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We investigate the supereigenvalue model in the Ramond sector. We prove that its partition function 
can be obtained by acting on elementary functions with exponents of the given operators. The Virasoro 
constraints for this supereigenvalue model are presented. The remarkable property of these bosonic 
constraint operators is that they obey the Witt algebra and null 3-algebra. The compact expression of 
correlators can be derived from these Virasoro constraints.
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1. Introduction

Matrix models play important roles in physics and mathematics. Generally speaking they are quantum field theories where the field 
is an N × N real or complex matrix. Supereigenvalue models can be regarded as supersymmetric generalizations of matrix models. They 
have attracted considerable attention [1–11]. The supereigenvalue model in the Ramond sector is given by [9]

Z =
∫

dN zdNθ�R(z, θ)βe−
√

β
h̄

∑N
a=1 V R (za,θa), (1)

where dN zdNθ = ∏N
a=1 dzadθa , N is even, za are positive real variables, θa are Grassmann variables, �R (z, θ) is the Vandermonde-like 

determinant,

�R(z, θ) =
∏

1≤a<b≤N

(za − zb − 1

2
(za + zb)

θaθb√
zazb

), (2)

and

V R(z, θ) = V B(z) + V F (z)
θ√

z
, V B(z) =

∞∑
k=0

tkzk, V F (z) =
∞∑

k=0

ξkzk, (3)

ξk are Grassmann coupling constants, V B(z) and V F (z) are the bosonic and fermionic potentials, respectively.
The various constraints for matrix models have been constructed, such as Virasoro constraints [12–15], W1+∞ constraints [16,17] and 

Ding-Iohara-Miki constraints [18,19]. They are useful in analyzing the structures of matrix models. For the partition function (1), it is 
known that there are the super Virasoro constraints [9]

Ln Z = 1

16
δn,0 Z , Gn Z = 0, n ∈N, (4)

where
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Ln =
∞∑

k=1

ktk
∂

∂tn+k
+

∞∑
k=0

(k + n

2
)ξk

∂

∂ξk+n
+ h̄2

2

n∑
k=0

∂

∂tn−k

∂

∂tk
+ h̄2

4
n

∂

∂ξ0

∂

∂ξn

+ h̄2

2

n−1∑
k=1

k
∂

∂ξn−k

∂

∂ξk
− h̄

2
√

β
(1 − β)(n + 1)

∂

∂tn
+ 1

16
δn,0, (5)

Gn =
∞∑

k=1

ktk
∂

∂ξn+k
+

∞∑
k=0

ξk
∂

∂tk+n
+ h̄2

2

∂

∂ξ0

∂

∂tn
+ h̄2

n∑
k=1

∂

∂ξk

∂

∂tn−k
− h̄√

β
(1 − β)(n + 1

2
)

∂

∂ξn
. (6)

The operators (5) and (6) obey the super Virasoro algebra

[Lm, Ln] = (m − n)Lm+n, (7a)

[Lm, Gn] = m − 2n

2
Gm+n, (7b)

{Gm, Gn} = 2Lm+n − 1

8
δm+n,0. (7c)

Recently a formal supereigenvalue model in the Ramond sector is investigated [11]

Z̆ =
∫ 2N∏

a=1

dzadθa�(z, θ)e− N
t

∑2N
a=1(z2

a+V B (z2
a )+V F (z2

a )θa), (8)

where

�(z, θ) =
∏

1≤a<b≤2N

(z2
a − z2

b − θaθb

2
(z2

a + z2
b)), (9)

and the bosonic variables za are integrated from −∞ to +∞. To calculate the correlation functions of the model (8), the recursive 
formalism has been derived. It was found that the correlation functions obtained from the recursion formalism have no poles at the 
irregular ramification point due to a supersymmetric correction.

The partition functions of various matrix models can be obtained by acting on elementary functions with exponents of the given 
operators, such as Gaussian Hermitian and complex matrix models and the given W operators called W -representations [20–23]. For the 
case of supersymmetric generalizations, to our best knowledge, it has not been reported so far in the existing literature. In this letter, we 
investigate the supereigenvalue model in the Ramond sector and derive its W -representations. We also give the correlators in this matrix 
model.

