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Abstract

In this paper, we will study the connections between the mirror symmetry of K3 surfaces and the geome-
try of the Legendre family of elliptic curves. We will prove that the mirror map of the Dwork family is equal 
to the period map of the Legendre family. This result provides an interesting explanation to the modularities 
of counting functions for K3 surfaces from the mirror symmetry point of view. We will also discuss the 
relations between the arithmetic geometry of smooth fibers of the Fermat pencil (Dwork family) and that 
of the smooth fibers of the Legendre family, e.g. Shioda-Inose structures, zeta functions, etc. In particular, 
we will study the relations between the Fermat quartic, which is modular with a weight-3 modular form 
η(4z)6, and the elliptic curve over λ = 2 of the Legendre family, whose weight-2 newform is labeled as
32.2.a.a in LMFDB. We will also compute the Deligne’s periods of the Fermat quartic, which are given by 
special values of the theta function θ3. Then we will numerically verify that they satisfy the predictions of 
Deligne’s conjecture on the special values of L-functions of critical motives.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The mirror symmetry of K3 surfaces is significantly different from that of Calabi-Yau three-
folds, and it can be described in terms of pure Hodge structures on the lattice of total integral 
cohomology groups [2,4]. Given a K3 surface X, its total integral cohomology group
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H ∗(X,Z) = H 0(X,Z) ⊕ H 2(X,Z) ⊕ H 4(X,Z) (1.1)

is a free Z-module of rank 24 with a Mukai pairing that is even unimodular. Together with this 
Mukai pairing, H ∗(X, Z) is isomorphic to the enlarged K3 lattice � ⊕ U , where � is the K3 
lattice

� = E8(−1)2 ⊕ U3. (1.2)

On the lattice H ∗(X, Z), there is a weight-two pure Hodge structure defined by [17]

H
2,0
B (X) = H 2,0(X),

H
1,1
B (X) = H 0(X,C) ⊕ H 1,1(X) ⊕ H 4(X,C),

H
0,2
B (X) = H 0,2(X).

(1.3)

Let us call the data HB(X, Z) := (
H ∗(X,Z), 〈·〉,Hp,q

B (X)
)

the B-model pure Hodge structure 
of X [2,17].

The A-model pure Hodge structure of a K3 surface depends on the choice of a Kähler form. 
Suppose Y is a K3 surface with complex structure I and Kähler form ωY , then ωY defines a 
symplectic structure on the underlying differential manifold of Y . The A-model pure Hodge 
structure is associated to this symplectic manifold, which also depends on the choice of a B-field 
β ∈ H 2(Y, R). The cohomology class � is by definition

� = exp (β + iωY ) = 1 + (β + iωY ) + 1

2
(β + iωY )2 ∈ H ∗(X,C), (1.4)

and with respect to the Mukai pairing, it satisfies

〈�,�〉 = 0, 〈�,�〉 > 0. (1.5)

By demanding H 2,0
A (Y ) = C�, we get a pure Hodge structure on H ∗(Y, Z), and together with 

the Mukai pairing, we obtain the A-model pure Hodge structure, HA(Y, Z) [17]. The K3 surface 
X with a holomorphic twoform � and the K3 surface Y with a complexified Kähler form � is 
said to form a mirror pair if there exists a Hodge isometry [2,17]

HA(Y,Z) � HB(X,Z). (1.6)

It should be noticed that this definition can be viewed as a further refinement of Dolgachev’s 
work [10].

In the paper [17], Hartmann has proved that smooth quartic K3 surfaces and the Dwork family 
form a mirror pair in the sense of (1.6). More precisely, given a smooth quartic surface Y ⊂ P 3, 
the Fubini-Study Kähler form on P 3 induces a symplectic structure ωY on Y . By a result of 
Moser [26], all smooth quartics are symplectomorphic to each other. Now introduce a B-field 
τ1ωY , τ1 ∈R and define a complexified Kähler form

τωY = (τ1 + iτ2)ωY , τ1 ∈ R, τ2 ∈ R+. (1.7)

So on the Kähler side, we have obtained a family of complexified symplectic manifolds over the 
upper half plane H of C

ρ : Y →H, (1.8)

where the fiber at τ ∈H is (Y, � = exp (τωY )).
2
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The mirror family of Y (1.8) can be constructed from the Fermat pencil of K3 surfaces

Fψ : {x4
0 + x4

1 + x4
2 + x4

3 − 4ψ x0x1x2x3 = 0} ⊂ P 3 (1.9)

by first taking the quotient with respect to a (Z/4Z)4 action and then a minimal resolution of 
singularities. The result is a family of K3 surfaces over P 1 with ψ as its parameter

π : X → P 1, (1.10)

which is called the Dwork family. By abuse of notations, the underlying differential manifold 
of a K3 surface is also denoted by X. There exists a canonical method to construct a nowhere 
vanishing holomorphic twoform �f

ψ on a smooth fiber Fψ of (1.9), which further induces a 
holomorphic twoform �ψ on the smooth fiber Xψ of the Dwork family (1.10). From the papers 
[17,27], there exist two integral homology cycles 
1 and 
2 in H2(X, Z) such that

W0(ψ) =
∫

1

�ψ =
∞∑

n=0

(4n)!
(n!)4(4ψ)4n

,

W1(ψ) =
∫

2

�ψ = 1

2πi

(
−4W0 · log(4ψ) + 4

∞∑
n=0

(4n)!
(n!)4(4ψ)4n

[�(4n + 1) − �(n + 1)]
)

,

(1.11)

where � is the polygamma function. The mirror map between the families Y and X is given 
by the quotient [17,27]

τ = W1(ψ)

W0(ψ)
. (1.12)

It has been shown in the paper [17] that Yτ and Xψ form a mirror pair under the mirror map 
(1.12). While it is expected in [17] that this mirror map may play an important role in the homo-
logical mirror symmetry of quartic K3 surfaces [33].

The motivation of this paper is to explore the interesting connections between the previously 
stated mirror symmetry of K3 surfaces and the geometry of the Legendre family of elliptic curves. 
One important result of this paper is that under a transformation of the form

1

ψ4 = 16(1 − λ)λ2

(λ − 2)4 , (1.13)

the mirror map (1.12) is the same as the period map of the Legendre family. Recall that the 
Legendre family of elliptic curve is defined by the equation [5]

Eλ : y2 = x(x − 1)(x − λ), (1.14)

which has a nowhere vanishing holomorphic oneform ωλ = dx/2y. The underlying differential 
manifold of a smooth fiber is the torus T = S1 × S1. There is a choice of a basis {γ0, γ1} for 
H1(T , Z) such that the periods of ωλ are [6,38]∫

γ0

ωλ = 2π �0(λ) = 2π 2F1(
1

2
,

1

2
;1;λ),

∫
γ1

ωλ = 2π �1(λ). (1.15)

The period map of the Legendre family is given by the quotient
3
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τ = �1(λ)

�0(λ)
, (1.16)

the inversion of which is the famous modular lambda function [6,38]

λ(τ) = 16q−128q2 +704q3 −3072q4 +11488q5 −38400q6 +· · · ;q = exp(πiτ ). (1.17)

Using the theory of hypergeometric functions, we will show that under the transformation (1.13)
we have

W0(ψ) = (1 − λ

2
)� 2

0 (λ),

W1(ψ) = (1 − λ

2
)�0(λ)�1(λ).

(1.18)

Hence the mirror map (1.12) of the Dwork family is essentially the same as the period map 
(1.16) of the Legendre family. Moreover, this property provides an interesting explanation to the 
modularities of counting functions for K3 surfaces from the mirror symmetry point of view.

In fact, the holomorphic twoform �ψ of the Dwork family satisfies a Picard-Fuchs equation 
D3�ψ = 0 with D3 a third order differential operator. Moreover, D3 is the symmetric square of a 
second order differential operator D2, which has two linearly independent solutions of the form

πK
0 (λ) = (1 − λ

2
)1/2 �0(λ),

πK
1 (λ) = (1 − λ

2
)1/2 �1(λ).

(1.19)

Therefore (πK
0 )2, πK

0 πK
1 and (πK

1 )2 are linearly independent solutions of D3. Based on this 
property, we will show that the pure Hodge structure on the transcendental lattice of Xψ is 
isomorphic to that on the transcendental lattice of Eλ × Eλ. The Picard number of a smooth fiber 
Xψ satisfies ≥ 19, hence from Morrison’s work [25], Xψ admits a Shioda-Inose structure. An 
interesting question is to look at the connections between the Shioda-Inose structure of Xψ and 
the geometry of Eλ × Eλ.

On the other hand, the holomorphic twoform �f
ψ of the Fermat pencil satisfies the same 

Picard-Fuchs equation as �ψ , i.e. D3�
f
ψ = 0. Hence the previous results for the periods of �ψ

also work for �f
ψ . In particular, the pure Hodge structure on the transcendental lattice of Fψ

is isomorphic to that on the transcendental lattice of Eλ × Eλ. The Picard number of a smooth 
fiber Fψ satisfies ≥ 19, hence it is also very interesting to study the connections between the 
Shioda-Inose structure of Fψ and the geometry of Eλ ×Eλ. We will also discuss the connections 
between the zeta functions of Eλ and that of Fψ . One important example is the smooth fiber F0, 
called the Fermat’s quartic,

x4
0 + x4

1 + x4
2 + x4

3 = 0, (1.20)

which is modular and associated to it is a weight-3 modular form η6(4z). Under the transfor-
mation (1.13), the point ψ = 0 corresponds to λ = 2. The minimal Weierstrass equation of the 
elliptic curve E2 at λ = 2 of the Legendre family is

y2 = x3 − x, (1.21)

which is labeled as 32.a3 in LMFDB. The weight-2 newform associated to E2 is labeled as
32.2.a.a in LMFDB. We will see the modular form η6(4z) can be considered as the symmetric 
square of 32.2.a.a.
4
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Furthermore, the formula (1.19) allows us to explicitly compute the Deligne’s periods of the 
Fermat quartic (1.20). More precisely, let M0 be the two dimensional pure motive that corre-
sponds to the transcendental cycles of the Fermat quartic. From Deligne’s paper [7], the Tate 
twist M0 ⊗Q(n) is critical if and only if n = 1, 2. Using the method developed in the paper [39], 
we find that Deligne’s periods c+(M0 ⊗Q(n)), n = 1, 2, are given by special values of the theta 
function θ3

c+(M0 ⊗Q(1)) = (2πi) θ4
3 (0,−ie−π/2),

c+(M0 ⊗Q(2)) = i(2πi)2 θ4
3 (0,−ie−π/2).

