Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1978

The Powers of Perturbation
Theory

Loops and Gauge Invariance in Particle Physics

JOHAN LOFGREN

ACTA
UNIVERSITATIS ISSN 16516214
UI;?%%I/]SE EIS ISBN 978-91-513-1041-1

2020 urn:nbn:se:uu:diva-422716




Dissertation presented at Uppsala University to be publicly examined in Polhemsalen,
Angstromlaboratoriet, Ligerhyddsvigen 1, Uppsala, Friday, 11 December 2020 at 09:15 for
the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty
examiner: Professor Kimmo Kainulainen (University of Jyviskyld, Department of Physics).

Online defence: https://uu-se.zoom.us/j/62746592034?
pwd=VOVBTVhGWCI96UEJOWWpOTmdNdOE2UT09

Passcode: 045337

Abstract

Lofgren, J. 2020. The Powers of Perturbation Theory. Loops and Gauge Invariance in Particle
Physics. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of
Science and Technology 1978. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN
978-91-513-1041-1.

The Standard Model is the best particle physics theory we have, but there are still phenomena
that it cannot explain. In this thesis I have worked on two different projects that connect to two
of the biggest unsolved questions of the Standard Model.

From observations of neutrino oscillations we know that at least one of the neutrinos has to
be massive. But the neutrinos of the Standard Model are massless. The first paper in the thesis
investigates a simple extension of the Standard Model that realizes a fifth force as a
U(1) gauge group. In such models, extra care has to be taken to not introduce
inconsistencies known as anomalies. It turns out that the simplest way to avoid these problems
is to introduce three right-handed neutrinos. Such models can then incorporate
neutrino masses in a convenient way. In the second paper we have investigated a twist on
this model that does not have neutrino masses, but which makes other interesting models
possible—such as a model with gauged lepton number.

The observed asymmetry between matter and antimatter cannot be explained by
the Standard Model. One of the more popular of the possible explanations is known
as electroweak baryogenesis. In this scenario the asymmetry is determined during
the electroweak phase transition in the early universe. The second project—spanning the
three final papers of the thesis—has aimed to improve the approximation methods we
use to calculate features of this phase transition. Such calculations are plagued by two big
problems that seem to compete with each other. On the one hand, gauge invariant
results seem to demand that a strict loop counting must be enforced. On the other
hand, the loop approximation does not work well close to the phase transition. We argue that
the solution is to use a different power counting, but still be strict about sticking to it.
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My contribution to the papers

Paper [

Paper II

Paper III

Paper IV

Paper V

A. Ekstedt, T. Mandal, and I performed the original model-building calcu-
lations together. I wrote the Mathematica script which we used to perform
the numerical calculations, while T. Mandal and A. Ekstedt performed the
Madgraph simulations. R. Enberg and G. Ingelman supervised the project.
We all contributed to writing the paper.

A. Ekstedt had the original idea to implement the Green-Schwarz mecha-
nism for the U(1) extended Standard Model. We performed this derivation
together. Andreas took the lead on the 1-loop calculations necessary to test
the theory, with me checking the results. The rest of the project proceeded
as for paper 1.

Though I first had the idea that started this project, the project evolved
and changed as A. Ekstedt and I worked on it together; in the end it is an
amalgamation of our shared insights. We did almost all of the calculations
together, and we both wrote the paper.

I had as a goal for a very long time to combine the fi-expansion with ther-
mal resummations. Then A. Ekstedt had the realization that the problem
laid in the power counting. We developed the formalism together and
tested it by performing thermal 2-loop calculations. We wrote the paper
together.

The realization that the method of regions could be useful for thermal
sum-integrals grew from our work on paper III. A. Ekstedt performed the
original calculation and wrote a first draft. I double-checked the derivation
and contributed to writing the paper.



Foreword

“Let me share with you the terrible
wonders I have come to know...”
—The Narrator

Darkest Dungeon

The goal of my research is to test, or enable others to test, particle physics models
against reality. In my PhD studies this has taken the form of two different projects,
with some common aspects. In my first two papers, papers I and II, I have explored
the collider phenomenology of a U(1) extension of the Standard Model of particle
physics. In such extensions, gauge anomalies must cancel such that the theory is
consistent. This requires that particular care is applied during model building.

Papers III and IV concern the effective potential—a device used to understand
spontaneous symmetry breaking and the Higgs mechanism when quantum and
thermal fluctuations are included. Such calculations are relevant for the electroweak
phase transition that took place in the early universe. The work behind these papers
strives to improve the results of perturbation theory by taking certain consistency
conditions very seriously.