2. Generation of the supereigenvalue model in the Ramond sector by Ŵ -operator

Let us consider the supereigenvalue model in the Ramond sector

Z̄ = 1

�

∫
dN zdNθ�R(z, θ)βe−

√
β

h̄

∑N
a=1(V R (za,θa)+za), (10)

which can be obtained by taking the shift t1 → t1 + 1 in the bosonic potential V B(z) of (1), the normalization factor � is given by

� =
∫

dN zdNθ�R(z, θ)βe−
√

β
h̄

∑N
a=1 za . (11)

We note that the partition function (10) is invariant under

za → za + ε

∞∑
n=0

(n + 1)tn+1zn+1
a , θa → θa + ε

∞∑
n=0

n(n + 1)

2
tn+1zn

aθa, (12)

with an infinitesimal bosonic parameter ε . It leads to the bosonic loop equation

∞∑
n=0

(n + 1)tn+1 < −
√

β

h̄

N∑
a=1

zn+1
a −

√
β

h̄

∞∑
k=0

(k + n

2
)ξk

N∑
a=1

zk+n
a

θa√
za

−
√

β

h̄

∞∑
k=1

ktk

N∑
a=1

zn+k
a + β

2

n∑
k=0

N∑
a,b=1

zn−k
a zk

b

+β

4
n

N∑
a,b=1

zn
b

θaθb√
zazb

+ β

2

n−1∑
k=1

N∑
a,b=1

kzn−k
a zk

b
θaθb√
zazb

+ 1 − β

2
(n + 1)

N∑
a=1

zn
a >= 0, (13)

where the expectation value is taken with respect to the partition function (10). The loop equation (13) can be derived by applying the 
following differential operators to the partition function (10)

(Ŵ1 + D̂1) Z̄ = 0, (14)

where
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D̂1 =
∞∑

k=1

ktk
∂

∂tk
,

Ŵ1 =
∞∑

n,k=1

nktntk
∂

∂tn+k−1
+

∞∑
n=1

∞∑
k=0

n(k + n − 1

2
)tnξk

∂

∂ξn+k−1
+ h̄2

2

∞∑
n=1

n−1∑
k=0

ntn
∂

∂tk

∂

∂tn−k−1

+ h̄2

4

∞∑
n=1

n(n − 1)tn
∂

∂ξ0

∂

∂ξn−1
+ h̄2

2

∞∑
n=3

n−2∑
k=1

nktn
∂

∂ξn−k−1

∂

∂ξk
− h̄

2
√

β
(1 − β)

∞∑
n=1

n2tn
∂

∂tn−1
. (15)

The partition function (10) is also invariant under

za → za + ε

∞∑
n=0

(n + 1)ξn+1zn
a
√

zaθa, θa → θa − ε

∞∑
n=0

(n + 1)ξn+1zn
a
√

za, (16)

which leads to another bosonic loop equation

∞∑
n=0

(n + 1)ξn+1 < −
√

β

h̄

N∑
a=1

zn+1
a

θa√
za

−
√

β

h̄

∞∑
k=0

ktk

N∑
a=1

zk+n
a

θa√
za

−
√

β

h̄

∞∑
k=0

ξk

N∑
a=1

zk+n
a

+β

2

N∑
a,b=1

θa√
za

zn
b + β

n∑
k=1

N∑
a,b=1

zk
a

θa√
za

zn−k
b + (1 − β)(n + 1

2
)

N∑
a=1

zn
a

θa√
za

>= 0. (17)

Similarly, (17) can be also obtained by applying the following differential operators to the partition function

(Ŵ2 + D̂2) Z̄ = 0, (18)

where

D̂2 =
∞∑

k=1

kξk
∂

∂ξk
,

Ŵ2 =
∞∑

n,k=1

nktkξn
∂

∂ξn+k−1
+

∞∑
n=1

∞∑
k=0

nξnξk
∂

∂tn+k−1
+ h̄2

2

∞∑
n=1

nξn
∂

∂ξ0

∂

∂tn−1

+h̄2
∞∑

n=2

n−1∑
k=1

nξn
∂

∂ξk

∂

∂tn−k−1
− h̄√

β
(1 − β)