(1.22)

The L-function associated to M0 is just L(η6(4z), s), which has an integral representation

L(η(4z)6, s) = (2π)s


(s)

∞∫
0

η(4iz)6zs dz

z
, (1.23)

thus its special values at s = 1, 2 can be numerically evaluated. Using Mathematica, we will 
numerically show that

c+(M0 ⊗Q(1)) = 16L(M0 ⊗Q(1),0),

c+(M0 ⊗Q(2)) = −64L(M0 ⊗Q(2),0),
(1.24)

which indeed satisfy the predictions of Deligne’s conjecture [7,39].
The outline of this paper is as follows. In Section 2, we will give an overview of the geometry 

of K3 surfaces, which includes a short review of the Shioda-Inose structures of algebraic K3 
surfaces. In Section 3, we will introduce the Fermat pencil and the construction of the Dwork 
family. We will introduce the solutions of the Picard-Fuchs equation of the Dwork family, and the 
construction of the mirror map. In Section 4, we will first review some elementary properties of 
elliptic curves defined over Q. Then we will introduce the Legendre family of elliptic curves, its 
periods and the modular lambda function. In Section 5, we will use the quadratic transformations 
of hypergeometric functions to show the mirror map of the Dwork family is the same as the period 
map of the Legendre family. We will also discuss the connections between this property and the 
modularity of counting functions for K3 surfaces. Section 6 is a brief discussion of the potential 
relations between the Shioda-Inose structures of the Dwork family (or the Fermat pencil) and the 
Legendre family. Section 7 studies the relations between the zeta functions of smooth fibers of the 
Fermat pencil and that of the Legendre family. In Section 8, we will look at the relations between 
the weight-3 newform of the Fermat quartic and the weight-2 newform of the elliptic curve at 
λ = 2 of the Legendre family. We will also explicitly compute the Deligne’s periods for the 
Fermat quartic, and numerically verify that they satisfy the predictions of Deligne’s conjecture. 
Section 9 contains a summary of the conclusions of this paper and some further open questions. 
Appendix A is a short review of the Weil conjectures.

2. The geometry of K3 surfaces

In this section, we will review some elementary geometric properties of K3 surfaces, e.g. 
Néron-Severi group and transcendental lattice, etc. We will also give a brief overview of the 
Shioda-Inose structures of algebraic K3 surfaces with Picard numbers ≥ 19. The readers who 
are familiar with these elementary materials can simply skip this section.
5
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2.1. An overview of K3 surfaces

A K3 surface is by definition a 2-dimensional complex manifold X with vanishing first sheaf 
cohomology and trivial canonical bundle [18]

H 1(X,OX) = 0, �X = OX. (2.1)

Here OX is the sheaf of holomorphic functions on X and �X is the canonical bundle, i.e. the 
sheaf of holomophic twoforms on X. From its definition, a K3 surface is a two dimensional 
Calabi-Yau manifold. The triviality of �X immediately implies there exists a nowhere vanishing 
holomorphic twoform � on X. In the definition, we have included non-algebraic K3 surfaces, 
and in fact most K3 surfaces are non-algebraic [18]. But every K3 surface is Kähler, and any 
two K3 surfaces are deformation equivalent to each other, in particular they are diffeomorphic to 
each other [18].

Remark 2.1. Since every two K3 surfaces are diffeomorphic to each other, in this paper the 
symbol X will also mean the underlying differential manifold of K3 surfaces.

The integral cohomology groups of a K3 surface are torsion free [3], and in fact we have:

1. H 1(X, Z) = H 3(X, Z) = 0.
2. H 2(X, Z) is a lattice of rank 22.

From Hodge theory, there exist Hodge decompositions on the cohomology groups of a Kähler 
manifold. For example, the Hodge decomposition on H 2(X, Z) is of the form

H 2(X,Z) ⊗Z C = H 2,0(X) ⊕ H 1,1(X) ⊕ H 0,2(X), (2.2)

which defines a pure Hodge structure on H 2(X, Z). The Hodge number hi,j is by definition 
dimHi,j (X), and the Hodge diamond of a K3 surface is of the form

1
0 0

1 20 1.
0 0

1

The Picard group of X, denoted by Pic(X), is the abelian group of isomorphism classes of 
line bundles on X [18]. The first Chern class defines a homomorphism from it to H 2(X, Z)

c1 : Pic(X) → H 2(X,Z). (2.3)

From the Lefschetz theorem on (1, 1)-classes, the image of c1 is H 1,1(X) ∩ H 2(X, Z), which is 
called the Néron-Severi group NS(X) of X [18]. The group NS(X) is also characterized by the 
property [3,18,42]

γ ∈ NS(X) ⇐⇒
∫
X

γ � � = 0, (2.4)

where � means the cup product between cohomological cycles. The group NS(X) is a sub-
lattice of H 2(X, Z), whose rank, denoted by ρ(X), is called the Picard number of X. As the 
Hodge number h1,1(X) ≤ 20, we deduce ρ(X) ≤ 20.
6
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There is a cup-product pairing on H 2(X, Z)

〈α,β〉 =
∫
X

α � β; α,β ∈ H 2(X,Z), (2.5)

which is even unimodular with signature (3, 19). Together with this cup-product pairing, the 
lattice H 2(X, Z) is isomorphic to [18]

E2
8(−1) ⊕ (U2)

3. (2.6)

The cup-product pairing (2.5) induces a non-degenerate symmetric bilinear form on H 2(X, R), 
whose restriction to the subspace

H
1,1
R (X) := H 1,1(X) ∩ H 2(X,R) (2.7)

is a non-degenerate symmetric bilinear form with signature (1, 19). The cup-product pairing (2.5)
induces a pairing on NS(X) with signature (1, ρ(X) − 1). The transcendental lattice T (X) is by 
definition the orthogonal complement of NS(X) with respect to the cup-product pairing (2.5)

T (X) := NS(X)⊥ ⊂ H 2(X,Z). (2.8)

Similarly, the cup-product pairing (2.5) induces an even unimodular pairing on the lattice T (X). 
Moreover, the pure Hodge structure on H 2(X, Z) induces pure Hodge structures on the two 
sub-lattices NS(X) and T (X).

Under the cup-product pairing (2.5), the holomorphic twoform � satisfies

〈�,�〉 = 0, 〈�,�〉 > 0. (2.9)

In fact, the pure Hodge structure on H 2(X, Z) is completely determined by the twoform � since 
H 2,0(X) (resp. H 0,2(X)) is spanned by � (resp. �) and

H 1,1(X) =
(
H 2,0(X) ⊕ H 0,2(X)

)⊥
. (2.10)

More generally, on the total integral cohomology group of X

H ∗(X,Z) = H 0(X,Z) ⊕ H 2(X,Z) ⊕ H 4(X,Z), (2.11)

there exists a Mukai pairing defined by

〈(a0, a2, a4), (b0, b2, b4)〉 =
∫
X

(a2 � b2 − a0 � b4 − a4 � b0) . (2.12)

The Mukai pairing is important in the study of the mirror symmetry of K3 surfaces, and the 
readers are referred to the papers [2,10,17] for more details.

2.2. The Shioda-Inose structures of algebraic K3 surfaces

Before we discuss the Shioda-Inose structures of algebraic K3 surfaces, let us first recall the 
definition of Kummer surfaces.

Definition 2.2. Suppose A is an abelian surface with involution ι, then the quotient variety A/ι

has 16 A1 singularities that correspond to the 2-division points of A. The minimal resolution of 
A/ι is a K3 surface Km(A) that is called Kummer surface.
7
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Let us first discuss the Shioda-Inose structures of singular K3 surfaces. Given a complex K3 
surface X, it is called singular if its Picard number is 20. Here singular does not mean it is 
not smooth, but means such a K3 surface is exceptional. In many ways, singular K3 surfaces 
behave like elliptic curves with complex multiplication (CM). The transcendental lattice T (X)

of a singular K3 surface X is of rank-2, and the cup-product pairing Q(X) on T (X) is an even 
integral positive definite binary quadratic form

Q(X) =
(

2a b

b 2c

)
; a, b, c ∈ Z. (2.13)

The determinant d of Q(X) is by definition d = b2 − 4ac. From the works [30,34], the map 
X �→ Q(X) is a bijection between the isomorphic classes of singular K3 surfaces and the even 
integral positive definite binary quadratic forms up to conjugations by elements of SL2(Z).

