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Abstract

In this paper, we will study the connections between the mirror symmetry of K3 surfaces and the geome-
try of the Legendre family of elliptic curves. We will prove that the mirror map of the Dwork family is equal
to the period map of the Legendre family. This result provides an interesting explanation to the modularities
of counting functions for K3 surfaces from the mirror symmetry point of view. We will also discuss the
relations between the arithmetic geometry of smooth fibers of the Fermat pencil (Dwork family) and that
of the smooth fibers of the Legendre family, e.g. Shioda-Inose structures, zeta functions, etc. In particular,
we will study the relations between the Fermat quartic, which is modular with a weight-3 modular form
n(4z)6, and the elliptic curve over A = 2 of the Legendre family, whose weight-2 newform is labeled as
32.2.a.a in LMFDB. We will also compute the Deligne’s periods of the Fermat quartic, which are given by
special values of the theta function 63. Then we will numerically verify that they satisfy the predictions of
Deligne’s conjecture on the special values of L-functions of critical motives.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The mirror symmetry of K3 surfaces is significantly different from that of Calabi-Yau three-
folds, and it can be described in terms of pure Hodge structures on the lattice of total integral
cohomology groups [2,4]. Given a K3 surface X, its total integral cohomology group
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H*(X,Z)=H"X,7)® H*(X,Z) ® H*(X,Z) (1.1)

is a free Z-module of rank 24 with a Mukai pairing that is even unimodular. Together with this
Mukai pairing, H*(X, Z) is isomorphic to the enlarged K3 lattice A & U, where A is the K3
lattice

A=Eg(—1)’ U3 (1.2)
On the lattice H*(X, Z), there is a weight-two pure Hodge structure defined by [17]

Hy'(X) = H*0(X),
Hy'!)=H'(X,C)® H"(X) @ H*(X, C), (1.3)
Hy*(X) = H**(X).

Let us call the data Hg(X, Z) := (H*(X,Z), (-), Hy * (X)) the B-model pure Hodge structure
of X [2,17].

The A-model pure Hodge structure of a K3 surface depends on the choice of a Kihler form.
Suppose Y is a K3 surface with complex structure /I and Kéhler form wy, then wy defines a
symplectic structure on the underlying differential manifold of Y. The A-model pure Hodge
structure is associated to this symplectic manifold, which also depends on the choice of a B-field
B € H>(Y,R). The cohomology class U is by definition

1
G=exp(B+ioy) =1+ (B +ioy) +5 B+ iwy)? € H*(X, C), (1.4)
and with respect to the Mukai pairing, it satisfies

(0,0)=0, (U,0) > 0. (1.5)

By demanding Hi’O(Y) = CO0, we get a pure Hodge structure on H*(Y, Z), and together with
the Mukai pairing, we obtain the A-model pure Hodge structure, H4 (Y, Z) [17]. The K3 surface
X with a holomorphic twoform 2 and the K3 surface Y with a complexified Kéhler form U is
said to form a mirror pair if there exists a Hodge isometry [2,17]

Hy(Y,Z)~ Hp(X,Z). (1.6)

It should be noticed that this definition can be viewed as a further refinement of Dolgachev’s
work [10].

In the paper [17], Hartmann has proved that smooth quartic K3 surfaces and the Dwork family
form a mirror pair in the sense of (1.6). More precisely, given a smooth quartic surface ¥ C P3,
the Fubini-Study Kihler form on P3 induces a symplectic structure wy on Y. By a result of
Moser [26], all smooth quartics are symplectomorphic to each other. Now introduce a B-field
T1wy, 71 € R and define a complexified Kéhler form

twy = (11 +in)oy, 11 R, 1 e RT. (1.7

So on the Kihler side, we have obtained a family of complexified symplectic manifolds over the
upper half plane H of C

p:% —H, (1.8)
where the fiber at T € H is (Y, U =exp (twy)).
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The mirror family of # (1.8) can be constructed from the Fermat pencil of K3 surfaces
Fy :{xé+x?+x§+x§—4lﬁxox1x2x3=0}CIP’3 (1.9

by first taking the quotient with respect to a (Z/47Z)* action and then a minimal resolution of
singularities. The result is a family of K3 surfaces over P! with ¢ as its parameter

7.2 — P (1.10)

which is called the Dwork family. By abuse of notations, the underlying differential manifold
of a K3 surface is also denoted by X. There exists a canonical method to construct a nowhere
vanishing holomorphic twoform Qi on a smooth fiber .y of (1.9), which further induces a
holomorphic twoform 2y on the smooth fiber 27 of the Dwork family (1.10). From the papers
[17,27], there exist two integral homology cycles I'y and I'; in H>(X, Z) such that

(4n)!
WO(IP)_/Q‘/’ Z n1)4(41/,)4n

o0

1 (4n)!
Wi(y) = / Qy = i ( 4Wy - log(4yr) + 4 ZO W[‘I’(4n +1)—¥(n+ 1)]) ,
I -

(1.11)

where W is the polygamma function. The mirror map between the families % and 2 is given
by the quotient [17,27]

_ Wiy)
Wo(¥)
It has been shown in the paper [17] that %; and 27 form a mirror pair under the mirror map
(1.12). While it is expected in [17] that this mirror map may play an important role in the homo-
logical mirror symmetry of quartic K3 surfaces [33].
The motivation of this paper is to explore the interesting connections between the previously
stated mirror symmetry of K3 surfaces and the geometry of the Legendre family of elliptic curves.
One important result of this paper is that under a transformation of the form

(1.12)

1 16(1— )22

A
the mirror map (1.12) is the same as the period map of the Legendre family. Recall that the
Legendre family of elliptic curve is defined by the equation [5]

(1.13)

&y =x(x—=D(x—2), (1.14)

which has a nowhere vanishing holomorphic oneform w, = dx/2y. The underlying differential
manifold of a smooth fiber is the torus 7 = S! x S!. There is a choice of a basis {yg, y1} for
H (T, Z) such that the periods of w, are [6,38]

/wA=2n wo(L) = 27'[2F]( s 1), /wA_Zn @i(X). (1.15)
Y0 b4l

The period map of the Legendre family is given by the quotient

3
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@1 (L)
T= ,
@o(A)

the inversion of which is the famous modular lambda function [6,38]

(1.16)

A(T) = 16 — 12842 +704¢> —3072¢* +11488¢° —384004° +- - - ; g = exp(wit). (1.17)

Using the theory of hypergeometric functions, we will show that under the transformation (1.13)
we have

Ao
Wo() =(1 - E)wo ),

A
Wi(y)=(1- 5) wo(M) w1 (A).

Hence the mirror map (1.12) of the Dwork family is essentially the same as the period map
(1.16) of the Legendre family. Moreover, this property provides an interesting explanation to the
modularities of counting functions for K3 surfaces from the mirror symmetry point of view.

In fact, the holomorphic twoform 2y of the Dwork family satisfies a Picard-Fuchs equation
D3y = 0 with Dj3 a third order differential operator. Moreover, D3 is the symmetric square of a
second order differential operator D,, which has two linearly independent solutions of the form

(1.18)

w09 = (1= D) 2wy,
(1.19)

KOy == 5 ).

! 2

Therefore (né( )2, 71({( an and (JrlK)2 are linearly independent solutions of D3. Based on this

property, we will show that the pure Hodge structure on the transcendental lattice of 27y is

isomorphic to that on the transcendental lattice of &, x &. The Picard number of a smooth fiber

'y satisfies > 19, hence from Morrison’s work [25], £ admits a Shioda-Inose structure. An

interesting question is to look at the connections between the Shioda-Inose structure of 2 and

the geometry of &, x &;.

