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Resumo

Apesar do sucesso do Modelo Padrão no que concerne a previsões teóricas, há diversos resultados

experimentais que este não consegue explicar, havendo portanto razões para acreditar na existência de

nova f́ısica além deste. As oscilações de neutrinos e consequentemente as suas massas são exemplo disso

mesmo.

Experimentalmente sabe-se que essas massas são bastante pequenas quando comparadas com as mas-

sas das part́ıculas do Modelo Padrão. Entre várias possibilidades teóricas para explicar estas massas

muito pequenas, o mecanismo de seesaw é um modelo simples e bem motivado. Na versão mı́nima deste

modelo são introduzidas part́ıculas pesadas que desacoplam da teoria no universo primordial.

Para que uma teoria seja consistente as simetrias clássicas devem ser preservadas ao ńıvel quântico, de

forma a que não ocorram anomalias. O cancelamento das mesmas leva a constrangimentos nos parâmetros

da teoria. Uma solução interessante é modificar a simetria de gauge de forma a que haja cancelamento

das anomalias.

Nesta tese apresentamos uma pequena revisão de alguns conceitos do Modelo Padrão, relevantes

para os aspectos supracitados. De seguida discutimos a implementação de uma nova simetria, livre de

anomalias, e a respectiva ligação com a estrutura de sabor da matriz de massa dos neutrinos, obtida

através do mecanismo de seesaw. Discutimos ainda a possibilidade de distinguir diferentes simetrias de

gauge e diferentes tipos de mecanismo de seesaw em aceleradores.

Palavras-chave: Anomalias de Gauge, F́ısica dos Neutrinos, Mecanismo Seesaw, Quantização

da Carga, Simetrias de Gauge.
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Abstract

Despite the success of the Standard Model concerning theoretical predictions, there are several exper-

imental results that cannot be explained and there are reasons to believe that there exists new physics

beyond it. Neutrino oscillations, and hence their masses, are examples of this.

Experimentally it is known that neutrinos masses are quite small, when compared to all Standard

Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mech-

anism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced

that decouple from the theory in the early universe.

To build consistent theories, classical symmetries need to be preserved at quantum level, so that

there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the

theory. One attractive solution is to realize the anomaly cancellation through the modification of the

gauge symmetry.

In this thesis we present a short review of some features of the Standard Model, relevant to the

aspects mentioned above. We then discuss the implementation of new anomaly free gauge symmetries

and their connection with the flavour structure of the neutrino mass matrix obtained through the seesaw

mechanism. The possibility of distinguishing different gauge symmetries and seesaw realizations at collider

experiments is also addressed.

Keywords: Charge Quantization, Gauge Anomalies, Gauge Symmetries, Neutrino Physics,

Seesaw Mechanism.
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Outline

The present thesis is divided in four structural chapters. The first chapter is dedicated to a review

of the Standard Model of particle physics, with major emphasis, of course, in the subjects vital to the

study here exposed. This chapter has a pivotal role in this work, in that it will allow us to present the

reader with the language, notation and conventions we will use further on.

Chapter 2 comprises the introduction and discussion of the concept of gauge anomalies and their

cancellations. The chiral gauge anomaly is addressed, with the specific case of the Standard Model being

shown as the archetypal anomaly-free theory.

The third chapter starts with a brief review of neutrino masses, manifest due to their established oscil-

lations, and types I, II and III seesaw mechanisms. It then moves to a discussion of how the anomaly-free

conditions are modified and the electric charge quantization is realized within these minimal extensions

to the SM. The chapter thus ends with a phenomenological study of feasible flavour structures of the

effective neutrino mass matrix, with a particular focus on the valid two-zero texture realizations of type

I and/or type III seesaw mechanisms.

Finally, in Chapter 4, the approach of cancelling gauge anomalies and the constraints that ensue is

employed to the study of an Abelian extension to the gauge group of the SM with an extra U(1)X gauge

symmetry. The allowed charge assignments under this new gauge symmetry are studied, in the context

of either two or three additional right-handed neutrino singlets of fermion triplets. The phenomeno-

logical constraints on these theories are then inspected, with a further discussion on the possibility of

distinguishing different charge assignments and neutrino textures at collider experiments.

Part of Chapter 3 and the whole of Chapter 4 are summarized in Ref. [1].
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Chapter 1

Standard Model

The Standard Model (SM) of particle physics is a theory concerning three of the fundamental

forces/interactions in Universe, electromagnetic, weak, and strong interactions, which mediate the dynam-

ics of the known subatomic particles [2]. It is described by a Lagrangian, which predicts very accurately

many of the experimentally verified phenomena (e.g. anomalous magnetic moment [3] and weak boson

masses [4]).

In July/2012, LHC experiments at CERN announced the discovery of a Higgs-like particle [5, 6]. This

is one of the most important discoveries in particle physics and a triumph for the SM because the Higgs

boson is one of its main ingredients. Hence, in 2013, Higgs and Englert were awarded with the Nobel

prize in Physics for the theoretical discovery of the mechanism that is at the origin of the masses of all

the SM particles.

In this chapter we review a few concepts of the SM that are relevant to the topics of this thesis, namely

the electroweak interactions, the Higgs mechanism and the gauge symmetries of the SM Lagrangian.

1.1 Quantum Electrodynamics

Back in 1928, Paul Dirac obtained the well-known Dirac equation,

(iγµ∂µ −m)ψ =
(
i/∂ −m

)
ψ = 0 , (1.1)

describing a field ψ with spin- 1
2 , where γµ are the Dirac matrices. It was the first theory to account fully

for relativity in the context of quantum mechanics, being consistent with both the principles of quantum

mechanics and the theory of special relativity [7, 8]. Although this equation describes the hydrogen

spectrum completely, it needs further improvements to understand other quantum phenomena.

It became clear that quantization of fields provides the correct way to deal with fundamental parti-

cle interactions (precision tests on quantum electrodynamics (QED) point exactly this [9]). The main

quantity in a quantum or classical field theory is the Lagrangian L (φi, ∂µφi), which allows to obtain the

1



Euler-Lagrange equations through the principle of stationary action:

δS = δ

∫
d4xL = 0⇔

∫
d4x

[
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi)

]
=

∫
d4x

[
∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

]
δφi = 0

⇒ ∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

= 0 .

(1.2)

Given a specific L, Eq. (1.2) provides the equation of motion. As a trivial example, the Lagrangian

L = ψ
(
i/∂ −m

)
ψ , (1.3)

where ψ = ψ†γ0, leads to the Dirac equation, Eq. (1.1).

Another important feature of a quantum field theory (QFT) is the underlying symmetries that are

present in the Lagrangian of the theory. From Eq. (1.3) it is clear that the transformation

ψ → ψ′ = ψeiα , (1.4)

with α constant throughout space-time, leaves the Lagrangian invariant:

δL = L′ − L = 0 . (1.5)

Since α is constant, this is called a global invariance.

It is important to realize that an arbitrary change in the phase of the field (wave function) does

not affect the theory, but it is hard to conceive a real experiment where the phase is equal in different

laboratories/measurements. In another description, we are allowed to choose the phase convention locally,

so the Lagrangian of the theory is locally invariant and the theory is a gauge theory. The constraint of

being locally invariant enforces the derivative ∂µ to change into a covariant derivative Dµ which include

new fields. These fields are exchanged when particles interact, providing a quantum concept of force.

Under the local transformation

ψ → ψ′ = ψeiα(x) , (1.6)

the Lagrangian (1.3) should become

L = ψ
(
i /D −m

)
ψ , (1.7)

in order to be gauge invariant, since, by definition

Dµψ → (Dµψ)
′

= eiα(x)Dµψ . (1.8)

To check the transformation on the new field we construct Dµ = ∂µ +Aµ, so that

LA = ψ
(
i /D −m

)
ψ = ψ

(
i/∂ + i /A−m

)
ψ → L′A

L′A = ψ
(
i/∂ −m

)
ψ + iψγµψ∂µα+ ψ

(
i /A
′
)
ψ .

(1.9)

Due to gauge invariance δLA = 0, then

A′µ = Aµ − i∂µα⇔ δAµ = −i∂µα . (1.10)

To obtain the correct interaction with the electromagnetic field we change the coupling constant, so

Aµ → −ieAµ and identify Aµ as the photon [10]. The complete QED Lagrangian still needs the photon

kinetic term, which is also gauge invariant

Lkinetic = −1

4
FµνFµν , (1.11)

2



where Fµν is the electromagnetic tensor

Fµν = ∂µAν − ∂νAµ . (1.12)

The full Lagragian is1

LQED = −1

4
FµνFµν + ψ

(
i/∂ −m

)
ψ + eψγµψAµ . (1.13)

From a theoretical point of view, gauge invariance provides an explanation for the photon to be

massless, since a mass term as AµAµ is not allowed. However, it is the photon that physically ensures

consistency in the theory for different phases over space-time. Although Maxwell formulation of electro-

dynamics had already a gauge symmetry, only in the 40’s the importance of gauge theories and their

connection with QED was noticed [11–13].

Understanding QED as U(1) quantum gauge group theory with electric charge e as the group coupling

is fundamental to analyse the gauge group of the SM. Nevertheless, to comprise weak interactions, one

needs to go further.

1.2 Electroweak Interactions

In 1934 Fermi firstly proposed the weak interaction theory to describe β decay, introducing the

neutrino to satisfy the energy conservation principle [14],

n→ p+ e
Fermi−−−−−→ n→ p+ e+ νe . (1.14)

In order to explain this interaction, Fermi proposed the Lagrangian

Lβ =
Gβ√

2

(
ψpγ

µψn
) (
ψeγ

νψνe
)
gµν + H.c. =

Gβ√
2
JµhJ

ν
l gµν + H.c. , (1.15)

where

Jµh = ψpγ
µψn , Jµl = ψeγ

µψνe , (1.16)

are the hadronic and leptonic parts of the current, respectively.

Despite the similarities with QED, Lee and Yang stated that weak interaction should violate parity [15]

(QED does not). This fact became clear experimentally, and it was also verified that neutrinos have

negative helicity [16],

ψνe →
1− γ5

2
ψνe = ψLνe , (1.17)

where γ5 = iγ0γ1γ2γ3. Since we can write

ψ =
1− γ5

2
ψ +

1 + γ5

2
ψ = PLψ + PRψ = ψL + ψR , (1.18)

where

PL =
1− γ5

2
, and

PR =
1 + γ5

2
,

(1.19)

1There are also other terms that are gauge invariant, e.g. the gauge fixing term, but we will not present them explicitly.
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then the leptonic part of the current changes to

Jµl = ψeγ
µψLνe = ψLeγ

µψLνe , (1.20)

because the cross terms with ψRe vanish. Due to the same property of helicity projectors, a Dirac mass

term for neutrinos also vanishes2

LDiracmass = −mνeνe = −mνLeνLe = 0 . (1.21)

In 1958, Feynman and Gell-Mann proposed a different Lagrangian that summarizes the Fermi weak

interaction theory [17]

LF = 2
√

2GFJ
µJ†µ , (1.22)

where, Jµ has again a leptonic and a hadronic part. The leptonic current is

Jµl = eLγ
µνLe + µLγ

µνLµ + τLγ
µνLτ , (1.23)

although, by the time the theory was suggested, τ was still unknown. For the hadronic part of the

current, the problem is harder to address due to the strong interactions. Experimental tests reveal that

decays with |∆S| = 0, for example,

n→ p e− νe , (1.24)

have an amplitude similar to the leptonic processes, and decays with |∆S| = 1, for example,

Λ→ p e− νe , (1.25)

have a much smaller amplitude. However, if we consider the squared-sum of these amplitudes, weak

universality is nearly restored. As proposed by Cabibbo in 1963, we can write the hadronic part as [18]

Jµh =
(
dL cos θc + sL sin θc

)
γµuL , (1.26)

defined by an angle θc, the Cabibbo angle. Since Fermi weak theory is constructed in a similar way to

QED, it is clear that a new bosonic field Wµ should be present in analogy with the photon. Due to

electric charge conservation and the charge assignments

Qu =
2

3
, Qd = Qs = −1

3
, Qe = Qµ = Qτ = −1 , Qνe = Qνµ = Qντ = 0 , (1.27)

the new W boson is charged (QW+ = 1 , QW− = −1). Then the Lagrangian (1.22) becomes

LW =
gW√

2
JµW−µ + H.c. =

gW√
2

(
JµW−µ + J†µW+

µ

)
. (1.28)

Despite the fact that some features present in QED are analogous to those of the weak interactions,

there are several differences concerning the W boson. While the photon is massless, W must have a high

mass, because weak interactions have a very short length. The process e− + e+ → W− + W+ violates

unitarity, since the longitudinal polarization of the W leads to a cross section that grows with the center-

of-mass energy, whereas the similar QED process e−+e+ → γ+γ poses no problem because the photon is

2From here on, we label fermionic fields ψf simply with f .
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massless. Finally, the QED gauge group is simply U(1), while the gauge group of electroweak interactions

is not so straightforward to attain.

If we combine the left-handed fields νLα and eLα into an SU(2) doublet,

`Lα =


νLα
eLα


 , (1.29)

with α = 1, 2, 3 labelling fermions of the first, second and third family respectively, the leptonic part of

the current becomes

Jµl =

3∑

α=1

eLαγ
µνLα =

√
2

3∑

α=1

`LαT
−γµ`Lα . (1.30)

The leptonic part of the Lagrangian reads

LW = gW

3∑

α=1

`LαT
−W−µ γ

µ`Lα + H.c. = gW

3∑

α=1

`Lα
(
T−W−µ + T+W+

µ

)
γµ`Lα , (1.31)

where

T− =
1√
2


0 0

1 0


 , T+ =

1√
2


0 1

0 0


 , (1.32)

which can be related with the generators of SU(2) in the fundamental representation through

T± =
T 1 ± iT 2

√
2

, T i =
σi

2
,
[
T i, T j

]
= iεijkT k , (1.33)

where σi are the Pauli matrices and εijk is the Levi-Civita tensor. The presence of two SU(2) generators

gives us a hint for the gauge group of the electroweak theory. If we naively consider SU(2), the demand

of a third generator T 3 would lead to a neutral current

3∑

α=1

`LαT
3W 3

µγ
µ`Lα =

3∑

α=1

W 3
µ (νLαγ

µνLα − eLαγµeLα) , (1.34)

which cannot be identified with the electromagnetic current because it involves the neutrino (Qνα = 0)

and only left-handed fields. In 1961, S.L. Glashow proposed a model with four vectorial bosons to

describe both weak and electromagnetic interactions [19], which is now known as the SM electroweak

interaction. The proposed gauge group was the right one, SU(2)⊗U(1), however, the universality in the

intensity of leptonic and hadronic currents (neglecting effects from the Cabibbo angle θc), which points

towards a gauge theory, was only discovered later. Moreover, since the Higgs mechanism had not yet

been discovered, gauge theories did not get too much attention at the time.

It was only in 1967-1968 that Weinberg [20] and Salam [21] applied the spontaneous symmetry break-

ing (SSB) in the electroweak gauge theory in order to generate mass for gauge bosons. Since in 1972

the consistency of the theory (i.e. that it preserves unitarity and it is renormalizable) was proved by ’t

Hooft and Veltman [22, 23], it became clear that the gauge group of the SM electroweak sector is indeed

SU(2)⊗ U(1), and that the gauge bosons acquire mass through the Higgs mechanism.

1.3 Higgs Mechanism

The renowned Higgs mechanism was in fact discovered in 1964 by three independent groups, Higgs [24],

Brout and Englert [25] and Guralnik, Hagen and Kibble [26].

5



As we already discussed, a Lagrangian with terms that are not gauge invariant explicitly breaks the

underlying symmetry. On the other hand, SSB occurs when the ground state is not invariant but the

Lagrangian is still symmetric under the gauge group. The Higgs mechanism in the SM introduces only

one complex SU(2) doublet, the scalar Higgs field H, that realizes the electroweak SSB.

The relevant parts of the SM Lagrangian for this mechanism are

LHiggs = (DµH)
†

(DµH)− V (H) ,

Lgauge = −1

4
W iµνW i

µν −
1

4
BµνBµν ,

(1.35)

where the scalar potential V (H) is

V (H) = µ2H†H + λ
(
H†H

)2
. (1.36)

The field tensors are

W i
µν = ∂µW

i
ν − ∂νW i

µ + gW ε
ijkW j

µW
k
ν , (1.37)

and

Bµν = ∂µBν − ∂νBµ , (1.38)

where W i
µ, (i = 1, 2, 3) are the fields associated with SU(2) and Bµ is the field associated with U(1). The

covariant derivative acting on H is

DµH =
(
∂µ − igWW i

µT
i − igYBµYH

)
H , (1.39)

where gW and gY are, respectively, SU(2) and U(1) coupling constants and YH is the Higgs field hyper-

charge.

