definition 2. T(L|s) = {(6,0,¢) | 6,0 € S, ¢ € T(h,0)} is called the set of
admissible transformations in L|s.

Sets of admissible transformations were first systematically described by King-
ston and Sophocleous for a class of generalized Burgers equations [14] and Winter-
nitz and Gazeau for a class of variable coefficient Korteweg—de Vries equations [30],
in terms of form-preserving [14-16] and allowed [30] transformations, respectively.
The notion of admissible transformations can be considered as a formalization of
their approaches.

Any point symmetry transformation of an equation Ly from the class L|s gen-
erates an admissible transformation in this class. Therefore it obviously satisfies
all restrictions which hold for admissible transformations [15]. For example, it
is known for a long time that for any point (and even contact) transformation
connecting a pair of (1 + 1)-dimensional evolution equations its component cor-
responding to ¢ depends only upon ¢, cf. [17]. The equations in the pair can
also coincide. As a result the same restriction should be satisfied by any point or
contact symmetry transformation of every (1+ 1)-dimensional evolution equation.
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The simplest description of admissible transformations is obtained for normal-
ized classes of differential equations. Roughly speaking a class of (systems of)
differential equations is called normalized if any admissible transformation in this
class is induced by a transformation from its equivalence group. Different kinds
of normalization can be defined depending upon what kind of equivalence group
(point, contact, usual, generalized, extended etc.) is considered. Thus the usual
equivalence group G~ of the class L|s consists of those point transformations in the
space of variables and arbitrary elements, which are projectable onto the variable
space and preserve the whole class £|s. The class L|s is called normalized in the
usual sense if the set T(L|s) is generated by the usual equivalence group G~. As a
consequence all generalizations of the equivalence group within the framework of
point transformations are trivial for this class. See [25] for precise definitions and
further explanations. If the class £|s is normalized in a certain sense with respect
to point transformations, the point symmetry group Gy, of any equation Ly, from
this class is contained in the projection of the corresponding equivalence group
of L|s to the space of independent and dependent variables (taken for the value
0 = Oy in the case when the generalized equivalence group is considered).

As a rule calculations of certain common restrictions on admissible transfor-
mations of the entire normalized class or its normalized subclasses or point sym-
metry transformations of a single equation from this class have the same level
of complexity. For example, in order to derive the restriction that the transfor-
mation component corresponding to ¢t depends only upon ¢, we should perform
approximately the same operations, independently of considering the whole class
of (1+ 1)-dimensional evolution equations, on any well-defined subclass from this
class or any single evolution equation. This is why it is worthwhile firstly to con-
struct nested series of normalized classes of differential equations by starting from
a quite general, obviously normalized class, imposing on each step additional aux-
iliary conditions on the arbitrary elements and then studying the complete point
symmetries of a single equation from the narrowest class of the constructed series.

In the way outlined above we have already investigated hierarchies of normal-
ized classes of generalized nonlinear Schrédinger equations [25], (1+1)-dimensional
linear evolution equations [26], (1+1)-dimensional third-order evolution equations
including variable-coefficient Korteweg—de Vries and modified Korteweg—de Vries
equations [27] and generalized vorticity equations arising in the study of local
parameterization schemes for the barotropic vorticity equation [23].

If an equation does not belong to a class the admissible transformations of
which have been studied earlier, one can try to map this equation using a point
transformation to an equation from a class for which constraints on its admissible
transformations are known a priori. Then one can either map the known con-
straints on admissible transformations back and then complete the calculations
of point symmetries of the initial equation using the direct method or calculate
the point symmetry group of the mapped equation using the direct method and
then map this group back. The example on the application of this trick to the
barotropic vorticity equation in presented in Section 4.
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3 Calculations based on Lie invariance algebra
of the barotropic vorticity equation

The barotropic vorticity equation on the S-plane is

Ct + %Cy - %Cx + ﬂ% = O? (1)

where ¢ = 9(t,z,y) is the stream function and ¢ := 9,y + ¥y, is the relative
vorticity, which is the vertical component of the vorticity vector. The barotropic
vorticity equation in the formulation (1) is valid in situations in which the two-
dimensional wind field can be regarded as almost nondivergent and the motion in
North—South direction is confined to a relatively small region. It is then conve-
nient to use a local Cartesian coordinate system. In such a coordinate system the
effect of the sphericity of the Earth is conveniently taken into account by approx-
imating the normal component of the vorticity due to the rotation of the Earth,
2€)sin ¢, by its linear Taylor series expansion, where € is the angular rotation of
the Earth and ¢ is the geographic latitude. This linear approximation at some
reference latitude g is given by 2Qsin ¢y + Sy, where 8 = 2Qcosp/a and a is
the radius of the Earth. This is the traditional -plane approximation, see [22]
for further details. Then the taking of the vertical component of the curl of the
two-dimensional ideal Euler equations and use of the 3-plane approximation lead
to Eq. (1).

It is straightforward to determine the maximal Lie invariance algebra g of
Eq. (1) using infinitesimal techniques:

g = (D, 0, 0y, X(f), 2(9)),

where D = t0; — 10, — y0y — 3Y0y, X (f) = f(t)0, — fi(t)y0y and Z(g) = g(t)0y,
and f and g run through the space of smooth functions of t. (In fact the precise
interpretation of g as a Lie algebra strongly depends on what space of smooth
functions is chosen for f and g, cf. Note A.1 in [8, p. 178].) This result was
first obtained in [13] and is now easily accessible in the handbook [12, p. 223].
See also [2] for related discussions and the exhaustive study of the classical Lie
reductions of Eq. (1).
The nonzero commutation relations of the algebra g in the above basis are

[@,'D] = O, [Gy,'D] = _aya
D, X(N] =X+ ), [D,Z(g)]=Z({g+3y),
[0, X()] = X(fe), [0 Z(9)] = Z(ge), [0y, X(f)] = —Z(f1)-

It is easy to see from the commutation relations that the Lie algebra g is solvable
since

g, = [979] = <at7ay7X(f)’Z(g)>a
"= =(X(f),Z(9),
" — [g//,g,/] — O

Q. «
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Therefore the radical ¢ of g coincides with the entire algebra g. The nil-radical
of g is the ideal

n = (9y, X(f), Z(9))-
Indeed this ideal is a nilpotent subalgebra of g since
n® =n'=[nn=(2(9), n®=[nn]=0.

It can be extended to a larger ideal of g only with two sets of elements, {J;} and
{D, 0;}. Both resulting ideals are not nilpotent. In other words n is the maximal
nilpotent ideal.

Continuous point symmetries of Eq. (1) are determined from the elements of g
by integration of the associated Cauchy problems. It is obvious that Eq. (1) also
possesses two discrete symmetries, (¢, z,y, ) — (—t,—x,y,v) and (t,z,y,v)
(t,z, —y, —1), which are independent up to their composition and their composi-
tions with continuous symmetries. The proof that the above symmetries generate
the entire point symmetry group was, however, outstanding.

Theorem 1. The complete point symmetry group of the barotropic vorticity equa-

tion on the B-plane (1) is formed by the transformations

~ B 1 B c
T: I=Tu+T, i=qa+[0), §=ry+Y
Tl Tl

~ g €
P = (Tl)gw - (Tl)th(t)y +9(t),

where Ty # 0, e = 1 and f and g are arbitrary functions of t.

Proof. The discrete symmetries of the barotropic vorticity equation on the -
plane are computed as described in Section 2.1. The general form of a point
transformation of the vorticity equation is:

T: (4z3,9)=(T,X,Y,¥),

where T, X, Y and V¥ are regarded as functions of ¢, x, y and ¢, the joint
Jacobian of which does not vanish. To obtain the constrained form of 7 we use
the above four proper nested megaideals of g, namely n’, g”, n and ¢/, and g itself.
Recall once more that the transformation 7 must satisfy the conditions Zun’ = n’,
T.¢" = ¢", T.n =n, T.g' = ¢’ and 7,g = g in order to qualify as a point symmetry
of the vorticity equation, where 7, denotes the push-forward of 7 to vector fields.
In other words we have

T.2(9) = 9(Ty0; + Xy0i + Yy + Vy05) = Z(37), (2)
T.X(f) = X(f))+ 2(@@), (3)
T,.0p = Ty0p + Xi05 + Yi05 + Wi0j = a10; + a20; + X(f) + Z(9), (4)
T.0y = Ty0; + X0z + Y, 05 + 05 = 0195 + X(fY) + Z2(5), (5)
T.D = 1D+ 205 + c305 + X(fP) + Z(37), (6)
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where all f’s and §’s are smooth functions of ¢ which are determined, as the
constant parameters ai, as, by, ¢1, ¢co and ¢z, by 7, and the operator from the
corresponding left-hand side.

We derive constraints on 7, consequently equating coefficients of vector fields
in conditions (2)—(6) and taking into account constraints obtained on previous
steps. Thus Eq. (2) immediately implies Ty, = X,y = Yy, = 0 (hence ¥, # 0) and
g¥y = g9. Evaluation of the last equation for g = 1 and g = ¢ and combination
of the results give t = §(T)/g*(T), where §' = §9)y—¢ and g' = §9,=1. As the
derivative with respect to T in the right hand side of this equality does not vanish,
the condition 7" = T'(t) must hold. This implies that ¥, depends only upon ¢.

As then T.X(f) = fX.0: + fYo05 + (f¥s — fty\pw)%, it follows from Eq. (3)
that Y, = 0 and

fXx:ffa f\pm_fty\pw:_,]ggfy‘i‘gf'

Evaluating the first of the displayed equalities for f = 1, we derive that X, =
fUT) =: X1(t). Therefore ff(T) = f(t)X1(t). The second equality then becomes

F,— sy =-S5y g
t

The setting of f = 1 and f = ¢ in the last equality and combination of the resulting
equalities yield y¥y = (T3) 1 X1Y +tg! — §', where §' = §/|;— and §' = §/|;=1.
As X1 # 0, this equation implies that Y = Y1 (¢)y + Yp(?).

After analyzing Eq. (4) we find 7; = const, Y; = const, which leads to
Y, = const, X; = f(T) and thus X;, = 0, i.e., X; = const. Finally Eq. (4)
also implies ¥; = — ng + g. In a similar manner, after we take into account the
restrictions already derived so far, collection of coefficients in Eq. (5) gives the
constraint X, = fy =: X9 = const since X; = 0. Moreover ¥, = g¥ as fiy =0.

The final restrictions on 7 based on the preservation of g are derivable from
Eq. (6), where

T.D = tT10; + (tX¢ — 2 Xy — yX,y)0z + (tY: — yYy)0y
+ (t\I/t — .%\I/I - y\I/y - 3¢\I/w)81;

Collecting the coefficients of 0; and 93, we obtain that ¢; = 1 and ¥; = 0. Simi-
larly, equation of the coefficients of 0 ' and the further splitting with respect to x
implie that ¥, = 0.

The results obtained so far lead to the following constrained form of the general
point symmetry transformation of the vorticity equation (1)

T'=Tit+Ty, X=Xiov+Xoy+ f(t), Y =Yiy+Yo,
U = Witp + Uy(t)y + Wu(t),

where Ty, T1, X1, Xo, Yp, Y1 and ¥y are arbitrary constants, Th X1V, # 0,
and f(t), Ua(t) and Wy(t) are arbitrary time-dependent functions. The form (7)

(7)



Point symmetry group of the barotropic vorticity equation 23

takes into account all constraints on point symmetries of (1), which follow from
the preservation of the maximal Lie invariance algebra g by the associated push-
forward of vector fields.

Now the direct method should be applied. We carry out a transformation of the
form (7) in the vorticity equation. For this aim we calculate the transformation
rules for the partial derivative operators:

f 1 1 X
O =7 (at XZa), O = 500 agzyl(aijax)

Further restrictions on 7° can be imposed upon noting that the term ¢, can
only arise in the expression for tz;;, which is

20, Xy
S TYL X,

wfgg wtxy

This obviously implies that X5 = 0. In a similar fashion the expression for fg is

o= (oo (e o) o)

upon using Yzt = (¢ — Yyye. Hence (X71)? = (Y1)? as there are no other terms
with 9y, in the invariance condition. After taking into account these two more
restrictions on 7, it is straightforward to expand the transformed version of the
vorticity equation. This yields

Uy JA 2! (Uq)? o) ¥y
Tl(Xl)QCt ( )3C$ ( )3Y wsz < ¢y ) (Xl)g,Cx

\'J
+ﬁ wmz (1) (G + Yy — Yyl + i) .

The invariance condition is fulfilled provided that the constraints

(v)* I
(X1)3Y1 Ti(X1)?

Y;
—flft, X; =T1(X1)?,
1

hold. This completes the proof of the theorem. |

Corollary 3. The barotropic vorticity equation on the B-plane possesses only two
independent discrete point symmetries, which are given by

I‘1: (thvva) = (_t7 _xava)v F2: (taxvva) = (t,.%', -V, —¢)

They generate the group of discrete symmetry transformations of the barotropic
vorticity equation on the 3-plane, which is isomorphic to Z? x Z?, where Z* denotes
the cyclic group of two elements.
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4 Direct method and admissible transformations
of classes of generalized vorticity equations

The construction of the complete point symmetry group G of the barotropic vor-
ticity equation (1) by means of using only the direct method involves cumbersome
and sophisticated calculations. As Eq. (1) is a third-order PDE in three indepen-
dent variables, the system of determining equations for transformations from G is
an overdetermined nonlinear system of PDEs in four independent variables, which
should be solved by taking into account the nonsingularity condition of the point
transformations. This is an extremely challenging task. Fortunately a hierarchy of
normalized classes of generalized vorticity equations was recently constructed [23]
that allows us to simplify strongly the whole investigation. Eq. (1) belongs only to
the narrowest class of this hierarchy, which is quite wide and consists of equations
of the general form

Ct - F(tax7y7¢)wxa wya Ca CCC) Cyv CSL‘JJ? C$y7 ny)7 C = widf + 1/Jyy7 (8)

where (F¢,, I, , Fe,., Fe,,» Fe,,) 7 (0,0,0,0,0). The equivalence group G7° of this
class is formed by the transformations

t=T(), &=Z'(tay), §=2Z(t=zy), ©=TEW+O(tw,y),
N i AVA: i
g (T D (-T2 Gor (D (D))

where T', Z, Y and ® are arbitrary smooth functions of their arguments, satisfying
the conditions ZliZlg =0, Z[Z] = Z]%Z]% := L and T} YL # 0. The subscripts 1
and 2 denote differentiation with respect to x and y, respectively, the indices 4
and j run through the set {1,2} and the summation over repeated indices is
understood. As Eq. (1) is an element of the class (8) and this class is normalized,
the point symmetry group G of Eq. (1) is contained in the projection GT of the
equivalence group G of the class (8) to the variable space (¢,z,y,1). At the
same time the group G is much narrower than the group G"l“, and in order to
single out G from G5 we should still derive and solve a quite cumbersome system
of additional constraints. Instead of this we use the trick described in the end of
Section 2.2, namely, by the transformation

b=t oy, )

which identically acts on the independent variables and which is prolonged to the
vorticity according to the formula ¢ = ¢ 4+ Sy, we map Eq. (1) to the equation

ét + TZJxCVy - ”&yéx = _ngéx‘ (10)
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Eq. (10) belongs to the subclass of class (8) that is singled out by the constraints
Fy=0,F =0, Fy, = —(yand Fy = (, i.e., the class consisting of the equations
of the form

Gt + %Cy - d}yg’r = H(t,l‘, Yy Cas Cya Caa> C:rya ny)a ¢ =Ygz + wyya (11)

where H is an arbitrary smooth function of its arguments, which is assumed as
an arbitrary element instead of F' = H — ¢,(, + ¥y(;. The class (11) also is a
member of the above hierarchy of normalized classes. Its equivalence group G5
is much narrower than G7" and is formed by the transformations

t=1, @=Aaxc—ys)++', ef=\as+yc)+7,

S A
b= <>\¢ + §9t(w2+y2) — v (zstye) + 73($cy5)> +6+ %($2+y2),

- e )\t 5y—|—0'y 55"}_0'33 2 g
H=—; <H (ffoerCy)”H”) T et et <V>t

-5 -
where € = £1, ¢ = cosf, s = sinf; 7, A, , v* and ¢ are arbitrary smooth functions
of t satisfying the conditions A > 0, 7+ = 0 and 73 # 0 and § = 0(¢,x,y) runs
through the set of solutions of the Laplace equation 6., + dyy = 0.

In order to derive the additional constraints that are satisfied by the group
parameters of transformations from the point symmetry group Go of Eq. (10), we
substitute the values H = —fy?(,/2 and H = —ﬁg]zfi /2 as well as expressions
for the transformed variables and derivatives via the initial ones into the trans-
formation component for H and then make all possible splitting in the obtained
equality. As a result we derive the additional constraints

1 efBvy?
9:’)/3:07 )\:?t, 0'227_1527

BOA?

€
0p = —0x, Oy=0
v Y y+ 27}5

After projecting transformations from G5 on the variable space (t,z,y,), con-
straining the group parameters using the above conditions and taking the adjoint
action of the inverse of the transformation (9), we obtain, up to redenoting, the
transformations from Theorem 1.

5 Conclusion

In this paper we have computed the complete point symmetry group of the
barotropic vorticity equation on the S-plane. It is obvious that both of the tech-
niques presented in this paper are applicable to general systems of differential
equations.

Despite of the apparent simplicity of the techniques employed above, there are
several features that should be discussed properly. In particular the relation be-
tween discrete symmetries of a differential equation and discrete automorphisms
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of the corresponding maximal Lie invariance algebra is neither injective nor sur-
jective. This is why it can be misleading to restrict the consideration to discrete
automorphism when trying to finding discrete symmetries. This and related issues
will be investigated and discussed more thoroughly in a forthcoming work.
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Every simplest potential conservation law of any (1+1)-dimensional linear evo-
lution equation of even order proves induced by a local conservation law of the
same equation. This claim is true also for linear simplest potential conservation
laws of (1 + 1)-dimensional linear evolution equations of odd order, which are
related to linear potential systems. We also derive an effective criterion for
checking whether a quadratic conservation law of a simplest linear potential
system is a purely potential conservation law of a (1 4+ 1)-dimensional linear
evolution equation of odd order.

1 Introduction

The notion of potential conservation laws arises as a natural generalization of
the notion of local conservation laws of differential equations. We call a potential
conservation law any local conservation law of a potential system constructed from
a given system S of differential equations via introducing potentials by using local
conservation laws of S [13]. This term first appeared in [4]. Potential conservation
laws may be trivial in the sense that they induced by local conservation laws of the
initial system [8,13]. The idea of iterative introduction of potentials by using local
conservation laws of a potential system obtained on the previous step was first
suggested in the famous paper [17] and later formalized in the form of the notion of
universal Abelian covering of differential equations [6,11,16]. Although potential
conservation laws of differential equations are interesting and important objects
for study within the framework of symmetry analysis, nontrivial and complete
results on such conservation laws were obtained only for a few classes of differential
equations. See related reviews and references in [3,8,13].

As a generalization of similar results from [13] for the linear heat equation,
it was proved in [14] that all potential conservation laws of (1 + 1)-dimensional
linear second-order evolution equations are trivial. Local conservation laws of
these equations are well understood. More precisely their spaces of the local
conservation laws consist of linear conservation laws the characteristics of which
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depend only upon independent variables and are solutions of the corresponding
adjoint equations. This finally solves the problem on potential conservation laws
for these equations.

In the present paper we extend results from [14] onto simplest potential conser-
vation laws (i.e. those which involve only single potentials) of (1 + 1)-dimensional
linear second-order evolution equations to the case of an arbitrary order. The ex-
tension to equations of even order is quite direct and exhaustive. In the case of odd
order we restrict our consideration with simplest potential systems constructed
by linear conservation laws.

Consider an arbitrary linear evolution equation of order n in the two indepen-
dent variables ¢t and = and the dependent variable u,

n

up = ZAiui, (1)

=0

where A® = A'(t,x) are arbitrary smooth functions, A" # 0, n € {2,3,4,...},
up = Ou/Ot, u; = O'u/0x', i =1,...,n, up = u (i.e., the function v is assumed to
be its zeroth-order derivative). We also employ, depending upon convenience or
necessity, the following notation: u; = w1, Uz, = uo and Uz, = uz. Dy and D,
are the operators of total differentiation with respect to the variables t and z, re-
spectively, and Div denotes the total divergence, DivV = D;F+ DG for the tuple
V = (F, G) of differential functions F' and G. See [12,14] for other related notions.

Our paper is organized as follows: In the next section we briefly overview
results of [15] on local conservation laws of equations from class (1) and extend
the simplest potential frame, constructed in [14] for (1 + 1)-dimensional linear
evolution equations of order two, to the case of an arbitrary order. The same
extension of dual Darboux transformations is carried out in Section 3. Simplest
potential conservation laws of (1 + 1)-dimensional linear evolution equations of
even and odd order are studied in Sections 4 and 5, respectively. In the conclusion
we discuss the results obtained and related problems which are still open.

2 Local conservation laws and simplest
potential frame

It is well known that any linear partial differential equation £ admits cosym-
metries which are functions of independent variables only and are solutions of
the corresponding adjoint equation £, and every solution of £ is a cosymmetry.
Moreover any such cosymmetry is a characteristic of a conservation law of £ which
contains a conserved vector linear in the dependent variable and its derivatives,
cf. [5]. Following [12, Section 5.3] we call the conservation laws of this kind linear.

It turns out that for any linear (1 4 1)-dimensional evolution equation of even
order its space of conservation laws is exhausted by linear ones and therefore
is isomorphic to the solution space of the corresponding adjoint equation [15].
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In other words any cosymmetry of (1) does not depend upon derivatives of u, and
a function a = a(t, x) is a cosymmetry of (1) if and only if it is a solution of the
adjoint equation

a+ Y (1) (Aa); =0. (2)
=0

Any such cosymmetry is a characteristic of a linear conservation law for (1) with
the canonical conserved vector V = (F,G), where

n—1
F=au, G= Z olu (3)
=0

and the coefficients o* = o'(t, x) are found recursively from the relations
ol =—aA", ol=—aAT ot i=n—-2...0. (4)

For any linear (1 + 1)-dimensional evolution equation of odd order the space
of its conservation laws is spanned by linear and quadratic conservation laws [15].
There exist both such equations possessing infinite series of quadratic conservation
laws of arbitrarily high orders and ones having no quadratic conservation laws.
For all the formulas and claims obtained for equations of even order to be correct
in the case of odd order it is necessary to restrict the consideration with lin-
ear local conservation laws, associated (linear) potential systems and their linear
conservation laws.

Following the presentation of Section 7 of [14] we investigate certain objects
related to simplest potential systems of (1), i.e. potential systems associated with
single local conservation laws [13]. The theory of Darboux transformations for
linear evolution equations [10] is strongly employed for this. A detailed study
of the simplest potential systems is necessary for understanding the general case
since such systems are components of more general potential systems.

Introducing the potential v by the nontrivial canonical conserved vector (3)
associated with the characteristic & = «(t, ) # 0, we obtain the potential system

n—1
Vp = QU, Up= — Zo’ui. (5)
i=0

The initial equation (1) for u is a differential consequence of system (5). An-
other differential consequence of (5) is the equation

=3 (2), 0
=0

on the potential dependent variable v, which is called the potential equation associ-
ated with the linear evolution equation (1) and the characteristic a. There is a one-
to-one correspondence between solutions of the potential system and the potential
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equation due to the projection (u,v) — v on the one hand and due to the formula
u = v,/ on the other, cf. [14]. The correspondence between solutions of the initial
equation and the potential system is one-to-one only up to a constant summand.

It is convenient to use another dependent variable w = v instead of v in our
further considerations, where we introduce the notation ¢» = 1/a. The function w
is called the modified potential associated with the characteristic a« = 1/1. After
being written in terms of w and v instead of v and «, the potential system (5)
and the potential equation (6) take the form

e
"

Wy —

w = u, wt——w——¢20uz (7)

and

n—1
wy = —1 Z o (wx — dgw) —w = ZBZw27 (8)
=0 i

respectively. Here

n—1 ,.
——zbai_l—l-@ZJZ(;)ai(sz) , i=n,n—1,...,1,
j=i J=i
wt = z<wx>
BY'== == .
w+¢j§a o).

J

In particular B® = A" and B"~! = A""! — A" System (7) and equation (8)
are called the modified potential system and the modified potential equation as-
sociated with the characteristic a. These representations of the potential system
and potential equation are more suitable for the study within the framework of
symmetry analysis.

As the function v = 1 obviously is a solution of (6) and therefore the function
w = 1) is a solution of (8), the first equation of (7) in fact represents the Darboux
transformation [7,10] of (8) to (1).

3 Dual Darboux transformation
The remarkable fact that Darboux covariance holds for (1 + 1)-dimensional linear
evolution equations of arbitrary order was first established in [9] (see also [10,

p. 17]). In contrast to the previous section for the coherent presentation we
assume below that the initial object of the consideration is the equation (8),

= Zn: B'w, (9)
=0
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which is interpreted as an arbitrary representative of the class of linear evolution
equations.

Denote by DT[¢] the Darboux transformation constructed with a nonzero so-
lution ¢ of (9), i.e.,

DT[] (w) = w, — %w.

The Darboux transformation possesses the useful property of duality. We formu-
late this in the same way as in [14], which is slightly different from [10, Section 2.4].

Lemma 1. Let w° be a fized nonzero solution of (9) and let the Darboux trans-
formation DT[w®] map (9) to equation (1). Then a® = 1/w® is a solution of the
equation (2) adjoint to equation (1) and DT[] maps (2) to the equation adjoint
to (9), i.e.,

n n
; DT[w® ;
up = g Alu; DT wy = E Bw;,
; i=0

i=0 i=0

Remark 1. Similarly to [14] the Darboux transformation DT[a] is called the dual
to the Darboux transformation DT[w’]. Since the twice adjoint equation coincides
with the initial equation, the twice dual Darboux transformation is nothing but
the initial Darboux transformation. This implies that ‘then’ in Lemma 1 can be
replaced by ‘if and only if’.

Remark 2. The Darboux transformation DT[w"] from Lemma 1 is a linear map-
ping of the solution space of (9) to the solution space of (1). The kernel of this
mapping coincides with the linear span (w'). Its image is the whole solution space
of (1). Indeed for any solution u of (1) we can find a solution w of (9), mapped
to u, by integrating system (7) with respect to w. By the Frobenius theorem
system (7) is compatible in view of equation (1). Therefore DT[w’] generates a
one-to-one linear mapping between the solution space of (9), factorized by (w®),
and the solution space of (1).

In the case of even order n Lemma 1 jointly with Remark 2 can be reformulated
in terms of characteristics of conservation laws. Denote equations (1) and (9),
where n € 2N, by £ and £ for convenience.

Lemma 2. If w° is a nonzero solution of L and DT[w)(L) = L, then a® =
1/w® is a characteristic of L and the Darbouz transformation DT[a’] maps the
characteristic space of L onto the characteristic space of L.
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Proposition 1. Let w® be a fized nonzero solution of (9) and let the Darbouz
transformation DT[w®] map (9) to equation (1). Then the operator associated
with DT[w] is a splitting operator for the pair of operators associated with equa-
tions (1) and (9), i.e.,

<at - gAiajc)DT[wo] = DT[w"] (at - é BZB;).

4 Simplest potential conservation laws: even order

If a potential system is constructed by introducing a potential v with a single local
conservation law of (1), each of its local conservation laws is a simplest potential
conservation law of (1), cf. [13]. We say that a simplest potential conservation law
F of (1) is induced by a local conservation law F of (1) if F contains a conserved
vector which is the pullback of a conserved vector from F with respect to the
projection

w: JOt, x| u,v) — JO(, x| u),

where J(t,x |u,v) (resp. J®(t,z|u)) denotes the jet space with the indepen-
dent variables ¢ and x and the dependent variables u and v (resp. the dependent
variable u). In view of Proposition 2 from [8] this is equivalent to that the con-
servation law F contains a conserved vectors depending upon t, z and derivatives
of u.

Theorem 1. Every simplest potential conservation law of any (1+1)-dimensional
linear evolution equation of even order is induced by a local conservation law of
the same equation.

Proof. Potentials v and ¢ introduced with equivalent conserved vectors are con-
nected by the transformation o = v + flu|, where f[u] is a function of ¢, x and
derivatives of u. This transformation preserves the property of inducing simplest
potential conservation laws by local ones. Therefore exhaustively to investigate
simplest potential conservation laws of equations from the class (1) with even n it
is sufficient to study local conservation laws of potential systems of the form (5)
associated with canonical conserved vectors of the form (3).

We fix an equation from the class (1) and its characteristic o and consider the
corresponding potential system (5). As the usual potential v is connected with the
modified potential w via a point transformation, we can investigate conservation
laws of the modified potential system (7) instead of (5). Up to equivalence of
conserved vectors on the solution set of (7), we can exclude derivatives of u from
any conserved vector of (7). In other words each local conservation law F of the
modified potential system (7) contains a conserved vector depending solely on ¢,
x and derivatives of w and therefore is induced by a local conservation law of the
modified potential equation (8).
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As equation (8) also is a (1 + 1)-dimensional linear evolution equation of even
order as the initial equation, its space of conservation laws is exhausted by linear
conservation laws, cf. the discussion in the beginning of Section 2. An arbitrary
characteristic § of (8) depends only upon ¢ and = and satisfies the equation adjoint
to (8). In view of Lemma 2 there exists a characteristic & of (1) such that
B = DT[a]a.

The conserved vectors V! and V? of the modified potential system (7), which
are the pullbacks of the canonical conserved vectors of the initial equation (1) and
the modified potential equation (8), associated with the characteristic & and S,
respectively, are equivalent. Indeed the sum of the densities of V2 and V! is

bw + au = (dm — %&>w + d(wm + %w) = D,(aw).
o a

Denote by VO the trivial conserved vector (—D,(aw), Di(Gw)). The conserved
vector VY + V! + V2 of the system (7) has zero density and therefore is a trivial
conserved vector. (In fact the conserved vector Y + V! 4+ V2 equals zero.) This
means that the conserved vectors —V! and V? are equivalent.

In summary we prove that any simplest potential conservation law of equa-
tion (1) contains a conserved vector which is the pullback of a local conserved
vector of (1). [ |

Remark 3. The explicit construction of a local conserved vector which is equiv-
alent to V? in the end of the proof can be replaced by arguments based on the
criterion of induction of potential conservation laws by local ones, cf. Proposition 8
from [8]. Indeed the canonical conserved vector of the modified potential equa-
tion (8), which is the trivial projection of V2, is associated with the characteristic
B = B(t,x). This is why

DivV? = ﬁ(wt — Z Biﬂh’)

ZZO n—1 n—1 w
- ﬂ(wt — lw +¢Zaiui —i-wZaiDi(wx — 2w — u))
¥ =0 i=0 ¥
n—1 n—1
=06+ o' + (LD (o9 ) (0 - o) + D,
i=0 =0

for some differential function ® of u and v for which the precise expression is
not essential. (It is a linear function in derivatives of u and v with coefficients
depending upon ¢ and z.) In other words the conserved vector V? belongs to the
conservation law F of the potential system (5) with the characteristic having the
components

n—1
Y and Y (=Dy)'(po’ ).

1=0
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This characteristic is completely reduced since it does not depend upon derivatives
of u and v. In particular it does not depend upon v. In view of Proposition 8
from [8], the associated local conservation law F of the potential system (5) is
induced by a local conservation law of the initial equation (1).

5 Simplest potential conservation laws: odd order

Theorem 1 cannot be directly extended to (1 + 1)-dimensional linear evolution
equations of odd order since such equations may possess, additionally to linear,
quadratic conservation laws. At the same time it is easy to see that a similar state-
ment can be proved for the case of odd order after restricting to the completely
linear case.

Theorem 2. FEvery linear simplest potential conservation law of any (1 + 1)-
dimensional linear evolution equation of odd order, which is related to a linear
potential system, is induced by a local conservation law of the same equation.

A (141)-dimensional linear evolution equation £ of odd order may additionally
possesses two kinds of simplest potential conservation laws:

e conservation laws of potential systems constructed with conserved vectors
of £ which nontrivially contain terms quadratic in derivatives of u and

e quadratic conservation laws of simplest linear potential systems.

Potential conservation laws of the first kind are difficult for investigation. Thus,
in contrast to the linear case, related potential systems usually have no analogues
of potential equations. It seems that an only possibility to study conservation
laws of these systems is the direct application of general methods discussed, e.g.,
in [1-3,6,13,18].

Here we consider only potential conservation laws of the second kind. There
exists a simple criterion to check whether a potential conservation law of this kind
is induced by a local conservation law of the initial equation (1).

Theorem 3. Let o = «a(t, x) be a nonzero characteristic of a (14 1)-dimensional
linear evolution equation of odd order (1) and

.
y=Tw, T=>) ¢"ta)D;, ¢ #0,
k=0

be a characteristic of the corresponding modified potential equation (8). Then the
conservation law of potential system (5), which is associated with =y, is induced by
a local conservation law of (1) if and only if the solution ¥ =1/« of (8) belongs
to the kernel of operator I', i.e., 'y = 0.
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Proof. Denote by V the conserved vector of the potential system (5), which
is obtained by the pullback of the canonical conserved vector of the modified
potential equation (8), associated with the characteristic 7, and the consequent
transformation v = aw. Analogously to Remark 3 we have

Divy = 'y<wt - Z Biwi)

=0

w n—1 n—1 1/]
= (Fw)<wt - —tw—i—wZJiui +¢ZUiD;(ww — —w —u))
¥ i=0 i=0 ¥

= I (Pv) <vt + Xé au> + ¢<n:(—DI)i(¢a"F<¢v>)) (v — au)
+ D,®

2

for some differential function ® of v and v the precise expression for which again is
not essential. (It is a quadratic function in derivatives of u and v with coefficients
depending on ¢ and x.) This means that the conserved vector V belongs to the
conservation law of the potential system (5) with the characteristic A having the
components

n—1
YT (yv)  and w(Zj(—Dm)i(wair(wv)))-

1=0

For the characteristic A to be completely reduced we have to exclude the deriva-
tives vg, k = 1,...,r +n — 1, from it using the differential consequences of the
equation v, = au. The reduced form of A depends upon the potential v if and
only if 'y = 0. Therefore the statement to be proved follows from the criterion
of induction of potential conservation laws by local conservation laws formulated
in [8] as Proposition 8. [ |

Example 1. We construct an example starting from the corresponding modified
potential equation with the known space of quadratic conservation laws. Consider
the “linear Korteweg—de Vries equation”

Wt = W (10)

which is identical with its adjoint. It was proved in [15] that the space of its
quadratic conservation laws is spanned by the conservation laws with the charac-
teristics T'yyw, where Ty = D7(3tD2 + 2)!D™ and I,m = 0,1,2, . ...

As the solution % of the modified potential equation we choose the function
w = z. The Darboux transformation DT[z] maps equation (10) to the “initial”
equation

Ut = Uggx — ﬁux + Eu (11)
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which also is identical with its adjoint. The solution « of the equation (11), dual
to ¢, is u = 1/¢p = 1/x. The potential system constructed by the conservation
law of (11) with the characteristic « = 1/ has the form

Ugy Uy U

T T x2 ¥

We have that I';;1p = 0 if and only if m > 2. Therefore a complete set
of independent simplest purely potential conservation laws of the equation (11),
which are obtained via introducing the potential with the characteristic « = 1/x,
is exhausted by the quadratic conservation laws constructed by the pullback of the
conservations laws of the corresponding modified potential equation (10), having
the characteristics I'y;w, where [ =0,1,2,... and m =0, 1.

6 Conclusions

In this paper we have studied simplest potential conservation laws of (1+41)-dimen-
sional linear evolution equations, which are constructed via introducing single po-
tentials using linear conservation laws. Such conservation laws are quite trivial
in the case of equations of even order: All simplest potential conservation laws
of any (1 + 1)-dimensional linear evolution equation of even order are induced
by local conservation laws of the same equation and its space of local conser-
vation laws is exhausted by linear ones. Similar results concerning equations of
odd order are more complicated. Although all simplest linear potential conser-
vation laws of these equations are induced by local ones, it is not the case for
quadratic conservation laws. We derive an effective criterion which allows us to
check easily whether a quadratic conservation law of a simplest modified potential
equation leads to a purely potential conservation law for the initial equation. It
is true if and only if any characteristic of this conservation law does not vanish
for the value w = 1/« of the modified potential w, where « is the characteris-
tic of the linear conservation law of the initial equation used for introducing the
potential.

A preliminary analysis shows that all the results obtained in this paper for
simplest conservation laws could be easily extended to the case of an arbitrary
number of potentials introduced with linear conservation laws. The first step of
this investigation should be the construction of the whole linear potential frame
for the class of (1+ 1)-dimensional linear evolution equations of an arbitrary fixed
order as this was done for order two in [14]. It is obvious that the linear potential
frame coincides with the entire potential frame if the order of the equation is even.

The consideration of nonlinear potential systems constructed for equations of
odd order with quadratic conservation laws calls for the development of new tools
which are different from those used for linear potential systems.

Another possible direction for further investigations close to the subject of this
paper is the description of potential symmetries of (14 1)-dimensional linear evo-
lution equation of arbitrary order, at least those associated with linear potential
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systems. It seems to us that the approach which was developed in [14] for the case
of equations of order two and is based upon the construction of the extended po-
tential frame and the reduction of the consideration to the study of single modified
potential equations also has to work for an arbitrary order.
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We show that all results of Yasar and Ozer [Comput. Math. Appl. 59 (2010),
3203-3210] on symmetries and conservation laws of a “nonconservative Fokker—
Planck equation” can be easily derived from results existing in the literature
by means of using the fact that this equation is reduced to the linear heat
equation by a simple point transformation. Moreover nonclassical symmetries
and local and potential conservation laws of the equation under consideration
are exhaustively described in the same way as well as infinite series of potential
symmetry algebras of arbitrary potential orders are constructed.

The investigation of Lie symmetries of two-dimensional second-order linear
partial differential equations was one of the first problems considered within the
group analysis of differential equations. The complete group classification of such
equations was carried out by Lie [11] himself and essentially later revisited by
Ovsiannikov [15]. This classification includes, as a special case, the group classifi-
cation of linear (1+41)-dimensional homogeneous second-order evolution equations
of the general form

e = a(t, ) ugze + b(t, x)uy + c(t, x)u, (1)

where a, b and ¢ are arbitrary smooth functions of ¢ and x, a # 0. On the other
hand the study of point equivalences between linear evolution equations also have a
long history. It was started with Kolmogorov’s paper [9], where the problem of the
description of Kolmogorov equations that are reduced to the linear heat equation
by certain point transformations was posed. This problem was exhaustively solved
by Cherkasov [2]. Symmetry criteria on equivalence of equations within class (1)
obviously follow from the above Lie—Ovsiannikov group classification. They were
also discussed by a number of authors [1,22,23]. See additionally the review in [19]
and references therein.

A constructive approach to investigation of point equivalences of equations
from the class (1) was suggested by Ibragimov [4]. This approach is based upon
the computation of differential invariants and semi-invariants of the associated
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equivalence group G~. In fact in [4] only the semi-invariants of the subgroup
of G, consisting of linear transformations in the dependent variable, were ob-
tained. An efficient criterion on point equivalence of equations from class (1)
to the linear heat equation in terms of semi-invariants of the entire equivalence
group G~, depending upon the coefficients of equation (1), was proposed in [8].
This criterion was reformulated in a more compact form in [12]. Therein criteria
of point reducibility to Lie’s other canonical forms were found within Ibragimov’s
approach. It is necessary to note that earlier the equivalence problem for equa-
tions from class (1) was exhaustively investigated by Morozov [13] within the
framework of the method of moving frames although the expressions constructed
for related differential invariants and semi-invariants are quite cumbersome.

An exhaustive review of the previous results on group analysis and the equiv-
alence problem within the class (1) as well as the complete description of conser-
vation laws and potential symmetries of equations from this class can be found in
the paper by Popovych, Kunzinger and Ivanova [19].

In a recent paper [24] Lie symmetries, conservation laws, potential symmetries
and solutions were considered for the “nonconservative Fokker—Planck equation”

Ut = Upy + TUy (2)

which is a representative of the class (1). After the sign of ¢ is changed, this equa-
tion becomes a Kolmogorov backward equation. Although equation (2) is quite
interesting from the mathematical point of view and appears in numerous appli-
cations, its investigation in the framework of symmetry analysis is unnecessary
due to the fact that it is reduced to the linear heat equation

wT = wyy (3)

by the simple point transformation

1
T = §e2t7 Yy = 6t.'L‘, w = 1u. (4)

The inverse of (4),

1
t = —1In(27), w=—2 u=w, (5)

2 V2T’
is well defined only for 7 > 0.

Because of the transformation (4) the results of [24] as well as more general
ones can be easy derived from well-known results on the linear heat equation (3)
existing in the literature for a long time, namely, using the transformation (4), one
can obtain the maximal Lie invariance algebra of the equation (2), the complete
description of its local and potential conservation laws and its potential symme-
tries of any potential order as well as nonclassical symmetries and wide families
of its exact solutions. (A similar example on usage of point equivalence of a
Fokker—Planck equation to the linear heat equation was presented in [19, p. 156].)
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The maximal Lie invariance algebra of the linear heat equation (3) is

g = (0r, Oy, 2707 + y0y, 270y — yw0,,
4720, + 4Ty, — (y2 + 27)w0yy, WOy, fOu),

where the function f = f(7,y) is an arbitrary solution of (3) [11,14,15]. The
maximal Lie invariance algebra g of the equation (2) was calculated in Section 3
of [24] by the classical infinitesimal method. In contrast to this we directly obtain g
from g using the pushforward of vector fields associated with (5):

g = (0, e 0., e 29, — e 220, + e ?ud,, '8, — etrud,,

e? 0, + ¥, — e** 2?ud,, ud,, fou),

where the function f = f(¢,x) runs through the solution set of (2).
In emulation of Ibragimov’s approach [5], in Section 4 of [24] conservation laws
of the joint system of the initial equation (2) and its adjoint

ap+ gy — (za), =0 (6)

were constructed using Lie symmetries of the system, namely essential Lie symme-
tries of (2) were prolonged to the additional dependent variable a. The prolonged
symmetries are Lie symmetries of the joint system of (2) and (6) and variational
symmetries of the corresponding Lagrangian a(u; — uy, — xu,). Therefore con-
served vectors of the system are obtained from the prolonged symmetries in view
of the Noether theorem on connections between symmetries and conservation laws.

All conservation laws of the joint system of the linear heat equation (3) and
its adjoint (the linear backward heat equation),

Qr = _dyya (7)

obtainable with this approach, were calculated in [5,6]. The point transforma-
tion (4) prolonged to the dependent variable « according to the formula & = et
(cf. Section 5 of [19] and in particular equation (26)) maps the joint system of (2)
and (6) to the joint system of (3) and (7). Therefore the result of Section 4 of [24]
is a direct consequence of the result for linear heat equation from [5,6].

The complete description of local and potential conservation laws of (2) can
be simply obtained as a particular case of the same results of [19] on the entire
class of linear (1+1)-dimensional second-order evolution equations (1). According
to [19, Lemma 3] every local conservation law of any equation from class (1) is of
the first order and moreover it possesses a conserved vector with density depending
at most upon ¢, x and v and flux depending at most on ¢, x, © and u,. As was
proven in [19, Theorem 4], each local conservation law of an arbitrary equation
from the class (1) contains a conserved vector of the canonical form

(o, —aaug + ((ea), — ab)u),
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where the characteristic a = «(t,x) runs through the solution set of the adjoint
equation

ar + (a)ze — (ba), + ca = 0. ()

In other words the space of local conservation laws of equation (1) is isomorphic
to the solution space of the adjoint equation (8). An analogous statement is true
for an arbitrary (1 + 1)-dimensional linear evolution equation of even order [20].

As a result the equation (2) possesses, up to the equivalence of conserved
vectors [19, Definition 3], only conserved vectors of the canonical form

(au, —aug + (0 — az)u),

where the characteristic & = «(t, x) is an arbitrary solution of the adjoint equa-
tion (6). Moreover it follows from Theorem 5 of [19] that any potential conserva-
tion law of equation (2) is induced by a local conservation law of this equation.

Potential symmetries of (2) also can be constructed from known potential
symmetries of the linear heat equation (3).

It was proven in [19, Theorem 7| that the linear heat equation (3) admits,
up to the equivalence generated by its point symmetry group, only two simplest
potential systems the Lie symmetries of which are not induced by Lie symmetries
of (3) and therefore are nontrivial potential symmetries of (3). (A potential
system is called simplest if it involves a single potential.) These potential systems
are associated with the characteristics a! = 1 and a? = y. The inverse

1
t = —1In(27), x= -1 u=w, o=-ca

2 V27’
of the transformation (4) prolonged to the dependent variable ov maps the char-
acteristics a! and o? of equation (3) to the characteristics &' = ef and &% = e?'x
of equation (2). The potential systems for equation (2), associated with the char-
acteristics &' and G2, respectively are

Uy = €lu, O = eluy + elau (9)

and

2t

Oy = eXau, U = eHaug + *(2? — u. (10)

Their maximal Lie invariance algebras are
p1=( e 29, — e 220, e 0y, O — udy, €0, — el (zu + 20)0y, — 00,
€20, + €220, — e* (zu + 3u + 2xe19)0, — e (2® 4 1)00;,
ua’u + ﬁa{)a e_tgzvau + gaf) >a
p2 = ( O — u0y, e 2o, — e 20,
20, + e¥20, — 2 (2%u 4 3u + 2e720)d, — ¥ (z? — 1)0;
udy + 905, €'z hydy + hdy),
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where the functions g = ¢g(¢,x) and h = h(t, z) run through the solution set of the
associated potential equations, ¥; — Oy — 20, = 0 and ¥y — Vyy + (2271 — 2)0, = 0,
respectively. The maximal Lie invariance algebras of these potential equations are
projections of p; and ps to the spaces (¢,z,0) and (¢,z,v). Instead of using the
infinitesimal Lie method, the algebras p; and ps can be obtained from the potential
symmetry algebras p; and ps of the linear heat equation (see [19, pp. 155-156])
by the transformation (5) trivially prolonged to the corresponding potentials.

Moreover the linear heat equation admits an infinite series {g,, p € N} of
potential symmetry algebras [19, Proposition 12], namely, for any p € N the
algebra g, is of strictly pth potential order (i.e., it involves exactly p independent
potentials) and is associated with p-tuples of characteristics which are linearly
independent polynomial solutions of lowest order of the backward heat equation.
Each of the algebras g, is isomorphic to the maximal invariance algebra g of the
linear heat equation. The linear heat equation possesses also other infinite series
of nontrivial potential symmetry algebras. Due to the change of variables (5),
trivially prolonged to the corresponding potentials, similar results hold true for
the equation (2).

In [24] the classical Lie algorithm was used for finding the maximal Lie invari-
ance algebra of the potential system of the equation (2), which is associated with
the characteristic e=2°/2. In fact this system is equivalent, with respect to the Lie
symmetry group of (2), to the simpler potential system (9) associated with the
characteristic &' = e’. To reduce the characteristic e=?°/2 to the characteristic &!
it is necessary to apply a point symmetry transformation which is the composition
of a projective transformation and a shift with respect to ¢.

Nonclassical symmetries of the linear heat equation (3) were exhaustively in-
vestigated in [3]. Roughly speaking, it was proved that in both the singular
and regular cases (when the coefficient of 9, in a nonclassical symmetry operator
vanishes or does not, respectively) the corresponding determining equations are
reduced by nonpoint transformations to the initial equations. Later these no-go
results were extended to all equations from the class (1) [17,18,25].

Continuing the list of common errors in finding exact solutions of differential
equations made up by Kudryashov [10], Popovych and Vaneeva [21] indicated
one more common error of such a kind: Solutions are often constructed with
no relation to equivalence of differential equations with respect to point (resp.
contact, resp. potential etc.) transformations. A number of multiparametric
families of exact solutions of the linear heat equation (3) are well known for a
long time and are presented widely in the literature. See e.g. the review [7],
the textbook [14, Examples 3.3 and 3.17], the handbook [16] and the website
EqWorld http://equworld.ipmnet.ru/. A simple solution of (2) was constructed
in Section 5 of [24] which is similar with respect to the point transformation (4)
to the obvious solution w = ¢y of the linear heat equation (3).
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After a brief survey of the definition and the properties of A-symmetries in the
general context of dynamical systems we introduce the notion of “A-constant
of motion” for Hamiltonian equations. If the Hamiltonian problem is derived
from a A-invariant Lagrangian, it is shown how the Lagrangian A-invariance can
be transferred into the Hamiltonian context and shown that the Hamiltonian
equations turn out to be A-symmetric. Finally the “partial” (Lagrangian)
reduction of the Euler-Lagrange equations is compared with the reduction
obtained for the corresponding Hamiltonian equations.

1 Introduction (A-symmetries)

I briefly recall for the reader’s convenience the basic definition of A-symmetry (with
lower case \), originally introduced by C. Muriel and J.L. Romero in 2001 [1,2].