Now we briefly review the construction of the inverse map of X �→ Q(X). Given an even 
integral positive definite binary quadratic form Q of the form (2.13), there are two isogenous 
elliptic curves Eτ and Eτ ′ with

τ = −b + √
d

2a
, τ ′ = b + √

d

2
, (2.14)

both of which admit CM in the field Q(
√

d). Here Eτ means the complex torus C/(Z + τZ), 
etc. However, it turns out that the Kummer surface of Eτ × Eτ ′ is a singular K3 surface with 
intersection form 2Q. To cure this defect, Shioda-Inose construct a special elliptic fibration for 
Km(Eτ × Eτ ′). Then they show there exists a suitable quadratic base change of this fibration, the 
pull-back with respect to which is a singular K3 surface X with intersection form Q. From this 
construction, every singular K3 surface is defined over a number field [30,34]. In conclusion, we 
have a diagram of the form

X Eτ × Eτ ′

Km(Eτ × Eτ ′)

, (2.15)

where the arrows are of degree 2 [25]. The map from X to Km(Eτ × Eτ ′) in this diagram is a 
Nikulin involution. Recall that an involution ι on a K3 surface X is called a Nikulin involution if 
it preserves the twoform �, i.e.

ι∗(�) = �. (2.16)

From [29], every Nikulin involution has eight isolated fixed points. Now let us introduce the 
concept of Hodge isometry.

Definition 2.3. Suppose A and A′ are two lattices endowed with pure Hodge structures and 
bilinear forms, then a Hodge isometry A → A′ is an isomorphism that respects both the pure 
Hodge structures and the bilinear forms.

A general K3 surface X is said to admit a Shioda-Inose structure if there exists a Nikulin 
involution on X and a diagram of rational maps
8
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X A

Km(A)

, (2.17)

where A is an abelian surface. Here the dotted arrow from X to Km(A) corresponds to the 
quotient by Nikulin involution, and both dotted arrows are rational maps of degree 2. Moreover, 
this diagram induces a Hodge isometry between the transcendental lattices

T (X) � T (A). (2.18)

From Theorem 6.3 of [25], a K3 surface X admits a Shioda-Inose structure if and only if there 
exists an abelian surface A and a Hodge isometry T (X) � T (A). While from Corollary 6.4 of 
[25], algebraic K3 surfaces with Picard numbers ≥ 19 always admit Shioda-Inose structures. 
The readers could consult [25] for more details about the Shioda-Inose structures of algebraic 
K3 surfaces.

3. The Dwork family and its mirror map

In this section, we will first discuss the Picard-Fuchs equation of the Fermat pencil of K3 sur-
faces and its independent solutions. Then we will briefly review the Greeene-Plesser construction 
of the mirror family of quartic K3 surfaces from the Fermat pencil, which is usually called the 
Dwork family of K3 surfaces. We will also look at the construction of the mirror map of the 
Dwork family and its properties, which have been studied in [27].

3.1. The Fermat pencil of K3 surfaces

The adjuction formula tells us that a smooth quartic surface in P 3 is K3 [18]. The Fermat 
pencil of K3 surfaces is a pencil of quartic surfaces in P 3 defined by

Fψ : {fψ = 0} ⊂ P 3, fψ := x4
0 + x4

1 + x4
2 + x4

3 − 4ψ x0x1x2x3, (3.1)

where (x0, x1, x2, x3) form the projective coordinate of P 3. In a more formal language, formula 
(3.1) defines a family

πf : F → P 1, (3.2)

which is in fact defined over Q. The fiber Fψ is smooth if and only if ψ does not lie in

� = {ψ4 = 1} ∪ {∞}. (3.3)

When ψ4 = 1, the fiber Fψ has 16 singularities of type A1. While when ψ = ∞, the Fermat 
pencil degenerates into the union of four complex planes

x0x1x2x3 = 0. (3.4)

The Picard number ρ(Fψ) of a smooth fiber Fψ is ≥ 19 [18]. There exists a projective linear 
transformation

x0 → ζ4 x0, xi → xi, i = 1,2,3; ζ4 = expπi/2, (3.5)

that induces an isomorphism between Fψ and Fζ4ψ . So the ‘true’ parameter for the Fermat 
pencil (3.1) is in fact the variable t defined by

t := 1/ψ4. (3.6)
9
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Remark 3.1. If ψ �= 0, ∞, the following isomorphism

x0 → 1

ψ
x0, xi → xi, i = 1,2,3, (3.7)

transforms the fiber Fψ to the rationally defined surface

tx4
0 + x4

1 + x4
2 + x4

3 − 4x0x1x2x3 = 0. (3.8)

On the smooth fiber Fψ of the Fermat pencil (3.1), i.e. ψ �= �, there is a canonical way to 
construct a nowhere vanishing holomorphic twoform �f

ψ [16,27]. On P 3, there is a meromorphic 
threeform �ψ given by

�ψ =
3∑

i=0

(−1)i
ψ xi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

fψ

, (3.9)

which is a well-defined threeform on P 3 − Fψ . �ψ is automatically closed, hence its residue 
along Fψ is well-defined, which is by definition the holomorphic twoform �f

ψ

�
f
ψ := Res(�ψ). (3.10)

More explicitly, take the open subset of Fψ defined by x3 = 1, then the residue of �ψ is equal 
to [16]

�
f
ψ = ψ

dx0 ∧ dx1

∂fψ/∂x2

∣∣∣
Fψ

. (3.11)

In fact, it can be explicitly shown that the meromorphic twoform (3.11), which is a priori only 
defined on ∂fψ/∂x2 �= 0, extends to a global nowhere vanishing twoform on Fψ [16]. Notice 
that for a rational ψ , �f

ψ is defined over Q. Moreover, for ψ ∈ �, the previous construction 

defines a twoform �f
ψ that is nowhere vanishing on the smooth locus of Fψ .

On the fiber Fψ , there exists a homology cycle β0 ∈ H2(X, Z) consists of the points [16]

|x0| = |x1| = δ, x3 = 1, (3.12)

and x2 given by the solution to fψ = 0 that tends to 0 when ψ → ∞. Notice that β0 is a torus in 
Fψ that is a continuous deformation of [16]

{(x0, x1, x2, x3) ∈ P 3 : |x0| = |x1| = δ, x2 = 0, x3 = 1} ⊂ F∞. (3.13)

For large ψ , the integration of �f
ψ over β0, up to a nonzero rational multiple, has a power series 

expansion of the form [16,27]

(2πi)2
∞∑

n=0

(4n)!
(n!)4(4ψ)4n

, (3.14)

which converges in a neighborhood of ψ = ∞. The readers are referred to the paper [31] for 
explicit computations of other periods of �f

ψ . On the other hand, the periods of �f
ψ can also be 

explicitly computed by solving its Picard-Fuchs equation.
10



W. Yang Nuclear Physics B 963 (2021) 115303
3.2. The Picard-Fuchs equation

The Griffiths transversality tells us that the holomorphic twoform �f
ψ satisfies a third order 

Picard-Fuchs equation that can be explicitly constructed by the Griffiths-Dwork method. In fact 
it is more convenient to write down this Picard-Fuchs equation with respect to the parameter t
(3.6) instead of ψ . From the paper [27], the Picard-Fuchs equation of �f

ψ is given by

D3�
f
ψ = 0; D3 = ϑ3 − t (ϑ + 1

4
)(ϑ + 1

2
)(ϑ + 3

4
), ϑ = t

d

dt
. (3.15)

Furthermore, the Picard-Fuchs operator D3 is the symmetric square of a second order linear 
differential operator D2 [17,27]

D2 = ϑ2 − t (ϑ + 1

8
)(ϑ + 3

8
). (3.16)

Here symmetric square means that if π0(t) and π1(t) are two linearly independent solutions of 
the operator D2, then π2

0 (t), π0(t)π1(t) and π2
1 (t) are three linearly independent solutions of the 

operator D3 [17,27].
The operator D2 (3.16) has three regular singularities at the points

t = 0,1,∞; (3.17)

which are also all the singularities of its symmetric square D3 (3.15). It should be noticed that the 
fiber of the Fermat pencil (3.1) over t = ∞ (ψ = 0) is smooth. In fact, the interesting behavior of 
this ‘fake’ singularity will be revealed when we study the connections between the Fermat pencil 
of K3 surfaces and the Legendre family of elliptic curves in Section 5.

The independent solutions of the Picard-Fuchs operator D3 (3.15) have been explicitly found 
in the paper [27]

W0(ψ) =
∞∑

n=0

(4n)!
(n!)4(4ψ)4n

,

W1(ψ) = 1

2πi

(
−4W0 · log(4ψ) + 4

∞∑
n=0

(4n)!
(n!)4(4ψ)4n

[�(4n + 1) − �(n + 1)]
)

,

W2(ψ) = 1

(2πi)2

[
42W0[log(4ψ)]2 − 2 · 42

∞∑
n=0

(4n)!
(n!)4(4ψ)4n

[�(4n + 1) − �(n + 1)]

· log(4ψ)

+ 42
∞∑

n=0

(4n)!
(n!)4(4ψ)4n

{
[�(4n + 1) − �(n + 1)]2 + �′(4n + 1) − 1

4
�′(n + 1)

}]
,

(3.18)

which converge in a neighborhood of ψ = ∞. Here �(z) is the polygamma function

�(z) = d

dz
log
(z). (3.19)

On the other hand, one solution of the operator D2 (3.16) is given by the hypergeometric function

π0(t) = 2F1(
1
,

3 ;1; t) = 1 + 3
t + 297

t2 + 10659
t3 + · · · . (3.20)
8 8 64 16384 1048576

11
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Moreover, its square is in fact the solution W1(ψ) in formula (3.18), i.e.

W0(ψ) = π2
0 (t), t = ψ−4, (3.21)

which follows directly from the property that D3 is the symmetric square of D2.