One can read the mass directly from the bilinear term in the theory (as we try to do for the photon in

Eq. (1.13), but this procedure is valid only if the vacuum expectation value (VEV) of the fields is null3.

If µ2 > 0, the ground state arises when the VEV of H is null and the mass spectrum can be read directly.

The interesting case, however, occurs when µ2 < 0. Since we can always perform a rotation to obtain the

Higgs VEV

〈0 |H| 0〉 = 〈H〉 =
1√
2


0

v


 , v2 = −µ

2

λ
, (1.40)

which minimizes the potential V , then we can parametrize

H =
ei
Tiξi

v√
2


 0

h+ v


 , (1.41)

with 〈h〉 = 0. Due to gauge invariance, it is always possible to fix the gauge such that the Goldstone

bosons are absent [27]. This is the so-called unitary gauge, where

H → H ′ = e−i
Tiξi

v H =
1√
2


 0

h+ v


 , (1.42)

which imposes the gauge field transformations

W i
µ →W

′i
µ = W i

µ −
1

vgW
∂µξ

i +
1

v
εijkξjW k

µ . (1.43)

3Lorentz invariance of the ground state constrains all but the Higgs field to have zero VEV.

6



Replacing these fields in Eq. (1.35), the field tensors remain unchanged, while for the covariant

derivative and the potential we get

(DµH)
†

(DµH) =

1

2

{
∂µh ∂

µh+
1

4
(v + h)

2 [
g2
W

(
W 1
µW

1µ +W 2
µW

2µ
)

+
(
gWW

3
µ − gYBµ

) (
gWW

3µ − gYBµ
)]}

,

V (H) =
µ2

2
(v + h)

2
+
λ

4
(v + h)

4
,

(1.44)

respectively. The relevant mass terms are

(DµH)
†

(DµH) =

· · ·+ 1

2

(
1

4
v2

)[
g2
W

(
W 1
µW

1µ +W 2
µW

2µ
)

+
(
gWW

3
µ − gYBµ

) (
gWW

3µ − gYBµ
)]
,

(1.45)

and

V (H) = · · ·+
(

1

2
µ2 +

3

2
λv2

)
h2 = · · · − 1

2

(
2µ2
)
h2 . (1.46)

Therefore, we obtain a scalar field h with mass

mh =
√
−2µ2 , (1.47)

from Eq. (1.46), and cross terms between the gauge bosons from Eq. (1.45). To correctly analyse the

mass spectrum, one needs to diagonalize the symmetric mass matrix M2

M2 =
1

4
v2




g2
W 0 0 0

0 g2
W 0 0

0 0 g2
W −gW gY

0 0 −gW gY g2
Y



, (1.48)

which have the following eigenvalues

1

4
v2g2

W ;
1

4
v2g2

W ;
1

4
v2
(
g2
W + g2

Y

)
; 0 . (1.49)

The respective normalized eigenvectors are

(1, 0, 0, 0) ,

(0, 1, 0, 0) ,
(

0, 0,
gW√

g2
W + g2

Y

,− gY√
g2
W + g2

Y

)
,

(
0, 0,

gY√
g2
W + g2

Y

,
gW√

g2
W + g2

Y

)
.

(1.50)

We know that the photon is massless. Then, labelling it with Aµ as in QED, and denoting the heavier

boson with Zµ, we can write4

Zµ
Aµ


 =


cW −sW
sW cW




W

3
µ

Bµ


 , (1.51)

4Since there are no cross-terms for W 1
µ and W 2

µ they are elements of the new basis as well.
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where

sW = sin θW =
gY√

g2
W + g2

Y

, and cW = cos θW =
gW√

g2
W + g2

Y

. (1.52)

It is clear now that electroweak SSB occurs due to the Higgs VEV, which leads to the vanishing of

the scalar fields (Goldstone bosons) in the presence of gauge bosons. There are several gauges where

Goldstone bosons do not disappear. Yet in the unitary gauge, these fields are absorbed by gauge bosons,

which become massive. In the SM, the three scalar fields introduced in Eq. (1.41) match the longitudinal

polarization of the three massive bosons, two W bosons and one Z boson. The complete mass spectrum

is

mh =
√
−2µ2 , mW =

v

2
gW , mZ =

v

2

√
g2
W + g2

Y , mA = 0 . (1.53)

Since weak interaction is described in terms of a charged and a neutral current, one usually write the

W bosons as

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.54)

because

W+
µ T

+ +W−µ T
− = W 1

µT
1 +W 2

µT
2 . (1.55)

Using this definition and Eq. (1.51), we are able to write the covariant derivative after SSB

DµH =
[
∂µ − igW

(
W+
µ T

+ +W−µ T
− + sWAµT

3 + cWZµT
3
)
− igY YH (cWAµ − sWZµ)

]
H =

[
∂µ − igW

(
W+
µ T

+ +W−µ T
−)− i gY gW√

g2
W + g2

Y

(
T 3 + YH

)
Aµ − i

g2
WT

3 − g2
Y YH√

g2
W + g2

Y

Zµ

]
H ,

(1.56)

where we identify the electric charge from QED Lagrangian Eq. (1.13) as

e =
gY gW√
g2
W + g2

Y

, Q = T 3 + Y . (1.57)

The electric charge operator Q is the conserved generator (Q.H = 0) related with the massless gauge

boson Aµ. Thus, the electroweak gauge group is spontaneously broken to the QED one.

Finally, under the new gauge group, electromagnetic, charged and neutral weak interactions are

manifestly present if we write the covariant derivative as

DµH =

[
∂µ − igW

(
W+
µ T

+ +W−µ T
−)− iQeAµ − i

gW
cW

(
T 3 − s2

WQ
)
Zµ

]
H . (1.58)

As we stated, the Higgs mechanism is the connecting piece between the electroweak gauge group and

massive bosons, allowing the unified theory of weak and electromagnetic forces to be renormalizable.

Nevertheless, to understand the full SM gauge group, we need to introduce the strong interactions.

1.4 Gauge Symmetries and Particle Content

In the same year that the Higgs mechanism was proposed (1964), a quark model describing the known

hadrons was also put forward by Gell-Mann [28]. The model relies on the internal symmetry of SU(3), in

which baryons and mesons are composite particles, made up of three quarks and a quark and anti-quark

pair, respectively.
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There is no experimental evidence for particles composed of leptons to exist. Therefore, the new

underlying (strong) force is expected to act solely on quarks. The strong force holds them together in

a similar way as atoms and molecules are held together by the electromagnetic force, so there is also an

equivalent for the electric charge, the colour charge. Quarks are introduced in 6 flavours (u, d, s, c, b, t),

each in the fundamental representation of the gauge group SU(3) (triplet). This fact suggests that the

underlying charge of the symmetry must have three kinds of values, commonly related with the three

primary colours (red, green and blue).

The strong or colour force carriers, called gluons, are the eight gauge bosons associated with the eight

generators of SU(3). As we can see from Eq. (1.58), gluons do not couple with the Higgs field, allowing

them to be massless and the corresponding gauge group to remain unbroken, even after SSB occurs.

We can finally write the full SM gauge group, before and after SSB

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−−−−→ SU(3)C ⊗ U(1)Q . (1.59)

Any quark of flavour f can be combined in an SU(3) triplet as

f =




fr

fg

f b


 , (1.60)

and left-handed components of up and down quarks can be combined in an SU(2) doublet

qL =


uL
dL


 . (1.61)

With this definition, we can write down the full SM particle content as

Fermions





Quarks





qLα =


uLα
dLα


 =




uL
dL


 ,


cL
sL


 ,


tL
bL






uRα = [uR, cR, tR]

dRα = [dR, sR, bR]

Leptons





`Lα =


νLα
eLα


 =




νLe
eL


 ,


νLµ
µL


 ,


νLτ
τL






eRα = [eR, µR, τR]

Bosons





Gauge





SU(3) : Gaµ , a = 1, . . . 8

SU(2) : W i
µ , i = 1, 2, 3

U(1) : Bµ

Higgs



H =


H

+

H0




(1.62)
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After SSB, we usually describe the Higgs and SU(2)L ⊗ U(1)Y bosons as

W 1
µ ,W

2
µ ,W

3
µ , Bµ, H

SSB−−−−→W±µ , Zµ, Aµ, h , (1.63)

and the remaining fields as in Eq. (1.62).

Under the SM gauge group, an SU(3) triplet transforms according to

f → f ′ = e−i
λa

2 θaf , (1.64)

where λa, a = 1, . . . 8 are the Gell-Mann matrices. An SU(2) doublet transforms according to

f → f ′ = e−iT
iωif , (1.65)

and every field with hypercharge Yf transforms as

f → f ′ = e−iαYf f . (1.66)

These transformation properties allow us to write down the covariant derivative for fermions as

DµqLα =

[
∂µ − igsGaµ

λa

2
− igW

(
W+
µ T

+ +W−µ T
−)− ieQAµ − i

gW
cW

(
T 3 − s2

WQ
)
Zµ

]
qLα ,

Dµ`Lα =

[
∂µ − igW

(
W+
µ T

+ +W−µ T
−)− ieQAµ − i

gW
cW

(
T 3 − s2

WQ
)
Zµ

]
`Lα ,

DµuRα =

(
∂µ − igsGaµ

λa

2
− ieQAµ + i tanθW eQZµ

)
uRα ,

DµdRα =

(
∂µ − igsGaµ

λa

2
− ieQAµ + i tanθW eQZµ

)
dRα ,

DµeRα = (∂µ − ieQAµ + i tanθW eQZµ) eRα .

(1.67)

Finally, we are able to describe the kinetic terms for fermions

Lfermion = qLαi /DqLα + `Lαi /D`Lα + uRαi /DuRα + dRαi /DdRα + eRαi /DeRα . (1.68)

From Eq. (1.35), we can also generalize the kinetic terms for gauge bosons

Lgauge = −1

4
BµνBµν −

1

4
W iµνW i

µν −
1

4
GaµνGaµν , (1.69)

with

Bµν = ∂µBν − ∂νBµ ,

W i
µν = ∂µW

i
ν − ∂νW i

µ + gW ε
ijkW j

µW
k
ν , i = 1, 2, 3 ,

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , a = 1, . . . 8 ,

(1.70)

where gs is the SU(3) coupling constant and fabc are group structure constants. The Higgs part of the

Lagrangian (LHiggs) remains the same.

With the introduction of the Higgs mechanism and the SM gauge group we understand how gauge

bosons become massive and formally describe particle interactions through the exchange of these bosons.

Nevertheless, it is necessary to include further terms in the Lagrangian to describe massive fermions. If

we include a Dirac mass term as in the QED Lagrangian given in Eq. (1.13), we obtain

−mfff = −mf

(
fRfL + fLfR

)
, (1.71)
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which is not invariant under SU(2)L⊗U(1)Y , since singlets and doublets of SU(2)L transform differently

and may have different hypercharge assignments.

Invariant mass terms for fermions can be constructed by requiring them to be massless before SSB.

Since, experimentally, left and right-handed components have the same electric charge, the Dirac mass

term (1.71) is invariant under U(1)Q. Therefore, one can include Yukawa interactions between fermions

and the Higgs field and demand that the SSB mechanism gives the mass terms for fermions. The correct

gauge invariant Yukawa Lagrangian is

LY ukawa = −Yαβ
u qLαH̃uRβ −Yαβ

d qLαHdRβ −Yαβ
e `LαHeRβ + H.c. , (1.72)

where H̃ = iσ2H∗ and Yu,d,e are respectively the up quark, down quark and charged-lepton Yukawa

couplings matrices. These terms are clearly invariant under SU(3)C ⊗ SU(2)L and constrain the hyper-

charge assignments of fermion fields. After SSB takes place each term can be split into a mass term and

an interaction one

Lmass = −mαβ
u uLαuRβ −mαβ

d dLαdRβ −mαβ
e eLαeRβ + H.c. ,

Lh int = − 1√
2
Yαβ
u uLαuRβ h−

1√
2
Yαβ
d dLαdRβ h−

1√
2
Yαβ
e eLαeRβ h+ H.c. ,

(1.73)

with mu,d,e = v√
2
Yu,d,e. These mass matrices are arbitrary 3× 3 complex matrices which mix fermions

from different families. To find the right mass spectrum we need to diagonalize these matrices and rotate

the interaction states to the physical ones. This is exactly what Cabibbo angle describes, the mismatch

between these states, although at the time, only three quarks were known.

Since we have been working in the interaction basis, we should replace the fermion label f for f ′ in the

SM Lagrangian and analyse the mass terms in the physical basis f . We make the unitary transformations

f ′L = LffL , f
′
R = RffR , (1.74)

in such a way that leads to the diagonalization of the mass matrices

L†fmfRf = df = diag (mf1
,mf2

,mf3
) . (1.75)

In the SM context, neutrinos are massless since we cannot construct a gauge invariant mass term, due

to the absence of right-handed fields νRα. This absence also allows for a redefinition of the lepton fields

that make them diagonal in the interaction and mass terms. If we choose ν′Lα = (Le)
αβ
νLβ and perform

the transformations for charged leptons given in Eq. (1.74), all interactions become diagonal for lepton

families, preserving lepton family numbers. Thus, for leptons, there is no need to distinguish between

physical states f and interaction states f ′, as long as neutrinos remain massless.

For quarks, we cannot proceed in the same way. Applying the same transformations (1.74) into

Eq. (1.67), the neutral currents remain unchanged

LNC =
∑

f

f ′γµ
[
eQAµ +

gW
cW

(
gV − gAγ5

)
Zµ

]
f ′ ⇔

LNC =
∑

f

fγµ
[
eQAµ +

gW
cW

(
gV − gAγ5

)
Zµ

]
f ,

(1.76)
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Fields

H qLα `Lα uRα dRα eRα

U(1)Y
1
2

1
6 − 1

2
2
3 − 1

3 −1

SU(2)L 2 2 2 1 1 1

SU(3)C 1 3 1 3 3 1

Table 1.1: Representations under the SM gauge group and hypercharge assignments of the Higgs boson

and the SM fermions.

where

gV =
1

2
T 3 − s2

WQ , gA =
1

2
T 3 (1.77)

are the Zµ gauge boson vectorial and axial coupling, respectively. However, with these transformations,

the charged current becomes

LCC =
gW√

2

(
u′Lαγ

µd′Lα + ν′Lαγ
µe′Lα

)
W+
µ + H.c.⇔

LCC =
gW√

2

(
uLαV

αβ
CKMγ

µdLβ + νLαγ
µeLα

)
W+
µ + H.c. ,

(1.78)

where

VCKM = L†uLd =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.79)

is the Cabibbo-Kobayashi-Maskawa quark mixing matrix that generalizes the Cabibbo angle for three

families. This matrix was proposed by Kobayashi and Maskawa [29]. The usual parametrization is given

by the Particle Data Group [30] in terms of three mixing angles and one Dirac CP-violating phase.

It is clear that, due to the presence of left and right-handed quark fields, we can construct up-quark

and down-quark mass terms, but we are not able to simultaneously diagonalize mass and interaction

terms.

Finally, the complete SM Lagrangian is the sum of four terms5

LSM = Lfermion + Lgauge + LHiggs + LY ukawa , (1.80)

written in the same physical basis with the appropriate introduction of the quark mixing matrix VCKM .

It is also worth mentioning that, at tree level, flavour can only be changed by charged currents. Therefore,

there are no flavour changing neutral currents (FCNC) at tree level in the SM.

The particle group representations is another important aspect that allows us to construct gauge

invariant terms in the SM Lagrangian. Since the Higgs boson does not couple to the photon, from

Eq. (1.57), it must have YH = 1
2 . The hypercharge assignments of the SM fermions and their represen-

tations are summarized in Table 1.1, which allows the Yukawa Lagrangian to be invariant. In the next

chapter we discuss these assignments from another point of view.

5There are also the gauge fixing and Faddev-Popov (or ghost) terms, which are not presented explicitly here.
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Chapter 2

Gauge Anomalies

Feynman diagrams are really useful to understand interactions and their radiative corrections, where

loops appear. These corrections are fundamental in any QFT to explain experimental results, since

they alter the constants of the theory and, ultimately, the interactions themselves [10, 31]. In some

theories, corrections can be even more significant, breaking the underlying symmetries present in the

classic equations of motion. Anomalies appear when symmetries of the classical Lagrangian are not

invariant of the functional integral or the path integral formulation of the theory. If this is a gauge or

local symmetry, we have then a gauge anomaly.

In this chapter, we discuss the chiral gauge anomaly, and hence, the possibility of violation of the

Ward Identities (WI) [32]. The SM as an example of an anomaly-free theory is also addressed.