Consider the simplest case of a single ordinary differential equation (ODE)
A(t,u(t),,i,...) = 0 for the unknown function u = wu(t) (I denote by t the
independent variable, with the only exception being in Section 4, because the
applications I am going to propose concern the case of Dynamical Systems (DS),
where the independent variable is precisely the time ¢, and @ = du/dt etc.). Given
a vector field

0 0
X = (p(u,t)% + T(u,t)a

the idea is to modify suitably its prolongation rules. The first A-prolongation X )(\1)
is defined by

0
X = X0 4+ A = i) (1)

where A = A(u, u,t) is a C* function, and X is the standard first prolongation.
Other modifications have to be introduced for higher prolongations, but in the
present paper I need only just the first one.

An nth-order ODE A = 0 is said to be A-invariant under X if X /(\n)A = 0,

where X /(\") is the appropriate A-prolongation of X.
It should be emphasized that A-symmetries are not properly symmetries be-
cause they do not transform in general solutions of a A-invariant equation into
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solutions. Nevertheless they share with standard Lie point-symmetries some im-
portant properties, namely: if an equation is A-invariant, then

e the order of the equation can be lowered by one,

e invariant solutions can be found (note that conditional symmetries do the
same, but A-symmetries are clearly not conditional symmetries),

e convenient new (“symmetry adapted”) variables can be suggested.

In the context of DS, which is the main object of this paper, the first two
properties are not effective, the third one is instead one of my starting points.

Before considering the role of A-symmetries in DS, we recall that many appli-
cations and extensions of this notion have been proposed in these past 10 years:
these include extensions to systems of ODFE’s, to PDE’s, applications to vari-
ational principles and Noether-type theorems, the analysis of their connections
with nonlocal symmetries, with symmetries of exponential type, with hidden or
“lost” symmetries, with potential, telescopic symmetries as well. Other investi-
gations concern their deep geometrical interpretation with the introduction of a
suitable notion of deformed Lie differential operators, the study of their dynamical
effects in terms of changes of reference frames and so forth. Only the papers more
directly involved with the argument considered in this paper are quoted; for a
fairly complete list of references see e.g. [3-5]. A very recent application concerns
discrete difference equations [6].

2 A-symmetries for DS

I am going to consider the case of dynamical systems, i.e. systems of first-order
ODE’s

Ug = falu,t) (a=1,...,m)

for the m > 1 unknowns u, = u,(t).

I start with a trivial (but significant) case: if the DS admits a rotation sym-
metry, then it is completely natural to introduce new variables, the radius r and
the angle 0, and the DS immediately takes a simplified form, as is well known.
However, in general symmetries of DS may be very singular and/or difficult to
detect. An example can be useful: the DS

. . 2
Uy = ujug, U2 = —Uq

admits the (not very useful or illuminating) symmetry generated by (with r? =
2., .2
ui + uj)

72 r3 uy + 1 8u1 r2 r3 ug +r 8”&2 '
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In this example the rotation (with a commonly accepted abuse of language the
same symbol X denotes both the symmetry and its Lie generator) X = uQa%l —
ulaiw is a A-symmetry (its precise definition is given just below) and not a symme-
try in the “standard” sense; nevertheless, still introducing the variables as above,
i.e. r and 6, the DS takes the very simple form

r = 0, 6 = —rcos 6.

This is just a first, simple, example of the possible role of A-symmetries in the
context of DS.

2.1 A-symmetries of general DS

The natural way to extend the definition (1) of the first A-prolongation of the
vector field

0 0
X = goa(u,t)aT+T(u,t)& = @ -Vyu+ 70

to the case of m > 1 variables u, is the following (sum over repeated indices)
X = X0 4 Mgl — i) - Va,,

where now A = A(¢,uq,%,) is an (m X m) matrix; accordingly I denote by the
upper case A these symmetries in this context.

To simplify we assume from now that 7 = 0 (or use evolutionary vector field;
it is not restrictive).

Then the given DS is A-invariant under X (or X is a A-symmetry for the DS),

e, X\V(@— f)lazy = 0 if and only if
[f790]a+at80a:_<A<P>a (a:la"'am)a

where [f? 90] a = fbvubSOa - @bvubfa-

Given X, we now introduce the following new m+1 “canonical” (or symmetry-
adapted) variables (notice that they are independent of A): precisely, m — 1 vari-
ables w; = w;(u) which, together with the time ¢, are X- invariant:

Xwj=Xt=0 (j=1,...,m—1)

and the coordinate z, “rectifying” the action of X, i.e. X = 9/0z. Writing the
given DS in these new variables, we obtain a “reduced” form of the DS, as stated
by the following theorem [7-9].

Theorem 1. Let X be a A-symmetry for a given DS; once the DS is written in
terms of the new variables w;, z, t, i.e.

w; = Wi(w, 2,t), 2= Z(w,zt),
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the dependence on z of the r.h.s., W;, Z, is controlled by the formulas

6Wj B 811)]‘ o ) 8£ _ 32 _
0z  Oug (Ap)a = M 0z  Oug (Apla = M.
One has:

o If A =0, then M; = M, =0 and W; and Z are independent of z.
o If A = M, then only Z depends upon z.

o Otherwise a “partial” reduction is obtained: If some My = 0, then Wy is
independent of z. In terms of the new variables the A-prolongation becomes
0 0 0

M _ 9 a9 9
XA = 8z+M38wj Mgz

The first case (A = 0) clearly means that X is an ezact, or standard, Lie point-
symmetry [7]; the second has been considered in detail by Muriel and Romero [8]
(notice that actually it would be enough to require Ay = Ap); the last case has
been treated in [9]. Several situations can be met depending upon the number of
vanishing M; (e.g., one may obtain triangular or similar DS).

2.2 Hamiltonian DS

I now consider the special case in which the DS is an Hamiltonian DS. Obvious
changes in the notation can be introduced: the m variables u = u,(t) are replaced
by the m = 2n variables, ¢, (t) and py(t) (o« = 1,...,n), and the DS is now
the system of the Hamiltonian equations of motion for the given Hamiltonian
H = H(q,p,t):

@ =JVH=F(u,t), V=V,=(VyV,),

where J is the standard symplectic matrix

0 I
J - (_ . 0) |
A vector field X can be written accordingly (witha=1,...,2n;a=1,...,n) as

X = (pa(u,t)a(za + wa(u,t)aia =®-V,, P=(pa, Ya)
and all the above discussion clearly holds if X is a A-symmetry for an Hamiltonian
DS. Clearly here A is a (2n x 2n) matrix. However, Hamiltonian problems possess
certainly a richer structure with respect to general DS and this deserves to be
exploited; a first instance is clearly provided by the notion of conservation rules
with its related topics.
I distinguish two cases:
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(i) X admits a generating function G(u,t) (then X is often called an “Hamiltonian
symmetry”):

® = JVG, ie. ¢ =V,G, v =-V,G. (2)

This implies VD,G = 0, where D, is the total derivative, i.e., G is a constant of
motion, D;:G = 0, possibly apart from an additional time-dependent term as is
well known.

(ii) X does not admit a generating function: also in this case, defining
S(u,t) =V -®, one has that D;S = 0 (3)

and therefore, if S # const, then S is a first integral (the examples known to me
of first integrals of this form are rather tricky, being usually obtained multiplying
symmetries by first integrals, but they “in principle” exist and their presence is
important for the following discussion, see Subsection 3.4).

Direct calculations can show the following:

Theorem 2. If the Hamiltonian equations of motion admit a A-symmetry X
with a matriz A, then in case (i) V(DG) = JA® = JAJV G and in case (i)
DS = —V(A®).

When this happens, G (resp. S) is called a “A-constant of motion”.

If A =0, ie., when X is a “standard” (or “exact”) symmetry, the above
equations become clearly the usual conservation rules; A-symmetries can then
be viewed as “perturbations” of the exact symmetries. More explicitly the equa-
tions in Theorem 2 state the precise “deviation” from the conservation of G (resp.
of S) due to the fact that the invariance under X is “broken” by the presence of
a nonzero matrix A.

As a special case for case (i) the following Corollary may be of interest:

Corollary 1. Under mild assumptions (A®=\®, A\=X\(G)) the A-constant of
motion G satisfies a “completely separated equation” involving only G(t):

G = (t,G).

This equation expresses how much the conservation of G(t) is “violated” along
the time evolution. If A is in some sense “small”, then G is “almost” conserved.

3 When a A-symmetry of the Hamiltonian equations
is inherited by a A-invariant Lagrangian

3.1 A-invariant Lagrangians, Noether theorem and
A-conservation rules

I consider (for simplicity) only first-order Lagrangians:

L = L(qa)Ga,t) (a=1,...,n).
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Such a Lagrangian is said to be A“)-invariant [10,11] under

0
XE = o (g, t)— = -
Paltst)g — = ¢V

if there is an (nxn) matrix A®) = A (g, ¢, t) such that (X/(f))(l)(ﬁ) = 0, where
(X/(\L))(l) is the first A©)-prolongation of X (£) (the notation is rather heavy in

order to distinguish carefully the Lagrangian case from the Hamiltonian one which
is considered in the next subsection). We then have [11]

Theorem 3. If the Lagrangian L is A -invariant under X©), then, putting

Pap = papp with pg = %, one has

£y 0L

where P = Tr(P) = @apa- If one introduces a “deformed derivative” ]3,5

(ﬁt)aﬁ = Di0op + A((fﬁ), then Tr(D,P) = 0.
This result can be called the “Noether AX)-conservation rule”. Indeed, if
A =0, the standard Noether theorem is recovered.
In the special case A&)p = \p the above result becomes

D/P =0, where D;=D;+ A\

Theorem 3 can be extended [11] to divergence symmetries and to generalized
symmetries as well. Also higher-order Lagrangians can be included. The AX)-
conservation rule has the same form, but P,z is different: for instance for second-
order Lagrangians one has

oL ~ oL oL
Pap = @aaiq-ﬂ + ((Dt)awww)@ - SOaDtaiq.ﬁ .

3.2 From Lagrangians to Hamiltonians

Assume that one has a Lagrangian which is A(©)-invariant under a vector field

0

x© — o
4 qa

and introduces the corresponding Hamiltonian H with its Hamiltonian equations
of motion. The natural question is whether the A©)-symmetry X&) of the La-
grangian is transferred to some A)-symmetry X () of the Hamiltonian equations
of motion. Two problems then arise: ) to extend the vector field X(©) to a suit-
able vector field X(#) and 4i) to extend the (n x n) matrix A©) to a suitable
(2n x 2n) matrix AU,
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Firstly the vector field X () is expected to have the form

0

X =xH —
7 O

+ Yaq— (4)

8pa
where the coefficient functions ¢ must be determined. This can be done observing
that the variables p are related to ¢ (and then the first A _prolongation of X (£)
is needed, where the “effect” of AX) is present). One finds, after some explicit
calculations, that

0
Yo = aqa (DtP + A

(£ )
o0, 08y ) or o
By ’78 > aqa Py e 8(] —DPp aqa (5)

The term in parenthesis vanishes if the Lagrangian is A©)-invariant thanks to
Theorem 3. In addition, if A) does not depend upon § (as happens in most
cases, otherwise a separate treatment is needed, see Subsection 3.4), then we are
left with

&pﬁ

wa = 6qa

(6)
This implies that X admits a generating function, which is just G = poapo = P
in the notation introduced in Theorem 3.

Secondly one now introduces the (2n x 2n) matrix

AL) 0

= AU

A=A" = agﬂ >p7 CIE
o

where A® must satisfy (A is not uniquely defined, as is well known)

2 0¢y () 0¢s
A AY B0

It is well known that Euler-Lagrange equations coming from a A%)-invariant
Lagrangian do not exhibit A-symmetry in general. In contrast with this it is not
difficult to verify explicitly that the Hamiltonian equations of motion turn out to
be AH)_symmetric under the vector field X ) obtained according to the above
prescription.

In conclusion I have shown the following

Theorem 4 If £ is a A-invariant Lagrangian under a vector field X5 with a
matriz A9 (not depending on ), one can extend X ©) to a vector field X = X(H)
and the (n xn) matriz A“) to a (2n x 2n) matriz A = A1) in such a way that the
resulting Hamiltonian equations of motion are A-symmetric under X ; in addition
G = papa s a A-constant of motion.
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Example 1. The Lagrangian (with n = 2)

1/ 21, .
£=2<m_q0‘+Jm—mwfwm—%ﬂ+mwMﬂm

is A invariant under

0 0
X% = Q— +=— with AL = diag (q1,q1)-
01 Oge (@)
It is easy to write the Hamiltonian equations of motion and to check that they
are indeed A-symmetric under

0
X=¢gq—+——p1—
(ha(h dga ' opy
with
q1 0 0 0
A:A(H) _ 0 q1 0 0
-1 —p2 @1 O
0 0 0 0

X-invariant coordinates are w; = ¢ exp(—¢2), wa = qip1 and ws = pa. As is
expected, the generating function G = wy + w3 satisfies the A-conservation rule

qutG = JA@ or DtG = —qu
A special, but rather common, case is described by the following:

Corollary 2. If A ¢ = co, where ¢ is a constant, then also A® = c¢® and the
“most complete” reduction of the Hamiltonian equations of motion is obtained:

G =~(G,t), w;=Wj(w,G,t) and 2=Z(w,G,z,t).

3.3 Reduction of the Euler—Lagrange equations versus
the Hamiltonian equations

In this section I want to compare the reduction procedure which is provided by the
presence of a A-symmetry of a Lagrangian (i.e. the reduction of Euler-Lagrange
equations) with the analogous reduction of the Hamiltonian equations of motion.

I start by recalling that any vector field X = ¢,0/0q, admits n (Oth-order)
invariants (as already said, see Subsection 2.1)

w; =w;(q,t) (j=1,...,n—1) and the time t

and n first-order differential invariants 1, = 74(q,t,¢) under the first prolonga-
tion X1
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Both if X is standard and if it is a A prolongation (under the condition A ¢ =
Ap), it is well known that w; are n — 1 first-order differential invariants (note
that this is an “algebraic” property and is not related to dynamics). If one now
chooses another independent first-order differential invariant ¢ = ((q,t,¢), then
one has that any first-order A(“)-invariant Lagrangian is a function of the above
2n invariants ¢, w;, w; and (. When one writes the Lagrangian in terms of these
variables, the Euler—Lagrange equation for ¢ is then simply

oL _ o,
o¢

This first-order equation provides in general a “partial” reduction, i.e., it produces
only particular solutions, even when the Euler-Lagrange equations for the other
variables are considered [3,10] (notice that this is true both for exactly invariant
and for A¥)-invariant Lagrangians).

I want to emphasize that, if one introduces A-symmetric Hamiltonian equations
of motion along the lines stated in Theorem 4, a “better” reduction is obtained
and no solution is lost. The following example clarifies this point.

Example 2. The Lagrangian (n = 2)

1(q RV T A
e (0 o) LB s
2\ q1 2\q1 @
is A invariant under

0 0
X0 — g 2 g
q1 e q2 D4

with A©) = diag (1,1). With w = qig2, ¥ = G1g2 + 142, ¢ = % — log q1 the
Lagrangian becomes

1, 1w?
£=3 o

and the Euler-Lagrange equation for ( is

0L/ =(=0 or ¢ = qlogq

with the particular solution ¢i(t) = exp(ce’). The corresponding Hamiltonian
equations of motion are A-symmetric under
0 0 0 0
X =q

T — Q27— — Py tPp2g—
oq 0q2 Op1 Opo

with A = diag (1,1,1,1). Invariants under this X are

w1 = q192, W2 = q1p1, W3 = (q2P2
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and X is generated by G = wo — w3. A “complete” reduction is obtained. With
z = log q1 we get

w, = wiws, Wy = wg—wy, G = —G, Z = z+ wy — ws.
The above “partial” (Lagrangian) solution ¢ = 0 corresponds to
z =z, wy=wsg=c=const, W = cw.

From the Hamiltonian equations, instead, one has e.g. q1 (t) = exp(cet)+c; exp(—t)
etc. The reader can easily complete the calculations.

3.4 When A depends upon ¢

If A depends also on ¢ (see equations (4) and (5)), the calculations performed
in Subsection 3.2 cannot be repeated, the coefficient functions 1, cannot be ex-
pressed in the simple form (6) and the vector field X does not admit a generating
function G. In this case one can resort to the other quantity S, introduced in (3),
which provides a A-constant of motion. An example can completely illustrate this
situation.

Example 3. (n = 1) The Lagrangian

1

L= 2(2 + 1)2exp(—2q)

is AY)-invariant under X(£) = qa% with A) = ¢+ ¢. One finds ¢ = —gp — p
and the resulting vector field

0 0
X = gq—(qurp)afp

does not admit a generating function. Nevertheless the Hamiltonian equations of
motion are A-symmetric under X with

A= (‘”q 0 )
-p q-+q

Here S = —g¢ satisfies D;S = —V(A®) and is a A-constant of motion.

4 A digression: general A-invariant Lagrangians

The A-invariance of a Lagrangian £ = L(q,q,t) considered in Subsection 3.1 is
a special case of a much more general situation. Instead of n time-dependent
quantities g, (t), consider now n “fields”

uo(zi) (a=1,...,n;i=1,...,s)
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depending upon s > 1 real variables x;. Now the Euler-Lagrange equations
become a system of PDEs and the notion of p-symmetry [12,13] replaces that of
A-symmetry (or A-symmetry if n > 1).

In this case there are s > 1 matrices A; (n x n), which must satisfy the com-
patibility condition

DiAj — Din + [Al, A]] =0 (DZ = Dl‘z) (7)
This can be rewritten putting lA)l = D;d + A; (or in explicit form (Bi)a,@ =

D;dap + (Ai)ap with a notation extending the one introduced in Theorem 3) as
[D;, D;] = 0. Then one has [12,13]:

Theorem 5. Given s > 1 matrices A; satisfying (7), there exists (locally) an
(n x n) nonsingular matriz T such that A; = T=Y(D;,T). If a Lagrangian L is
A-invariant under a vector field X = po0/0uq, then there is a matriz-valued
vector P; = (Pi)ap which is A-conserved. This A-conservation law holds in the
form (with the symbol Tr defined to be > " _,)

Tr [[7'D;(DP;)] = 0
or in the equivalent forms
DiP; = —(M)ap(Pi)ga = —Tr(AiP;), where P;= (Pi)aa = TrP;,
Tr(D; P;) = 0.
For first-order Lagrangians one has

oL Odug

(Pi)ag = SOQ@TW’ where ug,; = T
and for second-order Lagrangians
oL oL oL

P)og = D; 5 —eDj '
(Pi)ap wﬁaua,i—i_(( J)ﬂ%p'y)aumj v Jaua,ij

Example 4. Let n = s = 2. For ease of notation we write x,y instead of x1, xo
and u = u(z,y), v = v(x,y) instead of uy, us. Consider the vector field

0 0

and the two matrices
0 0 0 0 10
A = (u 0), Mg = (uy O) and then T = <u 1).
It is easy to check that the Lagrangian

1 1
L = 3 (ui + ui) — a(uxvx + uyvy) + u® exp(—2v)
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is A-invariant (or better, in this context, ,u-invariarAlt) but not invariant under the
above vector field X. The u-conservation law Tr(D;P;) = 0 takes here the form

- U U
D,P'=D, (uum—vx— f) + D, (uuy—vy— f) = ui—ku;
In agreement with Theorem 5, the r.h.s. of this expression is precisely equal to
oL
—TI‘(AZ"Pi) = —(Aigo)aaua’i.

Notice that in this case the quantity ungui is just the “symmetry-breaking term”,
i.e. the term which prevents the above Lagrangian from being exactly symmetric
under the vector field (8).

It should be remarked that p-symmetries are actually strictly related to stan-

dard symmetries, or — more precisely — are locally gauge-equivalent to them (see
for details [4,11,14]).

Given indeed the vector field X = ¢,0/0u, and the s matrices A;, I denote by

(c0) _ ) 0
X\ = Ej:\pa Bus

the infinite A-prolongation of X, where the sum is over all multi-indices J as usual
and \Ilg)) = . Introducing now the other vector field X

~ ~ 0 . _
X = ¢a% with @0 = (I'@)as,
where T is assigned in Theorem 5, and denoting by

> 0
o) = 3
EJ: 1 8ua,J

the standard prolongation of X, one has [11,13] that the coefficient functions o)

of the A prolongation of X are connected to the coefficient functions QZ&J) of the
standard prolongation of X by the relation

\II&J) — F—l N&J)'

In the particularly simple case n = 1 (i.e. a single “field” u(z;)) the s > 1 matrices
A; and the matrix I" as well become (scalar) functions A; and +; in this case, if a
Lagrangian is p-invariant under the vector field X, then it is also invariant under
the standard symmetry X = vX. In addition the p conservation law can be also
expressed as a standard conservation rule

D;P' =0

where P? = Y paOL/0uq i is the “current density vector” determined by the vector
field X = ~vX.
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Example 5. Let now n = 1, s = 2, and let me introduce for convenience as
independent variables the polar coordinates 7, 6. I am considering a single “field”
u = u(r,d) and the rotation vector field X = 9/96. The Lagrangian

1 1
L = 5742 exp(—€9)ug + § eXp(ﬁg)Uz

is clearly not invariant under rotational symmetry (if € # 0), but is p-invariant
with A\; = 0, A2 = €. The above Lagrangian is the Lagrangian of a perturbed
Laplace equation, indeed the Euler-Lagrange equation is the PDE

72Uy 4 27U, 4 exp(2€6) (ugs + €ug) = 0.

It is easy to check that the current density vector
2 L, 2 1 2
P= < — 1= exp(—ef)u,ug, 5" exp(—ef)u; — 3 exp(e@)ue)
satisfies the p-conservation law
Dle = —6P2.

According to the above remark on the (local) equivalence of the p-symmetry
X to the standard symmetry X = X = exp(ef)0/00 also the (standard)
conservation law D;P? = 0 holds with

~ 1y,

1
P= < — ru,ug, §r2ur —5 exp(269)ug).

5 Conclusions

I have shown that the notion of A-symmetry and the related procedures for study-
ing differential equations can be conveniently extended to the case of dynamical
systems.

The use and the interpretation of this notion becomes particularly relevant
when the DS is an Hamiltonian system and even more if the symmetry is inherited
by an invariant Lagrangian: in this context indeed it is possible to introduce in
a natural way and to draw a comparison between the notions of A-constant of
motion and of Noether A-conservation rule. Similarly the symmetry properties
of Euler-Lagrange equations and of the Hamiltonian ones can be compared, and
some reduction techniques for the equations can be conveniently introduced.

Finally I have shown that the A-invariance of the Lagrangians in the context
of the DS is a special case of a more general and richer situation, where several
independent variables are present and a A-conservation rule of very general form
is true.

Another interesting problem is the nontrivial relationship between A\ (or A
or ) symmetries with the standard ones. An aspect of this problem has been
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mentioned in the above section of this paper. In different situations this may
involve the introduction of nonlocal symmetries and other concepts in differential
geometry, as briefly indicated in the Introduction, which clearly go beyond the
scope of the present contribution.
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We consider the problem of constructing Poisson brackets with prescribed
Casimir functions. The problem is completely solved in the case of an almost
symplectic manifold.

1 Introduction

Let f be an arbitrary smooth function on R? and define

0 0 0
(e =5 {za) =3 ad =3 )
Then this bracket is Poisson and it has f as Casimir function.
More generally let f1, fa, ..., fr be functionally independent smooth functions
on RF¥*2 and Q a nonvanishing (k + 2)-smooth form on R¥*2, Then the formula
{g,h}Q=dg Ndh Ndfi \---Ndfy (2)
defines a Poisson bracket on RFt2 with f1,..., fs as Casimir invariants. The Jaco-

bian Poisson structure (2) (the bracket {g, h} is equal, up to a coefficient function,
with the usual Jacobian determinant of (g, h, f1,..., fr)) appeared in [2] in 1989
where it was attributed to H. Flaschka and T. Ratiu. The first explicit proof
appeared in [9]. The first application of formula (2) is in [2,3] in conjunction with
transverse Poisson structures to subregular elements in gi(n,C). It was shown
that the transverse Poisson structure to the subregular orbit which is usually
computed using Dirac’s constraint formula can be calculated using the Jacobian
Poisson structure (2). This fact was extended to any simple Lie algebra in [5]. In
the same paper it is also proved that with a suitable change of coordinates the
transverse Poisson structure is reduced to a three-dimensional structure of the
form (1).

The purpose of this paper is to generalize formula (2) in the case of R?" with
given (2n — 2k) functionally independent functions f1, fa,..., fon—2k. Actually
we prove the result in the more general setting of an almost symplectic manifold
(M, wp) with a volume form € which is a power of wy. We assume that the matrix
({fia fj}[)) of the brackets of fi,..., fon_or with respect to Ay (the bivector field
on M corresponding to wp) is invertible on an open and dense subset U of M.
Then the (2n — 2)-form

1
<I>:——(a+

7 ] Ndfy N N dfan—ar, (3)
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where f satisfies f2 = det ({ fi fj}o), o is a 2-form on M satisfying some special
requirements (see Theorem 1) and g = ip,0, corresponds to a Poisson tensor field
A on M with orbits of dimension at most 2k for which f1, ..., fo,_ox are Casimir
functions. Precisely A = A# (o) and the associated bracket of A on C*°(M) is
given for any hy, hy € C*°(M) by

k—2

1 w,
(I ha} Q2 = —dhy b (a+ %wo) N 0 g AR Az ()

Conversely, if A is a Poisson tensor on (M, wp) of rank at most 2k on an open and
dense subset U of M, then there are 2n — 2k functionally independent smooth
functions f1, ..., fon—or on U and a suitable 2-form ¢ on M such that ¥y = —i Q2
and {-,-} are given, respectively, by (3) and (4).

The proof of this result is given in Section 3. Section 2 consists of preliminaries
and fixing the notation. Finally in Section 4 we give two applications. One on
Dirac brackets and one which gives as a byproduct a new method to obtain the
Volterra lattice from the Toda lattice.

2 Preliminaries

We start by fixing our notation and by recalling the most important notions and
formulas needed in this paper. Let M be a real smooth m-dimensional manifold,
TM and T* M its tangent and cotangent bundles and C°° (M) the space of smooth
functions on M. For each p € Z we denote by VP(M) and QP(M) the spaces of
smooth sections, respectively, of AP TM and A’ T*M. By convention we set
VP(M) = QP(M) = {0}, for p < 0, VO(M) = Q°(M) = C*°(M) and, taking into
account the skew-symmetry, we have VP(M) = QP(M) = {0}, for p > m. Finally
we set V(M) = @pezVP(M) and Q(M) = @pez QP (M).

2.1 From multivector fields to differential forms and back

There is a natural pairing between the elements of Q(M) and V(M) that is the
C*°(M)-bilinear map (-,-): Q(M) x V(M) — C*(M), (n,P) — (n, P), defined
as follows: For any n € Q4(M) and P € VP(M) with p # ¢, (n,P) = 0; for
any f,g € QU(M), (f,g) = fg; while, if n = m Ana A---Anp € QP(M) is a
decomposable p-form (n; € Q1 (M)) and P = X3 A X2 A+ A X, is a decomposable
p-vector field (X; € VI(M)),

(n, Py = (m Anz A= N, Xy A X A= A Xp) = det((mi, Xj)).

The above definition is extended to the nondecomposable forms and multivec-
tor fields by bilinearity in a unique way. Precisely, for any n € QP(M) and
X1,...,X, € VI(M),

<T],X1/\X2/\~"/\Xp> :n(Xl,XQ,...,Xp).
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Similarly, for P € VP(M) and n1, 72, .. .,n, € Q1 (M),

(mAn2N---Anp, Py = P(n1,m2,...,1p)-

For the interior product ip: Q(M) — Q(M) of differential forms by a p-vector
field P, viewed as a C°°(M)-linear endomorphism of Q(M) of degree —p, we adopt
the following convention. If P = X € V!(P) and 7 is a ¢g-form, i x7 is the element
of Q4~Y(M) defined for any X1,...,X,-1 € V(M) by

(ixn)(X1,..., Xg—1) =n(X, X1,..., Xq-1).
If P=X; ANXoA---ANX,is adecomposable p-vector field, we put
ipn = inAXgA--~AXp77 =ix,0X, " -iXpn.

More generally, recalling that each P € VP(M) can be locally written as the sum
of decomposable p-vector fields, we define as ipn, with n € Q2(M) and ¢ > p, the
unique element of Q47P(M) such that for any @ € V47P(M)

(ipn, Q) = (=)0, P A Q). (5)

Similarly we define the interior product j,: V(M) — V(M) of multivector fields
by a g-formn. If n = a € QY(M) and P € VP(M), then j, P is the unique (p—1)-
vector field on M given, for any aq,...,ap—1, by

(JaP)(oa,...,ap—1) = Ploq,...,ap_1,).
Moreover, if n = a1 Ao A -+ A oy is a decomposable g-form, we set
jnP = ja1/\a2/\~~/\aqP = JarJas 'jaqP-

Hence, using the fact that any n € Q(M) can be locally written as the sum of
decomposable g-forms, we define j, to be the C°°(M)-linear endomorphism of
V(M) of degree —q which associates with each P € VP(M) (p > ¢q) the unique
(p — q)-vector field j, P defined for any ¢ € QP~¢(M) by

<<>jnP> = <CAU’P>-

If the degrees of n and P are equal, i.e., ¢ = p, the interior products j, P and ipn
are up to sign equal:

P = (1) PPipy = (n, P).

The Schouten bracket [-,-]: V(M) x V(M) — V(M), which is a natural exten-
sion of the usual Lie bracket of vector fields on the space V(M) [7,11], is related
with the operator i with the following useful formula due to Koszul [11]. For any

P eVP(M) and Q € VI(M)

ipg) = llir.d),iq), (6)
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where the brackets on the right hand side of (6) denote the graded commutator
of graded endomorphisms of Q(M), i.e., for any two endomorphisms F; and Fs
of Q(M) of degrees e; and es, respectively, [Eq, Fs] = Ey o Ey — (—1)1°2Ey o Ey.
Hence we have

i[P,Q] = ip OdOiQ —_ (—1)deiP OZQ
—(—1)(p_1)quoipod+(—1)(”_1)q—pi@odoz’p. (7)

Furthermore for a given smooth volume form € on M, i.e., € is a nowhere
vanishing element of Q" (M), the interior product of p-vector fields on M, p =
0,1,...,m, with Q yields a C°°(M)-linear isomorphism ¥ of V(M) onto Q(M)
such that for each degree p, 0 < p < m,

U VP(M) — Q™TP(M),
P — W(P)=Tp=(—1)F"1r/2,q,

Its inverse maps U—1: Q™ P(M) — VP(M) is defined for any n € Q™ P(M) by
U~(n) = j,Q, where Q denotes the dual m-vector field of Q, ie., (2,Q) = 1.
By composing ¥ with the exterior derivative d on Q(M) and ¥~! we obtain the
operator D = —¥~! o d o ¥ which was introduced by Koszul [11]. It is of degree
—1 and of square 0 and it generates the Schouten bracket. For any P € VP(M)
and Q € V(M)

[P,Q] = (-1)P(D(PAQ) = D(P) AQ — (-1)PP A D(Q)). (8)

2.2 Poisson manifolds

We recall the notion of Poisson manifold and some of its properties the proofs of
which may be found, for example, in the books [7,13,15].

A Poisson structure on a smooth manifold M is a Lie algebraic structure on
C*°(M) the bracket of which {, }: C*°(M)xC*>°(M) — C°°(M) satisfies Leibniz’

rule:

{figh} ={f,gth+g{f,h}, VY f,g,heCT(M).

In [14] A. Lichnérowicz remarks that {, } gives rise to a contravariant antisymmet-
ric tensor field A on M of order 2 such that A(df,dg) = {f, g} for f,g € C*°(M).
Conversely each such bivector field A on M gives rise to a bilinear and antisym-
metric bracket {, } on C*(M), {f,g} = A(df,dg), f,g € C>°(M), that satisfies
the Jacobi identity, i.e., for any f,g,h € C®(M), {f,{g,h}} + {9,{h, f}} +
{h,{f,g}} =0, if and only if [A, A] = 0, where [, | denotes the Schouten bracket
on V(M). In this case A is called a Poisson tensor and the manifold (M, A)
Poisson manifold.

As was proved in [9], it is a consequence of expression (2.1) of [-,-] that an
element A € V?(M) defines a Poisson structure on M if and only if

2iadUp + dUpapp = 0.
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Equivalently, using formula (8) of [-, -] and the fact that, for any P € VP(M),
U loip=(=1)P=DP2P A U~1 the last condition can be written as

2AND(A)=D(ANA). 9)

Given a Poisson tensor A on M, we can associate to it a natural homomorphism
A#: QY (M) — VY(M), which maps each element a of Q'(M) to a unique vector
field A () such that for any 8 € Q(M)

(A B, A) = (B, A% () = Ao, B).

If « = df, f € C®°(M), the vector field A*(df) is called the hamiltonian vector
field of f and it is denoted by X;. The image ImA# of A# is a completely
integrable distribution on M and defines the symplectic foliation of (M, A) the
space of first integrals of which is the space of Casimir functions of A, i.e. the
space of the functions f € C°°(M) that are solutions of A (df) = 0.

Moreover A* can be extended to a homomorphism, also denoted by A%, from
QP(M) to VP(M), p € N, by setting, for any f € C®°(M), A#(f) = f and, for
any ¢ € QP(M) and ay, ..., q, € Q1 (M),

A () (at, ...y ap) = (=DPC(AF (), ..., AT (). (10)

Thus A7 (CAn) = A7 (() AAT () for all n € Q(M). When Q(M) is equipped with
the Koszul bracket {-,-} defined for any ¢ € QP(M) and n € Q(M) by

{¢n} = (“1)P(ACAn) = A(C) An— (=1)PC A A(n)), (11)

where A =5 od —doiy, and V(M) with the Schouten bracket [-,-], A# becomes
a graded Lie algebraic homomorphism. Explicitly

AP (¢ m}) = [AF(Q), A% (). (12)

Example 1. Any symplectic manifold (M,wy), where wy is a nondegenerate
closed smooth 2-form on M, is equipped with a Poisson structure Ay defined
by wg as follows. The tensor field Ag is the image of wy by the extension of
the isomorphism A#: QY (M) — VM), inverse of wj: VI (M) — QY (M), X s
W (X) = —wo(X, ), to QP(M), p € N, given by (10).

2.3 Decomposition theorem for exterior differential forms

In this subsection we begin by reviewing some important results concerning the
decomposition theorem for exterior differential forms on an almost symplectic
manifold (M,wy) of dimension 2n, i.e., wy is a nondegenerate smooth 2-form
on M a complete study of which is given in [13] and [12].

Let (M,wp) be an almost symplectic manifold, Ay the bivector field on M
associated with wy (see, Example 1), Q = wij/n! the corresponding volume form
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on M and Q = All/n! the dual 2n-vector field of Q. We define an isomorphism
*: QP(M) — Q*=P(M) by setting

_ ~1)p/2 ;
xp = (=1)P=1p/ int (o) of

for any ¢ € QP(M).

Remark 1. In order to be in agreement with the convention of sign adopted
in (5) for the interior product, we make a sign convention for * different from the
one given in [13].

The (2n — p)-form = ¢ is called the adjoint of ¢ relative to wy. The isomor-
phism * has the following properties:

i) ** = Id.

ii) For any ¢ € QP(M) and ¢ € Q4(M)

— . wn
% (QD /\w) — (_1)(P+q 1)(p+Q)/2 ZA?(SD)/\AO#('IZ));?

= (_1)(17—1)10/2 iAf(ga)(* V) = (_1)pq+(q—1)q/2iAo#(w)(* Q). (13)

iii) For any k <n

k n—=k
Wy _ vy

T k)

Definition 1. A smooth form 1 € Q(M) such that ir,9 = 0 everywhere on M
is said to be effective. A smooth form ¢ on M is said to be simple if it can be
written as ¢ = ¥ A (wf /k!), where 1 is effective.

Proposition 1. The adjoint of an effective differential form i of degree p < n is

= (—1pED2 g S0
(n—p)!
The adjoint * ¢ of a smooth (p + 2k)-simple form ¢ =) A u}f is
wh Pk
s = (—1)PPHD/2 4 m. (14)

Lepage’s Decomposition Theorem 2. FEvery differential form ¢ € Q(M) of
degree p < n may be uniquely decomposed as the sum

q
wWo
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with ¢ < [p/2] (Ip/2] being the largest integer less than or equal to p/2), where for
s =0,...,q the differential forms 1,_2s are effective and may be calculated from
¢ by means of iteration of the operator ip,. Then its adjoint x ¢ may be uniquely
written as the sum

_ (_1yp(+1)/2 _ wo
xp=(—1) (1/Jp wp_2/\n—p—|—l+
(n —p)! ) wy P
C (=1 Awd) A .
=1 (n—p+q)! V20 Ao (n—p)!

We continue by indicating the relation which links * with ¥ and its effect on
Poisson structures. Since A#: OP(M) — VP(M), p € N, defined by (10) is an
isomorphism, for any smooth p-vector field P on M there exists an unique p-form
op € QP(M) such that P = AO#(O'p). So it is clear that

\I’p = *Up. (15)

In particular a bivector field A on (M, wp) can be viewed as the image A# (o) of
a 2-form o on M by the isomorphism A# . We want to establish the condition
on o under which A = A# (0) is a Poisson tensor. For this reason we consider
the codifferenrial operator § = *d* introduced in [12], which is of degree —1 and
satisfies the relation 62 = 0, and we prove

Lemma 1. For any differential form ¢ on (M,wg) of degree p <n

TH(Q) = AT (+0). (16)
Proof. Let n be a smooth (2n — p)-form on M. We have

00700 = (ndcsh ) = (wne M) = com (g aago)
= areen (B ag o natm)

_ wl
= (e (i 4 At )

1’
= (=1)PCr=p)(_1)P=1p/2(_1)2n— p< A <A#(C n?)>
= (_1)(;0—1)17/2 <777 AO < A#(C ) ) )> 777 A# >7

whence (16) follows. (We remark that the number p(2n — p) + (2n — p) =
(2n —p)(p+1) is even for any p € N.) [

Theorem 1. Under the above notations A = A#(U) defines a Poisson structure
on (M,wy) if and only if

20 Nd(o) =d(o N o). (17)



68 P.A. Damianou and F. Petalidou

Proof. We have seen that A is a Poisson tensor if and only if (9) holds, but in our
case A = A# (0) so that AANA = A# (o ANo) and A# is an isomorphism. Therefore

2AAD(A) =D(AAA) & —2AA (T rodoT)(A)) = (T 'odoW)(ANA)
& QA#(U) A(Td x0) =0 (d x (o Ao))

W oA#(0) ANF(xd * (0)) = A (xd % (0 A o))
= A#(20’ Ndo) = A# (6(c No))
< 20A6(0)=0d(c No)

and we are done. |

Remark 2. Brylinski [1] observed that, when the manifold is symplectic, i.e.,
dwy = 0, 0 is equal, up to sign, to A =ip, od — doip,. Then in this framework
(17) is equivalent to {o,0}}o = 0 ({-, - }o being the Koszul bracket (11) associated
to Ag), which means that o is a complementary 2-form on (M, Ag) in the sense of
I. Vaisman [16].

3 Poisson structures with prescribed Casimirs
on almost symplectic manifolds

Let (M,wp) be a 2n-dimensional almost symplectic manifold, Ay the bivector
field associated with wy and Q = wj/n! the corresponding volume form on M.
We consider 2n — 2k smooth functions, fi, fa,..., fon—2k, on (M,wp) such that
the matrix ({ fis fj}o) of their brackets with respect to A is invertible on an open
and dense subset U of M. This last assumption assures that fi,..., fo,_or are
functionally independent on &. We want to describe the Poisson structures A on
(M, wqg) with symplectic leaves of dimension at most 2k which have as Casimirs
the functions fi, fo,. .., fon_ok.

We denote by Xy, the hamiltonian vector field of f;, i = 1,...,2n — 2k, with
respect to Ag, i.e., Xf, = AX(df;), by D = (X}, Xpy, .., X[y, ) the distribution
on M generated by Xy ,..., Xy, . and by D° its annihilator. The invertibility
assumption of the matrix ({ fis fj}o) on U implies that the function

n—=k
Ag Wo

n—k
f= <df1/\‘--/\df2n2k, (n—k)'> = <(n—k:)" Xfl /\”'/\Xf2n2k>’ (18)

which satisfies f? = det ({ fis [ }0), never vanishes on U and that at every point
reU D, = DNT,.M is a symplectic subspace of T, M. Thus T, M = D, ®
orthy,, Dy = Dz@Ai(D;), where D = D°NTM,and T M = D;@(Ai(D;))O =
DS @ (dfi, ..., dfan—2k)z- Finally we denote by o the smooth 2-form on M which
corresponds via the isomorphism A# to an element A of V2(M).
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Proposition 2. A bivector field A on (M,wy) of rank at most 2k on M has
as unique Casimirs the functions fi,..., fon_or if and only if its corresponding
2-form o is a smooth section of /\2 D° of mazimal rank on U.

Proof. Effectively for any f;, i =1,...,2n — 2k
A(dfi,-) =0 A (0)(dfi,) = 0 & o(Xp,, AT () = 0. (19)

Thus f1, ..., fon_or are the unique Casimir functions of A on i if and only if the

vector fields Xy ,..., Xy, . with functionally independent hamiltonians on ¢/

generate kero, i.e., forany x e Y D, = kera The last relation means that o is
a section of A\? DO of maximal rank on U. [ |

With the notation above we can formulate the following theorem:

Theorem 2. Let fi,..., fon_or be smooth functions on an almost symplectic man-
n

ifold (M,wp) with volume form = % such that the Poisson matriz ({fi, f;}o)

with respect to g is invertible on an open and dense subsetU of M and o a section
of N’ D° of mazimal rank on U that satisfies (17). Then the (2n — 2)-form
1 g wk 2
@:ff( ) Adfy A - A dfan_on, 20
o+ k—lwo (k 2) Iifi A fon—2k ( )

where [ is given by (18) and g = ipr,0, corresponds to a Poisson tensor field
A with orbits of dimension at most 2k for which fi,..., fon_or are Casimirs.
Precisely A = A#(O’) and the associated bracket of A on C*°(M) is given for any
hi,he € C*(M) by

(h, ho} 2 = — Sdhy Adh /\(a—l— J w)/\ Wy NdfyA- - Adf (21)

1,12 7 1 2 10 i —2)! 1 2n—2k-

Conversely, if A is a Poisson tensor on (M,wy) of rank 2k on an open and
dense subset U of M, then there are 2n — 2k functionally independent smooth
functions f1,..., fon_or on U and a section o of /\2 D° of maximal rank on U
satisfying (17), such that Wy and {-,-} are given, respectively, by (20) and (21).

Proof. We denote by Q = A}/n! the dual 2n-vector field of Q on M and we set
A = je). For any f;,i=1,...,2n — 2k, we have

AF(df;) = —jap A = —jJap, jo = —japnaQ = —joQ = 0,

which means that fi,..., fon_or are Casimir functions of A. We see below that
A= A# (o). Thus A defines a Poisson structure on M having the required prop-
erties. We calculate the adjoint form x @ of ®:

k—2 (13)

1 w,
o=-3 (4l °>A<k°—2>!”f””'”f2”‘2’“> }

(—1)2n=2k1)(2n—2k) /2 llx o . <a+ g w)/\ g ’ '
FlXn ANy, k-1 (k—2)!
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From Lepage’s decomposition theorem o can be written as o = 9 4+ Ygwg, where

1o is an effective 2-form on M and ¢y = ir,0/(in,wo) = —g/n. (It is easy to
check that ix,wp = —(wo, Ag) = —Tr(w? o AO#)/Q = —Tr(I2,)/2 = —n.) Hence
k—2 k—2
9 “0 (-9 9 “0
(U+k—1w0)A(k—2)! <¢2 T 0>A(k—2)!
k—2 k—1
A n—k+1 wy
= A
AT T T Y1)
and
k—2 k—2 k—1
g W B W n—k+1 W
*<("+ hgo) A (k—2)!> = <¢2 " (k:—2)!> L S T
(14) L A wg_(k_z)_2 n n—k+1 wg_(k_l)
T TR S (k—2) - 2)! n Y- (k—1)
n—k n—k
9 “o “o
= (-2 — oA 29
(2= o) A A O] (22)
Consequently
P — 1)(2n—2k—1)(2n—2k)/2 L. A Wg_k
Gy 1/ whk 1
- f<(n0_k)!7Xf1/\”'/\Xf2n2k>aszoza' (23)

Applying (16) to the above relation, we obtain A#(U) = AZ)%(* P) = v HP) =
joQ = A. Thus according to Theorem 1 A defines a Poisson structure on M with
orbits of dimension at most 2k for which fi, ..., fo,_or are Casimir functions.
Obviously the associated bracket of A on C*°(M) is given by (21). For any
hl, he € > (M )

{h1, ha} = Janadha N = JanyndhedoQ = JanadhandQ S
2

1 w,
{72} = —dhy A dha A (a v %wo) A (k(lZ)' Adfy A A dfan_on.

Conversely, if A is a Poisson tensor on (M,wy) with symplectic leaves of di-
mension at most 2k, then in a neighborhood U of a nonsingular point we can
construct a system of local coordinates (z1,..., 29k, f1,. .., fan—2x) in which the
symplectic leaves of A are defined by f; = const, [ = 1,...,2n— 2k and the matrix
of Ag has the form

( Agk Bzfﬂk > , where A = ({2i,2}0) and Ban—ox = ({1, fm}o)-

Also, according to Proposition 2 and to Theorem 1, there is a section o of /\2 D°
of maximal rank almost everywhere on M that satisfies (17) such that A = A# (o).
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We prove that the (2n — 2)-form ¥y = —iz#
0

Since wy is nondegenerate, f2 = (<df1 A ANdfon_ok, Ag/n!>)2 = det By, o # 0
on U. Thus Q2 can be written on U as

)Q = %o can be written as in (20).

1wk
Q= ?kf?/\dfl/\"'/\dfzn—%
and
. 1/. wlg
\IIA = —ZAQ = —? ZAE A df1 VANERRIVA den_Qk. (24)

k k
We now proceed to calculate the (2k — 2)-form —iA%’. Note that % = * Lmn
So from (13) we get that

k n—k
Wy Wy
—iaTy = <O‘ A =) k)') (25)

Taking again the calculation of (22) in the inverse direction, we have

n—k k—2
WO _ g wo
*(‘”m-m)‘ **<<U+k—1w0)/\(l~c—2)!>
w§_2

:_<J+k31wo>/\(k—2)!. (26)

Therefore by replacing (26) in (25) and the obtained relation in (24) we prove that
U, results in the expression (20). Then it is clear that {-,-} is given by (21). W

4 Some examples

4.1 Dirac brackets

Let (M,wp) be a symplectic manifold of dimension 2n, Ay its associated Poisson
structure and fi, ..., fon_or smooth functions on M the differentials of which are
linearly independent at each point in the submanifold My of M defined by the
equations fi(x) =0, ..., fon_or(z) = 0. We assume that the matrix ({fi,fj}o)
is invertible on an open neighborhood W of My in M and we denote by c;; the
coefficients of its inverse matrix which are smooth functions on W such that
Z?Zﬁk{fz, fitocjk = 0i. We consider on W the 2-form

o=wo+ Y cidfi Adf. (27)

1<j

We prove that it is a section of A? D° of maximal rank on W which verifies (17).
As in Section 3, D denotes the subbundle of TM generated by the Hamiltonian
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vector fields Xy, of f;, 4 =1,...,2n—2k, with respect to Ag and D° its annihilator.
For any Xy, I =1,...,2n — 2k, we have

o(Xj,) = wo(Xpo ) + Y cigldfs, Xp)dfy = —dfi+ ) ei{fi, fidodf;

i<j i<j

= —dfi+ Y _dydf; = —dfi +dfi = 0,
J

which means that o is a section of A> D° — W. The assumption that ({fi, fi}o) is
invertible assures us that D is a symplectic subbundle of Tyy M. So for any x € W
TEM = DS @ (dfy,. .., dfan—or)e and N2 T*M = A2 DS + N2(dfy, . .., dfon—ok)z +
DS A {df1, ..., dfon—ok).. However, wy is a nondegenerate section of /\2 T*M and
the part ZKj cijdfs A df; of o is a smooth section of /\2<df1, ooy dfop—ok) of max-
imal rank on W because det(c;;) # 0 on W. Thus o is of maximal rank on W.
Also we have
g =1in,0 = —<w0 + ) cigdfi A dfj,/\o> =-n-> ci{fi fi}o
1<) 1<)
=-n+(n—k)=—-k, and
k—2

)¢ 1 g “o
xo & = _f<0+k‘—1wo)/\(k‘—2)!/\df1/\ A dfo,_ok
k—2

1 k w

= —? (wo + ch'jdfi/\dfj — . 10)0) A (k O_ 2)' ANdfi .. Ndfon_ok
i<j )

Ry

T f k=1

Consequently

1

Ndfy A=+ A dfop—ok. (28)

_ 28) ( df (13 1.
do = (xd*)o = *( 7 /\(*0‘)) = szfJ and
2 , 1.
20/\5(0):—?U/\(zxfa):—?zxf(o/\a). (29)
On the other hand
k—1

13) 28) 1/, w
% (0 Ao) =4 ~ip# (o) (¥O) ® _f<ZA#(J)M) ANdft A= A dfop—ao

n—k+1
ey 1 [ (M u}o)‘)} Adfi Ao A dfon-on
n :

(22)¢27) 1 k wh=3
- 7 <WO + Zcijdfi Ndf; — M%) A (ko_g)! Ndfy A - A dfan—ok
1<)

Adft A ANdfop_9r  and (30)

d(oNo)=xd * (o No) 39, (—C!l},f /\*(0’/\0’)) = —}ixf(a/\a). (31)
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From (29) and (31) we conclude that o satisfies (17). Thus according to Theorem 2
the bivector field

AZA#(O’) :AO+ZCinfi /\ij

1<j

defines a Poisson structure on W the corresponding bracket of which {-,-} on

C*®(W,R) is given for any hi, he € C>°(W,R) by

1 k-1
{h1,ho}2 = ?dhl A dhy A h Adfy A+ A dfop_a. (32)

In the above expression of A we recognize the Poisson structure defined by Dirac [6]

on an open neighborhood W of the constrained submanifold My of M and in (32)

the expression of Dirac bracket given in [10].