3.3. The construction of the Dwork family

The mirror family of quartic K3 surfaces is a pencil of K3 surfaces called the Dwork family, 
which can be constructed from the Fermat pencil (3.1) by the Greene-Plesser construction. More 
explicitly, the abelian group G

G = {(a0, a1, a2, a3)|a4
i = 1, a0a1a2a3 = 1}/{(a, a, a, a)|a4 = 1} (3.22)

acts freely on the fiber Fψ (3.1) through

(a0, a1, a2, a3).(X0,X1,X2,X3) = (a0X0, a1X1, a2X2, a3X3). (3.23)

Moreover, G is isomorphic to (Z/4Z)2, and it permutes the 16 singular points of Fζ n
4

. For 
ψ /∈ �, the quotient variety Fψ/G has 6 singularities of type A3. While if ψ4 = 1, there is an 
additional singular point of type A1, which is just the quotient of the 16 singular points of Fζ n

4
by G. If ψ = ∞, the quotient F∞/G is a union of hyperplanes, which is isomorphic to F∞
[17,27].

There exists a minimal simultaneous resolution of the A3 singularities of Fψ, ψ �= ∞, after 
which we obtain a pencil of K3 surfaces called the Dwork family

π : X → P 1, (3.24)

which is also defined over Q. The details of this mirror construction are left to the papers [17,27]. 
The singular fibers of the Dwork family (3.24) are also over the points in �, and the singularity 
of Xζ n

4
is a single point of type A1. The Picard number ρ(Xψ) of a smooth fiber Xψ is ≥ 19, 

and a general smooth fiber has Picard number 19 [17,18,42].
The holomorphic twoform �f

ψ (3.10) is invariant under the action of G, hence it defines a 
nowhere vanishing twoform on the smooth locus of the quotient Fψ/G. After resolution of 
singularities, this twoform extends to a nowhere vanishing holomorphic twoform �ψ on Xψ , 
which satisfies the same Picard-Fuchs equation as �f

ψ , i.e. [27]

D3(�ψ) = 0. (3.25)

3.4. The mirror map

Recall from Remark 2.1, X also means the underlying differential manifold structure of a 
smooth fiber of the Dwork family (3.24). Since �ψ satisfies the same Picard-Fuchs equation as 
�

f
ψ , the three independent solutions in formula (3.18) are the three independent periods of �ψ . 

From the papers [17,27], there exist two integral homology cycles 
0, 
1 ∈ H2(X, Z) such that

W0(ψ) = l

l(2πi)2

∫

0

�ψ, W1(ψ) = 1

l(2πi)2

∫

1

�ψ ; l ∈ Q×. (3.26)

The mirror map τ for the Dwork family (3.24) is given by [17,27]
12
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τ = W1(ψ)

W0(ψ)
. (3.27)

The values of τ lie in the upper half plane H. Moreover, with a suitable choice of branch cuts, 
the special values of τ at ψ = 0, 1, ∞ are given by [27]

τ : 0 �→ −1 + i

2
; 1 �→ i√

2
; ∞ �→ ∞. (3.28)

So we can say a fundamental domain for τ is the hyperbolic triangle with vertices −1+i
2 , i√

2
and ∞ [17,27]. The properties of this mirror map and its connections to the j -function have also 
been studied in the paper [22]. Later in this paper, we will show that this mirror map is the same 
as the period map of the Legendre family of elliptic curves. But first let us review the theories of 
elliptic curves that will be needed in later sections.

4. An overview of elliptic curves and the Legendre family

In this section, we will review some elementary properties about elliptic curves. We will also 
discuss the Legendre family of elliptic curves and the modular lambda function [5,6]. This section 
is included here purely to familiar the readers with the notations in later sections.

4.1. An overview of elliptic curves defined over Q

First, let us look at the elliptic curves defined over Q. Given an elliptic curve E defined over 
Q, it always has an integral model of the form [35,36]

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, with a1, · · · , a6 ∈Z, (4.1)

which is called integral Weierstrass equation. The discriminant � of this Weierstrass equation 
(4.1) is by definition

� = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, (4.2)

where bi is given in terms of ai

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 .

(4.3)

The elliptic curve E (4.1) is smooth if and only if � �= 0. An elliptic curve E can have many 
different integral Weierstrass equations, and a minimal Weierstrass equation is one for which the 
absolute value |�| is minimal among all Weierstrass models for E . In fact, given an elliptic curve 
defined over Q, it always has a minimal Weierstrass equation. The j -invariant of E (4.1) is by 
definition

j (E) = c3
4

�
, (4.4)

where c4 is defined by

c4 = b2 − 24b4. (4.5)
2

13
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The endomorphism ring of E , denoted by End(E), is the ring that consists of all the endomor-
phisms of E , including those defined over extensions of the base field Q. An elliptic curve E does 
not admit complex multiplication (CM) if End(E) is isomorphic to Z. While E is said to admit 
CM if End(E) is bigger than Z, in which case End(E) is an order in an imaginary quadratic field. 
Recall that an order of an algebraic number field K is a sub-ring O of OK , the ring of integers 
of K , that is also a Z-module of rank [K : Q] [23,28]. For an elliptic curve defined over Q that 
admits CM, its order is one of the 13 orders of class number one [23,35]. In fact, the property of 
admitting CM only depends on the j -invariants of elliptic curves. For a CM elliptic curve defined 
over Q, its j -invariant is one of the following 13 CM j -invariants [23,35]

j = −262537412640768000,−147197952000,−884736000,−12288000,−884736,

− 32768,−3375,0,1728,8000,54000,287496,16581375. (4.6)

Modulo a prime number p, the integral Weierstrass equation (4.1) defines a curve E/Fp over 
the finite field Fp = Z/pZ. E is said to have good (resp. bad) reduction at p if E/Fp is smooth 
(resp. singular). We will call p a good (resp. bad) prime of E if E has good (resp. bad) reduction 
at p. The conductor of E , denoted by N(E), is determined solely by its bad primes, whose precise 
definition is left to [23,35,36]. Let us denote the number of points of E/Fp for a good prime p
by #(E/Fp), and let ap(E) be

ap(E) = 1 + p − #(E/Fp). (4.7)

Then the zeta function of E for the good prime p is of the form [8]

ζ(E,p,T ) = 1 − ap(E)T + pT 2

(1 − T )(1 − pT )
. (4.8)

Appendix A contains a short review about zeta functions and Weil conjectures. On the other 
hand, the étale cohomology group H 1

ét(E, Q�) is a two dimensional continuous representation 
of the absolute Galois group Gal(Q/Q). At a good prime p, H 1

ét(E, Q�) is unramified, and the 
characteristic polynomial of the geometric Frobenius is [8,28]

1 − ap(E)T + pT 2 = (1 − π1
p(E)T )(1 − π2

p(E)T ), (4.9)

where the absolute value of πi
p(E) is p1/2. See Appendix A for more details. The modularity 

theorem of elliptic curves tells us that ap(E) is the p-th coefficient of the q-expansion of a 
weight-2 newform with level N(E) [8]. We now give an example that will be important in this 
paper.

Example 4.1. The elliptic curve

E1 : y2 = x3 − x (4.10)

is labeled as 32.a3 in LMFDB. Its j -invariant is 1728, and its endomorphism ring is Z[−1], so 
it admits CM. The weight-2 newform associated to E1 is labeled as 32.2.a.a in LMFDB.

Given two elliptic curves defined over Q, if they have the same j -invariant, then they are 
isomorphic over a number field [36]. In fact, their difference is a twist, and an introduction to the 
theory of twisting can be found in the book [36]. For example, the j -invariant of the following 
elliptic curve
14
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E2 : y2 = x3 − 4x, (4.11)

is also 1728. But E2 is not isomorphic to E1 over Q, instead they are isomorphic over the quadratic 
field Q(

√
2). The weight-2 newform associated to E2 is labeled as 64.2.a.a in LMFDB. The 

difference between the two modular forms is a twist by the Dirichlet character (2/·), i.e. at a 
good prime p we have [23]

ap(E1) = ap(E2)

(
2

p

)
. (4.12)

Here (2/p) is the Legendre symbol [8].

4.2. The Legendre family of elliptic curves

The Legendre family of elliptic curves has played a very important role in the development of 
modern mathematics, which is defined by the equation

Eλ : y2 = x(x − 1)(x − λ). (4.13)

In a more formal language, the formula (4.13) defines a family of elliptic curves over P 1

πe : E → P 1, (4.14)

whose fiber over λ ∈ P 1 is Eλ (4.13). The singular fibers of the Legendre family are over the 
points 0, 1 and ∞. The j -invariant of a smooth fiber Eλ is [6]

j (Eλ) = 256
(1 − λ + λ2)3

λ2(1 − λ)2 . (4.15)

Let us now recall the geometric construction of Eλ from cutting and gluing, and we will 
closely follow the book [5]. First, cut the complex plane along the line from 0 to λ and the line 
from 1 to ∞. Next take a second copy of the complex plane and cut it along the same lines. Then 
glue the two copies of complex plane together along the branch cuts. What we have obtained is 
a torus with a complex structure parameterized by λ. The readers can consult the book [5] for 
more details and pictures.