∞∑
n=1

n(n − 1

2
)ξn

∂

∂ξn−1
. (19)

Combining (14) and (18), we have

(Ŵ + D̂) Z̄ = 0, (20)

where D̂ = D̂1 + D̂2, Ŵ = Ŵ1 + Ŵ2 and their commutation relation is

[D̂, Ŵ ] = Ŵ . (21)

Since the partition function (10) only depends on even numbers of the fermionic variables, it can be formally expanded as

Z̄ =
∞∑

s=0

Z̄ (s) = e−
√

β
h̄ Nt0

[
1 −

√
β

h̄
Ck1tk1 + 1

2! (
√

β

h̄
)2Ck1,k2tk1tk2 − 1

2! (
√

β

h̄
)2C s1,s2ξs1ξs2

− 1

3! (
√

β

h̄
)3Ck1,k2,k3tk1tk2tk3 + 1

2! (
√

β

h̄
)3C s1,s2

k1
tk1ξs1ξs2 + · · ·

]
, (22)

where

Z̄ (s) = e−
√

β
h̄ Nt0

[ ∞∑
n=0

∞∑
m=0

(−1)
m(m+1)

2 (−
√

β
h̄ )n+m

n!m!
∑

k1+···+kn+
s1+···+sm=s
k1,··· ,kn≥1
s1,··· ,sm≥0

C s1,··· ,sm
k1,··· ,kn

tk1 · · · tknξs1 · · · ξsm

]
, (23)

m is even and the coefficients C s1,··· ,sm
k1,··· ,kn

are the correlators defined by

C s1,··· ,sm
k1,··· ,kn

= 1

�

∫
dN zdNθ�R(z, θ)βe−

√
β

h̄

∑N
a=1 za

N∑
a1,··· ,an=1

zk1
a1 · · · zkn

an zs1
b1

θb1√
zb1

· · · zsm
bm

θbm√
zbm

. (24)
b1,··· ,bm=1
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For the cases of m = 0 and n = 0 in (24), respectively, we denote

Ck1,··· ,kn = 1

�

∫
dN zdNθ�R(z, θ)βe−

√
β

h̄

∑N
a=1 za

N∑
a1,··· ,an=1

zk1
a1 · · · zkn

an , (25)

and

C s1,··· ,sm = 1

�

∫
dN zdNθ�R(z, θ)βe−

√
β

h̄

∑N
a=1 za

N∑
b1,··· ,bm=1

zs1
b1

θb1√
zb1

· · · zsm
bm

θbm√
zbm

. (26)

Due to the properties of the fermionic variables, we have

C s1,··· ,sm
k1,··· ,kn

= 0, m > N, (27)

and

C
s1,··· ,si ,··· ,s j ,··· ,sm

k1,··· ,kn
= 0, si = s j . (28)

The operator D̂ acting on Z̄ (s) gives

D̂ Z̄ (s) = s Z̄ (s). (29)

By means of (20), (21) and (29), we obtain

Ŵ Z̄ (s) = −(s + 1) Z̄ (s+1). (30)

The partition function (10) is graded by the total (t, ξ)-degree. From (29) and (30), we see that the D̂ and Ŵ are indeed the operators 
preserving and increasing the grading, respectively. In terms of the operator Ŵ , (22) can be rewritten as

Z̄ = Z̄ (0) − Ŵ Z̄ (0) + 1

2! Ŵ 2 Z̄ (0) − 1

3! Ŵ 3 Z̄ (0) + · · ·

= e−Ŵ · e−
√

β
h̄ Nt0 . (31)

It indicates that the supereigenvalue model in the Ramond sector can be obtained by acting on elementary functions with exponents of 
the given bosonic operators Ŵ .