4.2 Periodic Toda and Volterra lattices

In this paragraph we study the linear Poisson structure A, associated to the
periodic Toda lattice of n particles. This Poisson structure has two well-known
Casimir functions. Following Theorem 2 we construct another Poisson structure
having the same Casimir invariants with A,. It turns out that this structure
decomposes as a direct sum of two Poisson tensors one of which (involving only
the a variables in Flaschka’s coordinates) is the quadratic Poisson bracket of
the Volterra lattice (also known as the KM-system). It agrees with the general
philosophy (see [4]) that one obtains the Volterra lattice from the Toda lattice by
restricting to the a variables.

The periodic Toda lattice of n particles (n > 2) is the system of ordinary
differential equations on R?® which in Flaschka’s [8] coordinate system (a1, ...,
ap, b1, ..., by) takes the form

C'LZ‘ = ai(biﬂ — bz) and bz = 2(&? — a?,l) (Z € 7Z and (CLZ'_;,_n, bi—i—n) = (ai, bz))

This system is hamiltonian with respect to the nonstandard Lie—Poisson structure

ng o 0
Ap = ;aiaai/\ (8751 N 8bi+1>

on R?" and it has as hamiltonian the function H = > (a?+b?/2). The structure
A7 is of rank 2n — 2 on

n
U= {(ala"-aarubly"-abn) € R* Zal'“ai—laiﬂ'“an#o}
i1

and it admits two Casimir functions: Cy = by +by+---+ b, and Cy = ajas...ay.
We consider on R?" the standard symplectic form wy = oy da; A db;, its

associated Poisson tensor Ag = Y ', % A % and the corresponding volume
- 3 3
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element Q) = =% = day Adby A--- Ada, Adb,,. The hamiltonian vector fields of Cy
and C with respect to Ag are

"9
_;8(1,

So D =(X,,,X,) and

n
0

and X02 = Zal B ¢ 7y ¢ 7 R an%.
‘_ )

M:

{ (avida; + Bidb;) € Ol RQ" ’ ZO‘Z =0 and
=1

Z at - Qi— 1/81az+1 an = 0}
=1

The family of 1-forms (o1,...,0n-1,07,...,00_1),
g5 = daj - daj+1 and U} = a,jdbj — aj+1dbj+1, j = 1, ey — 1,

provides a basis of D(a’b) at every point (a,b) € U. The section of maximal rank

o, of /\2 D° — U, which corresponds to Ay via the isomorphism A# and satisfies
(17), is written in this basis as

Zgj <lzl )

We now consider on R?" the 2-form

n—2 n—1 n—2 n—1
U:Zaj/\< Z al> + ZU}/\( Z JZ)
j=1 I=j+1 j=1 I=j+1

= 3" |(daj — dagi1) A (dajir ~ dan)

+ (ajdbj - aj+1dbj+1) AN (aj+1dbj+1 — andbn)]
= Z (daj A daj+1 + ajaj+1dbj A dbj+1> .

j=1

It is a section of /\2 D* the rank of which depends upon the parity of n; if n is odd,
its rank is 2n — 2 on U, while, if n is even, its rank is 2n — 4 almost everywhere
on R?". Also after a long computation we can confirm that it satisfies (17). Thus
its image via A# , i.e. the bivector field

0 0 0
A= Z (ajaj+1 80,34_1 + 87bj " 6bj+1),
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defines a Poisson structure on R?" with symplectic leaves of dimension at most
2n —2, when n is odd, that has C and Cy as Casimir functions. (When n is even,
A has two more Casimir functions.) We remark that (R?",A) can be viewed as
the product of Poisson manifolds (R™, A, ) x (R™, A"), where

"0 0

and A = —_ A=
1 8(7] abj+1

1=

n
0
A, = Giir1—=—— N
v ; 77 8(1]‘ 8aj+1
The Poisson tensor A,, is the quadratic bracket of the periodic Volterra lattice on
R™ and, when n is odd, it has C as unique Casimir function.
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We announce some results which involve some new, evidently integrable sys-
tems of Toda type. More specifically we construct a large family of Hamiltonian
systems which interpolate between the classical Kostant—Toda lattice and the
full Kostant—Toda lattice and we discuss their integrability. There is one such
system for every nilpotent ideal Z in a Borel subalgebra by of an arbitrary
simple Lie algebra g. The classical Kostant—Toda lattice corresponds to the
case of Z = [ng,ny], where ny is the unipotent ideal of by, while the full
Kostant—Toda lattice corresponds to Z = {0}. We mainly focus on the case of
g being of type A, B or C with Z = [[ny,n;],n;] which we call the height-2
Toda lattice. Complete proofs of the announced results will appear in a future
publication.

1 Introduction

The classical Toda lattice is the mechanical system with Hamiltonian function

N 1 N-1
H(qu, .o an, pr- - pN) = ) SPE+ Y et
i=1 =1

It describes a system of N particles on a line connected by exponential springs.
The differential equations which govern this lattice can be transformed via a
change of variables due to Flaschka [9] to a Lax equation L = [L, L], where L is
the Jacobi matrix

bl ai 0 e . 0
al bg a9 :
0 a9 b3

aN-—1
0 --- o an_1 by
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and L, is the skew-symmetric part of L in the Lie algebra decomposition lower
triangular plus skew-symmetric. Lax equations define isospectral deformations;
though the entries of L vary over time, the eigenvalues of L remain constant. It
follows that the functions H; = %Tr L* are constants of motion. Moreover they
are in involution with respect to a Poisson structure associated to the above Lie
algebra decomposition.

There is a generalization due to Deift, Li, Nanda and Tomei [5] who showed
that the system remains integrable when L is replaced by a full symmetric N x N
matrix. The resulting system is called the full symmetric Toda lattice. The
functions H; := %TrLi are still in involution, but they are not enough to ensure
integrability. It was shown in [5] that there are additional integrals, called chop
integrals, which are rational functions of the entries of L. They are constructed

as follows. For k =0,..., [(N2—1)]7 denote by (L — A1dy)j the result of removing
the first £ rows and the last k columns from L — AIdy and let

det(L — A1dy)x = Eg V726 4 4 En_ok k- (2)
Set

det (L — \Id

€ ( N)k _ AN72]€ + Iﬂ{)\N*Qk*l 4. +IN72k,k- (3)
Eox,

The functions I,;, where r = 1,...,N —2k and &k = 0,..., [%], are indepen-

dent constants of motion, they are in involution and sufficient to account for the
integrability of the full Toda lattice.

1.1 Bogoyavlensky—Toda

The classical Toda lattice was generalized in another direction. One can define
a Toda-type system for each simple Lie algebra. The finite, nonperiodic Toda
lattice corresponds to a root system of type Ay. This generalization is due to
Bogoyavlensky [3]. These systems were studied extensively in [10] in which the
solution of the system was connected intimately with the representation theory
of simple Lie groups. See also Olshanetsky—Perelomov [11] and Adler—van Moer-
beke [1]. We call these systems the Bogoyavlensky—Toda lattices. They can be
described as follows.

Let g be any simple Lie algebra equipped with its Killing form (-|-). One
chooses a Cartan subalgebra, h of g, and a basis II of simple roots for the root
system A of h in g. The corresponding set of positive roots is denoted by A™. To
each positive root « one can associate a triple (X, X_, Hy) of vectors in g which
generate a Lie subalgebra isomorphic to sla(C). The set (X, X—0)aea+U(Ha)aem
is basis of g and is called a root basis. To these data one associates the Lax
equation L = [Ly, L], where L and L, are defined as follows:

L 14 L

L= biHa +Y ai(Xa,+X_0,), Ly=)Y ai(Xe, - X_0,).
=1 =1 =1
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The affine space M of all elements L of g of the above form is the phase space
of the Bogoyavlensky—Toda lattice associated to g. The functions which yield the
integrability of the system are the Ad-invariant functions on gwhich are restricted
to M.

1.2 Kostant form

Let D be the diagonal N x N matrix with entries d; := H;;ll a;. In [10] Kostant
conjugates the matrix L, given by (1), by the matrix D to obtain a matrix of the
form

by 1 o .- ... 0
C1 b2 1 :
x= |9 e b (4)
. . 0
1
0o .- ... 0 cy_1 by

The Lax equation takes the form X = [X4, X], where X is the strictly lower
triangular part of X, according to the Lie algebra decomposition strictly lower
plus upper triangular. This form is convenient in applying Lie theoretic techniques
to describe the system. Note that the diagonal elements correspond to the Cartan
subalgebra while the subdiagonal elements correspond to the set II of simple roots.
The full Kostant-Toda lattice is obtained by replacing II with AT in the sense
that one fills the lower triangular part of X in (4) with additional variables. It
leads on the affine space of all such matrices to the Lax equation

X =[X,,X], (5)

where X is again the projection to the strictly lower part of X.

1.3 Adapted sets in a root system

Generalizing the above procedure we can introduce the Lax pair (Lg, Bg), where
® is any subset of AT containing II. Thus we have

Lo =Y baHa+ > aa(Xa+X o), Bo=) ta(Xa—X o)
a€ll aced acd

In order to have consistency in the Lax equation, since the Lax matrix is
symmetric, the bracket [Bg, Lg) should give an element of the form ) 4 caHo+
Y acd da(Xoa + X_4). In this case we say that ® is adapted. A straightforward
computation leads to the following result:
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Proposition 1. The set ® is adapted if and only if it satisfies the following
property:

Va,b€®, a—pF orf—ac ®U{0}.

Recall that a — 8 = 0 means that a — 3 is not a root.

Thus for each ® which is adapted we obtain a corresponding Hamiltonian
system and the problem is to study this system and determine whether it is
integrable. We conjecture that in fact it is integrable. We prove this claim for a
particular class of such systems. Note that the special case ® = II corresponds to

the classical Toda lattice while the case ® = A™ corresponds to the full symmetric
Toda of [5].

Example 1. We consider a Lie algebra of type Bs. The set of positive roots
AT ={a,B,a+ 3,3+ 2a} which corresponds to the full symmetric Toda lattice
with Lax matrix

b1 aq as a4 0

al b2 a9 0 —Qa4q
L=1]as as 0 —as -—ag
ayq 0 —an —bQ —ai

0 —a4 —az —a; —b;

This system is completely integrable with integrals ho = %TI“LQ which is the

Hamiltonian, hy = %Tr[/1 and a rational integral which is obtained by the method
of chopping as in [5].

Taking ® = {a, #, a+ 3} we obtain another integrable system with Lax matrix

bl al as 0 0
a1 by as 0 0
L=|as ao 0 —as —as

0 0 —a —bg —ai
0 0 —a3z —ai —b1

The matrix Ly is defined as above, i.e. the skew-symmetric part of L. Again there
is rational integral given by I1; = (aja2 — asbz)/as. Defining the Poisson bracket
by {ai,as} = as, {a;,bi} = —a;, i = 1,2, and {a1,b2} = a; we verify easily that
ho plays the role of the Hamiltonian and I7; is a Casimir. The set {hg, hg, [11} is
an independent set of functions in involution.

2 Intermediate Toda lattices

We have defined some Hamiltonian systems associated to a subset ® consisting
of positive roots (which we call adapted). The associated matrix is symmetric.
As in the case of classical and full Toda there is also an analogous system defined
by a Lax matrix which is lower triangular (the Kostant—Toda lattices). In this
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paper we restrict our attention to this version of the systems. In this section
we show that these Hamiltonian systems are associated to a nilpotent ideal of
a Borel subalgebra of a semisimple Lie algebra g. Since for particular (extreme)
choices of the ideal one finds the classical Kostant—Toda lattice or the full Kostant—
Toda lattice associated to g, we call these Hamiltonian systems intermediate Toda
lattices.

2.1 The phase space Mz

Throughout this section g is an arbitrary complex semisimple Lie algebra, the
rank of which we denote by ¢. We fix a Cartan subalgebra h of g and a basis
IT = {aj,...,as} of the root system A of g with respect to h. The choice of
IT amounts to the choice of a Borel subalgebra b, = h @& ny of g. It also leads
to a Borel subalgebra b_ = § @ n_ corresponding to the negative roots. We
fix an element € in ng, satisfying (¢| [n_,n_]) = 0, where (-|-) stands for the
Killing form of g. One usually picks for € a principal nilpotent element of n;.. For
example, for g = sly(C), viewed as the Lie algebra of traceless N x N matrices,
one can take for h and for b, the subalgebras of diagonal, respectively upper
triangular, matrices and for ¢ one can choose

0 1 0 ... 0
: o1
O ... ... ... 0

Let Z be a nilpotent ideal of b;. The quotient map by — b, /7 is denoted by Ps.
Using the isomorphism b* ~ b_ induced by the Killing form, we can think of the
orthogonal Z+ of 7 in b’ as a vector subspace of b_. We consider the affine space
My := ¢ + I+, Explicitly

Mr={X+¢e|X eb_and (X|Z)=0}.

When 7 = {0}, Mz = b_ + ¢, which is the phase space of the full Kostant-Toda
lattice. On the other extreme, taking Z = [n; ,n.] the manifold M7 is the phase
space of the classical Kostant—Toda lattice. We therefore call M7 the intermediate
Kostant—Toda phase space. Notice that, if Z C J, then My C M.

2.2 Hamiltonian structure

We show that M7 has a natural Poisson structure. To do this we prove that M7 is a
Poisson submanifold of g equipped with a Poisson structure {-, -} the construction
of which! we firstly recall. We use the theory of R-matrices (see [2, Chapter 4.4]

!See the appendix of [6] for an alternative construction using symplectic reduction to the
cotangent bundle T* G, where G is any Lie group integrating g.
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for the general theory of R-matrices). Write g = g4 @ g— where g4 := by and
g :=n_. For X € g its projection in gy is denoted by Xi. The endomorphism
R : g — g, defined for all X € g by R(X) := X; — X_, is an R-matrix which
means that the bracket on g, defined by

X, Y]r 1= S(IR(X), Y]+ [X, ROV = (X1, ¥4] - (X, Y]

for all X,Y € g, is a (new) Lie bracket on g. The Lie-Poisson bracket on g, which
corresponds to [-,-]p and which we denote simply by {-,-} (since it is the only
Poisson bracket on g which we use), is given by

{F,GH(X) = (X [[(VxF)y, (VxG)1]) = (X [ [(VxF)-, (VxG)-])  (6)

for every pair of functions, F' and G, on g and for all X € g. In this formula the
gradient Vx F of F at X is the element of g defined by

(VxF|Y) = (dxF,Y) = % F(X +1Y). (7)
t=0

Proposition 2. Let I be a nilpotent ideal of b .
(1) The affine space Mz is a Poisson submanifold of (g,{-,-});

(2) Equipped with the induced Poisson structure Mz is isomorphic to (by/T)*,
which is equipped with the canonical Lie—Poisson bracket;

(3) A function F' on Mz is a Casimir function if and only if (VxF) €T for
all X € Mz, where F is an arbitrary extension of F' to g.

For a function H on M7 we denote its Hamiltonian vector field by Xzr; our sign
convention is that Xy := {-, H} so that Xy [F| = {F,H} for all F € F(M). The
Hamiltonian of the intermediate Kostant—Toda lattice is the polynomial function
on M7 given by

o= % (X |X) (8)

so that the vector field of the intermediate Kostant—Toda lattice is given by the
Lax equation (on Mry)

X =[X,, X]. (9)

2.3 Height k£ Kostant—Toda lattices

In the sequel of this paper we mainly study the case for which Z is an ideal of
height 2, a notion which we introduce in this paragraph. We firstly give some
information on the nilpotent ideals of by (see [4]). If Z is a nilpotent ideal of
by, then 7 is contained in ny. For example n . itself is a nilpotent ideal of b..
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For o € AT let X, denote an arbitrary root vector corresponding to «, i.e.,
[H, X.] = (o, H) X, for all H € . Consider a subset, ®, of A* which has the
property that, if o € ®, then every root of the form a + 3 with 3 € AT belongs
to @; we call such a set ® an admissible set of roots. For such a and § the Jacobi
identity implies that [X,, Xg] is a multiple of X,13. It follows that the (vector
space) span of {X, | a € ®} is a nilpotent ideal of by. Most importantly every
nilpotent ideal of b is of this form for a certain admissible set of roots ®. Thus
the nilpotent ideals of a given Borel subalgebra by of g are parametrized by the
family of all subsets ® of II", which have the property that, if o € ®, then every
root of the form a + 8 with 8 € AT belongs to ®.

Every positive root @ € AT can be written as a linear combination of the
simple roots, a = Zle n;a;, where all n; are nonnegative integers. The integer
ht(a) = Zle n; is called the height of o. For k € N, let ®; denote the set of
all roots of height larger than k. It is clear that ®; is an admissible set of roots.
We denote the corresponding ideal of b, by Zj and we call it a height k ideal.
An alternative description of Zj is as ad® N4 For k=1,7; = [ng,ny] is the
ideal which leads to the classical Toda lattice. We consider in the sequel mainly
Ty = [n4, [ny,ny]] and the corresponding affine space M, .

Example 2. Consider a Lie algebra of type Cy. Take ® = {ay, a2, a3, a4, a1 +
ag, a0 + as, a3 + aq}. It gives rise to a height 2 Toda system.
The Lax matrix is

ag 1 0 O 0 0 0 0
by a2 1 0 O 0 0 0
C1 b2 as 1 0 0 0 0
I = 0 C2 b3 ay 1 0 0 0
0 0 ¢33 by —ag -1 0 0
0 0 0 C3 —bg —as -1 0
0 0 0 0 —C2 —bQ —ag -1
0 0 0 0 0 —C1 —bl —ai

The function

2b1bocs + bicoby + bgbycy
C1C3

a; —az t+agz —ayg+

is a Casimir. We need five functions to establish integrability. Since det(L — A\I)
is an even polynomial of the form A% + Z?:o fiA?, we obtain four polynomial
integrals fo, f1, f2, f3. Using an one-chop we obtain a characteristic polynomial of
the form AM? + B. The function f; = B/A is the fifth integral.

3 Computation of the rank

In this section we compute the index of the Lie algebra b, /Zs when b is a Borel
subalgebra of a simple Lie algebra of type Ay, By or Cy. It yields the rank of the
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corresponding intermediate Kostant—-Toda phase space (see Subsection 2.3). We
firstly recall a few basic facts about stable linear forms, the index of a Lie algebra
and the relation to the rank of the corresponding Lie—Poisson structure.

3.1 Stable linear forms

Let a be any complex algebraic Lie algebra and a* its dual vector space. The
stabilizer of a linear form ¢ € a* is given by

av :={rcalad,p =0} ={zcalVyca (pzy]) =0}

The integer min{dima® | ¢ € a*} is called the index of a and is denoted by
Ind(a). Since the symplectic leaves of the canonical Lie-Poisson structure on a*
are the coadjoint orbits, the codimension of the symplectic leaf through ¢ is the
dimension of a¥. It follows that the index of a is the codimension of a symplectic
leaf of maximal dimension, i.e., the rank of the canonical Lie-Poisson structure on
a* is given by dim a — Ind(a); notice that, since the latter rank is always even, the
index of a and the dimension of a have the same parity. A linear form ¢ € a* is said
to be regular if dim a® = Ind(a). Thus we can use regular linear forms to compute
the index of a and hence the rank of the canonical Lie-Poisson structure on a*.
We use the following proposition to compute the index of by /Z5.

Proposition 3. Let a be a subalgebra of a semisimple complex Lie algebra g.
Suppose that ¢ is a linear form on a such that a¥ is a commutative Lie algebra
composed of semisimple elements. Then ¢ is reqular so that the index of a is given
by dim a¥.

Proof. A linear form ¢ € a* is said to be stable if there exists a neighborhood
U of ¢ in a* such that for every ¢ € U the stabilizer a¥ is conjugate to a¥ with
respect to the adjoint group of a. According to [8] every stable linear form is
regular. According to [7] and [8, Theorem 1.7, Corollary 1.8] ¢ is stable if and
only if [a,a?]Na¥ = {0}. The latter equality holds when a¥ is a commutative Lie
algebra composed of semisimple elements (see [8, Lemma 2.6]). Thus ¢ is stable,
hence regular. [ ]

3.2 Computation of the index

In this paragraph we compute the index of b/Z under the following assumption
on (the root system of) g:
(H) The roots of height 2 of g are given by {ag + a1 |1 <k <€ —1}.

For classical Lie algebras the basis II can be ordered such that this assumption
occurs when g is of type Ay, By or Cp. Let g = h @ > ca+(8a + g-a) be the
decomposition of g according to the adjoint action of . To each positive root «
there corresponds a triple (X, X_n, Hy) of elements of g, where X, € go, X_o €
9—a, Ho € h and (X,, X_q, Hy) generates a subalgebra isomorphic to sly(C). We
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recall shortly how such a triple can be constructed. Let h, be the unique element
in b such that (o, H) = (hy |H) for all H € h. Define a scalar product on the real
vector-space hi by

(] B) = (hahp) = (B, ha) = (@, hp)

2

for all « and 8 € A. We set H,, := —
{a]a)

Xa € 9o, X—o € g—q such that

he. It is clear that (o, Hy,) = 2. Choose

<Xa ’ X—a> =

(a]a)
Then (X, X_q, Hy) is the required triple. Moreover

_ + _ .+
[X:Eak7X:|3ak:|:ak+1] =€ X:Fak-‘-w [Xiak+1’X:Fakq:ak+l] =M X:F@k’

where each of the integers elf and 77/,1E is equal to 1 or to —1 depending upon g.
For all o, B € II let

(| B)

Cag = (B, Ha) = 2<a o)

The ¢ x f-matrix C := (Cyj,1 < i,j <€), where Cyj := Cy,q,, is invertible. It is
called the Cartan matriz of g.

Proposition 4. Consider the linear form ¢ on by defined for Z € by by (p, Z) :=
(X | Z), where X is defined by

/—1
X = (S[Xfae + Z Xfai7a¢+1 (10)
i=1

with d0p := 1 if £ is odd and 6y := 0 otherwise. Denote by @ the induced linear
form on by /Ts.

(1) @ is a reqular linear form on by /Is;
(2) dim(by/Z3)? =1 — &y;
(8) The index of by /Ty is 1 if the rank ¢ of g is even and is 0 otherwise.

4 Integrability

We now get to the integrability of the intermediate Kostant—Toda lattice on Mz, C
g for any semisimple Lie algebra g of type Ay, By or Cy. Recall that this means
that the Hamiltonian is part of a family of s independent functions in involution,
where s is related to the dimension and the rank of the Poisson manifold Mz,
by the formula dim Mz, = $Rk Mz, + s. Since dim Mz, = 3¢ — 1 and since the
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corank of Mz, is 1 if £ is even and 0 otherwise (see item (3) in Proposition 4), we
need s = [3¢/2] such functions. According to the Adler—-Kostant—Symes Theorem
the ¢ basic Ad-invariant polynomials provide already ¢ independent functions
in involution. Thus one needs [¢/2] additional ones. As we see, they can be
constructed by restricting certain chop-type integrals, except for the case of Cp
for which another integral (Casimir) is needed. We firstly recall from [5] the
construction of the chop integrals on M := € + b_ in the case that g = sly(C)
and explain why they are in involution. Since M7, is a Poisson submanifold of M,
their restrictions to Mz, are still in involution (but they may become trivial or
dependent).

We consider g = sly(C) with the standard choice of h and II (see Subsec-
tion 2.1). Let k be an integer, 0 < k < [%] For any matrix X we denote by
X}, the matrix obtained by removing the first k£ rows and last £ columns from X.
We denote by Gy the subgroup of GLy(C) consisting of all N x N invertible
matrices of the form

A A B
g=|0 D C]J, (11)
0 0 A

where A and A’ are arbitrary upper triangular matrices of size k x k and A, B, C
and D are arbitrary?. The Lie algebra of G, is denoted by g;.. A first, fundamental
and nontrivial observation, due to [5], is that for all ¢ € Gy, decomposed as in (11),

det(ng_l) = T det X. (12)

This leads to (rational) Gg-invariant functions on g (and hence on M) which
are constructed as follows. For X € g and for an arbitrary scalar [ consider the so-
called k-chop polynomial of X defined by Qr (X, A) := det(X —AIdy)g. In view of
(12) the coefficients of @y (as a polynomial in /) define polynomial functions on g,
which transform under the action of g € Gy with the same factor det A’/ det A.
We write

N-—-2k A
Qu(X,N) = ) Eip(X)AN2h,
=0

Each of the rational functions E; 1,/ E; . is Gi-invariant. By restriction to M this
yields Gg-invariant elements of F(M). They are called k-chop integrals because
they are integrals (constants of motion) for the full Kostant—Toda lattice. Notice
that the constants of motion H; := % Tr X* are 0-chop integrals and that the Toda
Hamiltonian is expressible in terms of them as H = (H? — 2H3) /2.

We show that all chop integrals are in involution. To do this we let F' be a
k-chop integral and let ' denote its extension to a Gy-invariant rational function

2With the understanding that, since X is supposed invertible, A, A’ and D are invertible.
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on g. Similarly let G be a [-chop integral with Gy-invariant extension G. We may
suppose that k < £. Infinitesimally the fact that F' is Gy invariant yields that

(x[vxF,Y]) =0 (13)
for all X € g and for all Y € gy. Since b, C gy, it follows that

<X ) [(VXF)+,VXG}> —0= <X ( [VXF, (vxé)+}>
so that (6) can be rewritten for X € M as

{F,G}(X) = — <X | [VXF, vxé} > (14)

We claim that VxG € gp. This follows from the construction of the function
G e F(g): the rational function G(X) depends only upon Xy, the ¢-chop of X,
while, if an element Z of g satisfies (g | Z) = 0, then Z; is the zero matrix. Thus
VxG € gy C g so that (13) implies that the right hand side of (14) is zero for
all X € M. It follows that F' and G have zero Poisson bracket.

Notice that in the case of the height 2 intermediate Kostant—Toda lattice all
k-chops with k£ > 1 vanish and that only a few 1-chops survive. In what follows
we consider separately the cases of Ay, By and Cy.

4.1 The case of A,

We firstly consider g = sly41(C), the Lie algebra of traceless matrices of size
N = /¢ + 1, and take for b, II and e the standard choices as before. A general
element of Mz, is then of the form

ag 1 0 ... ... 0
b1 as 1 :
¥ — 1 by as 1
0 ¢ by . . 0
S . 1
0 ... 0 cp—1 by app

with Zfill a; = 0. The 1-chop matrix of X is given by

by a9 1 0 ... 0
C1 bQ ag‘ 1 :
0 c by . .0
. . c3 b4 .. 1

@
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where af‘ is a shorthand for a; — A\. We also use the matrix X (A, ), defined by
by a%‘ 13 a1yp
a by a} an
X ( )\’ a) _ 0 C9 b3
c3 bg Qp-2¢
; Lo @
o ... ... 0 coq by

Proposition 5. The polynomials det(X — A1dy41)1 and det X (X, o) have degree
d:=[£] in \.

4.2 The case of By,

A Lie algebra of type By can be realized as the Lie algebra g of all square matrices
of size N = 20 + 1, satisfying X.J + JX* = 0, where J is the matrix of size
2¢ 4+ 1, all of whose entries are zero except for the entries on the antidiagonal,
which are all equal to one. Clearly X satisfies X.J + JX! = 0 if and only if X
is skew-symmetric with respect to its antidiagonal. It follows for such X that
det(X — Aldgy1) = (—1)Y det(X + AIdyy 1) so that the characteristic polynomial
is an odd polynomial in A. The 1-chop matrix X; satisfies the same relation
X1J + JXt = 0 so that its determinant is an even polynomial in . As a Cartan
subalgebra of g one can take the diagonal matrices in g and one can take as a basis
for AT the matrices Eiiv1 — Eoyjo0—iy1 for i = 1,...,£. If one finally chooses
€ to be the matrix Zle(Ei,iH — E9¢_i20—it+1), then the height 2 phase space is
given by all matrices of the form

a; 1
b1
cg - o1
b1 an 1
Cn—1 bn 0 -1
0 —b, —an
—Cp—1 —bp_1
. 1
-1 b1 —ay

In this case N = 2¢ + 1, the 1-chop polynomial is even and so the 1-chop
polynomial is degree ¢ when ¢ is even and of degree £ — 1 when £ is odd. This
yields % integrals when /¢ is even and Z_Tl when ¢ is odd. Therefore the number of
integrals is correct in each case.
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4.3 The case of Cp

A Lie algebra of type Cy can be realized as the Lie algebra g of all square matrices
of size N = 2/, satisfying X.J + JX! = 0, where J is the matrix of size 2¢, given

by
0 I
J = .
o)

It follows for such X that det(X — AId1) = (—1)% det(X + A1dgy;) so that
the characteristic polynomial is an even polynomial in A. The 1-chop matrix X;
satisfies the same relation X;.J + JX! = 0 so that its determinant is an even
polynomial in A\. As a Cartan subalgebra of g one can take the diagonal matrices
in g and one can take as a basis for AT the matrices Eiiv1 — Eop—1-4 20— for
i=1,...,£. The height 2 phase space for Cy is given by all matrices of the form

a; 1
b1 as
cp by . 1
Qan, 1
Cn—1 by —a, -1

Cn—1 _bn—l

—c1 —bi —a

In this case, N = 2/, the 1-chop polynomial is even so that we get %—1 integrals
from the 1-chop when [ is even and Z_TQ integrals when [ is odd. Therefore the odd
case gives the correct number of integrals. For the even case there exists a Casimir
function which does not arise from the method of chopping and we describe it as
follows:

The Casimir f has the form f = A+ B/C, where

-1 -1
A= Z(CLZ - ai+1), B = Zdijmij7 and C = HCQZ',l.
i=1 i i=1
The term m;; in B is determined as follows: We associate the variables by, b,
..., by to the simple roots aq, as,...,a; and the variables ¢y, co, ..., ¢;_1 to the
height 2 roots a1 + a9, as + ag, ..., y_1 + .

Take simple roots «; and «; (with corresponding variables b;, b;) such that ¢
is odd and j is even. The remaining variables correspond to the height two roots
ap + g1, where k # 1,1 — 1, k # 3,7 — 1. The term my; is a product of b;, b;
and % ¢ variables.
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The coefficient d;; is 2 if m;; includes the term ¢;—; (corresponding to the root
;-1 + oq) and is equal to 1 otherwise.

Example 3. [ = 6.

f=a1 —az2+a3 —as+as — ag

+b5b66103 + 2b1b46265 + b3b66104 + 2()11)26305 + 2b3b46105 + b1b60264
€1C3C5 '

4.4 The case of D,

We conclude with some comments on the case of Dy. A Lie algebra of type Dy
can be realized as the Lie algebra g of all square matrices of size N = 2/ satisfying
XJ+ JX! =0, where J is the matrix of size 2/, given by

0 I
J= ( ) 0) .

As in the case of Cy the characteristic polynomial is an even polynomial. On
the other hand the 1-chop polynomial is odd so that the degree of this polynomial
is {—1 when / is even. However, when ¢ is odd the degree of the 1-chop polynomial
is again £. This gives % — 1 integrals when £ is even and th integrals when ¢ is
odd. In the even case we need an additional function, i.e. a Casimir, but at this
point we do not have an explicit formula. There is no stable form in this case,

but we can produce a form which gives a lower bound for the rank and this lower
bound is good enough, once we have the Casimir.

Acknowledgements

The authors would like to thank the Cyprus Research Promotion Foundation and

the Ministere Francais des Affaires étrangeres for their support (project number
CY\FR\0907\03).

[1] Adler M. and van Moerbeke P., Completely integrable systems, Euclidean Lie algebras,
and curves, Adv. Math., 1980, V.38, 267-317.

[2] Adler M., van Moerbeke P., Vanhaecke P., Algebraic Integrability, Painlevé Geometry and
Lie Algebras (Ergebnisse der Mathematik und ihrer grenzgebiete), V.47, Springer-Verlag,
Berlin Heidelberg, 2004.

[3] Bogoyavlensky O.I., On perturbations of the periodic Toda lattice, Comm. Math. Phys.,
1976, V.51, 201-209.

[4] Cellini P. and Papi P., Ad-nilpotent ideals of a Borel subalgebra, J. Algebra, 2000, V.225,
130-141.

[5] Deift P.A., Li L.C., Nanda T. and Tomei C., The Toda Lattice on a generic orbit is
integrable Comm. Pure Appl. Math., 1986, V.39, 183-232.

[6] Ercolani N.M., Flaschka H. and Singer S., The geometry of the full Kostant—Toda lattice,
Colloque Verdier, Progress in Mathematics Series, Birkhduser Verlag, 1994, 181-225.



P.A. Damianou, H. Sabourin and P. Vanhaecke

Kosmann Y. and Sternberg S., Conjugaison des sous-algebres d’isotropie, C.R.A.S, Paris
Ser. A, 1974, V.279, 777-779.

Tauvel P. and Yu R., Indice et formes linéaires stables dans les algebres de Lie, J. Algebra,
2004, V.273, 507-516.

Flaschka H., The Toda lattice I. Existence of integrals, Phys. Rev. B, 1974, V.9, 1924-1925.

Kostant B., The solution to a generalized Toda lattice and representation theory, Adwv.
Math., 1979, V.34, 195-338.

Olshanetsky M.A. and Perelomov A.M., Explicit solutions of classical generalized Toda
models, Invent. Math., 1979, V.54, 261-269.



5th Workshop “Group Analysis of Differential Equations & Integrable Systems” 2010, 91-98

On nonclassical symmetries
of generalized Huxley equations

Nataliya M. IVANOVA ™ and Christodoulos SOPHOCLEOUS }

' Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str.,
01601 Kyiv-4, Ukraine
E-mail: wanova@imath.kiev.ua

Y Department of Mathematics and Statistics, University of Cyprus,
Nicosia 1678, Cyprus
E-mail: christod@ucy.ac.cy

We search for nonclassical symmetries of a class of generalized Huxley equations
of the form w; = wug, + k(z)u?(1 —u). We completely classify the functions
k(z) such that this class admits nonclassical symmetries of the form @ =

1 Introduction
We consider reaction-diffusion equation of the form
Up = Ugg + k(2)u? (1 — u), (1)

where k(x) # 0. This equation models many phenomena that occur in different
areas of mathematical physics and biology. In particular, it can be used to describe
the spread of a recessive advantageous allele through a population in which there
are only two possible alleles at the locus in question. Equation (1) is interesting
also in the area of nerve axon potentials [18]. Case k = const is the known Huxley
equation. For more details about application see [3,4] and references therein.

Group analysis of differential equations provides us with systematic methods
for deducing exact solutions of nonlinear general partial differential equations.
One of these methods, called by the authors “non-classical”, was introduced by
Bluman and Cole [2]. A precise and rigorous definition of nonclassical invari-
ance was firstly formulated in [10] as “a generalization of the Lie definition of
invariance” (see also [21]). Later operators satisfying the nonclassical invariance
criterion were also called, by different authors, nonclassical symmetries, condi-
tional symmetries, @-conditional symmetries and reduction operators [8,9, 13].
The necessary definitions, including ones of equivalence of reduction operators,
and relevant statements on this subject are collected in [17,19].

Initially Bradshaw-Hajek et al. [3,4] studied the class (1) from the symmetry
point of view. More precisely, they found some cases of equations (1) admitting
Lie and/or nonclassical symmetries. Complete classification of Lie symmetries of
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class (1) is performed in [12]. Conditional symmetries of Huxley and Burgers—
Haxley equations having nontrivial intersection with class (1) are investigated
in [1,5-7,11]. The present paper is a step towards to the complete classification
of nonclassical symmetries of the class (1).

Reduction operators of equations (1) have the general form Q = 70;+&£0;+10y,
where 7, £ and 7 are functions of ¢, x and u, and (7,£) # (0,0). In order to derive
such operators one needs to consider two cases:

1. 7 #£ 0. Without loss of generality 7 = 1.

2. 7 =0, £ #0. Without loss of generality £ = 1.

Here we present the complete classification for the case 1 and we give the first
steps for the case 2.

2 Equivalence transformations and Lie symmetries

As classification of nonclassical symmetries is impossible without detailed knowl-
edge of Lie invariance properties, we review [12] the equivalence group and results
of the group classification of class (1). The complete equivalence group G~ of
class (1) contains only scaling and translation transformations of independent
variables t and x. More precisely it consists of transformations

fze%t—i—@, T=¢e1x+e3, U=u, k:zeka',
where €;, 1 = 1,2, 3 are arbitrary constants, &1 # 0.

Theorem 1. There exists three G™-inequivalent cases of equations from class (1)
admitting nontrivial Lie invariance algebras (the values of k are given together
with the corresponding maximal Lie invariance algebras, ¢ = const) (see [12]):

. Vk, <8t>;
2: k=c, (0 0z);
3: k=cx? (0, 2t0; + x0,).

In the following section we search for nonclassical symmetries which are not
equivalent to the above Lie symmetries.

3 Nonclassical symmetries

Firstly, we recall the definition of nonclassical symmetry (or conditional sym-
metry, or reduction operator). Reduction operators (nonclassical symmetries,
Q-conditional symmetries) of a differential equation £ of form L(t,z,u)) = 0
have the general form

Q =710 + 531; + 778ua
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where 7, § and 7 are functions of ¢,  and u, and (7,§) # (0,0). Here u(,) denotes
the set of all the derivatives of the function u with respect to ¢t and x of order not
greater than r, including u as the derivative of order zero.

The first-order differential function Q[u] := n(t, x,u) — 7(¢t, z, u)us — (¢, x, u)uy
is called the characteristic of the operator Q). The characteristic PDE Q[u] = 0
is called also the invariant surface condition. Denote the manifold defined by the
set of all the differential consequences of the characteristic equation Q[u] = 0 in
the jet space J() by Q).

Definition 1. The differential equation £ of form L(t,x,u() = 0 is called con-
ditionally (nonclassicaly) invariant with respect to the operator @ if the relation
Q(T)L(t,x,U(T))|£mQ(T>: 0 holds, which is called the conditional invariance cri-
terion. Then @ is called an operator of conditional symmetry (or @Q-conditional
symmetry, nonclassical symmetry, reduction operator etc) of the equation L.

In Definition 1 the symbol Q(,) stands for the standard r-th prolongation of
the operator @ [14,15].

The classical (Lie) symmetries are, in fact, partial cases of nonclassical sym-
metries. Therefore, below we solve the problem on finding only pure nonclassical
symmetries which are not equivalent to classical ones. Moreover, our approach
is based on application of the notion of equivalence of nonclassical symmetries
with respect to a transformation group (see, e.g., [17]). For more details, nec-
essary definitions and properties of nonclassical symmetries we refer the reader
to [16,17,19,21].

Since (1) is an evolution equation, there exist two principally different cases of
finding @Q: 1. 7 #0 and 2. 7 = 0.

In the present paper, we consider the case with 7 % 0. Here without loss of
generality we can assume that 7 = 1. The results are summarized in the following
theorem.

Theorem 2. All possible cases of equations (1) admitting nonclassical symmetries
with 7 = 1 are exhausted by the following ones:

1. k=ctan’z: Q = 0; — cot 0,

2. k=ctanh?z: Q = 8, — cothzd,,

3. k=ccoth?z: Q= 0, — tanhzd,,

4. k= ca?: Q:@t—%az,

5. k=% (¢>0): Q=208+ 5B3u—1)d; — *Zu(u—1)9,
6. k=272 Q=0+ 3(u—1)0, — Su(u—1)20,,

where ¢ is an arbitrary constant.
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Proof. We search for operators of nonclassical (Q-conditional) symmetry (reduc-
tion operators) in form @ = 0y + &(t, z,u)0; + n(t, z,u)d,. Then the system of
determining equations for the coefficients of operator @) has the form

guu =0,

2880 — 28zu + Nuu = 0,

268, — 277€u - 3k€uu3 + Bkguu2 + 20pu — &z + & =0,

—knuu (1 — ) 4 2kEu* (1 — 1) 4 Nee — 2607

=1y — kp€u?(1 — u) — 2knu + 3knu®.

From the first equation we obtain immediately that
§ = ot x)u+o(t,z).
Substituting it to the second equation we derive
1
n = _§¢2u3 — oYu? + ¢pu? + A(t, x)u + B(t, z).

Then, splitting the rest of determining equations with respect to different powers
of u implies the following system of equations for coefficients ¢, ¢, A and B.

§¢3 —3kp =0, —4dd, + 2% + 3kp = 0,
_2¢:L‘1/] + th - 2¢¢x - 2¢A + 3¢xw — 07
277“/’90 - 2¢B + 2Ax - ¢m¢ + ¢t - 07
2800+ SRS ko = Bhu + s,

2 2 8
§¢ % - §¢¢zm - §¢x - 2sz - 2]€A + 2¢¢mw

_ _§¢¢t by — knp + ki,

=203 A + Ppzz + 2000y + kA — Gpath — Adythy — Pua + 21Dy

= Otz — Qe — OPr — kytp + 3k B,

Au — 20 A = Ay + 26, B — 2kB,

—2¢, B + By, = By. (2)

Now from the first equation of (2) it is obvious that either (i) ¢ = 0 or (ii) ¢ = 0,
k= %gfﬂ. Consider separately these two possibilities.

Case (i). ¢(t,x) = 0. System (2) is read now like
24 — Yz + 200, + 1 = 0,
—2kpy — 2kA — Yk, =0,
2k + kA + kytp — 3kB =0,
Agy — 2A, + 2kB — Ay = 0,
By —2¢, B — By = 0.
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From the second and third equations we deduce that A = —3B. After substituting
this to the previous system we obtain

20y — 6By — g + 2P = 0,
k) + 2Ky — 6kB = 0,

610y B — 3Byy + 3B, + 2kB = 0,
Byy — 2By — By = 0.

It follows from the last two equations that B = 0. Then the rest of the determining
equations is read like

20y — Yap + e =0, katp + 2ktpy = 0.
General solution of this system is

k=c¢, 1 = const,

c ar +b
e — R d
(azx +b)?’ v %at+m o
c
k:E, Y =y +a.

Nonclassical symmetry operator obtained from the first two branches of the so-
lution of the above system are equivalent to the usual Lie symmetry. The third
branch (up to equivalence transformations of scaling and translations of z) gives
cases 1-4 of the theorem.

Case (ii). ¢ =0, k = %gbz. Substituting this to system (2) we obtain easily that
Y = Ay = B; = 0. Then, the rest of the system (2) has the form
2 5
46, + 200+ 26 =0,

_2¢x7/} - 2¢x¢ - 2¢A + 3¢:ch =0,
2¢¢m - 2¢B + 2Ax - @Z}azx =0,

2 5 2 8 o 4., 14 8,
§¢ 1/}:5 - §¢¢xx - §¢m - §¢ A + ?wa(lsx - 9¢ ¢aca
4 2 2
(bzzx + §¢2wm - §¢2B + §¢2A - ¢w:cm - (bzxw - 4¢z'¢m - 2¢1A + 2@/1%;
4
= 5 6bet) — B,
A~ oA =~ *B 20,8+ A,

It follows then that
6¢, — ¢*

g d2uA - A) A

 A49Py — 3Pun
2(2¢2 — 9¢p,) 3¢ N '

6¢
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Substituting this values to the above system we obtain a system of 4 differential
equations for one function ¢ only that has first order differential consequence of
form 3¢2 + ¢%¢, = 0. It is not difficult to show that general solution of this
constraint ¢ = T%C, ¢ = c satisfies the whole system for ¢. These two values of ¢
(taken up to equivalence transformations) give respectively cases 6 and 5 of the
theorem. |

Note 1. Cases 1, 2 and 4 with ¢ > 0 were known in [3,4], constant coefficient
case 5 with ¢ = 2 can be found in, e.g., [11], while cases 1, 2 and 4 with ¢ < 0, 3
and 6 are new.

4 Final remarks

Here we have partially completed an open problem of classification of nonclassical
symmetries for the class (1). In particular, we have presented all forms of (1)
that admit nonclassical symmetry operators of the form Q = 0, + &(x,t,u)d, +
n(t,z,u)0d,. The problem can be completed by determining all nonclassical sym-
metry operator of the form

Q =0 +n(t,z,u)0y.

Any nonclassical symmetry operator of the above form satisfies the following
equation

Mt — New — 20Mww — 10w + (ky — ke)u®(1 — u) — 2knu + 3knu® = 0. (3)

The corresponding invariant surface condition is u, = 7. Eliminating u, and ug,,
equation (1) reads

up = M+ 110 + k(2)u® (1 - u). (4)

Using a solution of (3), we can find u by integrating invariance surface condition
and then substituting in (4) to derive a solution of (1).

Now, as was shown in [16,20] for the more general case of (1 4 n)-dimensional
evolution equations, integration of equation (3) is, in some sense, equivalent to
integration of the initial equation (1). Therefore it is impossible to integrate the
equation completely (such a situation for the evolution equation is often called the
“no-go case”). Since it contains larger number of unknown variables, it is possible
to construct certain partial solutions. Thus, for example, we have succeeded to
find all (G™-inequivalent) partial solutions of equation (3) of the form

n(z, t,u) = Z op(x, t)u
p=—m

where m and n are positive integers and ¢, (z,t) are unknown functions. However,
all the explicit forms of k(x) found, which are expressed in terms of elementary
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functions, that admit new nonclassical symmetries lead to similarity solutions
obtainable either by Lie symmetries or the nonclassical symmetries with 7 = 1.
Further forms of k(x) that admit nonclassical symmetries exist, for example, in
terms of Bessel functions or though certain nonlinear ordinary differential equa-
tions which need to be solved.

More detailed investigation of conditional symmetries, especially for the no-go
case, and construction of associate similarity solutions of equations from class (1)
will be the subject of a forthcoming paper.
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We generalize the notion of a Lie algebroid over an infinite jet bundle by replac-
ing the variational anchor with an N-tuple of differential operators the images
of which in the Lie algebra of evolutionary vector fields of the jet space are
subject to collective commutation closure. The linear space of such operators
becomes an algebra with bidifferential structural constants, of which we study
the canonical structure. In particular we show that these constants incorporate
bidifferential analogues of Christoffel symbols.

1 Introduction

Lie algebroids [21] are an important and convenient construction that appear, e.g.,
in classical Poisson dynamics [2] or the theory of quantum Poisson manifolds [1,
22]. Essentially Lie algebroids extend the tangent bundle T'M over a smooth
manifold M, retaining the information about the C'°°(M)-module structure for
its sections. In the paper [10] we defined Lie algebroids over the infinite jet
spaces for mappings between smooth manifolds (e.g., from strings to space-time);
the classical definition [21] is recovered by shrinking the source manifold to a
point. A special case of Lie algebroids over spaces of finite jets for sections of
the tangent bundle was firstly considered in [15]. Within the variational setup
the anchors become linear matrix differential operators that map sections which
belong to horizontal modules [13] to the generating sections ¢ of evolutionary
derivations 0, on the jet space; by assumption the images of such anchors are
closed under commutation in the Lie algebra of evolutionary vector fields. The two
main examples of variational anchors are the recursions with involutive images [8]
and the Hamiltonian operators (see [12,13,19] and [8]) the domains of which
consist of variational vectors and covectors, respectively.

In [8] we studied the linear compatibility of variational anchors, meaning that
N operators with a common domain span an N-dimensional linear space A such
that each point Ay € A is itself an anchor with involutive image. For example
Poisson-compatible Hamiltonian operators are linearly compatible and vice versa
(Hamiltonian operators are Poisson-compatible if their linear combinations remain
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Hamiltonian). The linear compatibility! allows us to reduce the case of many
operators Ay, ..., Ay to one operator Ay = > \; - A; with the same properties.