On the other hand, the holomorphic twoform Q{; of the Fermat pencil satisfies the same

Picard-Fuchs equation as Qy, i.e. D3 Qi = 0. Hence the previous results for the periods of 2

also work for Qi In particular, the pure Hodge structure on the transcendental lattice of .7y,
is isomorphic to that on the transcendental lattice of &3 x &3. The Picard number of a smooth
fiber #y satisfies > 19, hence it is also very interesting to study the connections between the
Shioda-Inose structure of .%, and the geometry of & x &;. We will also discuss the connections
between the zeta functions of &} and that of .%,. One important example is the smooth fiber .7,
called the Fermat’s quartic,

xg +xt x5+ x5 =0, (1.20)

which is modular and associated to it is a weight-3 modular form 7°(4z). Under the transfor-
mation (1.13), the point ¥ = 0 corresponds to A = 2. The minimal Weierstrass equation of the
elliptic curve &5 at A = 2 of the Legendre family is

yr=x3—x, (1.21)

which is labeled as 32.a3 in LMFDB. The weight-2 newform associated to &> is labeled as
32.2.a.a in LMFDB. We will see the modular form 1°(4z) can be considered as the symmetric
square of 32.2.a.a.
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Furthermore, the formula (1.19) allows us to explicitly compute the Deligne’s periods of the
Fermat quartic (1.20). More precisely, let My be the two dimensional pure motive that corre-
sponds to the transcendental cycles of the Fermat quartic. From Deligne’s paper [7], the Tate
twist My ® Q(n) is critical if and only if n = 1, 2. Using the method developed in the paper [39],
we find that Deligne’s periods ¢t (Mg ® Q(n)), n = 1, 2, are given by special values of the theta
function 63

Mo ® Q1)) = (271) 05(0, —ie ™),

1.22
(Mo ® Q(2)) =i(2i)>63(0, —ie ™/?). (1.22)

The L-function associated to My is just L(n°(4z), s), which has an integral representation

6 ~_ (2 ”)Y/ 6 s_
L(n(4z)°,s) = ') (4iz) (1.23)

thus its special values at s = 1,2 can be numerically evaluated. Using Mathematica, we will
numerically show that

ct (Mo ® Q(1)) = 16 L(My ® Q(1), 0),
ct Mo ® Q(2)) = —64 L(Mo ® Q(2),0),

which indeed satisfy the predictions of Deligne’s conjecture [7,39].

The outline of this paper is as follows. In Section 2, we will give an overview of the geometry
of K3 surfaces, which includes a short review of the Shioda-Inose structures of algebraic K3
surfaces. In Section 3, we will introduce the Fermat pencil and the construction of the Dwork
family. We will introduce the solutions of the Picard-Fuchs equation of the Dwork family, and the
construction of the mirror map. In Section 4, we will first review some elementary properties of
elliptic curves defined over Q. Then we will introduce the Legendre family of elliptic curves, its
periods and the modular lambda function. In Section 5, we will use the quadratic transformations
of hypergeometric functions to show the mirror map of the Dwork family is the same as the period
map of the Legendre family. We will also discuss the connections between this property and the
modularity of counting functions for K3 surfaces. Section 6 is a brief discussion of the potential
relations between the Shioda-Inose structures of the Dwork family (or the Fermat pencil) and the
Legendre family. Section 7 studies the relations between the zeta functions of smooth fibers of the
Fermat pencil and that of the Legendre family. In Section 8, we will look at the relations between
the weight-3 newform of the Fermat quartic and the weight-2 newform of the elliptic curve at
A =2 of the Legendre family. We will also explicitly compute the Deligne’s periods for the
Fermat quartic, and numerically verify that they satisfy the predictions of Deligne’s conjecture.
Section 9 contains a summary of the conclusions of this paper and some further open questions.
Appendix A is a short review of the Weil conjectures.

(1.24)

2. The geometry of K3 surfaces

In this section, we will review some elementary geometric properties of K3 surfaces, e.g.
Néron-Severi group and transcendental lattice, etc. We will also give a brief overview of the
Shioda-Inose structures of algebraic K3 surfaces with Picard numbers > 19. The readers who
are familiar with these elementary materials can simply skip this section.

5
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2.1. An overview of K3 surfaces

A K3 surface is by definition a 2-dimensional complex manifold X with vanishing first sheaf
cohomology and trivial canonical bundle [18]

HY\(X, 0x)=0, Qx = Ox. 2.1

Here Oy is the sheaf of holomorphic functions on X and Qy is the canonical bundle, i.e. the
sheaf of holomophic twoforms on X. From its definition, a K3 surface is a two dimensional
Calabi-Yau manifold. The triviality of Qx immediately implies there exists a nowhere vanishing
holomorphic twoform €2 on X. In the definition, we have included non-algebraic K3 surfaces,
and in fact most K3 surfaces are non-algebraic [18]. But every K3 surface is Kéhler, and any
two K3 surfaces are deformation equivalent to each other, in particular they are diffeomorphic to
each other [18].

Remark 2.1. Since every two K3 surfaces are diffeomorphic to each other, in this paper the
symbol X will also mean the underlying differential manifold of K3 surfaces.

The integral cohomology groups of a K3 surface are torsion free [3], and in fact we have:

1. HY(X,2)=H3*X,Z) =0.
2. H%(X,Z) is a lattice of rank 22.

From Hodge theory, there exist Hodge decompositions on the cohomology groups of a Kihler
manifold. For example, the Hodge decomposition on H*(X, Z) is of the form
H*(X,2)®2 C = H**(X) @ H"' () © H"(X), 2.2)

which defines a pure Hodge structure on H 2(X,Z). The Hodge number h"/ is by definition
dim A"/ (X), and the Hodge diamond of a K3 surface is of the form

1
0 0
1 20 1
0 0
1

The Picard group of X, denoted by Pic(X), is the abelian group of isomorphism classes of
line bundles on X [18]. The first Chern class defines a homomorphism from it to H 2(X,7)

¢1 :Pic(X) > H*(X,Z). (2.3)

From the Lefschetz theorem on (1, 1)-classes, the image of ¢; is H'1(X) N H2(X,Z), which is
called the Néron-Severi group NS(X) of X [18]. The group NS(X) is also characterized by the
property [3,18,42]

y € NS(X) <— /va:O, 2.4
X

where — means the cup product between cohomological cycles. The group NS(X) is a sub-
lattice of H 2(X , Z), whose rank, denoted by p(X), is called the Picard number of X. As the
Hodge number Rl (X) <20, we deduce p(X) < 20.

6
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There is a cup-product pairing on H>(X, Z)

<a,ﬁ>=/avﬁ; o, B e HX(X,Z), 2.5)
X

which is even unimodular with signature (3, 19). Together with this cup-product pairing, the
lattice H*(X, Z) is isomorphic to [18]

Eg(—) & (U)’. (2.6)

The cup-product pairing (2.5) induces a non-degenerate symmetric bilinear form on H>(X, R),
whose restriction to the subspace

Hy'(X):=H"'(X) N H*(X,R) 2.7)

is a non-degenerate symmetric bilinear form with signature (1, 19). The cup-product pairing (2.5)
induces a pairing on NS(X) with signature (1, p(X) — 1). The transcendental lattice T (X) is by
definition the orthogonal complement of NS(X) with respect to the cup-product pairing (2.5)

T(X):=NS(X)* c H*(X,Z). (2.8)

Similarly, the cup-product pairing (2.5) induces an even unimodular pairing on the lattice 7 (X).
Moreover, the pure Hodge structure on H 2(X,7) induces pure Hodge structures on the two
sub-lattices NS(X) and T (X).

Under the cup-product pairing (2.5), the holomorphic twoform €2 satisfies

(Q,92)=0, (Q,Q)>0. (2.9)

In fact, the pure Hodge structure on H>(X, Z) is completely determined by the twoform £2 since
H>%(X) (resp. H%?(X)) is spanned by Q (resp. ) and

HY'(X) = (Hz'O(X) o 110»2()())L . (2.10)
More generally, on the total integral cohomology group of X
H*(X,Z)=H"X,7)® H*(X,Z) ® H*(X, 7), (2.11)
there exists a Mukai pairing defined by

((ao, a2, as), (bo, b2, by)) = / (az — by —ag~ by — as — by) . (2.12)
X

The Mukai pairing is important in the study of the mirror symmetry of K3 surfaces, and the
readers are referred to the papers [2,10,17] for more details.

2.2. The Shioda-Inose structures of algebraic K3 surfaces

Before we discuss the Shioda-Inose structures of algebraic K3 surfaces, let us first recall the
definition of Kummer surfaces.

Definition 2.2. Suppose A is an abelian surface with involution ¢, then the quotient variety A/t
has 16 A singularities that correspond to the 2-division points of A. The minimal resolution of

A/t is a K3 surface Km(A) that is called Kummer surface.

7
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Let us first discuss the Shioda-Inose structures of singular K3 surfaces. Given a complex K3
surface X, it is called singular if its Picard number is 20. Here singular does not mean it is
not smooth, but means such a K3 surface is exceptional. In many ways, singular K3 surfaces
behave like elliptic curves with complex multiplication (CM). The transcendental lattice 7'(X)
of a singular K3 surface X is of rank-2, and the cup-product pairing Q(X) on 7 (X) is an even
integral positive definite binary quadratic form

Q(X):(Zb“ 21’6); a.b.cel. 2.13)

The determinant d of Q(X) is by definition d = b? — 4ac. From the works [30,34], the map
X — Q(X) is a bijection between the isomorphic classes of singular K3 surfaces and the even
integral positive definite binary quadratic forms up to conjugations by elements of SL;(Z).