2.1 Ward Identities

If we consider the simple Lagrangian

L = ψ(i/∂ + /A+ /Bγ5 −m)ψ , (2.1)

through the Euler-Lagrange Eq. (1.2) one can obtain the following relations:

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0⇔ i∂µψγ
µ − ψ( /A+ /Bγ5 −m) = 0⇔ ψ(i

←−
/∂ − /A− /Bγ5 +m) = 0 ,

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0⇔ (i/∂ + /A+ /Bγ5 −m)ψ = 0 .

(2.2)

Under Lorentz transformations, there are five different elements classified according to their transfor-

mation properties:

Scalar: S = ψψ ,

Vector: jµ = ψγµψ ,

Tensor: Tµν = ψγµγνψ ,

Axial vector: j5
µ = ψγµγ5ψ ,

Pseudoscalar: P = ψγ5ψ .

(2.3)
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Using these definitions, we can compute the conservation of the vector and axial currents

∂µjµ = ∂µψγµψ + ψγµ∂
µψ = ψ

←−
/∂ ψ + ψ/∂ψ = 0 ,

⇒ ∂µjµ = 0 .

∂µj5
µ = ψ(

←−
/∂ γ5 + /∂γ5)ψ = ψ(

←−
/∂ γ5 − γ5 /∂)ψ = iψ

[(
− /A− /Bγ5 +m

)
γ5 − γ5

(
/A+ /Bγ5 −m

)]
ψ ,

⇒ ∂µj5
µ = 2miψγ5ψ = 2miP .

(2.4)

In this classical computation, it is straightforward to realize that the vector current is conserved and

that the axial current is conserved only in the massless case (m = 0). To analyse quantum effects in

these conservation laws, one needs to perform similar calculations in the corresponding QFT, based on

the same Lagrangian.

In Section 1.1 we stated that the Lagrangian is the main quantity in any QFT, but a more complete

description is in fact given by the path integral formulation, introduced by Feynman. It is useful to

perform computations by means of the functional integral, which can be written as

Z =

∫
Df exp

[
i

∫
d4xL(f)

]
, (2.5)

where f represents the field or fields of the underlying QFT and Df stands for all the possible field

configurations. The correlation or Green’s functions are a fundamental tool in any QFT calculation.

They can be obtained through the functional integral

〈0 |TO1(x1) . . .On(xn)| 0〉 =

∫
Df exp

[
i
∫
d4xL(f)

]
O1(x1) . . .On(xn)∫

Df exp
[
i
∫
d4xL(f)

] , (2.6)

where T is the time-ordering operator and Oi(xi) is a field operator. These correlation functions are the

time-ordered VEV of the respective operators. In the spirit of perturbation theory, it is clear that they

are closely related to propagators.

A trivial example is the Green’s function associated with the propagation of a Dirac particle between

two points in space-time (x1 and x2) in the free theory (vacuum). This is simply the Feynman free

propagator for spin- 1
2 particles:

〈
0
∣∣Tψ(x1)ψ(x2)

∣∣ 0
〉

=

∫
DψDψ exp

[
i
∫
d4xL(ψ)

]
ψ(x1)ψ(x2)∫

DψDψ exp
[
i
∫
d4xL(ψ)

] = i

∫
d4p

(2π)4

e−ip.(x1−x2)

/p−m
. (2.7)

For scalar particles within the same context, we obtain

〈0 |Tφ(x1)φ(x2)| 0〉 =

∫
Dφ exp

[
i
∫
d4xL(φ)

]
φ(x1)φ(x2)∫

Dφ exp
[
i
∫
d4xL(φ)

] = i

∫
d4p

(2π)4

e−ip.(x1−x2)

p2 −m2
. (2.8)

In a classical field theory, for every local symmetry of the Lagrangian, there is a conserved current

(Noether theorem). At quantum level, the integral functional contains the analogous version of this

theorem. Thus, the quantum conservation laws constrain the correlation functions. In 1950, Ward

realized this fact and derived a relation between the exact electron propagator S0 and the QED vertex

Γµ [33],

− S0(p)Γµ(p, p)S0(p) =
1

i

∂S0(p)

∂pµ
, (2.9)

which is generalized in 1957 by Takahashi [34]

− ikµS0(p+ k)Γµ(p+ k, p)S0(p) = S0(p+ k)− S0(p) . (2.10)
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


−ikµ ·


 p

p+ k

−→
k

Γµ =


 p+ k

p + k

−


p

p

Figure 2.1: Diagrammatic description of an application of the Ward-Takahashi identity in QED. On the

left hand-side the contraction between the photon polarization vector was replaced by its momentum.

The vertex and the propagators are the exact ones.

Equation (2.9) is known as the WI and Eq. (2.10) is known as the generalized WI. The latter is

represented in Fig. 2.1 and it is also an example of the application of the Ward-Takahashi identity in

QED. These relations between Green’s functions are a consequence of the gauge invariance of the theory,

and they need to be preserved in order to account for the renormalizability of the theory [22, 32, 35].

Even though the SM is a non-Abelian gauge theory, it is beyond the scope of this thesis to discuss

the non-Abelian generalization of Ward-Takahashi identities (usually called as Ward-Takahashi-Slavnov-

Taylor identities) and the subtleties of non-Abelian gauge anomalies. Instead, it is more useful for our

purposes to calculate the U(1) chiral anomaly and discuss the resulting constraints for gauge theories

through simple but general arguments. Thus, for any physically possible scattering process, we will refer

to WI simply as

kµMµ(k) = 0 . (2.11)

The amplitude for some process of the Abelian theory, involving an external gauge boson with momentum

k, and the polarization vector of the gauge boson εµ(k) is M(k) = εµ(k)Mµ(k).

2.2 Adler-Bell-Jackiw Anomaly

In 1969, Adler [36] and, independently, Bell and Jackiw [37] derived an anomalous term present in the

divergence of the axial current. This is known as the Adler-Bell-Jackiw (ABJ) anomaly or the Abelian

chiral anomaly. To discuss this point, we need to introduce the following Green’s functions:

Gµνλ =
〈
0
∣∣Tjµ(x)jν(y)j5

λ(z)
∣∣ 0
〉
, (2.12)

Gµν = 〈0 |Tjµ(x)jν(y)P (z)| 0〉 . (2.13)

Naively we can consider

∂µxGµνλ = ∂νyGµνλ = 0 , (2.14)

and

∂λzGµνλ = 2miGµν , (2.15)
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k1

γν γµ

k2

p

p− k1

p− q

qλ
γλγ5

k2

γµ γν

k1

p

p− k2

p− q

qλ
γλγ5

+Tµνλ :

k1

γν γµ

k2

p

p− k1

p− q

q
γ5

Tµν :

k2

γµ γν

k1

p

p− k2

p− q

q
γ5

+

Figure 2.2: Triangle diagrams with vertices vector-vector-axial and vector-vector-pseudoscalar.

since

∂µx 〈0 |Tjµ(x)O1(y1) . . . On(yn)| 0〉 = 〈0 |T∂µx jµ(x)O1(y1) . . . On(yn)| 0〉+
n∑

i=1

〈0
∣∣T [j0(x), Oi(yi)] δ(x

0 − y0
i )O1(y1) . . . Oi−1(yi−1)Oi+1(yi+1) . . . On(yn)

∣∣ 0〉

⇔ ∂µx 〈0 |Tjµ(x)O1(y1) . . . On(yn)| 0〉 ' 〈0 |T∂µx jµ(x)O1(y1) . . . On(yn)| 0〉 ,

(2.16)

where we neglect the contact terms δ(x0 − y0
i ) because they are meaningless in our calculations.

In the spirit of WI given in Eq. (2.11), we treat the relation given in Eq. (2.14) as the vector WI

(VWI) and the relation given in Eq. (2.15) as the axial WI (AWI)1. The violation of these identities is

manifestly present in perturbation theory, since as we shall see below, it is impossible to simultaneously

verify both VWI and AWI.

In momentum space, these quantities are described through Fourier transformations as

Tµνλ = i

∫
d4xd4yd4z ei(xk1+yk2−zq)Gµνλ , (2.17)

Tµν = i

∫
d4xd4yd4z ei(xk1+yk2−zq)Gµν . (2.18)

They are depicted in Fig. 2.2, where we consider only triangle diagrams, without the external bosons.

We have then the VWI

kµ,ν1,2 Tµνλ =

∫
d4xd4yd4z ei(xk1+yk2−zq)∂µ,νx,yGµνλ = 0 , (2.19)

1We call this identity AWI just for the purpose of labelling it, but it is only a WI in the massless case, as can be seen

from Eq (2.11).
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and the AWI

qλTµνλ =

∫
d4xd4yd4z ei(xk1+yk2−zq)∂λzGµνλ , (2.20)

which can be also identified as

qλTµνλ = 2mi

∫
d4xd4yd4z ei(xk1+yk2−zq)Gµν = 2mTµν , (2.21)

where q = k1 + k2.

Now, we are able to compute the amplitudes Tµν and Tµνλ (the propagator is given in Eq. (2.7); for

a review on Feynman rules see e.g. Ref. [38])

Tµνλ = −i
∫

d4p

(2π)4
tr

[
i

/p−m
γλγ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

]
+


k1 ↔ k2

µ↔ ν


 , (2.22)

Tµν = −i
∫

d4p

(2π)4
tr

[
i

/p−m
γ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

]
+


k1 ↔ k2

µ↔ ν


 . (2.23)

The trace and the negative sign appear due to the fermion loop.

If we write

/qγ5 = γ5(/p− /q −m) + (/p−m)γ5 + 2mγ5 , (2.24)

and apply it in qλTµνλ, we obtain

qλTµνλ = −
∫

d4p

(2π)4
tr

[
1

/p−m
γ5γν

1

/p− /k1 −m
γµ

]

−
∫

d4p

(2π)4
tr

[
γ5

1

/p− /q −m
γν

1

/p− /k1 −m
γµ

]
+


k1 ↔ k2

µ↔ ν


+ 2mTµν .

(2.25)

Due to the permutation in momenta and vertices, we can rearrange the terms to get

qλTµνλ = 2mTµν +Rµν , (2.26)

where

Rµν =

∫
d4p

(2π)4
tr

[
1

/p− /k2 −m
γ5γν

1

/p− /q −m
γµ −

1

/p−m
γ5γν

1

/p− /k1 −m
γµ

]
+


k1 ↔ k2

µ↔ ν


 . (2.27)

For the AWI to hold, it is mandatory that Rµν = 0. Since q = k1 + k2, if we perform the shift

p → p + k2 in the first term inside the trace, then the two terms cancel each other. Clearly, in the

interchange k1 ↔ k2 and µ ↔ ν the shift is p → p+ k1. However, this procedure is only valid when the

integral is convergent2, which is not the case of Rµν . In Minkwoski space, if
∫
d4x f(x) is divergent, we

can write (see Appendix A.1 for details)

∆(a) =

∫
d4x
[
f(x+ a)− f(x)

]
≈
∫
d4x aµ∂µf(x) = 2π2iaµ lim

r→∞
rµr2f(r) . (2.28)

2If the integral is divergent, this problem may change the Ward identity given in Eq. (2.11). A more complete discussion

can be found in section 7.4 of Ref. [10].
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Applying this result in Rµν , we find

Rµν =

∫
d4p

(2π)4

[
fµν(p− k2)− fµν(p)

]
+


k1 ↔ k2

µ↔ ν




=− 2π2ikτ2 lim
p→∞

pτp
2

tr
[
(/p+m)γ5γν(/p− /k1 +m)γµ

]

(2π)4 [p2 −m2] [(p− k1)2 −m2]
+


k1 ↔ k2

µ↔ ν


 .

(2.29)

Using the γ5 properties, we can compute the trace as (see Appendix A.2 for details)

tr
[
γ5(−/p+m)γν(/p− /k1 +m)γµ

]
= −4iεβναµp

βkα1 . (2.30)

In the limit p→∞, the remaining powers are the higher ones, so Rµν reduces to

Rµν = − 1

2π2
εβναµk

α
1 k

τ
2 lim
p→∞

pβpτ
p2

+


k1 ↔ k2

µ↔ ν


 . (2.31)

Now, if we take the symmetric limit

gβτ lim
p→∞

pβpτ
p2

= 1⇔ lim
p→∞

pβpτ
p2

=
gβτ
4
, (2.32)

and realizing that the interchanges k1 ↔ k2 and µ↔ ν contribute in the same amount, we finally obtain

Rµν = − 1

4π2
εβναµk

α
1 k

β
2 =

1

4π2
εµναβk

α
1 k

β
2 . (2.33)

From this result, it is clear that the AWI changes to an anomalous term. Nevertheless, it is not yet

the result we have been looking for. Through this calculation we explicitly verify that the result depends

on the shift performed. One may wonder how a global shift in the momentum p, running the loop in

Tµνλ, changes the value of the amplitude. This mathematical ambiguity can be evaluated in a simple

way if we perform the shift p→ p+ a, where a = αk1 + (α− β)k2. So, computing the difference between

amplitudes

∆µνλ(a) = Tµνλ(a)− Tµνλ(0) , (2.34)

where Tµνλ(a) and Tµνλ(0) are the shifted and the original amplitudes respectively, we obtain

∆µνλ(a) =−
∫

d4p

(2π)4
tr

[
1

/p+ /a−mγλγ5
1

/p+ /a− /q −m
γν

1

/p+ /a− /k1 −m
γµ

]

+

∫
d4p

(2π)4
tr

[
1

/p−m
γλγ5

1

/p− /q −m
γν

1

/p− /k1 −m
γµ

]
+


k1 ↔ k2

µ↔ ν


 .

(2.35)

From our previous considerations, we can rewrite

∆µνλ(a) = −
∫

d4p

(2π)4

[
fµνλ(p+ a)− fµνλ(p)

]
+


k1 ↔ k2

µ↔ ν




= −2π2iaτ lim
p→∞

pτp
2

tr
[
(/p+m)γλγ5(/p− /q +m)γν(/p− /k1 +m)γµ

]

(2π)4 [p2 −m2] [(p− q)2 −m2] [(p− k1)2 −m2]
+


k1 ↔ k2

µ↔ ν


 .

(2.36)

Picking up the higher powers of the momentum p, we obtain

∆µνλ(a) = −2π2iaτ lim
p→∞

pτp
2

tr
[
/pγλγ5/pγν/pγµ

]

(2π)4p6
+


k1 ↔ k2

µ↔ ν


 , (2.37)
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which can be reduced by computing the trace (see Appendix A.2 for details)

tr
[
/pγλγ5/pγν/pγµ

]
= 4ip2pβελνβµ , (2.38)

and taking the symmetric limit given in Eq. (2.32),

∆µνλ(a) =
1

8π2
ελνβµa

β +


k1 ↔ k2

µ↔ ν


 . (2.39)

Finally we get

∆µνλ(a) =
1

8π2
[εµνλτ (αk1 + (α− β)k2)τ + ενµλτ (αk2 + (α− β)k1)τ ]

=
β

8π2
εµνλτ (k1 − k2)τ ,

(2.40)

which can be contracted with qλ in order to check the effect of the shift in the AWI

qλTµνλ(a) = qλ∆µνλ(a) + qλTµνλ(0) = 2mTµν +
1− β
4π2

εµνατk
α
1 k

τ
2 . (2.41)

This result leads an anomalous term when β 6= 1, meaning that the AWI does not hold. When β = 1,

the AWI is verified, yet to check the real value for β we need to perform similar calculations for the VWI.

Starting from

kµ1Tµνλ(0) = −
∫

d4p

(2π)4
tr

[
1

/p−m
γλγ5

1

/p− /q −m
γν

1

/p− /k1 −m
/k1

]
+


k1 ↔ k2

µ↔ ν


 , (2.42)

and applying the transformations

/k1

1

/p−m
= 1− (/p− /k1 −m)

1

/p−m
,

1

/p− /q −m
/k1 = −1 +

1

/p− /q −m
(/p− /k2 −m) ,

(2.43)

in the VWI, we get

kµ1Tµνλ(0) = −
∫

d4p

(2π)4
tr

[
γλγ5

1

/p− /q −m
γν

1

/p− /k1 −m
− γλγ5

1

/p− /k2 −m
γν

1

/p−m

]

= −
∫

d4p

(2π)4
[fνλ(p− k1)− fνλ(p)]

= 2π2ikτ1 lim
p→∞

pτp
2

tr
[
γ5(/p− /k2 +m)γν(/p+m)γλ

]

(2π)4 [(p− k2)2 −m2] [p2 −m2]

= − 1

8π2
εβναλk

α
1 k

β
2 .