In this paper we introduce a different notion of compatibility for the N opera-
tors. Strictly speaking we consider the class of structures which is wider than the
set of Lie algebroids over jet spaces, namely, we relax the assumption that each
operator alone is a variational anchor, but instead we deal with N-tuples of total
differential operators Ay, ..., Ay the images of which are subject to the collective
commutation closure: [Zi\il im A;, Zjvzl im AJ} C 2 | im Ay,. This involutivity
condition converts the linear space of operators to an algebra with bidifferential
structural constants cfj, see (6) below. The Magri scheme [16] for the restriction
of compatible Hamiltonian operators to the hierarchy of Hamiltonians yields an
example of such an overlapping for N = 2 with cfj =0.

We study the standard decomposition of the structural constants cfj, which is
similar to the previously known case (1) for N =1 ([7,8,10]). From the bidiffer-
ential constants cfj we extract the components Ffj that act by total differential
operators on both arguments at once. Our main result, Theorem 3, states that
under a change of coordinates in the domain the symbols Ffj are transformed by a
proper analogue (11) of the classical rule I' +— gT'g~! +dg g~ for the connection
1-forms I' and reparametrizations g. We note that the bidifferential symbols I‘fj
are symmetric in their lower indices if the common domain of the N operators A;
consists of the variational covectors and hence its elements acquire their own odd
grading.?

This note is organized as follows. In Section 2 we introduce operators with
collective closure under commutation. For consistency we recall here the coho-
mological formulation [11] of the Magri scheme which gives us an example. In
Section 3 we study the properties of the bidifferential constants that appear in
such algebras of operators. The analogues of Christoffel symbols emerge here; as
an example we calculate them for the symmetry algebra of the Liouville equation.

2 Compatible differential operators

We begin with some notation; for a more detailed exposition of the geometry of
integrable systems we refer to [19] and [4,12,14,17]. In the sequel the ground field
is the field R of real numbers and all mappings are C'*°-smooth.

Let 7: Emtn e B™ be a vector bundle over an orientable n-dimensional

manifold B™ and, similarly, let &: N9 — B™ be another vector® bundle

'When the set of admissible linear combinations {A} ¢ RY has punctures near which the
homomorphisms A exhibit a nontrivial analytic behaviour, this concept reappears in the theory
of continuous contractions of Lie algebras (see [18] and references therein).

2Throughout this paper we deal with a purely commutative setup, refraining from the treat-
ment of supermanifolds. However, we emphasize that on a supermanifold the two notions of
parity and grading (or weight) may be totally uncorrelated, see [22].

3For this paper the established term ‘vector bundle’ is particularly unfortunate because in our
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over B™. Consider the bundle 7o : J*(w) — B™ of infinite jets of sections
for the bundle 7 and take the pull-back 7% (€£): N9" xgn J®(1) — J¥(7)
of the bundle ¢ along 7. By definition the C'°°(J%(7))-module of sections
D (7%,(€)) = T(§) ®cee(pny C®(J®(w)) is called horizontal, see [13] for further
details.

For example let & := 7. Then the variational vectors ¢ € I'(r%, (7)) are the
generating sections of evolutionary derivations d, on J*° (7). For convenience we
use the shorthand notation s(m) = I'(7% (7)) and T'Q(&) = T (75 (€)) in the
general setup.

We consider firstly the case N = 1 for which there is only one total differential
operator, A: I'Q(&;) — s(m), with involutive image

[im A,im A] C im A. (1)

The operator A transfers the bracket in the Lie algebra g(m) = (3(7),[, ]) to the
Lie algebraic structure [, ]4 on the quotient of its domain by the kernel. The
standard decomposition of this bracket is [8,10]

[P,ala = 0ap)(@) — Ouq(P) + {{P.atta,  P,q €TQ&). (2)

The linear compatibility of operators (4), which means that their arbitrary linear
combinations Ay = >, A; - A; satisfy (1), reduces the case of N > 2 operators to
the previous case with N = 1 as follows.

Theorem 1 ([8]). The bracket {{, }} a, induced by the combination Ax =3, \;-
A; on the domain of the linearly compatible normal® operators A; is

N

By, =N

o N =

The pairwise linear compatibility tmplies the collective linear compatibility of

Al ..., Ax.

Proof. Consider the commutator [>°; AiA;(p), > AjA;(q)], here p,q € TQ(&x).
On one hand it is equal to

_ Z)\Mj [Ai(p), Aj(a)]

3 N A(0a,(@) — a0 () + R} ). (3)

main Example 1 the sections of such a bundle are variational covectors and obey a nonvectorial
transformation law.

1By definition, a total differential operator A is normal if AoV = 0 implies V = 0; in other
words it may be that ker A # 0, but the kernel does not have any functional freedom for its
elements, see [7].
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On the other hand the linear compatibility of A; implies

= Ax(04,(p) (@) — Ax(0a, (@) + Ax({{P. a}} 4,)-

The entire commutator is quadratically homogeneous in A, whence the bracket
{, }}a, is linear in A. From (3) we see that the individual brackets {{, }} 4, are
contained in it. Therefore

{p,aBay =D M- {p.ata, + D M- vlp,a),
7 7

where 7p: FQ(&TI’) X FQ(&T) - FQ(é-ﬂ')'

We claim that all summands ~,(+, ), which do not depend upon A at all, vanish.
Indeed, assume the converse. Let there be ¢ € [1,..., N] such that ~,(p, q) # 0;
without loss of generality suppose that ¢ = 1. Then set A = (1,0,...,0), whence

M), Yo\ Ai(@)] = [ (A (p). (A (@)] = () (A (p.9)

+(M4) (a(A1A1)(p)(Q)_a(A1A1)(q) (p)+Mi{{p, q}}A1> = MA1(M[p,qla,)-

Consequently, v¢(p, q) € ker Ay for all p and q. Now we use the assumption that
each operator Ay is normal. This implies that v, = 0 for all £ which concludes the
proof. |

Now we let N > 1 and consider N-tuples of linear total differential operators
Ay, AN TQ(E) — (), (4)

the images of which in the Lie algebra g(7) of evolutionary vector fields on J ()
are subject to collective closure of commutators.

Definition 1. We say that N > 2 total differential operators (4) are strongly
compatible if the sum of their images is closed under commutation in the Lie
algebra g(m) = (3¢(m), [, ]) of evolutionary vector fields,

[ZimAi, imAj] CY im4y,  1<ijk<N. (5)
i j k
The involutivity (5) gives rise to the bidifferential operators

cfy: TQ(&r) x TQ(éx) — TQ(éx)

through

[4i(p), A (@)] =D Ai(cfi(p.q)),  p,q € TQ&). (6)
k

The structural constants ci-“j absorb the bidifferential action on p, ¢ under com-
mutation in the images of the operators.
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Remark 1. If N = 1 and there is a unique operator A: I'Q(&;) — »(w) sat-
isfying (1), then we recover the definition of the variational anchor in the Lie
algebroid over the infinite jet space J* (), see [10]. By construction, c¢}; = [, |4,
if N = 1. However, for N > 1 we obtain a wider class of structures because we
do not assume that the image of each operator A; alone is involutive. Therefore
it may well occur that ck # 0 for some k # 1.

The Magri scheme [16] for the restriction of two compatible Hamiltonian opera-
tors Ay, As onto the commutative hierarchy of the descendants H; of the Casimirs
Ho for A; gives us an example of (5) with N = 2 and cfj = 0. We consider it
in more detail; from now we standardly identify the Hamiltonian operators A
with the variational Poisson bivectors A, see [13]. We recall that the variational
Schouten bracket [, | of such bivectors satisfies the Jacobi identity

[[A1, As], As] + [[A2, As], A1] + [[As, Ai], A2] = 0. (7)

Hence the defining property [A, A] = 0 for a Poisson bivector A implies that
da = [A, -] is a differential, giving rise to the Poisson cohomology H fx- Obviously
the Casimirs Ho such that [A,Ho] = 0 for a Poisson bivector A constitute the
group Hffl.

Theorem 2 ([11,16]). Suppose [A1, As] =0, Ho € HY, is a Casimir of Ay and
the first Poisson cohomology w.r.t. da, = [A1,-] vanishes. Then for any k > 0
there is a Hamiltonian Hy such that

[A2, Hp—1] = [A1, Hi]. (8)

Put ¢, := Ay (5/5u(Hk)) such that 0, = [A1, Hy]. The Hamiltonians H;, i > 0,
pairwise Poisson commute w.r.t. either Ay or As, the densities of H; are conserved

on any equation us, = @y, and the evolutionary derivations 0,, pairwise commute
for all k > 0.

Standard proof of existence. The main homological equality (8) is established
by induction on k. Starting with a Casimir Hg we obtain

0 =[A2,0] = [A2, [A1, Ho]] = —[As, [A2,Ho]] mod [As, Ao] =0,
using the Jacobi identity (7). The first Poisson cohomology H}h = 0 is trivial by
an assumption of the theorem. Hence the closed element [Ag, Ho] in the kernel
of [Ay,-] is exact: [Az2, Ho] = [A1, H1] for some H;. For k > 1 we have

[A1, [A2, Hi]] = —[A2, [A1, Hi]] = —[A2, [A2, Hr1]] = 0

using (7) and by [Ag, Ao] = 0. Consequently by H) = 0 we have that [Ay, H;] =
[A1, H11], and we thus proceed infinitely. [ |
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We see now that the inductive step — the existence of the (k+1)th Hamiltonian
functional in involution — is possible if and only if Hy is a Casimir,? and therefore
the operators A; and A, are restricted onto the linear subspace which is spanned
in the space of variational covectors by the Euler derivatives of the descendants
of Hp, i.e. of the Hamiltonians of the hierarchy. We note that the image under Ao
of a generic section from the domain of operators A; and Ay cannot be resolved
w.r.t. Ay by (8). For example the first and second Hamiltonian structures for the
KdV equation, which equal, respectively, Ay = d/dz and As = —%%+2u% + Uy,
are not strongly compatible unless they are restricted onto some subspaces of their
arguments. On the linear subspace of descendants of the Casimir [ udz we have
im Ay C im A; and, since the image of the Hamiltonian operator A is involutive,
we conclude that [im Ay, im As] C im A;.

On the other hand the strong compatibility of the restrictions of Poisson-
compatible operators A; and As onto the hierarchy is valid since their images
are commutative Lie algebras. Regarding the converse statement as a potential
generator of multidimensional completely integrable systems we formulate the
open problem: Is the strong compatibility of Poisson-compatible Hamiltonian op-
erators achieved only for their restrictions onto the hierarchies of Hamiltonians
in involution so that the bidifferential constants cfj necessarily vanish? If so, this
would have a remarkable similarity with the technique of the Bethe ansatz, one
component of which is the extension of a commutative algebra of Hamiltonian
operators on a Hilbert space to a bigger noncommutative algebra.

3 Bidifferential Christoffel symbols

Similarly to (2), we extract the total bidifferential parts of the structural con-
stants cfj in (6) and obtain
i = 0u(p) (@) - 0F — Oayq(P) - 0F + T5i(p,q), p,q € TR, (9)

where F,’fj € CDIff (T'Q(&x) xIQ(éx) — I'Q(éx)) and 6F, 5;“ are the Kronecker delta
symbols. By definition the three indices in Ffj match the respective operators A;,
Aj, A in (6). (The total number of the indices is much greater than three;
moreover the proper upper or lower location of the omitted indices depends upon

the (co)vector nature of the domain I'Q({,).) Obviously the convention

F%l = {{7 }}Al

holds if N = 1. At the same time for fixed i, j, k the symbol I‘fj remains a
(class of ) matrix differential operator in each of its two arguments p, g € T'Q(&;).

5The Magri scheme starts from any two Hamiltonians Hi—1, Hi that satisfy (8), but we
operate with maximal subspaces of the space of functionals such that the sequence {Hj} cannot
be extended with k < 0.
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The symbol Ffj represents a class of bidifferential operators because they are not
uniquely defined. Indeed they are gauged by the conditions

N
> A (8Ai(p)(q)5}“ — 94,9 ()8} + Tl(p, q)) =0, p,gelQé).  (10)
k=1

We let the r.h.s. of (10) be zero if the sum ) ,im A, of the images is indecom-
posable, which mean that no nontrivial sections commute with all the others:
[Ak(p), Zévzl im A;] = 0 implies that p € ker A;. For this it is sufficient that the
sum of the images of Ay in g(7) be semisimple and the Whitehead lemma holds
for it [5]. Otherwise the right-hand side of (10) belongs to the linear subspace of
such nontrivial sections.

Example 1 (see [9,10]). Consider the Liouville equation &rioy = {uzy =
exp(2u)}. The differential generators Of its conservation laws are w = u2 — uy, €
ker dy‘SLlou and w = uf/ Uyy € ker -4 i ‘g . The operators® O = u, + %dd—z and
O=u,+ 2 d determine higher symmetrles 0, @ of ELion by the formulas

QOZD(p(.%, [w]))7 @:ﬁ(ﬁ(y, [’LT)]))

for any variational covectors p, p. The images of [0 and [ are closed w.r.t. the
commutation; for instance the bracket (2) for O contains {{p,q}}g = %(p) :
qg—7p- %(q), and similarly for [J. The two summands in the symmetry algebra
sym Epioy ~ im0 @ im O commute between each other, [imJ,im ] = 0 on Epioy.

The operators [, [ generate the bidifferential symbols

FDD_{{ }}D_dx®1_1®dx7 {{ }}D_dy 1_1®dy7
o o _ |:| _ o _
FDE_Ty®17 FDE__1®£’ FED——1®@, FED_@(X)L

where the notation is obvious. We note that ng(p7 q) = ng(p, q) = F%D(q,p) =

F%D(%p) =0on gLiou for any p(x, [w]) and Q(y7 [U_}D

The matrix operators (1, [ are well defined [7] for each 2D Toda chain Et,qa, as-
sociated with a semisimple complex Lie algebra. They exhibit the same properties
as above.

Remark 2. The operators [J, [J yield the involutive distributions of evolutionary
vector fields that are tangent to the integral manifolds, the 2D Toda differential
equations. Generally there is no Frobenius theorem for such distributions. Still,
if the integral manifold exists and is an infinite prolongation of a differential
equation £ C J°(x), then by construction this equation admits infinitely many
symmetries of the form ¢ = A;(p) with free functional parameters p € T'Q2(&y).
This property is close but not equivalent to the definition of systems of Liouville
type (see [7,9] and references therein).

SWe denote the operators by O and O following the notation of [7,9], see also references
therein.
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The method by which we introduced the symbols Ffj suggests that, under repa-
rametrizations ¢ in the domain of the operators (4), they obey a proper analogue
of the standard rule I' — gI'g~! +dg - ¢g~! for the connection 1-forms I'. This is
indeed so.

Theorem 3 (Transformations of F ) Let g be a reparametrization p — p =
gp, g — q = gq of sections p,q € FQ({W) in the domains’ of strongly compatible
operators (4). In this notation the operators Ay, ..., An are transformed by
the formula A; — A; = A; o gil‘w:wm. Then the bidifferential symbols F,’fj €
CDiﬁ(FQ(§7r) x Q&) — FQ({W)) are transformed according to the rule

rf(p.q) = Th(p,@) = (901%) (47'p,97'a)
k -1z k -1~
+07 04,99 'P) =5 05.4(9)(9'a).  (11)
Proof. Denote A = A; and B = Aj;; without loss of generality we assume ¢ = 1
and j = 2. We calculate the commutators of vector fields in the images of A and B
using two systems of coordinates in the domain. We equate the commutators

straighforwardly because the fibre coordinates in the images of the operators are
not touched at all. So we have originally

[A(p), B(q)] = B(9ap)()) — A(O5(¢)(P))
N
+A(T4p(p, @) + BT Epp. @) + Y _ Ar(Thisp. ).
k=3

On the other hand we substitute p = gp and ¢ = gq into [A(ﬁ),é(f})] whence
by the Leibnitz rule we obtain

[A(B), B(@)] = B(943(9)(2) + (B g) (054 (@)
( 9(17) (Aog)( ()(P))

Aog 1) (M4 (9p. 90)) + (Bog ) (T35 (9p, 99))

N -~
+3 (Ago g7 (T 5(9p. 99)).
k=3

A

Therefore

I'4(p.q) = (g Ff; )(9p, 9q) — (g’1 0 dp(q)(9)) (D),
I8p(p,q) = (97" o T55) (9p, 99) + (97" 0 Oam)(9)) (a),
I'5(p,q) = (971 oI'%-)(gp.gq)  for k>3,

"Under an invertible change % = w[w] of fibre coordinates (see Example 1) the variational

covectors are transformed by the inverse of the adjoint linearization g = [(EED“)))T] ~! Whereas for

variational vectors, g = &(Dw) is the linearization.
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Acting by ¢ upon these equalities and expressing p = ¢~'p, ¢ = g~ 'q we ob-
tain (11) and conclude the proof. [ |

Remark 3. Within the Hamiltonian formalism it is very productive to postulate
that the arguments of Hamiltonian operators, the variational covectors, are odd,?
see [22] and [13]. Indeed in this particular situation they can be conveniently
identified with Cartan 1-forms times the pull-back of the volume form dvol (B™) for
the base of the jet bundle. We preserve this grading for such domains of operators
(when N = 1, we referred to such operators in [10] as variational anchors of second
kind). If moreover 7 and £ are superbundles with Grassmann-valued sections,
then the operators become bigraded [22]. Their proper grading is —1 because
their images in g(7) have grading zero, but the Zo-parity, if any, can be arbitrary.

Corollary 1. For strongly compatible operators the domain T'Q(&r) of which con-
sists of variational covectors, the grading of the arguments equals 1. Therefore for
any i,7,k € [1,...,N] and for any p,q € T'Q(&:) we have that

ISi(p,q) = —T%(q,p) = (—1)/Plrldlr . T% (g, p) (12)

due to the skew-symmetry of the commutators in (5). Hence the symbols Ffj are
symmetric in this case.

Proposition 1. If two normal operators A; and A; are simultaneously linear and

strongly compatible, then their ‘individual’ brackets T, and F;»j are

{{p.aP}a, =T%(p, @) + T;(p,q) and {{p,q}}a, =T};(p.q) + Tl(p.q)
for any p,q € TQ(&,).

Proof. For brevity denote A = A;, B = A; and consider the linear combina-
tion pA + vB; by assumption its image is closed under commutation. By Theo-
rem 1 we have

(nA+vB) ({p, 4} patvB)
= 1’ A({{p, q}}a) +1v-A({p.a}}B) +1v-B({{p, a}ta) +*B({{p. q}} a).
On the other hand

(A +vB)(p), (1A +vB)(a)]
= 1’[A(p), A(@)] + n[A(p), B(9)] — nv[A(q), B(p)] + v*[B(p), B(q)].
Taking into account (9) and equating the coefficients of uv we obtain

A({{p.a}tB) + B({{p.q}}4)
= A(FﬁB(p, Q)) + B(FEB(P’ Q)) - A(FﬁB(CI’P)) - B(FEB(%P))-

Using the formulas T'45(q,p) = —T'4,4(p,q) and T'E5(q,p) = —T'8 ,(p, q), see
(12), we isolate the arguments of the operators and obtain the assertion. ]

8Here we assume for simplicity that all fibre coordinates in 7 are permutable.
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Conclusion

For every k-vector space V the space of endomorphisms Endy (V) is a monoid with
respect to the composition o. In this context one can study relations between
recursion operators. For instance the structural relations for recursion operators
of the Krichever—Novikov equations are described by hyperelliptic curves, see [3].
Likewise we have the relation Rj o Ry — Roo Ry = R% between two recursions for
the dispersionless 3-component Boussinesq system, see [6]. Simultaneously the
space of endomorphisms carries the structure of a Lie algebra which is given by
the formula [R;, R;] = R; o R; — R; o R; for every R;, R; € Endg (V).

In this paper we proceed further and consider the class of structures on the
linear spaces of total differential operators that generally do not in principle admit
any associative composition. (The bracket of recursion operators that appears
through (6) is different from the Richardson—Nijenhuis bracket [12], although we
use similar geometric techniques.) The classification problem for such algebras of
operators is completely open.

Discussion

We performed all the reasonings for local differential operators in a purely commu-
tative setup; all the structures were defined on the empty jet spaces. A rigorous
extension of these objects to Zs-graded nonlocal operators on differential equa-
tions is a separate problem for future research. In addition the use of difference
operators subject to (5) can be a fruitful idea au début for the discretization
of integrable systems with free functional parameters in their symmetries (e.g.,
Toda-like difference systems [20]).
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We study realizations of the Poincaré groups P(1,1) and P(1,2) acting as local
transformation groups in the space of one dependent variable and two and three
independent variables, respectively. Realizations of the Lie algebras p(1,1),
p(1,1), ¢(1,1) and p(1,2) by vector fields are classified. Using the classification
results, we construct sets of second-order scalar Poincaré-invariant differential
equations in the two- and three-dimensional space-time.

1 Introduction

In this paper we consider the problem of construction of partial differential equa-
tions of certain order admitting a given group G as an invariance group, which
is one of the most important problems of classical group analysis of differential
equations. It is well known that the complete solution of this problem requires the
classification of realizations of the group G as a group of point transformations
and the construction of a complete set of functionally independent differential in-
variants of certain order for each of the realizations found. Then any G-invariant
equation is equivalent to the condition of the vanishing of a function of invari-
ants of certain realization. The above problem seems algorithmically solvable for
realizations in spaces of low dimension.

In theoretical and mathematical physics an important role is played by the
Fuclid, Poincaré, Galilei groups and their natural generalizations that are invari-
ance groups of a number of model equations including the d’Alambert, Euclid,
heat, Schrodinger, Dirac, Maxwell equations etc. Differential invariants of these
groups were widely investigated in the literature. In particular Fushchych and
Yehorchenko [1-3] obtained the exhaustive set of functionally independent second-
order differential invariants for known scalar realizations (representations) of the
Euclid, Poincaré and Galilei algebras by linear differential first-order operators.
In an investigation of wave and evolution equations in two-dimensional space-time
that are invariant with respect to the Galilei and Poincaré algebras Rideau and
Winternitz [4, 5] preliminarily described realizations of these algebras by vector
fields in the space of three variables. As a result new realizations were obtained
that made it possible, after finding the corresponding differential invariants, to
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construct new Galilei- and Poincaré-invariant equations. Special attention was
paid to nonlinear realizations of important Lie algebras in papers by Fushchych,
Zhdanov, Yehorchenko, Boyko, Tsyfra and others [6-11], in which new realiza-
tions of Lie algebras of the Poincaré groups P(1,2), P(1,3) and Galilei groups
G(1,2), G(1,3) were constructed.

The main purpose of this paper is to obtain a complete list of realizations of
Lie algebras of the Poincaré groups P(1,1) and P(1,2) by vector fields and to
describe the corresponding invariant partial differential equations.

2 Realizations of Lie algebras of groups P(1,1), P(1,1)
and C(1,1) and invariant equations

In this section we study realizations of the Poincaré algebra p(1,1), which is
Lie algebra of the Poincaré group P(1,1), and its natural generalizations (the
extended Poincaré algebra p(1,1) and the conformal algebra ¢(1,1)) in the space
V = X x U of two independent and one dependent variables. Here X is the
two-dimensional Minkowski space with coordinates ¢ and  and U is the space of
the dependent variable u = u(t, x). Vector fields on the realization space V have
the form

v =70 + &0y + N0y, (1)

where 7 = 7(t,x,u), £ = £(t, z,u) and n = n(t, z,u) are arbitrary smooth functions
in a domain of the space V, 9, = 9/0t, 9, = 9/dz and 9, = 9/0u.

Realizations of the above algebras with operators of the form (1) are Lie invari-
ance algebras of a number of known two-dimensional partial differential equations
of relativistic physics (for example, the Klein—Gordon, Liouville, sin-d’Alambert
and eikonal equations).

We say that the operators P,, K, D and C,, of the form (1) realize a represen-
tation of the conformal algebra ¢(1,1) if they are linearly independent and satisfy
the following commutation relations:

[Py, K] = Py, [P, K] =Py, [P,,D]=P,, [Co,K]=Cy,
[CI’K] = CO’ [Cl“D] = _CM? [‘P/MCV] = 2(g,UVD - EMVK)7 (2)
[K, D] = [Py, Pr] = [Co,C1] = 0.

Here goo = —g11 = 1, go1 = g10 = 0, €01 = —¢€10 = 1, €00 = €11 = 0, the sub-
scripts p and v run from 0 to 1 and [v1, va] = v1v2 — vav1 denotes the commutator
(Lie bracket) of vector fields. The subalgebra of the algebra ¢(1,1) with the basic
operators Py, P; and K is the Poincaré algebra p(1, 1) and the subalgebra spanned
by the operators Py, P, K and D is the extended Poincaré algebra p(1,1).

It is obvious that commutation relations (2) are not changed under the push-
forward of the basic operators of a realization by any nondegenerate point trans-
formation

t—t=f(t,z,u), z—z=g(t,z,u), u—u=h(tmzu), (3)
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where f, g and h are arbitrary smooth functions with vanishing Jacobian. Such
transformations form a group (the diffeomorphism group) that generates a natural
equivalence relation on the set of all possible realizations of the algebra ¢(1,1).
Realizations of the conformal algebra are called equivalent if their respective basic
operators can be simultaneously transformed to each other by a change of variables
of the form (3). Realizations of the algebra ¢(1,1) will be described up to this
equivalence.

A list of inequivalent realizations of the algebras p(1,1), p(1,1) and ¢(1,1) were
obtained in [4] under the assumption that the operators Py and P; are reduced
to the form

Po=08,, P =0, (4)

by a point transformation. The list comprises the following realizations:

1. Inequivalent realizations of the algebra p(1,1):

pl(l, 1): Py=20, Py =0, K=21x0;+t0,;
p*(1,1): Py =0y, P =0y, K = x0; + t0y + ud,. (5)

2. Inequivalent realizations of the algebra p(1,1):

pH(1,1): p'(1,1), D = t0; + x0,;
p2(1,1): p'(1,1), D = td; 4 20, + udy; (6)
p2(1,1): p*(1,1), D= (t+ au+ bu"1)d; + (= + au — bu™1)d, 4+ Mud,,

where (a,b) = (1,0) if A =1, (a,b) = (0,1) if A = —1 and (a, b) = (0,0) otherwise.

3. Inequivalent realizations of the algebra c(1,1):

(1,1): p'(1,1), Co = (t* + 2%)0; + 2t20,,

Cy = —(t* + 2°)0, — 2txdy;
A(1,1): p2(1,1), Co = (> + 2% 4 au?)d; + 2txd, + 2tud,,

Cy = —(t* + 2° + au?)0, — 2txd; — 22ud,, a € {0,1,—1}; (7)
A(1,1): p*(1,1),A€R,a=b=0,

Co= (t* + 2% + cu® + du™2)9; + 2tz + cu® — du=2)d,+

+ (2u(z + Xt) + eu® + k)0, C1 = —[K, Cy).

In the last realization, ¢*(1,1),

c=d=e=k=0 if XeR\{-1,1}
d=k=0,c=x1,ecR or ¢c=0,e=0,£1 if A=1;
c=e=0,d==41, keR or d=0, k=0,1 if A= -1.
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In general the basic elements Py and P; are not always reduced to the form (4).
As a result inequivalent realizations of the algebras p(1,1) and p(1,1) are not
exhausted by realizations (5) and (6), respectively. Below we show that there
are exactly one more inequivalent realization of the algebra p(1,1) and two more
inequivalent realizations of the algebra p(1,1).

Lemma 1. Let Py and Py be linearly independent operators of the form (1). Then
there exists a point transformation (3) that reduces these operators to either the
form (4) or the following form:

Po == 815, P1 == x@t. (8)

Proof. Denote by M the matrix formed by coefficients of the operators Py and P;.
Case 1. rank M = 2. It is well-known that then the commuting operators P
and P; can be reduced by change of variables (3) to the form (4).
Case 2. rank M = 1. Using a point transformation, we reduce the operator
Py to the form Py = 0;. Then we have P, = 7(x,u)d;, where (75, 7,) # (0,0), in
view of rank M = 1 and [Py, P;] = 0. Hence the transformation

_ h
t=t, z=r1(x,u), u=h(x,u), gg: U; # 0,
reduces the operators Py and P; to the form (8). [ |

Theorem 1. Inequivalent realizations of the algebra p(1,1) are exhausted by (5)
and the realization

pg(l, 1): P() = 8t, P1 = :m?t, K = xt@t + (.%'2 — 1)8x (9)

Proof. Inequivalent realizations of the two-dimensional Abelian algebra with the
basic operators Py and P; are exhausted by realizations (4) and (8). The case of
realization (4) was analyzed in [4]. Let the operators Py and P; have the form (8).
We take the operator K having the general form (1). The commutation relations
[Py, K] = P, and [Py, K| = Py imply that

K = [tz 4 7(x,u)]0; + (2* — 1)0, + n(x, u),.

Using the change of variables t = t + f(z,u), T = x, 4 = h(z,u), where the
functions f and h are solutions of the system

Kf=xzf—-7, Kh=0, h,#0,
we reduce the operators Py, P; and K to the form (9). [ |

Theorem 2. Inequivalent realizations of the algebra p(1,1) are exhausted by (6)
and the realizations

]54(171): p3(1>1)7 D :tatv (10)
7°(1,1): p*(1,1), D = t0; + ud,.



114 V. Lahno

Theorem 3. Inequivalent realizations of the algebra c¢(1,1) are exhausted by (7).

The proofs of Theorems 2 and 3 are similar to the proof of Theorem 1. Note
only that the realizations p*(1,1) and $°(1,1) do not admit extensions by vector
fields of the form (1) into realizations of the conformal algebra.

The general form of invariant equations corresponding to the above realizations
can be found by a standard procedure within the framework of the classical Lie
approach. Let vector fields v,, a = 1,...,p, form a basis of the Lie algebra of
a local transformation group G which acts in the space V. In the case under
consideration V' is the space of the variables ¢,  and u and vector fields v, have
the form (1). A second-order partial differential equation

@(t,l’,u, utaumauttaummautr) =0 (11)
is invariant with respect to the group G if the function ® satisfies the system
prPu,® =0, a=1,...,p. (12)

Here pr®v, denotes the second prolongation of the operator v,, a = 1,...,p.
When we solve system (12), we obtain a complete set of functionally independent
second-order differential invariants

Jip = Jp(z, tu, up, up),  (nov) = (tx), k=1,...,s.
Then all G-invariant equations from the class (11) have the form
F(Ji,...,J;) =0. (13)

In other words the description of equations invariant with respect to the group
G is reduced to construction of a basis of differential invariants of this group.

P(1,1)-, ]5(1, 1)-, and C(1,1)-invariant equations which possess realizations
(5)—(7) were studied in [4]. To complete the description of equations of the general
form (11), which are invariant with respect to the groups P(1,1) and P(1,1), it
remains to consider realizations (9) and (10). The function ® depends upon eight
arguments and the general orbits of the second prolongations of these realizations
are of dimensions three and four, respectively. Therefore bases of second-order
differential invariants of realization (9) and realizations (10) consist of five and
four invariants, respectively.

The results of the calculation of these bases are given below.

1. Elementary invariants of the algebra p3(1,1):
I = u, IQZU?(J?_]-): IgZ’LLtt($2_1),
It = (2% — 1)*(ugup — wpues) — (2% — 1)uf, (14)
Iy = (22 — 13 (ugptige — udy) + 22(2® — 1) (ugts — urtisy)—

— 2% (x? — 1)
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2. Elementary invariants of the algebra p*(1,1):
Yi=h, Yo=L'L, Y3=L7, Y4=IL"I. (15)
Here and in what follows Iy, ..., I5 have the form (14).
3. Elementary invariants of the algebra p°(1,1):
Yh=NL13 Yo=1, Y3=1;, ¥4y=1I5. (16)

As a result we obtain new classes P(1,1)- and P(1,1)-invariant equations of
the form (11):

&Iy, Iy, ..., I5) =0 (17)
and
B(D1,...,84) =0, (18)

where X1, ..., 3 are presented in (15) or (16).
Note that classes of equations (17) and (18) include equations which are natural
generalizations of the well-known Monge-Amperé equation.

3 Realizations of Lie algebras of the group P(1,2)

Consider the space V = X x U, where X is the three-dimensional Minkowski
space with coordinates xg, x1 and x2 and U is the space of the real dependent
variable v = u(xg, x1,x2). Vector fields on the space V have the general form

v = 5“(%“)5% + 77(% u)@u, (19)

where £# and 7 are real smooth functions defined in an open domain of the space V.
The Greek indices run from 0 to 2 and we use the summation convention for re-
peated indices. Additional or other constraints on indices are indicated explicitly.

We say that the operators P, and .J,, = —J,, of the form (19) form a basis
of a realization of the Lie algebra p(1,2) of the Poincaré group P(1,2) if they are
linearly independent and satisfy the commutation relations

[P;ujaﬂ] :guaPﬂ_g,uﬂPou [P;uPu] =0,

(20)
[J;un Ja,@] = g,uﬂJVoz + guaJ,u,G - g;ww]yﬁ - gu,BJuom
where
1, p=v=0,
Juv = 0, u#v,

-1, p=ve{l,2}.



116 V. Lahno

We study realizations of the algebra p(1,2) in the class of vector fields (19) up
to equivalence which is defined by the action of the local diffeomorphism group

xy — Ty = fH(z,u), u—u=g(z,u), (21)

where f* and g are arbitrary smooth functions on the space V with nonvanishing
Jacobian.

Commutation relations (20) imply that p(1,2) = o(1,2) € T', where o(1,2) =
(Juv) and T' = (P,) is a commutative ideal. This is why we begin the study of
realizations of the algebra p(1,2) with the consideration of possible realizations of
the translation operators P,,.

Lemma 2. There exist transformations (21) that reduce the operators P, to one
of the following triples of operators:

a) Py = 5x0, Py =0y, Po =0y,

Py = 0yy, P1 =0z, Po =120z, + uly,,

Py = 0zy, P1 = 0sy, P2 = (22)0z, + p(22)0s,, (22)
d) Py = 0yy, P1 =210z,, P2 = Oy,

Py = 0y, P1 =110, P2 =9(21)0z,,

Py = 0y, P1 =210z, P> = 120y,

where p, ¥ and h are arbitrary smooth functions of their arguments, and, in view
of the linear independence of the operators Py, 1z 2, # 0 and (ha,, ¢z,) 7 (0,0).

As the proof of Lemma 2 is cumbersome but similar to the proof of Lemma 1,
we do not present it here.

Further the realizations (22) of the ideal 7' should be extended to realizations
of the algebra p(1,2) with operators J,,, of the form (19). As the realizations (22)
are inequivalent to each other, the realizations of the algebra p(1,2) corresponding
to different realizations from (22) also are inequivalent.

Note that the problem of expansion of the ideal T' to the algebra p(1,2) for
the first triple of operators (22) was solved in [9,12] and other papers of the same
authors. It was shown that the operators J,,, have one of the following forms:

J/J,y = g‘wyxw@xy — gvavaxu (23)
or

Jo1 = 200z, + 2104, + sinud,,

Jo2 = 200z, + 20z, + cOS U0y, (24)

Ji1g = —$1ax2 + 1328331 + sin udy,.

When we made the expansion of the ideal T" to the algebra p(1,2) for remaining

realizations (22), we have obtained the number of new realizations of the algebra
p(1,2). A complete result of classification of inequivalent realizations of the al-

gebra p(1,2) in the class of Lie vector fields (19) is represented in the following
theorem that we give without proof.
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Theorem 4. Inequivalent realizations of the algebra p(1,2) are exhausted by re-
alizations (22) (a), (23); (22) (a), (24); and by the following realizations

1. P, of the form (22) (b),
Jo1 = 200z, + 10z, + U0z, + 20y,
Joo = 10220z, + Toudy, + (3 — 1)0y, + 22ud,,, (25)
Ji2 = —212905, — ux10z, — ux20,, — (1 + u2)8u.
2. P, of the form (22) (c), where h(x2) = x2,
Jo1 = 200z, + 10z, + @Ou,,
Joo = 20220z, + T000z, + P20py + a0gy + by, + @0y, (26)
Ji2 = —21220, — 105, — P20z, + a0y, + B0y, + POy,
where p = im, |xa| > 1, and for the functions a, b, a, 3, p and q we have
one of the following cases:

)a=pB=const, a=b=e 2, gq=—-13, p=¢y, €=0,1;

1 1 A
2)0[—,8—)\1|: - T 127

1—u2+§n1—u 1—u

q=@—Tou, p=Qu—1=Ty, A1, A2 = const;

3)a=—B=Arap, b=Xr3, a=-X? p=q=0, )= const;
4) a=—f=mzpu, b=ziu, a=-—pu, p=q=0.
3. P, of the form (22) (e),
Jo1 = (zor1 + BY)0yy — 1?0y + (Ca1 + D)0y, + Ay,
Jo2 = (zoy) — x1B)0z, + 190z, + (C — 21D)0y, — Ax10,, (27)
Ji2 = Y0y,
where 1 = im, |z1| < 1, and the parameters A, B, C' and D take one of
the following values:
1) A=B=C=D=0;
2) A= /|zslg(u), B=ms, C=2w5, D =as\/|aalf(u);
3) A=aof(u), B=0, C=uxy D=a3g(u),
with f and g being arbitrary smooth functions of u.
4. P, of the form (22) (g),
Jo1 = 20210z, + (23 — 1)0sy + 1290, + 2900y, + T2p0y,
Jo2 = xox20z, + 1220, + (SL‘% —1)0z, — 1004, — 10y, (28)
Ji12 = 120z, — 1104y,

where either = f(u)(1 —w™1), p=0 with f being an arbitrary function of u or

=0, p=wt|w—1| withw =z} + 23.
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Note that the realization (22) (d) of the ideal T' does not admit an extension
to a realization of the algebra p(1,2).

4 Discussion of results and summary

As it follows from the results of the present paper, the problem of classification
of inequivalent realizations of Poincaré algebras p(1,1) and p(1,2) in the class
of vector fields in the space of a low dimension is completely constructive. The
lists of realizations found here and in the papers mentioned give the complete
solution of this problem in spaces of three and four variables, respectively. By the
way the partition of variables into dependent and independent variables is quite
conditional. Here we consider a single variable as a dependent one in order to
describe later the general form of scalar equations which admit the realizations
obtained as Lie invariance algebras. These realizations can be also used for the
description of Poincaré-invariant systems of differential equations in spaces of low
dimensions.

We also completely solve of the problem of description of Poincaré-invariant
scalar second-order partial equations in the two-dimensional space-time. The
problem of description of Poincaré-invariant equations in a three-dimensional
space-time should be additionally studied. Currently there exist only partial so-
lutions of this problem. Thus for the realizations (22) (a), (23) and (22) (a), (24)
this problem was solved in the works of W. Fushchych and I. Yehorchenko [1-3,9].
We have succeeded to obtain other four of seven differential invariants for the last
realization from Theorem 4, where § = p = 0. These are the invariants

2u2

Il = u, IQ = u?gouxoxoa I3 = (21 - 1) 0

I =7 [(1- 20?281 80u2, + (1 — $1)83 + 53) + (1 — £1)%3u], |,
where

2 2
Z:1 = I + x27 22 =T (umlumoxo - umouxoxl) + x2(ux2ux01'0 - uxouroxg)a

Y3 = 22 (Uay Uggwy — UaoUzoz;) — T1( Uy Uzgzy — o Uzgas )-

The remaining cases are not considered up to now. Also note that the list
of realizations found for the algebra p(1,2) facilitates solution of the problem on
classification of inequivalent realizations of the algebra ¢(1,2).
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We explore the application of symmetry in the sense of Lie’s Theory to the alge-
braic resolution of evolution partial differential equations for problems arising
in Financial Mathematics and demonstrate that many problems are suscepti-
ble to an algorithmic treatment. In particular we show how certain equations
which have been solved by ad hoc methods are easily solved using the alge-
braic approach. Some equations considered are the Cox—Ingersoll-Ross equa-
tion with time-dependent parameters and the Heston Problem of Stochastic
Volatility.

1 Introduction

Although the application of symmetry to the resolution of differential equations —
be they ordinary or partial — is well established in the traditionally exact sciences,
there are some fields of scientific investigation newly entering into the realm of
mathematical exactitude in which such application is largely absent, nay, even
rejected. Such a troglodytic approach is difficult to understand when one considers
the advantages of an algorithmic approach to the determination of solutions of
differential equations. Given that it is almost 140 years since Lie developed his
theory of examining differential equations for their symmetries to make clear the
route to solution, one can only be surprised that there exists those who still believe
that the only route to take is that of the stage magician armed with tophat and
an incredible supply of rabbits to be drawn from it.

Financial transactions in the markets of the World have become increasingly
complex over the last four decades. There was a time when matters such as op-
tions, insurance and reinsurance were not so prominent in the scheme of financial
affairs. This is no longer the case. As has happened with so many other areas of
human endeavour, Finance in its broader interpretation has become increasingly
mathematical, as opposed to its intrinsically arithmetical nature, and now the
topic of Financial Mathematics is a discipline unto itself.
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One of the measures of the extent of the quantification of a discipline is the
degree to which its processes are modelled by differential equations!. When dif-
ferential equations are introduced into a discipline, it should be automatic that
effective methods of the treatment of differential equations should also be intro-
duced. It is the purpose of this paper to aid that process in the case of the
application of symmetry to the solution of evolution partial differential equations
which arise in Financial Mathematics.

We begin our discussion with a brief resumé of the classical heat equation
in terms of its origin and of its properties, well-known, in terms of Lie point
symmetries. We then compare this with the standard form of modelling of a
financial process so that the emergence of evolution partial differential equations
as an important aspect of Financial Mathematics becomes obvious. In subsequent
sections we illustrate several applications of Lie theory in the solution of such
differential equations both in the linear and the nonlinear situations.

The heat equation for a uniform one-dimensional medium is

ou 0%
o " on Y

in which u(t, ) represents the temperature of the medium at time, ¢, and posi-
tion, x. Although the original derivation of (1) was from considerations of the
continuum due to Laplace and in terms of Fourier’s Law, the development of
Statistical Physics as a natural evolution from the observation of the behaviour
of particles of very small mass by Brown provided a probabilistic basis for the
equation. A model for the observed apparently random motions of these particles
was provided by the concept of stochastic processes. This led to some very useful
results, the Lemma of It6 [18], in terms of the relationship between stochastic
processes and evolution partial differential equations. The Theorems of Fokker—
Planck [15,26] and Feynman—Kac [14,19] are important in that under appropriate
conditions they guarantee uniqueness of the solution of the equation subject to
some conditions which are not terribly onerous.

Equation (1) has the Lie point symmetries?

Fl = (930, FQ = 2t8x — xu@u, F3 = uﬁu, F4 = 615,

I's = 20, + 20y, D = 4t20, + 4tzd, — (2t + 552) uly, T'7=f(t, )0y,
where f(t, x) is any solution® of (1). In the Mubarakzyanov Classification Scheme
[22-25] the algebra is { Az g ®s A3 1} @s 00A; which in a more common parlance is

written as {sl(2, R) ®s; W3} ®5 c0A;1, where W3 is the three-element Heisenberg—
Weyl algebra more familiar from considerations of the simple harmonic oscillator

"We are well aware that other approaches to mathematical modelling are to be found and
their worth is not to be gainsayed!

2Calculated using the Mathematica add-on, Sym [7-9]. One should note that the calculation
is not original and the symmetries can be found listed in such texts as Bluman and Kumei [3].

30ne must emphasise the anyness of the solution. There is no need to take into consideration
initial or boundary conditions.
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in Quantum Mechanics. In terms of point symmetries this algebra is the maximal
algebra for a (14 1) evolution partial differential equation.

Normally the heat equation, (1), is solved with some requirement such as an
initial condition or some boundary conditions. In terms of finance one would be
looking for a solution, u (¢, x), which would lead to the dependent variable, u(t, x),
having a particular value, U, at some time in the future, say 7.

Essentially the problem reduces to finding a symmetry or symmetries of (1)
compatible with the dual requirements

t=T and w(T,z)=U Vu. (2)

To determine the symmetry we take the linear combination®

=6

I'=> al. (3)

i=1
We apply the symmetry in (3) to the dual conditions in (2) to obtain a system
of equations,
0:a4+2Ta5+4T2a6 and
0=—aUas+ Uas — (2T + 2°) Uag. (4)

Since x is a free variable, (4) separates into
0=Uas —2TUag, 0=-Uas and 0= —-Uaqg

from which it is evident that ag = 0, as =0, a3 = 0, ay + 2Tas = 0 and a7 is
arbitrary so that there are two symmetries of (1) compatible with the requirements
and they are given by

¥ =0, and (5)
Yo = Q(t — T)@t + 0.
The obvious symmetry for the reduction of (1) is (5) and it follows immediately
that the solution is u(¢, ) = U, which perhaps may not be regarded as terribly
interesting.

On the other hand, if one takes 7" = 0 and sets u(0, x) = U(x), the application
of (3) to the dual conditions gives

0=ay and U'(x)oq +U'(z)zas = —aU(x)as + U(z)az — 22U (x)as.
From the latter we obtain

Ux)  zog—az+ 2oy
U(x) a1 + zas

4Note that we do not include the infinite-dimensional subalgebra contained in T';. As the
coeflicient function is a solution of the differential equation, (1), it cannot play a role in the
discriminatory procedure being undertaken.
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which for the purposes of this example we simplify by taking as = a1, ag = as
and ag = 0. Then

U'(x)

U(x)
and the corresponding symmetries are

Yo, = (14 2t)0; — zud, and

Yos = 2¢(1 +2t)0; + (1 + 4t)20, — (2t + 22) ud,.

=—1x = Ux)= Kexp[—%:zj] (6)

Since [Yq,, Yaslp 5 = Za,, the preferred route for reduction is via X,. The
invariants are ¢ and wexp[z?/(2(1 + 2t))]. The reduction and reduced equation
are

$2

2(1 + 2t)

}g(t) and @: !

u(t, x) = exp [— o0~ 1ta

so that the solution corresponding to the initial distribution (6) is

y K x?
ult, @) = Jirae P [_2(1 + 2t)} '

We have dealt in some length with these two elementary solutions of the clas-
sical heat equation, (1), to provide simple demonstrations of the methods of so-
lution for some of the equations which arise in Financial Mathematics. In the
first example we tailored the solution to fit a precise terminal condition. In the
second example we tailored® the terminal condition so that it would admit some
symmetry which would then permit reduction and solution.

In the sections below we examine the following problems. The first is a gener-
alisation of the Cox—Ingersoll-Ross Equation [6], which models the zero-coupon
bond-pricing problem, to the case in which the parameters are explicitly time-
dependent. The second is the equation describing a model of stochastic volatility
developed by Heston [17] in which a second varible is introduced to allow for the
assumed stochastic nature of the volatility. We conclude with an adaptation of
the Black—Scholes model [4] to allow for a market which is illiquid due to the dom-
inance of a single trader. These examples give some idea of the uses of symmetry
in the resolution of the evolution partial differential equations which arise in the
field of Financial Mathematics.

2 The Cox—Ingersoll-Ross Equation with a difference

The Cox-Ingersoll-Ross Equation [6]°

up + %UQ:UUM — (k= Ax)uy —2u=0

SNote that the degree of ‘tailoring’ was designed to produce a simple calculation. It should
be quite evident that a far more complicated function would be obtained if the restrictions on
the parameters, «;, were relaxed.

5Studies of similar equations are to be found in [5,10,16,27].
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is an example of an equation which has a number of symmetries which varies
depending upon the existence or lack of existence of a specific relationship between
the parameters. The equation is rather typical of equations to be found in the
practical applications of the theory underlying Financial Mathematics. In the
development of the partial differential equations from the underlying stochastic
equations all sorts of possible dependencies can be carried since they are not really
relevant to the probabilistic aspects being considered. However, when it comes to
the solution of the resultant partial differential equations, functions quickly seem
to develop a nature of constancy rarely to be found in the real world. We recall
that the parameters have the meaning of variance in the case of ¢, an underlying
trend rate in the case of x and a measure of reversion to the mean in the case of \.

Here we examine the case in which all of the parameters can depend upon
time. Admittedly this is not a complete case since one could also imagine a
scenario in which the parameters were affected by the underlying price/cost of
the commodity under consideration. Nevertheless the allowance for a temporal
variation in the parameters is a move in the direction of accepting reality. We
examine the equation

ug + %a(t)%um — (k(t) = ANt)x)ug —2u=0 (7)

for its Lie point symmetries using Sym in interactive mode. The consequent
calculations are notable more for the complexity of the expressions rather than
the complexity of the actual calculations and so there is no real point to repeat
them here. What we do find is a symmetry which depends upon three functions,
a(t), b(t) and g(t), of a fairly familiar form, ie

a(t)oy + (b(t) + xzfi(a, 0))0y + (aczfg(a, o, A) +zf3(a, o, A\, k) + g) udy,

in which we omit the infinite-dimensional subalgebra of solution symmetries which
are a consequence of the linearity of (7).