Now we briefly review the construction of the inverse map of X — Q(X). Given an even
integral positive definite binary quadratic form Q of the form (2.13), there are two isogenous
elliptic curves &; and &/ with

2a 2

both of which admit CM in the field Q(v/d). Here & means the complex torus C/(Z + t7Z),
etc. However, it turns out that the Kummer surface of & x &,/ is a singular K3 surface with
intersection form 2Q. To cure this defect, Shioda-Inose construct a special elliptic fibration for
Km(&; x &;/). Then they show there exists a suitable quadratic base change of this fibration, the
pull-back with respect to which is a singular K3 surface X with intersection form Q. From this
construction, every singular K3 surface is defined over a number field [30,34]. In conclusion, we
have a diagram of the form

—b b
r:ﬂ, g btvd (2.14)

X Er xEp

\ / : (2.15)

Km(&; x &)

where the arrows are of degree 2 [25]. The map from X to Km(&; x &) in this diagram is a
Nikulin involution. Recall that an involution ¢ on a K3 surface X is called a Nikulin involution if
it preserves the twoform €, i.e.

H(Q) = Q. (2.16)

From [29], every Nikulin involution has eight isolated fixed points. Now let us introduce the
concept of Hodge isometry.

Definition 2.3. Suppose A and A’ are two lattices endowed with pure Hodge structures and
bilinear forms, then a Hodge isometry A — A’ is an isomorphism that respects both the pure
Hodge structures and the bilinear forms.

A general K3 surface X is said to admit a Shioda-Inose structure if there exists a Nikulin
involution on X and a diagram of rational maps
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, : 2.17)
L
Km(A)

where A is an abelian surface. Here the dotted arrow from X to Km(A) corresponds to the
quotient by Nikulin involution, and both dotted arrows are rational maps of degree 2. Moreover,
this diagram induces a Hodge isometry between the transcendental lattices

T(X) ~T(A). (2.18)

From Theorem 6.3 of [25], a K3 surface X admits a Shioda-Inose structure if and only if there
exists an abelian surface A and a Hodge isometry 7 (X) >~ T'(A). While from Corollary 6.4 of
[25], algebraic K3 surfaces with Picard numbers > 19 always admit Shioda-Inose structures.
The readers could consult [25] for more details about the Shioda-Inose structures of algebraic
K3 surfaces.

3. The Dwork family and its mirror map

In this section, we will first discuss the Picard-Fuchs equation of the Fermat pencil of K3 sur-
faces and its independent solutions. Then we will briefly review the Greeene-Plesser construction
of the mirror family of quartic K3 surfaces from the Fermat pencil, which is usually called the
Dwork family of K3 surfaces. We will also look at the construction of the mirror map of the
Dwork family and its properties, which have been studied in [27].

3.1. The Fermat pencil of K3 surfaces

The adjuction formula tells us that a smooth quartic surface in P3 is K3 [18]. The Fermat
pencil of K3 surfaces is a pencil of quartic surfaces in P> defined by

Ty A fy =0 CP3, fyi=xq +x] + x5 4+ x§ — 49 xox1x2x3, 3.1)

where (xp, x1, X2, x3) form the projective coordinate of P3. In a more formal language, formula
(3.1) defines a family

. F > Pl (3.2)
which is in fact defined over Q. The fiber .%y, is smooth if and only if v does not lie in
¥ ={y*=1}U{oo}. (3.3)

When ¢+ = 1, the fiber Fy has 16 singularities of type A;. While when ¢ = oo, the Fermat
pencil degenerates into the union of four complex planes

xox1x2x3 = 0. (3.4)

The Picard number p(.%) of a smooth fiber .7, is > 19 [18]. There exists a projective linear
transformation

X0 —> {4x0, Xi = X, i =1,2,3; {4 =expmwi/2, (3.5)

that induces an isomorphism between %y, and F,y,. So the ‘true’ parameter for the Fermat
pencil (3.1) is in fact the variable ¢ defined by

r=1/y* (3.6)
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Remark 3.1. If ¢ £ 0, oo, the following isomorphism

x0—>%xo, xi—>xi, 1=1,2,3, 3.7
transforms the fiber .%;, to the rationally defined surface

1xg 4 x§ + x5 + x§ — dxox1x2x3 = 0. (3.8)

On the smooth fiber ,%/, of the Fermat pencil (3.1), i.e. ¢ # X, there is a canonical way to

construct a nowhere vanishing holomorphic twoform Qi [16,27]. On IP3, there is a meromorphic
threeform ®y, given by

3 —_
- : idxo A ---ANdxi N---ANd
0y = -1y LH X i = 3.9)
i=0 o
which is a well-defined threeform on P? — .Z;,. ®, is automatically closed, hence its residue
along % is well-defined, which is by definition the holomorphic twoform Qi

QJ, = Res(Oy,). (3.10)

More explicitly, take the open subset of .7, defined by x3 = 1, then the residue of ®y; is equal
to [16]

f dxog A dxy
v dfy/dx2 17,

In fact, it can be explicitly shown that the meromorphic twoform (3.11), which is a priori only

defined on 9dfy /dx2 # 0, extends to a global nowhere vanishing twoform on %y [16]. Notice

that for a rational ¥, Qi is defined over Q. Moreover, for i € 3, the previous construction

(3.11)

defines a twoform S2£ that is nowhere vanishing on the smooth locus of 7.
On the fiber %y, there exists a homology cycle So € H>(X, Z) consists of the points [16]

lxol = [x1] =34, x3=1, (3.12)

and x> given by the solution to fy = 0 that tends to 0 when vy — oo. Notice that By is a torus in
F that is a continuous deformation of [16]

{(x0, x1, %2, %3) € P32 [xg| = |x1] =8, x2 =0, x3 =1} C P (3.13)

For large 1, the integration of Qi over fo, up to a nonzero rational multiple, has a power series
expansion of the form [16,27]

4n)!
Qri)? Z ‘)(4(20)4” (3.14)

which converges in a neighborhood of ¢ = oco. The readers are referred to the paper [31] for
explicit computations of other periods of Qi On the other hand, the periods of Qf; can also be
explicitly computed by solving its Picard-Fuchs equation.

10
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3.2. The Picard-Fuchs equation

The Griffiths transversality tells us that the holomorphic twoform Q/ satisfies a third order
Picard-Fuchs equation that can be explicitly constructed by the Griffiths-Dwork method. In fact
it is more convenient to write down this Picard-Fuchs equation with respect to the parameter ¢
(3.6) instead of ¢ . From the paper [27], the Picard-Fuchs equation of Qi is given by

D3Q =0; D3 = 193—t(19+1)(z‘/‘+1)(19+§), ﬁ:ti. (3.15)
4 2 4 dt
Furthermore, the Picard-Fuchs operator D3 is the symmetric square of a second order linear
differential operator D; [17,27]

D2=z92—t(z9+é)(ﬁ+%). (3.16)

Here symmetric square means that if wo(¢) and 71 (¢) are two linearly independent solutions of
the operator D;, then ng (1), mo(t)m1(¢) and nlz(t) are three linearly independent solutions of the
operator D3 [17,27].

The operator D, (3.16) has three regular singularities at the points

t=0,1,o0; (3.17)

which are also all the singularities of its symmetric square D3 (3.15). It should be noticed that the
fiber of the Fermat pencil (3.1) over t = oo (¢ = 0) is smooth. In fact, the interesting behavior of
this ‘fake’ singularity will be revealed when we study the connections between the Fermat pencil
of K3 surfaces and the Legendre family of elliptic curves in Section 5.

The independent solutions of the Picard-Fuchs operator D3 (3.15) have been explicitly found
in the paper [27]

. (4n)!
Wo) = ——
o) 2 () 4y

—  (4n)!

W) = 2— (—4W0 -log(4y) + 42 WN’@” +1)—-V¥n+ 1)]) )

1 2 2 42 @n)!
Wa) = s [4 Wollog(dy)]? - Z gy D = W 1]

: log(41ﬂ)
# Z O 9+ 1)~ o+ DE+ W@+ D) = W+ )
!)4(4w)4n 4 ’
(3.18)
which converge in a neighborhood of » = co. Here W(z) is the polygamma function
Y(z) = <4 logI'(z). (3.19)
dz

On the other hand, one solution of the operator D, (3.16) is given by the hypergeometric function

13 3 297 10659
770(1‘)=2F1(§,§;1;t)=1+—t~|— 2 3

t t 3.20
64 16384 Jr1048576 + ( )

11
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Moreover, its square is in fact the solution Wi () in formula (3.18), i.e.