For the (l + 1)-th power of Ŵ , it can be formally expressed as

Ŵ l+1 =
2(l+1)∑

a,b,c,d=0

∞∑
i1,··· ,ia=0
j1,··· , jb=0

∑
k1+···+kc+

s1+···+sd=ρ
k1,··· ,kc≥1
s1,··· ,sd≥0

P̂ (k1,··· ,kc |s1,··· ,sd)

(i1,··· ,ia| j1,··· , jb)
tk1 · · · tkc ξs1 · · · ξsd

∂

∂ti1

· · · ∂

∂tia

∂

∂ξ j1

· · · ∂

∂ξ jb

, (32)

where ρ = ∑a
μ=1 iμ + ∑b

ν=1 jν + l + 1, the coefficients P̂ (k1,··· ,kc |s1,··· ,sd)

(i1,··· ,ia| j1,··· , jb)
are polynomials with respect to iμ , jν , kμ̄ and sν̄ , μ̄ = 1, · · · , c, 

ν̄ = 1, · · ·d.
Substituting (32) into (31), comparing the coefficients of tk1 · · · tkn ξs1 · · · ξsm with 

∑n
μ=1 kμ +∑m

ν=1 sν = l + 1, kμ ≥ 1, sν ≥ 0 in (31) and 
(22), we obtain

(−1)l+1

(l + 1)! e−
√

β
h̄ Nt0

2(l+1)∑
α=1

∑
σ1,σ2

(−
√

β

h̄
N)α(−1)τ (σ2(s1),··· ,σ2(sm)) P̂ (σ1(k1),··· ,σ1(kn)|σ2(s1),··· ,σ2(sm))

(0, · · · ,0︸ ︷︷ ︸
α

| )

= (−1)
m(m+1)

2 (−
√

β
h̄ )n+m

n!m! e−
√

β
h̄ Nt0

∑
σ1,σ2

(−1)τ (σ2(s1),··· ,σ2(sm))Cσ2(s1),··· ,σ2(sm)

σ1(k1),··· ,σ1(kn)

= (−1)
m(m+1)

2 (−
√

β
h̄ )n+m

n!m! e−
√

β
h̄ Nt0λ(k1,··· ,kn)λ(s1,··· ,sm)C s1,··· ,sm

k1,··· ,kn
, (33)

where σ1 denotes all the distinct permutations of (k1, · · · , kn), σ2 is all the distinct permutations of (s1, · · · , sm) and its inverse number 
is denoted as τ (σ2(s1), · · · , σ2(sm)), λ(k1,··· ,kn) and λ(s1,··· ,sm) are the numbers of distinct permutations of (k1, · · · , kn) and (s1, · · · , sm), 
respectively.

Then we obtain the correlators from (33)

C s1,··· ,sm
k1,··· ,kn

=
(−1)l+1+ m(m+1)

2 n!m!(− h̄√
β
)n+m

(l + 1)!λ(k1,··· ,kn)λ(s1,··· ,sm)

2(l+1)∑
α=1

(−
√

β

h̄
N)α P (k1,··· ,kn|s1,··· ,sm)

(0, · · · ,0︸ ︷︷ ︸ | ) , (34)
α
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where P (k1,··· ,kn|s1,··· ,sm)

(0, · · · ,0︸ ︷︷ ︸
α

| ) = ∑
σ1,σ2

(−1)τ (σ2(s1),··· ,σ2(sm)) P̂ (σ1(k1),··· ,σ1(kn)|σ2(s1),··· ,σ2(sm))

(0, · · · ,0︸ ︷︷ ︸
α

| ) , 
∑n

μ=1 kμ + ∑m
ν=1 sν = l + 1, kμ ≥ 1 and sν ≥ 0.

When particularized to the m = 0 and n = 0 cases in (34), respectively, we have

Ck1,··· ,kn =
(−1)l+1n!(− h̄√

β
)n

(l + 1)!λ(k1,··· ,kn)

2(l+1)∑
α=1

(−
√

β

h̄
N)α P (k1,··· ,kn| )

(0, · · · ,0︸ ︷︷ ︸
α

| ), (35)

C s1,··· ,sm =
(−1)l+1+ m(m+1)

2 m!(− h̄√
β
)m

(l + 1)!λ(s1,··· ,sm)

2(l+1)∑
α=1

(−
√

β

h̄
N)α P ( |s1,··· ,sm)

(0, · · · ,0︸ ︷︷ ︸
α

| ). (36)

For examples, let us list some correlators.
(I) When l = 0 in (32), we have

P (1| )
(0,0| ) = h̄2

2
, P (1| )

(0| ) = − h̄

2
√

β
(1 − β), P ( |1,0)

