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ABSTRACT

This dissertation is a study of beyond standard model physics or new physics. The third
generation charged lepton -the 7 -is an excellent probe of new physics (NP) because of it being
the heaviest lepton. As the heaviest lepton, it has the largest coupling ( among the leptons) to the
Higgs boson in the Standard Model (SM).

New physics contributions to the tau-neutrino nucleon scattering were considered. Charged Higgs
and W' effects to the deep inelastic scattering v, (;) + N — 7~ (71) 4+ X in the neutrino-nucleon
interactions has been studied. The neutrino detection process at neutrino oscillation experiments
modify the measured atmospheric and reactor mixing angles 023 and 6,3, respectively. A signifi-
cant deviation from the standard model was observed in terms of the neutrino mixing angles.

The semileptonic decays of B meson to the 7 lepton is mediated by a I/ boson in the SM. In
many models of NP this decay gets contributions from additional states like new vector bosons,
leptoquarks or new scalar particles. These new states affect the semileptonic b — cand b — u
transitions and gave rise to new physics beyond the standard model. We have presented the angular
distribution for B — D**7~ v, with the most general new physics structure including tensor op-
erators. We have then discussed the effects of the tensor operators on various observables that can
be constructed out of the angular distribution. Our focus was on the azimuthal observables which
include the important CP violating triple product asymmetries. We found that these azimuthal
asymmetries, have different sensitivities to different new physics structures and hence they are

powerful probes of the nature of the NP.
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CHAPTER 1
MOTIVATION

1.1 Introduction

This dissertation is a study of some aspects of physics involved with the third generation
leptons, namely, the 7 and the ;. The third generation charged lepton is an excellent probe of new
physics (NP) because of it being the heaviest lepton. As the heaviest lepton, it has the largest cou-
pling (among the leptons) to the Higgs boson in the Standard Model (SM). The 7 lepton interacts
only with the electroweak force and so does not suffer from the SM Quantum Chromodynam-
ics(QCD) higher order corrections which are difficult to calculate. Hence NP effects in the 7
sector can be easily isolated from the SM background. Also, the constraints on new physics in-
volving the third generation leptons, the 7 and v, are somewhat weaker, allowing for larger new
physics effects. Experimentally, the 7 production and decay are well separated in time allowing for
measurements of the 7 polarization and parity of the decaying objects which can be used to probe
NP.

There are scenarios in which decays involving the 7 leptons are very important probes of
NP. Neutrino-Nucleon scattering is one of the cases in which a tau-neutrino scatters off a nucleon
resulting in a tau lepton as one of the products. Here one can look at the different types of scattering
such as the Quasi-Elastic scattering, Resonance scattering and Deep-inelastic scattering. Another
sector in which the tau lepton plays an important role in NP search is CP violation. Tau is the only
lepton that can decay to hadrons, which can provide an opportunity to observe non-SM type CP
violation. The decays B — 7v,, B — D"7y_and B — K"77 are other examples where it
may be possible to find new physics (NP) involving the third generation leptons. In fact in some

of these decays, B — v, B — D™y, there are disagreement between the SM predictions and



experimental results.

1.1.1 v, scattering

An important place to consider nonstandard interactions (NSI) is v, scattering. One such example
is the v, + N — 7~ 4+ X reaction, where N = p, n is a nucleon and X is a possible final state. In
the Standard Model the above interaction is mediated by a W boson. If we consider NSI by using a
W' gauge boson or a charged Higgs, then we may see some deviations from the SM results. These
deviations from the SM will be the deviations in the SM results of the neutrino mixing angles. We
have worked out the details of non-standard interactions in v, scattering through the Quasi-elastic
scattering, A-Resonance scattering and Deep-inelastic scattering. We have also worked out, in the
above three processes, the effects of NSI on the polarization of the 7. This will be explained in

more detail in one of the following sections.

1.1.2 7 CP violation

CP violation in the SM is restricted to the quark sector and is forbidden in lepton decays. Moreover,
the SM explanation of CP violation does not fully account for the large discrepancy between matter
and anti-matter in the present universe. However, extensions to the SM do permit CP violations
in 7 decay. Searching for CP-violating decays in the lepton sector may help identify the missing
contribution to the matter-antimatter asymmetry in the Universe. Among the three charged leptons,
CP violation with the 7 lepton has not been extensively studied . Hence searches for CP violation
in 7 decays are interesting probes for new physics scenarios. The result for one such decay has
been discussed in Bigi and Sanda Ref. (I.1.Bigi and A.l.Sanda, 2005) predicted that, in the SM, the
decay of the 7 lepton to final states containing a K s” will exhibit a nonzero decay rate asymmetry
due to CP violation in K° — K° mixing. The decay rate asymmetry, defined as

D(rt = 7t K0,) — T(77 — 7~ Ksv,)

A=
D(rt — 77K 0,) + (7~ = 7= Ks'v,)

(1.1)



was predicted to be (0.33 4 0.01)%, and a significant deviation from this value would be evidence
of NP. As pointed out by Grossman and Nir Ref. (Y.Grossman and Y.Nir, 2002), the SM prediction
for A has to be corrected for a factor due to the K°5— K9 interference. The corrected value for A is
(0.36 +0.01)%. The decay-rate asymmetry has been measured tobe A = (—0.36 +0.23 +0.11)%
which is 2.8 standard deviations from the SM prediction of (0.36 & 0.01)%. This could possibly

be a hint of new physics beyond the SM.

1.1.3 B—1v

B physics plays an important role in testing the Standard Model (SM). The decay B — 7v is one
such decay which may be giving hints of new physics because of the disagreement between the
SM prediction and the experimental results. Measurements of branching ratios of B — 7v and
B — D™1v probe the possible impact of beyond SM physics in the leptonic and semileptonic 5B-
decays. Within the SM, these decay modes are important since they are used in obtaining precise
values of |V,;| and |V,,| together with the relevant hadronic decay constants or form factors. For
example, due to the large mass of the 7, semileptonic decays are sensitive to additional form
factors, which are unimportant in the corresponding B decays with light leptons in the final state.
Also, these tauonic decay modes represent sensitive tests of lepton flavor universality (LFU) in
charged current interactions. The most recent world average of the leptonic B — 7v branching

fraction measurements, as reported by the Belle and BaBar Collaborations, is

Br(B — 7tv) = (11.44+2.3) x 107°. (1.2)

This deviates from the SM prediction of

Br(B — 1)y = (T.57709%) x 107°. (1.3)



The latest Belle result is

Br(B — 1)y = (7.21537 £ 0.11) x 107°, (1.4)

We see that the current world average of the experimental values still deviates from the SM pre-

diction by 2.60. These results give a hint that NP effects may play a role in these decays.

1.14 B — D170,

The search for new physics (NP) beyond the Standard Model (SM) of particle physics is going on
at the energy frontier in colliders such as the LHC and at the intensity frontier at high luminosity
experiments. In the intensity frontier, the B factories, BaBar and Belle, have produced an enor-
mous quantity of data and there is still a lot of data to be analyzed from both experiments. The
LHCDb and Belle IT will continue the search for NP through precision measurements in the b quark
system. There are a variety of ways in which NP in B decays can be observed Ref. (A.Datta and
D.Ghosh, 2014; A.Datta and P.J.O’Donnel, 2005; A.Datta, 2006; C.-W.Chiang and A.Szynkman,
2010; A.Datta and D.London, 2004a; S.Baek and D.London, 2005; A.Datta and R.Sinha, 2005).
In this NP search, the second and third generation quarks and leptons may be quite special be-
cause they are comparatively heavier and could be relatively more sensitive to NP. As an example,
in certain versions of the two Higgs doublet models (2HDM) the couplings of the new Higgs
bosons are proportional to the masses and so NP effects are more pronounced for the heavier gen-
erations. Moreover, the constraints on NP involving, specially the third generation leptons and
quarks, are somewhat weaker allowing for larger NP effects Ref. (A.Rashed and A.Datta, 2013,
2012; M.Duraisamy and A.Datta, 2011; A.Datta and M.Duraisamy, 2010; A.Datta and T.Huang,
2000). This is explained in detail in chapter 4.

Recently we have been looking into the new physics in the decay of A, — to A, .



CHAPTER 2
Standard Model of Particle Physics

2.1 Standard Model

The visible Universe is composed of fermions and bosons and they are distinguished by their
spin angular momentum. The fermions follow the Fermi-Dirac statistics and have half-integer spin.
The bosons follow the Bose-Einstein statistics and possess integer spin. The four fundamental
forces described by the Standard Model are the electromagnetic force, the weak force, the strong
force and the gravitational force. Gravity is not included in the Standard Model because it is
negligible due to the small masses of the elementary particles. The fermions are responsible for
the matter of the Universe and the bosons are the mediators.

The fermions can be divided into two categories, namely ’leptons’ and ’quarks’. The leptons are
divided into three generations. The first generation consists of the electron (e) and the electron-
neutrino (v.). The second generation consists of the muon (x) and the muon-neutrino (). The
third generation consists of the tau (7) and the tau-neutrino (v,). The electron, muon and tau each
have single unit electric charge, but their neutrinos are neutral electrically. The fermions experience
the weak force and the charged fermions also experience the electromagnetic force. The carriers
of the weak force are the Z and the W bosons, and the carrier of the electromagnetic force is the
photon.

The quarks are of six types and they are up (u), down (d), strange (s), charm (c), bottom (b) and
top (t). They have fractional charge. u, c,t have +2/3 charge and d, s, b have -1/3 charge. More
details are given in Fig 2.1. Quarks are not found to exist individually. They are found in bound
states like hadrons, baryons or mesons. The nucleons are made up of three quarks and the mesons

are made up of quark-antiquark pairs. The force carriers of the quarks are the gluons.
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2.2 The Electroweak Theory

The Electroweak theory is a unified description of the electromagnetic theory and the weak
interaction. The electromagnetic force is described by the exchange of a photon and the weak
theory is described by the exchange of W and Z bosons. It was first explained by Glashow,
Weinberg and Salam, and it unifies the electromagnetic and the weak interactions.