Wo(y) =3 (1), t =9, (3.21)

which follows directly from the property that D3 is the symmetric square of D,.
3.3. The construction of the Dwork family

The mirror family of quartic K3 surfaces is a pencil of K3 surfaces called the Dwork family,
which can be constructed from the Fermat pencil (3.1) by the Greene-Plesser construction. More
explicitly, the abelian group G

G ={(ap, a1, a2, a3)la} = 1, aparazaz = 1}/{(a,a,a,a)la* = 1} (3.22)
acts freely on the fiber % (3.1) through
(ao,ar, a2, a3).(Xo, X1, X2, X3) = (apXo, a1 X1, a2 X2, a3 X3). (3.23)

Moreover, G is isomorphic to (Z/4Z)?, and it permutes the 16 singular points of 9’;‘?. For

Y ¢ X, the quotient variety .7y, /G has 6 singularities of type A3. While if ¢+ =1, there is an
additional singular point of type Aj, which is just the quotient of the 16 singular points of 9’;1
by G. If ¥ = oo, the quotient %,/ G is a union of hyperplanes, which is isomorphic to %
[17,27].

There exists a minimal simultaneous resolution of the A3 singularities of 9’1/,, Y # 00, after
which we obtain a pencil of K3 surfaces called the Dwork family

n:%—ﬂP’l, (3.24)

which is also defined over Q. The details of this mirror construction are left to the papers [17,27].
The singular fibers of the Dwork family (3.24) are also over the points in X, and the singularity
of 5&}2 is a single point of type A;. The Picard number p(Z7) of a smooth fiber 2, is > 19,
and a general smooth fiber has Picard number 19 [17,18,42].

The holomorphic twoform Qi (3.10) is invariant under the action of G, hence it defines a
nowhere vanishing twoform on the smooth locus of the quotient .%y /G. After resolution of
singularities, this twoform extends to a nowhere vanishing holomorphic twoform Q2 on %y,

which satisfies the same Picard-Fuchs equation as Qf ,i.e. [27]

D3(2y) =0. (3.25)
3.4. The mirror map

Recall from Remark 2.1, X also means the underlying differential manifold structure of a
smooth fiber of the Dwork family (3.24). Since 2 satisfies the same Picard-Fuchs equation as

Qf , the three independent solutions in formula (3.18) are the three independent periods of €2y,.
From the papers [17,27], there exist two integral homology cycles I'g, I'1 € H2(X, Z) such that

l 1
Wo(lﬂ):mfﬂw, Wl(lﬁ):m/Q% leQ*. (3.26)

I'o I

The mirror map t for the Dwork family (3.24) is given by [17,27]

12
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AU
Wo()’

The values of t lie in the upper half plane H. Moreover, with a suitable choice of branch cuts,
the special values of t at » =0, 1, co are given by [27]
—l+i i 328
; 1> —; co> 00. .
2 V2
I+i i

So we can say a fundamental domain for 7 is the hyperbolic triangle with vertices =5, 7
and oo [17,27]. The properties of this mirror map and its connections to the j-function have also
been studied in the paper [22]. Later in this paper, we will show that this mirror map is the same
as the period map of the Legendre family of elliptic curves. But first let us review the theories of

elliptic curves that will be needed in later sections.

(3.27)

7T:0—~

4. An overview of elliptic curves and the Legendre family

In this section, we will review some elementary properties about elliptic curves. We will also
discuss the Legendre family of elliptic curves and the modular lambda function [5,6]. This section
is included here purely to familiar the readers with the notations in later sections.

4.1. An overview of elliptic curves defined over Q

First, let us look at the elliptic curves defined over Q. Given an elliptic curve £ defined over
@Q, it always has an integral model of the form [35,36]

E: y2 +aixy+azy =x3 +a2x2 + asx + ag, withay,--- ,a¢ €7, “.1)
which is called integral Weierstrass equation. The discriminant A of this Weierstrass equation
(4.1) is by definition

A = —b3bg — 8b3 — 27b% + babybs, 4.2)
where b; is given in terms of a;

by = a12 +4ay,

by =2a4 + ajas,

4 24 1a3 @3
be = a3 + 4ag,
bg = a%aﬁ +4arae — arazaq + am% — a‘%.

The elliptic curve £ (4.1) is smooth if and only if A # 0. An elliptic curve £ can have many
different integral Weierstrass equations, and a minimal Weierstrass equation is one for which the
absolute value |A| is minimal among all Weierstrass models for £. In fact, given an elliptic curve
defined over Q, it always has a minimal Weierstrass equation. The j-invariant of £ (4.1) is by
definition

i
J (&) A 4.4)
where ¢4 is defined by
c4 = b3 — 24by. 4.5)

13
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The endomorphism ring of £, denoted by End(£), is the ring that consists of all the endomor-
phisms of £, including those defined over extensions of the base field Q. An elliptic curve £ does
not admit complex multiplication (CM) if End(€) is isomorphic to Z. While £ is said to admit
CM if End(€) is bigger than Z, in which case End(€) is an order in an imaginary quadratic field.
Recall that an order of an algebraic number field K is a sub-ring O of Ok, the ring of integers
of K, that is also a Z-module of rank [K : Q] [23,28]. For an elliptic curve defined over QQ that
admits CM, its order is one of the 13 orders of class number one [23,35]. In fact, the property of
admitting CM only depends on the j-invariants of elliptic curves. For a CM elliptic curve defined
over QQ, its j-invariant is one of the following 13 CM j-invariants [23,35]

J = —262537412640768000, —147197952000, —884736000, —12288000, —884736,
— 32768, —3375, 0, 1728, 8000, 54000, 287496, 16581375. (4.6)

Modulo a prime number p, the integral Weierstrass equation (4.1) defines a curve £/F, over
the finite field F, = Z/pZ. £ is said to have good (resp. bad) reduction at p if £/IF,, is smooth
(resp. singular). We will call p a good (resp. bad) prime of £ if £ has good (resp. bad) reduction
at p. The conductor of £, denoted by N (£), is determined solely by its bad primes, whose precise
definition is left to [23,35,36]. Let us denote the number of points of £/IF,, for a good prime p
by #(£/F ), and let a,,(€) be

ap(&) =1+ p —#(E/F)p). 4.7
Then the zeta function of £ for the good prime p is of the form [8§]
1—a,(E)T + pT?

(1-7)1~-pT)

Appendix A contains a short review about zeta functions and Weil conjectures. On the other
hand, the étale cohomology group Hé]t(é' ,Q¢) is a two dimensional continuous representation
of the absolute Galois group Gal(Q/Q). At a good prime p, Hélt(é' , Q) is unramified, and the
characteristic polynomial of the geometric Frobenius is [8,28]

¢, p,T)=

(4.8)

L—ay(O)T + pT*= (1 —7)E)T)1 -7y (E)T), 4.9)

where the absolute value of n},(é’) is p!/2. See Appendix A for more details. The modularity

theorem of elliptic curves tells us that a,(£) is the p-th coefficient of the g-expansion of a
weight-2 newform with level N(€) [8]. We now give an example that will be important in this

paper.
Example 4.1. The elliptic curve

E:yt=x>—x (4.10)

is labeled as 32.a3 in LMFDB. Its j-invariant is 1728, and its endomorphism ring is Z[—1], so
it admits CM. The weight-2 newform associated to & is labeled as 32.2.a.a in LMFDB.

Given two elliptic curves defined over Q, if they have the same j-invariant, then they are
isomorphic over a number field [36]. In fact, their difference is a twist, and an introduction to the
theory of twisting can be found in the book [36]. For example, the j-invariant of the following
elliptic curve

14
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& y?=x3 —4x, 4.11)

is also 1728. But &; is not isomorphic to £; over Q, instead they are isomorphic over the quadratic
field Q(v/2). The weight-2 newform associated to & is labeled as 64.2.a.a in LMFDB. The
difference between the two modular forms is a twist by the Dirichlet character (2/-), i.e. at a
good prime p we have [23]

2
ap(&r) =ap(&2) (;). 4.12)
Here (2/p) is the Legendre symbol [8].
4.2. The Legendre family of elliptic curves

The Legendre family of elliptic curves has played a very important role in the development of
modern mathematics, which is defined by the equation

& y*=x(x —1D(x —1). (4.13)
In a more formal language, the formula (4.13) defines a family of elliptic curves over P!
¢ & —> P!, (4.14)

whose fiber over A € P! is &, (4.13). The singular fibers of the Legendre family are over the
points 0, 1 and co. The j-invariant of a smooth fiber &}, is [6]

(1—x+22)3
A2 —-n2

Let us now recall the geometric construction of &) from cutting and gluing, and we will
closely follow the book [5]. First, cut the complex plane along the line from O to A and the line
from 1 to co. Next take a second copy of the complex plane and cut it along the same lines. Then
glue the two copies of complex plane together along the branch cuts. What we have obtained is
a torus with a complex structure parameterized by A. The readers can consult the book [5] for
more details and pictures.