Paper V is a derivation of sub-leading terms in an expansion of a thermal sum-
integral called the sunset. The sunset shows up in 2-loop calculations of the effective
potential; the sub-leading terms of the expansion are needed at higher orders in
perturbation theory, as we discuss in paper IV.

A unifying principle of these two different projects is the quest to maintain
gauge invariance. Or, more colloquially, to ensure proper accounting of the degrees
of freedom. A gauge invariance represents a redundancy in the description; to not
maintain it would mean wrongful accounting. This is especially troubling because
we typically introduce artificial unphysical degrees of freedom to simplify calcula-
tions. These unphysical contributions must cancel in the end. If not, we have twisted
our formalism such that predictions become inconsistent and untrustworthy.

In chapter 1 I give a brief overview of the Standard Model and why physicists
believe it must be extended. Chapter 2 describes spontaneous symmetry break-
ing and the Higgs mechanism, which are relevant to modern model building and
to understanding the electroweak phase transition. Chapter 3 concerns quantum
corrections and how they relate to symmetries, and chapter 4 brings thermal correc-
tions into the picture. Each of these chapters ends with an annotated bibliography
of recommended readings. The final chapter, chapter 5, is a popular summary in
Swedish.

Thank you for reading,
Johan Léfgren
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1. Particle physics and you

The story so far: In the beginning
the Universe was created. This has
made a lot of people very angry and
been widely regarded as a bad move.

Douglas Adams, The Restaurant at
the End of the Universe

Physics is an ambitious endeavor that aims to consistently describe planets, solar-
systems, galaxies, (and beyond), and everything as small as molecules, atoms, elec-
trons, (and beyond). Though this project is far from complete, great progress was
made in the last century. There were several paradigm shifts that forever changed
our view of reality. With the introduction of relativity and quantum mechanics, the
20th century marked the advent of the field particle physics. We learned that to
study particles we must study quantum fields—quantum field theory can combine
the principles of special relativity and quantum mechanics.

The most well-tested quantum field theory we have is the Standard Model of
particle physics, which I describe in the following section. This introductory chapter
has a light tone, with the aim to place my research into a larger context. In future
chapters I get into more technical details.

1.1 A brief introduction to the Standard Model

The Standard Model is a quantum field theory—a collection of quantum fields
with different properties, linked together by interactions. Excitations of these fields
appear to us as particles, and when the particles affect each other it is due to the
fields interacting. The discovery of all the different building blocks, and how they fit
into the Standard Model, is an impressively large scientific project that culminated
during the previous century. The Higgs boson—the final piece—was discovered in
2012 at the Large Hadron Collider [1, 2, 3].

There are several different types of fields in the Standard Model. We think of
the fermionic fields as matter because their particle excitations obey Fermi-Dirac
statistics. Loosely speaking, they cannot be compressed together indefinitely—they
take up space. This is in contrast to bosonic fields, such as electromagnetic waves,
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that can be layered on top of each other with little limitation. There are three gener-
ations of fermions in the Standard Model, where the first generation corresponds to
particles like the electron, or the quarks that form atomic nuclei. That is, atoms con-
sist of protons and neutrons—composite particles of up- and down-quarks—orbited
by electrons.

Fermions from the other two generations are not as well-known, for good reasons:
they are very heavy and decay quickly into other particles. But they are of course
important to physics at short distances.

There is in addition another kind of matter particle that is abundant in the
universe. Though we do not notice neutrinos in our daily life, they are ever-present.
They are created in nuclear processes, but they hardly interact with other particles.

With the Standard Model’s matter-content out of the way, we turn to its forces.
The concept of a force is, in particle physics, a slippery one. In the physics of our
everyday lives, we typically think of a force as something that pushes or pulls
something else. These forces may be emergent effects that arise from microscopic
interactions, such as how the ground pushes your feet up when you are standing
on it. Or a force might be the manifestation of the presence of a fundamental
force-field—such as the electromagnetic field.

In contrast, quantum fields can in one instance act like a particle (something
that scatters) and in another instance like a field (something that mediates inter-
action). Particles interact through intermediate states—fields are excited and their
excitations trigger the excitations of other fields through interactions—and really all
fields are forces in this sense. An electron can scatter off a photon (the particle that
mediates the electromagnetic force) by “exchanging” an intermediate electron.! In
this sense we might talk of the “electron force.”