The canonical bundle of Eλ is trivial, and there exists a nowhere vanishing oneform

ωλ = dx/(2y). (4.16)

The periods of ωλ are well-known since the nineteenth century, but their computations are still 
included here. The underlying differential manifold of a smooth fiber Eλ (4.13) is the torus T =
S1 × S1. Let us now construct a basis {γ0, γ1} for the homology group H1(T , Z) � Z2 from the 
branch-cut construction of Eλ in the previous paragraph. Let γ0 be the cycle that encircles the 
line (1, ∞) in one copy of the complex plane C, while let γ1 be the circle that is the composite 
of the line from 1 to λ in the first copy and the line from λ to 1 in the second copy. The dual 
of {γ0, γ1}, denoted by {γ 0, γ 1}, forms a basis of the cohomology group H 1(T , Z) � Z2. The 
integration of the oneform ωλ over the cycles {γ0, γ1} defines two periods of Eλ∫

γ0

ωλ = 2π�0(λ),

∫
γ1

ωλ = 2π�1(λ). (4.17)

More explicitly, the two periods {�0(λ), �1(λ)} are given by the integrals
15
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�0(λ) = 1

π

∞∫
1

dx√
x(x − 1)(x − λ)

,

�1(λ) = 1

π

λ∫
1

dx√
x(x − 1)(x − λ)

.

(4.18)

After a change of variable by x = 1/z, the first integral in the formula (4.18) becomes

�0(λ) = 1

π

1∫
0

dz√
z(1 − z)(1 − λz)

. (4.19)

If λ lies in a small neighborhood of 0, we can take a series expansion of the factor (1 − λz)−1/2, 
then this integral can be computed order by order. The result is a series expansion of �0(λ)

�0(λ) = 1 + 1

4
λ + 9

64
λ2 + · · · . (4.20)

The second integral in the formula (4.18) can be evaluated similarly, and it admits an expansion 
with leading terms

�1(λ) = − 1

πi

1∫
λ

dx√
x(1 − x)(x − λ)

= − 1

πi
(4 log 2 − logλ) + · · · , (4.21)

where the limit of the terms in · · · is zero when λ → 0. By monodromy consideration, we deduce 
that �1(λ) must be of the form

�1(λ) = 1

πi
(�0(λ) logλ + h(λ)) − log 16

πi
�0(λ), (4.22)

where h(λ) admits a series expansion in a small neighborhood of λ = 0

h(λ) = 1

2
λ + 21

64
λ2 + 185

768
λ3 + · · · . (4.23)

4.3. The modular lambda function

The nowhere vanishing holomorphic oneform ωλ satisfies a well-known second order Picard-
Fuchs equation [5]

λ(1 − λ)
d2ωλ

dλ2 + (1 − 2λ)
dωλ

dλ
− λ

4
ωλ = 0. (4.24)

Hence �0(λ) is given by the hypergeometric function [6,38]

�0(λ) = 2F1(
1

2
,

1

2
;1;λ). (4.25)

The period τ of the elliptic curve Eλ is by definition given by the quotient

τ = �1(λ)

�0(λ)
. (4.26)

In a small neighborhood of λ = 0, τ is of the form
16
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τ = 1

πi

(
logλ + h(λ)

�0(λ)

)
− log 16

πi
. (4.27)

The underlying complex torus of the elliptic curve Eλ is isomorphic to the quotient of C by the 
rank-2 lattice generated by 1 and τ [5]. Let λ be the coordinate of P 1, then τ defines a map [6]

τ : P 1 → H ∪ {∞}, (4.28)

which is called the period map of the Legendre family. The inverse of τ is the famous modu-
lar lambda function, which generates the function field of the modular curve X(2), i.e. it is a 
Hauptmodul for X(2) [6,8]. In this paper, we will let q be

q := expπiτ. (4.29)

Formula (4.27) implies

q = 1

16
λ exp (h(λ)/�0(λ)) , (4.30)

and it can be inverted order by order which gives us the series expansion of λ with respective to 
q [6,38]

λ(τ) = 16q − 128q2 + 704q3 − 3072q4 + 11488q5 − 38400q6 + · · · . (4.31)

Furthermore, it is well-known that the period �0(λ) can also be expressed in terms of the 
theta function θ3 [6,38]

�0(λ) = θ2
3 (0, q). (4.32)

From this identity, we also have [6,38]

θ4
2 (0, q) = λ� 2

0 (λ), θ4
4 (0, q) = (1 − λ)� 2

0 (λ). (4.33)

From [38], there is another interesting identity involving λ(τ) and �0(λ) of the form

1

πi

dλ

dτ
= λ(1 − λ)� 2

0 (λ). (4.34)

With these identities at hands, we are ready to study the connections between the mirror map 
(3.27) of the Dwork family and the period map (4.26) of the Legendre family.

5. The mirror map of the Dwork family and periods of the Legendre family

In this section, we will study the connections between the mirror map of the Dwork family 
and the periods of the Legendre family. More concretely, we will explicitly express the solutions 
Wi(ψ) (3.18) in terms of the periods �i(λ) of the Legendre family. Then we will show the mirror 
map (3.27) of the Dwork family is the same as the period map (4.26) of the Legendre family. 
Based on this result, we will discuss the modularities of the counting functions for K3 surfaces 
from the mirror symmetry point of view, which shed further lights on this subject. The crucial 
tools in this section are the quadratic transformations of hypergeometric functions [13–15].
17
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5.1. The quadratic transformations of periods

First, we will need the following two quadratic transformations of hypergeometric functions 
[13–15]

2F1(
1

2
,

1

2
;1; z) = (1 − z)−1/4

2F1(
1

4
,

1

4
;1; z2

4z − 4
),

2F1(
1

4
,

1

4
;1; z) = (1 − z)−1/4

2F1(
1

8
,

3

8
;1;− 4z

(1 − z)2 ),

(5.1)

which are over the regions when both sides are well-defined. We will however mainly focus on a 
smooth neighborhood of z = 0. The composition of these two quadratic transformations gives us

2F1(
1

2
,

1

2
;1; z) = (1 − z

2
)−1/2

2F1(
1

8
,

3

8
;1;−16(z − 1)z2

(z − 2)4 ). (5.2)

More concretely, the power series expansions of the two sides of (5.2) in a small neighborhood 
of z = 0 are the same. Now let us define a transformation between the variables t (= ψ−4) and λ
by the following algebraic equation

t = λ2(1 − λ)

(
1 − λ

2

)−4

. (5.3)

This equation (5.3) defines a map from P 1 (with coordinate λ) to P 1 (with coordinate t)

t : P 1 → P 1, (5.4)

which is a ramified covering map with degree 4. The three singular points t = 0, 1, ∞ of D3
correspond to

t = 0 ⇐⇒ λ = 0,1,∞;
t = 1 ⇐⇒ λ = ±2

√
2 − 2;

t = ∞ ⇐⇒ λ = 2.

(5.5)

The map t (5.4) has four ramification points: λ = 0, ±2
√

2 − 2 and 2, where the ramification 
index of 0, ±2

√
2 − 2 is 2 and that of 2 is 4.

The fiber Xψ of the Dwork family (3.24) is isomorphic to the fiber Xζ4ψ , hence the Dwork 
family (3.24) descends to a family over P 1 with parameter t

π t : X → P 1. (5.6)

The pull-back of this family (5.6) along the map t (5.4) gives us a commutative diagram

X̃ X

P 1 P 1

π̃ πt

t

. (5.7)

The new family π̃ in this commutative diagram is also a pencil of K3 surfaces over P 1

π̃ : X̃ → P 1, (5.8)

which will be crucial in this paper. Later we will show that in a sense this family is a ‘more 
suitable’ mirror family for quartic K3 surfaces (1.8).
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5.2. The mirror map is the period map

Intuitively, we can pull everything on the family (5.6) back to the family (5.8). For example, up 
to an overall factor 16λ, the operator D2 (3.16) pulls back to a second order differential operator 
D̃2

D̃2 = λ(1 − λ)(2 − λ)2 d2

dλ2 + (2 − λ)(2 − 4λ + λ2)
d

dλ
− 3

4
λ, (5.9)

which has regular singularities at the points

λ = 0,1,2,∞. (5.10)

Under the map t (5.4), the solution π0(t) (3.20) pulls back to

πK
0 (λ) = (1 − λ

2
)1/2

2F1(
1

2
,

1

2
;1;λ) = (1 − λ

2
)1/2 �0(λ), (5.11)

where we have used the identity (5.2). Then from Section 4.2, we learn that a second independent 
solution of D̃2 (5.9) is given by

πK
1 (λ) = (1 − λ

2
)1/2�1(λ). (5.12)

The pull-back of the operator D3 (3.15), denoted by D̃3, is the symmetric square of D̃2 (5.9) (up 
to an overall factor). The holomorphic twoform �ψ on Xψ induces a holomorphic twoform �̃λ

on X̃λ. Independent solutions {�0(λ), �1(λ), �2(λ)} of D̃3 are given by

�0(λ) = (πK
0 (λ))2 = (1 − λ

2
)� 2

0 (λ),

�1(λ) = πK
0 (λ)πK

1 (λ) = (1 − λ

2
)�0(λ)�1(λ),

�2(λ) = (πK
1 (λ))2 = (1 − λ

2
)� 2

1 (λ).

(5.13)

Remark 5.1. In this paper, we have assumed that a suitable branch cut has been chosen for 
the transformation defined by the equation (5.3). In this section, we have focused on a small 
neighborhood of t = 0 and λ = 0, where we have used the following expansion of equation (5.3)

t = λ2 + O(λ3). (5.14)

The crucial observation is that under the transformation (5.3) we have

W0(ψ) = �0(λ), W1(ψ) = �1(λ), (5.15)

which can be obtained from the limit behaviors of Wi(ψ) and �i(λ) for

λ → 0 and ψ → ∞. (5.16)

Therefore we immediately obtain a crucial property about the mirror map (3.27) of the Dwork 
family

τ = W1(ψ) = �1(λ) = �1(λ)
. (5.17)
W0(ψ) �0(λ) �0(λ)
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Namely, the mirror map (3.27) of the Dwork family is the same as the period map (4.26) of the 
Legendre family. This will provide a very important link between the mirror symmetry of K3 
surfaces and the Legendre family of elliptic curves. The new family of K3 surfaces (5.8) can also 
be considered as the mirror family of quartic K3 surfaces (1.8), and it is actually ‘better’ from a 
number theoretic point of view!