The canonical bundle of &), is trivial, and there exists a nowhere vanishing oneform

Jj(&) =256 (4.15)

w), =dx/(2y). (4.16)

The periods of w, are well-known since the nineteenth century, but their computations are still
included here. The underlying differential manifold of a smooth fiber & (4.13) is the torus 7' =
S x S!. Let us now construct a basis {yp, 1} for the homology group H; (T, Z) ~ Z? from the
branch-cut construction of &) in the previous paragraph. Let yy be the cycle that encircles the
line (1, co) in one copy of the complex plane C, while let y; be the circle that is the composite
of the line from 1 to A in the first copy and the line from A to 1 in the second copy. The dual
of {y0, 1}, denoted by {y°, '}, forms a basis of the cohomology group H'(T, Z) ~ Z?. The
integration of the oneform w, over the cycles {yy, y1} defines two periods of &,

/w;\ =2nwwo(L), /a);h =2mwi()). “4.17)
Y0 Y1

More explicitly, the two periods {@g (L), @1 (1)} are given by the integrals

15
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(A)—lf &
@0 _nl iD=

. (4.18)
1 dx
o(M)=— .
b4 Jxx—=1Dx —=A)
1
After a change of variable by x = 1/z, the first integral in the formula (4.18) becomes
1
()=~ / & (4.19)
w( = — . .
T J Jz(1—2)(1 — Az)
If X lies in a small neighborhood of 0, we can take a series expansion of the factor (1 — Az)_l/ 2
then this integral can be computed order by order. The result is a series expansion of @wg(1)
1 9 »
ooM)=14+-A+—A1"+---. (4.20)

4 64
The second integral in the formula (4.18) can be evaluated similarly, and it admits an expansion
with leading terms

o1 (M) =—

1
1 dx 1
E/ x(l_x)(x_/\)=—;(4log2—logk)+---, 4.21)
A

where the limit of the terms in - - - is zero when A — 0. By monodromy consideration, we deduce
that @o; (L) must be of the form

1 log 16
() = ;(m(k) logA + k(X)) — Tdfo(k), (4.22)
where h()) admits a series expansion in a small neighborhood of A =0
1 21 185
A ==a+ =224+ —13+.... 4.23
(A) > + < + 68 + (4.23)

4.3. The modular lambda function

The nowhere vanishing holomorphic oneform wj satisfies a well-known second order Picard-
Fuchs equation [5]

=0T ek, g (4.24)
2 A '
Hence @y(1) is given by the hypergeometric function [6,38]
11
@o(2) =2F1(5, 3 L;2). (4.25)
The period 7 of the elliptic curve &) is by definition given by the quotient
A
0N (4.26)
@o ()

In a small neighborhood of A =0, t is of the form

16
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1 h(h log 16
r=— (logk+ @) )— iy 4.27)
i wo(A) i

The underlying complex torus of the elliptic curve &) is isomorphic to the quotient of C by the
rank-2 lattice generated by 1 and 7 [5]. Let A be the coordinate of P ! then 7 defines a map [6]

7:P!' > HU {0}, (4.28)

which is called the period map of the Legendre family. The inverse of t is the famous modu-
lar lambda function, which generates the function field of the modular curve X (2), i.e. itis a
Hauptmodul for X (2) [6,8]. In this paper, we will let g be

q :=expmir. (4.29)

Formula (4.27) implies

1
9= 16" P (h(R)/@0o(2)) (4.30)

and it can be inverted order by order which gives us the series expansion of A with respective to
q [6,38]

A(1) = 16g — 12842 + 704¢> — 3072¢" + 114884 — 38400¢° + - - - . 4.31)

Furthermore, it is well-known that the period @wy(A) can also be expressed in terms of the
theta function 03 [6,38]

@0(2) =030, ¢). (4.32)

From this identity, we also have [6,38]

050, 9) = Awy (L), 64(0,q) = (1 — Dwj (R). (4.33)
From [38], there is another interesting identity involving A(t) and @g()) of the form

—— =11 -VDwy). (4.34)
widt
With these identities at hands, we are ready to study the connections between the mirror map
(3.27) of the Dwork family and the period map (4.26) of the Legendre family.

5. The mirror map of the Dwork family and periods of the Legendre family

In this section, we will study the connections between the mirror map of the Dwork family
and the periods of the Legendre family. More concretely, we will explicitly express the solutions
W; () (3.18) in terms of the periods @; (A) of the Legendre family. Then we will show the mirror
map (3.27) of the Dwork family is the same as the period map (4.26) of the Legendre family.
Based on this result, we will discuss the modularities of the counting functions for K3 surfaces
from the mirror symmetry point of view, which shed further lights on this subject. The crucial
tools in this section are the quadratic transformations of hypergeometric functions [13-15].

17
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5.1. The quadratic transformations of periods

First, we will need the following two quadratic transformations of hypergeometric functions
[13-15]

F [ U —1/4 1 z*

2 1(5,5,172)—(1—2) ZFI(Z’Z’1’4z—4)’ .
F(l ll ):(1— )—1/4 F(l E‘l'— 4Z ) -
20103 ¥4 z b1, ol 7(1_@2,

which are over the regions when both sides are well-defined. We will however mainly focus on a
smooth neighborhood of z = 0. The composition of these two quadratic transformations gives us
16(z — 1)z?
(z—2)*
More concretely, the power series expansions of the two sides of (5.2) in a small neighborhood

of z =0 are the same. Now let us define a transformation between the variables 7 (= %) and A
by the following algebraic equation

—4
r=22(1—1) (1 — %) ) (5.3)

This equation (5.3) defines a map from P! (with coordinate 1) to P! (with coordinate ¢)

11 Z.-1/2 13
Fi(z 2 i =0—=)""F (2, 25 15— : 5.2
2 1(2 ) 2) ( 2) 2 1(8 ) ) (5.2)

t: P> P!, (5.4)
which is a ramified covering map with degree 4. The three singular points ¢ = 0, 1, oo of D3
correspond to

t=0<<= 1=0,1,o00;
=1 rA=+42V2-2; (5.5)
=00 < A=2.
The map ¢ (5.4) has four ramification points: A = 0, +24/2 — 2 and 2, where the ramification
index of 0, £2+/2 — 2 is 2 and that of 2 is 4.

The fiber 27 of the Dwork family (3.24) is isomorphic to the fiber 27,y , hence the Dwork
family (3.24) descends to a family over P! with parameter

n 2 — Pl (5.6)
The pull-back of this family (5.6) along the map ¢ (5.4) gives us a commutative diagram
P —y
lﬁ lnr : (5.7)
P! L P!

The new family 7 in this commutative diagram is also a pencil of K3 surfaces over P!
72— Pl (5.8)

which will be crucial in this paper. Later we will show that in a sense this family is a ‘more
suitable’ mirror family for quartic K3 surfaces (1.8).

18



W. Yang Nuclear Physics B 963 (2021) 115303

5.2. The mirror map is the period map

Intuitively, we can pull everything on the family (5.6) back to the family (5.8). For example, up
to an overall factor 164, the operator D; (3.16) pulls back to a second order differential operator
D,

Dy =A(1 =22 —1)? @ +Q2=1)Q2—4r+21?) d_3, (5.9)
2T i’ drn 4" ‘

which has regular singularities at the points

A2=0,1,2, 0. (5.10)
Under the map ¢ (5.4), the solution 7o(¢) (3.20) pulls back to
A 11 A
K _ 1/2 1. _ 1/2
AN=(1-= Filz,=; L,0)=(0-= A 5.11
Ty (M) =( 2) 2 1(2,2, ;A= ( 2) @o(A), (5.11)

where we have used the identity (5.2). Then from Section 4.2, we learn that a second independent
solution of D, (5.9) is given by

K =01- %)1/2@(,\). (5.12)

The pull-back of the operator D3 (3.15), denoted by 53, is the symmetric square of 732 (5.9) (up
to an overall factor). The holomorphic twoform Qy on 2y, induces a holomorphic twoform €2;,
on Z;. Independent solutions {ITy(A), 1] (1), [T2(A)} of Dj are given by

A

Ho@)=<n§(xnz=(1—-§)w§uJ

M () =75 Q) () = (1 — %)wo(xml ), (5.13)
A

nzu>=<n5a»2=(1—§)w3u»

Remark 5.1. In this paper, we have assumed that a suitable branch cut has been chosen for
the transformation defined by the equation (5.3). In this section, we have focused on a small
neighborhood of r =0 and A = 0, where we have used the following expansion of equation (5.3)

r=x24+0R3). (5.14)

The crucial observation is that under the transformation (5.3) we have

Wo(y) =Tlo(M), Wi(y) =111 (%), (5.15)
which can be obtained from the limit behaviors of W; (1) and @; (A) for
A — 0and {y — oo. (5.16)

Therefore we immediately obtain a crucial property about the mirror map (3.27) of the Dwork
family

W) THG) @)

T = = - . (5.17)
Wo(y) Tp(A)  @o(A)
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Namely, the mirror map (3.27) of the Dwork family is the same as the period map (4.26) of the
Legendre family. This will provide a very important link between the mirror symmetry of K3
surfaces and the Legendre family of elliptic curves. The new family of K3 surfaces (5.8) can also
be considered as the mirror family of quartic K3 surfaces (1.8), and it is actually ‘better’ from a
number theoretic point of view!