(0| ) = 1. (37)

Substituting (37) into (35) and (36), we obtain

C1 = 1

λ(1)

[ − N P (1| )
(0| ) +

√
β

h̄
N2 P (1| )

(0,0| )
] = h̄

2
√

β
N Ñ,

C1,0 = − 2h̄√
βλ(1,0)

N P ( |1,0)

(0| ) = − h̄√
β

N, (38)

where λ(1) = 1, λ(1,0) = 2, Ñ = βN + (1 − β).
(II) When l = 1 in (32), we have

P (1,1| )
(0,0,0,0| ) = h̄4

4
, P (1,1| )

(0,0,0| ) = − h̄3

2
√

β
(1 − β), P (1,1| )

(0,0| ) = h̄2

4β
(1 − β)2 + h̄2

2
,

P (2| )
(0,0,0| ) = h̄4, P (1,1| )

(0| ) = − h̄

2
√

β
(1 − β), P (2| )

(0,0| ) = 2h̄3

√
β

(1 − β),

P (1|1,0)

(0,0,0| ) = h̄2, P (2| )
(0| ) = h̄2

β
(1 − β)2 + h̄2

2
, P (1|1,0)

(0,0| ) = − h̄√
β

(1 − β),

P ( |2,0)

(0,0| ) = 3h̄2, P ( |2,0)

(0| ) = −4
√

β

h̄
(1 − β), P (1|1,0)

(0| ) = 2. (39)

Substituting (39) into (34), (35) and (36), we obtain

C2 = − h̄

2
√

βλ(2)

3∑
α=1

(−
√

β

h̄
N)α P (2| )

(0, · · · ,0︸ ︷︷ ︸
α

| ) = h̄2

4β
N(2Ñ2 + β),

C1,1 = h̄2

βλ(1,1)

4∑
α=1

(−
√

β

h̄
N)α P (1,1| )

(0, · · · ,0︸ ︷︷ ︸
α

| ) = h̄2

4β
Ñ N(Ñ N + 2),

C2,0 = − h̄2

βλ(2,0)

2∑
α=1

(−
√

β

h̄
N)α P ( |2,0)

(0, · · · ,0︸ ︷︷ ︸
α

| ) = − h̄2

2β
N(3Ñ + 1 − β),

C1,0
1 =

( h̄√
β
)3

λ(1)λ(1,0)

3∑
α=1

(−
√

β

h̄
N)α P (1|1,0)

(0, · · · ,0︸ ︷︷ ︸
α

| ) = − h̄2

2β
N(N Ñ + 2), (40)

where λ(2) = λ(1,1) = 1, λ(2,0) = 2.
(III) When l = 2 in (32), by direct calculations, it is easy to obtain the precise expression of the 3-th power of Ŵ . Then we have the 

final results from (34)

C3 = 1

8
(

h̄√
β

)3N[5Ñ3 + (1 − β)Ñ2 + 10β Ñ + 3β(1 − β)],

C1,2 = 1

8
(

h̄√
β

)3N(2N Ñ3 + 8Ñ2 + βN Ñ + 4β),

C2,1 = 1
(

h̄√ )3N(−2Ñ2 + βN Ñ + β),

4 β
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C3,0 = 1

4
(

h̄√
β

)3N[−10Ñ2 − 9(1 − β)Ñ − 5β − 3(1 − β)2],

C1,1,1 = 1

8
(

h̄√
β

)3N Ñ(N Ñ + 2)(N Ñ + 4),

C2,0
1 = 1

4
(

h̄√
β

)3N[−3N Ñ2 − 12Ñ − (1 − β)N Ñ − 4(1 − β)],

C1,0
2 = 1

4
(

h̄√
β

)3N[−2N Ñ2 − 13Ñ − 3(1 − β)],

C1,0
1,1 = 1

4
(

h̄√
β

)3N(−N2 Ñ2 − 6N Ñ − 8). (41)

3. Virasoro constraints for the supereigenvalue model in the Ramond sector

It is known that the partition function (1) is invariant under two pairs of the changes of integration variables (za → za + εzn+1
a , θa →