The electroweak Langrangian can be written as

Lew :£g+£f+£h+£y 2.1

The kinetic energy term for the gauge boson is given by

1 a \2 1 2
Ly = _Z(AW) - Z(B“”) (2.2)
where
X, =0,X)—0,X+g fabcxgxg (2.3)

is known as the gauge boson field strength. The kinetic energy term for the fermions are
,Cf = EL(iVMDM)EL + éR(i’yuDu)CR + QL(Z"}/MDM)QL + CZR(i’VMDM)dR + ﬂR(’i’)/MDM)UR (24)

where E; are the left-handed lepton doublets, er are the right-handed leptons, (), are the left-
handed quark doublets, dy are the down-type right-handed quarks and up are the up-type right-
handed quarks.

The Higgs term is

L, = Dol + 12616 — Aol " 2.5)



This term contains the Higgs kinetic energy and the Higgs potential energy. For spontaneous
symmetry breaking, the potential should have a minimum and it must be that z? > 0. The Yukawa

interaction terms between the Higgs and the fermions are given as
L, = ~YuQr - ¢dr — Yo Qra - ¢'ur — Y. Ey - per + h.c. (2.6)

where Y, Y, and Y,, are the Yukawa coupling constants and €’ is the totally antisymmetric tensor.

2.3 Beyond The Standard Model

The main motivation of this thesis is to look for beyond standard model physics or new

physics. The best way to explain it is to describe it as quoted by Steven Weinberg:

It describes everything we see in the laboratory. Aside from leaving gravity out, it’s a complete
theory of what we see in nature. But it’s not an entirely satisfactory theory, because it has a
number of arbitrary elements. For example, there are a lot of numbers in this standard model that
appear in the equations, and they just have to be put in to make the theory fit the observation. For
example, the mass of the electron, the masses of the different quarks, the charge of the electron. If
you ask, "Why are those numbers what they are? Why, for example, is the top quark, which is the
heaviest known elementary particle, something like 300,000 times heavier than the electron?” The

answer is, "We don’t know. That’s what fits experiment.” That’s not a very satisfactory picture.



CHAPTER 3
TAU NEUTRINO AS A PROBE OF NONSTANDARD INTERACTIONS

3.1 Introduction

Neutrino oscillation results have confirmed that neutrinos are massive and lepton flavors
are mixed. This opens a window for searching physics beyond the standard model (SM). Be-
side the standard matter effects, the possibility of having nonstandard neutrino interactions (NSIs)
is opened up. Nonstandard neutrino interactions with matter have been extensively discussed
Ref. (Wolfenstein, 1978; Mikheyev and Smirnov, 1985; M.C.Gonzalez-Garcia and Funchal, 1999;
M.M.Guzzo and S.T. Petcov, 1991; S.Bergmann and H.Nunokaw, 2000; M.M.Guzzo and O.L.G.Peres,
2001; M.Guzzo and J.W.F.Valle, 2002; Y.Grossman, 1995; T.Ota and J.Sato, 2002; A.Friedland
and C.Lunardini, 2005; N.Kitazawa and O.Yasuda, 2006; A.Friedland and C.Lunardini, 2006;
M.Blennow and J.Skrotzki, 2008; A. Esteban-Pretel and Huber, 2008; M. C. Gonzalez-Garcia and
Nir, 2001; A. M. Gago and Funchal, 2001; Huber and Valle, 2001; T. Ota and a. Yamashita,
2002; Campanelli and Romanino, 2002; M. Blennow and Winter, 2007; J. Kopp and Ota, 2007,
J. Kopp and Sato, 2008; N. C. Ribeiro and Zukanovich-Funchal, 2007; N. C. Ribeiro and Mi-
nakata, 2008; J. Kopp and Winter, 2008; M. Malinsky and Zhang, 2009; A. M. Gago and Funchal,
2010; Palazzo and Valle, 2009; P. Coloma and Minakata, 2011; Super-Kamiokande, 2011; R. Ad-
hikari and Roy, 2012; S. K. Agarwalla and Takeuchi, 2012; T. Ohlsson and Zhou, 2013). Gen-
eral bounds on NSI are summarized in Ref. (S. Davidson and Santamaria, 2003; DELPHI, 2005;
C. Biggio and Fernandez-Martinez, 2009). The NSI impact have been studied on solar neutrino
Ref. (Z. Berezhiani and Rossi, 2002; A. Friedland and Pena-Garay, 2004; O. G. Miranda and Valle,
2006), atmospheric neutrinos Ref. (S. Bergmann and Pierce, 2000; N. Fornengo and Valle, 2002;

Gonzalez-Garcia and Maltoni, 2004), reactor neutrinos Ref. (F. J. Escrihuela and Valle, 2009), and



neutrino-nucleus scattering Ref. (J. Barranco and Rashba, 2005, 2007).
At low energy, the most general effective NSI Lagrangian reads Ref. (J. Kopp and Sato,

2008), if we consider only lepton number conserving operators,
Lyst = Lvia + Lsip + Lo, (3.1)

where the different terms are classified according to their Lorentz structure in the following way:

B Gr S FVEA _
Lyia = fff/ el (7577 (1 = 7°) ] [Fr0(1 £7°)f]

- Zef S Py (1= 7)) [f,(1 £ 9°) ] + hee.,

Lsip = %ff’gi;g SiP[ 5(1+7°)0] [F/(1 £7°)f] +h.c,

Lr = Zaf T 950770, [Fope f] +hec, (3.2)
ff’

where G is the Fermi constant, v, is the neutrino field of flavor a, /,, is the corresponding charged
lepton field, and f, f’ are the components of an arbitrary weak doublet. The dimensionless NSI
parameters ¢’s represent the strength of the nonstandard interactions relative to G and we consider
only left-handed neutrinos. This constraint on the neutrino chirality forbids vv f f terms in Lg1p
and Lr. If the nonstandard interactions are supposed to be mediated by a new state with a mass
of order Myg, the effective vertices in Eq. (3.2) will be suppressed by 1/M32g; in the same way as
the standard weak interactions are suppressed by 1/Mg3;. Therefore we expect that

2

M,
5

My

le| ~ (3.3)

In this work we considered the charged Higgs and W' gauge boson contributions to neutrino-
nucleon scattering. Such new states arise in many extensions of the standard model and the phe-

nomenology of these states have been widely studied. In this paper we have focussed on the
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A-resonance production (A-RES) and deep inelastic scattering (DIS) in the interactions v, + N —
7+ Xand v, + N — 71 + X where N = p, n is a nucleon and X is a possible final state. In the
A-RES production we have discussed the processes with N = n,pand X = AT, A", respectively.
In the neutrino oscillation experiments, the neutrino-nucleus interaction in the detection process
is assumed to be SM-like. Therefore, the extracted neutrino mixing angles, using the SM cross
section, will have errors if there are new physics (NP) effects in the neutrino-nucleus amplitude.
The NP effects modify the standard model cross section for v, + N — 7~ 4+ X and thus im-
pact the extraction of the atmospheric neutrino mixing angle 623 in v, appearance experiments. If
high-energy Long Base Line (LBL) experiments (or atmospheric neutrino experiments scanning
in the multi-GeV neutrino energy range) could measure 6,3 via v, appearance then the NP effects
inv, + N -7+ Xand o, + N — 77 + X would impact the ;3 measurement and a mis-
match between this measurement and that performed at the reactors could be a hint of a NSI in the
former. The deviation of the actual mixing angle from the measured one, assuming the standard
model cross section, have been studied including form factor effects in the A-RES case.

In this work, we made the important assumption that NP effects only arise in the coupling
between the new particles and the third generation leptons, neglecting possible (subleasing) NSI
effects with the first two generations. With the above assumption we can neglect NSI effects
at productions since at production we have neutrino interactions involving the first and second
generation leptons, only. Furthermore, the effect on v propagation can come only from neutral
current interaction. Multi Higgs models and models with ¥’ also generally contain neutral current
interactions but the connection between the charged current and neutral current interactions is
model dependent. We only considered the charged current interactions, and the addition of neutral
current interactions would add another model dependent parameter in our calculation. We hope to
include in future work also neutral current interactions.

This pattern of NP is common in many NP models Ref. (A. Friedland and C.Lunardini, 2006;
A. Esteban-Pretel and Huber, 2008). For instance, in multi Higgs doublet models NP effects for

the third generation quarks and leptons are enhanced because of their larger masses. For the W’
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model we are assuming a W' with non-universal coupling to the generations. This is not an unusual
scenario and would avoid constraints from W’ searches at colliders that look at the decays to W’ to
first and second generation leptons. The reaction v, + N — 7~ 4 X is relevant to experiments like
Super-Kamiokande (Super-K) Ref. (Super-Kamiokande, 2012) and OPERA that seek to measure
v, — v, oscillation by the observation of the 7 lepton. The DONuT experiment Ref. (et al.
(DONuT Collaboration), 2008) Ref. (Kodama et al., 2001; et al. (OPERA Collaborarion), 2010)
measured the charged-current (CC) interaction cross section of the tau neutrino. A neutrino factory
would be a prolic source of tau neutrinos via oscillation Ref. (Neuffer, 1981; Alsharoa et al., 2003).
The central-value results show deviation from the standard model predictions by about 40% but
with large experimental errors; thus, the measurements are consistent with the standard model
predictions. In this work we considered NP effects within a neutrino energy range higher than
the threshold energy for the 7 production where the A-RES and DIS contributions are dominant.
Near threshold quasielastic scattering is important. The charged Higgs and W’ contributions to the
quasielastic (QE) scattering v, +n — 7~ + pand 7y + p — 77 + n were considered in an earlier
paper Ref. (A. Rashed and Datta).

The hadronic transition in the charged-current (CC) interactions v, + N — 7~ + X and
U, + N — 77 + X at the partonic level is described by (u,d) — ¢, where ¢ is a quark. In the
A-RES case ¢ = u, d, while in the DIS the main contributions are obtained when ¢ = u, d because
of the CKM factors. This means that the effective operator of these interactions mainly has the
structure Onp = ul';d7I';, where I'; ; are some Dirac structures. Therefore, we can constrain
the NP parameters in this work using the constraints that have been discussed in the earlier paper
Ref. (A. Rashed and Datta) through the 7 decay modes 7~ — 7~ v, and 7~ — p~ v,. These decay
channels have operator structures similar to the one in the above CC interactions.