The three functions to be determined, a(t), b(t) and g(t), to establish the
coefficient functions of the symmetries of (7) solutions of three linear ordinary
differential equations. For the function a(t) the equation is of the third order and
has the typical structure for the time-dependent function in an sl(2, R) subalgebra,
namely

@ () + 2p(H)a(t) + p(t)a(t) = 0,

where p(t) depends upon s(t) and A(t). The equation for b(t) is of the second
order and somewhat more complicated, but is consistent with one part being a two-
dimensional subalgebra and the other being related to the coefficient function a(t).
The same story applies to g(t) which is determined as the solution of a first-order
equation with the nonhomogeneous terms depending upon the other coefficient
functions.

The interesting point about the time-dependent version of the Cox—Ingersoll—
Ross Equation is that it admits the maximal number of Lie point symmetries.
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Consequently one would expect to be able to solve any problem with a terminal
condition. This is an interesting development for it broadens the class of models
for which one can add least construct the structure of an analytic solution. It
must be admitted that a viewing of the third-, second- and first-order ordinary
differential equations to be satisfied by a(t), b(t) and g(t) does not imbue one with
an expectation to be able to determine a solution in closed form. Nevertheless
this lack of a solution in closed form may not present a serious impediment to
progress. It may happen that one must resort to numerical procedures to go
from the second-last line to the last line [20]. That one must eventually resort
to numerical procedures is more or less a fact of life since very few equations
can be solved in a form which obviates the necessity for numerics. The critical
point is at which level one must make these numerical computations. As a general
observation one may state quite comfortably that the further into the resolution
of a given problem that one can defer the implementation of numerical procedures
the more effective the modelling undertaken.

In the case of the Cox—Ingersoll-Ross Equation with time-dependent parame-
ters we have an explicit expression for the structure of the symmetries. The very
fact that we know the precise dependence of the symmetries upon x and u makes
it possible to construct the form of the invariants for the reduction of the equa-
tion to an ordinary differential equation. It is this ability to be able to reduce
the problem which makes the application of symmetry even in this somewhat
nebulous form advantageous.

3 Stochastic Volatility: the Heston Model

The Heston Model of Stochastic Volatility [17] leads to the (1+2) evolution partial
differential equation

ov , OV o’V 5 9*V ov
E‘f’ S 852+6T5y658 +§5y67y2+( )S%
ov
+(w—y9—A)a—y—TV—0, (8)

where V' is the valuation of a volatility-dependent instrument, S the value of the
underlying asset, D the yield on the asset, r is the interest rate and the coefficient
of u, is the real-world drift term less the market price of risk. The terminal
conditions are

t=T and V(T, S, y)=Max{S — K,0},

where K is the cut-off value of the asset. In the case that the coefficient of V,
was taken to have the form k6 — (k + A)y Heston [17] has provided a solution in
closed form. The exponent on y need not be so simple. In a more general model
the exponent of y in the mixed derivative is v + % and of the second derivative
with respect to y it is 2y, where ~ is the exponent of the variance in the stochastic
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differential equation for the variance. In the case that v = % the two exponents
become simpler and more tractible numbers. The solution for general values of
proves to be elusive [29].

The only Lie point symmetries of (8), apart from the infinite class of solution
symmetries, are the obvious ones of

Fl == V@V, FQ == S@S and Fg == 8t.

The first is a consequence of the linearity of (8) and the third of the autonomy
of the equation. The second symmetry is a consequence of the equation being
autonomous in the variable log .S. We make a change of variables from the original
equation. The change of variables is given by

T=T—t, xz=logS+(r—-D)r y=y, V=wue'". (9)
Equation (8) is now

0u 0u ,0%u  Ou ou ou
Z 42 o9 oo, (1
{(%24— ”axaf (H+A)ay}+ K0 (10)

00
c oy?  Ox oy

87'_y

We take the Fourier transform of (10) with respect to = to obtain the (1 + 1)
evolution equation

ol o, .. 0u 507 ou . ot
25 +y {w u— 2zw5ra—y —€ a2 +2(k + A)a—y — Wl p — 2/&98—y =0. (11)
Note that we have replaced the coefficient of V}, in (8) with the expression given
by Heston [17], namely k6 — (k 4+ \)y. The given terminal condition becomes
1 Kiw-l—l

u(0, w,y) = ———, 12

0,0, 1) = = (12
which is evaluated at 7 = 0 and this is significant when one considers the change
of variables given in (9).

An analysis of the Lie point symmetries of (11) gives the result that the sym-

metry (apart from the generic solution symmetry) has the general form

I'=a(1)0; + (\/g]b(r) + ya’(T)) Oy + {C’o + :%g ((k+ X —ierw)a(T)

/ 1 . /
—a (T)) (82 - 4,%9) b(T) + 2 [(:‘i + A —ierw)b(r) — 2b (T)] VY

1
+ 4e2,fy
1
+€—2 [(I’i + X —ierw)d (1) — a”(T)] y} Uy,
where

a(t) = Ag + Ay exp[P7] + Az exp[—PT],
b(1) = By exp|PT1/2] + By exp|—P7/2]
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and the upper case letters are constants of integration with
P? = [(k+ X —ierw)? — & (iw — w?)] .

There is also the constraint that, if (4x0 — 3e%)(4k0 — £2) # 0, it follows that b(7)
must be identically zero.

In the case that the constraint be satisfied (11) has the maximal number of Lie
point symmetries for an (1 4 1) evolution equation and the algebra is {sl(2, R) &
W3} @oo A1. Otherwise the algebra is {sl(2,R) ® A1} @ A1, ie, the Weyl-
Heisenberg subalgebra is reduced to the single homogeneity symmetry.

When the general symmetry, I', with the functional dependence in a(7) and
b(7) substituted is applied to the terminal conditions, (12), one finds that there
is compatibility provided b(7) = 0 and the relations

m—+ P m— P

AO = —m, Al = and A2 = 9

hold, where m = k + A — ierw and the common multiplier of the symmetry, Cy,
is given the value K0P? /2. Thus we have

a(t) = Psinh Pt — m(1 — cosh Pr). (13)

For general values of the parameters, when the expression for the symmetry
compatible with the terminal conditions is simplified, it is

L. = a(7)0 +ya'(1)9y "
. [Co N /1977;;1(7') _ ”932(7-) + E% (ma(1) — GH(T))] u0y

with a(7) and Cy as given above.
The invariants of I', are

= — d
7= ) an
1
2z = uexp [—62 (RHmT + mga(t) — kfloga(r) — qa’(T)) —|—j(7')] , (15)
where j(7) = [ Cy/a(r)dt. When we make the substitution

1
(T, w, y) = exp L (kOmT + mqa(T) — kO log a(T)
—qa/(7)) + ()] Qy/a(7)), (16)
the resulting ordinary differential equation is simply

2
qQ" + 2’?@ - 5( P2+ 2k0) Q =
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which has the solution

P2 92\ 2n0/=* 1 20 2P2
Q(p) = exp |:€2q:| {Cl — Oy ( ) r [1 - 5 5261] ) (17)

g2 €

where C; and Cy are the constants of integration and I'[, -] is the incomplete
gamma function. Since the terminal condition is evaluated at 7 = 0, the term
involving the incomplete gamma function makes no contribution to the required
solution as its argument becomes infinite and so we set Co = 0.

From (13), (16) and (17) it follows that

a(r, w, y) =Cre ! Py
= X —_
Ty 1P 22 Psinh(P1) — m(1 — cosh(PT))

+rOmT + K0 [log(sinh(P7/2)) — log (P cosh(P71/2) + msinh(P7/2))]
—r6log (P sinh(P1) — m(1 — cosh(P7))) + my (18)
Py (P cosh(Pr) + msinh(P)) ] }

Psinh(P1) — m(1 — cosh(P1)) | J

When one takes into account the terminal condition, (12), on the Fourier trans-
form, it follows that

(2P2)") gient
Vor o dw — w?

from (12). After some simplification one finds that

Cy =

) 1 p 260/e%  privt1

T w, y) = Vor <Pcosh(P7'/2) + msinh(PT/Q)) (iw — w?)
mrOT y (iw — w?) sinh(P7/2)

exp [ g2 P cosh(P7/2) + msinh(P1/2)

. (19)

The solution to (8) follows from the evaluation of the inverse Fourier transform

1 oo
— exp|—iwzx|u(T, w, y)dw
= | explialitr w9
with @(7, w, y) as given in (19) and inverting the transformation (9).
4 Black—Scholes in an illiquid market
The Black—Scholes Equation
2us + 0'2.%'2Umx + bruz —ru=20

was constructed under certain assumptions regarding the nature of the market.
A departure from those assumptions can be found in the case of what is known as
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an illiquid market which has been modelled in [11-13,28]. One cause can be found
in the existence of a single trader dominating the market for which the equation
governing the model is [4]

2t (1 — pe\(2)Uy)® + 02(£)2%Uge = 0, (20)

where p is a measure of the influence of the large-scale trader and A(z) is intended
to produce the desired payoff, but both must necessarily be estimated from the
realities of the market. One notes that the variance includes a dependence upon
time. In terms of the analysis of the equation this is quite spurious since it may be
removed by means of a rescaling of time. Consequently we treat it as a constant.

Equation (20) has been treated in terms of symmetry by Yang et al [30] in that
they constructed the optimal systems for the equation. Here we consider (20) in
terms of a problem with a standard terminal condition and with the option of a
terminal condition dependent upon the stock price. Yang et al present the Lie
point symmetries of (20) as’

=0, Te=0, Ts=20, Ti=z0,+(1-kud,

provided \(z) = wzk where w is a constant. If this be not the case, I'y is absent.
The algebra has a structure which does depend upon the value of the parameter k.
It is Ay & A§ 5 in the Mubarakzyanov Classification Scheme for general values of k.
For the specific values K = 0 and k = 1 the algebra is 241 ® A5 and, if k = %, the
algebra is A1 @ A3 4, where the three-dimensional subalgebra is commonly known
as F(1,1). Note that in all cases the algebra is the direct sum of a one-dimensional
subalgebra (I'1) and a three-dimensional subalgebra.

We can contemplate (20) as the differential equation for a problem with a
terminal condition of the nature u(7, S) = U(x), ie at some time T in the future
the dependent variable is required to take a specific value depending upon the
price of the underlying asset. We take a linear combination, Z?Zl a1, of the
symmetries above and apply them to the conditions ¢ = T and w(T, S) = U(z).
It is immediately obvious that a3 = 0. The remaining coeflicients are related
according to

as + azz + ayg(1l — k)U(x) = auzU’ ()

from which it is evident that the terminal function, U(x), is compatible with the
symmetry provided

1 [asx o
_ -k, = 3t 2
U(I’)—UOI' +C¥4(k l_k)a

ie in addition to the parameter, k, of the model there are three constants in the
expression for U(z) which may be chosen at will.

"We have verified the correctness of the calculation using our own methods. Yang et al. cite
Bordag [4] as their source of these symmetries.
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The corresponding symmetry is

I'=2z0, + <Z2+a3$+(1—k)u> Ou.-
4

Qg

The characteristics are ¢t and

U 1l [«
v )k Y2 k-
zl=F ay | K (1—k)
so that the reduction to an ordinary differential equation is given by

1l [« a _
ult, z) = — <k3x -1 _2k> + 2 F ().

0y
The reduced equation is

o keI k()
M = S s hpall — k)al)?

which, not surprisingly, cannot be solved in closed form for ¢(¢). The solution in
implicit form is

4pw pPuw?

log q(t) + —5-q(t) + ——5k(1 - k)q*(t).

2
t—tg=
07 52k(1— k)
We may, probably without loss of generality, take tg = 7. This means that
q(T) = Uy which is required to satisfy the equation
P22
o2

2 4
OzilogUo%—%Uo—F

HE k(1 — k)Up.

If one assumes that the parameters p, w and ¢ are beyond the control even of a
dominant trader, there is a necessary relationship between k and Uy which may
or may not be good news for the market.

5 Conclusion

We have considered some examples chosen from the many models which have been
developed in the area now known as Financial Mathematics. Although one may
trace the development of the field back many years, it is generally agreed that
the real thrust in development is to be found in the papers of Merton [21] and
Black and Scholes [1,2] of about forty years ago. The original context was in the
pricing of options as interpreted in the narrow sense of the stock market. Indeed
Merton observes that ‘since options are specialised and relatively unimportant
financial securities, the amount of time and space devoted to the development of
a pricing theory might be questioned.” At about the same time Black and Scholes
had observed that their results could be extended to many other situations and,
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in a sense, that virtually every financial instrument could be regarded in terms
of an option. It reminds one of the story about how a man views a doughnut!
Given the explosion of the field in recent decades it would appear that Black and
Scholes had a greater understanding of the practical implications of their models.

Traditionally — if tradition be already established within forty years — the
solvers of the evolution partial differential equations which emerge at the end of
what can be a very long and complicated process of modelling have used ad hoc
methods to solve the equations. Experience counts. What has been observed is
that many of these equations are rich in symmetry. This in itself is not likely to
be a priori expected although one could argue from hindsight that the underlying
processes are very similar in nature to those physical processes which lead through
their modelling to the classical heat equation and its variations.

The employment of the methods of symmetry analysis has become standard
in some fields. In others, we mention Financial Mathematics, Epidemiology and
Ecology in particular, there seems to be not only a marked reluctance to employ
these methods but even to reject them when they are employed. Since so many
of the equations which arise in Financial Mathematics are rich in symmetry, one
finds that this attitude rather strange.

Acknowledgements

This work is part of a project funded by the Research Promotion Foundation
of Cyprus, Grant Number ITPOXEAKYXH/ITPOEM/0308/02, devoted to the
algebraic resolution of nonlinear partial differential equations.

We thank the referee for useful advice to improve the presentation of the results
in this paper.

PGLL thanks the University of Cyprus for its kind hospitality and the Uni-
versity of KwaZulu-Natal and the National Research Foundation of South Africa
for their continued support. The opinions expressed in this paper should not be
construed as being those of either institution.

[1] Black F. and Scholes M., The valuation of option contracts and a test of marketing efficiency,
J. Financ., 1972, V.27, 399-417.

[2] Black F. and Scholes M., The pricing of options and corporate liabilities, J. Polit. Econ.,
1973, V.81, 637-659.

[3] Bluman G.W. and Kumei S., Symmetries and Differential Equations, Applied Mathematical
Sciences, V.81, Springer-Verlag, New York, 1989.

[4] Bordag L.A., Symmetry reductions of a nonlinear option pricing model, 2006, arXiv:
math/0604207.

[5] Chan K., Karolyi A., Longstaff F. and Sanders A., An empirical comparison of alternate
models of the short-term interest rate, J. Finance, 1992, V.47, 1209-1227.

[6] Cox J.C., Ingersoll J.E. and Ross S.A., An intertemporal general equilibrium model of asset
prices, Econometrica, 1985, V.53, 363-384.

[7] Dimas S. and Tsoubelis D., SYM: A new symmetry-finding package for Mathematica, Pro-

ceedings of Tenth International Conference in Modern Group Analysis (Larnaca, Cyprus,
2004), 2005, 64-70.



132 P.G.L. Leach and C. Sophocleous
[8] Dimas S. and Tsoubelis D., A new Mathematica-based program for solving overdetermined
systems of PDEs, 8th International Mathematica Symposium (Avignon, France), 2006.

[9] Dimas S., Andriopoulos K., Tsoubelis D. and Leach P.G.L., Complete specification of some
partial differential equations that arise in Financial Mathematics, J. Nonlinear Math. Phys.,
2009, V.16, s01, 73-92.

[10] Dothan U.L., On the term structure of interest rates, J. Financ. Econ., 1978, V.6, 59—69.

[11] Frey R., Perfect Option Replication for a Large Trader, thesis, ETH, Ziirich, 1996.

[12] Frey R. and Stremme A., Market volatility and feedback effects from dynamic hedging,
Math. Finance, 1997, V.7, 351-374.

[13] Frey R., Market illiquidity as a source of model risk in dynamic hedging, model risk, Risk
Publication, London, 2000, 125-136.

[14] Feynman R.J., Space-time approach to nonrelativistic quantum mechanics, Rev. Modern
Physics, 1948, V.20, 367-387.

[15] Fokker A.D., Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, An-
nalen der Physik, 1914, V.43, 810-820.

[16] Goard J., New solutions to the bond-pricing equation via Lie’s classical method, Math.
Comput. Modelling, 2000, V.32, 299-313.

[17] Heston S.L., A closed-form solution for options with stochastic volatility and applications
to bond and currency options, Rev. Fin. Studies, 1993, V.6, 327-343.

[18] It6 K., Stochastic Integral, Proc. Imp. Acad. Tokyo, 1944, V.20, 519-524.

[19] Kac M., On the distribution of certain Wiener functionals, Trans. Amer. Math. Soc., 1941,
V.65, 1-13.

[20] Leach P.G.L., Berry’s phase and wave functions for time-dependent Hamiltonian systems,
J. Phys. A: Math. Gen., 1990, V 23, 2695-2699.

[21] Merton R.C., Theory of rational option pricing, Bell J. Econom. and Management Sci.,
1973, V 4, 141-183.

[22] Morozov V.V., Classification of six-dimensional nilpotent Lie algebras, Izv. Vyssh. Uchebn.
Zavend. Matematika, 1958, no. 4 (5), 161-171.

[23] Mubarakzyanov G.M., On solvable Lie algebras, Izv. Vyssh. Uchebn. Zavend. Matematika,
1963, no. 1 (32), 114-123.

[24] Mubarakzyanov G.M., Classification of real structures of Lie algebras of fifth order, Izv.
Vyssh. Uchebn. Zavend. Matematika, 1963, no. 3 (34), 99-106.

[25] Mubarakzyanov G.M., Classification of solvable Lie algebras of sixth order with a non-
nilpotent basis element, Izv. Vyssh. Uchebn. Zavend. Matematika, 1963, no. 4 (35), 104—
116.

[26] Planck M., Uber einer Satz der statistischen Dynamik und seine Erwerterung in Quan-
ten Theorie, Sitzungbereich Koenigliche Preussische Akademie der Wissenschaften physik-
mathematik Klasse, 1917, V.24, 324-341.

[27] Pooe C.A., Mahomed F.M. and Wafo Soh C., Fundamental solutions for zero-coupon bond-
pricing models, Nonlinear Dynam., 2004, V.36, 69-76.

[28] Rodrigo M.R. and Mamon R.S., An alternative approach to solving the Black—Scholes
equation with time-varying parameters, Appl. Math. Lett., 2006, V.19, 398-402.

[29] Sophocleous C., O’Hara J.G. and Leach P.G.L., Stochastic volatility: A critical feature of
the Heston model, to appear.

[30] Yang X.-L., Zhang S.-L. and Qu C.-Z., Symmetry-breaking for Black—Scholes Equations,

Commun. Theor. Phys., 2007, V.47, 995-1000.



5th Workshop “Group Analysis of Differential Equations & Integrable Systems” 2010, 133-151

Orbit functions of SU(n)
and Chebyshev polynomials

Maryna NESTERENKO T, Jiri PATERA * and Agnieszka TERESZKIEWICZ §

t Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs’ka Str., Kyiv-4,

01601, Ukraine
E-mail: maryna@imath.kiev.ua

Y CRM, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C 3.J7,
Québec, Canada

E-mail: patera@crm.umontreal.ca

§ Institute of Mathematics, University of Bialystok, Akademicka 2,

PL-15-267 Bialystok, Poland
E-mail: a.tereszkiewicz@uwb.edu.pl

Orbit functions of a simple Lie group/algebra L consist of exponential functions
summed over the Weyl group of L. They are labeled by the highest weights of
irreducible finite-dimensional representations of L. They are of three types: C-,
S- and FE-functions. Orbit functions of the Lie algebras A,, or, equivalently, of
the Lie group, SU(n+1), are considered. Firstly orbit functions in two different
bases — one orthonormal, the other given by the simple roots of SU(n + 1) —
are written using the isomorphism of the permutation group of n + 1 elements
and the Weyl group of SU(n + 1). Secondly it is demonstrated that there is
a one-to-one correspondence between classical Chebyshev polynomials of the
first and second kinds and C- and S-functions of the simple Lie group SU(2).
It is then shown that the well-known orbit functions of SU(n + 1) are straight-
forward generalizations of Chebyshev polynomials to n variables. Properties of
the orbit functions provide a wealth of properties of the polynomials. Finally
multivariate exponential functions are considered, and their connection with
orbit functions of SU(n + 1) is established.

1 Introduction

The history of the Chebyshev polynomials dates back over a century. Their
properties and applications have been considered in many papers. Studies of
polynomials in more than one variable were undertaken by several authors, e.g.,
[2-4,13,17,18,25,26]. Of these none follow the path we have laid down here.

In this paper we demonstrate that the classical Chebyshev polynomials in one
variable are naturally associated with the action of the Weyl group of SU(2) or
equivalently with the action of the Weyl group W (A1) of the simple Lie algebra of
type A1. The association is so simple that it has been ignored so far. However, by
making W (A1) the cornerstone of our rederivation of Chebyshev polynomials, we
have gained insight into the structure of the theory of polynomials. In particular
the generalization of Chebyshev polynomials to any number of variables was a
straightforward task. The polynomials of [14] correspond to our case in spite of a
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different approach and terminology. The 2D generalizations of Chebyshev polyno-
mials of [13] coincide with our polynomials of Ay even if no Lie group connection
is mentioned there. n-dimensional generalizations of Chebyshev polynomials were
also constructed in [15]. Further it was shown in [21] that our polynomials ob-
tained from orbit functions are special cases of the Macdonald polynomials [17].

We proceed in three steps. In Section 2 we exploit the isomorphism of the
group of permutations of n + 1 elements S and the Weyl group of SU(n + 1) or,
equivalently of A,,, and define the orbit functions of A,. This opens the possibility
to write the orbit functions in two rather different bases, the orthonormal basis
and the basis determined by the simple roots of A,,, which considerably alters the
appearance of the orbit functions. In the paper we use the nonorthogonal basis
because of its direct generalization to simple Lie algebras of types other than A,,.

In Section 3 we consider classical Chebyshev polynomials of the first and second
kinds and compare them with the C- and S-orbit functions of A;. We show that
polynomials of the first kind are in one-to-one correspondence with C-functions.
Polynomials of the second kind coincide with the appropriate S-function divided
by the unique lowest nontrivial S-function. We point out that polynomials of the
second kind can be identified as irreducible characters of finite-dimensional repre-
sentations of SU(2). Useful properties of Chebyshev polynomials can undoubtedly
be traced to that identification because the fundamental object of representation
theory of semisimple Lie groups/algebras is character. In principle all one needs
to know about an irreducible finite-dimensional representation can be deduced
from its character. An important aspect of this conclusion is that characters are
known and uniformly described for all simple Lie groups/algebras.

In Section 4 we provide details of the recursive procedure from which the
classical form of Chebyshev polynomials in n variables can be found. Thus there
are n generic recursion relations for A,, having at least n + 2 terms, and at most

(Knr_ﬁ)l /2]> + 1 terms. Irreducible polynomials are divided into n 4+ 1 exclusive

classes with the property that monomials within one irreducible polynomial belong
to the same congruence class!. This follows directly from the recognition of the
presence and properties of the underlying Lie algebra. In Section 4.2 the simple
substitution z = €™z € R™, is used in orbit functions to form Laurent analogs
of Chebyshev polynomials in n variables in their nontrigonometric form.

In Section 5 we present the orbit functions of A,, disguised as polynomials built
from multivariate exponential functions of the symmetric group. In Section 2 such
a possibility is described in terms of related bases, one orthonormal (symmetric
group) and the other nonorthogonal (simple roots of A,, and their dual w-basis).
Both forms of the same polynomials appear rather different, but may prove useful
in different situations.

The last section contains a few comments and some questions related to the
subject of this paper that we find intriguing.

Tt is well known that each Chebyshev polynomial has only even or odd power monomials.
This is caused by two congruence classes of Aj.
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2 Preliminaries

This section is intended to fix notation and terminology. We also briefly recall
some facts about S,4; and A,, dwelling particularly on various bases in R"*+!
and R™. In Section 2.3 we identify elementary reflections that generate the A,
Weyl group W with the permutation of two adjacent objects in an ordered set
of n + 1 objects. Finally we present some standard definitions and properties of
orbit functions.

2.1 Permutation group S, ;1

The group S,,+1 of order (n+1)! transforms the ordered number set [I1,. .., Ly, lh+1]
by permuting the numbers.
We introduce an orthonormal basis in the real Euclidean space R*+1,

e ER™ (ejej) =6, 1<i,j<n+1, (1)

and use the [;’s as the coordinates of a point p in the e-basis: pu = ZZI% lxeg,
I € R.

The group S,+1 permutes the coordinates [ of u thereby generating other
points from it. The set of all distinct points, obtained by application of S, 41 to
1, is called the orbit of S,,y1. We denote an orbit by W), where X is a unique
point of the orbit, such that Iy > 1y > --- > 1, > l,+1. If there is no pair of equal
li’s in A, the orbit W) consists of (n + 1)! points.

Below we only consider points p from the n-dimensional subspace H C R+
defined by the equation

n+1

> iy =0. (2)
k=1

2.2 Lie algebra A,

We recall basic properties of the simple Lie algebra A,, of the compact Lie group
SU(n + 1). Consider the general value (1 < n < c0) of the rank. The Coxeter—
Dynkin diagram, Cartan matrix ¢ and inverse Cartan matrix ¢! of A, are,
respectively,

2-1 0 0 0 0 0 0 0
-1 2-1 0 0.. 0 0 0 O
0-1 2-1 0.. 0 0 0 O
OO0 00 &
a1 Qo Qg QAp—1 Op 0 0 0 0 O 0-1 2-1
0000 O0.. 0 0-1 2
1n  1-(n—1) 1-(n—2) 1-(n—3) 1-3 1-2 11
1-(n—1) 2-(n—1) 2:(n—2) 2:(n—3) .. 23 2.2 2:1
1-(n—2) 2:(n—2) 3-(n—2) 3-(n—3) ... 33 3-2 31
el 1 1~(n.—3) 2~(n_—3) 3~(n_—3) 4‘(n.—3) 43 4:2 41
n+1 : : : : oo : :
1-3 2.3 3.3 43 .. (n=2)3 (n—2)2 (n—2)1
1-2 22 32 42 .. (n—2)2 (n—1)2 (n—1)1

11 2.1 31 41 .. (n=2)1 (n—1)1 nl
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The simple roots «;, 1 < i < n of A, form a basis (a-basis) of a real Euclidean
space R™. We choose them in H:

=€ —€i+1, L=1,...,n.

This choice fixes the lengths and relative angles of the simple roots. Their length
is equal to v/2 with relative angles between oy, and agy1 (1 < k < n — 1) equal
to 23? and § for any other pair.

In addition to e- and a-bases we introduce the w-basis as the Z-dual basis to

the simple roots «;:
(i,wj) =045, 1<d,j<n.

It is also a basis in the subspace H C R"*! (see (2)). The bases a and w are
related by the Cartan matrix

a=Cu, w= ¢ la.

Throughout the paper we use A € H. Here we fix the notation for its coordi-
nates relative to the e- and w-bases:

n+1 n+1
A= Zle] (I, b 1)e ZAM_ A A, D Li=0.
=1

Consider a point A € H with coordinates /; and A; in the e- and w-bases,
respectively. Using a = €w, i.e., w; = > p_; (€7, we obtain the relations
between \; and [;:

h= Zm,ﬂ , e = Z M€

l; = /\1( T )A€y =)+ AT, =2, ,n,
or explicitly

Ni=li—liv1, 1=12,...,n. (3)
The inverse formulas are much more complicated being

[ = A), (4)

where [ = (I1,...,1p41)e; A= (A1,..., A\n)w and A is the (n+1) X n matrix

n—1n—2 2 1
—1n—1n-2 2 1
-1 -2 n—2 2 1
A=_-L . .
n+1 : : :
-1 -2 -3 —(n—1) 1
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2.3 The Weyl group of A,

The Weyl group W (A,,) of order (n + 1)! acts in H by permuting coordinates in
the e-basis, i.e. as the group S,41. Indeed let r;, 1 < i < n be the generating

elements of W (A,,), i.e. reflections with respect to the hyperplanes perpendicular
n+1

to a; and passing through the origin. Let x = > zrer = (x1,22,...,Zp41)e and
k=1

(+,+) denote the inner product. We then have the reflection by r;:

T =T — ﬁ(% ;)0 =(21, T2, . .., Tni1)e—(Ti—Tiv1)(ei—€it1) (5)

= (&1, Tim1, Tit 1 Tiy Tig 2, - - - s Tl )e-

Such transpositions generate the full permutation group S,yi. Thus W(A,) is
isomorphic to S,,11 and the points of the orbit W) (S,+1) and Wy (A4,) coincide.

2.4 Definitions of orbit functions

The notion of an orbit function in n variables depends essentially on the underlying
semisimple Lie group G of rank n. In our case G = SU(n + 1) (equivalently, Lie
algebra A,). Let the basis of the simple roots be denoted by a and the basis of
fundamental weights by w.

The weight lattice P is formed by all integer linear combinations of the w-basis,
ie.,

P =Zwi + Zwsy + -+ + Zwn,.

In the weight lattice, P, we define the cone of dominant weights P™ and its subset
of strictly dominant weights PT+ as

P D P+:ZEOMI++ZEOWTL ) P++:Z>Uw1+._'+z>0wn.

Hereinafter W€ C W denotes the even subgroup of the Weyl group formed by
an even number of reflections that generate W. W) and W¥ are the corresponding
group orbits of a point A € R".

We also introduce the notion of fundamental region F(G) C R™. For A, the
fundamental region F' is the convex hull of the vertices {0, w1, ws, ... ,wp}.

Definition 1. The C orbit function C)(z), A € P* is defined as

Ca(x):= > ol g R (6)
peEWX(G)

Definition 2. The S orbit function Sy(z), A € P*" is defined as

S@= Y (R, g e, @)
REWA(G)
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where p(p) is the number of reflections necessary to obtain p from A. Of course
the same p can be obtained by different successions of reflections, but all routes
from A to p have a length of the same parity and thus the salient detail given by
p(p) in the context of an S-function is meaningful and unchanging.

Definition 3. We define E orbit function Ej(z), A € P¢, as

Ey\(z) := Z e2miT) g e R, (8)
reW(G)

where P¢ := PT Ur;PT and r; is a reflection from W.

If we always suppose that )\ , € P are glven in the w-basis and x € R™ i 1s given

in the « basis, namely A = Z Ajwj, o= Z Hiwi, Nj, by € Z and x = Z iy,
j= j=
x; € R, then the orbit functlons of A, have the following forms

2 n
Z . z]_; IPEF] Z H eQm‘ujx]‘, (9)
HEW HEW, j=1
27 Z LT
S\(z) = Z (—1)pmwe =77 = Z (— H 2mip;z; (10)
neEWy HEW
2m n
Z . 1.72::1#]% _ Z H€27r7;ujxj. (11)
pewse pews j=1

2.5 Some properties of orbit functions

For S functions the number of summands is always equal to the size of the Weyl
group. Note that in the 1-dimensional case C-, S- and E-functions are respectively
a cosine, a sine and an exponential function up to the constant.

All three families of orbit functions are based on semisimple Lie algebras. The
number of variables coincides with the rank of the Lie algebra. In general C-,
S- and E- functions are finite sums of exponential functions. Therefore they are
continuous and have continuous derivatives of all orders in R™.

The S-functions are antisymmetric with respect to the (n—1)-dimensional
boundary of F. Hence they are zero on the boundary of F. The C-functions
are symmetric with respect to the (n — 1)-dimensional boundary of F'. Their nor-
mal derivative at the boundary is equal to zero (because the normal derivative of
a C-function is an S-function).

For simple Lie algebras of any type the functions C(z), Ex(x) and S(x) are
eigenfunctions of the appropriate Laplace operator. The Laplace operator has
the same eigenvalues on every exponential function summand of an orbit function
with eigenvalue —4m(\, \).
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2.5.1 Orthogonality

For any two complex square-integrable functions ¢(z) and v (x) defined on the
fundamental region, F', we define a continuous scalar product as

(6(x), b(x)) == / o(x)b(x)d. (12)
F

Here integration is performed with respect to the Euclidean measure, the bar
means complex conjugation and x € F, where F' is the fundamental region of
either W or W€ (note that the fundamental region of W€ is F'¢ = FUr; F, where
r; € W)

Any pair of orbit functions from the same family is orthogonal on the corre-
sponding fundamental region with respect to the scalar product (12), namely

(Cx(®), Ox () = [Wr] - [F[ - v, (13)
(Sx(z), Sx(x)) = [W]-[F| - v, (14)
(Ex(z), Ex(2)) = [WX[ - [F] - Oan, (15)

where 0y is the Kronecker delta, |W| is the order of the Weyl group, |W,| and
|W5| are the sizes of the Weyl group orbits (the number of distinct points in the
orbit) and |F'| and |F*| are volumes of fundamental regions. The volume |F'| was
calculated in [6].

Proof. Proof of the relations (13), (14) and (15) follows from the orthogonality
of the usual exponential functions and from the fact that a given weight u € P
belongs to precisely one orbit function. |

The families of C-, S- and E-functions are complete on the fundamental do-
main. The completeness of these systems follows from the completeness of the
system of exponential functions, i.e., there does not exist a function ¢(z) such
that (¢(z), ¢(z)) > 0 and at the same time (¢(z), 1 (z)) = 0 for all functions (x)
from the same system.

2.5.2 Orbit functions of A,, acting in R?*!

Relations (4) allow us to rewrite variables A and x in an orbit function in the
e-basis. Therefore we can obtain the C-, S- and E- functions acting in R"*1,

CA(l‘): Z eQm’(s(A),x)’ (16)
SeSnJrl

Sa(@) = ) (sgns)e?m N (17)
SESH+1

B@)= Y e, (18)

sEAltn+1
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where (-, -) is a scalar product in R"*!, sgn s is the permutation sign and Alt,, ;1 is
the alternating group acting on an (n + 1)-tuple of numbers. Note that variables
x and A are in the hyperplane H. For C- and E-functions it is essential that A is
a generic point (i.e., does not have zero coordinates in w-basis).

When one uses the identity (A, r;xz) = (r;\, x) for the reflection r;, i = 1,...,n,
it can be verified that

Cr(rix) = Cpa(x) = Cx(z) and  Spa(z) = Sx(riz) = —Sx(x). (19)

Note that it is easy to see for generic points that E)(z) = %(C’A(az) + Sx(z))
and from the relations (19) we obtain

By (2) = Ex(riz) = § (Ca(z) — Sx(2)) = Bx(a). (20)

A number of other properties of orbit functions are presented in [8,9,11].

3 Orbit functions and Chebyshev polynomials

We recall known properties of Chebyshev polynomials [24] in order to be able sub-
sequently to make an unambiguous comparison between them and the appropriate
orbit functions.

3.1 Classical Chebyshev polynomials

Chebyshev polynomials are orthogonal polynomials which are usually defined re-
cursively. One distinguishes between Chebyshev polynomials of the first kind 7},,

To(x) =1, Ti(z)=x, Tpi1(z)=22T,—T,1, (21)
hence Th(x) =222 —1, Ty(x) =42 -3z, ..., (22)

and Chebyshev polynomials of the second kind U,

Up(x) =1, Ui(x)=2x, Upyi(x)=22U, —U,_1, (23)
in particular Us(z) = 42> — 1, Us(z) = 82® — 4z, .... (24)

The polynomials T}, and U, are of degree n in the variable . All terms in a
polynomial have the parity of n. The coefficient of the leading term of T}, is 2"
and 2" for U,, n=1,2,3,....

The roots of the Chebyshev polynomials of the first kind are widely used as
nodes for polynomial interpolation in approximation theory. The Chebyshev poly-
nomials are a special case of Jacobi polynomials. They are orthogonal with the
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following weight functions:

/1 1 0, n#m,
—T ()T (z)dz=¢ m, n=m=0, (25)
N
Jovioe T n=m#0,
1
0, n#m,

/MUn(x)Um(x)dm = {

-1

™ —
b n=m.

There are other useful relations between Chebyshev polynomials of the first
and second kinds.

%Tn(x) =nUp_1(z), n=1,23,..., (27)
Ty (z) = %(Un(x) CUpa(@)), n=23,..., (28)
Tpir(x) = 2Ty (x) — (1 — 2®)Upy, n=1,2,3,..., (29)
To(x) =Up(x) —2Up—1, n=1,2,3,.... (30)

3.1.1 Trigonometric form of Chebyshev polynomials

When one introduces the trigonometric variable x = cosy, polynomials of the first
kind become

Tn(z) = Ty (cosy) = cos(ny), n=0,1,2,..., (31)
and polynomials of the second kind are written as

sin((n + 1)y)

Un<$) = Un(cosy) = sin y

., n=0,1,2,.... (32)

The first few lowest polynomials are

To(z) = To(cosy) = cos(0y) =1,
Ty (x) = Ti(cosy) = cos(y) =z,
Ty(z) = To(cosy) = cos(2y) = cos?y — sin? y = 2cos?y — 1 = 22 — 1;
Un() = Up(cosy) = —~ = 1,
sin y
in(2
Ui(xz) = Uj(cosy) = M = 2cosy = 2z,
sin y
sin(3 sin(2y) cosy + sin y cos(2
Un(x) = Up(cosy) = S0BY) _ sin(y) cosy +sinycos(2y) _
siny siny

=4cos’y —1=42%—1.
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3.2 Orbit functions of A; and Chebyshev polynomials

We consider the orbit functions of one variable. There is only one simple Lie
algebra of rank 1, namely A;. Our aim is to build the recursion relations in a
way that generalizes to higher rank groups, unlike the standard relations of the
classical theory presented above.

3.2.1 Orbit functions of A; and trigonometric form of T,, and U,,

The orbit of A = mw; has two points for m # 0, namely Wy = {(m), (—m)}. The
orbit of A = 0 has just one point, Wy = {0}.
One-dimensional orbit functions have the form (see (9), (10), (11))

Cy(z) = e2™m2 L= 2MmT — 9 cos(2rma) = 2 cos(my), (33)
where y =2mx, m € 720

Sy(x) = 2mmT_eT2mmE — 9 in(2rma) = 2i sin(my) (34)
for y=2rz, me 72"

Ey\(z) = ™M — y™  where y=e*™® m e Z. (35)

From (33) and (31) it directly follows that polynomials generated from Cp,
functions of A; are doubled Chebyshev polynomials T, of the first kind for
m=20,1,2,....

Analogously from (34) and (32) it follows that polynomials S’g—:’l are Chebyshev
polynomials Uy, of the second kind for m =0,1,2,....

The polynomials generated from FE,, functions of A; form a standard monomial
sequence y™, m = 0,1,2..., which is the basis for the vector space of polynomials.

C- and S-orbit functions are orthogonal on the interval F' = [0, 1] (see (13)
and (14)) which implies the orthogonality of the corresponding polynomials.

3.2.2 Orbit functions of A; and their polynomial form

In this subsection we start a derivation of the A; polynomials in a way which
emphasizes the role of the Lie algebra and, more importantly, in a way that
directly generalizes to simple Lie algebras of any rank n and any type resulting
in polynomials of n variables and of a new type for each algebra. In the present
case of Aj this leads us to a different normalization of the polynomials and their
trigonometric variables than is common for classical Chebyshev polynomials. No
new polynomials emerge than those equivalent to Chebyshev polynomials of the
first and second kinds. Insight is nevertheless gained into the structure of the
problem, which, to us, turned out to be of considerable importance. We are
inclined to consider the Chebyshev polynomials in the form derived here as the
canonical polynomials.

The underlying Lie algebra A; is often denoted sl(2,C) or su(2). In fact this
case is so simple that the presence of the Lie algebras has never been acknowledged.
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Orbit functions of A; are of two types (33) and (34); in particular Cy(x) = 2
and Sp(x) = 0 for all .
The simplest substitution of variables to transform the orbit functions into

polynomials is y = e*™®. Monomials in such a polynomial are y™ and y ™.
Instead we introduce new (‘trigonometric’) variables X and Y as follows:
X := Cy(z)=e>""% e~ 2™ =2 cos(2mz), (36)
Y := S (x)=e*" —e 72 =2} sin(2mx). (37)

We can now start to construct polynomials recursively in the degrees of X and
Y by calculating the products of the appropriate orbit functions. Omitting the
dependence on x from the symbols we have

X2=0y+42 =  (Oy=X?-2,
XCy=C3+X == (3= X3%-3X, (38)
Xcm =CUm+1 + Cm—l — C1m—i-1 = XCm —Cm—1, m2> 3.

Therefore we obtain the following recursive polynomial form of the C-functions
Co=2 C1=X, Cr=X?>-2 (C3=X>-3X, .... (39)
After the substitution z = %X we have
Co=2-1, C1=2z, (9=2(22°-1), C3=2(423-3z2), ....
Hence we conclude that C,,, = 2T, for m=0,1,....

Remark 1. In our opinion the normalization of orbit functions is also more
‘natural’ for the Chebyshev polynomials. For example the equality C3 = Cy + 2
does not hold for T5 and Ty.

Remark 2. Each C), also can be written as a polynomial of degree m in X,
Y and S,,—1. It suffices to consider the products YS,,. For example Cy =
Y2 +2, 03 =YS+ X etc. Equating the polynomials obtained in such a way
with the corresponding polynomials from (38), we obtain a trigonometric identity
for each m. Above we find two ways to write Cy, one from the product X2 and
one from Y?2. Equating the two we get

X2-Y?=4 <= sin®(2rz)+cos’(2mz) =1
because Y is defined in (37) to be purely imaginary.

Just as the polynomials representing C,,, were obtained above, it is possible to
to find polynomial expressions for S, for all m.

Fundamental relations between the S- and C-orbit functions follow from the
properties of the character x,,(z) of the irreducible representation of A; of di-
mension m + 1.
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The character can be written in two ways: as in the Weyl character formula and
also as the sum of appropriate C-functions. Explicitly we have the Ay character:

Sm-i—l (CC)

()= Ca(x)+1 for m even,
Xm —751 (@)

=Cp(2)+Crp—o(x)+ - + {03(37)+Cl (z) for m odd.

We write down a few characters

S1(x) Sa(x)
Ss(z) 2 Sa() 3
= =Co+Ch=X"-1 = =C3+Cy=X°-2X
X2 S\ (2) 2+ Co » X3 S\ (2) 3+C1 :
_ S5() _ _ y4 2
X4 = =C4+Cr+Co=X"-3X"+1,
S1(z)
Again the substitution z = %X transforms these polynomials into the Chebyshev
polynomials of the second kind S%l“ =Up,,m=0,1,.... Indeed
Si(z) Sa(z) Ss(z) 2 Sa(z) 3
=1, =2z, =421, = 82°—4z,
Si(z) Si(z) Si(z) S1(z)

Remark 3. Note that in the character formula we used Cy = 1, while above
(see (11) and (39)) we used Cy = 2. It is just a question of normalization of
orbit functions. For some applications/calculations it is convenient to scale orbit
functions of nongeneric points on the factor equal to the order of the stabilizer of
that point in the Weyl group W (A4,).

4 Orbit functions of A,, and their polynomials

This section proposes two approaches to construct orthogonal polynomials of n
variables based on orbit functions. The first comes from the decomposition of Weyl
orbit products into sums of orbits. Its result is the analog of the trigonometric
form of the Chebyshev polynomials. The second approach is the exponential
substitution in [8].

4.1 Recursive construction

Since the C- and S- functions are defined for A, of any rank n = 1,2,3,..., it
is natural to take C-functions and the ratio of S-functions as multidimensional
generalizations of Chebyshev polynomials of the first and second kinds respectively

Ty(x) = Ca(z), = €R",

Ux(z) :== Sg:fx) ;

where A is one of the dominant weights of A,,.

p=witwr+- 4w, =(1,1,...,1),, z€eR"
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The functions T and Uy can be constructed as polynomials using the recursive
scheme proposed in Section 3.2.2. In the n-dimensional case we start from C-orbit
functions of the fundamental weights,

X1:=0Cy (2), Xo:=0Cu(x), ..., Xp:=0C,,(xr), zeR"

By decomposing the products X;(z)Cx(z), j = 1,2..., into the sum of orbit
functions, we build polynomials for any C- and S-function.

The generic recursion relations are found as the decomposition of the products
Cuw;Clay,an,....an) With ‘sufficiently large’ ay,az,...,a,. Such a recursion relation
has (njl) + 1 terms, where (";rl) is the size of the Weyl orbit of w;.

An efficient way to find the decompositions is to work with products of Weyl
group orbits rather than with orbit functions. Their decomposition has been
studied and many examples have been described in [5]. It is useful to be aware of
the congruence class of each product because all of the orbits in its decomposition
necessarily belong to that class. The congruence number # of an orbit A of A,,
which is also the congruence number of the orbit functions C) and S}, specifies
the class. It is calculated as follows:

n
#(C(al,ag,...,an) (‘r)) = #(S(al,ag,...,an)(x)) = Z kak mod (n + 1) (40)
k=1
In particular each X, where j = 1,2,...,n, is in its own congruence class. During

the multiplication congruence numbers add mod(n + 1).

Recursions and polynomials in two and three variables originating from orbit
functions of the simple Lie algebras Ao, Csy, Go, As, Bs, and C3 are obtained
in [21] and [22].

4.2 Exponential substitution

There is another approach to multivariate orthogonal polynomials which is also
based on orbit functions. Such polynomials can be constructed by the continuous
and invertible change of variables,

y; =€ x, eR, j=1,2,...,n. (41)

Consider an A,, orbit function Cy(z), Sx(z) or Ex(z), in the case that A is given
in the w-basis and z is given in the a-basis. Each of these functions consists of

7 .
summands [] e?™i%  where pu; € Z are coordinates of an orbit point y. Then
j=1
1 .
the summand is transformed by (41) into a monomial of the form [] yf ..
j=1
It turns out that that C- and S-polynomials formed by these monomials are
the special cases of the Macdonald symmetric polynomials, see [21] for details.
Polynomials of two variables obtained from the orbit functions by the substitu-
tion (41) are already described in the literature [13], where they are derived from
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very different considerations. The detailed comparison is made in the following
example.

Example 1. Consider the Ay Weyl orbits of the lower weights (0,m),, (m,0),
and the orbit of the generic point (m1,m2),, m,my, mg € Z>°

mi,ma)t, (=mi,mi+msa)”, (mi+ma, —ma),

—mg,—mi) ", (—m1—m2,m1)+, (mg,—ml—m2)+}.

Suppose x = (x1,x2) is given in the a-basis. Then the orbit functions assume the
forms

—2mimay +e27rim(m1 —x3) +62wim$2

Con =1 Com()=e

)

C(mhmz)(x) _ 627rim1x1€27rim2x2+e—27rim1:c1627ri(m1+m2)x2+
e27rz(m1+m2)ar1e—27rzm2x2 +e—27rzm2x1€—2mm1w2_|_
e—27rz(m1+m2)331 62mm1332 _‘_62mm2z16—27m(m1+m2)z2’ (42)
__ 2mimixy 2mimoxo —2mimix1 27i(m1+ma)T2
S(mlm)(x) =e e —e e2mi( )z
e?wz(m1+m2)x1€—27rzm2x2 _6—2mm2z16—27mm1a:2+

e—27rz(m1+m2)1’162mm1$2 _1_627rzm2m16—27rz(m1+m2)ac2‘

The polynomials e™ and e~ given in (2.6) of [13, ITI] coincide with those in (42)
whenever the correspondence o = 2wz, 7 = 27wxo is made. So both the orbit
functions’ polynomials of Ay and e are orthogonal on the interior of Steiner’s
hypocycloid and the regular tessellation of the plane by equilateral triangles con-
sidered in [13] is the standard tiling of the weight lattice of As. The fundamental
region R of [13] coincides with the fundamental region F'(As2) in our notations.
The corresponding isometry group is the affine Weyl group of As.

Furthermore, continuing the comparison with [13], we point out that orbit
functions are eigenfunctions of the Laplace operator written in the appropriate
basis, e.g. in w-basis (the corresponding eigenvalues bring —472(\, \), where \
is the representative from the dominant Weyl chamber, which labels the orbit
function). This property holds not only for the Lie algebra A,, and not only for
the Laplace operator but also for all simple Lie algebras and for the differential
operators built from the elementary symmetric polynomials, see [8,9].

An independent approach to the polynomials in two variables is proposed in [26]
and the generalization of classical Chebyshev polynomials to the case of several
variables is also presented in [4].
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5 Multivariate exponential functions

In this section we consider one more class of special functions which, as it will be
shown, are closely related to orbit functions of A,. Such a relation allows us to
view orbit functions in the orthonormal basis and to represent them in the form
of determinants and permanents. At the same time we obtain the straightforward
procedure to construct polynomials from multivariate exponential functions.