But this is not how particle physicists usually use the word force. Typically, we
only refer to forces if they are mediated by gauge bosons. In this sense there are
four different forces that particles are subject to. There is the electromagnetic force
mediated by the photon y, the weak force mediated by the Z and W bosons, the
strong force mediated by the gluon g, and gravity (presumably) mediated by gravi-
tons. All of these forces, except gravity, are a part of the Standard Model—the first
three correspond to the gauge group SU(3),xSU(2); xU(1)y. In particular, SU(3),
corresponds to the strong force, and SU(2); xU(1)y to the electroweak unification
of the electromagnetic and the weak force. The electroweak gauge group is “broken”
by the Higgs mechanism, leaving us with the two separate forces we usually speak
of.

That said, there are physicists who think that we should really call all bosons
forces. In particular, this would imply that the Higgs field mediates a fifth force—the
Higgs force. After all, propagating massive particles can interact with each other by
exchanging a Higgs boson. Just like how an electron and a proton might attract each

1Or a more complicated intermediate state, represented by a Feynman diagram with loops.
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other by exchanging a photon. Most physicists do not subscribe to this nomenclature
though, and I will not use it further in this thesis.

The Higgs field implements the Higgs mechanism. All the gauge bosons and all
the fermions of the Standard Model would need to be massless if there was no such
mechanism. This mechanism plays a key role in both of the research projects that
this thesis is based on; I elaborate on it in chapter 2.

1.2 Beyond the Standard Model

Now that we are familiar with the Standard Model, let’s scrutinize its imperfections.
There are flaws, both theoretical and experimental.

The Standard Model does not contain gravity. General relativity, the theory
of gravity at large distances, has technical issues when constructed as a quantum
field theory. Constructing a well-functioning quantum theory of gravity is one of
the biggest challenges of theoretical physics. There are a few different approaches,
with string theory as the most popular candidate (for good reasons). The fact that
the Standard Model does not deal with gravity at all means that the theory does
not make accurate predictions for certain extreme cases—such as near black holes
or in the very early universe, where the quantum nature of gravity is important.
But the Standard Model together with general relativity works well for the energies
that are available in our colliders.

Neutrinos are massive. Due to the observed phenomenon of neutrino mixing,
we have known since the 90s that at least one neutrino must be massive. But the
neutrinos in the Standard Model are massless. Their masses could in principle be
added to the Standard Model, but to do it correctly we need to know more about
neutrinos. Depending on if they behave as Dirac or Majorana fermions, the fine
details of their mass terms and their interactions will be different. I discuss this
issue more in subsection 1.3.1.

Dark matter is likely to have a particle nature. Yet the particles of the Standard
Model cannot explain the various phenomena that we need dark matter for, such as
the rotation curves of galaxies. This problem can be addressed by adding massive
particles to the Standard Model that interact weakly with everything besides gravity.
The problem is of course to know which model is correct, and there is a large industry
dedicated to test such models in different ways.

Matter and antimatter do not exist in equal amounts. This fact is very puz-
zling from the Standard Model’s point of view. Though matter and antimatter can
be differentiated in the Standard Model, since the CP symmetry is slightly broken,
it cannot explain the sheer difference we have observed. There are a few competing
explanations, but they all require additional particles. I will discuss the prospect of
electroweak baryogenesis in subsection 1.3.2.
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Dark energy. Cosmological observations suggest that we live in an accelerating
universe. The simplest explanation (there are other candidates) is that there exists
a very small, but nonzero and positive, cosmological constant—a background energy
density. The Standard Model can accommodate such a constant, but there would
have to be some serious fine-tuning of the parameters in the Lagrangian to explain
its small value. It is up to extensions of the Standard Model to explain why the
value is what it is, or to propose another mechanism that explains the cosmological
observations.

The hierarchy problem. This is one of the Standard Model’s longest-standing
theoretical problems. If there are heavier particles that couple to the Higgs, then
the Higgs boson’s mass should get large quantum corrections. But because we know
that the Higgs mass is actually around the weak scale, then there must be minute
cancellations between these corrections such that they do not contribute too much.
This is a fine-tuning. These considerations lead particle physicists to believe that
the LHC would reveal more particles than what we have seen so far—particles that
would enact some mechanism that renders fine-tuning unnecessary. Models with
supersymmetry, and models in which the Higgs is a composite particle, are examples
of such models. There is no concrete evidence for such extensions of the Standard
Model as of yet.