In Ref. (A. Rashed and Datta), we presented a model independent analysis of the NP con-
tributions to the deviations of the mixing angles 653 and ;3. In the case of 63, the relationship
between the ratio of the NP contribution to the SM cross section 193 = onp(V,)/0sa (V) and the

deviation d»3 of the mixing angle was obtained in a model independent form as
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(3.4)

oy [sin2(923)5M]2 1

sin 2(923)
Here, 023 = (0a3) s + d23 is the actual atmospheric mixing angle, whereas (6s3) s/ is the extracted
mixing angle assuming the SM v, scattering cross section and d»3 is the deviation . From figure
(1) in Ref. (A. Rashed and Datta), one can see that do3 ~ —5° requires 793 ~ 5%. Similarly for 6,3

determination, the relationship between 713 = onp(7;)/0sr(7;) and 013 is given by

M 20rdsu*_ . (3.5)

"= |: sin 2(913)

with 013 = (013)sa+013. In this case, because of the relative smallness of ;5 one finds that a larger
NP effect is required to produce the deviation. As an example, d;3 ~ —1° requires ri3 ~ 25%.

A possible concern was that the NP effects can be washed out after including the neutrino
flux and integrating over the possible values of the incoming neutrino energy. It was shown that
this is not the case by by considering examples of the W/ and charged Higgs contributions to
d93 using the atmospheric neutrino flux at the Super-Kamiokande experiment. The results show
that the values and the pattern of the mixing angle deviation d23 has no significant change due to
considering the neutrino flux.

We studied, also, the NP effect on the spin polarization of the produced 7 lepton. The pro-
duced 7 decays to several particles including v, and tracing back the 7 decay particle distributions
indicates the appearance of 7. Because the 7 decay distributions depend significantly on its spin
polarization, the polarization information is essential to identify the 7 production signal. Hence it

is important to know how NP affects the 7 polarization.
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3.2 Kinematics and formalism

In the interactions v, (7,) + N — 77 (71) + X, we define the four-momenta of incoming
neutrino (k), target nucleon (p) and produced 7 lepton (k') in the laboratory frame. The hadronic

invariant mass

W? = (p+q)° (3.6)

where ¢ = k — k' is the four-momentum transfer, is defined in the allowed physical region

M<W <+s—m,, (3.7)

where s = (k + p)? is the center of mass energy and M is the average nucleon mass.

The three relevant subprocesses in the neutrino-nucleon interactions are classified accord-
ing to the regions of the hadronic invariant mass W and the momentum transfer ¢*(= —Q?)
Ref. (K. Hagiwara and Yokoya, 2003). One can label QE (quasi-elastic scattering) when the
hadronic invariant mass is equal to the nucleon mass W = M, RES (resonance production) when
M +m,; <W < Wey, and IS (inelastic scattering) when W < W < /s — m,. Wiy, taken in
the region 1.4 GeV~1.6 GeV, is an empirical boundary between RES and IS processes, to avoid
double counting. The deep inelastic scattering DIS may be labeled within the IS region when
Q*>1 GeV?, where the use of the parton model can be justified. In this work, we considered
A-resonance state production and neglect all the other higher resonance states which gives small

contributions Ref. (Paschos and Yu, 2002; E. A. Paschos and Yu, 2000). One can write

W2 =M*+t+2p-q, (3.8)

with p - ¢ = M(ES™ — Ef™) where the energy and momentum of the lepton and the neutrino in
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the center of mass (cm) system are

cm (S _ M2) cm cm
E; 2—\/5, i = (E")? — m127
_ M2 2
Elcm (S A + ml ) (39)

SN

with (m;, M, M) being the masses of the charged lepton, nucleon, and the A state, respectively.

In the lab frame, the charged lepton energy is given by

_ t+2ME, + M?* — M}

E
! oM

(3.10)

The threshold neutrino energy to create the charged lepton partner in the A-RES case is given by

(ml + MA)2 — Mz
2M,,

th
E, = ) (3.11)
which gives Ef,f‘ = 4.35 GeV in the case of tau neutrino production. Using the allowed range of the
invariant mass in the resonance production, the allowed region of the momentum transfer t = —Q?
lies in the interval

(M +mg)? — (M*+2M(E™ — E™)) <t <W2, — (M?>+2M(E™ — E™)) . (3.12)

C

3.3 Standard Model Cross Sections

In this section we considered the standard model cross sections for the DIS processes. In the
following sections we have showed the contributions of the new states W' and charged Higgs to
theses two processes. In Ref. Ref. (A. Rashed and Datta) the NP contributions to the QE process

were studied.
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3.3.1 Deep inelastic tau neutrino scattering
In this section, we present the standard model cross sections for the two deep inelastic scattering

(DIS) processes which include v and 7,

vi+ N — 1 + X,

v+ N =717+ X. (3.13)

From Hagiwara model, see Ref. (K. Hagiwara and Yokoya, 2003) for details, the differential

cross section can be parametrized as follows, for Q? < m%,v,

d?ovr(r) GV, 1 1 1

where pli = {p" is the four-momentum of the scattering quark and ¢ is its momentum

fraction. The coefficients A,B,C,D are defined as

2
my
A =
y<yx+2EVM)7

2
my Mx
B = (1-—)—1(1
( 4E,,2> (+2Ey>y’

2

) my

(el g)

¢ Y (x 2 4E,,M>
m12

D = —_ 1
L (3.15)

where z is the Bjorken variable and y is the inelasticity and they are related by

Q2

T = 55, My (3.16)

The functions W 5 3 5 are given in Ref. (K. Hagiwara and Yokoya, 2003).
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3.4 Charged Higgs contribution

We have studied the contributions of the charged Higgs to the DIS interactions. The devia-
tion of the actual mixing angles 623 and 6,3, with NP contributions, from the measured ones, which

assumes the SM cross section, have been discussed.

3.4.1 Deep inelastic tau neutrino scattering
We choose the couplings of charged Higgs interactions to the SM fermions to be given by the two

Higgs doublet model of type II (2HDM II) Ref. (Diaz)

2% Vi, (95" £ g5 2°)d; + w98 + gp )| HY, (3.17)
where u; and d; refer to up and down type quarks, and v; and [; refer to neutrinos and the corre-
sponding charged leptons. The other parameters are as follows: g = e/ sin 0y, is the SM weak
coupling constant, V4, is the CKM matrix element, and gg p are the scalar and pseudoscalar cou-
plings of the charged Higgs to fermions. Here, in this work, we assume the couplings gg p are real

and given as

wid; <md]. tan 8 + m,, cot ﬁ)
) = )

S MW
guidj _ <md]. tan 5 — m,, cot )

P MW )

vl _ vil; _ my; tanﬂ 3.18
9s 9= T (3.18)

where tan 3 is the ratio between the two vev’s of the two Higgs doublets. From Eq. 3.17 we can

construct the NSI parameters defined in Ref Ref. (C. Biggio and Fernandez-Martinez, 2009) as

ud(L ud(R 2
57-7( ) = mnq;;nf and €TT( ) = mdmnTthan B )
H H

The charged Higgs contributions to the matrix elements of the interactions v, + N — 77+ X
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and o, + N — 77 4+ X are given by

My = (S5 i 0 0) (1, (0] 10 ) 68+ 98 ) ()]

V2
1Z GFV ! VrT [ = — d !
My = (C) X g™ (0 (00 = 0] [a0 )~ 98 26) )]
(3.19)
where ¢, ¢ = (u;, d;) and the couplings gg?;, g " are defined as in Eq. 3.18
The differential cross section is given by
d?ovr () GV, . _
-7 = [T ) xZ (g- Ly @) e 5(¢ —
T = (T5) Xy L W a(e - o)
G2 V2 E,M m?
_ X2 vyl l
() sy o (o5 )|
1
7 [(gs> + (g8)?] Foe - ), (3.20)

where Xy = M3, /M? and the definitions of the 2HDM coupling constants are given in
Egs. 3.18.

There is no interference term of the SM and NP amplitudes. Thus, with the constraints on the
NP parameters (Mg, tan ) Ref. (A. Rashed and Datta), the charged Higgs contributions relative
to the SM 12 = oy (v,)/osm(v,) and 78 = oy () /sy (7,) are small within the kinematical
interval W, < W < /s —m, GeV with W,,; = 1.4 GeV. Thus, the deviations d,3 and 0,3 of the

mixing angles are negligibly small.

3.5 W' gauge boson contribution

We studied the contributions of the W' gauge boson to the DIS processes. The deviation of

the mixing angles 6,3 and 0,3 were considered. The effective Lagrangian of ¥/ interactions to the
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SM fermions has the form

L = %vf,f Pl Py + gl Pr) fW! + hec., (3.21)

where f’ and f refer to the fermions and g{i{% are the left and the right handed couplings of the /'.
We will assume g{lj; to be real. Constraints on the couplings in Eq. (3.21) come from the hadronic
7 decay channels 7= — 7 v, and 7= — p~ v, discussed in Ref. (A. Rashed and Datta), which

are consistent with the ones in Ref. (C. Biggio and Fernandez-Martinez, 2009). From Eq. (3.21),

the NSI parameters £“ER) defined in Ref. (C. Biggio and Fernandez-Martinez, 2009) are given
ud(L,R) __  +1 w
as 5TT( ) = 9gr g(fl,R)(ﬁ_VVVV,)Q

3.5.1 Deep inelastic tau neutrino scattering

The matrix elements are

v —ZGFV /KW/ B _ s
My, = (#) [ (K" (1 = 5w, (k)] [g () Yu (Vi — Wi ys) tg(Pg) ]
. —iGpVoy Ko\ _ .
My, = (#) [0y, (k)Y (1 = 75) o (K] [tg (D) v (Vi — W) tq(Dg)]
(3.22)
where the definitions are
Vo = Xwgi (gl + g1,
Y = Xwgr (91" — 9% ),
m2
- ().
mW/
2 —1
Ky = <1+ QQ ) . (3.23)
mW,
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The total differential cross section has the same form as the SM one in Eq. (3.14), after setting

K‘%Vl ~/ 1,

2 l/7-(l77—)/ G2 V2/ 1 1 1
O-SM+W _( F qq) y(A/W1+ —B,WQ :t WC/W3 —+ _D’W5) 6(§_$)7

dxdy 2 M? M?
(3.24)
where A’,B’,C", and D’ are defined as:
1
A/ — §A (|a/|2 + |b/|2) ’
1
B/ _ §B (|a/|2 + ’b/|2) ’
C' = Reld'b"|C,
1
D = 3D (Ja']*+ V') - (3.25)
with
CL/ = 1+7€V/7
Vo= 14 (3.26)