(2.44)

Now, we need to complete this result with the possible effect of the shift p→ p+ a

kµ1Tµνλ(a) = kµ1 ∆µνλ(a) + kµ1Tµνλ(0)

=
1

8π2
[βεανλτk

α
1 (k1 − k2)τ − ετναλkα1 kτ2 ]

= −1 + β

8π2
ενλατk

α
1 k

τ
2 .

(2.45)

It is then clear that is impossible to verify both VWI and AWI. For the VWI to hold (conservation

of vector current), the correct value should be β = −1. This implies that the AWI does not hold

(non-conservation of the axial current), yielding an anomalous term[32]. Therefore,

kµ1Tµνλ = 0 , kν2Tµνλ = 0 , qλTµνλ = 2mTµν +Aµν , (2.46)
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+
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Figure 2.3: Triangle diagrams with vertices vector-vector-axial for non-Abelian gauges.

where kν2Tµνλ = 0 is a direct consequence of the symmetry present in the triangle diagram (or in the

computations that lead to the verification of the VWI), and

Aµν =
1

2π2
εµναβk

α
1 k

β
2 . (2.47)

This is precisely the result discovered by Adler, Bell and Jackiw that we mentioned in the beginning

of this section. They considered the possibility that the divergence of the axial current produces two

photons

∂µj5
µ = 2miP +A = 2miP − e2

16π2
εµναβF

µνFαβ . (2.48)

From experimental results (e.g. the pion decay into two photons), it is clear that the VWI holds and

that the ABJ anomaly appears, which justifies our choice for β.

Since this is a physical and verified result, the ambiguity in β cannot appear. This is a consequence of

the regularization scheme we use, which is purely mathematical and does not have any physical meaning.

Instead, if we use other regulators, such as Pauli-Villars regularization [39] or dimensional regularization

by t’Hooft-Veltman [23, 35], the VWI is automatically verified. Our regulator with β = −1 preserves

the VWI, but others do not. When two regulators give different results, it is usual to choose the one

that verifies the WI, postulating that the underlying symmetry of the WI is a fundamental aspect of the

theory [10].

The complete discussion of non-Abelian gauge anomalies is far more complex than the calculation

for the Abelian one presented here. Nevertheless, we can reproduce this calculation including the non-

Abelian generators in the vertices (from Feynman rules, the group generator ta modifies the vertex Γµ

to Γµta). The respective diagram is depicted in Fig. 2.3 and we can compute the amplitude as

T abcµνλ = −i
∫

d4p

(2π)4
tr

[
i

/p−m
γλγ5t

c i

/p− /q −m
γνt

a i

/p− /k1 −m
γµt

b

]
+




k1 ↔ k2

µ↔ ν

a↔ b


 . (2.49)

Since the gamma matrices commute with group generators ([γµ, ta] = [γ5, t
a] = 0), we can write

T abcµνλ = −i
∫

d4p

(2π)4
tr

[
i

/p−m
γλγ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

]
trR

[
tctatb

]
+




k1 ↔ k2

µ↔ ν

a↔ b


 , (2.50)
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where trR
[
tctatb

]
stands for the trace of the group generators in the representation R of the fields. This

modification leads to a change in the anomalous term Aµν given in Eq. (2.47),

Aabcµν =
1

4π2
εµναβk

α
1 k

β
2 trR

[
tctatb

]
+

1

4π2
ενµαβk

α
2 k

β
1 trR

[
tctbta

]

=
1

4π2
εµναβk

α
1 k

β
2 trR

[
tctatb + tctbta

]

=
1

4π2
εµναβk

α
1 k

β
2 trR

[{
ta, tb

}
tc
]
.

(2.51)

Despite the subtleties of non-Abelian gauge anomalies, the commutation relation between gamma

matrices and group generators still holds in general computations for these anomalies [40]. Therefore,

since other loops contributing to the anomaly are proportional to trR
[{
ta, tb

}
tc
]
, the relevant anomaly-

free condition is

trR
[{
ta, tb

}
tc
]

= 0 , (2.52)

when summed over all fermions of the theory. We recall that different fermion fields contribute additively

to the anomaly if they couple to gauge bosons [41].

The other important aspect that should be mentioned is the fact that left and right-handed fermions

contribute with an opposite sign. When an anomaly is present, usually the VWI is verified but an

anomalous AWI appears. Thus, if we have an amplitude without the presence of γ5 we expect no

anomalies.

We stated in Section 1.2 that fermions can be decomposed into two orthogonal projections (ψL and

ψR), which satisfy PR + PL = 1 and PR − PL = γ5. It is now straightforward to realize that only the γ5

part contributes to the anomaly and that the projectors PR and PL contribute with opposite sign [42].

The relation with chiral fields becomes then clear if we write

fLi /DLfL + fRi /DRfR = fi /DLPLf + fi /DRPRf , (2.53)

where /DL and /DR are the covariant derivative for left and right-handed fields, respectively. Therefore,

it is possible to describe the amplitude in terms of non-chiral fields and, instead, include the projectors

in the propagators and vertices to account for chirality in computations. This argument is proved by

Bardeen, calculating the opposite contribution of left and right-handed fermions in non-Abelian gauge

anomalies [43].

The complete discussion of anomalies may alter the presented arguments due to the large spectrum

of gauge theories combined with the space-time dimensions of the theory. Nevertheless, these arguments

are quite general when dealing with the SM and its minimal extensions.

2.3 Anomaly Cancellation in the Standard Model

When we discussed the chiral anomaly, we did not mention the gauge group of the Lagrangian given

in Eq. (2.1). Instead we derived the conservation laws and computed the anomaly directly from Feynman

diagrams. These calculations do not change whether the external bosons are gauge bosons or not, but

the type of the anomaly does. Since our goal was to point out the existence of chiral anomalies, we

did not refer to this aspect before. However it is fundamental to distinguish between global and gauge
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anomalies in any gauge theory. A global anomaly appears if a global symmetry is anomalously broken,

only implying that classical selection rules are not obeyed in the respective QFT and classically forbidden

processes may actually occur. The Abelian anomaly, which breaks the symmetry under the global chiral

transformation, is an example of this type. On the other hand, gauge anomalies occur when the external

fields are gauge bosons, leading to an inconsistent theory [23].

QED, described in Section 1.1, is a very well-known example of an anomaly-free and consistent theory,

since the possible gauge anomalies have photons as external bosons. The vertex in QED does not include

γ5 and thus, there is no anomalous terms in triangle diagrams.

For a gauge theory to be consistent, the contributions to anomalies of the different chiral fermions

should cancel each other, satisfying Eq. (2.52). If the gauge group is a direct product of Gi (i =

1, . . . n) factors, each being a simple or U(1) group, the GiGjGk anomaly can be computed through the

corresponding triangle diagram that couples to the gauge bosons associated with these gauge groups. We

then need to check (n+ 2)!/ [3! (n− 1)!] different anomaly conditions.

Similar to QED, the SM is an anomaly-free theory, which have chiral fermions as a main ingredient.

Since there are three distinct Gi in the SM gauge group, namely SU(3)C , SU(2)L and U(1)Y , we need

to check ten different possibilities. Recalling the SM Lagrangian and the fermion representations given

in Table 1.1, we obtain for the Abelian anomaly

[U(1)Y ]
3

:
∑

fL

trR [{gY YfL , gY YfL} gY YfL ]−
∑

fR

trR [{gY YfR , gY YfR} gY YfR ] =

2g3
Y


∑

fL

Y 3
fL −

∑

fR

Y 3
fR


 = 2g3

Y nG
(
6Y 3

q + 2Y 3
` − 3Y 3

u − 3Y 3
d − 1Y 3

e

)
=

2g3
Y nG

[
6

(
1

6

)3

+ 2

(
−1

2

)3

− 3

(
2

3

)3

− 3

(
−1

3

)3

− 1 (−1)
3

]
= 0 ,

(2.54)

where nG is the number of generations (nG = 3 in the SM) and YfL , YfR , Yq, Y`, Yu, Yd and Ye are the

hypercharges of fL, fR, qLα, `Lα, uRα, dRα and eRα respectively. We keep nG explicit in the calculation

to clarify that anomaly cancellation occurs between quarks and leptons within each generation. In fact,

this holds for all the gauge anomalies of the SM [44–46]. The coefficients multiplying the hypercharges

account for the representations of the respective fields in the SM. Thus, since these representations and

hypercharge assignments do not discriminate generations, it is clear that the cancellation of an anomaly

must occur within each generation.

To simplify the notation we can write the [U(1)Y ]
3

anomaly as

[U(1)Y ]
3

: trR [{gY Yf , gY Yf} gY Yf ]→ 2g3
Y

∑

f

Y 3
f = 0 , (2.55)

keeping in mind that fermions with opposite chirality contribute with opposite signs. With this short

notation we can now proceed to the calculation of the other nine anomalies.

For the [U(1)Y ]
2
SU(2)L anomaly we get

[U(1)Y ]
2
SU(2)L : trR [{gY Yf , gY Yf} gWT c]→ g2

Y gW trR [{Yf , Yf}] trR [T c] = 0 . (2.56)

Due to the direct product, for distinct factors Gi the trace factorizes into the trace of each generator.

Also, when discussing the SM gauge group, we use T i as SU(2) group generators and λa/2 as SU(3)
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group generators. Regardless of the fermionic content of the SM, these generators are traceless and,

therefore, the [U(1)Y ]
2
SU(2)L anomaly vanishes.

Similarly, we get direct cancellation of another four anomalies, [U(1)Y ]
2
SU(3)C , [SU(2)L]

2
SU(3)C ,

U(1)Y SU(2)LSU(3)C and SU(2)L [SU(3)C ]
2
.

Due to the properties of Pauli matrices, there is another anomaly whose cancellation is independent

of the fermionic content of the SM

[SU(2)L]
3

: trR
[{
gWT

a, gWT
b
}
gWT

c
]

= g3
W trR

[
1

2
δabT c

]
→ g3

W

2
δab trR [T c] = 0 . (2.57)

The cancellation of the [SU(3)C ]
3

anomaly is quite simple

[SU(3)C ]
3

: trR

[{
gs
λa

2
, gs

λb

2

}
gs
λc

2

]
→ g3

s

2
dabc nG

∑

quarks

=
g3
s

2
dabc nG (2− 1− 1) = 0 . (2.58)

The only fermions that couple to gluons are the quarks, which appear symmetrically in the left and right

sectors. The coefficient dabc/2 (dabc is the symmetric structure constants of SU(3)) is the correct one, but

it is irrelevant since left and right-handed quarks couple with opposite sign. So, this symmetric structure

leads to cancellation of this anomaly.

Now, there are only two anomalies left. For the U(1)Y [SU(3)C ]
2

we obtain

U(1)Y [SU(3)C ]
2

: trR

[{
gs
λa

2
, gs

λb

2

}
gY Yf

]
= g2

sgY trR

[
1

3
δab I3Yf + dabxT xYf

]

→ g2
sgY nG

∑

quarks

Yf = g2
sgY nG

[
2

(
1

6

)
− 1

(
2

3

)
− 1

(
−1

3

)]
= 0 ,

(2.59)

and for the U(1)Y [SU(2)L]
2

we get

U(1)Y [SU(2)L]
2

: trR
[{
gWT

a, gWT
b
}
gY Yf

]
= g2

W gY trR

[
1

2
δab I2Yf

]

→ g2
W gY nG

∑

fL

Yf = g2
W gY nG

[
3

(
1

6

)
+ 1

(
−1

2

)]
= 0 ,

(2.60)

where In is the identity matrix in n dimensions.

The SM accounts for three fundamental forces in nature, but a complete theory should include the

well-known gravitational force. For the purpose of studying gravitational anomalies we need to consider

anomalies under local Lorentz transformations, which can be considered SO(4) gauge transformations

in Euclidean space with four dimensions [47, 48]. From all the possible mixed gauge-gravitational and

pure gravitational anomalies, the only non-trivial triangle anomaly is the mixed U(1)Y -gravitational

anomaly, U(1)Y [SO(4)]
2
, usually simply denoted as U(1)Y . This argument follows from the similar

properties shared between SO(4) and SU(2), which imply that purely gravitational anomalies ([SO(4)]
3
)

and [SO(4)]G1G2 anomalies, with Gi 6= SO(4), automatically vanish [42].

From our previous considerations, therefore, in the SM minimally coupled to gravity in four dimen-

sions, the only anomaly that we need to check explicitly is U(1)Y . Since all particles couple universally

to gravity, the relevant cancellation condition is easily verified

U(1)Y : trR

[{
taSO(4), t

b
SO(4)

}
gY Yf

]
→ g2

G gY
∑

f

Yf =

g2
G gY nG

[
6

(
1

6

)
+ 2

(
−1

2

)
− 3

(
2

3

)
− 3

(
−1

3

)
− 1 (−1)

]
= 0 ,

(2.61)
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where gG is a constant that account for gravity effects and does not affect the cancellation of the anomaly.

In conclusion, the SM is an anomaly-free theory, even when we minimally extend it to couple with

gravity in four dimensions3. Throughout this proof, the hypercharge assignments (and particle represen-

tations) that we applied in the anomaly-free conditions were already fixed. Rather than checking if the

SM is anomaly free, given a set of hypercharges, we could impose the anomaly-free conditions and verify

whether or not these constraints lead to the uniqueness of hypercharges. If there is a single solution, then

electric charge (hypercharge) is quantized [50–52].

From the ten conditions, six automatically vanish (including gravity, fifteen out of twenty). However

there are only three (four) relevant equations because the [SU(3)C ]
3

anomaly does not constrain the

hypercharges. Therefore, considering mixed-gravitational anomaly and family universal assignments, we

get

[U(1)Y ]
3

: 2g3
Y nG

(
6Y 3

q + 2Y 3
` − 3Y 3

u − 3Y 3
d − Y 3

e

)
= 0 ,

U(1)Y [SU(2)L]
2

: g2
W gY nG (3Yq + Y`) = 0 ,

U(1)Y [SU(3)C ]
2

: g2
sgY nG (2Yq − Yu − Yd) = 0 ,

U(1)Y : g2
G gY nG (6Yq + 2Y` − 3Yu − 3Yd − Ye) = 0 .

(2.62)

From these equations, we clearly see that the anomaly-free conditions express the rescaling invariance

present in the SM Lagrangian. If we perform the changes gY → αgY and Yi → Yi/α the Lagrangian

(igYBµY ) remains invariant. We can solve this system as a function of only one hypercharge, e.g. Yq,

Ye = −6Yq , Y` = −3Yq , Yu = 4Yq , Yd = −2Yq . (2.63)

Yet, there is no charge quantization since we cannot relate Yq and YH from these equations. Using

rescaling invariance (overall factor) we can fix one of these parameters (e.g. YH = 1
2 ), however there is

yet one free hypercharge. Therefore, to obtain charge quantization additional input is needed.

From experiments, it is very well-known that left and right-handed fermions have the same electric

charge [31]. If we use these constraints and the relation between hypercharge and electric charge given

in Eq. (1.57) we obtain charge quantization. Another possibility is to use the gauge invariance of the

Yukawa part of the SM Lagrangian, which yields the same result. Indeed, after the diagonalization of

the Yukawa coupling matrices given in Eq. (1.72), the U(1)Y gauge invariance leads to the constraints

− Yq − YH + Yu = 0 , −Yq + YH + Yd = 0 , −Y` + YH + Ye = 0 . (2.64)

From these equations and the anomaly-free conditions we obtain

Yq =
YH
3
, Yu =

4YH
3

, Yd = −2YH
3

, Y` = −YH , Ye = −2YH . (2.65)

Then, using the freedom of the overall factor, we can fix YH = 1
2 to obtain the hypercharge quantization

with the assignments given in Table 1.1.

3In models with other number of dimensions, the relevant group may not be SO(4). If another group stands for the

gauge part of a minimal extension of the SM, then, purely gravitational anomalies (and others) could appear. For a more

complete derivation of the SM anomalies, as well as a comprehensive discussion of gravitational effects on anomalies, see

e.g. Ref. [49].
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To conclude this chapter, we remark that, considering non-universal hypercharges, there is no in the

SM. In this case, the relevant (generalized) anomaly-free conditions are

[U(1)Y ]
3

:

nG∑

i=1

(
6Y 3

qi + 2Y 3
`i − 3Y 3

ui − 3Y 3
di − Y 3

ei

)
= 0 ,

U(1)Y [SU(2)L]
2

:

nG∑

i=1

(3Yqi + Y`i) = 0 ,

U(1)Y [SU(3)C ]
2

:

nG∑

i=1

(2Yqi − Yui − Ydi) = 0 ,

U(1)Y :

nG∑

i=1

(6Yqi + 2Y`i − 3Yui − 3Ydi − Yei) = 0 ,

(2.66)

containing fifteen free parameters. Even with the gauge invariance constraints

− Yqi − YH + Yui = 0 , −Yqi + YH + Ydi = 0 , −Y`i + YH + Yei = 0 , i = 1, 2, 3 , (2.67)

that also include YH , there are only thirteen equations, which do not yield a unique solution for the

sixteen hypercharges. Thus, there is no electric charge quantization in the SM.
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Chapter 3

Neutrinos and Seesaw Mechanisms

Neutrino oscillation experiments have firmly established the existence of neutrino masses and lepton

mixing, implying that new physics beyond the SM is required to account for these observations [53, 54].