5.3. The modularities of counting functions for K3 surfaces

From the mirror symmetry point of view, the results in Section 5.2 will provide philosophical
interpretations to an interesting phenomenon that counting functions for K3 surfaces are mod-
ular. The philosophy of mirror symmetry says that under the mirror map t (5.17), the counting
functions for K3 surfaces on the Kéhler side correspond to rational expressions of

A, Tlo(A), dA/drx, (5.18)

on the complex side. From Section 4.3, the latter is clearly modular!

We now use a famous example to illustrate this point. The counting function of BPS states in
IIB string theory for a K3 surface X (times R x S') has been explicitly worked out in the paper
[37], which is given by

1
—; q:=exp(2mit). (5.19)

—1 AR n__ _
q Xn:x(Hllb O == =%

Here A is called the Ramanujan tau function, which can also be expressed in terms of theta
functions as [6]

A =27363(0,9)6%(0, 965 (0, ¢). (5.20)

Remark 5.2. In this paper, we will use the notation q to mean exp(2rit), which is differential
from g = exp(wit).

This counting function (5.19) has an alternative derivation, which corresponds to the counting
of nodal curves in K3 surfaces [41]

q ' xMDHq = (5.21)
8

n*(7)

Here M g is the moduli space that describes a choice of a holomorphic Riemann surface in K3
surface with genus g and a flat U (1) bundle. The interested readers are referred to the paper [41]
for more details.

On the complex side, using the identities in Section 4.3 and formula (5.20), A can be ex-
pressed as

1A% —)?
T4 (A-2)°

But of course there are other expressions of A in terms of A, [Tgp(A) and dX/dt. The upshot is
that under the mirror map (5.17), the counting function (5.19) corresponds to

40 —2)°0 1
W21 -0ragm’

5. (5.22)

q~' ) x(Hilb"(X))q" = (5.23)
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the form of which is certainly what the mirror symmetry of K3 surfaces has predicted. Further-
more, it is very interesting to see whether the results in this section can be applied to study the
general counting functions for K3 surfaces.

6. Connections with Shioda-Inose structures?

In this section, we will explore the potential connections between the results of Section 5 and
the Shioda-Inose structures of smooth fibers of the Fermat pencil and Dwork family.

Recall from Remark 2.1 that X also means the underlying differential manifold of a K3
surface. From [17], there exist integral homology cycles k, e, f € H 2(X, Z) such that the holo-
morphic twoform €. on the smooth fiber Z; of the family (5.8) admits an expansion

Q. =1Qri)* (T (WA — Tp(Me + 2M (M) f) (6.1)

where [ is a nonzero rational constant. Moreover, the only nontrivial cup-product pairings be-
tween &, e and f are

(h,h)=4, (e, f)=(f.e)=1. (6.2)
For simplicity, let the free Z-module generated by 4, e and f be L

=Zh®Ze®Zf. (6.3)
Given a A such that

A£0,1,42¢/2 - 2,2, 00, (6.4)

if the Picard number of Eﬁ is 19, then the transcendental lattice T(%) of 3&& is just L. While
if the Picard number of 3&1 is 20, then the transcendental lattice T(ﬂcy 3) of 3&”,\ is a rank-2 sub-
lattice of L.

On the other hand, the direct product of the Legendre family (4.14), i.e. &/ =& x &, is a
family of complex surfaces over P!, and the fiber .« is just the direct product & x &,. The
underlying differential manifold of a smooth fiber <7, is the direct product of torus, i.e. T x T.
A smooth fiber o7 has three rationally independent algebraic cycles

éo)L XO, Oxé";\, A)L, (65)

where A, is the diagonal of &, x &. Therefore the Picard number of .« is > 3. The integral
cohomology group H>(T x T,Z) is a free Z-module of rank 6 with a unimodular cup-product
pairing. Under this pairing, the orthogonal complement of the three algebraic cycles in formula
(6.5) is the lattice

L=Z20"®y)@Z( ®y' +yv' @y @ Z(y' ®y). (6.6)
The only nontrivial pairings between the three generators of L, are

Perlyierh=p'er .y ey’ =1 67
ey +yv'ey’ ey +y eyl =-2

Recall from Section 4.2 that {y°, '} is a basis of H!'(T, Z). The nowhere vanishing holomor-
phic twoform on o7, is given by the tensor product w; ® w;, where w,, is the nowhere vanishing
holomorphic oneform on the elliptic curve &). From Section 4.2, w; ® w, admits an expansion
of the form
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08w, =CrR @0y’ &y + mom W @y +v @) + iy @y,
(6.8)

The pure Hodge structure on the transcendental lattice T(%) is determined by the holomor-
phic twoform €2, or equivalently its expansion (6.1). Similarly, the pure Hodge structure on the
transcendental lattice T (.2%) is determined by the holomorphic twoform w), ® w;,, or equivalently
its expansion (6.8). From formula (5.13), we learn that the pure Hodge structure on 7'(Z),) is iso-
morphic to that on T (), but in general it is not a Hodge isometry. Therefore a very interesting
question is about the connections between the Shioda-Inose structure of 2 and the geometry of
the complex surface 7.

7. The zeta functions of smooth fibers of the Fermat pencil

In this section, we will look at the potential relations between the zeta functions of 7, i.e.
&, x &), and the zeta functions of a rational model of the smooth fiber #y (1) of the Fermat
pencil.

7.1. The pull back of the Fermat pencil

We can apply the constructions in Section 5.1 to the Fermat pencil and obtain a family of
K3 surface with parameter A. However, we find it more convenient to write everything down
explicitly. More precisely, the equation (5.3) defines ¢ as a multivalued function of A

w@a=x‘ﬂ1—xrﬁ<1—%), 71

where we assume that a suitable branch cut has been chosen. Now the Fermat pencil of K3
surfaces (3.1) becomes

Fyoy ey =0} CP?, (7.2)
where the quartic polynomial fy ;) is

ooy = X§+ X{ + X3+ X3 = 49 (1) XX 1 X2 Xs. (13)
Similarly, we have a meromorphic threeform ®. ;) whose residue defines a nowhere vanish-

ing holomorphic twoform Qi(x) on ) that satisfies the same Picard-Fuchs equation as the

twoform 2, on 23, i.e.

Ds Qi o =0. (7.4)

Moreover, there exist cohomological elements e¢; € H 2(X, Q) such that
Q{m) =1,27i)% (Mo(Meo + i (Mer + Ma(M)er), I € Q% (7.5)

Remark 7.1. Similarly from Section 6, the pure Hodge structure on the transcendental lattice
T (Fy 1)) of a smooth fiber Fy (1) of the Fermat pencil is isomorphic to that on T'(27,).

Intuitively, we will say & of the Legendre family is the elliptic partner of the K3 surface
Fy - Itis interesting to notice that the special fibers of the Fermat pencil at » =0, 1, co admit

very interesting elliptic partners:
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1. When ¢ =0, we have the famous Fermat quartic
Fo (Xg+ XT+ X5+ X3=0)CP. (7.6)

From formula (7.1), ¥ = 0 corresponds to A =2, and the smooth fiber of the Legendre
family over A =2 is

y=x(x—1Dx—-2), (1.7)

whose Weierstrass integral model is just &1 in Example 4.1, i.e. 32.a3 in LMFDB.
2. When ¢ = 1, we have the singular surface

T (Xg+ XT+ X5+ X5 —4X0X1X2X3 =0} C P2, (7.8)

From formula (7.1), ¥ = 1 corresponds to A = 24/2 — 2. The smooth fiber of the Legendre
family over A = 2+/2 — 2 is the elliptic curve

Y =x(x —x - (2vV2-2)), (7.9)

both of which are smooth elliptic curves defined over Q(+/2) with j-invariant 8000.
3. When iy = 0o, we have a union of four complex planes

Foo : {X0X1X2X3 =0} C P3. (7.10)
From formula (7.1), ¥ = oo corresponds to A =0, 1, oo, and the fibers of the Legendre
family over A =0, 1, oo are just the singular fibers of it.