Definition 4 ([12]). For a fixed point, A = (I1,l2,...,lh+1)e, such that [} > ls >

- 2> lptt, ;g:i lrx = 0, the symmetric multivariate exponential function D)f of
x = (x1,T2,...,Tnt1)e is defined as follows
6271'2'11931 eQﬂ'ille . e27‘ril1xn+1
627ril2m1 627ril2m2 o 627ril2xn+1
D (z) := det™
627riln+1az1 e?ﬂiln+1x2 o 627riln+1xn+1

Here det™ is calculated as a conventional determinant, except that all of its mono-
mial terms are taken with positive sign. It is also called permanent [16] or antide-
terminant.

It was shown in [12] that it suffices to consider Dy (z) on the hyperplane z € H
(see (2)). Furthermore, due to the following property of the permanent

det ™ (ai)T5o1 = Y Q1s(1)2,52) * Gmos(m) = D Gs(1),185(2),2 " * Ls(rm) s

SESm SE€ESm

we have

D;\_(x): Z e2milizs(1y || o 2MilmTs(nt1) Z p2mi(A5(2)) Z 2mi(s(\)@)

sESn+1 SESn+1 SES7L+1

Proposition 1. For all \,x € H C R""! we have the following connection be-
tween the symmetric multivariate exponential functions in n + 1 variables and C
orbit functions of Ap: DY (z) = kC)(z), where k = %, W1 and |W)| are sizes
of the Weyl group and Weyl orbit respectively. In particular for generic points

k=1.

Proof. The proof follows from the definitions of the functions C and Dt (Def-
initions 1 and 4, respectively) and properties of orbit functions formulated in
Section 2.5.2. |

Definition 5 ([12]). For a fixed point A = (I1,ls,...,lh+1)e such that Iy > lo >
n+1

-+ > lpy1 and ) I = 0 the antisymmetric multivariate exponential function Dy
k=1
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of x=(x1,z2,...,2Tnt1)e € H is defined as follows
627ril1:61 627ri11332 o 627rill$n+1
627ril211 627Til2x2 o eQﬂilgxn+1
Dy (x) := det : : : =
e27riln+1x1 627riln+1x2 o eZwiln+1xn+1

= Z (sgn s)ez’ri(s()‘)"”), where “sgn” is the permutation sign.
SESn+1

Proposition 2. For all generic points A € H C R™ we have the connection
Dy (z) = Sx(x).

The antisymmetric multivariate exponential functions, D~ and S orbit func-
tions, equal zero for nongeneric points.

Proof. The proof directly follows from the definitions of functions S and D~
(Definitions 2 and 5, respectively) and properties of S functions formulated in

Section 2.5.2. |
Definition 6 ([7]). The alternating multivariate exponential function, D (x)
for . = (z1,..., Tnt1)e, A= (l1,- .., lnt1)e, is defined as the function

e?m’llxl 6271'1'[1:(:2 . e27ril1xn+1

eQm'lgxl e27ril2m2 . e27ril2mn+1

D (z) == sdet . . . . ,

627riln+1x1 eZm’ln_ng . e27riln+1a:n+1

where Alt,, ;1 is the alternating group (even subgroup of S,11) and

sdet(ezmlj:pk)?;:il:: Z e2mil T (1) | .| 2Tl 1T (0t 1) — Z e2mi(Aw(z))

wEAlty+1 wWEAlty 1
Here (A, z) denotes the scalar product in the (n+ 1)-dimensional Euclidean space.

Note that Alt,, consists of even substitutions of S,, and is usually denoted as
A here we change the notation in order to avoid confusion with the notation
for the simple Lie algebra A,.

It was shown in [7] that it is sufficient to consider the function D! (z) on the
hyperplane H: 1 +z2 + -+ xpy1 = 0 for Asuch that [y > 1o >3 > - > [41.

Alternating multivariate exponential functions are obviously connected with
symmetric and antisymmetric multivariate exponential functions. This connection
is the same as that of the cosine and sine with the exponential function of one
variable D" (z) = (D} () + Dy ().

Proposition 3. For all generic points A € H C R, the following relation be-
tween the alternate multivariate exponential functions D™ and E-orbit functions
of Ay, holds true: DY (z) = E\(z).

For nongeneric points \, we have Ex(x) = C\(x) and therefore Ey(x) =

kDY (z), where k = %
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Proof. The proof directly follows from Definitions 3 and 6, from the relation £ =
%(C’ +5) and from the properties of orbit functions formulated in Section 2.5.2. W

6 Concluding remarks

1. Consequences of the identification of W-invariant orbit functions of compact
simple Lie groups and multivariable Chebyshev polynomials merit further
exploitation. Some of the properties of orbit functions translate readily into
properties of Chebyshev polynomials of many variables. However, there
are other properties the discovery of which from the theory of polynomials
is difficult to imagine. As an example, consider the decomposition of the
Chebyshev polynomial of the second kind into the sum of Chebyshev poly-
nomials of the first kind. In one variable it is a familiar problem that can
be solved by elementary means. For two and more variables the problem
turns out to be equivalent to a more general question about representations
of simple Lie groups. In general the coefficients of that sum are the dom-
inant weight multiplicities. Again simple specific cases can be computed,
but a sophisticated algorithm is required to deal with it in general [19]. In
order to provide a solution for such a problem extensive tables have been
prepared [1] (see also references therein).

2. Our approach to the derivation of multidimensional orthogonal polynomials
hinges on the knowledge of appropriate recursion relations. The basic math-
ematical property underlying the existence of the recursion relation is the
complete decomposability of products of the orbit functions. Numerous ex-
amples of the decompositions of products of orbit functions, involving also
other Lie groups than SU(n), were shown elsewhere [8,9]. An equivalent
problem is the decomposition of products of Weyl group orbits [5].

3. Possibility to discretize the polynomials is a consequence of the known dis-
cretization of orbit functions. For orbit functions it is a simpler problem in
that it is carried out in the real Euclidean space R™. In principle it carries
over to the polynomials, but variables of the polynomials happen to be on
the maximal torus of the underlying Lie group. Only in the case of Ay are
the variables are (the imaginary unit multiplying the S-functions can be
normalized away). For A, with n > 1 the functions are complex valued.
Practical aspects of discretization deserve to be thoroughly investigated.
Several important results are already obtained in [6] and [20].

4. For simplicity of formulation we insisted throughout this paper that the
underlying Lie group be simple. The extension to compact semisimple Lie
group and their Lie algebras is straightforward. Orbit functions are products
of orbit functions of simple constituents and different types of orbit functions
can be mixed.
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5. Polynomials formed from FE-functions by the same substitution of variables
should be equally interesting once n > 1. We know of no analogs of such
polynomials in the standard theory of polynomials with more than one vari-
able. Intuitively they would be formed as ‘halves’ of Chebyshev polynomials
although their domain of orthogonality is twice as large as that of Chebyshev
polynomials [11].

6. Notions of multivariate trigonometric functions [10] lead us to the idea of
new, yet to be defined, classes of W-orbit functions based on trigonometric
sine and cosine functions. From another point of view it is possible to
introduce new orbit functions in the similar “exponential” manner, but the
signs of summands should be chosen in such a way that linear combination
of new orbit functions produce multivariate trigonometric functions.

7. Analogs of orbit functions of Weyl groups can be introduced also for the
finite Coxeter groups that are not Weyl groups of a simple Lie algebra.
Many of the properties of orbit functions extend to these cases. Only their
orthogonality, continuous or discrete, has not been shown so far.
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Group classification of systems of nonlinear equations which model a general-
ized axion electrodynamics is carried out. The related conservation laws are
discussed. Using the Inonii—Wigner contraction the nonrelativistic limit of
equations of the standard axion electrodynamics is found. An extended class
of closed-form solutions for the electromagnetic and axionic fields is presented.
It is shown that in spite of the manifest relativistic invariance of the theory
such solutions can describe propagation with velocities faster than the velocity
of light.

1 Introduction

Group analysis (GA) of differential equations is a nice and fundamental field
including a number of internal problems, but maybe its main value consists in the
powerful tools presented for construction of solutions of complicated nonlinear
problems. Sometimes the GA looks as the only hope to develop the complicated
physical (chemical, biological, ...) problem and it is not a pure accident that the
classical book of Petrov “New Methods in the General Theory of Relativity” [1]
includes the analysis of the low-dimensional Lie algebras and their applications
to construction of solutions of partial differential equations (PDEs).

In this paper we present some results obtained with application of the Lie
theory to the complicated physical model called axion electrodynamics. We start
with physical motivations for this research.

Axions are hypotetical particles belonging to the main candidates to constitute
dark matter, see, e.g. [2] and references therein. Additional arguments to investi-
gate axionic theories appeared in solid states physics. It happens that the interac-
tion terms of axionic type appear in the theoretical description of crystalline solids
called topological insulators [3]. In addition the axionic hypothesis makes it possi-
ble to resolve a fundamental problem of quantum chromodynamics connected with
its prediction of the CP symmetry violation in interquark interactions which never
was observed experimentally [4-6]. Thus it is interesting to make group analysis
of axionic theories which are requested in three fundamental branches of physics.
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We present two more motivations which are very inspiring for us. Recently
we have found a new solvable model for neutral Dirac fermions [7] and indicate
existence of other new integrable models for such particles, but these models
involve an external electromagnetic (EM) field which does not satisfy the Maxwell
equations with physically reasonable currents. However, these fields satisfy the
equations of axion electrodynamics.

Some time ago we described the finite-dimensional indecomposable vector rep-
resentations of the homogeneous Galilei group and constructed Lagrangians which
admit the corresponding symmetries [8-10]. Axion electrodynamics appears pre-
cisely to be the relativistic counterpart of some of our models.

In addition axion electrodynamics is a nice and rather complicated mathemat-
ical model which certainly needs good group-theoretical grounds. In the present
paper we are trying to create such grounds and also to find an extended class of
closed-form solutions for the equations of axion electrodynamics.

2 Equations of axion electrodynamics

We start with the Lagrangian of axion electrodynamics:

1 1
sz [
bup 4

v 1 [y
5 F, F" —|——0FWF” + (0). (1)

8M

Here F},, is the vector-potential of the electromagnetic field, Fw/ = %Sw,ng pa

pu = 0u0, 0 is the potential of the pseudoscalar axion field, ¢(6) is a function of

# which usually is supposed to be linear and M is a dimensionless constant.
Setting in (1) § = 0 we obtain the Lagrangian for the Maxwell field. We see that

the axion theory is a nonlinear generalization of Maxwell electrodynamics, which

includes an additional (pseudo)scalar axion field, 6. The interaction Lagrangian

1 ~
Lint - WQF/J,VFHV

is a (143)-dimensional version of the Shern-Simon topological term [11].
We write the Euler—Lagrange equations corresponding to Lagrangian (1):

1 1
E=—p-B. §E- B=—(pB E
v P B GE-Vx M(po +pxE),

V-B=0, 9B+VxE=0, (2)
1
0 =——E - B+ F 3
e BHE (3)
where

B={B'B? B, E={FE?F%, E“=F% B°=F%
O o a0

89’ 80 \Y ) 8 8.171" Po ax07 P \Y
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In the Lh.s. of (2) we recognize the standard Maxwellian terms. However, in
contrast to the usual electrodynamics there are nonlinear interaction terms in the
r.hes. of (2) and (3).

We consider also the system

1 1
VE:MPE, aOE_VXB:M(pOE—pXB),

1
V-B=0, B+VxE=0, DQ:M(E2—B2)+F (4)

which models generalized axion electrodynamics with a scalar axionic field (we
recall that in system (2)—(3) this field was pseudoscalar). Only equations (2)—(4)
with an arbitrary (in general nonlinear) function F'(#) is the main subject of the
group classification.

3 Group classification of equations (2)—(3)

Equation (3) includes the free element, F'(f), so we can expect that symmetries
of system (2)—(3) depend upon the explicit form of F.

In accordance to the classical Lie algorithm (refer, e.g., to [12]) to find sym-
metries of system (2)—(3) w.r.t. continuous groups of transformations B — B/,

E—FE,0—0, v, — 2, we consider the infinitesimal operator

Q=¢&"0, + 1 0p; + (! 0gs + 0y, (5)
and its prolongation

.0 ) .9 .
=Q+ 0’ — + ! — +0i0, +mit’ — + G’ —
Q=0 +n OB] ¢ OF] 0i0p; + Mik o8], Gik oF],

+ O'Z‘kagik . (6)

The invariance condition for system (2), (3) has the form: Q9)F|r=0 = 0, where
F is the manifold defined by this system. Integrating the system of determining
equations obtained (see [13] for details) we find that for F' arbitrary the generator
@ should be a linear combination of the following operators:

PO = 807 Pa = Ua,
Jab = £q0p — 20y + B“@Bb — BbaBa + E“&Eb — EbaEa, (7)
Joa = 2004 + 2,00 + 5abc(EbaBC - BbaEC)>

where €4 is the unit antisymmetric tensor, a,b,c =1, 2, 3.

Operators (7) form a basis of the Lie algebra p(1,3) of the Poincaré group
P(1,3) which is is the maximal continuous invariance group of system (2)—(3)
with an arbitrary function F(0).

This symmetry is more extensive provided function F' has one of the following
particular forms: F' =0, F = c or F' = bexp(af), where ¢, a and b are nonzero
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constants. The corresponding additional elements of the invariance algebra are

Py =0y if F(0) =c,
X =aD - P, if  F(0) = be®, (8)
Py =0y, D =ux¢0y+ x;0; — BiﬁBi — E’OEi if F(@) =0.

Operator P, generates shifts of the dependent variable 6, D is the dilatation
operator generating a consistent scaling of dependent and independent variables
and X generates the simultaneous shift and scaling.

Finally the group classification of equations (4) gives the same results: this
system is invariant w.r.t. the Poincaré group for arbitrary F. System (4) admits
more extensive symmetry in the cases enumerated in (8).

4 Nonrelativistic limit

The definition of nonrelativistic limit is not a simple problem in general and in
the case of theories of massless fields in particular. Such limit is not unique and
well defined in general.

To find a nonrelativistic limit of equations (2) and (3) we use the Inénii-Wigner
contraction [14]. Firstly we denote 1/M = k and rewrite equations (3) with /' =0
in the equivalent form

aopo_v'p:_’%E'Ba (9)
aop — Vp() = 0, (10)
V x p=0. (11)

Equations (9)—(11) are equivalent to equation (3) together with the definitions
0pf = pg and VO = p.

Prolonging the basis elements (7) to the first derivatives of § we obtain gener-
ators of the Poincaré group for system (2), (9)—(11):

PO - 807 Pa = Ua,
Jab = TaOp — 2400 + B0 — B*0pa + E“Opy — E®Opa + p"0yp — p'Ope,
Joa = 2004 + 400 + Eabe (E'bch — B”@Ec) + poapa — paapo. (12)

The Inénii—Wigner contraction consists of transformation to a new basis Jg;, —
Japs Joa — €Joq, where € is a small parameter associated with the inverse speed
of light. In addition the dependent and independent variables in (12) undergo
the invertible transformations E* — E'*, B® — B'®, pt — p/*, where the primed
quantities are functions of the initial ones and of ¢, and z# — 2, where 2/ =

(20, 2t 22, 23, €). For representation (12) this transformation looks as [13]:

/ /
Ty =t=cxg, T, = Tq,
!/

13
(E+p), E=c'(p—E), B =B, p)=npo (13)

p:2
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and so Jp = £0; and O, = 0,/ . As a result the system (2), (9)-(10) is reduced to
the following form [13]:

opy—V-E +kB -E' =0, 9p'+VxB +r(pyB +p' xE)=0,
V-p+kp-B' =0, V- -B' =0, (14)
OB +VxE =0, op'—Vp,=0, Vxp =0

and p° = 9,0, p' = V¢

Equations (14) present the nonrelativistic limit of system (2), (9)—(10). These
equations coincide with the Galilei invariant system for an indecomposable ten-
component field obtained earlier [10].

5 Closed-form solutions

5.1 Three-dimensional subalgebras of p(1,3)

To generate solutions of system (2)—(3) we can exploit its invariance w.r.t. the
Poincaré group. To do this we need the three-dimensional subalgebras of alge-
bra p(1,3) which give rise to reductions of this system to ordinary differential
equations.

The subalgebras of algebra p(1,3) defined up to the group of internal auto-
morphisms has been found for the first time by the Belorussian mathematician
Bel’ko [15]. We use a more advanced classification of these subalgebras pro-
posed by Patera, Winternitz and Zassenhaus [16] who proved that there exist 30

nonequivalent three-dimensional subalgebras A, As, ..., Asg of the algebra p(1,3)
which we present in the following formulae by specifying their basis elements:

Ar: (Py, P, Pa); Ag: (Py, Py, Ps); Asz: (Py— P3, P, Py);

Ay (Jos, P, Pa);  As: (Joz, Po— P3, P1);  As: (Joz + aPe, Py, P3);

A7 (Jos+ aPe, Py — P3, Py); Ag: (J12, Py, Ps);

Ag: <J12 +OZP(),P1,P2> A102 <J12+04P3,P1,P2>‘

Ayr: (Ji2 — Py + P3, P, Py); A1z (G, Py — P3, Py);

Aiz: (Gy,Py— Ps3, P + aPy); Ay (G + Pg, Py — P3, Py);

Ais: (G1 — Py, Py — P3, Py); Ag: (G1+ Py, PL+ aPy, Py — P3); (15)

A7 <J03 + aJ12,P0,P3> Aig: <04J03 + J12,P1,P2>

Arg: (J12, Jos, Py — Ps); Az: (G1,G2, Py — P3);

Asg1: (G + Po,Go + aPy + Py, Py — Ps);

Agg: (G1,Ga+ P+ P, Py — Ps); Agz: (G1,G2+ Py, Py — P3);

Aoy <G J03,P2> Ags: <J()3+CYP1 —i—ﬁPQ,Gl,PO —P3>;

Agg: (Ji2 — Py + P3,G1, Go); Ag7: (Joz + adi2, G1, Ga);

Asg: (G1,Ga, J12); Asg: (Jor, Jo2, J12); Asg: (2, Ja3, J31).

Here P, and J,, are generators of the Poincaré group which in our case are given
by relations (7), G = Jo1 — Ji3, G2 = Jo2 — Jos, a and (3 are arbitrary parameters.
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Using subalgebras (15) we can deduce solutions for system (2)—(3). Note that
to make an effective reduction using the Lie algorithm we can use only such
subalgebras the basis elements of which satisfy the transversality condition, i.e.,
their rank of representation coincides with the rank of representation restricted
to space of independent variables [12]. This condition is satisfied by basis element
of the algebras A; — As7, but is not satisfied by Aag, Aog, A3y and Ag with
a = 0. Nevertheless the latter symmetries also can be used to generate solutions
in frames of the weak transversality approach discussed by Grundland, Tempesta
and Winternitz [17].

The completed list of reductions can be found in [13]. We note that there
appear the following types of reductions:

e Reductions to algebraic equations which are induced by algebras A1, Ajo,
Aat, Aza, Agz and Agg;

e Reductions to linear ODE induced by A, Ao, As, As, A7, A5, Aig and
Aas;

e Reductions to nonlinear ODE induced by Ag (a # 0), Ag (o # 0), A1o, Ais,
Ay, Ar7 and Agg;

e Reductions to PDE induced by Ag (o = 0), Agg, Agg and Asg.

Reductions to algebraic or linear equations make it possible to find closed-form
solutions of equations (2) and (3) while a part of the reduced nonlinear equations
is not integrable by quadratures. Nevertheless it is possible to find particular
solutions for any type of the reductions.

In this paper we present solutions of equations (2) and (3) which can be ob-
tained using reductions to algebraic equations and some particular solutions for
the other reductions. The complete list of solutions obtained via reductions in-
duced by three-dimensional subalgebras of p(1,3) can be found in preprint [13].

5.2 Plane-wave solutions

Firstly we note that by scaling the dependent variables we can reduce the con-
stant M in (2)—(3) to unity. Thus without loss of generality we set

M=1 (16)

and search for solutions of system (2)—(3), (16). To obtain solutions for M arbi-
trary it will be sufficient simply to multiply by M all vectors B, E and scalars 6
presented in the following formulae.

We find solutions which are invariant w.r.t. the subalgebras A;, As and As.
Basis elements of these subalgebras can be represented in the following unified
form

A: <P1,P2,/€P0+€P3>, (17)

where € and k are parameters. Indeed for ¢ = —k, 2 < k? or k? < &2 algebra (17)
is equivalent to As, A; or As, respectively.
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To find the related invariant solutions it is necessary to change variables in
(2)-(3) by invariants of the group the generators of which are given in (17).
These invariants are E,, B, 0 (a = 1,2,3) and the only independent variable
w = exg — kxs. Thus we search for solutions of (2)—(3) which are functions of w.
As a result we reduce equations (2) to the following system:

Bg = O, Eg = éBg, kEQ = —EBl, k‘El = EBQ,

. . . . . . 18

eF1 — kBy = 9<kE2 + EBl), kB1 +¢eby = H(EBQ — k‘El), ( )

where By = B3 /0w.
The system (18) is easily integrated. For e2 = k% and €2 # k? we obtain

Fi = %B2 = @1, FEy = —%Bl = 2, E3 = el + b, Bg =e (19)
and

Bi1 = ke10 — kby +cea, By = kes) — kby —cey, B3 =es, (20)

E{ =ceof —cby — key, FEy = —ce1l + eby — keo,

E3 = 63(9 - b3(€2 - k2) (21)

correspondingly. Here ¢; and @9 are arbitrary functions of w while e, b, b, and
eq (@ =1,2,3) are constants of integration.

If (19) is valid, then it follows from (3) that the corresponding equation (3) is
reduced to the form 20 = F(6) — be, i.e., 6 is proportional to F () — be if e # 0.
If both e and F' equal to zero, then 6 is an arbitrary function of w.

For €2 # k? solutions of (18) have the following form:

2

es3 F

- 5 o
9__(61+62+52—/{?2>6+C+(£52—]<52)’ (22)
where ¢ = e1b1 + eabs + e3bs.
If F=0or F=-—m20, then (22) is reduced to the linear equation:
0 =—ab +c, (23)

where a = €3 + €5 + (€3 + m?)/(e? — k?).
We present bounded solutions of equation (23) corresponding to a > 0 and
c=0:

0 =a,cos®+b,sind, w=~éxg— ki, (24)

where we denote a = p?, & = pe, k= pk, a, and b, are arbitrary constants.

Equations (20), (24) give plane-wave solutions of system (2)—(3). The corre-
sponding dispersive relations are

2 2
. ~ es +m
62—]{52+ 3 3

25
1—6%—6 ( )
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Equation (22) can be solved in closed form for various functions F(f). In
particular for F' = 3\0? we obtain a solitary-wave solution:

2(e? — k?)

0= 3

tanh? (kxs — exg + b), (26)

where b is a constant of integration. The related parameters ¢, k and c¢ in (22)
should satisfy the conditions

SICI ‘ (27)

T = _— C = .

8(1 —e? —e2)’ 2(1 —e? —e2)\

For F = )\ and ¢ = 0 there exists a shock-wave solution
2 _ k2
0=1/° tanh (exg — kx3) (28)
2\

which has to be completed by the following relation:

e =K%+ L (29)
B 2(1—e? —ed)

In an analogous (but as a rule much more complicated) way we can find so-
lutions corresponding to other subalgebras (15). We present one more particular
solution of equations (2)—(3) with M = 1 and F = 0, obtained with using of
algebras Ag and Aqg:

Ey = cpecos(exg + kx1) + diesin(exg + kxy),

E5 = cresin(exg + k) — die cos(exg + k),

By = cpksin(exg + kxy) — dik cos(exg + k1), (30)
Bs = —cyk cos(exg + kx1) — dgk sin(exg + kx1),

FEi=e B =0, 0=axy+vr +cs,

where e, ¢, di, €, k, @ and v are arbitrary constants restricted by the constraint
e — k? = ve — ak. (31)

If ¢ = k, then a = v and all solutions (30) depend upon the light cone variable
xo — x1. However, for ¢ # k we have plane-wave solutions depending upon two
different plane-wave variables, namely exg + kx1 and axg + vr.

We note that for fixed parameters o and v solutions (30) for £, and B, satisfy
the superposition principle, i.e., a sum of solutions with different ¢, k, ¢, and dy,
is also a solution of equations (2)—(3), (16) with F' = 0. Thus it is possible to sum
(integrate) solutions (30) for E, and B, over k treating cj and dy, as functions of k.
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5.3 Radial and planar solutions

Using invariants of the subalgebra Asp we can find the solution for equations
(2)-(3), (16) with FF = —m?26 in the following form:

5% _ 40z
a—T37 a — 7"3’

0=c sin(mmo)e*%, (32)

where ¢; and ¢ are arbitrary parameters. The components of magnetic field B,
are singular at » = 0 while F, and 0 are bounded for 0 < r < cc.

We present solutions which depend upon two spatial variables, but are rather
similar to the three-dimensional Coulombic field. We denote x = \/a;% + x% Then
functions

ElZ—BQZ%, Fs =0, BlZEQZ%, Bs =10, 0 = arctan <l‘2>7 (33)
X X

I

where b is a number, solve equations (2) and (3) with M =1 and F = 0.

A pecularity of the planar solutions (33) is that the related electric field de-
creases with an increase of x as the field of a point charge in the three-dimensional
space.

We write one more solution of equations (2), (3) with F' = 0:

Bl = :1:121:37 BQ = x22x37 B3 = _%7 9 = arctan <x> ? (34)
r2r T r 3
T

Fa=13, a=123, (35)

where r = \/2% + 23 + 23, * = \/x% + 3. The electric field (35) is directed like

the three-dimensional field of point charge, but its strength is proportional to 1/r
instead of 1/r2.
We note that functions (34), (35) also solve equations (4) with x = 1, F' = 0.
One more stationary solution for these equations can be written as
ZLq
E,=—, By=b,, 0=Inr, (36)
r
where b, are constants satisfying the condition b? + b3 + b2 = 1.
Functions (36) solve equations (4) with F'=0 for 0 < r < oo.

6 Solutions with arbitrary functions

Solutions considered above include arbitrary parameters the number of which can
be extended by application of Lorentz transformations. Here we present a class
of solutions depending upon arbitrary functions. This class covers all reductions
which can be obtained using subalgebras Ajo—-A14 and Asp—Ass.
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We define
By = By = ¢1(21, 22,w0) — 2191(w),
By = —Ey = a(21, 22, w) + @1 (P2(w) — sol(w)é(w))v (37)
By = p1(w), E3=pa(w),

where @1, o and 1, 1o are functions of w = xg + x3 and x1, T2, w, respectively,
and

w1¥2 . .
0=— e if  m? #0, 0=wp3(w), @rp2=0 if m? = 0. (38)
Up to the restriction present in (38) functions ¢1, @2 and ¢3 are arbitrary
while ¢; and 1o should satisfy the Cauchy-Riemann condition with respect to
the variables 1 and xo:

O + oo =0, O1ha — Dayhy = 0. (39)

It is easily to verify that Ansatz (37)—(38) does satisfy equations (2)—(3). Thus
any solution of the Cauchy—Riemann equations (39) depending upon the param-
eter w and three arbitrary functions ¢ (w), v2(w), ¢3(w) satisfying (38) give rise
to solution (37) of system (2)—(3).

7 Discussion

Thus we present the results of the group classification of possible generalizations
of axion electrodynamics the Lagrangian of which includes an arbitrary function
of #. In accordance with our analysis the Poincaré invariance is the maximal
symmetry of the standard axion electrodynamics. In addition we find three cases
when the theory admits more extensive symmetry, see equations (8). These results
form certain group-theoretical grounds for constructing various axionic models.

The second goal of this paper was to find a correct nonrelativistic limit of
equations of axion electrodynamics. As a result we prove that the limiting case of
these equations is nothing but the Galilei-invariant system obtained earlier in [10].

At the third place we find families of closed-form solutions of equations of axion
electrodynamics using invariants of three-parameter subgroups of the Poincaré
group. Among them are solutions including sets of arbitrary parameters and
arbitrary functions as well. In addition it is possible to generate more extensive
families of solutions by applying inhomogeneous Lorentz transformations.

Except the particular examples (34)-(36) we did not discuss solutions for the
system (4) which has the same symmetries as (2), (3). We note that reductions of
these equations can be made in a very straightforward way. Indeed, making the
gauge transformation E, — e’E, and B, — ¢’B,, we can reduce these equations
to a system including the Maxwell equation for the electromagnetic field in a
vacuum and the following equation:

00 = k(B2 —EY)e ¥ + . (40)
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Since reductions of the free Maxwell equations using three-dimensional subalge-
bras of p(1,3) have been done in paper [18], to find the related solutions for system
(4) it is sufficient to solve equation (40) with B and E being the closed-form so-
lutions found in [18].

Some of the solutions, especially those which include arbitrary functions or,
like (30), satisfy the superposition principle, are good candidates to solve various
initial- and boundary-value problems in axion electrodynamics. We apply the
solutions found to demonstrate a specific property of the models discussed.

We consider in more detail plane-wave solutions found in Section 5.2, namely,
the solutions given by equations (20), (24) and (30).

Solutions (24) describe oscillating waves moving along the third coordinate
axis. Using the corresponding dispersion relation (25) we can find the corre-
sponding group velocity V; which is equal to the derivative of & w.r.t. /;:, ie.,

1 e3 +m?
V,=——, where §=—3 —__.
VIS (1—ef —e3)k?

For fixed e; and es the parameter ¢ is either positive or negative. In the latter
case solutions (24) describe the waves which propagate faster than the velocity of
light (remember that we use the Heaviside units in which the velocity of light is
equal to 1). These solutions are smooth and bounded functions which correspond
to positive definite and bounded energy density which is defined by the following
relation [13]:

(41)

1
T% = J(B* + B* + p + %) + V(0) (42)
(in our case V(#) = 26?). Thus we can conclude that the tachyon modes are
natural constituents of the axion electrodynamics.
Analogously considering solutions (30) we deal with the dispersion relations
(31). The corresponding group velocity is given by relation (41), where

1/2—062

O Gh o

Thus we again can conclude that the axion electrodynamics admits bounded and
smooth solutions propagating faster thnn light. This conclusion is correct in
the case for which the arbitrary function F(6) is nonlinear, in particular, for
F(0) = 2002, A < 0. The corresponding acausal solutions can be chosen in the
form (20), (26) with e? + €3 > 1.

We believe that the closed-form solutions presented in Sections 5 and 6 can find
various applications in axion electrodynamics. In particular solutions, which cor-
respond to the algebras Ag, A1, A17, A1g and Asg, generate well-visible dynamical
contributions to the axion mass. In addition, as was indicated in [7], the vectors of
the electric and magnetic fields described by relations (33) give rise to an exactly
solvable Dirac equation for a charged particle anomalously interacting with these
fields. We plan to present elsewhere the detailed analysis of the solutions obtained.
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A 2+1-dimensional system governing rotating homentropic magnetogasdynam-
ics with a parabolic gas law is shown to admit an elliptic vortex ansatz deter-
mined by an eight-dimensional nonlinear dynamical system with underlying in-
tegrable Ermakov—Ray—Reid structure. A novel magnetogasdynamic analogue
of the pulsrodon of shallow water f-plane theory is isolated thereby.

1 Introduction

In general, the nonlinear Lundquist magnetohydrodynamics (mhd) equations are
analytically intractable [1]. However, under certain physically acceptable approx-
imations, reductions have been made to canonical equations of soliton theory.
Thus, in particular, recent work has established that the uniaxial propagation of
magneto-acoustic waves in a cold plasma subject to a purely transverse magnetic
field may be modelled by the integrable resonant nonlinear Schréodinger (NLS)
equation [2]. In [3-5] an anholonomic geometric formalism, originally used in a
magnetohydrodynamics context in [6] was adapted to obtain reduction of a steady
spatial mhd system to an in integrable Pohlmeyer—Regge-Lund model subject to
a volume-preserving constraint. Novel Bernoulli-type integrals of motion for cer-
tain planar mhd systems have also recently been shown to provide a means to
construct exact solutions [7].

Integrable reductions via approximation such as in the original study of interac-
tion processes in collisionless plasma by Zabusky and Kruskal [8] are well-known.
The established methods of modern soliton theory such as the Inverse Scattering
Transform and invariance under Bécklund transformations are then available (see
e.g. [9,10]). In general, in the absence of approximation, Lie group methods may
be applied in a systematic manner to isolate substitution principles and privileged
symmetry reductions corresponding to restricted classes of exact solutions of the
mhd equations [11-14].

In [15-17], Neukirch et al. introduced a novel solution procedure in which the
nonlinear acceleration terms in the governing Lundquist momentum equations ei-
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ther vanish or, more generally, are assumed to be conservative. Here, an approach
to a 2+1-dimensional mhd system is adopted which has its roots in classical work
in hydrodynamics of Goldsbrough [18] wherein a class of exact elliptical vortex
solutions were constructed in a study of tidal oscillations in an elliptical basin.
This work, in turn, is related to that of Kirchoff [19] on vortex structures in the
classical 2+1-dimensional Euler system. In the present work, a procedure devel-
oped in [20] in an oceanographic elliptic warm-core eddy context is adapted to
analyse a 2+1-dimensional magnetohydrodynamic system of the type investigated
in [17]. An elliptical vortex ansatz is introduced and reduction obtained thereby
to an eight-dimensional nonlinear dynamical system. Time-modulated physical
variables are introduced to reduce the system to a form amenable to exact so-
lution, generally, in terms of an elliptic integral representation. In addition, a
magnetogasdynamic analogue of the pulsrodon of [20] is isolated. Moreover, the
mhd system is shown to have remarkable underlying Hamiltonian structure of
Ermakov—Ray—Reid type (see e.g. [21-25]). Nonlinear coupled systems of the lat-
ter type have arisen extensively in optics in the description of elliptic Gaussian
beam propagation via paraxial approximation [26-33|. They are distinguished by
their admittance of a novel integral of motion, namely the Ray—Reid invariant.
The Hamiltonian nature of the Ermakov-Ray—Reid system underlying the present
2+1-dimensional magnetogasdynamic system is established.

2 The magnetogasdynamic system

Here, we consider the rotating 2+1-dimensional homentropic magnetogasdynamic
system

Py aiv(pa) =0, 1)
0 1
ﬁ+q-Vq—ﬁcurlHXH—}—f(kxq)—l-pr:O, (2)
ot P P

divH =0, (3)
oH

e curl(q x H) (4)

with purely transverse magnetic field
H = hk ()

and where the parabolic pressure-density law p = po + €p?, € > 0 is adopted.
The latter law has previously arisen in astrophysical contexts (see e.g. [34]). In
the above, the magneto-gas density p(x,t), pressure p(x,t) and H(x,t) are all
assumed to be dependent only on x, y and ¢. It is noted that the magnetic
induction equation (3) holds identically for the representation (5).

Insertion of (5) into Faraday’s law (4) produces

oh )
gr + div(hq) = 0,
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whence, in view of the continuity equation (1), we set h = A\p, A € R. Accordingly,
the system reduces to consideration of

q

5 +q.Vq+ f(k x q) + (26 + pA?)Vp = 0.

9 | . _
N + div(pq) = 0,

This system is in direct analogy with the shallow water f-plane system [20]. Here,
an elliptic vortex type ansatz is introduced with

q = L(t)x + M(?), (6)
p=[x"E(t)x+ ho(t)] /(2¢ + pX?), 2e+ pA* £ 0, (7)
_ [ v—a(?)
X_<y—p(t)> ®)
where

vt mo ) MG ) ==(00 &) @

Insertion of the ansatz (6)—(9) into the continuity equation yields

a 3u1 + vo 2v9 0 a
+ Uug 2(u1 + ’UQ) U1 b =0, (10)
0 2us9 u1 + 3vo c

together with
ho = —(U1 + Ug)ho. (11)

Substitution into the momentum equation gives

Uy up a

’[Lg LT —fI u9 b .

o | ( ALt ) | T | T (12)
() V9 c

augmented by the auxiliary equations

p+fi=0, 4+ fp=0. (13)

In the sequel, it proves convenient to proceed in terms of new variables

1 1 1
G=u +v2, Gp= 5(01 —ug), Gg = 5(01 +ug), Gn = 5(161 —v2),
1 (14)
B=a+c¢, Bs=b, By =—=(a—2c).

2

Here, G and Gp represent, in turn, the divergence and spin of the velocity field,
while Gg and Gy represent shear and normal deformation rates.
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On use of the expressions (14), the system (10)—(11) together with (12) pro-
duces an eight-dimensional nonlinear dynamical system in {B, Bg, By, G, Gg,
Gr, Gn, ho}, namely:

ho +hoG =0, B+ 2[BG +2(ByGy + BsGs)] =0,
Bs +2BsG + GsB — 2BNGR = 0,
By 4+ 2BNG + GNB + 2BsGr = 0,

. (15)

G+G?/2+2(GX +GE —G%) —2fGr+ 2B =0,

Gr+GGr+ fG/2=0, Gn+GGy — fGg+ 2By =0,

Gs+ GGg + fGN + 2Bg = 0.
If we now introduce 2 via

20)

G=-1 (16)

then (15)g and (15);, yield, in turn,
1 -2
GR + if = COQ y (17)

and hg = 1272, where ¢, ¢ are arbitrary constants of integration.
New modulated variables are now introduced according to

B =B, Bs=0'Bg, By = Q'By, Gs = 02Ggs, Gy = P*Gn (18)
whence the system (15) reduces to

B+ 4(BnGy + BsGs) /02 = 0, (19)

Bs+ (BGs — 2¢yBy) /9% + fBy =0, (20)

Bn + (BGy + 2¢0Bs)/Q2 — fBs = 0, (21)

Gy — fGs+ 2By /9% =0, (22)

Gs+ fGn +2Bs/Q% =0, (23)

together with

.. 2 — — —
Q3Q+fZQ4—cg+G?V+G§+B:O. (24)
Combination of (20) and (21) with use of (19) produces the integral of motion
_ _ B2
B% + BY — o~ an (25)

while (22) and (23) together give a further integral of motion
G%+ Gy — B = cm, (26)

where cr1, i1 are constants of integration.
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3 A parametrisation

The integrals of motion (25) and (26) may be conveniently parametrised, in turn,
according to

_ 1_ _ 1_
Bg =+ + - B2 t), By==* + —B2sin ¢(t),
S Vet g cos p(t) N ant g sin ¢(2) (27)
+

Gs = +\/em + Bsin0(t), Gy = +\/em + Beos(t).

Here, signs in (27) will be adopted which are compatible with the subsequent
construction of pulsrodon-type solutions whence, we set

_ 1_ _ 1_

Bg = —/cp + ZBQ cosp(t), By = —/cn+ ZBQ sin ¢(t),

és = —1/ CIII+BSin9(t), GN =t/ CHI+BCOSQ(7§).
Substitution of the parametrisation (28) into (19) yields

R — _
B+m\/CII+B2/4\/CIH+Bsm(07¢)):O, (29)

while conditions (20) and (21) reduce to the single requirement

Vot B2/a [ 52 = | = o Ve Beosto - o) =0 (30)

(28)

and similarly, conditions (22), (23) produce the single additional condition

\/CHI+B|:f—9i| —é\/cn—&—BQ/élcos(e—gb):O. (31)

Two relations which are key to the subsequent development and which may be
established by appeal to system (15) are now recorded:

Theorem 1.

M = —-3GM, Q= -3GQ, (32)

M:CL<U2—£>+b(v2_u1)_c<vl+£>7

Q= —a(u% + U%) + 2b(urug + vivg) — c(u% + U%) + 4N

where

and /\ = ac — b2.
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Corollary 1. On use of (16) and (14), it is seen that
M=y Q=cQ" (33)

where

M:2(BNG5—BSGN)—B<£+GR> , (34)
Q = ~B(G} + G4 + G} + 1G7) + 4CR(BNGs — BsG)
+2G(BsGgs + BNGn) + 44,
and cry, cy are arbitrary constants of integration.
In particular, the relations (17), (33) and (34) show that
coB = —crv +2(ByGs — BsGy)
whence one obtains:

Corollary 2.

coB = —etv + 24/ (Ct + B2/4) (et + B) cos(8 — 6). (35)

Elimination of cos(6 — ¢) between (35) and (30), (31) in turn, yields

. 1 B CoB—i—CIV
b=1+ g |2t g 2,
(CII‘FT)

and

5 _ i (C()B + CI\/)
o=1 Q% (e + B) (37)

It remains to consider the nonlinear equation (24) for €2, namely
3¢ L 1o B_ 2
QQ—i—ZQ +em+2B—c¢p=0 (38)

If B = A+ puQ*, then (38) reduces to the classical Steen-Ermakov equation [35,36]
with explicit solution given via its well-known nonlinear superposition principle.
In general, use of Theorem 1 shows that

(°B) + f2Q?B = —2(Q + fM)Q = ~2(cy + fa)
whence,

025 cyicos ft + eyisin ft —2(ev + ferv)/f?, f #0
—cvt? + evit + ey, f = 0.
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On elimination of § — ¢ and (2 in (29) via the relations (35) and (39) it is seen
that if B # const, then B is given by the elliptic integral relation

B
/ dB*
B*\/(B*2 + 4cnt)(B* + cm) — (coB* + crv)?

CVIIL
dt*

cvicos ft* + eyirsin ft* — 2(ev + fav)/f? (f#0) (40)

dt*
—Cvt*2 + CVIt* + cvir

f=0)

where Bli—g = cyir. With B obtained thereby, €2 is given via (39) and may be
shown to be compatible with the nonlinear equation (38). The angles 6(t), ¢(t)
are determined by (36), (37) while the velocity components uy, uz, v1, v2 and the
quantities a, b, ¢ are given, in turn, by

QO 1 _ 1 _
ul =g + @\/CHI + Bcosf(t), v1 = —@\/CHI + Bsinf(t) + % — g,

1 _ Q 1 =
us = — Ve + Bsin0(t) — &4 vy = 0 Vant Beoso(d)

27

together with

1 |B B? 1 B’
a:m2—%m+4$mmrb:—mV;+46%Mm
1 |B B% | a

The above completes the solution of the nonlinear dynamical system (10)—(12)
if B # const.

4 The pulsrodon

If B = const then (38) shows that  is determined by the nonlinear oscillator
equation

. 2 0(2) — CIII — QB
<Q+4>Q_Q3. (41)

This is commonly known as the Ermakov equation although it originated in a
paper of 1874 by Steen [35]. It arises in a wide range of areas of physical im-
portance, most notably in quantum mechanics, optics and nonlinear elasticity
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(see e.g. [37-39]). It is characterised by its admittance of a well-known nonlinear
superposition principle. Thus, the general solution of (41) is given by

Q= /A + 200 Q + 10 (42)

where €1, Q5 are linearly in_depend@nt solutions of Q + f?Qp/4 = 0, with unit
Wronskian W (21, Q) = Q102 — Q2281 where the constants A, i, v are constrained
by the relation

AV — ;ﬂ = 6(2) — e — 2B. (43)
If we set
2 2
0 = fcosj;t, Qo = fsin‘];t (f #0)
then the general solution of (41) is given by
Q= \/Ceos(ft+¢)+n (44)

where (, n are arbitrary constants subject to ¢ < n and ¢ is a phase chosen as to
accommodate the constraint (43).

In view of the condition B = const, the relation (29) shows that, if B%/4+cy #
0 and B + cpip # 0 then § = ¢ + nm whence (36), (37) yield

1 (C()B + CIV)

9:¢:f_@ (¢t + B)

with consistency condition

1 _ B 1

—(coB + ¢ — + = =1

2( 0 ) 2(c +B2) B + e
nt+

Here, we proceed with § = ¢ so that the relations (18) together with the
parametrisation (28) yield

1/ B? 1 B?
Bsz—m 611—1—7(:050(15), BN:—@ CH—|—Tsin0(t),

1 — 1 _
Gg = —@\/CHI + Bsinf(t), Gy = +@ crr + BeosO(t)

where

t

coB + crv 1
0(t) —0(0) = ft — — d
(t) - 6(0) = f B+m1JQ%ﬁT
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and ) is given by (44). The velocity and density distributions are given by the
relations (6)—(9) wherein

G Q 1
U1 §+GN Q QQ CHI—FBCOS@( ),
1
v =Gs+Gr = 2 CIII"‘BS]HQ()—FQ—OZ g,
(45)
1 _
UQZGs—GRZ—@ CIII—{-BSinH()—m—l—i,

G Q 1 -
vy = 5_GN -a- @mcose(t),

together with

1 (B B? 1 B?
a=qilg "~ \/Esm@( )] b:—@ CH"FTCOS@(W
’ : (46)
1 |B B- . C1
C= 1 2+\/Esm9(t)], h():@v

and p, ¢ are given by the coupled system (13).

The magneto-gasdynamic vortex solutions presented above are analogous to the
pulsrodons constructed in the context of a rotating elliptic-warm core hydrody-
namic system in [20]. These pulsrodon solutions and their duals were later derived
by Holm via an elegant Lagrangian formulation in [40]. Therein, the pulsrodon
was shown to be orbitally Lyapunov stable to perturbations within the class of
elliptical vortex solutions. Here, the pulsrodons may be shown to describe pul-
sating, rotating elliptic plasma cylinders bounded externally by a vacuum state
(Rogers and Schief [41]). It is noted that magnetohydrostatic boundary value
problems involving elliptic plasma cylinders bounded by an exterior vacuum state
have been treated via the Grad—Shafranov equation (vide Biskamp [1]).

5 Ermakov—Ray—Reid structure

It turns out that the eight-dimensional nonlinear dynamical system (15) has re-
markable underlying structure and may be reduced to consideration of a Ermakov—
Ray—Reid system

dwﬁmaza%mem B+ w2 (t)f = —= Gl(af). (47)

ﬁ2
Such systems have their origin in work of Ermakov [36] and were introduced by

Ray and Reid in [21,22]. The main theoretical interest in the system (47) resides in
its admittance of a distinctive integral of motion, namely, the Ray-Reid invariant

B/a o/B

— %(aﬁ — Ba)? + / F(z)dz + / G(w)dw
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together with a concomitant nonlinear superposition principle. In the case of the
Steen-Ermakov reduction (41) this adopts the form (42). This result was set down
originally in the classical paper of Steen.

In the sequel, it proves convenient to proceed with p(t) = ¢(t) = 0 in the ansatz
(6)—(9). However, the terms involving p, ¢, p, ¢ are readily re-introduced by use
of a Lie group invariance of the original magnetogasdynamic system.

The semi-axes of the time-modulated ellipse

a(t)z? + 2b(t)zy + c(t)y® 4+ ho(t) =0 (ac — b* > 0) (48)

are given by

[V (a—¢)?+4b%> — (a+ ¢)] (B% +B2)1/2—§7
2
[—v/(a —¢)? + 4b% — (a + ¢)] —(BJQV+B%)1/2—§

On use of (18) and (25), these relations yield

1/2 B
o = Q\/>/ CH —|— — 5 (49)
1/2 B
U = Q/cr/ CH + > -5 (50)
whence, the ratio of the semi-axes is given by

Ve -1 B\'* B
(I)/\IJ = — ci — = <CII + > + =1 >0 (51)

B2 1/2 B v —CI1 4 2

(CII + 4> D)

where it is required that B < 0 and B%/4 > —cy; > 0. Thus, B = B(®/¥) so
that, if B # const then the ratio of the semi-axes the ellipse is determined by the
elliptic integral relation (40). If B = const, corresponding to the pulsrodon case,
then the ratio of the semi-axes of the ellipse (48) is likewise constant.

The relation (51) together with (29) and (35) produce the Ray—Reid type
relation ¥ — Ud = Z(®/¥), where

2(0)0) = ;_%msm(e — )

(B2 + 4ep) (B + cm) — (B 4+ erv)?

\/_CI \/ B2 + 4y

and B = —/—cy1 [V/® + ®/V] ,with the requirement that 0 < |B| < cp1.
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It is now readily established that the semi-axes ®, U of the ellipse (48) are
governed by the Ermakov-Ray—Reid system

1 1 77 v\ (Z2+ E)
.. ) :
Sl = Ty T e <<1>> 1+ (0277 |
- (52)
L1 1 o\ (Z7+7) 27
R TA = <q,> 14 @/ [t (2/a |

where

k= (cr/en)? [f%c%l + ) - Zplev + fcmﬂ (f #0).

In addition, the system (52) is seen to be Hamiltonian with invariant

H= %(<i>2+\i/2) -

Z2+if2((b2+q12)2+ij|

2<<I>2+\Iﬂ’>{

and is readily integrated via the general procedure summarised below.

6 Hamiltonian Ermakov systems

The Ermakov—Ray—Reid system
- 1.2 2 1 2 1.2 2 1
G+ 002+ f)a = 2 F(Bfa). G460+ 690 = —5C(a/B) (53

is Hamiltonian with & = -0V /da, B = —0V /0B provided

0 1 0 1
a3 [agﬁF(ﬁ/a)] = 9 [QBQG(@/@] :
Accordingly, the system (53) necessarily adopts the form
1 dJ
oo 3 (525
3 / _ 1 dJ(a/p)
B+0'(+p%)8 = aB da/B)

so that V = J(a/B)/a® + O(a? + 3?)/2 and the Hamiltonian is given by

H= % [a2+62+6(a2+52)] —i—%J(a/ﬁ). (54)
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The Ray—Reid invariant becomes

) 2 2
= S (af — ap)? + <0‘ s ) T(a/B) (55)
and combination with (54) yields
(0% + B)H — 1 = S(a6+ B + 5(a? + B)O(a? + 7). (56)

If we set ¥ = o2 + (32, then (56) shows that

éEQ - B@(z) — H} Y+ 1=0.