The fact that neutrino masses are tiny constitutes a puzzling aspect of nowadays particle physics.

One of the most appealing theoretical frameworks to understand the smallness of neutrino masses is the

so-called seesaw mechanism (for recent reviews see e.g. [55, 56]). In this context, the tree-level exchanges

of new heavy states generate an effective neutrino mass matrix at low energies. Three simple possibilities

consist of the addition of singlet right-handed neutrinos (type I seesaw), colour-singlet SU(2)L-triplet

scalars (type II) or SU(2)L-triplet fermions (type III).

In this chapter, we briefly review neutrino oscillations and mass generation through the three types

of seesaw mechanism. We then discuss how the anomaly-free conditions are modified and electric charge

quantization is realized in these minimal SM extensions. Finally, we study phenomenologically viable

and predictive flavour structures of the effective neutrino mass matrix. In particular, we look for all

possible type I and/or Type III seesaw realizations of two-zero textures of the effective neutrino mass

matrix compatible with the experimental data.

3.1 Neutrino Oscillations and Masses

In 1957, the idea of neutrino oscillations was proposed by Bruno Pontecorvo, considering that neutrino-

antineutrino transitions may occur [57]. Although such transition has not been experimentally verified, it

was at the origin of a theory explaining neutrino flavour oscillations. The first evidence of this phenomena

occur in 1968 when experiments with the aim of measuring the flux of solar neutrinos found results

suggesting the disappearance of electron-neutrinos (νe) [58]. Gribov and Pontecorvo realized that this

disappearance was easily explained in terms of neutrino oscillations [59, 60].

The main concept of these oscillations is very similar to the transitions that change quark flavour.

When neutrinos take part in weak interactions they are created with a specific lepton flavour (νe, νµ,

ντ ), although there is a non-zero probability of being in a different flavour state when they are measured.

This means that the initial state is not an eigenstate/stationary state but a superposition of them. The
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Figure 3.1: Feynman diagram for the d = 5 Weinberg operator. The effective couplings arise at low energy

after the decoupling of heavy states. This diagram should be interpreted as a four-point interaction.

similarities with the Cabibbo angle and with the quark mixing matrix were firstly realized by Maki,

Nakagawa, and Sakata, introducing the neutrino mixing matrix [61]. For three generations of neutrinos,

the mismatch between interaction basis and mass basis is given by

|ν′α〉 =

3∑

i=1

Uαi |νi〉 , (3.1)

where U is a 3× 3 unitary matrix and |νi〉 is a neutrino mass eigenstate.

As explained in Section 1.4, we can rotate the neutrino fields freely due to the absence of a mass term,

matching the interaction and mass bases. However, since experiments confirm a non-zero probability

transition, which is directly related with the neutrino mass squared differences, neutrinos cannot be

massless. Hence, one of the greatest interests concerning neutrino oscillations is the necessity of the

introduction of a mass term and a mixing matrix for neutrinos, which are not present in the original

SM. Since right-handed neutrino fields (νR) are not included in the SM, no Dirac mass can be written

down. The possible low-energy mass term that can be constructed after the electroweak SBB is the

Majorana one, mαβ
ν νLα ν

c
Lβ (see Appendix A.2), where mαβ

ν is a symmetric matrix since it is contracted

with the symmetric quantity νLα ν
c
Lβ . Nevertheless, this Majorana mass term cannot be generated by

nonperturbative effects nor in higher loop corrections because it violates the lepton number (∆L = 2)

and therefore, the B − L symmetry, which is exact and non-anomalous in the SM [49]. Furthermore,

there is no renormalizable invariant term that could account for the interaction `L `
c
L. Then, neutrinos

are strictly massless in the SM.

In fact, since neutrinos are massive, the SM should be considered an effective theory and it is necessary

to extend it with non-renormalizable terms that generate neutrino masses through new physics. The

lowest order non-renormalizable operator, which generates Majorana neutrino masses after SSB, is the

unique d = 5 Weinberg operator [62, 63] (the respective diagram is depicted in Fig. 3.1)

LWeinberg = −z
αβ

Λ

(
`LαH̃

)
C
(
`LβH̃

)T
+ H.c.

SSB−−−−→ −1

2
mαβ
ν νLα ν

c
Lβ + H.c. + · · · , (3.2)

where mαβ
ν = v2zαβ/Λ is 3 × 3 effective neutrino mass matrix, zαβ are complex constants and Λ is the

new high-energy physics cutoff scale.
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In this context, we can write the lepton mass terms in the interaction basis as

Llep.mass = −mαβ
e e′Lαe

′
Rβ −

1

2
mαβ
ν ν′Lα ν

′c
Lβ + H.c. . (3.3)

In order to diagonalize these matrices we use the unitary transformations given in Eq. (1.74),

e′Lα = Lαβe eLβ , e
′
Rα = Rαβ

e eRβ , ν
′
Lα = Lαiν νLi , (3.4)

which lead to

L†emeRe = de = diag (me,mµ,mτ ) , L†νmνL
∗
ν = dn = diag (m1,m2,m3) , (3.5)

where de, dn are the diagonal mass matrices and mi (i = 1, 2, 3) is the mass of the light neutrino νi.

With these transformations the charged current becomes

LCC =
gW√

2

(
u′Lαγ

µd′Lα + ν′Lαγ
µe′Lα

)
W+
µ + H.c.⇔

LCC =
gW√

2

(
uLαV

αβ
CKMγ

µdLβ + νLiU
†iα
PMNSγ

µeLα

)
W+
µ + H.c. ,

(3.6)

where

UPMNS = L†eLν =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 . (3.7)

The unitary matrix UPMNS is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing

matrix and is usually parametrized by the Particle Data Group as [30]

UPMNS = VP , P = diag
(

1, ei
α1
2 , ei

α2
2

)
, (3.8)

where α1 and α2 represent the phases associated with the Majorana character of neutrinos, and V is

parametrized as VCKM . Therefore, the matrix UPMNS contains three mixing angles, one Dirac CP-

violating phase, and two or zero Majorana phases whether neutrinos are Majorana or Dirac particles,

respectively.

Instead of using the Weinberg operator, we could obviously extend the SM in a natural way by

including right-handed neutrinos to generate Dirac masses through Yukawa couplings, as for the other

SM fermions. However, to explain the smallness of neutrino masses (. 1 eV), the term Yαi
ν `LαH̃νRi is

widely regarded as unsatisfactory because it requires Yν . 10−11, which is unnatural since it is much

smaller than the SM couplings Yu,d,e (all known couplings are between Yelectron ∼ 10−6 and Ytop ∼ 1).

The effective Weinberg operator solves this problem elegantly, because the scale Λ could be high enough

to account for the tiny neutrino masses (mν ∼ v2/Λ . 1 eV, with Λ & 1014 GeV).

To finalize this section, we address the problem of charge quantization if neutrinos were Dirac parti-

cles [64, 65]. Considering right-handed neutrinos as SU(3)C ⊗ SU(2)L singlets with hypercharge Yν , one
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obtains the anomaly-free conditions

[U(1)Y ]
3

:

nG∑

i=1

(
6Y 3

qi + 2Y 3
`i − 3Y 3

ui − 3Y 3
di − Y 3

ei − Y 3
νi

)
= 0 ,

U(1)Y [SU(2)L]
2

:

nG∑

i=1

(3Yqi + Y`i) = 0 ,

U(1)Y [SU(3)C ]
2

:

nG∑

i=1

(2Yqi − Yui − Ydi) = 0 ,

U(1)Y :

nG∑

i=1

(6Yqi + 2Y`i − 3Yui − 3Ydi − Yei − Yνi) = 0 ,

(3.9)

which are automatically satisfied if we impose the SM hypercharge assignments and fix Yνi = 0. From

the gauge invariance of the Yukawa Lagrangian, one can obtain twelve constraints, nine of them are given

in Eq. (2.67), and the other three are

− Y`i − YH + Yνi = 0 , i = 1, 2, 3 . (3.10)

Since we have nineteen free parameters (sixteen from the SM plus three Yνi), the system cannot yield a

unique solution and, therefore, there is no charge quantization as in the SM.

As seen before, when family universal hypercharges are considered, charge is quantized within the SM

context; however, in this minimal extension, this is not the case. The anomaly-free conditions are now

[U(1)Y ]
3

: 6Y 3
q + 2Y 3

` − 3Y 3
u − 3Y 3

d − Y 3
e − Y 3

ν = 0 ,

U(1)Y [SU(2)L]
2

: 3Yq + Y` = 0 ,

U(1)Y [SU(3)C ]
2

: 2Yq − Yu − Yd = 0 ,

U(1)Y : 6Yq + 2Y` − 3Yu − 3Yd − Ye − Yν = 0 ,

(3.11)

and the constraints from Yukawa couplings become

− Yq − YH + Yu = 0 , −Yq + YH + Yd = 0 , −Y` + YH + Ye = 0 , −Y` − YH + Yν = 0 , (3.12)

which lead to two free parameters (e.g. Yq and YH). Hence, there is no unique solution when we fix

YH = 1
2 . We conclude that charge is not quantized if neutrinos are Dirac particles, not even when the

condition of family universal charges is assumed.

3.2 Seesaw Mechanisms

In what follows, we shall discuss how to obtain the Weinberg operator at low energies through the

seesaw mechanism by introducing new heavy particles in the high energy theory. Since these heavy

particles can have masses comparable to the scale in grand unified theories (GUT) [30], ΛGUT ∼ 1016

GeV, they can explain the smallness of neutrino masses, making the seesaw mechanism a well-motivated

framework. It is also simple because the tree-level exchange of heavy particles within this context generate

the Weinberg operator without breaking the SM gauge group.

The different seesaw mechanisms contain the high-energy physics that dictates the couplings of the

interaction term H̃H̃` `, as presented in Fig. 3.1, which in turn generates the neutrino mass matrix mν

after the electroweak SSB.
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Figure 3.2: Exchange interactions of heavy particles NRi (introduced in the context of type I seesaw)

that generate the Weinberg operator at low energy.

3.2.1 Type I Seesaw

To generate type I seesaw, nR right-handed neutrino fields νRi with the respective gauge group rep-

resentations and hypercharge assignments ∼ (1,1, 0) are introduced [66–70]. The respective Lagrangian

is

LI = LSM +
i

2
νRi /∂νRi −Yαi

ν `LαH̃νRi −
1

2
Mij

R ν
c
RiνRj + H.c. , (3.13)

where Yν is a 3× nR complex Yukawa coupling matrix and MR is a nR × nR symmetric matrix.

The heavy neutrino fields νRi are the ones exchanged to generate the effective Weinberg operator,

as depicted in Fig. 3.2. To easily analyse the respective Feynman diagram we work in the basis where

right-handed neutrinos are mass eigenstates, diagonalizing MR through

νRi = Rij
RNRj , R

T
RMRRR = dR = diag (M1, . . .MnR) . (3.14)

We can now write the Lagrangian in this basis as

LI = LSM + iNRi /∂NRi −Yαi
R `LαH̃NRi −

1

2
dijR N

c
RiNRj + H.c. , (3.15)

where YR = YνRR, and calculate the amputated diagram. Comparing the two diagrams in Figs. 3.1

and 3.2, we see that the relevant part for the effective couplings are the two vertices and the NRi

propagator. Reading the vertex and the propagator directly from the Lagrangian (3.15), we can write

zαβ

Λ
∝ Yαi

R

1

/p−Mi
Yβi
R . (3.16)

Since the mass Mi of the neutrino NRi is much larger than the electroweak scale (Mi � p), we get

zαβ

Λ
' −Yαi

R

1

Mi
Yβi
R = −Yαi

R

1

diiR
Yβi
R = −Yαi

R

(
diiR
)−1

Yβi
R . (3.17)

Using Eq. (3.14), one can write

zαβ

Λ
'−Yαi

R

(
diiR
)−1

Yβi
R = −

(
YRd

−1
R YT

R

)αβ

=−
(
YνRR (RR)

−1
(MR)

−1 (
RT
R

)−1
RT
RY

T
ν

)αβ
= −

(
YνM

−1
R YT

ν

)αβ
.

(3.18)

Finally, directly from Eq. (3.2), we obtain the desired effective mass matrix of the light neutrinos

mν = −v2YνM
−1
R YT

ν = −mDM
−1
R mT

D , (3.19)

with mD = vYν .
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Our approach is very simple and a precise calculation should include the other factors that have been

neglected, such as the different possible channels to realize the diagram (s- and t-channels) and higher

orders in perturbation theory. Nevertheless, in the heavy mass limit, our computation has enough details

to clarify the flavour structure of the neutrino mass matrix and its dependence on mD and MR.

To conclude, we discuss the anomaly-free conditions within this minimal SM extension where neutrinos

have a Majorana character. If we regard the SM as a low-energy effective theory, a more complete theory

including right-handed neutrinos and the type I seesaw mechanism could be renormalizable. Even though

nR fields are included, if the gauge group remains the SM one, the anomaly-free conditions are satisfied

without changes. This follows from the fact that right-handed neutrinos transform trivially under the

SM gauge group. If one considers the right-handed neutrinos as colour and SU(2)L singlets but with

arbitrary hypercharges Yνi , the generalized gauge and mixed gauge gravitational anomaly-free conditions

then become

[U(1)Y ]
3

:

nG∑

i=1

(
6Y 3

qi + 2Y 3
`i − 3Y 3

ui − 3Y 3
di − Y 3

ei

)
−

nR∑

i=1

Y 3
νi = 0 ,

U(1)Y [SU(2)L]
2

:

nG∑

i=1

(3Yqi + Y`i) = 0 ,

U(1)Y [SU(3)C ]
2

:

nG∑

i=1

(2Yqi − Yui − Ydi) = 0 ,

U(1)Y :

nG∑

i=1

(6Yqi + 2Y`i − 3Yui − 3Ydi − Yei)−
nR∑

i=1

Yνi = 0 ,

(3.20)

which contain 15 + nR free parameters. From the type I seesaw Lagrangian given in Eq. (3.13), besides

the SM constraints

− Yqi − YH + Yui = 0 , −Yqi + YH + Ydi = 0 , −Y`i + YH + Yei = 0 , i = 1, 2, 3 , (3.21)

we obtain the additional constraints

− Y`i − YH + Yνj = 0 , Yνj + Yνj = 0 , i = 1, 2, 3 , j = 1, . . . nR . (3.22)

These last equations force Yνi = 0 and impose Y`α = −YH , which lead to thirteen free parameters and the

thirteen equations already present in the SM. Nevertheless, one can check that the system does not yield

a viable solution for charge quantization since four variables are still free. The main departure from the

case with Dirac neutrinos appears when we consider family universal charges. Since the Majorana mass

term enforces Yν = 0, from the point of view of anomalies, we are left with the SM case (the constraint

−Y` − YH + Yν = −Y` − YH = 0 does not bring an additional independent equation). Therefore, when

one considers family universal charges, electric charge quantization only occurs if neutrinos are Majorana

particles [65].

3.2.2 Type II Seesaw

The minimal type II framework requires the introduction of a scalar triplet ∆̂ = {∆̂1, ∆̂2, ∆̂3} with

the respective gauge group representations and hypercharge assignments ∼ (1,3, 1) [71–75]. Since ∆̂ is a
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triplet 3, the adjoint representation of SU(2), it transforms as

∆̂′ = e−i T
aωa∆̂ , (T a)

ij
= −iεaij . (3.23)

To easily address the construction of gauge invariant terms that contain ∆̂, one may use the Pauli

matrices to write the scalar field as

∆̃ = ∆̂i
σi

2
=

1

2


 ∆̂3 ∆̂1 − i∆̂2

∆̂1 + i∆̂2 −∆̂3


 . (3.24)

In the basis where T 3 is a 3× 3 diagonal matrix, it is possible to relate the hypercharge Y∆ = 1 with the

electric charge of these components of the 2× 2 matrix representation, namely [53]

∆̃ =




∆+
√

2
−∆++

∆0 −∆+
√

2


 ⇒ Q

(
∆̃
)

=




∆+
√

2
−2∆++

0 −∆+
√

2


 . (3.25)

Therefore, ∆̃ transforms according to ∆̃′ = U∆̃U†, where U is an unitary matrix. However, the term

related with the Weinberg operator, `L∆̃†`cL = `L∆̃†C`L
T

, and the term H̃T ∆̃H̃ are not gauge invariant

because

`′L∆̃
′†C`′L

T
= `LU

†U∆̃†U†U∗C`L
T

= `L∆̃†U†U∗C`L
T
,

H̃
′T ∆̃′H̃ ′ = H̃TUTU∆̃U†UH̃ = H̃TUTU∆̃H̃ .