1.3 Particle physics and me

In this section I elaborate on two of the problems I mentioned above, because they
are related to my own work. This section is necessarily more technical than the
previous one.

1.3.1 The neutrino masses

The Standard Model does not contain neutrino masses. But even though we are
sure that at least one of the neutrinos is massive, it is not clear how to add mass
terms for neutrinos.? Indeed, the type of mass term to add depends on whether
neutrinos are Majorana or Dirac particles. Consider a left-handed neutrino v;. A
Dirac mass term needs an accompanying right-handed neutrino v, and is written
as

mp(vy, vg + VgL ). (1.1)

If such right-handed neutrinos do exist (though we have not observed them), the
coefficient m;, would have to be incredibly small to explain the observed neutrino
masses—which are around a few eV. In the Standard Model, such mass terms

2This subsection is based on the paper [4], and the textbook [5].
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would be generated by interactions between the neutrinos and the Higgs field. With
additional right-handed neutrinos, the mass term would be of the form

yTL veH +h.c., (1.2)

where H is the Higgs doublet, H = io, H*, and [ is the left-handed fermion doublet.
Here y would need to be very small compared to other Yukawa couplings in the
Standard Model.

On the other hand, a Majorana mass term can be written purely in terms of v,

1 —
EvachL- (1.3)

However, there are additional complications with Majorana mass terms. Such terms
are not possible with renormalizable operators in the Standard Model, because
of gauge invariance. Though it is possible to induce such a mass term with non-
renormalizable higher-dimensional operators like

/C—\(Z_CLH)(ZLH) +he, (1.4)

where A is a cut-off scale and c is a numerical coefficient. This explanation for the
fermion mass would hence also require new physics (around the scale A). But an
added bonus is that it could explain why neutrinos are very light. Because the mass
terms are then suppressed by the high scale A.

To know which of these mechanisms is realized in nature, we need more experi-
mental data about neutrino interactions. But such data is sparse because neutrinos
interact weakly with other particles. Hence it is currently unknown wether neutrinos
are Dirac or Majorana fermions. So far we have only observed the three left-handed
neutrinos. A generic prediction of Majorana neutrinos is that of neutrinoless double-
beta decay, where certain atomic decays produce two electrons (or positrons) and
no neutrinos. This kind of decay cannot occur if the neutrinos are Dirac particles—it
is forbidden by lepton-number conservation. No such decay has yet been observed.

Although there’s a good case for believing in pure Majorana neutrinos, there
are other compelling possibilities. If right-handed neutrinos v, exist, they can form
both Majorana and Dirac mass terms simultaneously. And so a neutrino mass matrix
M with off-diagonal elements is possible:

M~(O mD). (1.5)

mp My

If M,; > m,, then the masses of the propagating states are approximately

m2

m1~m—D,m2~mM. (1.6)
M
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In other words, there are two classes of neutrinos—one that is very light, and one
that is very heavy. This is known as a seesaw-mechanism.

In paper I we have considered a simple extension of the Standard Model, with an
extra U(1) gauge symmetry. Such theories have certain consistency requirements—
possible gauge anomalies must cancel, see section 3.2—and it turns out that the
simplest way to resolve these is to add three fermions that are not charged under the
Standard Model gauge group [4]. This precisely corresponds to three right-handed
neutrinos.

The model also features a new complex scalar field ¢ which acquires a vacuum
expectation value to break the new U(1) group and give mass to the new neutral
gauge boson Z’. It is then possible to have Majorana mass terms for these three
right-handed neutrinos, such as

@ v +hec. 1.7

The vacuum expectation value of ¢ is on the same order as the mass of Z’, which
should be around the TeV-scale to have evaded the experimental bounds so far. With
mp ~ 1 MeV (close to the electron mass), and m;, ~ 1 TeV, we find m; ~ 1 eV.

Such anomaly-free U(1) extensions of the Standard Model hence conveniently
support the existence and smallness of the neutrino masses.

1.3.2 Matter-antimatter asymmetry

Though it is clear that there are more baryons than anti-baryons in our universe,
it is possible to be more quantitative about it. By observing cosmic rays that reach
the earth, and comparing the number of incoming anti-protons p to the number of
incoming protons p, we have measured that [6]

P10, (1.8)

p
This fraction is consistent with an abundance of primordial protons that have per-
sisted since the early universe. The small fraction of antiprotons is just what you
expect if they were created in the cosmic rays [7]—any primordial antiprotons have
long since annihilated.