In particular, if © = X then ¥ = [H + vV H? — 21 sin2(t — t9)].
Introduction of the expression A = 2a3/(a? + 3?)into the Ray—Reid invari-
ant (55) yields

1@+ 7)1 a+ﬁ2 Ha

while, introduction of T" according to dT'/dt = 1/% shows that

% - iz\/2(1 —A2) [I — K—J( /ﬁ)]

where 3/« is given in terms of A via f/a = (1£+v1 — A2?)/A. Thus, A is given by

A

1/2
33 [(1 “A%)(A - 2L<A>>] A =T+,

where L(A) = (6/a)J(a/3). The original Ermakov variables «, [ are given in
terms of ¥ and A by the relations

a= [@(1 TA)F VI - A)} /2,

- [\/2(1 FA) /20 A)} /2.

For the Ermakov—Ray—Reid system (52), once &, ¥ have been determined then
Q and B are given by (49)—(50) and then 6, ¢ are obtained by integration of the
relations (36), (37). The residual magnetogasdynamic variables are then readily
constructed.
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We study a model proposed in some recent papers by Ruggieri and Valenti
from the point of view of the theory of symmetry reduction of partial differ-
ential equations. The author, among the solutions admitted by such a class of
viscoelastic models, obtains travelling waves.

1 Introduction

In some recent papers, motivated by a number of physical problems discussed
n [1,2], Ruggieri and Valenti have studied the group properties of

Wit = f(w:r)wxx + [)\(w:p) wtz]:p, (1)

where f and X\ are smooth functions, w(t, z) is the dependent variable and sub-
scripts denote partial differentiation with respect to the independent variables ¢
and .

Ruggieri and Valenti in Ref. [3], after having observed that by setting w, = u
and w; = v equation (1) can be written as a 2 x 2 system in conservative form

= vp = 0, vt</uf(s)ds+)\(u)vx)m:0, @)

have proved that the group classifications of (1) and (2) are identical in the sense
that for any f and X a point symmetry admitted by (1) induces a point symmetry
admitted by (2) and vice versa.

Moreover it is worthwhile noting that system (2) can be regarded as the po-
tential system associated with the equation

up = [f(w)ugle + [Aw) wt]os (3)

so that point symmetries of the potential system (2), if they exist, allow one to
obtain nonlocal symmetries (potential symmetries [4]) of equation (3).

In a recent work [5] Ruggieri and Valenti studied the group properties of equa-
tion (3) and, comparing the classification of the equation (3) to that of the system
(2), they stated that the point symmetries of the system (2) do not induce any po-
tential symmetries of the equation (3) but only point symmetries; conversely there
are point symmetries of the equation (3) which do not induce point symmetries of
the potential system (2).
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When A(u) = 0, equation (3) includes the nonlinear homogeneous vibrating-
string equation uy = [f(u) us], which was classified by Ames et al. [6] and gives
rise to numerous publications on symmetry analysis of nonlinear wave phenomena
(see [7] and references therein for a review).

When A\(u) = g with A\g a positive constant, a complete symmetry classifica-
tion can be found in the papers of Ruggieri and Valenti [8,9]. Moreover, when
Ao = € < 1, a study performed by means of approximate symmetries can be found
in Valenti [10,11].

In [5] Ruggieri and Valenti also found travelling-wave solutions for equation
(3) in the case of ideally hard material, the main feature of which is that the
Lagrangian speed of sound increases monotonically without bound.

In this paper the author seeks travelling-wave solutions of the third-order par-
tial differential equation (3) in other cases of physical interest.

2 Travelling-wave solutions

We consider an homogeneous viscoelastic bar of uniform cross-section and assume
that the material is a nonlinear Kelvin solid. This model is described by a stress-
strain relation of the following form [12]

T =o(wy) + Mwy) Wy,

where 7 is the stress,  the position of a cross-section in the homogeneous rest
configuration of the bar, w(t,x) the desplacement at time ¢ of the section from
the rest position, o(w,) is the elastic part of the stress while A(wg)wy, is the
dissipative part.

In the absence of body forces the equation of linear momentum, wy = 7, can
be reduced to equation (3) after setting w, = u and introducing the function f(u)
such that

o) = / " f(s) ds. (4)

In this section we search for travelling-wave solutions of equation (3) for specific
functional forms of f and A of physical interest.

Travelling waves are very interesting from the point of view of applications.
These types of waves do not change their shapes during propagation and are thus
easy to detect. Of particular interest are three types of travelling waves: the
solitary waves, which are localized travelling waves, asymptotically zero at large
distances; the periodic waves; and the kink waves, which rise or descend from one
asymptotic state to another.

In order to search for travelling-wave solutions for equation (3) we consider
that the Principal Lie Algebra Lp of (3) (see Ref. [5]) is two-dimensional and is
spanned by the operators

0 0

X =2 x,=Z
T 27 o
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and we observe that the third-order partial differential equation (3) admits tra-
velling-wave solutions for arbitrary f and A.

Reducing the equation (3) by means of Principal Lie Algebra we obtain that
the similarity variable, the similarity solution and the reduced ordinary differential
equation (ODE) of (3) respectively are

z=x—cot, u=p(z), (5)
3"~ (fd) +ea (Ag) =0 (6)

with f and A arbitrary functions of ¢.
We consider the following form for the tension function, o(u),

~o(u) = 27%po(~u)?, 7 = const,

which arises, as Bell has shown [13,14], in polycrystalline solids during a dynamic
uniaxial compression.

When we make this assumption, take into account (4) and choose for the
compatibility of the problem [5] the following expression for the function A =

Ao (—(b)_% with Ag > 0, the reduced equation (6) becomes

. _1 ! 1 1
36" =70 [(-0) 2 ¢ + 2o [(—0) 72 ¢ =0 (7)
A closed-form solution of (7) is
2
25%po
¢ = 3259 (8)
e 220 (z+k1) +C%

with k1 an arbitrary constant of integration.
When we revert to the original variables (5) and take (8) into account, the
solution can be written as

2
2~2

— 52
e c;AZO (z—cat+k1)

u =

2
+ ¢35

Another solution of physical interest can be obtained when we consider the
following form of the tension

3T0>3 (BTO )3
o(u) =—o0o| = — T u + oo,
(v (ch? %

which models the ideal soft material the main feature of which is that the la-

grangian speed of sound decreases monotonically to zero as u increases without
bound [13,15].
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In this case, after we take into account (4) and choose for the compatibility of
the problem [5] the following expression for the function

3T\ *
1= (o 21)
0 IOVE)Q

with A9 > 0, the reduced equation (6) becomes

3\t ]
<¢+pv02> 4

—4

A closed-form solution of (10) is

¢ (pV5)¢" — (3Tv)"

+ea Ao (pVg)’

.

4
108 Ty

. (2+k) - 3Ty
(pV5)? (6 2207V - 303)] T2 (11)

with k an arbitrary constant of integration.
When we revert to the original variables (5) and take (11) into account, the
solution can be written as

¢ =31p

N

108 T

0__ (x—co t+k - T
(pV§)? ((362 Ao PIVE (rmeateh) _ 303)] - SV(;. (12)
0

The travelling-waves solutions (9)—(12) have the form of a kink and it is known that

kinks may propagate in a viscoelastic medium (see [2] and bibliography therein).
It is worthy of note that by means of the relations w, = uw and w; = v,

starting from the above solutions, we can construct solutions of the equation (1)

and system (2). More precisely solutions (9)—(12) give rise to invariant solutions

of (1) and (2). In fact it is a simple matter to ascertain that, if we set ¢ = ¢,

expressions (8)—(11) satisfy the reduced equation (15) in Ref. [16] when ¢4 = 0.
In fact, if we consider (9) from

UZ3T0

v= [ ots)as

we obtain the solution

2

Y%po 2
Molog (e 2% +¢c2) 2 A
_ 1x4 2| A0l0g 2 z 0
Y =45"py EEp + A 0,07 (13)

eV poe 20 + ¢332 po

for the reduced equation (15) in [16] and coming back to the original variables
we can obtain the corresponding invariant solutions of both equation (1) and
system (2).
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In a similar way it is possible to proceed to the solution of (12). In fact from
P = f s)ds we obtain the solution

. p/2
e 1o V53 30O (1= 38) 4 Ve
Vi — 362+34\/2|02 (,u—302)1+\/§|02|
1 1
2(p—3c3)" 2)a
+p ¢ arctan M—f—l + arctan (1 2) -1 ,
314/2|ca| 314/2|co|
where
e (108T5L (z+k)> (pV2)Teao
= X _— :7,
c2 Ao(pVg)? 31 2\/2[c| T}

of the reduced equation (15) in [16] and coming back to the original variables
we can obtain the corresponding invariant solutions of both equation (1) and
system (2).

3 Conclusions

In this paper we have derived travelling-wave solutions for the third-order partial
differential equation (3) in the cases of ideal soft material and in polycrystalline
solids during a dynamic uniaxial compression.

We have also observed that, by means of the relations w, = uw and wy; =
v, starting from these solutions of the equation (3) we can construct invariant
solutions of the equation (1) and the system (2).
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We construct six multiparameter families of Hermitian quasi-exactly solvable
matrix Schrodinger operators in one variable and five multiparameter fami-
lies of exactly solvable Schrodinger operators. The method for finding quasi-
exactly operators relies heavily upon a special representation of the Lie algebra
0(2,2) =2 sl(2) @ sl(2) the representation space of which contains an invariant
finite-dimensional subspace. For finding exactly solvable model a special set
of operators is used, which is an expansion of the matrix representation of the
solvable four-dimensional algebra. Furthermore we select those models that
have square integrable eigenfunctions on R. These models are in direct anal-
ogy with the quasi-exactly solvable scalar Schrodinger operators obtained by
Turbiner and Ushveridze.

1 Introduction

In papers [1,2] we have extended the Turbiner—Shifman approach [3-5] to the
construction of quasi-exactly solvable (QES) models on line for the case of matrix
Hamiltonians. We recall that originally their method was applied to scalar one-
dimensional stationary Schrodinger equations. Later it was extended to the case
of multidimensional scalar stationary Schrédinger equations [5-8] (see also [9]).

The procedure of constructing a QES matrix (scalar) model is based upon the
concept of a Lie-algebraic Hamiltonian. We call a second-order operator in one
variable Lie-algebraic if the following requirements are satisfied:

e The Hamiltonian is a constant coefficient quadratic form of first-order op-
erators, (1, @2, ..., Q,, forming a Lie algebra g;

e The Lie algebra g has a finite-dimensional invariant subspace, Z, of the
whole representation space.

Now, if a given Hamiltonian H[z] is Lie-algebraic, then after being restricted
to the space 7 it becomes a matrix operator H the eigenvalues and eigenvectors of
whhich are computed in a purely algebraic way. This means that the Hamiltonian
H{z] is quasi-exactly solvable (for further details on scalar QES models see [9]).
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We impose no a priori restrictions on the form of basis elements of the space Z,
namely we fix the class to which the basis elements of the Lie algebra ¢ should
belong. Following [1,2] we choose this class £ as the set of matrix differential
operators of the form

L={Q: Q= a(x)0y + A(x)} .

Here a(x) is a smooth real-valued function and A(z) is an N x N matrix the
entries of which are smooth complex-valued functions of x. Hereafter we denote

d/dx as Oy.
Evidently £ can be treated as an infinite-dimensional Lie algebra with a stan-
dard commutator as a Lie bracket. Given a subalgebra (Q1, Qo2, ..., Q) of the

algebra L, the representation space of whhich contains a finite-dimensional in-
variant subspace, we can easily construct a QES matrix model. To this end we
compose a bilinear combination of the operators Q1, Q2, ..., @, (one of them
may be the unit N x N matrix I) with constant complex coefficients o, and get

Hlz] = > auQ;Qx | - (1)

jk=1

As is well-known, a physically meaningful QES matrix Schrédinger operator
has to be Hermitian. This requirement imposes restrictions on the choice of QES
models which somehow were beyond considerations of our previous papers [1,2]. It
should be noted that a problem of reducing QES scalar operator to an Hermitian
form is fairly trivial and is solved straightforwardly by rearranging a dependent
variable and making an appropriate gauge transformation of the wave-function.
However, for the case of matrix QES first- or second-order operators the problem
of transforming these to Hermitian Schrédinger forms becomes nontrivial and
requires very involved calculations. It occurs that, in contrast to the scalar case,
not every second-order matrix QES operator can be reduced to an Hermitian form.
One of the principal aims of the present paper is to develop a systematic algebraic
procedure for constructing QES Hermitian matrix Schrodinger operators

ﬁ[m] =02+ V(x). (2)

This requires a slight modification of the algebraic procedure used in [2]. We
consider as an algebra g the direct sum of two si(2) algebras which is equivalent to
the algebra o(2,2). The necessary algebraic structures are introduced in Section 2.
The next section is devoted to constructing in a regular way Hermitian QES matrix
Schrédinger operators on line which is a core result of the paper. We give the list
of QES models thus obtained in Section 4.

A stronger constraint imposed on the QES Schrédinger operators is that the
basis elements of invariant space Z must be square integrable on R. A detailed
study of this problem for the case of scalar QES Schrédinger operators has been
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carried out recently in [10]. Using the results mentioned above we have con-
structed in the present paper several classes of QES matrix Schrédinger operators
(Hamiltonians) having finite-dimensional invariant spaces the basis elements of
which are square integrable on R. As examples we present below two such Hamil-
tonians without giving derivation details which are based on tedious calculations
of Sections 2—4.

Model 1. (H[y] + E)y(y) = 0, where
6
Y Amle e
R T A A kel
The invariant space Z of this operator has the dimension 2m and is spanned by

the vectors

7 vt (V\Y

fio=ew(—g) (5) 4

gr = exp _y: m<g>2ké’2—k<g)2k72€1
64 2 2 ’

where j = 0,...,m -2, k =0,...,m, &, = (1,007, & = (0,1)T and m is an
arbitrary natural number.

It is not difficult to verify that the basis vectors of the invariant space Z are
square integrable on the interval (—oo,4+00). One further remark is that there
exists an analogous QES scalar Schrédinger operator the invariant space of which
has square integrable basis vectors (see, for more details [3,11]).

Model 2. (H[y] + E)4(y) = 0, where

1 1 1
[y] = 92 — = — — exp(—2y) + mexp(—y) + 5 &XP(2y)

1 1
+ [m \/g; ! sin(v/2e¥) — éé cos(v2e") — exp(—y) Sin(\@ey)] i

1
N [m \/§2+

6
cos(v/2eY) + \2[ sin(v/2e¥) — exp(—y) cos(\/iey)] o3
The invariant space Z of this operator has dimension 2m and is spanned by the
vectors

fi = U (y) exp(—jy)éi,
G = U (y) (mexp(—ky)é&s — kexp(—(k — 1)y)é1),

where j =0,...,m—2,k=0,...,m, mis an arbitrary natural number and
_ Y 1 _
Ut ( ) ex <—e y>
(y) = Q\f p{—5

x (V34 V2 —03) [COS(W e’) + Majg sin(v/2¢")
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The basis vectors of the invariant space Z are square integrable. Indeed
the functions E(y) and gx(y) behave asymptotically as exp{—(2j + 1)y/2} and
exp{—(2k + 1)y/2}, correspondingly, with y — +o00. Furthermore they behave
as exp{—(2j + 1)y/2} exp{—e¥/2} and exp{—(2k + 1)y/2} exp{—e~Y/2}, cor-
respondingly, with y — —oo. This means that they vanish rapidly provided
y — £o0o.

2 Extension of the algebra sl(2)

Following [1,2] we consider the realization of the algebra sl(2)

sl(2) = (Q—, Qo, Q+)
- <ax, 20y — mT_l + So, 220y — (m — 1)z + 280z + s+>, (3)

where Sy = 03/2, S = (io2 + 01)/2, o}, are the 2 x 2 Pauli matrices,

/(01 (0 i (10
T V1 0) 27\ i o) 27 o -1 )

and m > 2 is an arbitrary natural number. This representation gives rise to
a family of QES models and furthermore algebra (3) has the following finite-
dimensional invariant space

Isl(Q) =1, ® Iy = (€1, zen,. .. ,xm_2€1>€B

(més, ..., mazléy — jai=ley, ..., ma™ey — ma™

(4)

ley).
Since the spaces Z;, Zo are invariant with respect to an action of any of the
operators (3), the above representation is reducible. A more serious problem
is that it is not possible to construct a QES operator, that is equivalent to a
Hermitian Schrodinger operator, by taking a bilinear combination (1) of operators
(3) with coefficients being complex numbers. To overcome this difficulty we use
the idea indicated in [2] and let the coefficients of the bilinear combination (1) be
constant 2 x 2 matrices. To this end we introduce a wider Lie algebra and add
to (3) the following three matrix operators:

R_.=S8_, Ry=S_x+S), Ry=5_a>+2S5z+5, (5)

where St = (iog = 01)/2. It is straightforward to verify that the space (4) is
invariant with respect to an action of a linear combination of the operators (5).
Consider next the following set of operators:

(I't =Q+ — Ry, To = Qo — Ro, R+, Ro, I), (6)

where Q and R are operators (3) and (5), respectively, and I is a unit 2 x 2
matrix. By a direct computation we check that the operators Ty, Ty as well
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as the operators Ry, Ry, fulfill the commutation relations of the algebra si(2).
Furthermore any of the operators T4, Ty commutes with any of the operators R+
and Ry. Consequently operators (6) form the Lie algebra

sl(2) @sl(2) I =0(2,2) 1.

In the sequel we denote this algebra as g. The Casimir operators of the Lie algebra
g are multiples of the unit matrix
3

)L K&:}%—IﬁR,—ROZZL

m2 —1

qzﬁ—ﬂT—n:<
Using this fact it can be shown that the representation of g realized on the space
Ty (2) is irreducible.

One more remark is that the operators (6) satisfy the following relations:

R? =0, Rt R% =0,

4’

{R—aRO} =0, {R+7R0} =0, {R—7R+} =-1, (7)
1 1 1

R.Ry= R, RoRi=_Ry R Ry=FR—.

Here {Q1,Q2} = Q1Q2 + Q2Q1. One of the consequences of this fact is that the
algebra g may be considered as a superalgebra which shows an evident link to the
results of the paper [12].

3 The general form of the Hermitian QES operator

Using the commutation relations of the Lie algebra g together with relations (7)
one can show that any bilinear combination of the operators (6) is a linear com-
bination of twenty-one (basis) quadratic forms of these operators. Then it is nec-
essary to transform the bilinear combination (1) to the standard form (2). What
is more it is essential that the corresponding transformation should be given by
explicit formulae since we need to write explicitly the matrix potential V (x) of the
QES Schrodinger operator thus obtained and the basis functions of its invariant
space.

The general form of QES model obtainable within the framework of our ap-
proach is as follows

H[z] = &(2)0; + B()0y + C(x), (8)

where £(x) is some real-valued function and B(z) and C(x) are matrix functions
of the dimension 2 x 2. Let U(x) be an invertible 2 x 2 matrix-function satisfying
the system of ordinary differential equations

U') = 52 (5'(;) - B<x>) U(x). ©)
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and the function f(x) be defined by the relation

dx
flay =+ [ 2 (10)
V(@)
Then the change of variables reducing (8) to the standard form (2) is
v —y=f(x), Hlz]—Hy=U"WH " ®U(y), (11)
where f~! stands for the inverse of f and U(y) =U(f1(y)).
Performance of the transformation (11) yields the Schrédinger operator
Hly) =95 +V(y) (12)
with
-1 1 2 1 ! '
V(y)=<U "(x) —4—58 (x) — §B (x) + 2—§B(x) +C(x)| U(x)+
5// 36/2 (13)
LT Tee '
z=f"1(y)

Hereinafter the notation {W(x)},—¢-1(, means that we should replace x with
f~(y) in the expression W (z).

Furthermore, if we denote the basis elements of the invariant space (4) as fi(z),
- fém(a:), then the invariant space of the operator H [y] takes the form

Ty = (U WA @) U7 W) fom (P 0))) - (14)

In view of the remark made at the beginning of this section we are looking for
such QES models that the transformation law (11) can be given explicitly. This
means that we should be able to construct a solution of system (9) in an explicit
form. To achieve this goal we select from the above-mentioned set of twenty-one
linearly independent quadratic forms of operators (6) the twelve forms,

Ao = 83, A1 = x@%, A2 = $28§ + (m — 1)03,

By =0y, By =20, +%, By= 220, — (m — 1)z + 032 + 01,

C1 =010, + 503, C2=1020; + 503, C3=030,,

Dy = 2302 — 20120, + (3m — m? — 3)z + (2m — 3)wos + (4m — 4)o7,
Dy = 2302 — 2io9w0, + (3m — m? — 3)x + (2m — 3)zo3 + (4m — 4)0y,
D3 = 20320, + (1 — 2m)os,

(15)

the linear combinations of whhich have such a structure that system (9) can be
integrated in closed form. However, in the present paper we study systematically
the first nine quadratic forms from the above list and exclude the quadratic forms
D1, Dy and D3 from further considerations.
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Thus the general form of the Hamiltonian to be considered in the sequel is
Hix] = Zi:o(auAu + B,Bu) + S22 %G = (aga® + anz + ag)d?
+ (822 + Prx + Bo + 101 + 17202 + 7303) 0, + Poos (16)
— Bo(m — 1)z + Booy + [az( ~ 1)+ 8+ m(y +72)]
Here ag, a1, as are arbitrary real constants and Oy, . ..,~s are arbitrary complex

constants.
If we denote

=71, 2 =2, Y3 =73, 0 =2a(m — 1) + B1 + m(y1 + 72), (a7)
&(z) = agz? + anx + ap, n(x) = Per® + Prz + Bo,

then the general solution of system (9) is

U(z) = e/4(z) exp [—/5 i;daz] exp[ /dx] (18)

where A is an arbitrary constant invertible 2 x 2 matrix. Performance of the
transformation (11) with U(z) being given by (18) reduces the QES operator (16)
to the Schrédinger form (12), where

Vi) = {415 T+ 26" — 260 — ABy(m — 1) — 7

3(2 2
U @U@+ G - } o
e=f~1(y

Here ¢ and 7 are the functions of o defined in (17) and f~!(y) is the inverse of
f(z) which is given by (10).

The requirement of hermiticity of the Schrédinger operator (12) is equivalent
to the requirement of hermiticity of the matrix V(y). To select from the multi-
parameter family of matrices (19) those which are Hermitian we make use of the
following technical lemmas (we omit the proof of the first).

Lemma 1. The matrices zo,, w(og, £ioy), a # b, with {z,w} CC, z¢ R, w#0
cannot be reduced to Hermitian matrices with the help of a transformation

A— A" = ALAA, (20)
where A 1s an invertible constant 2 X 2 matriz.

Lemma 2. Let d = (a1, a2,a3), b= (b1,b2,b3), €= (c1,ca,c3) be complex vectors
and & be the vector the components of which are the Pauli matrices (o1,09,03).
Then the following assertions hold true.
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1. A nonzero matriz ad is reduced to a Hermitian form with the help of a
transformation (20) iff @ > 0 (this inequality means, in particular, that
-9
a eR);

2. Nonzero matrices do, ba with 575 A, A € R, are reduced simultaneously to
Hermitian forms with the help of a transformation (20) iff

—.

@ >0, b>>0, (@xb)?>0;

3. Matrices @3, bé, &3 with @ # 0, b # \d, @ # ub, {\, u} C R are reduced
simultaneously to Hermitian forms with the help of a transformation (20)

>0, (@xb)?>0,

{JE, be, (@ x H)a} CR.

Here we designate the scalar product of vectors Ei,g as @b and their vector product
as @ x b.

Proof. We firstly prove the necessity of Assertion 1 of the lemma. Suppose that
the nonzero matrix @o' can be reduced to a Hermitian form. We prove that hence
the inequality @ > 0 follows.

Consider the matrices:

ST p.
1+Eijk%bb a#0,

10,

Aij(a, b) = (21)

1, a=0,

where (7, j, k) = cycle(1,2,3). It is not difficult to verify that these matrices are
invertible provided

Va2 +b2 #0. (22)

Under the given condition, (22), the following relations hold

Ok, [ = ka
bo; + ao; _
g, — Ai_jl(a,b) (o] Aij(a, b) = Vv a? + 1)2’ ’ (23)
—ao; + bo; [— i
Va2 +b2 "’ J

As @ is a nonzero vector, there exists at least one pair of the indices 4, j such
that a? + a? # 0. Applying the transformation (23) with a = a; and b = a; we get

ac — a'éd = /a3 + a?o; + agoy, (24)
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(no summation over the indices i, j, k is carried out). As the direct check shows,
the quantity a@? is invariant with respect to transformation (23), i.e. a* = @".

If @2 = 0, then a’? +di =0, or a; = +iaj. Hence by force of Lemma 1 it
follows that the matrix (24) cannot be reduced to a Hermitian form. Consequently

@’ # 0 and the relation a’? + a'} # 0 holds true. Applying transformation (23)

with a = 1/a?+a? and b = a; we get
a'c — Va2 oy. (25)

Due to Lemma 1, if the number v/@ is complex, then the above matrix cannot
be transformed to a Hermitian matrix. Consequently, the relation @ > 0 holds
true.

The sufficiency of Assertion 1 of the lemma follows from the fact that, given
the condition @ > 0, the matrix (25) is Hermitian.

Now we prove the necessity of Assertion 2 of the lemma. Firstly we note that
due to Assertion 1, @> > and b > 0. Next, without loss of generality, we can

again suppose that a? + a? =% 0. The superposition of two transformations of the
form (23) with a = a;, b =a; and a = \/a? + ajz, b = ay, yields

. A 72
Aij(ai,aj)Ajk(, /CLZ2 + ajz,ak) =1 + ZEijku ;

gj
1/%2 —f—a?
(5. 2 /5. 2 (26)
a?%—a?—aj a?+a?_aj@—ak
a;

Ok — 1€k e oj
! \/al2 +af

+i€ijk

(here the finite limit exists when a; — 0). When we use this formula and take
into account (23), it follows that

ac — Valoy,

N N e — b 577 ) =
béd — bd = bia] b]al o; + akab — bka o; + ab (27)
,/a?—i—a]z Va2 a?—i—ajz

We show that the necessary condition for the matrices Vo, V& to be re-
ducible to Hermitian forms simultaneously means @b € R. Indeed, as the matrices
v &, 0y, are simultaneously reduced to Hermitian forms, the matrix Ve + Aoy can
be reduced to a Hermitian form with any real A\. Hence, in view of Assertion 1,
we conclude that

W8T+ (0 + M2 >0, (28)

where A is an arbitrary real number. The above equality may be valid only when
b, = ab/Va* e R.
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—.

The choice A = —bj, in (28) yields b'7 + b’jQ- > 0. Since b'7 + b’jg- = (@ x b)?, we
get the desired inequality (@ x 5)2 > 0. The necessity is proved.

In order to prove the sufficiency of Assertion 2 we consider transformation (23)
with

e -9
biaj — bjaz- b— akab — bka
Y

a?—ka? \/&’2,/a§+aj2»

This transformation leaves the matrix V@20, invariant while the matrix ' (27)
transforms as

a =

(29)

@xb
Ve —bV'é = o+ Ok, 30
2 RN (30)
whence the sufficiency of Assertion 2 follows.
The proof of Assertion 3 of the lemma is similar to that of Assertion 2. The
first three conditions are obtained with account of Assertion 2. A sequence of
transformations (23) with a, b of the form (26), (29) transforms the matrix ¢& to

G5 e €1 0(C X b) (a x b)(a@ x E) (31)

(@x B)? ,/5xb Vo V*

Using the standard identities for the mixed vector products we establish that the
coefficients by the matrices o, 0;, oy are real if and only if the relations

{a’a, b2, (@ x 6)5} CR
hold true. |

Lemma 2 plays the crucial role when reducing the potentials (19) to Hermi-
tian forms. This is done as follows. Firstly we reduce the QES operator to the
Schrédinger form

02 + f(y)ad + g(y)bé + h(y)es + r(y).

Here f,g,h and r are some linearly independent real-valued functions and @ =
(a1, a2, ag), b = (by,ba, bs) and &= (c1, c2, c3) are complex constant vectors whose
components depend on the parameters &, E, ~. Next, using Lemma 2, we ob-
tain the conditions for the parameters &, 5 and 4 that provide a simultaneous
reducibility of the matrices aa, bG and ¢7 to Hermitian forms. Then, making use
of formulae (21), (26) and (29), we find the form of the matrix A. Formulae (25),
(30) and (31) yield explicit forms of the transformed matrices @7, b&, ¢ and,
consequently, the Hermitian form of the matrix potential V (y).



194 S. Spichak

4 QES matrix models

Applying the algorithm mentioned at the end of the previous section we have
obtained a complete description of QES matrix models (16) that can be reduced to
Hermitian Schrédinger matrix operators. We give below the final results, namely,
the restrictions on the choice of parameters and the explicit forms of the QES
Hermitian Schrodinger operators and then consider in some detail a derivation of
the corresponding formulae for one of the six inequivalent cases. In the formulae
below we denote the disjunction of two statements A and B as [A] V [B].

Case 1. 41 = 92 = 43 = 0 and
[Bo, B1, B2 €R]V [B2 =0, f1 =22, Bo= a1 +ip, peR]

mm:%+{ ! {—p22t — 26102 + danfa(m — 1))z +

4(an2? + arx + ap)
+ [20081 — 20182 — B} — 26082 — 4o Bo(m — 1)] 2+

+ [Aaa By — 28051 — 4mapBa] @ + 20180 — 20061 — B+

+ 432 (9x® + a1z + ag)o1 + (4827 + 20) (ar® + 1w + ag)oz }+

3(2a0r + ay)?
N az (2c0 + 1) H ,
=f~1(y)

2 16(aoz? + aqz + ap)
A=1.
Case 2. (5,6 = 0 and
2091 — B € R, 20060 — BoBr € R, 20160 — 2B100 — 5 — 77 € R,
[(2a0 — B1)?77 > 0] V [2a2 — B1 = 0], [(e1 — B0)?37 > 0] V [a1 — Bo = 0];

ﬁM:@+{ !

4(aor? + anz + ap)

{/81(2@2 — B1)x? + 26p(2a2 — B1)z+

+ 20180 — 20100 — G — 7} + [2(202 — Bi)z + 2(a1 — Fo)] \/{203}+

as 3(2a9w + a1)?
+ 2 . :
2 16(aex® + aqx 4+ ap)
()

A = A1a(51, 52)A2s (/37 + 33, 78), 77 + 33 # 0.
(If 42 + 73 = 0, then one can choose another matrix A (27) with 2 + 5% # 0.)
Case 3. as #0, B3 # 0 and

{B2.m} CR, 43 =0, 72 = /7% — 20971, 0271 <0,

(6% 8]
B =205 + fo—, 0=a1+ﬂ20];
as as
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. Qg 3(2a0z + a1)? 1
Hyl =02+ — — -
1v] + { 2 16(coz? + aqz + ) + 4(ax? + az + ap) 621:

[ s«
- 2ﬁ§a—1 + 40@52771} o [ﬁQ (af + 2ap02) + 201 (1 + 2m) | 2*—
L 2 o
201 Ba (1o + a? apa
~[20a82( 1a22 02) +4a052m]x+a1 ﬁ2 0 —452 oo
I 2

—dagag — 2091 + 4ﬁ2x(a23§2 + a1z + ag) X

X :sin (6(y)\/—2a2’yl ) o1 + cos (H(y)\/m) 03} +

+ 2(a2x2 + a1z + ap) X

[sin (0 V2«
X _ ( \(}Jszfh ) (5\/ —207101 — 2021/ — 26127103) +

+ cos (G(y)\/—2a271 ) <2ﬂ2 \/7'11220[23?2% o1+ (503)] }}

2 -2
A_1+<\/1—a2—\/ a2>03.
B! M
Case 4. as #0, #5 =0.
Subcase 4.1. § # 0, 71, v2 do not vanish simultaneously and

’7% - 722 < Oa V3 = iM¢ {,ua 5} C R? i(al - 60) € Ra Bl = 2052;

o 3(2a9z + ay)? 1
@2 2 —9 _
{ 2 16(a2x? 4+ a1z + ap) LY 4¢ = + 2010 — 200/,

5\/@@ sin (9(9) ~2_’~712 ) N

)

z=f~1(y)

Hly| = 07 +

— 32 + 2(agz? + aqx + ap)

—i67y31/73 5 A
0 7102 + 908 = 7)o cos (9(y) —52 > +
3
4 2(5041")/3 vt 2(5042’}’3 2 (2&1 — Qﬂo)’}’z + 2(50&0’)/3
’Y’L ,‘YZ 77,

X (i\/’Y% —7%02-1-7303)} } ,
v=1w)
A = A1 (i1, 72).
Subcase 4.2. § #0, vy =72 =0, v3 # 0 and
{8, B1(2a2 — B1), Bo(2a2 — B1), =B + 2a1 80 — 20081, 73 (202 — B1),

y3(ar — fo)} C R;
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X

Hly] =9} +

{042 3(2a0z + a1)? 1
? &2

2 16(c0z? + az + ag)  4(az2? + a2 + ag)
X {51(2042 - 51)1’2 + 2,80(2042 — Bl)a: — ﬁg + 2a150 — 2,61&0—
- 7§ + [25042332 + 2x((2c2 — B1)7v3 + dag) + 2(a1 — Bo)ys+

+ 250&0] 0'3} }

9

=1 (w)

A=1

Case 5. a =0, (2 # 0 and
52
20&17
{Bo, Br, Bo, 12, 6(73 — 1) + 2B2mss (2008273 — P17+
+2B20171 + da13), i((a1 — Bo)A7 + 2B2a0m + dapys)} C R;
R 3a2 1
Hiul = 82 _ 1 3244 9 3
[y] ay * { 16(a1x + CY()) + 4(0&11‘ + ao) { 2 ,81ﬂ2$ +
+ [(2 = 4m)a1 B2 — BF — 260 2] =* — 26061 + 4maofa] 2+
+ 20(15() — 204051 — 6(2) — ’3/12 -+ 41)(6!137 + O[()) X

sin (0(y)y/ =77
X[Bszﬁ ( T:YZ >+
By (F = 3)7;
+ i ;3 ’ 03 Cos (0(y)ﬁ—’y§>
! S0 —f) + 2 2R sin (0(y) /-7 )+

2 5(v2 —~2) =2 -
n B2 o+ (vi —13) —28ams o5 | cos <9(y)m>
V3 =t (v2 — )72
dapBays — 26177 + 4o Bayr + 260173 N
)
Vi

| (201 = 2600)3F + dao s + 2604073] <_Z. \/‘71'2“2> } }

72

A = Aoy (iy1,72) A3 (-i’m\/ﬁ — 297 = 722> -

Case 6. az =0, B2 =0.

061#0, 7%_’7§<07 5/22<0a V3 =

+ 2(a1x + ap) X

+ |z

)

=11 (w)
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Subcase 6.1. 4 and 42 do not vanish simultaneously, § # 0 and

3 <0, {6°(7f —13) <0, Bo, B1} CR,
{i(—=B177 + dars), i((a1 — Bo)Fi + dapys)} C R;

N 3a? 1
HM=%+{ -

2 2
a —Biw” =2 T+ 201 8p—
16(a1z + ag) 41z + ) { B1 Bo1 150

sin (G(y)\ / —7yi2 )
0% —ion - +
/_%2
—20172 + 26
. B17; :i; ERE
i

— 20001 — B — 7 + 2(c1z + ag)

+5M_ﬁ)@w%MM[ﬁ)

(v — 372

4 o =203 +25ao“¥3] (_Z. /7_%202>} }

]

A = A9y (i1, v2)A2s <—i’Y3\/ V3 — 3, - 7%) :

Subcase 6.2.

Y1 =72 = 07 Y3 # 07 {/6%7 5051} C R)

{=B173 + dar, (a1 — Bo)ys + dag, —B5 + 2015y — 2a061} C R;
N 302

Hyl = 52 e S

[y] 8y * { 16(a1x + a())

1
4+
4(051.2? + Oéo)

+

Y

z=f~1(y)

(=522 — 2B0B1x + 201 B0 — 20081 — 53 — 73

)

+ 2(anx + ag)[2x61 (a1 — v3) + 2(a1 — Bo)yz + 2B1a0)o3} }
z=f=1(y)

A=1.

In the above formulae we denote the inverse of the function
dx

= €Tr) = s

Y f( ) /\/@21‘24-@11'-1-040

as f~!(y), moreover the function 6 = 0(y) is defined as

dx
oly) = - {/ agx? +a1:ﬂ+ao}

and 7yl-2 stands for 73 + 45 + 7y§.
The whole procedure of derivation of the above formulae is very cumbersome
and here we omit it.

=1()
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A further restriction narrowing the choice of QES matrix Hamiltonians is a
requirement that the basis elements of the corresponding invariant space be square
integrable on the interval (—oo,00). For example, if we put in Case I a; = 1,
B2 = —1, By = 1/2, the remaining coefficients being equal to zero, then we arrive
at the model 1 from the list of QES Hamiltonians given in the Introduction. The
second model given there is obtained in an analogous way.

5 Some conclusions

A principal aim of the paper is to give a systematic algebraic treatment of Her-
mitian QES Hamiltonians within the framework of the approach to constructing
QES matrix models suggested in our papers [1,2]. The whole procedure is based
upon a specific representation of the algebra o(2,2) given by formulae (3), (5)
and (6). Making use of the fact that the representation space of the algebra (6)
has a finite-dimensional invariant subspace (4) we have constructed in a system-
atic way six multiparameter families of Hermitian QES Hamiltonians on line.
Due to computational reasons we do not present here a systematic description of
Hermitian QES Hamiltonians with potentials depending upon elliptic functions.

The problem of constructing all Hermitian QES Hamiltonians of the form (16)
having square integrable eigenfunctions is also beyond the scope of the present pa-
per. We restricted our analysis of this problem to giving several examples of such
Hamiltonians and postpone its further investigation for our future publications.

A very interesting problem is a comparison of the results of the present paper
based on structure of representation space of the representation (3), (5), (6) of the
Lie algebra 0(2,2) to those of the paper [12], where some superalgebras of matrix-
differential operators come into play. The link to the results of [12] is provided
by the fact that the Lie algebra o(2,2) has a structure of a superalgebra. This is
a consequence of the fact that operators (6) fulfill identities (7).

One more challenging problem is a utilization of the obtained results for inte-
grating the multidimensional Pauli equation with the help of the method of sepa-
ration of variables. As an intermediate problem to be solved within the framework
of the method in question is a reduction of the Pauli equation to four second-order
systems of ordinary differential equations with the help of an Ansatz of separation.
The next step is studying whether the corresponding matrix-differential operators
belong to one of the six classes of QES Hamiltonians constructed in Section 4.

Investigation of the problems enumerated above is in progress now and we hope
to report the results obtained in one of our future publications.
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The differential equations describing vibrational convection in a binary mix-
ture with the Soret effect are considered. The limit of high frequency and
small amplitude of vibration allows the application of an averaging approach.
The symmetry classification of averaged equations with respect to the physical
parameters of the system is performed.

1 Introduction

It is well known that symmetry analysis provides a powerful tool for studying
partial and ordinary differential equations [1]. This method is especially fruitful
in application to the equations of physics and mechanics since many of them are
derived on the basis of invariance principles.

This paper deals with the symmetry analysis of equations describing vibra-
tional convection in a binary mixture. Vibrational convection refers to the spe-
cific flows that appear when a fluid with density gradient is subjected to external
vibration [2]. In a binary mixture the density gradient can be induced by the gra-
dients of temperature and concentration. The flow dynamics in mixtures is more
complex than in one-component fluids due to an interplay between convection,
heat conduction, diffusion and thermal diffusion (or the Soret effect). Note that
convection induced by vibrations can appear in pure weightlessness. It provides
a mechanism of heat and mass transfer in the absence of gravity and can be used
to control and operate fluids in space. Experimental and theoretical study of
vibrational convection in one-component fluid has been recently reported in [3,4].

The symmetries of equations for convection in binary mixture in the absence
of vibration were investigated in several works. The symmetry classification of
the governing equations was performed for linear dependence of density on tem-
perature and concentration [5,6] as well as for the general case, where density is
an arbitrary function of temperature, concentration, and pressure [7]. Based on
these results closed-form solutions describing the flow of a binary mixture in plane
and cylindrical layers were constructed [8,9].

In this paper we investigate the symmetries of equations describing vibrational
convection in a binary mixture. The symmetry classification of the system with
respect to the control parameters is performed.
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2 Governing equations

Consider a binary mixture with the equation of state

p=po(l = pBrT — BcC),

where pg is the density of the mixture at mean values of the temperature Ty and
concentration Cy, T and C are the deviations from these mean values, 8y and
B¢ are the thermal and concentration expansion coefficients, respectively. It is
assumed that C' is the concentration of the lighter component so that So > 0.

The binary mixture is subjected to harmonic oscillations with angular fre-
quency w and displacement amplitude A in the direction of the unit vector e =
(e1,e2,e3). In what follows we consider the limit of high-frequency vibrations. It
means that the period of vibration 7 = 27 /w is much smaller than all character-
istic hydrodynamic times:

7 < min(L? /v, L*/x, L*/D),

where L is the characteristic scale and v, x and D are the kinematic viscosity,
thermal diffusivity and diffusion coefficient, respectively. In this case the velocity,
pressure, temperature and concentration fields can be represented as a sum of
two parts: ‘slow’ averaged part (which is obtained by averaging the corresponding
quantity over the period of vibration) and ‘fast’ oscillatory part (the difference
between the corresponding quantity and its averaging). We assume that the
amplitude of oscillation is sufficiently small so that the equations for the averaged
fields can be written as [2]

u+ (u-Vi)u = —p51Vp +vViu — (6rT + BcC)g +

+ (A;">2 (BT + BcC)e — V) - V)V, (1)
T, +u- VT = \VT, (2)
Cy +u-VC = DV?C + DrV>T, (3)
V.-u=0, (4)
V20 — (BrVT + cVC) -e =0, (5)

while the oscillatory fields are described by the formulas
u = —Awsin(wt)w, p' = —poAw? cos(wt)P,
T' = —Acos(wt)w - VT, C' = —Acos(wt)w - VC.
The vector w and function ®, which characterize the amplitudes of velocity and

pressure oscillations, respectively, are related to the decomposition of the vector
(BrT + BcC)e into an irrotational part, V®, and a solenoidal part, w:

(BrT + fcCle = w + VO, (6)
V-w=0, w-n‘F:O. (7)

The vector w has zero normal projection to the boundary I' of the domain of
motion.
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In system (1)—(5) @ = (x1,x2,x3) is the coordinate vector, u = (uq,us,us)
is the velocity vector, p is the difference between total and hydrostatic pressure,
g = (g1, 89, 83) is the acceleration due to a constant external force and Dy is the
thermal diffusion coefficient. The case Dy < 0 (Dr > 0) corresponds to positive
(negative) Soret effect in which the lighter component is driven towards the higher
(lower) temperature region.

3 Symmetry properties of the governing equations

The equations of motion (1)—(5) contain fifteen arbitrary constant parameters (in-
cluding components of vectors g and e). In this section we consider the symmetry
classification of governing equations with respect to these parameters. It is sup-
posed that g, 7, Bc and Dp can be zero (in this case the corresponding terms in
the equations are omitted). At the same time we assume that 32 + ﬁ% # 0. Oth-
erwise it follows from (5)—(7) that ® = 0 and equations (1)—(5) are reduced to the
model of gravitational convection in a binary mixture (the symmetry properties
of this model were investigated in [5,6]). We also assume that |e| # 0 and po, v,
X, D, A and w are positive.

We introduce the following notation. If f(x,t) is an arbitrary function, then
its derivatives are denoted as follows:

af of of
dxt oz

of

= [t 20w

_fl7 ftl’ ija Za]:15253
To find the admissible Lie symmetry group, we calculate the corresponding Lie
symmetry algebra of the generators of infinitesimal transformations. The admis-

sible generator is sought in the form

a 0 a+ 0D 00 a0
N g Tor T ac T e

X = gt +§l

Its coordinates depend upon all dependent and independent variables (summa-
tion over ¢ = 1,2, 3 is assumed). To derive the determining equations we need to
apply the prolongation generator )2( to equations (1)—(5) and to make the tran-

sition to the manifold given by this system. However, the equations are not in
involution, which makes it difficult to choose the external and internal variables.
We supplement the system with its differential consequence

A 2
(V) + 2(0be + ot + i) + pg "V )

(0% + 03, +

+ B2y + 2(D3, + D2y + BZy) — VJ«ﬂg+W@—J@4T%ﬂ:0 (8)

Here J = BT+ BcC, while T and T* are matrices of the second spatial derivatives

with components {Y};; = ®;; and {Y*};; = Jij, i,j = 1,2,3. Relation (8) is

obtained by differentiating equations (1) with respect x!, x2, 3, respectively,
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and using (4) and (5). When making the transition to the manifold, we also take
into account the differential consequences from (4):

ujp +up +ufs =0, uf;+utuy; =0 i=123. 9)

Equations (1)—(5), (8) and (9) are in involution and it is easy to choose the
external variables: uly, u?;, u3;, p11, Ti1, C11, P11, ul, uly, uly, uds, ujs. The
determining equations are found by applying the prolongation generator )2( to the
system and substituting the expressions for external variables in the equations

obtained. After a considerable amount of calculations the solution is written in
the form

&' = 2¢cq4t + cp,
¢ = ey + c12® + e + fl(t)> n' = —cqut + cru? + cou® + ftl(t)v

€2 = —crzt + cyx® + ez’ + fQ(t)7 n? = —ciu! — cqu® + ezu® + f,?(t),
& = —cor' — 32 + e’ + (1), 1’ = —cou' — czu® — equ® + (1),
= —po(fi(t)a’ + fi(6)2* + fi ()2 +

+ (Bres + Bocs) (g2 + goa? + g5a”)) — 2cap + fO(1), (10)

n' = ciT + cC + c5, n% = esT + c10C + cs,
n® = (Bres + Bocs) (erz! + ez + ezz®) + (1),

Here co—cyg are the group constants and fi(t), i = 0,1,2,3, and ¢(t) are smooth
arbitrary functions. The group constants are connected with the parameters of
system (1)—(5) by the classifying equations

(ﬁ c7 + 3cq) + 5cCg)g + BrGe =
(Breg + Be(cro + 3ca))g + BoGe = 0,
(Br(cr 4 1) + Pocs)e + PrEc = 0, (11)
(Breg + Be(cio + ca))e + BoEe =0,
E*c=0, DrBc(ei(ca+ cro) —ezcr —ezez) =0,
Dr(cio —c7) +(x — D)es =0, Drcg =0, (x—D)cg =0,

where
1 —g —g3 O
c=\|c|, G=|g 0 -—gs],
3 0 g g
2 2
—ey —egz O ef +e;  eseg —eje3
E=1] e 0 —e3|, E*= ese3 e + e% e1ey

2 2
0 e €9 —eje3 e1e2 €5t e3
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Table 1. Symmetry classification of the governing equations

Basic Lie algebra Xo, Hi, Ho, He, Ur, Uc
Dr Or Bc | gxe#0 | gxe=0, g=0 Additional
g#0 generators
0 0 £0 Tt T, Xr TY. Xr, Zc T2 (D =)
0 #0 0 ct C, Xr C', Xr, Zr C?* (D =)
0 | £0 | #0 — Xn Xg, Z Ri,Ry (D =)
£0 | 0 | #0 — Xr Xg, Z —
#£0 | £0 | © L L, Xr L, Xr, Z (D =x)
Zr (D # x)
£0 | 20 | #0 — Xr Xr, Ry,
Z (Dr # Dy) | Z& (Dr = Dr)

_9 _ a0 ;0 i 0 0 0y — 009
Xo=gp Xi=eg5 v antugs ~Wan HEM)=FOg,
H(F'®) = F0-2 + F0)-2 — poa )2, 1,5 =1,2,3 (i< j)

1 f 7f 61’7’ +ft aul — poT ftt apy 1,]=1,4 Z<.7 )

d 0 /0 .0 B
Ha(p(t) = @(t) 55, Zo =205 +; (l‘ 9 Y aui) - 21787), (12)
Ur = —poBr(g,z' +g,2” + g Jc3)g + 9 + Br(e1z' + exz® Jregx3)i
! 2 3 Jop ' oT 0’
Uc = —pofc (g’ +g.2° +g :163)2 + 9 + Bc(erz' + exa® +63x3)i
1 2 3% Jop T oC 0D’

1_p 0 2_ 0 1_ 0 2_m 9
=T T =C ¢ =Ch =T
Zp = Zo— T, Zo = Zo — CF, Z=2y-T" —C",

. D . D )
Zh = Zp + Djxc"’, 78 =Zc — Djxoﬂ L=(DrT+(D = x)C) 55,
Ri=T'— 5—202, R, =C'— %TQ, Xr =e3X12 —e2Xi13 + e1 Xos.