(3.26)

To generate an invariant term of this type, one needs to rotate the field through the Pauli matrix σ2,

as we do with the Higgs field. Therefore

∆ = iσ2∆̃ =


 ∆0 −∆+

√
2

−∆+
√

2
∆++


 , (3.27)

which transforms as ∆′ = U∗∆U†, because iσ2U = U∗iσ2. This modification leads to the terms `L∆†`cL

and H̃T∆H̃, which are invariant under the SM gauge group. Hence, the extended Lagrangian is

LII = LSM + tr
[
(Dµ∆)

†
(Dµ∆)

]
+M2

∆tr
[
∆†∆

]
−
(
Yαβ

∆ `Lα∆†`cLβ − µH̃T∆H̃ + H.c.
)

+ · · · , (3.28)

where Y∆ is a 3 × 3 symmetric matrix, M∆ is the mass of ∆ and µ is a coupling constant. There are

also other interaction terms with ∆ and H that do not affect our lowest order approximation (low energy

limit).

Introducing only one scalar triplet, the previous Lagrangian is already written in the mass basis, thus

one can repeat the process done for type I seesaw. Comparing the diagram depicted in Fig. 3.3 with the

Weinberg operator diagram in Fig. 3.1, we get

zαβ

Λ
∝ Yαβ

∆

1

p2 −M2
∆

(−µ) ' λ

M∆
Yαβ

∆ , (3.29)

where λ = µ
M∆

is an adimensional parameter. Then, after the electroweak SSB

mν =
vλ

M∆
Y∆ . (3.30)

If we consider n∆ scalar fields instead of just one, the effective mass matrix becomes

mν =

n∆∑

i=1

vλi
M∆i

Y∆i
, λi =

µi
M∆i

, (3.31)
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∆

φℓLα

ℓLβ φ

Figure 3.3: Exchange interactions of a heavy particle ∆ (introduced in the context of type II seesaw)

that generate the Weinberg operator at low energy.

in first order approximation.

Despite the complexity of the generalized procedure with more than one scalar, as we shall see in

the next section, the minimal case contain less free parameters than type I (and type III) seesaw. This

follows from the fact that the effective mass matrix for light neutrinos is uniquely determined by the

flavour structure of Y∆, which has a direct correspondence between the high- and low-energy parameters

(mν ∝ Y∆). Under these considerations, the type II seesaw is a more economical framework than type

I or type III.

Finally we address the charge quantization problem. The new field(s) is a scalar triplet, hence it does

contribute to the anomalies and we basically get the same constraints as in the SM case. The gauge

invariance leads to the new constraints

− 2Y`i − Y∆j = 0 , −2YH + Y∆j = 0 , −Y∆j + Y∆j = 0 , i = 1, 2, 3 , j = 1, . . . n∆ , (3.32)

when considering the addition of n∆ scalars. Exactly as in type I, these equations impose Y∆j
= 2YH

and Y`α = −YH . Furthermore, the SM constraints are general regardless of the seesaw type, thus we

arrive at the same conclusion of the type I case. Charge is quantized within the context of seesaw type

II if family universal charges are assumed.

Since for our purposes, namely the study of anomaly-free gauge extensions of the SM and their

connection with the flavour structure of mν , the type II seesaw mechanism does not lead to relevant

constraints, we shall not consider it further in this work.

3.2.3 Type III Seesaw

In order to generate the effective neutrino mass matrix within the context of type III seesaw, one

includes nΣ fermion triplets ΣRi to the SM particle content [76]. The respective gauge group repre-

sentations and hypercharge assignments are ∼ (1,3, 0). From the relation between electric charge and

hypercharge (Q = T 3 + Y ) and following a procedure analogous to the type II construction of ∆̃, one

obtains directly

Σ̃Ri =




Σ0
Ri√
2
−Σ+

Ri

Σ−Ri −
Σ0
Ri√
2


 ⇒ Q

(
Σ̃Ri

)
=


 0 −Σ+

Ri

−Σ−Ri 0


 . (3.33)
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ΣRi

φ

ℓLα ℓLβ

φ

Figure 3.4: Exchange interactions of heavy particles ΣRi (introduced in the context of type III seesaw)

that generate the Weinberg operator at low energy.

Usually, one redefines the field and writes it as

ΣRi =


 Σ0

Ri

√
2Σ+

Ri√
2Σ−Ri −Σ0

Ri


 , (3.34)

to construct a mass term and the respective extended type III Lagrangian, which is

LIII = LSM +
i

2
tr
(

ΣRi /DΣRi
)
−Yαi

T `LαΣRiH̃ −
1

2
Mij

Σ tr
(

ΣcRiΣRj
)

+ H.c. , (3.35)

where YT is a 3×nΣ complex Yukawa coupling matrix and MΣ is a nΣ×nΣ symmetric matrix. This mass

term includes Majorana masses for the fields
(
Σ0
Ri

)c
+ Σ0

Ri and Dirac masses for the fields
(
Σ+
Ri

)c
+ Σ−Ri.

As in the other two types of seesaw mechanisms, a new interaction is responsible for the effective

Weinberg operator, namely the one presented in Fig. 3.4. To obtain the effective neutrino mass ma-

trix one can extract the vertex and propagator from the Lagrangian, however, looking closely to the

type I Lagrangian given in Eq. (3.13), we identify similar terms by simply replacing {νRi,Yν ,MR} by

{ΣRi,YT ,MΣ}. Therefore, it is straightforward to conclude that

zαβ

Λ
' −

(
YTM

−1
Σ YT

T

)αβ ⇒mν = −v2YTM
−1
Σ YT

T = −mTM
−1
Σ mT

T , (3.36)

with mT = vYT .

As in the case of type I seesaw, the extra fermion content added to the SM changes the anomaly-

free conditions. While the anomalies concerning SU(3)C and U(1)Y are simple, because Σ is a colour

singlet and its hypercharge (Yσ) is zero, those with SU(2)L have some peculiar details. In the adjoint

representation of SU(2), one can write the group generators as (T a)
ij

= −iεaij , hence trR [T a] = 0 and

the GiGjSU(2)L anomalies, Gi,j 6= SU(2)L, still vanish in this minimal SM extension. The Gi [SU(2)L]
2

anomalies, Gi 6= SU(2)L, vanish automatically (recall their properties given in Section 2.3). For the

[SU(2)L]
3

anomaly, considering only the new contributions, we get

[SU(2)L]
3

: trR
[{
gWT

a, gWT
b
}
gWT

c
]

= (−i)3
g3
W trR

[(
εaijεbjk + εbijεajk

)
εckl
]

=

ig3
W

(
εaijεbjk + εbijεajk

)
εcki = ig3

W

(
δibδak − δikδab + δiaδbk − δikδba

)
εcki =

ig3
W

(
εcab − 0 + εcba − 0

)
= 0 .

(3.37)

In order to address the possibility of quantized charges, one needs to calculate the U(1)Y [SU(2)L]
2
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anomaly with an arbitrary Yσ. Therefore we get

U(1)Y [SU(2)L]
2

: trR
[{
gWT

a, gWT
b
}
gY Yf

]
= (−i)2

g2
W gY trR

[(
εaijεbjk + εbijεajk

)
δklYf

]
=

− Yf g2
W gY

(
εaijεbjk + εbijεajk

)
δki = −Yf g2

W gY
(
εaijεbji + εbijεaji

)
=

2Yf g
2
W gY

(
εaijεbij

)
= 4δabYf g

2
W gY ,

(3.38)

summed over all the fermions that transforms as an SU(2)L triplet plus the contribution computed in

Eq. (2.60). Since the hypercharge is arbitrary in this context, one obtains the generalized anomaly-free

conditions

[U(1)Y ]
3

:

nG∑

i=1

(
6Y 3

qi + 2Y 3
`i − 3Y 3

ui − 3Y 3
di − Y 3

ei

)
−

nΣ∑

i=1

3Y 3
σi = 0 ,

U(1)Y [SU(2)L]
2

:

nG∑

i=1

(3Yqi + Y`i)−
nΣ∑

i=1

4Yσi = 0 ,

U(1)Y [SU(3)C ]
2

:

nG∑

i=1

(2Yqi − Yui − Ydi) = 0 ,

U(1)Y :

nG∑

i=1

(6Yqi + 2Y`i − 3Yui − 3Ydi − Yei)−
nΣ∑

i=1

3Yσi = 0 ,

(3.39)

which contain 15 + nΣ free parameters. If we consider the anomaly-free conditions obtained from the

type I seesaw with the replacement nR → nΣ and Yνi → Yσi , only one equation remains unchanged.

However, with these replacements, the gauge invariance of the type III Lagrangian imposes exactly the

same constraints as the type I Lagrangian

− Y`i − YH + Yσj = 0 , Yσj + Yσj = 0 , i = 1, 2, 3 , j = 1, . . . nΣ . (3.40)

Finally, if family universal charges are assumed, one concludes that the electric charge is quantized

in the framework of type I, II or III seesaw models.

3.3 Zero Textures for the Neutrino Mass Matrix and their See-

saw Realization

Despite the simplicity of the seesaw mechanism in explaining the smallness of the neutrino masses,

the corresponding high-energy theory usually contains many more free parameters than those required

at low energies. We recall that the effective neutrino mass matrix mν can be written in terms of only

nine physical parameters: 3 light neutrino masses and 3 mixing angles + 3 phases, that parametrize the

PMNS mixing matrix.

For instance, the type I seesaw Lagrangian given in Eq. (3.13) with nR right-handed neutrino fields,

contains altogether 7nR − 3 free parameters. Therefore, in the SM extended with nR = 3 there are 18

parameters in the neutrino sector at high energies: 3 heavy Majorana masses and 9 moduli + 6 phases

needed to specify the 3×3 Yukawa coupling matrix Yν . Nevertheless, only 15 parameters are independent

in what respects the neutrino mass matrix mν = −mDM
−1
R mT

D since the 3 heavy Majorana masses can
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be absorbed into Yν by rescaling the appropriate couplings. For the minimal case1, with nR = 2, there

are 11 parameters: 2 heavy Majorana masses and 6 moduli + 3 phases that define the 3 × 2 Yukawa

coupling matrix. Of these, the 2 heavy masses can be absorbed, thus reducing the effective number to 9

parameters. The same parameter counting holds for the type III seesaw with the replacements nR → nΣ,

Yν → YT and MR →MΣ.

It then becomes clear that for a high energy seesaw theory to be predictive the number of free

parameters should be somehow reduced. A well-motivated framework is provided by the so-called zero

textures of the Yukawa coupling matrices. In some cases, such zeros also propagate to the low energy

neutrino mass matrix, implying relations among the neutrino observables. These textures can be obtained,

for instance, in the presence of flavour symmetries or additional local gauge symmetries.

The neutrino mass matrix mν is a symmetric matrix with six independent entries. There are 6!/[n!(6−
n)!] different textures, each containing n independent texture zeros. Since each matrix entry is a complex

number, there are 2n constraints. It can be shown that any pattern of mν with more than two independent

zeros (n > 2) is not compatible with current neutrino oscillation data. Clearly, one-zero textures in mν

have much less predictability than the two-zero textures. Their phenomenological implications have been

studied in Refs. [77–81] and we shall not discuss them any further here.

For n = 2, there are fifteen two-zero textures of mν , which can be classified into six categories

(A,B,C,D,E,F):

A1 :




0 0 ∗
0 ∗ ∗
∗ ∗ ∗


 , A2 :




0 ∗ 0

∗ ∗ ∗
0 ∗ ∗


 ;

B1 :




∗ ∗ 0

∗ 0 ∗
0 ∗ ∗


 , B2 :




∗ 0 ∗
0 ∗ ∗
∗ ∗ 0


 , B3 :




∗ 0 ∗
0 0 ∗
∗ ∗ ∗


 , B4 :




∗ ∗ 0

∗ ∗ ∗
0 ∗ 0


 ;

C :




∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0


 ; (3.41)

D1 :




∗ ∗ ∗
∗ 0 0

∗ 0 ∗


 , D2 :




∗ ∗ ∗
∗ ∗ 0

∗ 0 0


 ;

E1 :




0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗


 , E2 :




0 ∗ ∗
∗ ∗ ∗
∗ ∗ 0


 , E3 :




0 ∗ ∗
∗ ∗ 0

∗ 0 ∗


 ;

1For a type I (type III) seesaw mechanism alone, consistency with neutrino oscillation data requires nR ≥ 2 (nΣ ≥ 2).

Aside from this constraint, the number of right-handed neutrinos (fermion triplets) is arbitrary.
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MR,Σ D2 ,




0 ∗ ∗
∗ ∗ 0

∗ 0 0


 D1 ,




0 ∗ ∗
∗ 0 0

∗ 0 ∗


 B4 ,




∗ ∗ 0

∗ 0 ∗
0 ∗ 0


 B3 ,




∗ 0 ∗
0 0 ∗
∗ ∗ 0




mν A1 A2 B3 B4

Table 3.1: Viable type I (type III) seesaw realizations of two-zero textures of the effective neutrino mass

matrix mν when nR = 3 (nΣ = 3) and the Dirac-neutrino Yukawa mass matrix mD (mT ) is diagonal.

All cases belong to the permutation set P1.

F1 :




∗ 0 0

0 ∗ ∗
0 ∗ ∗


 , F2 :




∗ 0 ∗
0 ∗ 0

∗ 0 ∗


 , F3 :




∗ ∗ 0

∗ ∗ 0

0 0 ∗


 ;

the symbol “∗” denotes a nonzero matrix element. In the flavour basis, where the charged-lepton mass

matrix me is diagonal (me = de), only seven patterns, to wit A1,2, B1,2,3,4 and C [82], are compatible

with the present neutrino oscillation data [83].

Since any ordering of the charged leptons in the flavour basis is allowed, any permutation transfor-

mation acting on the above patterns is permitted, provided that it leaves me diagonal. In particular, the

following permutation sets can be constructed:

P1 ≡ (A1,A2,B3,B4,D1,D2),

P2 ≡ (B1,B2,E3),

P3 ≡ (C,E1,E2),

P4 ≡ (F1,F2,F3).

(3.42)

Starting from any pattern belonging to a particular set, one can obtain any other pattern in the same

set by permutations.

Our aim is to look for possible type I and/or Type III seesaw realizations of two-zero textures of the

neutrino mass matrix mν compatible with the experimental data, i.e. that lead to a pattern A1, A2, B1,

B2, B3, B4 or C. We restrict our analysis to the cases with nR + nΣ ≤ 4.

We start by searching for solutions with nR = 3 (nΣ = 3) and the Dirac-Yukawa mass matrices mD

(mT ) diagonal, i.e. mD,T = diag (∗, ∗, ∗), so that the zero texture of mν is the same as M−1
R (M−1

Σ ).

In Table 3.1, we present all viable type I (type III) seesaw realizations found in this case. All patterns

belong to the permutation set P1.

If instead we assume that mD (mT ) belongs to a permutation set Pi (i = 1, 2, 3, 4), then the viable

solutions are those in Table 3.2. As can be seen from the table, only matrices mD (mT ) and mν contained

in P1 are allowed, sharing always the same pattern, i.e. exhibiting “parallel” structures.

To obtain neutrino mass matrices of type C, belonging to the permutation set P3, matrices mD,T

(and MR,Σ) with two and four zeros, for nR,Σ = 2 and nR,Σ = 3, respectively, are required. In Table 3.3
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mD,T MR,Σ mν

A1 A1 ,




0 0 ∗
0 ∗ 0

∗ 0 ∗


 ,




0 0 ∗
0 ∗ ∗
∗ ∗ 0


 ,




0 0 ∗
0 ∗ 0

∗ 0 0


 A1

A2 A2 ,




0 ∗ 0

∗ 0 ∗
0 ∗ ∗


 ,




0 ∗ 0

∗ ∗ 0

0 0 ∗


 ,




0 ∗ 0

∗ 0 0

0 0 ∗


 A2

B3 B3 ,




∗ 0 0

0 0 ∗
0 ∗ ∗


 ,




∗ 0 ∗
0 0 ∗
∗ ∗ 0


 ,




∗ 0 0

0 0 ∗
0 ∗ 0


 B3

B4 B4 ,




∗ 0 0

0 ∗ ∗
0 ∗ 0


 ,




∗ ∗ 0

∗ 0 ∗
0 ∗ 0


 ,




∗ 0 0

0 0 ∗
0 ∗ 0


 B4

Table 3.2: Viable type I (type III) seesaw realizations of two-zero textures of mν when nR = 3 (nΣ = 3)

and assuming that mD (mT ) belongs to a permutation set Pi (i = 1, 2, 3, 4). Only matrices mD (mT )

and mν contained in P1 are allowed, sharing always the same pattern.

we present all viable type I (type III) seesaw realizations that lead to the two-zero pattern C in the

effective neutrino mass matrix mν . The cases with nR = 2 (nΣ = 2) and nR = 3 (nΣ = 3) are considered.