Just how the matter-antimatter asymmetry came about is an open question.
There are a number of different proposed explanations, but none with much evi-
dence in favour of it. One popular mechanism is known as electroweak baryogene-
sis [8]. Just before the electroweak phase transition—which broke the electroweak
symmetry—a net baryon number can be generated by certain non-perturbative
processes known as sphalerons. To prevent this number from being washed away,
it is important that the phase transition is first-order. Such phase transitions oc-
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cur through bubble nucleation, just like boiling water, and offer just the correct
circumstances to make electroweak baryogenesis possible.

In the Standard Model, the phase transition is known to be second-order from
lattice simulations [9, 10]. But because physics at the electroweak scale is difficult
to test experimentally—especially the Higgs potential, which is relevant for the
phase transition—it is possible that there is new physics lurking there. Such new
physics might change the nature of the phase transition, and therefore there is much
interest in extensions of the Standard Model that modify the Higgs potential.

But, as I describe further in chapter 4, it is tricky to perform perturbative cal-
culations relating to the phase transition. In papers III and IV, a colleague and I
have developed perturbative methods to improve such calculations. Paper V is our
calculation of further terms in the high-temperature expansion of a 2-loop thermal
sum-integral known as the sunset. As we discuss in paper IV, such terms are relevant
at high orders of perturbation theory.

Recommended readings

Sean Carroll, The Particle at the End of the Universe [11]. This popular science book
explores the discovery of the Higgs boson at the LHC. It is well written but still
keeps a good level of accuracy.

A. Zee, Quantum Field Theory in a Nutshell [12]. This is a textbook. But it emphasizes
the physical content of quantum field theory, not the technical details.
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2. Spontaneous symmetry breaking

Symmetry: you break it, you buy it.

Label on coffee mug from University of
Washington, Seattle.

The general idea of spontaneous symmetry breaking is one of the most far reaching
and interesting ones in modern physics; see [13] for a recent and comprehensive
review. In gauge theory it shows itself in the guise of the Higgs mechanism.

The Higgs mechanism, and also spontaneously broken global symmetries, play
a key role in the Standard Model and in many of its extensions. In this chapter and
those that follow, I will dig into some of the details these mechanisms. I start with a
simple example and build on it sequentially. Though the concept of broken discrete
symmetries is also interesting, [ will focus on continuous symmetries for brevity.

2.1 Global symmetries, spontaneously broken

2.1.1 A simple example

Let’s start by considering a 4D quantum field theory with a complex scalar field
®(x), and a global U(1) symmetry. The Lagrangian is

L£=-03"93,&—V,[®,o'], 2.1
Vo[®,8'] = m?(27®) + A (273)”. (2.2)

These are all the possible terms with mass-dimension < 4. Here Vj, is the classical
potential, a functional that defines the interactions among the theory’s scalar fields.
As we shall see shortly, the form of the classical potential is crucial for determining
the spectrum of the theory.

Though the complex representation used above realizes the U(1) transforma-
tion in a simple manner, ® — ¢~%®, the rest of the discussion will benefit from
introducing the real and imaginary components of ®,

1

*=7

(p1+19,). (2.3)
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Introducing the real vector (;3 = (¢1,¢,)T, we can write the potential as
Vol$]= —m2¢>2+ w 2.4)

As this theory stands, a naive derivation of the spectrum would lead us to believe
that there are two real scalar particles, both with mass m. Is this correct? Well,
sometimes.

When we are constructing a quantum field theory, we should try to be as general
as possible: write down all possible terms and consider all possible values of the
parameters. In general, the Hamiltonian must be a Hermitian operator to produce a
physical spectrum. In our case this tells us that the parameters must be real (though
in more complicated theories they may be complex). From the argument above we
might also expect that m should be positive, because it seems to correspond to the
mass of a particle. But this assumption would be a mistake.

To see why, we need to consider the ground state of the theory.! We can start with
the classical energy, and focus on quantum corrections later. The classical energy is
given by the space-integral of the Hamiltonian density,

Ezfdgxﬂzfdgx(%ﬁo$-8o$+%8i$-3i$+vo[$]), (2.5)

where we can think of the first two terms as the kinetic energy of the scalar fields.
The aptly named classical potential corresponds to the potential energy.