5.3. The modularities of counting functions for K3 surfaces

From the mirror symmetry point of view, the results in Section 5.2 will provide philosophical 
interpretations to an interesting phenomenon that counting functions for K3 surfaces are mod-
ular. The philosophy of mirror symmetry says that under the mirror map τ (5.17), the counting 
functions for K3 surfaces on the Kähler side correspond to rational expressions of

λ, �0(λ), dλ/dτ, (5.18)

on the complex side. From Section 4.3, the latter is clearly modular!
We now use a famous example to illustrate this point. The counting function of BPS states in 

IIB string theory for a K3 surface X (times R × S1) has been explicitly worked out in the paper 
[37], which is given by

q−1
∑
n

χ(Hilbn(X))qn = 1

η24(τ )
= 1

�
; q := exp(2πiτ). (5.19)

Here � is called the Ramanujan tau function, which can also be expressed in terms of theta 
functions as [6]

� = 2−8θ8
2 (0, q)θ8

3 (0, q)θ8
4 (0, q). (5.20)

Remark 5.2. In this paper, we will use the notation q to mean exp(2πiτ), which is differential 
from q = exp(πiτ ).

This counting function (5.19) has an alternative derivation, which corresponds to the counting 
of nodal curves in K3 surfaces [41]

q−1
∑
g

χ(MH
g )qn = 1

η24(τ )
. (5.21)

Here MH
g is the moduli space that describes a choice of a holomorphic Riemann surface in K3 

surface with genus g and a flat U(1) bundle. The interested readers are referred to the paper [41]
for more details.

On the complex side, using the identities in Section 4.3 and formula (5.20), � can be ex-
pressed as

� = 1

4

λ2(1 − λ)2

(λ − 2)6
�6

0(λ). (5.22)

But of course there are other expressions of � in terms of λ, �0(λ) and dλ/dτ . The upshot is 
that under the mirror map (5.17), the counting function (5.19) corresponds to

q−1
∑

χ(Hilbn(X))qn = 4(λ − 2)6

λ2(1 − λ)2

1

�6(λ)
, (5.23)
n 0
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the form of which is certainly what the mirror symmetry of K3 surfaces has predicted. Further-
more, it is very interesting to see whether the results in this section can be applied to study the 
general counting functions for K3 surfaces.

6. Connections with Shioda-Inose structures?

In this section, we will explore the potential connections between the results of Section 5 and 
the Shioda-Inose structures of smooth fibers of the Fermat pencil and Dwork family.

Recall from Remark 2.1 that X also means the underlying differential manifold of a K3 
surface. From [17], there exist integral homology cycles h, e, f ∈ H 2(X, Z) such that the holo-
morphic twoform �̃λ on the smooth fiber X̃λ of the family (5.8) admits an expansion

�̃λ = l(2πi)2 (�1(λ)h − �0(λ)e + 2�2(λ)f ) , (6.1)

where l is a nonzero rational constant. Moreover, the only nontrivial cup-product pairings be-
tween h, e and f are

〈h,h〉 = 4, 〈e, f 〉 = 〈f, e〉 = 1. (6.2)

For simplicity, let the free Z-module generated by h, e and f be L1

L1 = Zh ⊕Ze ⊕Zf. (6.3)

Given a λ such that

λ �= 0,1,±2
√

2 − 2,2,∞, (6.4)

if the Picard number of X̃λ is 19, then the transcendental lattice T (X̃λ) of X̃λ is just L1. While 
if the Picard number of X̃λ is 20, then the transcendental lattice T (X̃λ) of X̃λ is a rank-2 sub-
lattice of L1.

On the other hand, the direct product of the Legendre family (4.14), i.e. A = E × E , is a 
family of complex surfaces over P 1, and the fiber Aλ is just the direct product Eλ × Eλ. The 
underlying differential manifold of a smooth fiber Aλ is the direct product of torus, i.e. T × T . 
A smooth fiber Aλ has three rationally independent algebraic cycles

Eλ × 0, 0 × Eλ, �λ, (6.5)

where �λ is the diagonal of Eλ × Eλ. Therefore the Picard number of Aλ is ≥ 3. The integral 
cohomology group H 2(T × T , Z) is a free Z-module of rank 6 with a unimodular cup-product 
pairing. Under this pairing, the orthogonal complement of the three algebraic cycles in formula 
(6.5) is the lattice

L2 = Z(γ 0 ⊗ γ 0) ⊕Z(γ 0 ⊗ γ 1 + γ 1 ⊗ γ 0) ⊕Z(γ 1 ⊗ γ 1). (6.6)

The only nontrivial pairings between the three generators of L2 are

〈γ 0 ⊗ γ 0, γ 1 ⊗ γ 1〉 = 〈γ 1 ⊗ γ 1, γ 0 ⊗ γ 0〉 = 1.

〈γ 0 ⊗ γ 1 + γ 1 ⊗ γ 0, γ 0 ⊗ γ 1 + γ 1 ⊗ γ 0〉 = −2.
(6.7)

Recall from Section 4.2 that {γ 0, γ 1} is a basis of H 1(T , Z). The nowhere vanishing holomor-
phic twoform on Aλ is given by the tensor product ωλ ⊗ ωλ, where ωλ is the nowhere vanishing 
holomorphic oneform on the elliptic curve Eλ. From Section 4.2, ωλ ⊗ ωλ admits an expansion 
of the form
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ωλ⊗ωλ = (2π)2
[
� 2

0 (λ)γ 0 ⊗ γ 0 + �0(λ)�1(λ)(γ 0 ⊗ γ 1 + γ 1 ⊗ γ 0) + � 2
1 (λ)γ 1 ⊗ γ 1

]
.

(6.8)

The pure Hodge structure on the transcendental lattice T (X̃λ) is determined by the holomor-
phic twoform �̃λ, or equivalently its expansion (6.1). Similarly, the pure Hodge structure on the 
transcendental lattice T (Aλ) is determined by the holomorphic twoform ωλ ⊗ωλ, or equivalently 
its expansion (6.8). From formula (5.13), we learn that the pure Hodge structure on T (X̃λ) is iso-
morphic to that on T (Aλ), but in general it is not a Hodge isometry. Therefore a very interesting 
question is about the connections between the Shioda-Inose structure of X̃λ and the geometry of 
the complex surface Aλ.

7. The zeta functions of smooth fibers of the Fermat pencil

In this section, we will look at the potential relations between the zeta functions of Aλ, i.e. 
Eλ × Eλ, and the zeta functions of a rational model of the smooth fiber Fψ(λ) of the Fermat 
pencil.

7.1. The pull back of the Fermat pencil

We can apply the constructions in Section 5.1 to the Fermat pencil and obtain a family of 
K3 surface with parameter λ. However, we find it more convenient to write everything down 
explicitly. More precisely, the equation (5.3) defines ψ as a multivalued function of λ

ψ(λ) = λ− 1
2 (1 − λ)−

1
4

(
1 − λ

2

)
, (7.1)

where we assume that a suitable branch cut has been chosen. Now the Fermat pencil of K3 
surfaces (3.1) becomes

Fψ(λ) : {fψ(λ) = 0} ⊂ P 3, (7.2)

where the quartic polynomial fψ(λ) is

fψ(λ) = X4
0 + X4

1 + X4
2 + X4

3 − 4ψ(λ)X0X1X2X3. (7.3)

Similarly, we have a meromorphic threeform �ψ(λ) whose residue defines a nowhere vanish-

ing holomorphic twoform �f

ψ(λ) on Fψ(λ) that satisfies the same Picard-Fuchs equation as the 

twoform �̃λ on X̃λ, i.e.

D̃3 �
f

ψ(λ) = 0. (7.4)

Moreover, there exist cohomological elements ei ∈ H 2(X, Q) such that

�
f

ψ(λ) = l1(2πi)2 (�0(λ)e0 + �1(λ)e1 + �2(λ)e2) , l1 ∈Q×. (7.5)

Remark 7.1. Similarly from Section 6, the pure Hodge structure on the transcendental lattice 
T (Fψ(λ)) of a smooth fiber Fψ(λ) of the Fermat pencil is isomorphic to that on T (Aλ).

Intuitively, we will say Eλ of the Legendre family is the elliptic partner of the K3 surface 
Fψ(λ). It is interesting to notice that the special fibers of the Fermat pencil at ψ = 0, 1, ∞ admit 
very interesting elliptic partners:
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1. When ψ = 0, we have the famous Fermat quartic

F0 : {X4
0 + X4

1 + X4
2 + X4

3 = 0} ⊂ P 3. (7.6)

From formula (7.1), ψ = 0 corresponds to λ = 2, and the smooth fiber of the Legendre 
family over λ = 2 is

y2 = x(x − 1)(x − 2), (7.7)

whose Weierstrass integral model is just E1 in Example 4.1, i.e. 32.a3 in LMFDB.
2. When ψ = 1, we have the singular surface

F1 : {X4
0 + X4

1 + X4
2 + X4

3 − 4X0X1X2X3 = 0} ⊂ P 3. (7.8)

From formula (7.1), ψ = 1 corresponds to λ = 2
√

2 − 2. The smooth fiber of the Legendre 
family over λ = 2

√
2 − 2 is the elliptic curve

y2 = x(x − 1)(x − (2
√

2 − 2)), (7.9)

both of which are smooth elliptic curves defined over Q(
√

2) with j -invariant 8000.
3. When ψ = ∞, we have a union of four complex planes

F∞ : {X0X1X2X3 = 0} ⊂ P 3. (7.10)

From formula (7.1), ψ = ∞ corresponds to λ = 0, 1, ∞, and the fibers of the Legendre 
family over λ = 0, 1, ∞ are just the singular fibers of it.