T

Using formulas (10) and equations (11) we can find the Lie symmetry algebras
admitted by the governing equations depending upon the values of parameters.
The results of the symmetry classification are given in Table 1. The generators
Xo, H;, Hy, Hp, Ur and Up are admitted by the system independently of the
values of parameters and construct the basic Lie algebra. Possible extensions of
this algebra are also presented in Table 1. The values of parameters Dp, Sy and
B¢ are specified in the first three columns. The generators, which are admitted
when the vectors g and e are noncollinear, collinear, and when g is equal to zero
are presented in the next three columns. The additional generators admitted in
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the cases of D = x or Dy = D} (where D} = B7(D — x)/Bc) are presented in
the seventh column. Note that in the case Dy # 0, Oy # 0, o =0 and g = 0
the equations admit the generator Z7 when D # x. Similarly, if Dy, 87 and G¢
are nonzero and g = 0, then the generator Z is admitted when Dr # D

We now describe the one-parameter transformation subgroups that correspond
to the generators (12). These subgroups are obtained by solving the correspond-
ing Lie equation for each generator. The transformations generated by Xo, X;;,
H; and Hj are well-known [6] and are not presented here. The generator Hg
corresponds to addition of an arbitrary function of time to the amplitude of the
oscillations of the pressure, ®, while the generator Xr corresponds to rotation in
the plane perpendicular to the vector e (Xg is admitted when the vectors e and
g are collinear or g = 0). The transformations induced by other generators have
the form

Ur: p=p— aﬂoﬂT(gp’Ul + g2x2 + g3x3), T=T+ a,
d=0+ aﬂT(elxl +eox? + 632U3);
Uc: p=p—apoBelga’ + g’ +ga®), C=C+a,
® =+ afc(erz’ + er? + e32’);
T : f:e“T; T2 . TV:T—i-aC;
cl: C=eC; C*: C=C+al;
Zo: t=et, T =e%', W=e%, p=e P, i=1,23;

=~ ~ Br

Ri: T=¢€T, C=CH=(1—-e"T;
Be

Ry: C=eC, T:T+6—C(1—ea)0;
Br

. ~ DT a(D—x) _ DT

L: C_<C+D—XT>€ 7D—X

Here a is a real parameter (every subgroup has its own parameter). The variables
not mentioned in the above formulas remain unchanged. The transformations
generated by Z, Zr, Zc, Z7, Z; are obtained by extending the one-parameter
subgroup corresponding to the generator Zy by the following transformations:

Zr Tvze_“T; Zo: C=eC; Z: T:e_aT, C = e C,

Note that the generators Xo, X;;, H; and Hy are admitted by many models of
continuum mechanics, while the other generators are specific for the equations of
vibrational convection.
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In this work the equivalence transformations of parameters were not taken into
account when performing the symmetry classification. These transformations are
usually used to simplify the arbitrary elements entering into the equations. When
arbitrary elements are constants, the aim is to set as many constants as possible to
zero or to unity. However, the equations so obtained do not possess the necessary
physical parameters and to use them to construct physically meaningful solutions
with the help of symmetries is not convenient. In contrast to this approach the
classification presented here shows the dependence of symmetry properties upon
physical effects incorporated into the model.

Finally it should be noted that many analytical solutions of equations (1)—(5)
presented in [2] turn out to be invariant or partially invariant with respect to
the subgroups of the admissible transformation group. The symmetry analysis
performed in this work allows a systematic investigation the equations of invariant
submodels for vibrational convection and the construction of their solutions.
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Reduction operators (called also nonclassical or @-conditional symmetries)
of variable coefficient semilinear reaction-diffusion equations with exponential
source f(z)us = (g(x)uy)s + h(x)e™™ are investigated using the algorithm in-
volving a mapping between classes of differential equations, which is generated
by a family of point transformations. Special attention is paid to check whether
reduction operators are inequivalent to Lie symmetry operators. The derived
reduction operators are applied to construction of closed-form solutions.

1 Introduction

Various processes in nature are successfully modeled by nonlinear systems of par-
tial differential equations (PDEs). In order to study the behaviour of these pro-
cesses, it is important to know solutions of corresponding model equations. Lie
symmetries and the classical reduction method present a powerful and algorithmic
technique for the construction of solutions (of systems) of PDEs [14,16]. In [2]
Bluman and Cole introduced a new method to find solutions of PDEs. It was
called “non-classical” to emphasize its difference from the classical method of Lie
reduction. A precise and rigorous definition of nonclassical invariance was firstly
formulated in [6] as “a generalization of the Lie definition of invariance” (see
also [26]). Subsequently operators satisfying the nonclassical invariance criterion
were called nonclassical symmetries, conditional symmetries and @-conditional
symmetries by different authors [4,5,7,12]. All names are in use till now. See,
e.g., [11,15,20] for comprehensive reviews of the subject. Following Ref. [19] we
call nonclassical symmetries reduction operators. The necessary definitions, in-
cluding ones of equivalence of reduction operators, and statements relevant for
this paper are collected in [24].
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The problem of finding reduction operators for a PDE reduces to the integra-
tion of an overdetermined system of nonlinear PDEs. The complexity increases
essentially in the case of classification problem of reduction operators for a class
of PDEs having nonconstant arbitrary elements.

The experience of classification of Lie symmetries for classes of variable coeffi-
cient PDEs shows that the usage of equivalence and gauging transformations can
essentially simplify the group classification problem and even be a crucial point
in solving the problem [8,22,24]. The above transformations are of major impor-
tance for studying reduction operators since under their classification one needs to
overcome much more essential obstacles then those arising under the classification
of Lie symmetries.

In [24] we propose an algorithm involving mapping between classes for finding
reduction operators of the variable coefficient reaction-diffusion equations with
power nonlinearity

f(x)ut = (g(x)um)z + h(m)um, (1)

where f, g and h are arbitrary smooth functions of the variable z and m is an
arbitrary constant such that fgh # 0 and m # 0, 1. In [23] reduction operators of
the equations from class (1) with m # 2 were investigated using this algorithm.
The case m = 2 was not systematically considered since it is singular from the Lie
symmetry point of view and needs an additional mapping between classes (see [24]
for more details). Nevertheless all the reduction operators constructed in [23] for
the general case m # 0, 1,2 are also fit for the values m =0, 1, 2.

In this paper we implement the same technique to find reduction operators of
the variable coefficient reaction-diffusion equations with exponential nonlinearity

f@)ur = (9(x)uz)z + h(z)e™. (2)

Here f, g and h are arbitrary smooth functions of the variable z, fgh # 0 and m
is an arbitrary nonvanishing constant.

The structure of this paper is as follows. For the convenience of readers sec-
tion 2 contains a short review of results obtained in [21] and used here, namely, in
this section the necessary information concerning equivalence transformations, the
mapping of class (2) to the so-called “imaged” class and the group classification of
equations from the imaged class is collected. Moreover all additional equivalence
transformations connecting the cases of Lie symmetry extensions (cf. Table 1) are
first found and presented therein. As a result the classifications of Lie symmetry
extensions up to all admissible point transformations in the imaged and, there-
fore, initial classes are also obtained. Section 3 is devoted to the description of the
original algorithm for finding reduction operators of equations from class (2) using
a mapping between classes generated by a family of point transformations. The
results of section 4 are completely new and concern the investigation of reduction
operators for equations from the imaged class. Reduction operators obtained in
an explicit form are used for the construction of solutions of equations from both
the imaged and initial classes.
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2 Lie symmetries and equivalence transformations

Class (2) has complicated transformational properties. An indicator of this is that
it possesses the nontrivial generalized extended equivalence group, which does not
coincide with its usual equivalence group, cf. Theorem 1 below. To produce the
group classification of class (2) it is necessary to gauge arbitrary elements of this
class with equivalence transformations and a subsequent mapping of it onto a
simpler class [21,24]. It appears that the preimage set of each equation from the
imaged class is a biparametric family of equations from the initial class (2). More-
over preimages of the same equation belong to the same orbit of the equivalence
group of the initial class. It allows one to look only for the simplest representative
of the preimage to obtain its symmetries, solution etc., and then to reproduce
these results for a two-parametric family of equations from the initial class using
equivalence transformations.

~

oxp Of class (2) consists

Theorem 1. The generalized extended equivalence group G
of the transformations

where ¢ is an arbitrary nonconstant smooth function of x, Y = 64 [ % + d5 and
05, 7 =0,1,...,5, are arbitrary constants such that dpd103 # 0.

Corollary 1. The usual equivalence group of class (2) is the subgroup of G;(p
singled out by the condition 64 = 0.

The transformations from Gewxp associated with varying the parameter dg in fact
do not change equations from class (2) and hence form the gauge equivalence group
of this class. The values of arbitrary elements connected by a such transformation
correspond to different representations of the same equation.

Analogously to the power case we firstly map class (2) onto its subclass

f(@)ur = (f(@)uz)e + h(z)e” (3)

(we omit tildes over the variables) using the family of equivalence transformations
parameterized by the arbitrary elements f, g and m,

x)

t=sign(f(z)g(x))t, &= / ‘gg

1
2
2) dr, 4 =mu. (4)

The new arbitrary elements are expressed via the old ones in the following way:
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The next step is to change the dependent variable in class (3):
v(t,x) = u(t,z) + G(z), where G(z)=1In|f(x)  h(z)|. (5)
Finally we obtain the class
Ut = Ugy + F(z)vg + ¥ + H(x), (6)

where ¢ = sign(f(z)h(x)) and the new arbitrary elements F' and H are expressed
via the arbitrary elements of class (6) according to the formulas

F=ff"' and H=—-Gy —G,F. (7)

All results on Lie symmetries and solutions of class (6) can be extended to
class (3) by the inversion of transformation (5).

The arbitrary elements f and h of class (6) are expressed via the functions F'
and H in the following way:

f=coexp ([ Fdz), h=cecoexp ([ Fdz+G),

where G = fe_dex (01 - fHef Fdl’dm) dx + co. ®)
Here ¢y, ¢1 and ¢y are arbitrary constants, cg # 0. The constant ¢g is inessential
and can be set to the unity by an obvious gauge equivalence transformation.
The equations from class (3), that have the same image in class (6) with respect
to transformation (5), i.e. the arbitrary elements of which are given by (8) and
differ only by values of constants ¢; and co, are Gg{p—equivalent. The equivalence
transformation

t=t, I=um, ﬂ:u+c1f€_demdx+02 9)

maps an equation (6) having f and h of the form (8) with ¢ + ¢3 # 0 to the
one with ¢; = ¢ = 0. Hence up to G;(p—equivalence we can consider, without
loss of generality, only equations from class (3) that have the arbitrary elements
determined by (8) with ¢; = c2 = 0.

~

Theorem 2. The generalized extended equivalence group Ggy,, of class (6) coin-
cides with its usual equivalence group and is formed by the transformations
E:(Slzt—l-(SQ, T = 6z + 03, lN):U—1H512,
F=6"'F, H=04H,

where 0, j = 1,2,3, are arbitrary constants, d1 # 0.

The kernel of the maximal Lie invariance algebras of equations from class (6)
is the one-dimensional algebra (J;). It means that any equation from class (6)
is invariant with respect to translations by ¢ and there are no more common Lie
symmetries.
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Theorem 3. Gg,-inequivalent cases of extension of the mazimal Lie invariance

algebras in class (6) are exhausted by those presented in Table 1.

Table 1. The group classification of the class v = vgo + F(z)vs +ce? + H(x).

N F(z) H(x) Basis of A™**

0 v v Ot

1| az ™ 4 px | Bz™2 +2u O, 72Dy — pwdy + 2u0y)

2 azx™? Bx 2 O, 20 + 20y — 20,

3 Hx vy O, €710,

4 A 5 Ot, Og

5 T 24 O, e H0,, e Dy — pxdy + 2u0y)
6 A 0 O, Ou, 2t0r + (x — At)0y — 20,

Here X\ € {0,1} mod Gg&p, 1 = £1 mod G&pp; o, f and v are arbitrary constants, a4+ 5% #£0.
We also have v # 2u and v # 0 in Cases 3 and 4, respectively.

~

The corresponding results on group classification of class (2) up to Gexp-equiv—
alence is given in Table 3 of [21].

Additional equivalence transformations between Gg,-inequivalent cases of Lie
symmetry extension are also constructed. The pairs of point-equivalent cases from
Table 1 and the corresponding transformations are exhausted by the following:
_ 1 2pt 5o okt ~
= —e x=e"x, v=v-—-2ut,

2
: (10)
t=t, T=x+N, 0=uo.

S

12, 5—65_,:

W
1
s~

>

Il

<
D
1

K=

A=0"

The inequivalence of other different cases of Table 1 can be proved using differences
in properties of the corresponding maximal Lie invariance algebras, which should
coincide for similar equations. Thus the dimensions of the maximal Lie invariance
algebras are one, three and two in the general case (Case 0), Cases 5 and 6 and
the other cases, respectively. In contrast to Cases 1-3, the algebra of Case 4 is
commutative. The derivative of the algebra of Case 3 has the zero projection onto
the space of ¢ and this is not the case for Cases 1 and 2. Possession of the zero
(resp. nonzero) projection onto the space of ¢ is an invariant characteristic of Lie
algebras of vector fields in the space of the variables ¢, x and v with respect to
point transformations connecting a pair of evolution equations since for any such
transformation the expression of the transformed ¢ is well known to depend only
ont [9,13].

A more difficult problem is to prove that there are no more additional equiv-
alences within a parameterized case of Table 1. (In fact all the cases are pa-
rameterized.) This needs at least a preliminary study of form-preserving [9] (or



212 0.0. Vaneeva, R.O. Popovych and C. Sophocleous

admissible [17,18]) transformations. In contrast to transformations from the cor-
responding equivalence group, which transform each equation from the class £ of
differential equations under consideration to an equation from the same class, a
form-preserving transformation should transform at least a single equation from £
to an equation from the same class. The notion of admissible transformations is a
formalization of the notion of form-preserving transformations. The set of admis-
sible transformations of the class £ is formed by the triples each of which consists
of the tuples of arbitrary elements corresponding to the initial and target equa-
tions and a point transformation connecting these equations. It is obvious that
each transformation from the equivalence group generates a family of admissible
transformations parameterized by arbitrary elements of the class L.

A preliminary description of the set of admissible transformations of the
class (6), which is sufficient for our purpose, is given by the following statements.

Proposition 1. Any admissible point transformation in the class (6) has the form
t=T(t), T=0yTiz+X(t), =v—InT

where § = 1 and T and X are arbitrary smooth functions of t such that T; > 0.
The corresponding values of the arbitrary elements are related via the formulas

~ (S 5 Ttt Xt ~ 1 Ttt
F=_"pF_" -2t =gt
VT, 213 T, T T2

Corollary 2. Only equations from the class (6) the arbitrary elements of which
have the form

F:ux—l—)\ﬁ—L, H=n~+ p

T+ kK (x + k)2’ (11)

where a, B, v, k and p are constants, possess admissible transformations that are
not generated by transformations from the equivalence group Gg,,. The subclass of
the class (6), singled out by condition (11), is closed under any admissible trans-
formation within class (6). The (constant) parameters of the representation (11)

are transformed by an admissible transformation in the following way:

da=a, B=8, E=06/Tik—X if (a,f)+#(0,0),
& oA

In particular Ty = 0 if v # 2u.

Finally we can formulate the assertion on group classification with respect to
the set of admissible transformations.

Theorem 4. Up to point equivalence cases of extension of the maximal Lie in-
variance algebras in class (6) are exhausted by Cases 0, 2, 3, 4x—o and 6|x=¢ of
Table 1.
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3 Algorithm of finding reduction operators
via mappings between classes

At first we adduce the definition of nonclassical symmetries [7, 19, 26], adapt-
ing it for the case of one second-order PDE with two independent variables,
relevant for this paper. Consider a second-order differential equation £ of the
form L(t,x,u)) = 0 for the unknown function u of the two independent vari-
ables ¢ and x, where u(y) = (W, Uty Ug, Ugt, g, Uz ). Let @ be a first-order differ-
ential operator of the general form

Q=7(t,z,u)0 +&(t, x,u)0p + n(t, x,u)0u, (7€) # (0,0).

Definition 1. The differential equation L is called conditionally invariant with
respect to an operator @ if the relation

Q(Q)L(t,w,u(Q))|£mQ(2): 0 (12)

holds, which is called the conditional (or nonclassical) invariance criterion. Then
Q is called a conditional symmetry (or nonclassical symmetry, @-conditional sym-
metry or reduction operator) of the equation L.

The symbol @Q(7) stands for the standard second prolongation of @ (see e.g. [14,
16]). Q@ is the manifold determined in the second-order jet space by the dif-
ferential consequences of the characteristic equation Qu] := n — Tus — {uy = 0,
which have, as differential equations, orders not greater than two.

It was proven in [26] that a differential equation £ is conditionally invariant
with respect to the operator @) if and only if the Ansatz constructed with this
operator reduces the equation £. That is why it seems natural to call operators
of conditional (nonclassical) symmetries reduction operators.

Here we present the algorithm of application of equivalence transformations,
gauging of arbitrary elements and mappings between classes of equations to clas-
sification of reduction operators of class (2)

1. Firstly we gauge class (2) to subclass (3) constrained by the condition f = g.
Then class (3) is mapped to the imaged class (6) by transformation (5).

2. Reduction operators should be classified up to the equivalence relations gen-
erated by the corresponding equivalence groups or even by the whole sets of
admissible transformations. As the singular case 7 = 0 is “no-go” [10,25],
only the regular case 7 # 0 (reduced to the case 7 = 1) should be considered.
Operators equivalent to Lie symmetry ones should be neglected.

3. It is well-known (see e.g. [1,3]) that the equations from the imaged class (6)
with F' = 0 and H = const, and therefore all equations similar to them with
respect to point transformations, possess no regular reduction operators
that are inequivalent to Lie symmetry operators. This is why all the above
equations should be excluded from consideration.
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4. Preimages of the nonclassical symmetries obtained and of equations admit-
ting them should be found using the inverses of gauging transformations
and the push-forwards by these inverses on the sets of operators.

Reduction operators of equations from class (3) are easily found from reduction
operators of corresponding equations from (6) using the formula

Q=70 +£0, + (77 - fGax) Oy (13)

Here 7, £ and 7, respectively, are the coefficients of 0;, 0, and J, in a reduction
operator of an equation from class (6). The function G is defined in (8).

In [23,24] we discussed two ways to use mappings between classes of equations
in the investigation of reduction operators and their usage to find solutions. The
preferable way is based on the implementation of reductions in the imaged class
and preimaging of the obtained solutions instead of preimaging the corresponding
reduction operators.

4 Reduction operators and solutions

~

Following the above algorithm we look for G ,-inequivalent reduction operators
with nonvanishing coefficient of J; for the equations from the imaged class (6).
Up to the usual equivalence of reduction operators we need to consider only the
operators of the form

Q = at + §(t7x7 v)@x + 77(7575377))81)-

Applying conditional invariance criterion (12) to equation (6) we obtain a third-
degree polynomial of v, with coefficients depending on ¢, x and v which has to
identically equal zero. Separation respect to different powers of v, results in the
following determining equations for the coefficients £ and 7:

gvv = 07 T = 2(5&:1} - f{v - F€U)7
§t — &aw + 2608 + 36, (H + e€”) + 2myy — 2§m + F& + EF, = 0, (14)
Nt — Moz + 26em = EHy + Fnp + (26 — o) H +e€” (0 + 260 — 1) -

Integration of the first two equations of (14) gives us the expressions for £ and
n with an explicit dependence on v:

1
E=av+b, 17:—§a2v3+(ax—ab—aF)vz—l—cv—l—d, (15)

where a = a(t,z), b = b(t,z), c = c¢(t,z) and d = d(¢,x) are smooth functions of ¢
and z.

Substituting the expressions (15) for £ and 7 into the third and forth equations
of (14) and collecting the coefficients of different powers of v in the resulting
equations, we derive the conditions a = ¢ = 0, d = —2b, and two classifying
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equations, which contain both the coefficient b = b(¢, x) and the arbitrary elements
F = F(z) and H = H(x). Summarising the above consideration we have the
following assertion.

Proposition 2. Any reqular reduction operator of an equation from the imaged
class (6) is equivalent to an operator of the form

Q = 9y + bdy — 2b,0,, (16)

where the coefficient b = b(t,x) satisfies the overdetermined system of partial
differential equations

bt — byy + 2bby + Fby + bF, = 0,

(17)
bH, + 2by H — 4bbyy — 2(Fb) gy — 2Fbyy = 0

with the corresponding values of the arbitrary elements F = F(x) and H = H(x).
The second equation of (17) can be written in the more compact form
4(b+ F)byy = 2Kb, + Kb,

where K = H — 2F,, which is more convenient for the study of compatibility.

Analogously to the power case, we were not able to completely study all the
cases of integration of system (17) depending upon values of F' and H. This is
why we try to solve this system under different additional constraints imposed
either on b or on (F, H).

The most interesting results are obtained for the constraint b = 0. Then F
and H are expressed, after a partial integration of (17), via the function b = b(z)
that leads to the following statement.

Theorem 5. For any nonvanishing smooth function b = b(z) the equation from
the class (6) with the arbitrary elements

2
TR

where k1 and ka2 are constants, admits the reduction operator (16) with the same b.

F= % (b + k1 = 0%), H =35 (k2 + ba(ky = b%) + bbaa) , (18)

An Ansatz constructed by the reduction operator (16) with b; = 0 has the form
dx

L
The substitution of the Ansatz into equation (6) leads to the reduced ODE

v=2w)—2Inlb|, where w=1t-—

Zww — k12, +€€% + 2ky = 0. (19)

For k1 = 0 the general solution of (19) is written in the implicit form

/(cl — 4koz — 2862)7% dz = £(w+ c2). (20)
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Up to similarity of solutions of equation (6) the constant co is inessential and can
be set to equal zero by a translation of w, which is always induced by a translation
of t.

Setting additionally k2 = 0 in (20), we are able to integrate (20) in closed form
and to write explicitly the general solution of (19). If ¢ = 1, then ¢; > 0 and (20)
gives the following expression for e*:

28%

e =

cosh?(sjw + s9)

Here and below s; = y/|c1]/2 and sy = c2s1. If € = —1, the integration leads to

( 282
. 192 ! , € > Oa
sinh”(sjw + s2)
2 2
ef=d 51 , ¢ <0,
cos?(s1w + s2)
2
. ¢ = 0.
(w+ c2)? !

As a result, for the equation from class (6) of the form

2
E (bmc - bbx) (21)

1
vt:vz$+f(bxfb2)vx+ee”+

b

with e = —1, we construct three families of closed-form solutions

v=—21In ;[bsmh (81t—81/—|—82>
2
v=—2In ;[bcos (slt—sl/+52>

2 d
v=—2In \be <t— ;U+CQ> ,

(22)

where s1, so and ¢y are arbitrary constants, s; # 0. Also we obtain a family of

solutions
2 d
leOSh Slt—51/x+82
281 b

of the equation (21) with € = 1.

We continue the consideration by studying whether the equations from class (6)
possessing nontrivial Lie symmetry properties, i.e. having the maximal Lie invari-
ance algebras of dimension two or three, have nontrivial (i.e. inequivalent to Lie
ones) regular reduction operators. It has been already remarked that constant

v=—2ln (23)
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coefficient equations from class (6) do not admit such reduction operators [1, 3].
Hence it is needless to consider Cases 4 and 6 of Table 1 as well as Case 5 con-
nected with Case 6 by point transformation (10). As Case 1 reduces to Case 2
with the same transformation (10), we have to study only two cases, namely
Cases 2 and 3. We substitute the pairs of values of the parameter-functions F
and H corresponding to Cases 2 and 3 into system (17) in order to find relevant
values for b. We ascertain that b, = 0 is a necessary condition for existing non-Lie
regular reduction operators for equations with the above values of (F, H). This
is why we can use equations (18) instead of (17) for further studying.

The investigation of Case 3 of Table 1 leads to the conclusion that there are
no non-Lie regular reduction operators for this case.

The functions F' and H presented in Case 2 of Table 1 satisfy (18) if and only
if 3 = 2(1 — ), i.e., they have the form F = azx™!, H = 2(1 — a)z~2, and
k1 = ky = 0. The corresponding value of b is b = —(1 + a)z~!. Hence a # —1
since otherwise b = 0. Substituting the derived form of the function b into the
formulas (22) and (23), we find that the equation

« 2(1 —«
(% :’Ug;z+x'l)z+€€v+(x2> (24)

has the families of solutions

V2(1 +a) s1w?
= —2In|———cosh t4+ —m—
v n 9510 Ccos (81 + 21 + ) + $2>
ife =1 and
V2(1 +a) sy
= —2Iln|———=sinh t4+ —m
v n 9510 sin (sl + 2(1+a) +82> ,
V2(1 4+ a) 5122
=2ln|—= t+ ——
v n 51w cos <81 + 2(1 n a) + 32> ,
V2(1 4+ a) z?
=21 t
Y T2 < +2(1+a)+c2>
if ¢ = —1. Recall that sy, s and ¢y are arbitrary constants with sy # 0.

As a representative of the preimage of equation (24) with respect to the trans-
formation (5) we can choose the equation

Uy = (2%uy), + ex®T2e (25)

Solutions of this equation can be easily constructed from the above solutions of
equation (24) using the transformation u = v — 2In|z|. If @ = 1, the chosen
equation (25) can be replaced, e.g., by zu; = (zuy), + exe” which is just another
representation of equation (24).
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Non-Lie solutions of the equation

2(1 —«
(72)_'_2“7
xr

a v
V¢ = VUpy + (E—F,ux)vx—i-se +
where a # —1 (Case 1 of Table 1), can be easily obtained from exact solutions
of the equation (25) using the transformation (10). The corresponding reduction
operator has the form (16) with b= —(1 + a)z~! — pa.
We also prove the following assertions.

Proposition 3. Equations from class (6) with F' = const or H = const may
admit only nontrivial regular reduction operators that are equivalent to operators
of the form (16), where the function b does not depend upon the variable t.

Proposition 4. Any reduction operator of an equation from class (6), having the
form (16) with by, = 0, is equivalent to a Lie symmetry operator of this equation.

The proofs of these propositions are quite cumbersome and will be presented
elsewhere.
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We find the Lie point symmetries and conservation laws for a (141)-dimensional
system of hydrodynamic type describing relaxing media which was first studied
by V.A. Vladimirov [Rep. Math. Phys., 2008, V.61, 381-400].

Vladimirov [7] (see also [1]) undertook analytical and numerical studies of the
system of hydrodynamic type describing relaxing media,

Ut + P =7,
v — Uy = 0, (1)

X K
TP+ Sus =~ — P,
v v

where t is time, z is mass coordinate, u is mass velocity, v is specific volume, p is
pressure and 7 is acceleration of the external force, k and x/7 are squares of the
equilibrium and “frozen” sound velocities, respectively (so 7 # 0 by assumption).
Inter alia in [7] it was shown that compacton-like solutions for (1) can be found
among the set of traveling-wave solutions. In view of the investigation of the
stability properties of such solutions undertaken in [7] it is interesting to study
the conservation laws of (1), as their existence helps the stability analysis and the
symmetries, in order to find further solutions for (1).
Computing the Lie point symmetries of (1) yields the following assertion.

Theorem 1. The most general Lie point symmetry of (1) is a linear combination
of the operators

o T T e T Pap T ar T Yo
0 o 0 @
v5 = exp( /T)ap, ve = exp(—t/T) <T(9u + xap)
with the commutation relations (all remaining commutators vanish)
Vivs = —2vs, [vivel = —2ve,  [va,vi
Vi,V5] = ——V Vi,Ve| = ——V Vo, V4l =V
1, V5 ~Vs 1, V6 ~V6; 2, V4 25 (3)

[Vo, V6] = v5, [V, V5] = —Vs.
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The symmetries vy, va, v4 were found in [7]; those remaining are new. Note
that the Lie algebra spanned by the vector fields (2) is solvable; actually it is a
direct sum of the one-dimensional abelian Lie algebra g;, spanned by vs, and a
five-dimensional solvable Lie algebra which is isomorphic to the algebra As 19 in
the notation of [6] (as an aside note that all real five-dimensional Lie algebras were
first classified in [4]). The vector field v; is the time-translation symmetry, vy is
the z-translation symmetry, vs reflects the invariance of (1) under the shift of u
by a constant, v4 is the scaling symmetry, vs expresses the invariance of (1) under
the shift of p by a constant times exp(—t/7) and vg corresponds to the invariance
of (1) under the simultaneous shift of p by a constant times exp(—t/7)z and of u
by the same constant times 7exp(—t/7).

Using the above symmetries enables us to find a number of particular solutions
for (1). For instance,

u=~t+ Cy + Carexp(—t/7) + Cskt,
v=—-1/(Csx),
p = x(Caexp(—t/7) — C3r),

where C; are arbitrary constants (C3 # 0), is the most general solution of (1)
which is invariant under the symmetry vy4.

Exponentiating the vector fields (2) allows us (cf. e.g. [5]) to proliferate known
solutions of (1):

Corollary 1. If u = U(x,t), v = V(z,t) and p = P(x,t) is a solution of (1),
then so is

u=Ul(exp(ca)xz + c2,t + c1) + c3 + c6T exp(—t/T),

v = eXp(—C4)V(eXp<C4)x + c2, t+ Cl)7
p = exp(ca)P(exp(cq)x + co,t + ¢1) + c5 exp(—t/7) + cgx exp(—t/7),

where c1,...,cg are arbitrary constants.

Theorem 2. The system (1) possesses the following local conservation laws:

Di(u) = Do (vz = p),
Di(v) = Dy(u), (4)
Dy(tu + xv) = Dy(zu — tp + ytx),

where Dy and D, are total derivatives.

We conjecture that for generic values of the parameters v, k, x and 7 sys-
tem (1) has no generalized symmetries other than those given in (2) and no local
conservation laws inequivalent to (4). This conjecture is supported by the di-
rect computation of symmetries and cosymmetries of order up to three using the
software Jets [3].



222 P. Vojésk

If we define the potentials wy, ws, w3 associated with (4) by the relations
(w1)e =u, (w1)y=vyr—p
(wa2)e = v, (w2); = u, (5)
(wg)e = tu+av, (ws); = zu — tp+Atz,

then we find that (1) supplemented by (5) also admits a nonlocal conservation
law

(w2)¢ = (w1)g- (6)
The corresponding potential wy is defined by the system

(w4)z = w2, (w4)r = w1.
However, it is readily verified that we have

twy1 + rwo — w3 — wyq = const,

i.e., the potential wy is a function of the rest (up to an inessential constant) and
thus is not really independent. In the terminology of [2] the conservation law (6)
is induced by the local conservation laws (4).

Proposition 1. If x = k7, then system (1), possesses an additional conservation
law of special form,

Dy (exp(t/T) (p — %)) =0, (7)

i.e., the quantity ¢ = exp(t/7) (p — Kk/v) is an integral of motion for (1).

In fact (7) implies that the system (1) for x = k7 has infinitely many conser-
vation laws of the form

Dy (p(ajv‘Zva(Q)vD:%(Q)v"')) =0, (8)

where p is an arbitrary smooth function of its arguments. However, these conser-
vation laws bear virtually no essential new information in comparison with (7).

When one passes to new dependent variables u, v, g, the system (1) with x = k7
takes the form

w =7 —exp(—t/7)qy — exp(—t/T)kvy /v*, v =1ug, @ =0. (9)

The last equation is decoupled and yields ¢ = go(x), where go is an arbitrary
smooth function of its argument. The second equation is solved by introducing
the potential w = wsg, see (5). Thus (9) is reduced to a single second-order
equation for w,

RWgy

_ dqo(2) exp(—t/7) — exp(—t/T) w2 (10)

dzx

from which v and v are recovered as

Wit =7

U =W, V= Wy.



On symmetries and conservation laws for a system of hydrodynamic type 223

Proposition 2. If k =0, then the first conservation law in (4) is equivalent to
Dy (u—’yt—Tpx—X—zm) =0, (11)
v
i.e., the quantity v = u — Yyt — Tpy — XV /v? is an integral of motion for (1).
Just as in the previous case (11) implies that (1) for x = 0 has infinitely many
conservation laws of the form

Dy (p(z,, Dx(r),Dg(r),...)) =0, (12)

where p is an arbitrary smooth function of its arguments. Obviously these conser-
vation laws again bring no substantially new information in comparison with (11).

Note that for x = 0 the extended system which consists of (1) and of the first
pair of equations of (5) admits an additional conservation law,

Dy (wl — Ntz —Tp+ 5) =0, (13)
v

ie., s =w; —ytx — 7p+ x/v is a nonlocal integral of motion.
When one passes to new dependent variables r, v, p, the system (1) with kK =0
takes the form

Tt = 07
v 2yv?
v =X 5+ TPex — X:f — T, (14)
v v
X% XPaw . 2X%02 xre D
pe=—"" T — 5 T 5 T2
TV v TV v T

Again the first equation is readily solved to yield r = ro(x), where r( is an arbitrary
smooth function of z, and substituting this into the remaining two equations we
gives a two-component second-order system,

v 2\ v2 dro(x
Ut:X;Ex"f'Tp:m:_ X3x_7- ol )a
v v dx
(15)
_ XU XPas N 2x°v; | x dro(x) p
P Tvd v2 Tvd v?  dx T

We have deliberately left aside the degenerate case for which k = y = 0 because
then (1) becomes linear and its general solution is readily found to be

u = ug(z) +yt + 7exp(—t/T)po(z),

dpo(x)
dr

dug(z)
dx

v =1vo(x)+ + Texp(—t/T)

p = po(z) exp(—t/7),

where ug, vg, and pg are arbitrary smooth functions of x.
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We study possible Lie and nonclassical reductions of multidimensional wave
equations and the special classes of reduced equations possible — their symme-
tries and equivalence classes. Such an investigation allows one to find many
new conditional and hidden symmetries of the original equations.

1 Why nonlinear wave equation

We study Lie and nonclassical reductions of multidimensional wave equations and
special classes of reduced equations possible — their symmetries and equivalence
classes as well as the types of reduced equations which represent interesting classes
of two-dimensional equations — parabolic, hyperbolic and elliptic. This paper
continues the discussion in [1].

Ansétze and methods used for reduction of the d’Alembert (n-dimensional
wave) equation can be also used for arbitrary Poincaré-invariant equations. Below
we show that this seemingly simple and partial problem involves many important
aspects in the studies of the partial differential equation (PDE).

The topic we consider demonstrates relations of the symmetry methods (see
e.g. [2,3]) to other aspects of investigation of PDEs — compatibility of systems
of equations, methods of finding general solutions (e.g. by means of hodograph
transformations).

The methods we used were not fully algorithmic — it was necessary to decide
when to switch methods and many hypotheses had to be tested.

We consider the multidimensional wave equation

Ou = F(u), a E@io —8%1 —---—89%”, u=u(To,T1,-..,Tp)

It seems to have been thoroughly studied and almost trivial. We list only some
papers in which solutions of this equation are studied specifically — [4,12].

However, this equation appears to have many new facets and ideas to discover.
We observe that investigation of hyperbolic equations, both with respect to their
conditional symmetry and classification, is considerably more difficult than the
same problem for equations in which at least for one variable the partial derivatives
have only lower order than the order of equation.
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2 Reduction of nonlinear wave equations — ansatz

We found conditions of reduction of the multidimensional wave equation
Ou = F(u),
by means of the ansatz with two new independent variables.

u = (P(y>z)> (1)

where y, z are new variables. Henceforth n is the number of independent spatial
variables in the initial d’Alembert equation.

Reduction conditions for such an ansatz are a system of the d’Alembert equa-
tions and three equations of Hamiltonian type

Y =7 2),  Ypzu = q(Y,2),  2uzu = s(y, 2), (2)
Oy = R(y,z), Oz=S(y,z2).

We proved necessary conditions for compatibility of such a system of conditions
for reduction (see [1]). However, the resulting conditions and reduced equations
needed further research.

3 General background

There are two major methods of reduction of PDEs to ODEs or PDEs with a
lower number of independent variables:”

Symmetry reduction to equations with a lower number of independent variables
or to ordinary differential equations (for the algorithms see e.g. the books by
Ovsyannikov [2] or Olver [3]).

“Direct method” (giving wider classes of solutions than the symmetry reduc-
tion) was proposed by P. Clarkson and M. Kruskal [13]). See more detailed in-
vestigation of the direct reduction and conditional symmetry in [4,13-19]. This
method for the majority of equations results in considerable difficulties as it re-
quires investigation of compatibility and solution of cumbersome conditions of
reduction of the initial equation.

These conditions for reduction are much more difficult for investigation and
solution in the case of equations containing second and/or higher derivatives for
all independent variables and for multidimensional equations — e.g. in the situation
of nonlinear wave equations.

We would like to point out once more that the problem we consider has two
specific difficulties. Firstly it is always more technically difficult to work with
hyperbolic equations such as the nonlinear wave equation than with parabolic ones
(such as evolution equations). Secondly normally the methods and algorithms
for working with reductions and solutions are designed and applied for a limited
number of variables — usually two or three. Here we work with an arbitrary number
of variables although we limit the number of variables for specific examples.
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4 Compatibility of the conditions for reduction:
summary

A similar problem was considered previously for an ansatz with one independent
variable

u=o(y), (3)

where y is a new independent variable.
Compatibility analysis of the d’Alembert—-Hamilton system

Ou = F(u), uuu, = f(u) (4)

in the three-dimensional space was done by Collins [20].

The sufficient conditions of reduction of the wave equation to an ordinary
differential equation (ODE) and the general solution of the system (4) in the case
of three spatial dimensions were found by Fushchych, Zhdanov and Revenko [21].
For a discussion of previous results in this area see [22]. It is evident that the
d’Alembert—Hamilton system (4) may be reduced by local transformations to the
form

Ou = F(u), wuu, =X, A=0,%£1 (5)

Statement [23]. For the system (5) (u = u(xo,z1,22,x3)) to be compatible it is
necessary and sufficient that the function F have the following form:

A
F=——7-—+- N=01,2,3.
N(U—I—C)’ R B

Ansétze of the type (1) for some particular cases were studied in [24-27].

5 Transformations of compatibility conditions

Substitution of the ansatz u = ¢(y, z) into the equation Ou = F'(u) leads to the
following equation (see [1]):

PyyYulYp + Q@yzzuyu + Qzzzpzu + pyly + @0z = F(‘P) (6)
< = aw)
Yu = y Py = )
a Ox,, Y oy

whence we get a system of equations:

yuyu = T(y, Z)v yuz,u = Q(?Jv Z)v Zuzu = S(yv Z)v (7)
Dy = R(y,2), Dz=S(y,z2).

System (7) is a condition of reduction for the multidimensional wave equa-
tion (1) to the two-dimensional equation (6) by means of ansatz u = ¢(y, 2).
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The system of equations (7), depending upon the sign of the expression s —¢?,
may be reduced by local transformations to one of the following types:

1) elliptic case: rs — ¢? > 0, v = v(y, z) is a complex-valued function,

Ov =V (v,0v%), Ov*=V*(v,v"),

* _ * _ *
v = h(v,v%), v, =0, v

; =0 8)

w
(the reduced equation is of elliptic type);
2) hyperbolic case: 7s — ¢> < 0, v = v(y, 2), w = w(y, ) are real functions,
Ov=V(v,w), DOw=W(v,w),
vyw, = h(v,w), vy, =0, wyw, =0 9)
(the reduced equation is of hyperbolic type);
3) parabolic case: rs —q? =0, r2+s2+¢> # 0, v(y, 2), w(y, z) are real functions,
Ov=V(v,w), DOw=W(v,w),
vpwy =0, vuv, =X (A==%1), wuw, =0 (10)
(if W # 0, then the reduced equation is of parabolic type);
4) first-order equations: (r=s=¢=0),y —v, z —w
VU = wywy, = vwy, = 0,

Ov=V(v,w), DOw=W(v,w). (11)
Elliptic case.

Theorem 1. System (8) is compatible if and only if

M0 9
) T T o

where ® is an arbitrary function for which the following condition is satisfied

V:

(hdy )" = 0.

The function h may be represented in the form h = 1/R,,+, where R is an
arbitrary sufficiently smooth function and R,, R, are partial derivatives with

respect to the respective variables.
n+1
Then the function ® may be represented in the form ® = 3 fi(v)RE, where
k=0
fr(v) are arbitrary functions and

n+1

> kfi(v)RY
=1

- n+1

S f)RE
k=0
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The respective reduced equation has the form

av*cI) 0, ®*
h( ) <2¢vv +‘¢v +‘¢v* o*

) =r. (12)

The equation (12) may also be rewritten as an equation with two real inde-
pendent variables (v =w + 0, v* = w — 0):

h(w,0) (S + da0) + QUw, 0) b + O(w, 0)dg = F(9).
Hyperbolic case.

Theorem 2. System (9) is compatible if and only if

h(v, w)0,® h(v, w)0, V¥
V=——"——"- W=——7—
o ’ v ’
where the functions ® and VU are arbitrary functions for which the following con-
ditions are satisfied

(RD,)" T =0, (hdy,)"T1® =0.

The function h may be presented in the form h = 1/R,,,, where R is an arbi-
trary sufficiently smooth function and R,,, R, are partial derivatives with respect
to the respective variables. Then the functions ® and ¥ may be represented in
the form

n+1 n+1
¢ =) frlv)Ry, U= ng
k=0
where fi(v) and gx(w) are arbitrary functions,
n+1 n+1
> kfu(v) R} > kgi(w) Ry,
_ k=1 _ k=1
T ontl ’ T ontl
> Ju(v) Ry > gr(w) R,
k=0 k=0

The respective reduced equation has the form

(v, w) <2¢Uw 0,202 14,0

)= r. (13)

The equation (13) may also be rewritten as a standard wave equation (v = w + 6,
w=w-—10):

1w, 0)(Puw — b00) + Qw, 0), + O(w, 0) g = F(9).
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Parabolic case.
Theorem 3. System (10) is compatible if and only if

20,®

Vv T

ortte =0 W

Il
o

Equation Ou = F(u) cannot be reduced to a parabolic equation by means
of the ansatz u = ¢(y,z) — in this case one of the variables enters the reduced
ordinary differential equation of the first order as a parameter.

System (11) is compatible only in the case V.= W = 0, that is, the reduced
equation may be only an algebraic equation F'(u)=0. Thus we cannot reduce
equation Ou = F'(u) by means of the ansatz u = ¢(y, ) to a first-order equation.

Proof of the theorems above is done by means of the well-known Hamilton—
Cayley theorem in accordance to which a matrix is a root of its characteristic
polynomial.

6 Reduction and conditional symmetry

Solutions obtained by the direct reduction are related to symmetry properties
of the equation — @-conditional symmetry of this equation (symmetries of such
type are also called nonclassical or non-Lie symmetries. It is also possible to see
from previous papers that symmetry of the two-dimensional reduced equations
is often wider than symmetry of the initial equation, that is, the reduction to
two-dimensional equations allows one to find new non-Lie solutions and hidden
symmetries of the initial equation (see e.g. papers by Abraham-Schrauner and
Leach [28,29]). The Hamiltonian equation may also be considered, irrespective
of the reduction problem, as an additional condition for the d’Alembert equation
that allows extending the symmetry of this equation.

Consider the wave equation in two spatial dimensions. Reduction of Du = F'(u)
by our ansatz u = (v, w) means Q-conditional invariance this equation under the
operator

Q = 0z + 71(x0, 21, 22)0z, + T2(20, T1,2) 0, .

This equivalence of reduction and @)-conditional symmetry was proved by Zhda-
nov, Tsyfra and Popovych [18]. New variables, v and w, are invariants of the
operator Q:

Qu=Quw =0.

7 Study of the reduced equations

Equivalence of quasilinear wave equations is well studied, but we consider a par-
ticular class of such equations.
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We consider the reduced equation of the form

Oy ® Oy ¥
h(v, w) <2¢Uw + (z)v? + ¢w W,

) =ro.
where ® and ¥ are arbitrary functions for which the following conditions are
satisfied

(hd,)" W =0, (hd,)"™'® =0.
Equivalence transformations of the reduced equations are only of the type
h(v,w) — k()l(w)h(v,w), v w; ¢ — ap+bd.

There are special additional equivalence groups only for special forms of the func-
tion F'. Special class of the reduced equations — h(v, w) = k(v)l(w); in this case the
equations can be reduced to the case h(v,w) = const. All symmetry reductions
have h(v,w) = const and linear ® and W.

We have a quite narrow equivalence group of the reduced equation as we ac-
tually took a single representative of an equivalence class of hyperbolic reduced
equations.

Description of all possible reductions involves classification of the reductions
found and nomination of certain inequivalent representatives. Any classification
problem is a description of equivalence classes under certain equivalence relations.

Selection of an equivalence group for classification may be in principle arbitrary,
but as a rule one of the following is selected: either the symmetry group of the
conditions describing the initial limited class or the group of automorphisms of
some general class.

There is a generally accepted method for classification of symmetry reductions
— by subalgebras inequivalent up to conjugacy. This method does not work for
general reductions and we have to choose another method of classification.

Another important note is that, if we do classification in several steps, we have
to consider commutativity and associativity of classification conditions (e.g. under
some equivalence group) adopted at each step.

8 Example: Solutions for the two-dimensional case

We will look for parametric solutions for the system

Ov=V(v,w), Ow=W(v,w),

vpwy, = h(v,w), wvuv, =0, wyuw,=0, p=0,1,2.

Firstly we construct parametric or explicit solutions for the equations w,w, = 0,
v,v, = 0 and then use them to find solutions of other equations.
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Rank 0. General solution of the equations v,v, = 0, w,w, =0

v=Ax,+B, w=C,x,+D,
AA, =0, C,C,=0.

p, q are parametric functions on z, A, (u = 1,2), B, Cy, (1 = 1,2), D are arbitrary
constants up to conditions. In this case h is constant, Ov = Ow = 0 and we have
solutions that can be obtained by symmetry reduction.

Rank 1. General solution of the equations v,v, = 0, w,w, = 0.

v=A.(p)x,+ B(p), w=Cu(q)z,+ D(q),
Az, + By, =0, Chr,+ D=0, A,A, =0, C,Cu=0.

p, q are parametric functions on =, A, (u = 1,2), B, C, (1 = 1,2) and D are
arbitrary functions up to conditions.

Rank 2. General solution of the equations v,v, = 0, w,w, = 0.

v=A,(p1,p2)x, + B(p1,p2), w=Culq,q)r,+ D(qi,q2),
Ay By =0, Cla, + Dy =0, AyA, =0, C,Cp=0.

p, q are parametric functions on z, A, (u = 1,2), B, C, (1 = 1,2) and D are
arbitrary functions up to conditions.

It is easy to prove that that for v,w, = h(v,w) solutions of v,v, = 0 and
wyw, = 0 should have the same rank. Further we can find partial parametric
solutions taking the same parameter functions p for v and w. This way we have
new non-Lie solutions with hidden infinite symmetry. (For a definition of hidden
symmetry see [28].)

It is well-known [30] that the general solution of the system (4) with F' = f = 0,
n = 1,2, can be written as

u = Au(p1,p2)r, + B(p1,p2),
AR w,+ By, =0, A,A, =0, Al Al =

Similarly we can construct a parametric solution for (9) with V.=W =0,h =
const.

v = A,(p1,p2)z, + B(p1,p2),

AR 2,4 By =0, AuA, =0, AbAE —|,

w = Cy(p1,p2)7u + D(p1,p2),

Chxy+ Dy, =0, C,C,=0, CLCI =0, A,C, = const.

Pk ~Pm

The operator of )-conditional symmetry that gives such an ansatz has the
form

Q = 0y + 1101 + 1202,
_ Cody—ACy _ Codr = AeCy
T ALCy— A0y 2T ALCy — ASCy
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9 Conclusion

The topic we discuss is closely related to majority of main ideas in the symme-
try analysis of a PDE — direct reduction of the PDE; conditional symmetry; Q-
conditional symmetry; finding solutions directly using nonlocal transformations;
group classification of equations and systems of equations.

Our general problem — study of reductions of the nonlinear wave equation (and
of other equations in general) — requires several classifications up to equivalence
on the way.

At each step we have to define correctly the criteria of equivalence and check
commutativity and associativity of these equivalence conditions or otherwise take
into account a lack of such properties.

10 Further research

1. Study of Lie and conditional symmetry of the system of the conditions for
reduction.

2. Investigation of Lie and conditional symmetry of the reduced equations.
Finding closed-form solutions of the reduced equations.

3. Finding of places of previously found solutions on the general equivalence
map.

4. Relation of the equivalence group of the class of the reduced equations with
symmetry of the initial equation.

5. Finding and investigation of compatibility conditions and classes of the re-
duced equations for other types of equations, in particular, for Poincaré—
invariant scalar equations.
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