7.2. The properties of zeta functions

For simplicity, let us assume A € Q and
A#0,1,2,00, (7.11)

o). is defined over Q. In this section, a rational model for the smooth fiber %y is chosen to
be the one given by formula (3.8). The transcendental lattice T (o%,) (resp. T (Fy 1)) generates

a continuous representation of Gal(Q/Q), which will be denoted by Vit (resp. Vl[ (k))' From
Remark 7.1, the pure Hodge structure on the rational vector space 7 (%)) ® Q is isomorphic
to that on 7' («%,) ® Q. Hence from the Hodge conjecture, we learn that there exists a number field

K such that V} is isomorphic to VJ () 3S representations of Gal(Q/K) [19,21]. This property
immediately implies that there may exist interesting relations between the zeta functions of V'

and that of Vx{()») at good primes.

Given an elliptic curve &), with A € Q, the zeta function of Hélt(éa;\, Q) at a good prime p is
a quadratic polynomial

1—ap(E)T + pT? =1 =7 (E)T)A — 7o (E)T). (7.12)
See Section 4 for more details. The symmetric square of formula (7.12) is by definition

(1= (E)TH(ENT)(1 = (T p(E) T = (T (E))T), (7.13)
which simplifies to

(1= pT)(A = (ay(&) —2p)T + p*T?). (7.14)
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This cubic polynomial (7.14) is a factor of the zeta function of Hézt (&, x &, Q) that corresponds
to the lattice Ly (6.6). So one can ask whether there exists a Dirichlet character x, depending
one X such that the twisted cubic polynomial

(= (P pT)(A = x2.(p)ap (&) —2p)T + p*T?) (7.15)

is a factor of the zeta function of Hézt(ﬁw(k), Q) [1,11,20,43]? We will not pursue this interesting

question further in this paper, while the readers are referred to the paper [1] for more details about
the computations of zeta functions of a pencil of K3 surfaces using that of elliptic curves. In the
rest of this part, we will focus on the case of the Fermat quartic (7.6).

Remark 7.2. The discussions in this section also apply to the zeta functions of smooth fibers of
the Dwork family.

8. The Fermat quartic and Deligne’s conjecture

In this section, we will compute the periods of the holomorphic twoform on the Fermat quartic
Z9. Then we will discuss the relations between the modularity of the Fermat quartic .% and that
of the elliptic curve 32.a3 in LMFDB [23]

P=x3x (8.1)

We will also apply the method developed in [39] to compute Deligne’s periods of the Fermat
quartic %9 and (numerically) verify that they satisfy Deligne’s conjecture on the special values
of L-functions at critical integral points [7]. In this section, we will need the theory of pure
motives, which has been briefly reviewed in the papers [19,21].

8.1. The periods of the Fermat quartic

First, let us compute the periods of the Fermat quartic .%. In the construction of the twoform
Qi on ,%p in Section 3.1, there is an additional factor v, therefore Qf; becomes 0 on the Fermat
quartic .%. This defect can also be seen from the values of the periods IT;(1) (5.13) at A =2

o (2) =111(2) =T12(2) =0. (8.2)
It can be cured by defining the meromorphic threeform ® ¢ to be

3 _—
Xidxo A ANdxi Ao ANd
Or =Y (-1 al = 8.3)
fo
whose residue along % defines a nowhere vanishing holomorphic twoform on the Fermat quar-
tic. More explicitly, take the open subset of %y defined by x3 = 1, then the residue of O is

equal to [16]

i=0

dxo A dxy
F=—73—| -
4x§’ Fo

Similarly, it can be explicitly shown that the meromorphic twoform (8.4), which is a priori only
defined on x, # 0, extends to a global nowhere vanishing twoform on % [16]. It is very impor-
tant that Qr is defined over QQ, and it spans the algebraic de Rham cohomology group H(%R (%0)
[19,21,39].

(8.4)
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The periods of QF can be found from that of Qf , i.e. TI; (A) (5.13). More precisely, the
twoform Q is the limit of Q:; /¥ at ¥ = 0, hence we have

Qp = lim @) /v = lim @, /¥ (. (8.5)

Then from formulas (5.13), (7.1) and (7.5), we immediately obtain the following crucial expan-
sion of Qf

2 =L(1+)Qx)* (770 + M@ @1 Qer + T Der) , 1 € Qe € HAX. Q).
(8.6)

The pure Hodge structure on the transcendental lattice T'(%g) of the Fermat quartic (7.6) is
uniquely determined by the expansion (8.6), therefore it is isomorphic to the pure Hodge structure
on the transcendental lattice T (2%). Let us now look at the étale cohomological counterpart of
this property, e.g. zeta functions.

8.2. The modular form of the Fermat quartic

The Fermat quartic % (7.6) is perhaps the earliest known example of singular K3 surfaces
[32]. Its transcendental cycles generate a two dimensional Galois representation V(%) that is
modular, associated to which is a weight-3 newform of level 16

n(42)° € S3(T'o(16), X16). (8.7
Here the Dirichlet character x1¢ is defined by

X16 : (Z/16Z)* — C, with x16(5) =1, x16(15) = —1. (8.8)
Modularity of V (.%p) means that its zeta function at a good prime p is of the form

1—b,(F)T + p°T?, (8.9)

where b, (Fp) is the p-th coefficient of the g-expansion of the weight-3 newform 1(4z)°.
The elliptic partner of the Fermat quartic is the elliptic curve

&y =x(x—1D(x—-2), (8.10)

whose Weierstrass minimal model is (8.1). Notice that the j-invariant of &> is 1728, and it admits
CM. The zeta function of Hélt(éz’g, Q) at a good prime p is of the form

1 —ay(&)T + pT? = (1 - T (ET)(1 — n,z,(é"z)T), (8.11)

where a, (&) is the p-th coefficient of the g-expansion of the weight-2 newform labeled as
32.2.a.a in LMFDB [23]. The symmetric square of (8.11) is of the form

(1= pT)(1 = (a3(&) = 2p)T + p*T?). (8.12)

So one might be wondering what is the relation between the quadratic factor of (8.12) and the
zeta function (8.9) of Fermat quartic? In fact, it is very interesting that we have

bp(Fo) = ay (&) — 2p. (8.13)

or equivalently
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L= (a3(&) —2p)T + p*T* =1 —b,(F)T + p°T*. (8.14)

Hence we can say the modular form r;(4z)6 associated to the Fermat quartic arises from the
symmetric square of 32.2.a.a [1].

8.3. Deligne’s periods for the Fermat quartic

The transcendental cycles of the Fermat quartic define a two dimensional pure motive My over
Q, whose étale realization is the two dimensional Galois representation V(%) in Section 8.2.
Thus the L-function of My is just the L-function associated to the weight-3 newform 17(41)6 [32]

L(My, s) = L(n(42)%, s). (8.15)

From Mellin transform, L(n(4z)6, s) has an integral representation [8]

o
s
L(n(42)%,s) = @) /n(4iz)6z5%. (8.16)
I'(s) b4
0

The Hodge realization of My is a two dimensional pure Hodge structure whose Hodge de-
composition only has (2,0) and (0,2) parts. Moreover, this pure Hodge structure is completely
determined by the expansion (8.6) of the holomorphic twoform Qf on the Fermat quartic .%.

The computation of the Deligne’s period ¢t (My) for My immediately follows from the
method in the paper [39]. More explicitly, c™(My) is given by the pairing of a cohomology
cycle of H 2(x, Q) and Q. From Sections 3 and 5, the quotient @ (2)/@q(2) is given by

w1(2)  —l4i
w2 2

Hence from the method in [39], we deduce that there exist rational numbers r; € QQ such that
¢t (M) is of the form

(8.17)

_ . _ o\ 2
ctMo) = (1 +1) [ro—i—rl 1;” +r2< 1;”) }vg(z). (8.18)

Since Deligne’s period is only well-defined up to a nonzero rational multiple, we immediately
learn that there exist two rational numbers s; and s> such that

T (Mo) = (51 + 520)3 (2); 5i € Q. (8.19)

But from the construction of Deligne’s period, ¢ (M) must be a real number [7], which uniquely
determines the values of s1 and s> up to a nonzero rational multiple. Similarly, there exist two
rational numbers s3 and s4 such that the Deligne’s period ¢~ (Mp) is given by

¢ (Mp) = (53 +s40) @3 (2); si € Q. (8.20)

From its construction, ¢~ (M) must be a purely imaginary number [7], which uniquely deter-
mines the values of s3 and s4 up to a nonzero rational multiple. Furthermore, from formulas
(3.28) and (4.32), wo(2) is equal to the value of 932(0, q) atg =exp(mwi(—1+1i)/2),1i.e.