7.2. The properties of zeta functions

For simplicity, let us assume λ ∈Q and

λ �= 0,1,2,∞, (7.11)

Aλ is defined over Q. In this section, a rational model for the smooth fiber Fψ(λ) is chosen to 
be the one given by formula (3.8). The transcendental lattice T (Aλ) (resp. T (Fψ(λ))) generates 
a continuous representation of Gal(Q/Q), which will be denoted by V a

λ (resp. V f

ψ(λ)). From 
Remark 7.1, the pure Hodge structure on the rational vector space T (Fψ(λ)) ⊗Q is isomorphic 
to that on T (Aλ) ⊗Q. Hence from the Hodge conjecture, we learn that there exists a number field 
K such that V a

λ is isomorphic to V f

ψ(λ) as representations of Gal(Q/K) [19,21]. This property 
immediately implies that there may exist interesting relations between the zeta functions of V a

λ

and that of V f

ψ(λ)
at good primes.

Given an elliptic curve Eλ with λ ∈ Q, the zeta function of H 1
ét(Eλ, Q�) at a good prime p is 

a quadratic polynomial

1 − ap(Eλ)T + pT 2 = (1 − π1
p(Eλ)T )(1 − π2

p(Eλ)T ). (7.12)

See Section 4 for more details. The symmetric square of formula (7.12) is by definition

(1 − π1
p(Eλ)π

2
p(Eλ)T )(1 − (π1

p(Eλ))
2T )(1 − (π2

p(Eλ))
2T ), (7.13)

which simplifies to

(1 − pT )(1 − (a2
p(Eλ) − 2p)T + p2T 2). (7.14)
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This cubic polynomial (7.14) is a factor of the zeta function of H 2
ét(Eλ ×Eλ, Q�) that corresponds 

to the lattice L2 (6.6). So one can ask whether there exists a Dirichlet character χλ depending 
one λ such that the twisted cubic polynomial

(1 − χλ(p)pT )(1 − χλ(p)(a2
p(Eλ) − 2p)T + p2T 2) (7.15)

is a factor of the zeta function of H 2
ét(Fψ(λ), Q�) [1,11,20,43]? We will not pursue this interesting 

question further in this paper, while the readers are referred to the paper [1] for more details about 
the computations of zeta functions of a pencil of K3 surfaces using that of elliptic curves. In the 
rest of this part, we will focus on the case of the Fermat quartic (7.6).

Remark 7.2. The discussions in this section also apply to the zeta functions of smooth fibers of 
the Dwork family.

8. The Fermat quartic and Deligne’s conjecture

In this section, we will compute the periods of the holomorphic twoform on the Fermat quartic 
F0. Then we will discuss the relations between the modularity of the Fermat quartic F0 and that 
of the elliptic curve 32.a3 in LMFDB [23]

y2 = x3 − x. (8.1)

We will also apply the method developed in [39] to compute Deligne’s periods of the Fermat 
quartic F0 and (numerically) verify that they satisfy Deligne’s conjecture on the special values 
of L-functions at critical integral points [7]. In this section, we will need the theory of pure 
motives, which has been briefly reviewed in the papers [19,21].

8.1. The periods of the Fermat quartic

First, let us compute the periods of the Fermat quartic F0. In the construction of the twoform 
�

f
ψ on Fψ in Section 3.1, there is an additional factor ψ , therefore �f

ψ becomes 0 on the Fermat 
quartic F0. This defect can also be seen from the values of the periods �i(λ) (5.13) at λ = 2

�0(2) = �1(2) = �2(2) = 0. (8.2)

It can be cured by defining the meromorphic threeform �F to be

�F =
3∑

i=0

(−1)i
xi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

f0
, (8.3)

whose residue along F0 defines a nowhere vanishing holomorphic twoform on the Fermat quar-
tic. More explicitly, take the open subset of F0 defined by x3 = 1, then the residue of �F is 
equal to [16]

�F = dx0 ∧ dx1

4x3
2

∣∣∣
F0

. (8.4)

Similarly, it can be explicitly shown that the meromorphic twoform (8.4), which is a priori only 
defined on x2 �= 0, extends to a global nowhere vanishing twoform on F0 [16]. It is very impor-
tant that �F is defined over Q, and it spans the algebraic de Rham cohomology group H 2

dR(F0)

[19,21,39].
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The periods of �F can be found from that of �f
ψ , i.e. �i(λ) (5.13). More precisely, the 

twoform �F is the limit of �f
ψ/ψ at ψ = 0, hence we have

�F = lim
ψ→0

�
f
ψ/ψ = lim

λ→2
�

f

ψ(λ)/ψ(λ). (8.5)

Then from formulas (5.13), (7.1) and (7.5), we immediately obtain the following crucial expan-
sion of �F

�F = l1(1+ i)(2πi)2
(
� 2

0 (2)e0 + �0(2)�1(2)e1 + � 2
1 (2)e2

)
, l1 ∈Q×, ei ∈ H 2(X,Q).

(8.6)

The pure Hodge structure on the transcendental lattice T (F0) of the Fermat quartic (7.6) is 
uniquely determined by the expansion (8.6), therefore it is isomorphic to the pure Hodge structure 
on the transcendental lattice T (A2). Let us now look at the étale cohomological counterpart of 
this property, e.g. zeta functions.

8.2. The modular form of the Fermat quartic

The Fermat quartic F0 (7.6) is perhaps the earliest known example of singular K3 surfaces 
[32]. Its transcendental cycles generate a two dimensional Galois representation V (F0) that is 
modular, associated to which is a weight-3 newform of level 16

η(4z)6 ∈ S3(
0(16),χ16). (8.7)

Here the Dirichlet character χ16 is defined by

χ16 : (Z/16Z)× → C, with χ16(5) = 1, χ16(15) = −1. (8.8)

Modularity of V (F0) means that its zeta function at a good prime p is of the form

1 − bp(F0)T + p2T 2, (8.9)

where bp(F0) is the p-th coefficient of the q-expansion of the weight-3 newform η(4z)6.
The elliptic partner of the Fermat quartic is the elliptic curve

E2 : y2 = x(x − 1)(x − 2), (8.10)

whose Weierstrass minimal model is (8.1). Notice that the j -invariant of E2 is 1728, and it admits 
CM. The zeta function of H 1

ét(E2, Q�) at a good prime p is of the form

1 − ap(E2)T + pT 2 = (1 − π1
p(E2)T )(1 − π2

p(E2)T ), (8.11)

where ap(E2) is the p-th coefficient of the q-expansion of the weight-2 newform labeled as
32.2.a.a in LMFDB [23]. The symmetric square of (8.11) is of the form

(1 − pT )(1 − (a2
p(E2) − 2p)T + p2T 2). (8.12)

So one might be wondering what is the relation between the quadratic factor of (8.12) and the 
zeta function (8.9) of Fermat quartic? In fact, it is very interesting that we have

bp(F0) = a2
p(E2) − 2p, (8.13)

or equivalently
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1 − (a2
p(E2) − 2p)T + p2T 2 = 1 − bp(F0)T + p2T 2. (8.14)

Hence we can say the modular form η(4z)6 associated to the Fermat quartic arises from the 
symmetric square of 32.2.a.a [1].

8.3. Deligne’s periods for the Fermat quartic

The transcendental cycles of the Fermat quartic define a two dimensional pure motive M0 over 
Q, whose étale realization is the two dimensional Galois representation V (F0) in Section 8.2. 
Thus the L-function of M0 is just the L-function associated to the weight-3 newform η(4z)6 [32]

L(M0, s) = L(η(4z)6, s). (8.15)

From Mellin transform, L(η(4z)6, s) has an integral representation [8]

L(η(4z)6, s) = (2π)s


(s)

∞∫
0

η(4iz)6zs dz

z
. (8.16)

The Hodge realization of M0 is a two dimensional pure Hodge structure whose Hodge de-
composition only has (2,0) and (0,2) parts. Moreover, this pure Hodge structure is completely 
determined by the expansion (8.6) of the holomorphic twoform �F on the Fermat quartic F0.

The computation of the Deligne’s period c+(M0) for M0 immediately follows from the 
method in the paper [39]. More explicitly, c+(M0) is given by the pairing of a cohomology 
cycle of H 2(X, Q) and �F . From Sections 3 and 5, the quotient �1(2)/�0(2) is given by

�1(2)

�0(2)
= −1 + i

2
. (8.17)

Hence from the method in [39], we deduce that there exist rational numbers ri ∈ Q such that 
c+(M0) is of the form

c+(M0) = (1 + i)

[
r0 + r1

−1 + i

2
+ r2

(−1 + i

2

)2
]

� 2
0 (2). (8.18)

Since Deligne’s period is only well-defined up to a nonzero rational multiple, we immediately 
learn that there exist two rational numbers s1 and s2 such that

c+(M0) = (s1 + s2i)�
2
0 (2); si ∈Q. (8.19)

But from the construction of Deligne’s period, c+(M0) must be a real number [7], which uniquely 
determines the values of s1 and s2 up to a nonzero rational multiple. Similarly, there exist two 
rational numbers s3 and s4 such that the Deligne’s period c−(M0) is given by

c−(M0) = (s3 + s4i)�
2
0 (2); si ∈Q. (8.20)

From its construction, c−(M0) must be a purely imaginary number [7], which uniquely deter-
mines the values of s3 and s4 up to a nonzero rational multiple. Furthermore, from formulas 
(3.28) and (4.32), �0(2) is equal to the value of θ2

3 (0, q) at q = exp(πi(−1 + i)/2), i.e.