From the table, we conclude that with only two right-handed singlet (fermion triplet) neutrinos, there

are only two possible constructions, both leading to a massless neutrino (detC = 0). In fact, these are

the only solutions that yield a pattern consistent with neutrino oscillation data. We did not find any

texture of type Ai or Bi. For nR = 3 (nΣ = 3), besides the C-pattern, there exist several combinations

of matrices mD,T and MR,Σ (not displayed in the table) that lead to the viable patterns A1,2 and B3,4.

In the framework of a single type seesaw, textures B1,2, belonging to the permutation set P2, cannot

be obtained. They can only be realized in the context of mixed seesaw schemes. In Table 3.4, several

patterns leading to neutrino mass matrices of type B1,2 through a mixed seesaw with two right-handed

neutrinos and two fermion triplets (nR = nΣ = 2) are shown. The solutions correspond to cases where

the Dirac-Yukawa mass matrices mD,T contain the maximum of allowed vanishing matrix elements, i.e.

four zeros. We remark that in the mixed cases with nR = 2, nΣ = 1 and nR = 1, nΣ = 2 there are viable
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mD,T MR,Σ mν

C with




∗ ∗
0 ∗
∗ 0


 ,




∗ ∗
∗ 0

0 ∗





0 ∗
∗ 0




detC = 0

C




∗ ∗ ∗
0 0 ∗
∗ 0 0


 ,




∗ ∗ ∗
∗ 0 0

0 0 ∗







0 0 ∗
0 ∗ 0

∗ 0 0







∗ ∗ ∗
0 ∗ 0

∗ 0 0


 ,




∗ ∗ ∗
∗ 0 0

0 ∗ 0







0 ∗ 0

∗ 0 0

0 0 ∗







∗ ∗ ∗
0 0 ∗
0 ∗ 0


 ,




∗ ∗ ∗
0 ∗ 0

0 0 ∗







∗ 0 0

0 0 ∗
0 ∗ 0




Table 3.3: Viable type I (type III) seesaw realizations that lead to the two-zero pattern C in mν . The

cases with nR = 2 (nΣ = 2) and nR = 3 (nΣ = 3) are displayed.

patterns as well, but they only generate neutrino mass matrices of type A1,2, B3,4 and C, and, therefore,

are not presented in Table 3.4.

From the above analyses it turns out that are several possibilities of realizing two-zero textures in the

effective neutrino mass matrix obtained through the seesaw mechanism. One attractive possibility is to

impose these zeros through the modification of the SM gauge symmetry. Next, we consider Abelian ex-

tensions of the SM based on an extra U(1)X gauge symmetry, where X is an arbitrary linear combination

of the baryon number and the individual lepton numbers.
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mD MR mT ,MΣ mν




0 0

0 ∗
∗ 0





0 ∗
∗ ∗







0 ∗
∗ 0

0 0


 ,


∗ ∗
∗ 0


 or




∗ 0

0 ∗
0 0


 ,


0 ∗
∗ ∗


 B1



0 0

∗ 0

0 ∗





∗ ∗
∗ 0







0 0

0 ∗
∗ 0





∗ ∗
∗ 0







0 ∗
0 0

∗ 0


 ,


∗ ∗
∗ 0


 or




∗ 0

0 0

0 ∗


 ,


0 ∗
∗ ∗


 B2



0 0

∗ 0

0 ∗





0 ∗
∗ ∗




Table 3.4: Examples of type I/III mixed seesaw realizations with two right-handed neutrinos and two

fermion triplets (nR = nΣ = 2) that lead to a neutrino mass matrix of type B1,2. The solutions

correspond to cases where the 3× 2 Dirac-Yukawa mass matrices mD and mT contain the maximum of

allowed vanishing elements, i.e. four zeros.
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Chapter 4

Anomaly-free Gauge Symmetries

and Neutrino Flavour Models

Abelian symmetries naturally arise in a wide variety of grand unified and string theories. One of

the interesting features of such theories is their richer phenomenology, when compared with the SM (for

reviews, see e.g. Refs. [84, 85]). In particular, the spontaneous breaking of additional gauge symmetries

leads to new massive neutral gauge bosons which, if kinematically accessible, could be detectable at the

Large Hadron Collider (LHC). Clearly, the experimental signatures of these theories crucially depend on

whether or not the SM particles have nontrivial charges under the new gauge symmetry. Assuming that

the SM fermions are charged under the new gauge group, and that the new gauge boson has a mass

around the TeV scale, one expects some effects on the LHC phenomenology.

In the context of neutrino seesaw models, the implications of anomaly-free constraints based on the

gauge structure SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X have been widely studied in the literature [86–91].

In particular, assuming family universal charges, it was shown in Ref. [91] that type I and type III

seesaw mechanisms cannot be simultaneously realized, unless the new U(1)X symmetry is a replica of

the standard hypercharge or new fermions are added to the theory. Models based on gauge symmetries

that are linear combinations of the baryon number B and the individual lepton flavour numbers Lα

(α = e, µ, τ) have also been extensively discussed [92–98]. From the phenomenological viewpoint many

aspects of the latter symmetries are similar to those of the B − L symmetry, with L =
∑
α Lα being the

lepton number.

In this chapter, we consider Abelian extensions of the SM based on an extra U(1)X gauge symmetry,

withX ≡ aB−∑α bαLα being an arbitrary linear combination of the baryon numberB and the individual

lepton numbers Lα. Our purpose is to perform a systematic study, thus complementing previous works

on several aspects.

In Section 4.1, by requiring cancellation of gauge anomalies, we study the allowed charge assignments

under the new gauge symmetry, when two or three right-handed neutrino singlets or fermion triplets are

added to the SM particle content. We then discuss in Section 4.2 the phenomenological constraints on

these theories, requiring consistency with current neutrino oscillation data. In particular, by extending
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the SM with a minimal extra fermion and scalar content, we study how the new gauge symmetry can

lead to predictive two zero textures in the effective neutrino mass matrix. We also briefly address the

possibility of distinguishing different charge assignments (gauge symmetries) and neutrino textures at

collider experiments.

4.1 Anomaly Constraints on the Extended Gauge Group

We consider a renormalizable theory containing the SM particles plus a minimal extra fermionic

and scalar content, so that light neutrinos acquire seesaw masses. We include nR singlet right-handed

neutrinos νR and nΣ color-singlet SU(2)-triplet fermions Σ to implement type-I and type-III seesaw

mechanisms, respectively. Besides the SM Higgs doublet H that gives masses to quarks and leptons, a

complex scalar singlet field S is introduced in order to give Majorana masses to νR and Σ.

We assume that each fermion field f have a charge xf under the new U(1)X gauge symmetry. For

quarks, a family universal charge assignment is assumed, while leptons are allowed to have non-universal

X charges.

As we have seen in previous sections, in the presence of extra fermion degrees of freedom, the anomaly

conditions may change. Furthermore, when we extend the gauge group, for instance by including a U(1)X

Abelian symmetry, extra conditions should be satisfied to render the theory free of the U(1)X anomalies.

Following the same line of reasoning of Section 2.3, we obtain the system of constraints

U(1)X [SU(3)C ]
2

: nG (2xq − xu − xd) = 0 ,

U(1)X [SU(2)L]
2

:
3nG

2
xq +

1

2

nG∑

i=1

x`i − 2

nΣ∑

i=1

xσi = 0 ,

U(1)X [U(1)Y ]
2

: nG

(
xq
6
− 4xu

3
− xd

3

)
+

nG∑

i=1

(x`i
2
− xei

)
= 0 ,

[U(1)X ]
2
U(1)Y : nG

(
x2
q − 2x2

u + x2
d

)
+

nG∑

i=1

(
−x2

`i + x2
ei

)
= 0 ,

[U(1)X ]
3

: nG
(
6x3

q − 3x3
u − 3x3

d

)
+

nG∑

i=1

(
2x3

`i − x3
ei

)
−

nR∑

i=1

x3
νi − 3

nΣ∑

i=1

x3
σi = 0 ,

U(1)X : nG (6xq − 3xu − 3xd) +

nG∑

i=1

(2x`i − xei)−
nR∑

i=1

xνi − 3

nΣ∑

i=1

xσi = 0 .

(4.1)

Since the anomaly equations are nonlinear and contain many free parameters, some assumptions are

usually made to obtain simple analytic solutions. For instance, in family universal models, universal

charges are assigned so that anomaly cancellation is satisfied within each family. Family universality is

nevertheless not necessarily required and non-universal solutions can be equally found [99]. Assuming,

for instance, a non-universal purely leptonic gauge symmetry with x`i = xei and nR = nΣ = nG = 3, the
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nR nΣ Anomaly constraints Symmetry generator X

2 0 bi + bj = 3a, bk = 0 B − 3Lj − b′i(Li − Lj)
bi + bj = 0, bk = 0 Li − Lj

0 2 bi + bj = 0, bk = 0 Li − Lj
2 1 bi + bj = 3a, bk = 0 B − 3Lj − b′i(Li − Lj)

bi + bj = 0, bk = 0 Li − Lj
1 2 bi + bj = 0, bk = 3a B − 3Lk − b′i(Li − Lj)

bi + bj = 0, bk = 0 Li − Lj
3 0 bi + bj + bk = 3a (B − L) + (1− b′i)(Li − Lj) + (1− b′k)(Lk − Lj)

bi + bj + bk = 0 −b′i(Li − Lk)− b′j(Lj − Lk)

0 3 bi + bj = 0, bk = 0 Li − Lj
3 1 bi + bj = 3a, bk = 0 B − 3Lj − b′i(Li − Lj)

bi + bj = 0, bk = 0 Li − Lj
1 3 bi + bj = 0, bk = 0 Li − Lj
2 2 bi + bj = 0, bk = 0 Li − Lj

Table 4.1: Anomaly-free solutions for minimal type I and/or type III seesaw realizations and their

symmetry generators. In all cases, i 6= j 6= k and b′i ≡ bi/a. Cases with a = 0 correspond to a purely

leptonic symmetry.

anomaly equations (4.1) lead to the following charge constraints:

xe1 + xe2 + xe3 = 0,

xν1 + xν2 + xν3 = 0,

xσ1 + xσ2 + xσ3 = 0,

xe1xe2xe3 − xν1xν2xν3 − 3xσ1xσ2xσ3 = 0 .

(4.2)

This system of equations has an infinite number of integer solutions. For example, with the charge assign-

ment (x`1, x`2, x`3) = (xe1, xe2, xe3) = (1, 2,−3), one can have the solutions (xν1, xν2, xν3) = (−1,−3, 4)

and (xσ1, xσ2, xσ3) = (1, 2,−3), or (xν1, xν2, xν3) = (1, 3,−4) and (xσ1, xσ2, xσ3) = (−1,−1, 2), among

many others.

We shall consider models where

X ≡ aB −
nG∑

i=1

biLi (4.3)

is an arbitrary linear combination of the baryon number B and individual lepton numbers Li, simulta-

neously allowing for the existence of right-handed neutrinos and fermion triplets that participate in the

seesaw mechanism to generate Majorana neutrino masses. Under the gauge group U(1)X , the charge for

the quarks qL, uR, dR, is universal,

xq = xu = xd = a/3 , (4.4)

while the charged leptons `Li, eRi have the family non-universal charge assignment

x`i = xei = −bi , (4.5)
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with all bi different. The latter condition guarantees that the charged lepton mass matrix is always

diagonal (i.e. it is defined in the charged lepton flavour basis), assuming that the SM Higgs is neutral

under the new gauge symmetry. The right-handed neutrinos νR and/or the triplets Σ are allowed to have

any charge assignment −bk, where k = 1 . . . nG.

Substituting the U(1)X charge values given in Eqs. (4.4) and (4.5) into the anomaly equations (4.1),

we obtain the constraints

∑

k≤nΣ

bk = 0,

nG∑

i=1

bi =
∑

j≤nR

bj = nG a,

nG∑

i=1

b3i −
∑

j≤nR

b3j − 3
∑

k≤nΣ

b3k = 0 .

(4.6)

The solutions of this system of equations and the corresponding symmetry generators X are presented

in Table 4.1, for minimal type I and type III seesaw realizations with nR + nΣ ≤ 4. We note that in the

absence of right-handed neutrinos only purely leptonic (a = 0) gauge symmetry extensions are allowed.

This is a direct consequence of the second constraint in Eq. (4.6). Given the charge assignments, one can

identify the maximal gauge group corresponding to each solution. For instance, when nR = 3 and nΣ = 0,

the maximal anomaly-free Abelian gauge group extension is U(1)B−L × U(1)Le−Lµ × U(1)Lµ−Lτ [98].

4.2 Phenomenological Constraints

4.2.1 Neutrino Mass Matrix and Texture Zeros from the Gauge Symmetry

For our study, besides the usual SM Yukawa interactions, the relevant Lagrangian terms in the context

of (minimal) type I and type III seesaw models are

Yαi
ν `LαH̃νRi +

1

2
mij
R ν

c
RiνRj + Yij

1 νcRiνRjS + Yij
2 νcRiνRjS

∗

Yαi
T `LαΣRiH̃ +

1

2
mij

Σ tr
(

ΣcRiΣRj
)

+ Yij
3 tr

(
ΣcRiΣRj

)
S + Yij

4 tr
(

ΣcRiΣRj
)
S∗ + H.c. .

(4.7)

We assume that the SM Higgs doublet is neutral under the U(1)X gauge symmetry, and that the complex

singlet scalar field S has a U(1)X charge equal to xs. Here Y1,2 are nR × nR symmetric matrices, while

Y3,4 are nΣ × nΣ symmetric matrices.

Notice that, in general, the U(1)X symmetry does not forbid bare Majorana mass terms for the right-

handed neutrinos and fermion triplets. For matrix entries with X = 0, such terms are allowed. In turn,

entries with X 6= 0 are permitted in the presence of the singlet scalar S, charged under U(1)X . The

latter gives an additional contribution to the Majorana mass terms once S acquires a VEV.

Since a universal U(1)X charge is assigned to quarks (see Eq. (4.4)), the new gauge symmetry does

not impose any constraint on the quark mass matrices. However, our choice of a non-universal charge

assignment for charged leptons given in Eq. (4.5), with all bi different, forces the charged lepton mass

matrix to be diagonal. Thus, leptonic mixing depends exclusively on the way that neutrinos mix. As

discussed in Section 3.2, the effective neutrino mass matrix mν is obtained after the decoupling of the
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Symmetry generator X |xs| MR mν

B + Le − Lµ − 3Lτ 2 D2

A1

B + 3Le − Lµ − 5Lτ 2

(MR)11 = (MR)23 = (MR)33 = 0B + 3Le − 6Lτ 3

B + 9Le − 3Lµ − 9Lτ 6

B + Le − 3Lµ − Lτ 2 D1

A2

B + 3Le − 5Lµ − Lτ 2

(MR)11 = (MR)22 = (MR)23 = 0B + 3Le − 6Lµ 3

B + 9Le − 9Lµ − 3Lτ 6

B − Le + Lµ − 3Lτ 2 B4

B3

B − Le + 3Lµ − 5Lτ 2

(MR)13 = (MR)22 = (MR)33 = 0B + 3Lµ − 6Lτ 3

B − 3Le + 9Lµ − 9Lτ 6

B − Le − 3Lµ + Lτ 2 B3

B4

B − Le − 5Lµ + 3Lτ 2

(MR)12 = (MR)22 = (MR)33 = 0B − 6Lµ + 3Lτ 3

B − 3Le − 9Lµ + 9Lτ 6

Table 4.2: Anomaly-free U(1) gauge symmetries that lead to phenomenologically viable two-zero textures

of the neutrino mass matrix mν in a type I seesaw framework with 3 right-handed neutrinos. In all cases,

the Dirac-neutrino mass matrix mD is diagonal and the charge assignment xνi = x`i = xei = −bi is

verified. The solutions belong to the permutation set P1. For a mixed type I/III seesaw scenario with

nR = 3 and nΣ = 1 only the solutions with |xs| = 3 remain viable.

heavy right-handed neutrinos and fermion triplets. In the presence of both (type I and type III) seesaw

mechanisms it reads as

mν ' −mD M−1
R mT

D −mT M−1
Σ mT

T , (4.8)

where, according to Eq. (4.7),

mD = Yν〈H〉, MR = mR + 2Y1〈S〉+ 2Y2〈S∗〉 ,

mT = YT 〈H〉, MΣ = mΣ + 2Y3〈S〉+ 2Y4〈S∗〉 .
(4.9)

In what follows we restrict our analysis to minimal seesaw scenarios with nR+nΣ ≤ 4. The requirement

that charged leptons are diagonal (b1 6= b2 6= b3) imposes strong constraints on the matrix textures of

mD and mT . Indeed, considering either a type I or a type III seesaw framework, only those matrices

with a single nonzero element per column are allowed. Furthermore, matrices with a null row or column

are excluded since they lead to a neutrino mass matrix with determinant equal to zero, not belonging to

any pattern of those given in Eq. (3.41)1

1Mixed type I/III seesaw mechanisms can relax this constraint.
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We look for anomaly-free U(1)X gauge symmetries that lead to phenomenologically viable two-zero

textures of the neutrino mass matrix mν , namely to patterns A1,2, B1,2,3,4 and C given in Eq. (3.41).