The ratios of the W' contributions to the SM cross sections 735, and ri;, and the deviations
093 and 9,3 are shown within the allowed kinematical range M +m, < W < 1.4 GeV in Figs. (3.1,
3.2,3.3,3.4). The r%ﬁ, and r%f;, values are mostly positive which, in turn, leads to d,3 and ;3 being
mostly negative, respectively. As some examples, we find that o3 ~ —14° and d;3 ~ —1.5° at
E, = 17 GeV, My = 200 GeV, and (¢]"", g4, g&') = (—0.94,—1.13,—0.85). In Fig. 3.5, the
results show a negligible change to the d,3 values when considering the atmospheric neutrino flux

Ref. (M.Honda and S.Midorikawa, 2011).
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Figure 3.1: DIS (IW’): The left (right) panel figures illustrate the variation of r,% with the W’
mass My (E,) when both left and right-handed W' couplings are present. The lines show pre-
dictions for some representative values of the W’ couplings (g7"", g4¢, g%!). The green line (solid,
lower) corresponds to the SM prediction. The blue line (solid, upper) in the left figure corresponds
to (-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, upper) in the right figure

corresponds to (1.23,0.84 , 0.61) at My = 200 GeV.
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Figure 3.2: DIS (W’): The left (right) panel figures illustrate the deviation d,3 with the W' mass
My (E,) when both left and right-handed W’ couplings are present. The lines show predictions
for some representative values of the W’ couplings (97”7, g%¢, g%'). The green line (solid, upper)
corresponds to the SM prediction. The blue line (solid, lower) in the left figure corresponds to
(-0.94 , -1.13 , -0.85) at £, = 17 GeV, and the blue line (solid, lower) in the right figure cor-
responds to (1.23 , 0.84 , 0.61) at My, = 200 GeV. Here, we use the best-fit value #,35 = 9.1°

Ref. (D.V.Forero and J. W.F.Valle).

3.6 A-Resonance production

Similar calculations were done considering the A-RES production in v, +n — 7~ + A™
and 7, +p — 7 + A% in models with a W’ gauge boson and a charged Higgs. The results are

summarized in plots as shown below.
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Figure 3.3: DIS (IW’): The left (right) panel figures illustrate the variation of ri,% with the W’
mass My (E,) when both left and right-handed W' couplings are present. The lines show pre-
dictions for some representative values of the W’ couplings (g7"", g4¢, g%!). The green line (solid,
lower) corresponds to the SM prediction. The blue line (solid, upper) in the left figure corresponds
to (-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, upper) in the right figure

corresponds to (1.23,0.84 , 0.61) at My = 200 GeV.
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Figure 3.4: DIS (W’): The left (right) panel figures illustrate the deviation d;3 with the ¥/ mass
My, (E,) when both left and right-handed W’ couplings are present. The lines show predictions
for some representative values of the W’ couplings (g7, g4, g%!). The green line (solid, upper)
corresponds to the SM prediction. The blue line (solid, lower) in the left figure corresponds to
(-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, lower) in the right figure cor-
responds to (1.23 , 0.84 , 0.61) at My» = 200 GeV. Here, we use the best-fit value 6,5 = 9.1°

Ref. (D.V.Forero and J. W.F.Valle).

3.7 Polarization of the produced 7+

In this section we studied the effects of NP on the polarization of the produced 7. The
starting point was to construct the spin-density matrix py y, where A and )" are the helicity of the

7 lepton. The spin-density matrix p, y is related to the spin dependent differential cross section as
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Figure 3.5: DIS (W'): The figure illustrates the deviation d93 with the W’ mass My, when both
left and right-handed W' couplings are present. The lines show predictions for some representa-
tive values of the W’ couplings (7”7, g%, g&*). The green line (solid, upper) corresponds to the
SM prediction. The blue line (solid, lower) corresponds to (-0.94 , -1.13 , -0.85). Here, we use
the best-fit value #o3 = 42.8° Ref. (M.C.Gonzalez-Garcia and J.Salvado, 2010). We take into ac-
count the atmospheric neutrino flux for Kamioka where the Super-Kamiokande experiment locates

Ref. (M.Honda and S.Midorikawa, 2011).

5
3t 4
NS [ oS [
e A v 3F
o@ 2r Nkm [
5 20
1r. :
[ 1=
ot ot

2

MH [GCV]

Figure 3.6: Resonance (H): The figures illustrate variation of 7% % with My (left) and E, (right).
The green line corresponds to the SM prediction. The black (dotdashed), red (dashed), and blue
(solid) lines correspond to tan 8 = 40, 50, 60 at £/, = 5 GeV (left) and at My = 200 GeV (right).

datotal

dE;dcosf’

d0>\’)\/
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dE;dcos 0 (3.27)
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Figure 3.7: Resonance (H): The figures illustrate variation of do3 with My (left) and F, (right).

The green line corresponds to the SM prediction. The black (dotdashed), red (dashed), and blue

(solid) lines correspond to tan 5 = 40, 50, 60 at F,, = 5 GeV (left) and at Mz = 200 GeV (right).
Here, we use the best-fit value 053 = 42.8° Ref. (M.C.Gonzalez-Garcia and J.Salvado, 2010).
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Figure 3.8: Resonance (H): The figures illustrate variation of 7}12% with My (left) and E, (right).
The green line corresponds to the SM prediction. The black (dotdashed), red (dashed), and blue
(solid) lines correspond to tan 5 = 40, 50, 60 at F,, = 5 GeV (left) and at My = 200 GeV (right).

where the total cross section o;y4q; = 011 + O The spin-density matrix py y is expressed in

11 _1_1.
22 272

terms of the spin dependent matrix element M, ,» = L‘A‘f'x W, as

MA)\/
v o= X (3.28)
P D=1 Mo

The most general form of the polarization density matrix p of a fermion is parametrized as

1 | 1+P, P,—iP,
p = [pan] = 5(I +7P) = , (3.29)
P,+iP, 1-P,
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Figure 3.9: Resonance (H): The figures illustrate variation of d;3 with My (left) and E, (right).
The green line corresponds to the SM prediction. The black (dotdashed), red (dashed), and blue
(solid) lines correspond to tan 5 = 40, 50,60 at F,, = 5 GeV (left) and at Mz = 200 GeV (right).
Here, we use the best-fit value 6,5 = 9.1° Ref. (D.V.Forero and J.W.F.Valle).
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Figure 3.10: Resonance (H): The figures illustrate variation of do3 with Mpy. The green line
corresponds to the SM prediction. The black (dotdashed), red (dashed), and blue (solid) lines
correspond to tan 8 = 40, 50, 60. Here, we use the best-fit value A3 = 42.8° Ref. (M.C.Gonzalez-
Garcia and J.Salvado, 2010). We take into account the atmospheric neutrino flux for Kamioka
where the Super-Kamiokande experiment locates Ref. (M.Honda and S.Midorikawa, 2011).
where [ is the 2 x 2 identity matrix and Pis the polarization vector of the decaying spin-1/2 lepton.
To determine the components (P, P, P,) of the polarization vector we choose the following

kinematic variables. The four-momenta of incoming neutrino (%), target nucleon (p) and produced

lepton (k) in the laboratory frame are

kt = (EuyovovEu)v
pﬂ = (M7070a0)7

E* = (E;,prsinfcos ¢, psinfsin ¢, p;cosb). (3.30)

25



30 40j‘
25t E
30r
20+ [
X X i
o 15 oz 20¢
= '\‘ S [
10F N [~ .
\\ 10F T
SN, i
) ——— ] —
200 400 600 800 1000 6 8 10 12 14 16 18 20
My, [GeV] E, [GeV]

Figure 3.11: Resonance (IW’): The left (right) panel figures illustrate the variation of r2 % with
the W' mass My (E,) when both left and right-handed W' couplings are present. The lines
show predictions for some representative values of the W’ couplings (g7, g%, g%!). The green
line (solid, lower) corresponds to the SM prediction. The blue line (solid, upper) in the left figure
corresponds to (-0.94 , -1.13 , -0.85) at £, = 17 GeV, and the blue line (solid, upper) in the right

figure corresponds to (1.23,0.84 , 0.61) at My, = 200 GeV.
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Figure 3.12: Resonance (WW'): The left (right) panel figures illustrate the deviation o3 with the W’
mass My (E,) when only left-handed W’ couplings are present. The lines show predictions for
some representative values of the W' couplings (g7°7, g¥?). The green line (solid, upper) corre-
sponds to the SM prediction. The blue line (solid, lower) in the left figure corresponds to (0.69,
0.89) at £, = 17 GeV, and the blue line (solid, lower) in the right figure corresponds to (1.42,
0.22) at My = 200 GeV. Here, we use the best-fit value 0,3 = 42.8° Ref. (M.C.Gonzalez-Garcia

and J.Salvado, 2010).

We introduce three four-vectors sZ ,a=1, 2, 3 such that the s* and k] /m; form an orthonormal set

of four-vectors as defined in Ref. (H.E.Haber, 1994): We choose the three spin four-vectors of the
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Figure 3.13: Resonance (WW'): The left (right) panel figures illustrate the deviation o3 with the
W’ mass My (E,) when both left and right-handed W' couplings are present. The lines show
predictions for some representative values of the W’ couplings (g7"", g%¢, g%!). The green line
(solid, upper) corresponds to the SM prediction. The blue line (solid, lower) in the left figure
corresponds to (-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, lower) in the right
figure corresponds to (1.23 , 0.84 , 0.61) at My, = 200 GeV. Here, we use the best-fit value

O3 = 42.8° Ref. (M.C.Gonzalez-Garcia and J.Salvado, 2010).
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Figure 3.14: Resonance (IV’): The left (right) panel figures illustrate the variation of r{;}, % with
the W’ mass My (F,) when both left and right-handed W’ couplings are present. The lines
show predictions for some representative values of the W’ couplings (g7, g%, g%!). The green
line (solid, lower) corresponds to the SM prediction. The blue line (solid, upper) in the left figure
corresponds to (-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, upper) in the right

figure corresponds to (1.23,0.84 , 0.61) at My = 200 GeV.

lepton such that

s K = 0,
s% Sb — _(sab7
KK
ShtSy = w5 (3.31)

27



©
o
:

_____
-
-

[
eco o e
R =)
N,
N
\
|
o
W

0 K T | eI
8 s =T
S “w
© _1.0f s
—1.2¢
~1.47 ‘ ‘ ‘ ] ol ‘ ‘ ‘ ‘ ‘ ‘ ]
200 400 600 800 1000 6 8 10 12 14 16 18 20
My [GeV] E, [GeV]