@0(2) = 03(0, —ie ™/?). (8.21)
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8.4. The verification of Deligne’s conjecture

From [7], the Tate twist My ® Q(n) is critical if and only if n = 1, 2. Deligne’s conjecture
predicts that ¢ (Mo ® Q(1)) (resp. ¢t (Mg ® Q(2))) is a rational multiple of L(My ® Q(1),0)
(resp. LMo ® Q(2),0)) [7,39,40]. From [7,39], we learn that

"My ® Q1)) = (27i)e™ (M),

. (8.22)
(Mo ® Q(2)) = (27i)*ct (My).
On the other hand, the L-function of a Tate twist is given by [7,39]
LMy ® Q(n),s) = LMy, n +s), (8.23)
hence formula (8.16) implies
o0
LMy ® Q(1),0) = 27 f n(in)dz,
0
N (8.24)
LMy ® Q(2),0) = (27)> / n(4iz)%zdz.
0

Now we will numerically verify that the critical motives Mg ® Q(n) with n = 1, 2 satisfy the
predictions of Deligne’s conjecture. First, the numerical value of 0§ O, —i e/ 2) can be evaluated
to a very high precision by Mathematica

6’3‘}(0, —ie”™/%) = —i 1.3932039296856768591842462603253682426574812175156 - - - ,

(8.25)
which is purely imaginary. Hence in the formulas (8.19) and (8.20), we can choose
s1=0,50=1,53=1,54 =0, (8.26)
i.e. we have
ct Mo ® Q1)) = (27i) 650, —ie™™/?),
Mo ® Q(1)) = (2mi) 65 ( ) 827)

My ® Q(2)) =i (2ri)2 030, —ie ™/?).

The integrals in formula (8.24) can also be numerically evaluated. In this paper, we have com-
puted the first 300 digits of them and here we give the first 50 digits

L(Mp ® Q(1),0) =0.5471099038066191597091924851761161358148431807064 - - - ,
L(Mp ® Q(2),0) =0.8593982272525466034362619724763196497376070564774 - - - .
(8.28)

From these numerical results, we immediately obtain
ct Mo ® Q(1)) =16 L(My ® Q(1), 0),
ctMy®Q(2)) =—64 L(My ® Q(2), 0),

which indeed satisfy the predictions of Deligne’s conjecture [7,39].

(8.29)
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9. Conclusions and further prospects

In this paper, we have studied the highly interesting connections between the mirror symmetry
of K3 surfaces and the geometry of the Legendre family of elliptic curves. Using the quadratic
transformations of hypergeometric functions, we have found interesting relations between the
periods of the holomorphic twoform of the Dwork family (Fermat pencil) of K3 surfaces and
the periods of the holomorphic oneform of the Legendre family. Then we have shown that the
mirror map of the Dwork family is the same as the period map of the Legendre family, which is a
crucial result of this paper that provides important insights into the nature of the mirror symmetry
of K3 surfaces. For example, it gives an interesting interpretation to the modularity of counting
functions for K3 surfaces from the mirror symmetry point of view. Furthermore, these results
imply the existence of interesting connections between the arithmetic geometry of the Dwork
family and the geometry of the Legendre family, e.g. the Shioda-Inose structures.

We have also explored the potential relations between the zeta functions of smooth fibers of
the Fermat pencil and that of the smooth fibers of the Legendre family. In particular, we have
studied the relations between the weight-3 newform 7 (4z)° associated to the Fermat quartic and
the weight-2 newform 32.2.a.a associated to the smooth fiber at A = 2 of the Legendre family.
More concretely, 7(4z) can be considered as the symmetric square of 32.2.a.a. We have also
computed the Deligne’s periods of the Fermat quartic, which are given by special values of the
theta function 63; then numerically we have shown that they satisfy the predictions of Deligne’s
conjecture.

There are still many open questions left unaddressed, and here we list several interesting ones
that come to our mind:

1. Are there any connections between the results of this paper and the homological mirror
symmetry for the quartic K3 surfaces studied in the paper [33]?

2. Could the results in Section 5 be applied to study the modularities of counting functions for
K3 surfaces?

3. Could the results in this paper provide interesting links between the mirror symmetry of K3
surfaces and that of elliptic curves studied in the paper [9]?

4. What is the relation between the arithmetic geometry of the singular fiber .% of the Fermat
pencil (3.1) and the elliptic curve of the Legendre family over the point A = 2+/2 — 2, whose
Jj-invariant is 8000?

5. Whether the zeta functions of smooth fibers of the Fermat pencil (or Dwork family) can be
computed using the zeta functions of smooth fibers of the Legendre family?
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Appendix A. A review of Weil conjectures

The concept of zeta functions of a non-singular variety comes from points-counting modulo
a prime number. Suppose X is an n-dimensional non-singular variety defined over QQ, which has
an integral model X defined over Z. Modulo a prime number p, X defines a variety over the
finite field IF, := Z/pZ, which will be denoted by X /IF,. We say p is a good prime of X if
X/Fp is non-singular.

Suppose p is a good prime of X and m is a positive integer. Recall that [F,» is the unique
degree-m extension of IF,,. Since I, is a subfield of IF,m, the variety X/IF, is naturally a variety
over [F,m. Let Ny, be the number of points of X /IF,, with coordinates lie in IF,». The zeta function
¢(X, p, T) is by definition the generating series

00 N,
(X, p,T) :=exp <Z 7T’") (A.1)

m=1
A priory, ¢(X, p,T) is only a formal power series in T, but Weil’s conjectures claim that
¢(X, p,T) is in fact a rational function in 7T that can be expressed as
Pl(vav T)P2 —I(X,P,T)
(X, p.T) = 5 ,
Po(X, p,T)--- Poy(X, p,T)

where each P;(X, p, T) is an integral polynomial. Furthermore, Py(X, p, T) and P>, (X, p, T)
are of very simple forms

(A2)

Py X,p,T)=1—-T, Py, (X,p,T)=1—p"T. (A.3)
The variety X defines an n-dimensional complex manifold X (C), and Weil conjectures claim
that

deg P;(X, p. T) =dimgH' (X(C), Q). (A4)

The rationality part of Weil conjectures is first proved by Dwork using p-adic analysis [12]. It can
also be proved by the existence of a suitable Weil cohomology theory, e.g. étale cohomology the-
ory, and the polynomial P;(X, p, T) is given by the characteristic polynomial of the (geometric)
Frobenius action on the étale cohomology group Hét(X , Qo) [24]

P.(X, p, T) = det (Id— TFr|Hé-l(X’QZ)). (A.5)

Over the complex field C, the polynomial P;(X, p, T) factors into the products of linear poly-
nomials

P,-(T):l—[(l —a;;T). (A.6)
J
The ‘Riemann hypothesis’ part of Weil conjectures claims that the absolute value of the algebraic
number «;; satisfies
joij| = p'72, (A7)

which is first proved by Deligne.
Let us now look at the zeta functions of K3 surfaces. Suppose X is an algebraic K3 surface
defined over Q. The étale cohomology group Hézt(X , Q¢) is a 22-dimensional representation of
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the absolute Galois group Gal(Q/Q). Suppose p is a good prime of X, then the zeta function of
X at p is of the form

1
(1=T)P(X,p, 7)1 = p*T)’
where P>(X, p, T) is an integral polynomial of degree 22 given by

Pa(X, p. 1) =det (1= TFryl 12 4., ) (A9)

(X, p.T)= (A.8)

The polynomial P>(X, p, T) can further factorize into the products of lower degrees polynomi-
als. More concretely, Hézt(X , Q¢) splits into the direct sum of two sub-representations

HZ(X, Q) =Vi®V,, (A.10)

where V' is generated by the algebraic cycles of X and V; is generated by the transcendental
cycles of X. Hence V' is a p(X) dimensional representation of Gal(Q/Q), while VZ isa?22 —

p(X) dimensional representation of Gal(Q/Q). The polynomial P>(X, p, T) factorize into to
the product

P (X, p,T)= Py (X, p, T)le(X,p, T). (A.1D)
Here Pj' (X, p, T) is an integral polynomial with degree p(X) given by V!

PE(X, p.T) = det (Id— TFrplvea), (A.12)
and PJ(X, p, T) is an integral polynomial with degree 22 — p(X) given by V/

PZ’(X,p,T)=det(Id—TFrp|VZr). (A.13)
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