Solutions were found only within a type I seesaw framework with three right-handed neutrinos, or in a

mixed type I/III seesaw scenario with three right-handed neutrinos and one fermion triplet. In Table 4.2

we show the allowed solutions, for the cases when the Dirac-neutrino mass matrix mD is diagonal,

which implies the charge assignment xνi = −bi. All the solutions belong to the permutation set P1

[see Eq. (3.42)]. We remark that, for each pattern of mν , there are another 20 solutions corresponding

to matrices mD with 6 zeros (i.e. permutations of the diagonal matrix) and their respective charge

assignments. Thus, all together there exist 96 viable solutions. No other anomaly-free solutions are

obtained in our minimal setup. Solutions leading to MR = D1,D2,B3,B4 have been recently considered

in Ref. [98]. The remaining solutions, to our knowledge, are new in this context. For a mixed type I/III

seesaw with nR = 3 and nΣ = 1, only the set of solutions with |xs| = 3 in Table 4.2 are allowed, since the

anomaly equations imply that the bk coefficient associated to the fermion triplet charge is always zero.

Notice also that, starting from any pattern given in Table 4.2, other patterns in the table can be

obtained by permutations of the charged leptons. For instance, starting from the symmetry generators

that lead to the A1 pattern, those corresponding to A2 and B3 are obtained by µ ↔ τ and e ↔ µ

exchange, respectively. Similarly, the B4 texture can be obtained from A2 through the e↔ τ exchange.

4.2.2 Scalar Sector

The VEV of the scalar S breaks the U(1)X symmetry spontaneously, giving a contribution to the

masses of the right-handed neutrinos and fermion triplets. The scalar potential, including the Higgs

potential given in Eq. (1.36), reads as

V =µ2H†H + λ(H†H)2 + µ2
S S
†S + λS (S†S)2 + β (S†S)(H†H) , (4.10)

with µ2 < 0 and µ2
S < 0 to generate the VEVs 〈H〉 = v/

√
2 and 〈S〉 = vS/

√
2 ; λ, λS > 0 and β2 < 4λλS

for V to be positive-definitive. In the unitary gauge, the charged and pseudoscalar neutral components

of H are absorbed by the W± and Z gauge bosons, respectively, while the pseudoscalar component of S

is absorbed by the new Z ′. In the physical basis, where

H =




0
h+ v√

2


 , S =

s+ vS√
2

, (4.11)

the potential has the form

V = λv2h2 + λSv
2
Ss

2 + βvvShs+
1

4
λh4 +

1

4
λSs

4 + λvh3 + λSvSs
3 +

1

4
βh2s2 +

1

2
βvhs2 +

1

2
βvSh

2s .

(4.12)

The mass matrix for the neutral scalars h and s is given by

M2 =


2λv2 βvvS

βvvS 2λSv
2
S


 , (4.13)
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leading to the mass eigenstates φ1,2,

φ1

φ2


 =


cos θ − sin θ

sin θ cos θ




h
s


 , (4.14)

with

tan 2θ =
βvvS

λSv2
S − λv2

. (4.15)

The masses are

m2
1,2 = λv2 + λSv

2
S ∓

√
(λSv2

S − λv2)2 + β2v2
Sv

2 . (4.16)

In the limit vS � v and λSv
2
S � λv2, one obtains

m2
1 ' 2

(
λ− β2

4λS

)
v2, m2

2 ' 2λS v
2
S , (4.17)

and

θ ' βv

2λSvS
. (4.18)

The mass of the new Z ′ gauge boson is

mZ′ = |xs| gXvS , (4.19)

where gX is the U(1)X gauge coupling. An indirect constraint on mZ′ comes from analyses of LEP2

precision electroweak data [100]:

mZ′

gX
= |xs| vS & 13.5 TeV . (4.20)

Thus, depending on the charge xs, different lower bounds on the breaking scale of the U(1)X gauge

symmetry are obtained. For the anomaly-free scalar charges given in Table 4.2, namely |xs| = 2, 3, 6,

one obtains the bounds vS & 6.75 TeV, 4.5 TeV, and 2.25 TeV, respectively. To put limits on the Z ′

mass, the gauge coupling strength must be known. Assuming, for definiteness, gX ∼ 0.1, the bound

in Eq. (4.20) implies mZ′ & 1.4 TeV. Such masses could be probed through the search of dilepton Z ′

resonances at the final stage of the LHC, with a center-of-mass energy
√
s = 14 TeV and integrated

luminosity L ' 100 fb−1 [101, 102]. Recent searches for narrow high-mass dilepton resonances at the

LHC ATLAS [103] and CMS [104] experiments have already put stringent lower limits on extra neutral

gauge bosons. In particular, from the analysis of pp collisions at
√
s = 8 TeV, corresponding to an

integrated luminosity of about 20 fb−1, these experiments have excluded at 95% C.L. a sequential SM Z ′

(i.e. a gauge boson with the same couplings to fermions as the SM Z boson) lighter than 3 TeV.

Electroweak precision data severely constrain any mixing with the ordinary Z boson [85]. The Z−Z ′

mixing may appear either due to the presence of Higgs bosons which transforms nontrivially under the SM

gauge group and the new U(1)X Abelian gauge symmetry or via kinetic mixing in the Lagrangian [105].

The mass mixing is not induced in our case because the SM Higgs doublet is neutral under U(1)X , while

kinetic mixing may be avoided (up to one loop), if U(1)Y and U(1)X are orthogonal [106]. Although a

detailed analysis of the Z−Z ′ mixing is beyond the scope of our work, it is worth noting that, in general,

it imposes additional restrictions on these models. For simplicity, hereafter we assume that mixing is

negligible and restrict ourselves to the case with no mixing.
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Figure 4.1: Rt/µ − Rb/µ branching ratio plane for the anomaly-free solutions of Table 4.2, leading to

neutrino mass matrix patterns of type A1,2 and B3,4.

4.2.3 Gauge Sector and Flavour Model Discrimination

For the effects due to the new gauge symmetry to be observable, the seesaw scale should be low

enough. One expects a phenomenology similar to the case with a minimal B − L scalar sector [107].

Nevertheless, by studying the Z ′ resonance and its decay products, one could in principle distinguish the

generalized U(1)X models from the minimal B − L model.

Due to their low background and neat identification, leptonic final states give the cleanest channels

for the discovery of a new neutral gauge boson. In the limit that the fermion masses are small compared

with the Z ′ mass, the Z ′ decay width into fermions is approximately given by

Γ(Z ′ → ff) ' g′
2

24π
mZ′

(
x2
fL + x2

fR

)
, (4.21)

where xfL and xfR are the U(1)X charges for the left and right chiral fermions, respectively. Moreover, the

decays of Z ′ into third-generation quarks, pp→ Z ′ → b b and pp→ Z ′ → t t can be used to discriminate

between different models, having the advantage of reducing the theoretical uncertainties [108, 109]. In

particular, the branching ratios Rb/µ and Rt/µ of quarks to µ+µ− production,

Rb/µ =
σ(pp→ Z ′ → b b)

σ(pp→ Z ′ → µ+µ−)
' 3Kb

x2
q + x2

d

x2
`2 + x2

e2

,

Rt/µ =
σ(pp→ Z ′ → t t)

σ(pp→ Z ′ → µ+µ−)
' 3Kt

x2
q + x2

u

x2
`2 + x2

e2

,

(4.22)

could serve as discriminators. The Kb,t ∼ O(1) factors incorporate the QCD and QED next-to-leading-
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Figure 4.2: Rt/µ − Rτ/µ branching ratio plane for the anomaly-free solutions of Table 4.2, leading to

neutrino mass matrix patterns of type A1,2 and B3,4.

order correction factors. Substituting the quark and charged-lepton U(1)X charges given in Eqs. (4.4)

and (4.5), we obtain

Rb/µ '
Kb

3

a2

b22
, Rt/µ '

Kt

3

a2

b22
, (4.23)

yielding Rb/µ ' Rt/µ. Fig. 4.1 shows the Rt/µ−Rb/µ branching ratio plane for the anomaly-free solutions

given in Table 4.2, which lead to the viable neutrino mass matrix patterns A1,2 and B3,4, with two

independent zeros. As can be seen from the figure, the solutions split into five different points in the

plane, which correspond to the allowed values of the b2 coefficient, |b2| = 1, 3, 5, 6, 9, assuming a = 1.

The allowed mν patterns are shown at each point.

The ratio Rτ/µ of the branching fraction of τ+τ− to µ+µ− has also proven to be useful for under-

standing models with preferential couplings to Z ′ [109]. It is approximately given in our case by

Rτ/µ =
σ(pp→ Z ′ → τ+τ−)

σ(pp→ Z ′ → µ+µ−)
' Kτ

x2
`3 + x2

e3

x2
`2 + x2

e2

' Kτ
b23
b22
, (4.24)

where in the last expression we have used the charge relation (4.5). Clearly, this ratio can be used to

distinguish models with generation universality (Rτ/µ ' 1) from models with non-universal couplings, as

those given in Table 4.2. The Rt/µ −Rτ/µ branching ratio plane is depicted in Fig. 4.2. In this case, the

neutrino mass matrix patterns exhibit a clear discrimination in the plane, having overlap of two solutions

in just three points.

In conclusion, by studying the decays of the Z ′ boson into leptons and third-generation quarks at
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collider experiments, it is possible to discriminate different gauge symmetries and the corresponding

flavour structure of the neutrino mass matrix.
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Chapter 5

Conclusions

The recent discovery of a Higgs-like particle at the LHC reinforces the great success of the SM as the

effective low energy theory for the electroweak interactions. In spite of this, there remain a few aspects

that cannot be explained within the SM. In particular, neutrino oscillation experiments have confirmed

that neutrinos have non-vanishing masses and mix. The well-known seesaw mechanism is an appealing

and economical theoretical framework to explain the tiny neutrino masses. In this context, the addition

of new heavy particles (fermions or bosons) to the theory allows for the generation of an effective neutrino

mass matrix at low energies. As is well known, theories that contain fermions with chiral couplings to

the gauge fields suffer from anomalies and, to make them consistent, the chiral sector of the new theory

should be arranged so that the gauge anomalies cancel. One attractive possibility is to realize the anomaly

cancellation through the modification of the gauge symmetry.

In this thesis, after briefly reviewing the SM and some theoretical aspects of anomalies, we discussed

the anomaly cancellation and electric charge quantization in three popular (type I, II and III) seesaw

extensions of the SM. We have then studied how to reduce the number of high energy parameters in the

neutrino sector so that the effective neutrino mass matrix, obtained through the seesaw in the presence

of an Abelian local gauge symmetry, exhibits a two-zero texture.

We have considered extensions of the SM based on Abelian gauge symmetries that are linear combina-

tions of the baryon number B and the individual lepton numbers Le,µ,τ . In the presence of a type I and/or

type III seesaw mechanisms for neutrino masses, we have then looked for all viable charge assignments

and gauge symmetries that lead to cancellation of gauge anomalies and, simultaneously, to a predictive

flavour structure of the effective Majorana neutrino mass matrix, consistent with present neutrino oscil-

lation data. Our analysis was performed in the physical basis where the charged leptons are diagonal.

This implies that the neutrino mass matrix patterns with two independent zeros, obtained via the seesaw

mechanism, are directly linked to low-energy parameters. We recall that, besides three charged lepton

masses, there are nine low-energy leptonic parameters (three neutrino masses, three mixing angles, and

three CP violating phases). Two-zero patterns in the neutrino mass matrix imply four constraints on

these parameters. Would we consider charge assignments that lead to nondiagonal charged leptons, then

the predictability of our approach would be lost, since rotating the charged leptons to the diagonal basis
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would destroy, in most cases, the zero textures in the neutrino mass matrix.

Working in the charged lepton flavour basis, we have found that only a limited set of solutions are

viable, namely those presented in Table 4.2, leading to two-zero textures of the neutrino mass matrix

with a minimal extra fermion and scalar content. All allowed patterns were obtained in the framework

of the type I seesaw mechanism with three right-handed neutrinos (or in a mixed type I/III seesaw

framework with three right-handed neutrinos and one fermion triplet), extending the SM scalar sector

with a complex scalar singlet field.

Finally, we briefly addressed the possibility of discriminating the different charge assignments (gauge

symmetries) and seesaw realizations at the LHC. We have shown that the measurements of the ratios of

third generation final states (τ, b, t) to µ decays of the new gauge boson Z ′ could be useful in distinguishing

between different gauge symmetry realizations, as can be seen from Figs. 4.1 and 4.2. This analysis

provides a complementary way of testing flavour symmetries and their implications for low-energy neutrino

physics.
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Appendix A

Mathematical Relations

A.1 Regularization with Shifting of Variables

In Euclidean space, if
∫
dnx f(x) is divergent, we can write

∆(a) =

∫
dnx[f(x+ a)− f(x)] ≈

∫
dnx aµ∂µf(x) , (A.1)

in first-order approximation.

From the generalized Gauss theorem, we have

∫

V

dnx ∂µF
µ(x) =

∫

S(V )

dn−1xnµSFµ(x) . (A.2)

The left side is a volume integral over the volume V and the right side is the surface integral over the

closed boundary of the volume V , which is S(V ). On each point of the surface S(V ), nµS is the outward

pointing unit normal field. Since aµ is constant throughout space, we obtain

∫

V

dnx ∂µ(aµf(x)) = aµ

∫

S(V )

dn−1xnµSf(x) . (A.3)

If
∫
V
dnx stands for an integration over all space, one can perform a symmetrical integration over

a sphere with n dimensions and then take the infinite limit of its radius r. For a sphere, nµS = rµ/r,

therefore ∫
dnx aµ∂µf(x) = aµ lim

r→∞

rµ

r
Sn−1(r)f(r) . (A.4)

In order to apply this result in Minkowski space, we perform a Wick rotation because x4 = ix0, which

leads to an overall i factor. In four dimensions, we have S3(r) = 2π2r3, and it is now straightforward to

regulate divergent integrals in four-dimensional Minkowski space.

A.2 Properties of the Gamma Matrices

The gamma matrices (γµ) obey the anticommutation relation

{γµ, γν} = γµγν + γνγµ = 2gµν , (A.5)
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and the fifth gamma matrix, defined as γ5 = iγ0γ1γ2γ3, obeys

{γ5, γµ} = γ5γµ + γµγ5 = 0 . (A.6)

Using these properties, it is possible to obtain different traces identities. The relevant ones to our

discussion are

tr [γµ1
... γµn ] = tr [γ5γµ1

... γµn ] = tr [γ5] = tr [γ5γµγν ] = 0 , for n odd,

tr [γ5γβγνγαγµ] = −4iεβναµ ,

tr [γ5γαγλγργνγβγµ] = −4i [δαλερνβµ − δαρελνβµ + δλρεανβµ + δνβεαλρµ − δνµεαλρβ − δβµεαλρν ] ,

(A.7)

which directly lead to

tr
[
γ5/pγν/k1γµ

]
= −4iεβναµp

βkα1 ,

tr
[
/pγλγ5/pγν/pγµ

]
= 4ip2pβελνβµ .

(A.8)

In the Dirac space, the charge conjugation matrix C is an unitary matrix that obeys the relations

CγµT + γµC = CT + C = 0 . (A.9)

For any Dirac spinor ψ, one can define ψc = Cψ
T

so that ψc = −ψ TC† = ψ TC.
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