Figure 3.15: Resonance (WW'): The left (right) panel figures illustrate the deviation ;3 with the
W' mass My (E,) when both left and right-handed W' couplings are present. The lines show
predictions for some representative values of the W’ couplings (g7"7, g4%, g%). The green line
(solid, upper) corresponds to the SM prediction. The blue line (solid, lower) in the left figure
corresponds to (-0.94 , -1.13 , -0.85) at £/, = 17 GeV, and the blue line (solid, lower) in the right
figure corresponds to (1.23 , 0.84 , 0.61) at My, = 200 GeV. Here, we use the best-fit value

015 = 9.1° Ref. (D.V.Forero and J.W.F.Valle).
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Figure 3.16: Resonance (1/'): The figure illustrates the deviation d93 with the W' mass My, when
both left and right-handed W' couplings are present. The lines show predictions for some rep-
resentative values of the W’ couplings (g7"", %4, g!). The green line (solid, upper) corresponds
to the SM prediction. The blue line (solid, lower) corresponds to (-0.94 , -1.13 , -0.85). Here,
we use the best-fit value 053 = 42.8° Ref. (M.C.Gonzalez-Garcia and J.Salvado, 2010). We take
into account the atmospheric neutrino flux for Kamioka where the Super-Kamiokande experiment

locates Ref. (M.Honda and S.Midorikawa, 2011).

where

SL = (0, cosfcos ¢, cosfsingp, —sind),
si = (0, —sing¢,cos ¢,0),
si = (pi/mu, E;/mysin@ cos ¢, E;/my sin @ sin ¢, E;/my cos0) . (3.32)
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Finally we define the degree of 7 polarization P as

P=/P:+ P2+ P2 (3.33)

The SM results for the polarization components P, P, P, can be found in Ref. Ref. (K. Hagiwara
and Yokoya, 2003) for the DIS. We calculated these components in the presence of the charged
Higgs and W’ contributions. We computed the degree of 7 polarization P with respect to E,. for 0
degree, 5 degrees and 10 degrees scattering angles with the incident neutrino energy at 10 GeV. In

the polarization results we found the charged Higgs and W/ model produce tiny deviations from

the SM values.
10 =
08fF
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Figure 3.17: Resonance: The figure illustrates the effect of 7-polarization on the resonance scat-
tering

E;[GeV])

Figure 3.18: DIS: The figure illustrates the effect of 7-polarization on the DIS scattering
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3.8 Results

New physics contributions to the tau-neutrino nucleon scattering were considered in this
work. We discussed charged Higgs and W’ effects to the deep inelastic scattering v, (v,;) + N —
77(7%) + X in the neutrino-nucleon interactions. Considering these effects in the neutrino de-
tection process at neutrino oscillation experiments modify the measured atmospheric and reactor
mixing angles 0,3 and 63, respectively. The cross section of the deep inelastic scattering was
calculated within the range W, < W < /s — m, with W_,; = 1.4 GeV. If high-energy LBL
experiments could measure 6,3 via v, appearance, the NP effects can impact the 6,3 measurement.
As 63 is a small angle, large NP parameters are required to produce observable deviations ;3.

In the case of deep inelastic scattering, the charged Higgs contribution does not have inter-
ference with the SM cross section. With the constraints on the NP parameters, the NP effects were
negligible and the deviations d,3 and d;3 were very small. The values of deviations were found to
be mostly negative in the W/ model. The d23 and §;3 values increased in magnitude with increasing
incident neutrino energy and decreased with increasing M.

We also considered A resonance production v, (v,) + n(p) — 7~ (77) + AT (A?) and deep
inelastic scattering v, (7;) + N — 7~ (71) + X in the neutrino-nucleon interactions and saw that

the deviations are significant.
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CHAPTER 4
THE AZIMUTHAL B — D*7~ v, ANGULAR DISTRIBUTION WITH TENSORS

OPERATORS

4.1 Introduction

The search for new physics (NP) beyond the Standard Model (SM) of particle physics is
going on at the energy frontier in colliders such as the LHC and at the intensity frontier at high
luminosity experiments. In the intensity frontier, the B factories, BaBar and Belle, have produced
an enormous quantity of data and there is still a lot of data to be analyzed from both experi-
ments. The LHCb and Belle II will continue the search for NP through precision measurements
in the b quark system. There are a variety of ways in which NP in B decays can be observed
Ref. (A.Datta and D.Ghosh, 2014; A.Datta and PJ.O’Donnel, 2005; A.Datta, 2006; C.-W.Chiang
and A.Szynkman, 2010; A.Datta and D.London, 2004a; S.Baek and D.London, 2005; A.Datta and
R.Sinha, 2005). In this NP search, the second and third generation quarks and leptons may be quite
special because they are comparatively heavier and could be relatively more sensitive to NP. As an
example, in certain versions of the two Higgs doublet models (2HDM) the couplings of the new
Higgs bosons are proportional to the masses and so NP effects are more pronounced for the heavier
generations. Moreover, the constraints on NP involving, specially the third generation leptons and
quarks, are somewhat weaker allowing for larger NP effects Ref. (A.Rashed and A.Datta, 2013,
2012; M.Duraisamy and A.Datta, 2011; A.Datta and M.Duraisamy, 2010; A.Datta and T.Huang,
2000).

The semileptonic decays of B meson to the 7 lepton is mediated by a W boson in the SM and
it is quite well understood theoretically. In many models of NP this decay gets contributions from

additional states like new vector bosons, leptoquarks or new scalar particles. These new states can
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affect the semileptonic b — cand b — w transitions. The exclusive decays B — D*7~ v, and B —
D** 71~ v, are important places to look for NP because, being three body decays, they offer a host
of observables in the angular distributions of the final state particles. The theoretical uncertainties
of the SM predictions have gone down significantly in recent years because of the developments
in heavy-quark effective theory (HQET). The experimental situation has also improved a lot since
the first observation of the decay B — D**7~ 17, in 2007 by the Belle Collaboration. After 2007
many improved measurements have been reported by both the BaBar and Belle collaborations and
the evidence for the decay B — D*t7 17, has also been found . Recently, the BaBar collaboration
with their full data sample of an integrated luminosity 426 fb~! has reported the measurements of
the quantities.
BR(B — DYt 1;)

R(D) = a — 0.440 == 0.058 = 0.042
(D) BR(B — D+~ z) ’

R(D*) = = — = 0.332 £ 0.024 £ 0.018, 4.1)

where [ denotes the light lepton (e, ;). The SM predictions for R(D) and R(D*) are Ref. (S.Fajfer

and I.Nisandzic; Y.Sakaki and H.Tanaka)

R(D) = 0.297+0.017,

R(D*) = 0.25240.003, (4.2)

which deviate from the BaBar measurements by 20 and 2.7¢ respectively. The BaBar collaboration
themselves reported a 3.40 deviation from SM when the two measurements of Eq. (4.1) are taken
together. The SLAC BABAR collaboration reports a 3.4 o excess versus the standard model Ref. (et
al. (BABAR Collaboration), 2012) in B — D™7~v_ decay. Belle also has B — D®) 7~ v, data
but it has not yet been completed for publication Ref. (?). When Belle FPCP 2013 conference
results Ref. (?) are added, the excess rises to 4.8 . This is currently the largest variance from the

Standard Model in collider physics.
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These deviations could be sign of NP and already certain models of NP have been consid-
ered to explain the data Ref. (S.Fajfer and 1.Nisandzic; A.Crivellin and A.Kokulu, 2012; A.Datta
and D.Ghosh, 2012; D.Becirevic and A.Tayduganov, 2012; N.G.Deshpande and A.Menon; A.Celis
and A.Pich, 2013; D.Choudhury and A.Kundu, 2012; M.Tanaka and R.Watanabe; Y.-Y.Fan and Z.-
J.Xiao; P.Biancofiore and Fazio; A.Celis and A.Pich; M.Duraisamy and A.Datta, 2013; I.Dorner
and I.Niandi, 2013; Y.Sakaki and R.Watanabe, 2013). In Ref. Ref. (A.Datta and D.Ghosh, 2012),
we calculated various observables in B — D7~ v, and B — D**7~ v, decays with NP using
an effective Lagrangian approach. The Lagrangian contains two quarks and two leptons scalar,
pseudoscalar, vector, axial vector and tensor operators. Considering subsets of the NP operators
at a time, the coefficient of these operators can be fixed from the BaBar measurements and then
one can study the effect of these operators on the various observables. In Ref. (M.Duraisamy and
A.Datta, 2013) we extended the work of Ref. (A.Datta and D.London, 2004b; W.Bensalem and
D.London, 2002a,b) by providing the full angular distribution with NP. In particular we focused
on the CP violating observables which are the triple product (TP) asymmetries. In the SM these
TP’s vanish to a very good approximation as the decay is dominated by a single amplitude. Hence,
non-zero measurements of these terms are clear signs of NP without any hadronic uncertainties.
Note, in the presence of NP with complex couplings the TP’s are non-zero and depend on the form
factors. Another probe of CP violation using the decay of the 7 from B — D71, to multipion
decays was recently considered Ref. (K.Hagiwara and Y.Sakaki).

In this work we included tensor operators in the NP effective Hamiltonian and study their
effects on various observables, particularly focusing on the azimuthal observables, including the
triple products. Tensor operators were discussed earlier for these decays in Ref. (M.Tanaka and
R.Watanabe; P.Biancofiore and Fazio; I.Dorner and I.Niandi, 2013; Y.Sakaki and R.Watanabe,
2013). In this work, for B — D**7~17,, we presented the full three angle and ¢* angular distri-
bution including tensor new physics operators with complex couplings. This represents the full
angular distribution with the most general new physics. In our calculations we focused on the

effects of the tensor operators on observables that are sensitive to the azimuthal angle y which
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is the angle between the decay plane of the D* meson and the off-shell W*. The triple products
are the term proportional to the sin x in the angular distribution. For completeness we also dis-
cussed other observables such as the ¢* differential distribution as well as the polarization and
forward-backward asymmetries.

Finally, we note that tensor operators are often accompanied by other operators in specific
NP models. Hence as an example of tensor operators we consider a leptoquark model that has both
tensor and scalar operators. Our study showed that the presence of the scalar operators modify the

predictions of the different observables in the angular distribution.