θa + 1
2 εnzn

aθa) and (za → za + zn
a
√

zaθaδ, θa → θa + zn
a
√

zaδ), where ε and δ are the infinitesimal bosonic and fermionic constants, respec-
tively. These invariances, respectively, lead to the bosonic and fermionic loop equations which give the super Virasoro constraints (4). 
Taking the shift t1 → t1 + 1 in (4), we have the super Virasoro constraints for (10)

L̄n Z̄ = 1

16
δn,0 Z̄ , Ḡn Z̄ = 0, n ∈N. (42)

The super Virasoro algebra (7) still holds for the constraint operators L̄n and Ḡn .
From the super Virasoro constraints (42), the recursive formulas for correlators can be obtained. In principle, we can calculate the 

correlators step by step from the recursive formulas. However, the compact expression of correlators (34) can not be derived from them.
Let us introduce the bosonic operators

L̂l = Ŵ l(Ŵ + D̂), l ∈N. (43)

These operators are different from L̄n . They obey not only the Witt algebra (7a), but also the null Witt 3-algebra [24]

[L̂l1 , L̂l2 , L̂l3 ] := L̂l1 [L̂l2 , L̂l3 ] − L̂l2 [L̂l1 , L̂l3 ] + L̂l3 [L̂l1 , L̂l2 ] = 0. (44)

The action of the operators (43) on the partition function (10) leads to the Virasoro constraints

L̂l Z̄ = 0. (45)

Recently similar Virasoro constraints without the Grassmann variables have been presented for the Gaussian Hermitian matrix model and 
they have been used to derive the correlators of the matrix model [25].

Let us first consider the Virasoro constraints (45) with l = 0, i.e., (20). Substituting (22) into (20), by collecting the coefficients of tl
1

and setting to zero, we obtain

C1 = h̄

2
√

β
N Ñ, (46)

and the recursive relations

C1, · · · ,1︸ ︷︷ ︸
l+1

= h̄

2
√

β
(N Ñ + 2l)C1, · · · ,1︸ ︷︷ ︸

l

. (47)

From (47), it is easy to obtain

C1, · · · ,1︸ ︷︷ ︸
l+1

= (
h̄

2
√

β
)l+1

l∏
j=0

(N Ñ + 2 j). (48)

We observe that it is difficult to give the precise expression of P (

l+1︷ ︸︸ ︷
1, · · · ,1 | )

(0, · · · ,0︸ ︷︷ ︸
α

| ) from Ŵ l+1. However, by taking n = l + 1 and k1 = · · · =

kn = 1 in (35) and using (48), we obtain

P (

l+1︷ ︸︸ ︷
1, · · · ,1 | )

(0, · · · ,0︸ ︷︷ ︸
α

| ) = 1

2l+1
(− h̄√

β
)α

[ ∑
2i+ j=α−2

0≤i, j≤l

β i+1(1 − β) j +
∑

2i+ j=α−1
0≤i, j≤l

β i(1 − β) j+1
]

·
∑

1≤r1<r2<···<ri+ j≤l

2l−(i+ j) · l!∏i+ j
k=0 rk

, α = 1, · · · ,2(l + 1). (49)
r0=1
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Let us collect the coefficients of tl
1ξ0ξ1 in (20) and set to zero, we have

C0,1 = h̄√
β

N, (50)

and the recursive relations

C0,1
1, · · · ,1︸ ︷︷ ︸

l

= h̄√
β(l + 1)

[l(l + 1 + 1

2
N Ñ)C0,1

1, · · · ,1︸ ︷︷ ︸
l−1

+ NC1, · · · ,1︸ ︷︷ ︸
l

]. (51)

Substituting (48) into (51) we obtain

C0,1
1, · · · ,1︸ ︷︷ ︸

l

= 2N(
h̄

2
√

β
)l+1

l∏
j=1

(N Ñ + 2 j). (52)

Proceeding the similar procedure for the case of the coefficients of tl
1t2 in (20), we have

C2 = h̄

4
√

β
(2ÑC1 + βC0,1) = h̄2

4β
N(2Ñ2 + β), (53)

and the recursive relations

C2,1, · · · ,1︸ ︷︷ ︸
l

= h̄√
β

l

l + 2
(l + 3 + 1

2
N Ñ)C2,1, · · · ,1︸ ︷︷ ︸

l−1

+ h̄√
β(l + 2)