�0(2) = θ2(0,−ie−π/2). (8.21)
3
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8.4. The verification of Deligne’s conjecture

From [7], the Tate twist M0 ⊗ Q(n) is critical if and only if n = 1, 2. Deligne’s conjecture 
predicts that c+(M0 ⊗Q(1)) (resp. c+(M0 ⊗Q(2))) is a rational multiple of L(M0 ⊗Q(1), 0)

(resp. L(M0 ⊗Q(2), 0)) [7,39,40]. From [7,39], we learn that

c+(M0 ⊗Q(1)) = (2πi)c−(M0),

c+(M0 ⊗Q(2)) = (2πi)2c+(M0).
(8.22)

On the other hand, the L-function of a Tate twist is given by [7,39]

L(M0 ⊗Q(n), s) = L(M0, n + s), (8.23)

hence formula (8.16) implies

L(M0 ⊗Q(1),0) = 2π

∞∫
0

η(4iz)6dz,

L(M0 ⊗Q(2),0) = (2π)2

∞∫
0

η(4iz)6zdz.

(8.24)

Now we will numerically verify that the critical motives M0 ⊗Q(n) with n = 1, 2 satisfy the 
predictions of Deligne’s conjecture. First, the numerical value of θ4

3 (0, −ie−π/2) can be evaluated 
to a very high precision by Mathematica

θ4
3 (0,−ie−π/2) = −i 1.3932039296856768591842462603253682426574812175156 · · · ,

(8.25)

which is purely imaginary. Hence in the formulas (8.19) and (8.20), we can choose

s1 = 0, s2 = 1, s3 = 1, s4 = 0, (8.26)

i.e. we have

c+(M0 ⊗Q(1)) = (2πi) θ4
3 (0,−ie−π/2),

c+(M0 ⊗Q(2)) = i(2πi)2 θ4
3 (0,−ie−π/2).

(8.27)

The integrals in formula (8.24) can also be numerically evaluated. In this paper, we have com-
puted the first 300 digits of them and here we give the first 50 digits

L(M0 ⊗Q(1),0) = 0.5471099038066191597091924851761161358148431807064 · · · ,

L(M0 ⊗Q(2),0) = 0.8593982272525466034362619724763196497376070564774 · · · .

(8.28)

From these numerical results, we immediately obtain

c+(M0 ⊗Q(1)) = 16L(M0 ⊗Q(1),0),

c+(M0 ⊗Q(2)) = −64L(M0 ⊗Q(2),0),
(8.29)

which indeed satisfy the predictions of Deligne’s conjecture [7,39].
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9. Conclusions and further prospects

In this paper, we have studied the highly interesting connections between the mirror symmetry 
of K3 surfaces and the geometry of the Legendre family of elliptic curves. Using the quadratic 
transformations of hypergeometric functions, we have found interesting relations between the 
periods of the holomorphic twoform of the Dwork family (Fermat pencil) of K3 surfaces and 
the periods of the holomorphic oneform of the Legendre family. Then we have shown that the 
mirror map of the Dwork family is the same as the period map of the Legendre family, which is a 
crucial result of this paper that provides important insights into the nature of the mirror symmetry 
of K3 surfaces. For example, it gives an interesting interpretation to the modularity of counting 
functions for K3 surfaces from the mirror symmetry point of view. Furthermore, these results 
imply the existence of interesting connections between the arithmetic geometry of the Dwork 
family and the geometry of the Legendre family, e.g. the Shioda-Inose structures.

We have also explored the potential relations between the zeta functions of smooth fibers of 
the Fermat pencil and that of the smooth fibers of the Legendre family. In particular, we have 
studied the relations between the weight-3 newform η(4z)6 associated to the Fermat quartic and 
the weight-2 newform 32.2.a.a associated to the smooth fiber at λ = 2 of the Legendre family. 
More concretely, η(4z)6 can be considered as the symmetric square of 32.2.a.a. We have also 
computed the Deligne’s periods of the Fermat quartic, which are given by special values of the 
theta function θ3; then numerically we have shown that they satisfy the predictions of Deligne’s 
conjecture.

There are still many open questions left unaddressed, and here we list several interesting ones 
that come to our mind:

1. Are there any connections between the results of this paper and the homological mirror 
symmetry for the quartic K3 surfaces studied in the paper [33]?

2. Could the results in Section 5 be applied to study the modularities of counting functions for 
K3 surfaces?

3. Could the results in this paper provide interesting links between the mirror symmetry of K3 
surfaces and that of elliptic curves studied in the paper [9]?

4. What is the relation between the arithmetic geometry of the singular fiber F1 of the Fermat 
pencil (3.1) and the elliptic curve of the Legendre family over the point λ = 2

√
2 − 2, whose 

j -invariant is 8000?
5. Whether the zeta functions of smooth fibers of the Fermat pencil (or Dwork family) can be 

computed using the zeta functions of smooth fibers of the Legendre family?
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Appendix A. A review of Weil conjectures

The concept of zeta functions of a non-singular variety comes from points-counting modulo 
a prime number. Suppose X is an n-dimensional non-singular variety defined over Q, which has 
an integral model X defined over Z. Modulo a prime number p, X defines a variety over the 
finite field Fp := Z/pZ, which will be denoted by X/Fp . We say p is a good prime of X if 
X/Fp is non-singular.

Suppose p is a good prime of X and m is a positive integer. Recall that Fpm is the unique 
degree-m extension of Fp . Since Fp is a subfield of Fpm , the variety X/Fp is naturally a variety 
over Fpm . Let Nm be the number of points of X/Fp with coordinates lie in Fpm . The zeta function 
ζ(X, p, T ) is by definition the generating series

ζ(X,p,T ) := exp

( ∞∑
m=1

Nm

m
T m

)
(A.1)

A priory, ζ(X, p, T ) is only a formal power series in T , but Weil’s conjectures claim that 
ζ(X, p, T ) is in fact a rational function in T that can be expressed as

ζ(X,p,T ) = P1(X,p,T ) · · ·P2n−1(X,p,T )

P0(X,p,T ) · · ·P2n(X,p,T )
, (A.2)

where each Pi(X, p, T ) is an integral polynomial. Furthermore, P0(X, p, T ) and P2n(X, p, T )

are of very simple forms

P0(X,p,T ) = 1 − T , P2n(X,p,T ) = 1 − pnT . (A.3)

The variety X defines an n-dimensional complex manifold X(C), and Weil conjectures claim 
that

degPi(X,p,T ) = dimQHi(X(C),Q). (A.4)

The rationality part of Weil conjectures is first proved by Dwork using p-adic analysis [12]. It can 
also be proved by the existence of a suitable Weil cohomology theory, e.g. étale cohomology the-
ory, and the polynomial Pi(X, p, T ) is given by the characteristic polynomial of the (geometric) 
Frobenius action on the étale cohomology group Hi

ét(X, Q�) [24]

Pi(X,p,T ) = det
(

Id − T Fr|Hi
ét(X,Q�)

)
. (A.5)

Over the complex field C, the polynomial Pi(X, p, T ) factors into the products of linear poly-
nomials

Pi(T ) =
∏
j

(1 − αijT ). (A.6)

The ‘Riemann hypothesis’ part of Weil conjectures claims that the absolute value of the algebraic 
number αij satisfies

|αij | = pi/2, (A.7)

which is first proved by Deligne.
Let us now look at the zeta functions of K3 surfaces. Suppose X is an algebraic K3 surface 

defined over Q. The étale cohomology group H 2(X, Q�) is a 22-dimensional representation of 
ét

29
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the absolute Galois group Gal(Q/Q). Suppose p is a good prime of X, then the zeta function of 
X at p is of the form

ζ(X,p,T ) = 1

(1 − T )P2(X,p,T ) (1 − p2 T )
, (A.8)

where P2(X, p, T ) is an integral polynomial of degree 22 given by

P2(X,p,T ) = det
(

Id − T Frp|H 2
ét(X,Q�)

)
. (A.9)

The polynomial P2(X, p, T ) can further factorize into the products of lower degrees polynomi-
als. More concretely, H 2

ét(X, Q�) splits into the direct sum of two sub-representations

H 2
ét(X,Q�) = V a

� ⊕ V t
� , (A.10)

where V a
� is generated by the algebraic cycles of X and V t

� is generated by the transcendental 
cycles of X. Hence V a

� is a ρ(X) dimensional representation of Gal(Q/Q), while V t
� is a 22 −

ρ(X) dimensional representation of Gal(Q/Q). The polynomial P2(X, p, T ) factorize into to 
the product

P2(X,p,T ) = P a
2 (X,p,T )P t

2(X,p,T ). (A.11)

Here P a
2 (X, p, T ) is an integral polynomial with degree ρ(X) given by V a

�

P a
2 (X,p,T ) = det

(
Id − T Frp|V a

�

)
, (A.12)

and P t
2(X, p, T ) is an integral polynomial with degree 22 − ρ(X) given by V t

�

P t
2(X,p,T ) = det

(
Id − T Frp|V t

�

)
. (A.13)
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