4.2 Kinematics

In the B rest frame, the co-ordinates are chosen such that the D* meson is moving along
the positive z-axis, whereas the virtual gauge boson is moving along the negative z-axis. The

four-momenta of the B and D* mesons, and the virtual gauge boson are

Figure 4.1: The Feynman diagram of B — D*7~ v, decay.
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b = (mB7 07 07 O) , PD* = (ED*7 07 07 |pD* ) , 4= (QOa 07 07 _|pD* |) y (43)
where Ep- = (m% +m2. —¢%)/2mp, |pp-| = AY2(m%, m2., ¢%)/2mp, and qo = (m% —m2. +
q?)/2m . Further, one chooses the polarization vector of the D* meson as
0) = ——(lpp-,0.0, ), () = F=(0,1,41,0) @4
€ = _— * * € == e 1 . .
mp- Pp+|,Y, YU, Lp+ ), :F\/§ ) )

In this frame, we choose the polarization vector of the virtual gauge boson €, which can be,

longitudinal (m = 0), transverse (m = =+), or timelike (m = t):

1

(‘pD(*) ) 07 07 —CIO) ; E(:l:) (07 :i:la _ia 0) )

1
V2

@S
TQ
Do

) (4.5)

1
= _(QO, Oa Oa _‘pD*
/q2

The leptonic tensor is evaluated in the ¢? rest frame. In this frame, we choose the transverse

<

components of the helicity basis € to remain the same and other two components are taken as

€(0) (0,0,0,—1), &(t) = (1,0,0,0).

(4.6)

Let 6; be the angle between the three-momenta of D* meson and the charged lepton in the
q° rest frame, and  be the opening angle between the two decay planes. We define the momenta

of the lepton and anti-neutrino pairs as

p = (&, plsinb, cosx,plsinb;sin x, —plcosb,),
ph = (pi, —plsin b, cos x, —pl sin O, sin y, pl cos 0;) , 4.7)

where the lepton energy £

= (¢*> + m})/21/¢* and the magnitude of its three-momenta is p;
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(q* —m})/2/¢.

4.3 Formalism

In the presence of NP, the effective Hamiltonian for the quark-level transition b — ¢/~ 7; can

be written in the form

4G Ve
V2
—|—SL [EPLb] [Z_PLVl] =+ SR [(_EPRb] [l_PLl/l} + TL [EO’“VPLZ?} [Z_O'W,PLVZ] s (48)

Hepy (1+ V) [y, Pob] (1" PLu] + Vg [ey" Prb) (1, Prv]

where G = 1.1663787(6) x 107>GeV =2 is the Fermi coupling constant, V,;, is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, P,z = (1 F 75)/2 are the projectors of nega-
tive/positive chiralities. We use 0, = i[y,,7.]/2 and assume the neutrino to be always left
chiral. Further, we do not assume any relation between b — wul~"v; and b — ¢l transitions

and hence do not include constraints from B — 7v,. The SM effective Hamiltonian corresponds

tOVL:VR:SL:SR:TLIO.

43.1 B — D**r~ v, angular distribution

The complete three-angle distribution for the decay B — D*(— Dm)l~; in the presence of NP
can be expressed in terms of four kinematic variables ¢, two polar angles 0;, 6 p-, and the azimuthal
angle x. The angle 6, is the polar angle between the charged lepton and the direction opposite to
the D* meson in the (lv;) rest frame. The angle 6 is the polar angle between the D meson and
the direction of the D* meson in the (D7) rest frame. The angle x is the azimuthal angle between
the two decay planes spanned by the 3-momenta of the (D) and (/1) systems. These angles are
described in Fig. 4.2. The three-angle distribution can be obtained by using the helicity formalism:

We can write the angular distribution explicitly for easy comparison with previous literature Ref. (J.G.Korner
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and G.A.Schuler, 1990, 1989) in terms of the helicity amplitudes

. 9 8 2 S
= NF( I+ —+ Ji)?
dq? d cos 0; d cos Op- dx 32 ; i ¢

i=1

4.9)
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where we can define the I; and J; as,

I

Ji

Js

4 cos® Op- (sin2 01| Aol + 8| Agr | [1 + cos 201} >,
4 cos® Op- <[|A0|2 cos® 0, + | Asp|* — 2Re[AspAj) cos 0;}
2
4[| Agr (1 - cos26) - (%)-1/236(A0TA0*>D,
sin? 0 p- ([(|.,4|||2 + |AL*)(1 + cos® 6;) — 4Re[ A A" ] cos 91}
F8[ (A P+ [ AL ) (1 = cos0)] ).

sin? G- (Sin2 9l(|"4l\|2 +AL?) +8 [(|./4||T|2 + | ALr?) (4 4 cos? 0;)

2
my

—ARe(AypAvr) sin by = 2 3) P Re(A A+ Aur AL (1= sin o)),
— sin? O sin? 6 cos 2 (|4 = AL ] = 16142 — | A7),

. 92 . 92 2 2 m12 -1/2 2 2

sin? 0. sin® 0 cos 2x ([ 42 = | AL = 1605 Ay 1AL ).
—2v/25in 20 - sin 0, cos Y Re[ AL A,

2v/2 8in 20 - sin 6, cos X(Re[A”AZ‘P] — 16 [Re(AlTAST)

le —-1/2 * * *
)P Re(Aor A + AupAo” = Ay Aip)]).

2v/2 8in 20 - sin 6, cos 6 cos x (Re (A A5 — 16Re [.A”TAST]) ,

+(

—2v/25in 20 - sin 6 cos 6; cos y (Re (A AL — 16[AHTAST]> ;
2sin” p- sin® 0 sin 2xIm[ A A%,
—2sin® Op- sin® §; sin 2y Im[ Ay A% ],
—2v/25in 20~ sin 6, sin xIm[A|Agl,
—2v/25in 20~ sin 6, sin X <Im[ALA:p]
mi

_4(?

V/2sin 20 - sin 26, sin xIm[A A7),

) m(Aor Ay = A i+ AurAip)).

—V/2sin 20 p- sin 26, sin xIm[A | Af]. (4.10)
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The expressions for the hadronic helicity amplitudes can be written in terms of form factors

for the B — D* matrix elements Ref. (M.Beneke and T.Feldmann, 2001)

(mp+mp )1, 2 2 2 Ap- 2

= . A - A 1-—

Ao = ST (= m — ) — e A (- ),
Ap+

_ 2\(1 _ 2

A = [(mB +mp+)A1(g°)(1 — ga) F (ms +mD*)V(q )(1 +gv)} )
VD=
A = \/q% Ao(q*)(1 = ga),
ADp+
Ap = Ao(a*)gp
P Tt m)
Ty AD+
A = [y 3 — A)TA) = 2Tl
2 2

_ mp — Mpx 2 Ap- 2

Air = TL[ JE Ty(q™) £ e Ti(q )}
(4.11)
The ¢ and the P amplitudes arise in the combination
2
Ap = (At + \/q_AP> . (4.12)

T

Further, we define the transversity amplitudes A ) and A, () in terms of the helicity am-

plitudes A (1) as

1
Ajry = E(A+(+T>+A—<—T>),
1
Auny = 5 (Aven —Aen). (4.13)

The expressions for the form factors A;(q?), A2(q?), Ao(q?), V(¢?), T1(¢?), Tx(q?), and T3(¢?) in

the heavy quark effective theory can be found in Ref. (A.F. Falk and M.Neubert, 1993; Y.Sakaki and

39



R.Watanabe, 2013).

I
eV

Figure 4.2: The description of the angles ; p- and ¥ in the angular distribution of B — D*(—
D)l v, decay.

It will be convenient to rewrite the angular distribution as Ref. (A.K.Alok and D.London,

2011)

d'T 9
dg?dcosb;dcoslp-dy 32

NF{ cos? Op- <V10 + V3 cos 20; + Vi cos 61)
7r

+ sin? - (VlT + Vi cos 260, + V3§ cos 9;)
+ VI sin? 0p- sin” 6, cos 2x + V" sin 26 p- sin 26, cos x

+ V3T sin 20 p« sin 0 cos x + Vi sin” Op- sin® 6 sin 2y
oT - . . oT - . .
+ V5" sin20p« sin @, sin x + V' sin 20p« sin 26, sin y ¢ ,

(4.14)

where the quantity Np is

Ghlpp-|Val*a® (1- miy?

Np = [FEEZLOL q2) Br(D* — D] . (4.15)

The momentum of the D* meson in the B meson rest frame is denoted as [pp+| = AY/2(m%, m2 ), ¢%) /2mp
with A(a, b, ¢) = a® + b* + ¢* — 2(ab + bc + ca).
The twelve angular coefficients V;* in the B — D*(— Dm)l~; angular distribution depend

on the couplings, kinematic variables and form factors. The expressions for these coefficients are
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given in terms of the hadronic helicity amplitudes of the B — D*7i, decay and summarized
according to the D* helicity combinations Aj \o:

The longitudinal Vs (A; Ay = 00) are given by

2 2
0 — my 2 2mj o, 16my .
VP = 21 ) (A 161 Aorf?) + =S A = 2 RelAor g
0 _ _mi 2
v o= o o D) = Mol + 16} Aor ]
m? L. 4Am
vo - —8Re[q—2[AtpA0 \/_lAtpA . (4.16)

The transverse V1’s (\\\y = ++, ——, +—, —+) are given by

no= B(“ﬁ)(’f‘|2+!A¢’2>+8<1+3ﬂ)<\«4nﬂ +]AL7[?) - 16J;Re[ATA+Am1 ]
o= (-5 (\AWHM)—8<\AHTP+|AMP>],
VéT _ 4R€[—A||Ai 16m -/4||TALT+ 4my (ALTAH +A||T.A )] ,
m? \/q_ L
vl - (1—q—;)[—(|A|||2—|Al|2)+16<|AHT|2—|AM|2>],
m2
VT = 2(1—q—21)1m[./4||./4’i]. 4.17)

The mixed Vs (A\; )y = 0%, £0) are given by

or ml2 * *
Vit = \/5(1 - ?)RG[AAO — 16A 7 Agr]

2 4
VT = 2\/§Re[ — A A+ ﬂ; <A\|Afp — 16AJ_T-AET> \/ﬂ;_l (-AOT-AJ_ + A Af — A||TAtP>:| ;
4
VT = 2v2Im| — ApAj + AJ_-AIP + s (Aordj = A Ay + AurAip)|
V7
2
v o= Va(1- %)Imwm - 19
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We used HQET to expand the form factors in terms of certain parameters, which are then
fixed from the angular distribution for B — D*{~ 1, where ¢ = e, 1 . Our basis assumption was
that B — D*{~ 1, decays are described by the SM.