(
β

2
C0,1

1, · · · ,1︸ ︷︷ ︸
l

+ 2ÑC1, · · · ,1︸ ︷︷ ︸
l+1

). (54)

Substituting (48) and (52) into (54), we obtain

C2,1, · · · ,1︸ ︷︷ ︸
l

= (
h̄

2
√

β
)l+2N(2Ñ2 + β)

l∏
j=1

(N Ñ + 2 j + 2). (55)

Comparing (52), (55) with (34), we obtain

P (

l︷ ︸︸ ︷
1, · · · ,1 |0,1)

(0, · · · ,0︸ ︷︷ ︸
α

| ) = P (2,

l−1︷ ︸︸ ︷
1, · · · ,1 | )

(0, · · · ,0︸ ︷︷ ︸
α

| ) = 0, α = 2(l + 1), (56)

and

P (

l︷ ︸︸ ︷
1, · · · ,1 |0,1)

(0, · · · ,0︸ ︷︷ ︸
α

| ) = (−1)α(l + 1)

2l
(

h̄√
β

)α−1
∑

2i+ j=α−1
0≤i, j≤l

β i(1 − β) j
∑

1≤r1<···<ri+ j≤l
r0=1

2l−(i+ j) · l!∏i+ j
k=0 rk

,

P (2,

l−1︷ ︸︸ ︷
1, · · · ,1 | )

(0, · · · ,0︸ ︷︷ ︸
α

| ) = l(l + 1)

2l+1
(
−h̄√

β
)α+1

[ ∑
2i+ j=α−3
0≤i, j≤l−1

2β i+2(1 − β) j +
∑

2i+ j=α−2
0≤i, j≤l−1

4β i+1(1 − β) j+1

+
∑

2i+ j=α−1
0≤i, j≤l−1

(2(1 − β)2 + β)β i(1 − β) j
] ∑

2≤r1<···<ri+ j≤l
r0=1

2l−1−(i+ j) · l!∏i+ j
k=0 rk

, (57)

for α = 1, · · · , 2l + 1.
We have derived the special correlators from (20). It is known that the compact expression of correlators (34) can not be derived from 

the super Virasoro constraints (42). However, it should be pointed out that the special correlators (48), (52) and (55) can be still obtained 
from (42).

Let us consider the case of (45) with l 	= 0. By means of (20) and (21), (45) can be rewritten as

Ŵ l+1 Z̄ = (−1)l+1
l∏

j=0

(D̂ − j) Z̄ . (58)

Substituting (32) into (58), by collecting the coefficients of tk1 · · · tkn ξs1 · · · ξsm with 
∑n

μ=1 kμ +∑m
ν=1 sν = l + 1 and setting to zero, we may 

also derive the correlators (34).
We have achieved the desired correlators from the Virasoro constraints (45). Unlike the operators L̄n in (42), the remarkable property 

of the constraint operators (43) is that these bosonic operators yield the higher algebraic structures. It should be noted that the closure of 
the super algebra does not hold for (43) and the fermionic operators Ḡn in (42).
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4. Summary

We have investigated the supereigenvalue model in the Ramond sector and proved that its partition function can be obtained by acting 
on elementary functions with exponents of the Ŵ operators. In terms of the operators D̂ and Ŵ preserving and increasing the grading, 
respectively, we have constructed the Virasoro constraints for this supereigenvalue model, where the constraint operators obey the Witt 
algebra and null 3-algebra. The compact expression of correlators (34) can be derived from these Virasoro constraints. It should be noted 
that this desired result can not be derived from the well known super Virasoro constraints (42). For the supereigenvalue model in the 
Neveu-Schwarz sector, whether its partition function can be expressed in terms of W -representation still deserves further study.

We have only constructed the Virasoro constraints for the supereigenvalue model (10). The remarkable property of these bosonic 
constraint operators is that they yield the higher algebraic structures. It is certainly worth to construct the super (Virasoro) constraints for 
supereigenvalue models, where the super higher algebraic structures hold for the bosonic and fermionic constraint operators. It would be 
interesting to study further properties of supereigenvalue models from these constraints.
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