The following single-differential angular distributions allow access to various observables
that can be used to probe for NP. The differential decay rate dI'/dq? obtained after performing

integration over all the angles

ar 3Np

Here the D* meson’s longitudinal and transverse polarization amplitudes A; and A are

o1

Ay = (V0 -31). AT:2(V1T—§VZT). (4.20)

Furthermore, one can also explore the ¢* dependent of ratio

dBr|B — D**r~ ;] /d¢*

R * 2 - = .
p+(¢") dBr[B — D1 /dg?

4.21)

By integrating out the polar angles ¢;, 6p+, and the azimuthal angle y in different kine-
matic regions, various 2-fold angular distributions can be obtained. For a detailed discussion
see Ref. (M.Duraisamy and A.Datta, 2013). Here, we have updated these angular distributions
with the new tensor couplings. Our results agree with the corresponding angular distributions in
Ref. (Y.Sakaki and R.Watanabe, 2013). Several observables can be defined through the 2-fold
angular distributions. The D* polarization fraction F}, the forward-backward asymmetry App
)

for the leptons, the azimuthal asymmetries, including the three transverse asymmetries Ag 28),

and the three T-odd CP asymmetries A<Tl ’2’3), are defined in terms of angular coefficients Vs

42



Ref. (M.Duraisamy and A.Datta, 2013):

FP (¢ = —ALiL ym
W)= 507,
AT (@) = (ALV—{TAT)
AP = s

. Vi + 5 V3
A?B(qg) = IZL +11; )
4V
AW 2y — 5
T(q) 3(AL+AT)’
VOT
AP (,2) = 3
T (q ) (AL + AT)’
AP () = _ Vi (4.22)
! (AL + A7)

In closing this section we note that even though we are focused on the B — D*t7

decay the B — D*7~ 7. decay is used to constrain the NP operators. The B — D*7~ 7. angular

distribution, with tensor operators, can be written as,

arr
dg?d cos 0,

2

2
m; m; )
+8<<(1 + P )+ (11— 2 ) cos 29;) |Hr|” —

GZ|Vep|2g?

2
, m
2Npl|pp| [|H0|2 sin? 6, + q—zl(Ho cosf; — Hw)2

L Re[Hy(H; — Hjg cos 90])] . (4.23)

V&

2
where the prefactor Np = Z£-5 - (1 — Z@) . The helicity amplitudes are
B

5
Hy = q—f(l + 9v)Fi(d),

P
ma(h) = o)

m% — m?2
= %(1 +gv)Fo(d?)
VA
Hy = ——"2 T, Fr(¢?), (4.24)
mp—+ mp

where gy 4 = Vg £V and gs p = Sg £ Sr. In addition, the H; and the Hg amplitudes arise in

the combination,

Hs = (Hi-

Vi

T

Hs) _ (4.25)



4.4  An Explicit Model

Many extensions of the SM, motivated by a unified description of quarks and leptons,
predict the existence of new scalar and vector bosons, called leptoquarks, which decay into a
quark and a lepton. These particles carry nonzero baryon and lepton numbers, color and frac-
tional electric charges. The most general dimension four SU(3). x SU(2) x U(1)y invariant
Lagrangian of leptoquarks satisfying baryon and lepton number conservation was considered in
Ref Ref. (W.Buchmuller and D.Wyler, 1987). As the tensor operators in the effective Lagrangian
get contributions only from scalar leptoquarks, we have focused only on scalar leptoquarks and
considered the case where the leptoquark is a weak doublet or a weak singlet. The weak doublet
leptoquark, Ry has the quantum numbers (3,2, 7/6) under SU(3). x SU(2). x U(1)y while the
singlet leptoquark .S; has the quantum numbers (3, 1,1/3).

The interaction Lagrangian that induces contributions to the b — ¢/ process is Ref. (M.Tanaka

and R.Watanabe)

E;‘Q = (g;]L ﬂiRRngL + g;]R @Z’LiUQEjRRQ) )
EIGQ = (Qﬂ,@fLifszjL + gﬁ%,ﬂfRij) St (4.26)

where (); and L; are the left-handed quark and lepton SU(2),, doublets respectively, while
uir, d;r and ¢; are the right-handed up, down quark and charged lepton SU(2), singlets. Indices
1 and j denote the generations of quarks and leptons, and ¢ = CET = CH%)* is a charge-
conjugated fermion field. The fermion fields are given in the gauge eigenstate basis and one should
make the transformation to the mass basis. Assuming the quark mixing matrices to be hierarchical,
and considering only the leading contribution we can ignore the effect of mixing. After performing

the Fierz transformations,we found the general Wilson coefficients at the leptoquark mass scale

44



contributing to the b — c77; process:

s, 1 [_ Giidin 93%95’%*]
2V2GrVe | 2Mg,  2Mpg, |
1 {gi”igf%* B 93%93}%*]
2V2G RV,

BMLZ, 073 (4.27)

It is clear from Eq. (4.27) that the weak singlet leptoquark and the weak doublet can add
constructively or destructively to the Wilson’s coefficients of the scalar and tensor operators in
the effective Hamiltonian. We considered various scenarios. In the first case the singlet and the
doublet scalar leptoquark couplings are such that the scalar operator couplings are enhanced and
the tensor operator couplings are suppressed. This scenarios has been studied before Ref. (A.Datta
and D.Ghosh, 2012; M.Duraisamy and A.Datta, 2013). Hence, the first case, called Case. (a), we
studied that when the tensor operators is enhanced and the scalar operator suppressed. The results
of the pure tensor coupling are presented in the next section.

In this section we also considered the possibilities where both the scalar and the tensor op-
erators are present and are of similar sizes. In the most general case both the singlet and doublet
leptoquarks are present and so both the scalar and tensor operators appear in the effective Hamil-
tonian. As there is limited experimental information, including both the singlet and the doublet
leptoquarks will allow us more flexibility in fitting for the Wilson’s coefficients but this will come
with the price of less precise predictions for the various observables. We, therefore, considered
the simpler cases when only a singlet or a doublet leptoquark are present. In these cases, from
Eq. (4.27) the coefficients of scalar operators and the tensor operators have the same magnitudes.
We considered further two cases:

Case. (b): In this case only the weak doublet scalar leptoquark Rs is present. It was shown
recently Ref. (J.M.Arnold and M.B.Wise, 2013) that this is one of the two minimal renormalizable
scalar leptoquark model, where the standard model is augmented only by one additional scalar
representation of SU(3) x SU(2) x U(1) and which do not allow proton decay at the tree level.

The relations between the scalar and tensor couplings in Eq.4.27 are valid at the leptoquark
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mass scale, my,q. We have to run them down to the b quark mass scale using the scale dependence

of the scalar and tensor currents at leading logarithm approximation

s 7S

as(my) | 2589 [ as(meq) | 26
S = |l =" S 4.28
(i) L‘s(ﬂb)] l as (me) Hlma) *28

as(my) 2;@) as(mrq) 2;&
T, = |2 L e s 4.29
o = [ [ o 2
where the anomalous dimensions of the scalar and tensor operators are v = —6Cp = —8, yp =

2CF = 8/3 respectively and Béf) = 11 — 2ns/3 Ref. (I.Dorner and I.Niandi, 2013). Choosing a
value for the leptoquark mass we can run the couplings to the b-quark scale which is chosen to be
wy =y = 4.2 GeV.

In the simplified scenario with the presence of only one type of leptoquark, namely Ry or
S1, the scalar Sy, and tensor 77, Wilson coefficients are no longer independent: one finds that at the
scale of leptoquark mass, myq, Sr.(mrq) = £711(mLg). Then, using Eq. (4.29), one obtains the

relation at the bottom mass scale,
Sp(my) ~ +£7.8T(my) . (4.30)

for a leptoquark mass of 1 TeV Ref. (M.Tanaka and R.Watanabe).

It is interesting to note that the same coupling that appears in the process b — c77; also
appears in the t — ¢7 77~ decay and if the components of the doublet leptoquark have the same
mass, then we had a prediction for this decay based on data from B — D77 transition.

Case. (c): In this case only the singlet leptoquark is present and the relevant Wilson’s coef-

ficients can be obtained from Eq. (4.27).

4.5 Numerical analysis

The model independent and dependent numerical results for the various observables in the

angular distribution of B — D**7~ 17, decay are discussed in this section.

46



4.5.1 Model independent results

For the numerical calculation, we use the B — D and B — D* form factors in the heavy quark
effective theory(HQET) framework Ref. (I. Caprini and M.Neubert, 1998). A detailed discussions
onthe B — D* and B — D form factors and their numerical values can be found in Ref. (Y.Sakaki
and R.Watanabe, 2013). The constraints on the complex NP couplings in the b — cl~ 7, effective
Hamiltonian come from the measured R(D) and R(D*) in Eq. (4.1) at 95% C.L. We varied the free
parameters in the HQET form factors within their error bars. All the other numerical values were
taken from Ref. (PDG, 2010) and Ref. (HFAG, 2010). The allowed ranges for the NP couplings
were then used for predicting the possible allowed ranges for the observables.

It is important to point out that the combination of couplings g, = Vi + V, appears in both
R(D) and R(D*), while g4 = Vr — V7, appears only in R(D*). Vi and V, receive constraints from
both R(D) and R(D*). While, the combination of couplings g5 = Sg + Sy, appears only in R(D),
gp = Sg— Sp, appears only in R(D*). If NP is established in both R(D) and R(D*) then the cases
of pure g4 or gs or gp coupling are ruled out. A detailed discussions on the effects of vector and
scalar couplings on the various observables in the decays B — D*(~ i, and B — D*{~ij, can be
found in Ref. (A.Datta and D.Ghosh, 2012; M.Duraisamy and A.Datta, 2013).

We first considered the Case. (a) of the previous section where only the NP tensor operator
is present in the effective Hamiltonian. In Fig. (4.3), the constraint on the parameter space of the
pure tensor coupling by both R(D) and R(D*) measurements at 95% C.L. is shown. We found
that the magnitude of tensor coupling satisfies |77,| < 0.5.

The predictions for the differential branching ratio (DBR), FP"(¢?), R(D*)(¢*) and AZ5(¢?)
are shown in Fig. (4.4) for the allowed values of tensor coupling. It is clear that, the DBR, FLD : (q2),
and R(D*)(q*) get considerable deviation from their SM expectation in this new physics scenario.
The contribution of pure tensor coupling to the forward-backward asymmetry is of the order of
m-/+/¢? and AR, (q?) behaves similar to its SM expectation.

We now analyzed the sensitivity of the ¢?-integrated azimuthal symmetries on the new tensor

coupling, and we presented correlations of these symmetries with respect to the integrated forward-

47



0.4

0.2F

0.0

Im[T;]

-0.2}

-04f

-0.2

-0.1

00 0.1

0.2

Re[T}]

03 04 05

Figure 4.3: The allowed region for the complex coupling 77, for Case. (a) at 95% C.L.
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Figure 4.4: The predictions for the observables FP"(¢?), differential branching ratio, Rp-(q?),
and A2, (q?) for the decay B® — D**1u, in the presence of only T}, coupling. The green band
corresponds to the SM prediction and its uncertainties. The values of the coupling 7, were chosen
to show the maximum and minimum deviations from the SM expectations.
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backward asymmetry (FBA). The ¢*-integrated FBA < AL}, >, the three transverse asymmetries
< AS 23) - and the three T-odd CP asymmetries < A(T1 %) - were obtained by separately inte-
grating out the ¢?-dependence in the numerator and denominator of these quantities as expressed
in Eq.(4.22). The panels of Fig.(4.5) show the correlation between the above six ¢>-integrated
asymmetries and < App > for the decay B° — D**ru.. Note that, in this plot we also included
predictions for the vector and scalar NP couplings. In each cases, the NP couplings satisfy the
current measurements of Rp and Rp- at 95% C.L. It is clear from these plots that < AP, >,
and < Ag %3 > get considerable deviations from their SM expectation once we include the NP
couplings. The T-odd CP asymmetry < Ag? ) > is sensitive to all NP couplings, and is strongly
correlated with < A2, >. The scalar NP couplings can enhance this asymmetry about 5% from
its SM value. On the other hand, < Agpl ) > and < Agf ) > are only sensitive to the vector couplings.
These asymmetries are also strongly correlated with < AP% > in the presence of vector NP cou-
plings, and can be enhanced up to 3% from its SM value. Hence, the predictions for < A2, > and
azimuthal symmetries have varying sensitivities to the different NP scenarios and these observables

were powerful probes of the structure of NP.

4.5.2 Leptoquark model results
We next move to Case.(b) and Case.(c) for the leptoquark with the mass scale of the order of 1 TeV.
The allowed ranges for the leptoquark couplings at i = m;, from the measured R(D) and R(D*)
values within the 20 level are shown in Fig. (4.6). These results suggest that the magnitudes of
the doublet and singlet leptoquark effective couplings, ¢33 g5+ and ¢33 g3+ are of O(1). A similar
conclusion is obtained in Ref. (Y.Sakaki and R.Watanabe, 2013).

The correlations between the asymmetries < A(C1 *% > and < Ag? ) > and Rp- are shown in
Fig. (4.7) for three different NP scenarios: only Sy, only R, leptoquark (S = 7.877), and only S,
leptoquark (S;, = —7.87%). These results imply that < A(C1 23 S and < A(T2 ) > can get sizeable

contributions from the leptoquarks within the measured region of Rp-. It is interesting to note that

the behavior of < Ag ) > is different for R, and S leptoquark couplings. Hence this observable
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can be used to discriminate between the singlet and the doublet leptoquark models.

In Fig.(4.8) we plotted the correlations of < A(CI’Q’?’) > and < A(TQ) > with < AP, > in the

presence of R, and S; leptoquark contributions. In each case, the constraints on the leptoquark
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(blue). The black points correspond to the SM predictions for these quantities. The vertical bands
correspond to Rp- data with =10 (green) or £20 (yellow) errors.

couplings at ;1 = my were from the current measurements of Rp and Rp« within the 2 o level.

As in the case of pure tensor couplings, these plots show that the different leptoquark models
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produce very different predictions for the azimuthal asymmetries and so these observables were

very sensitive in ruling out different leptoquark models.
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Figure 4.8: The correlation plots between < A(Cl 28 S < Ag ), and < AR5 > in the presence

of leptoquark contributions. The red (blue) scatter points correspond to Ry (.S;) leptoquarks. These
scatter points satisfy the current measurements of Rp and Rp- within the 2 o level. The green
points in each panel correspond to the SM predictions for these quantities.

4.6 Results and Summary

In summary we have discussed the effects of tensor operators in the decay B — D** 7.
motivated by recent measurements which show deviation from the SM predictions in B — D**7~ 1,
and B — D*7 1. In this work we have presented the angular distribution for B — D*r
with the most general new physics structure including tensor operators. We have then discussed
the effects of the tensor operators on various observables that can be constructed out of the an-

gular distribution. Our focus was on the azimuthal observables which include the important CP
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violating triple product asymmetries. We found that these azimuthal asymmetries, integrated over
q?, have different sensitivities to different NP structures and hence they can be powerful probes
of the nature of the NP. These asymmetries also show strong correlations with the ¢? integrated
forward-backward asymmetry. Tensor operators naturally arise in scalar leptoquark models and
are accompanied by other scalar operators. We considered two leptoquark models where the lepto-
quarks are weak singlets and doublets. We discussed the predictions for the azimuthal observables
in these models and found that these observables are very efficient in discriminating between the
two leptoquark models. In particular we found that there is cancellation between the scalar and
tensor components in the scalar doublet leptoquark model for one of the triple product asymmetries

while this is not the case for the scalar singlet leptoquark model.
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CHAPTER 5
NEW PHYSICS IN A, — A 7v,

5.1 Introduction

In this work we worked out the details of the decay process A, — A.7v, within the standard
model as done in Ref. (Korner and Kramer, 1992) and Ref. (Datta, 1994) and with we have
included new physics parameters also. Our aim was to look at the deviation from standard model

physics.

5.2 Formalism

The Hamiltonian can be written as

4G Ve
V2
+SL [(_ZPLb] [Z_PLVZ] + SR {(_EPRb] [Z_PLVl] + TL [EO'#VPLb] U_O';WPLVZ]] (51)

Hery

(L Vi) [, Peb) [ Po] + Vie[e3* Pab) [, Puv]

The matix element can be written as:

GrV, ) . _ .
M 55 1 <A@ = 45)b] + gv (@74b) + ga(@r5b)| A > 7" (1 — 75) 1]
+ < Al (gseb + gpeysb)| o > [Iv*(1 — 45) 1] (5.2)

where gy = (Ve + VL); 94 = (VR — V1); g5 = (Sr — SL); gp = (Sr + SL)

The hadronic part of the amplitude is the matrix elements of the weak quark current between
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baryonic states that is parametrized in terms of form factors. We defined the six vector and axial

vector form factors through the following equations

(Al (@YD) | Ap) = tn, (Pacs S.) [fﬂu — 2if20,,q4" + fsqu} ux, (Pay> Say ) (5.3)

(Ael(@r,750) [ Ap) = ta.(Pr., Sa.) [91%’)’5 — 2i920,,759" + gsqws] wy, (Dx,s Sx,) (5.4)

where fi = 1Y fo = (1/M)FY; fs = (1/M)FY, and g1 = B go = (1/My)Fy; g3 =
(1/M,)Fs*, and where ¢* = p* — p/* is the four momentum transfer.Following Ref. (Korner and

Kramer, 1992) and Ref. (Datta, 1994) we define the helicity amplitudes which are given by

HY yopw =H 5\ o, (5.5)

H 5, = —H* s, (5.6)

where A\, \yy are the polarizations of the daughter baryon and the W-boson respectively. In

terms of the form factors the helicity amplitudes are given by

H\ =12 0,=0 = 94 Vf_; (M1 = M)g1 + ¢ ) (5.7)
q

HY \—1/200=0 = gv \/\/6(2;2 ((M1 — M) f1 — 92f2> (5.8)

HVAC:I/Q,Aw:I = gvv/2Q- (f1 — (M + M2)f2> (5.9)
HA)\C:I/Q,AU,:I = gav/2Q- <91 + (M, — M2)92> (5.10)
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HY yctjopuet = gv\/g ((M1 — M) fi + q2f3> (5.11)

HAAC=1/2,>\U,:t =gA \/Q—; <<M1 + Mz)g1 - q293> (5.12)
q

where My, M, are the parent and daughter baryon masses. The new physics helicity ampli-

tudes are given as

H%) —1/2a0p=0 = gsmb%%mc ((Ml — M) fi + q2f3> (5.13)

HY )\ 21/2anp=0 = gpﬁ ((M1 + M3)g1 — nga) (5.14)
HS)\C,ANP = HS)\_C,/\_NP (5.15)

H anp = —H "\ a_nr (5.16)
HSP,\C=1/2,,\NP=0 = HP,\C=1/2,>\NP=0 + HS,\C:1/27)\NP:0 (5.17)

The angular distribution following Ref. (Korner and Kramer, 1992) and Ref. (Datta, 1994)

is given as
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AT (N — AT 1) G2 Va2 |pa. | mi2\’ . )
- ol (P 250, (1Hx 1 /o —

dq2d(Cos|0)]) 51273 M, ¢? |(28inf6r)(1Hama/20.0
+|Hy——1/2p=0]%) + (1 — Cos[6)])*| Hy, =1 /220 =1]?

+(1+ C’os[@l])2|H,\c:,1/2,)\w:,1|2> + 77;_;2 (2005[9;]2(|H,\C=1/2,,\w=0|2
+|H,\c=71/2,xw:0\2) + Sm[ez]z(|H>\c=1/2,,\w=1|2 + |H)\C:71/2,/\w:71|2)
+2(|Hyo=1/200=t]” + [ Hrom—1/2 00=t]")

—4Co0s[0| Re[(Hx,=1/2.7,=tCH ) =1/2 7, =0
+H,\C:—1/2,Aw:tCH/\C:—I/Z,/MFO)])

+ <2(\HSPAC:1/2,ANP:0 >+ [H s ——1/2.0=0%)

4m52

vV

+Hy——1/2,0,=0 (HSP,\C:—l/Q,,\NP:o)*)]

(—=Coslth] Re[(Hx.=1/2, =0 (HSP,\C:1/27,\NP:0)*

+Re[(Hy.=1/2 00—t (H*" s=1/27np=t)"

FHym 1m0 (B 5= 1 ppp=i) )] ) | (5.18)
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