To find the ground state we should minimize this energy. Because the kinetic
terms contribute as positive squares, their minimal contribution is zero. We then
immediately draw the conclusion that the field with minimal energy, (j_;o, should be
static: 9, q_50 = 0. All that remains is the potential energy,

Emm=fd3xvo[¢o]—w( m?$2 + = wo) (2.6)

where V is the volume of space and (50 minimizes the classical potential,
!
al‘V0|¢:¢0 = O. (2.7)

Here I used the shorthand &, = 35- ¢

To solve this equation we should first consider the possible values of the param-
eters, and to do so we must let go of their physical interpretations—forget that m
usually corresponds to a mass. If A is negative then the energy is unbounded from

below. This theory is unstable and is not of interest to us. If A = 0, then the theory

IThe following demonstration is based on Rubakov’s textbook [14].
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is unstable if m? < 0; if m? > 0 it describes two free scalar fields, both with mass
m.

When A > 0 the theory is bounded from below and the existence of a ground
state is guaranteed. To find it, we solve equation (2.7) to find possible extrema,

m2

| - - - -

0=(m2+l|¢0|2)¢0 = ¢g=0 or |¢0|2=—7- (2.8)
The natures of the extrema are found by computing the second derivative matrix
(the Hessian). Due to the U(1) invariance, it is enough to focus on the absolute

value of qgo. Defining ¢ = |q§|, and 0 = %, we have that

RA

F=0" m?, (2.9)
0%Vo| oz =—2m”. (2.10)
- 2

Now it is time to face to the possible values of m?. If m? = 0, then the two extrema
are both minima and located at the origin—the two scalars are massless.? If m? > 0,
then the second extremum is not realized (there are no real values of d_; which satisfy
that equation); the ground state is at the origin and the naive analysis holds: there
are two real scalars with mass m.

With negative m?, the extremum at the origin is a maximum, and the second
one is a minimum. The ground state satisfies

—m?2

|¢0| = )L >

(2.11)

and is hence actually a continuum of states—all 2D vectors with this length.

The existence of this multitude of states is related to the symmetry of the original
theory, which will be more apparent when we consider the general case in subsec-
tion 2.1.2. Because these states all have the same energy, we can pick one of them
as a representative. Take

- T _m2
b0 =0(¢0,0)"; ¢o= PR (2.12)

Now that we have the ground state, we should expand around it to find the
spectrum of the theory; in that vein,

$P1=¢o+H,p,=0G, (2.13)

>The second-derivative test actually fails in this case, but they can be confirmed to be minima by
inspection.
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where I gave the fluctuations around the ground state the names H and G—for
reasons that shall soon become apparent. To find their masses, simply insert this
expansion into the Lagrangian and look at the appropriate terms (H? and G2),

=m®+3A¢; =—2m>, (2.14)
mZ =m’+ A¢Z =0. (2.15)

The spectrum hence consists of two scalars: H, which has squared mass —2m? (a
positive number), and G, which is massless.

Though we started with a theory in which all fields were treated the same,
where ¢, and ¢, were interchangeable—and could be intermingled with a U(1)
rotation—we ended up with a spectrum in which the two “physical” fields are not
interchangeable. This is the essence of spontaneous symmetry breaking; though the
theory is invariant, the ground state breaks the symmetry—splitting the spectrum.

In this section we considered a simple Abelian symmetry, that was spontaneously
broken. In the spectrum we found one massive scalar and one massless one. In the
next section I will discuss the general case of a non-Abelian symmetry.

2.1.2 The general case (global)

The most general continuous symmetry that is of interest to us corresponds to a
compact semi-simple Lie group G [14]. To specify how the various fields of our
model transform under G, we must specify in which representation they are. It is
enough for our interests to consider the transformation of the scalars in the model.>

Because our end goal is to do perturbation theory, it is simplest to use a real
representation of the scalars (this can be done without loss of generality). We collect
the N real scalars in the vector (j_; , with components ¢;.

Let’s denote the generators of this representation as T¢, witha =1,...,D; and
Dy is the dimension of the group G. An infinitesimal transformation of ¢; is then
given by

¢! =1-i0°T%);¢;, (2.16)

where 6¢ are arbitrary infinitesimal parameters. Note that this representation is
real, and hence the generators T¢ are antisymmetric Hermitian matrices.

For this to be a symmetry, we require that the action is unchanged under G
transformations, 6S = 0. For our purposes we can focus on the scalars, and in
particular on static configurations. Then we just require that the classical potential
is invariant, 6V} = 0, that is

Vo($) = V() = (T°$)8,V, =0. (2.17)

3The following discussion is partially based on Srednicki’s textbook [15], and partially on the two
papers [16] and [17].

21



We can get a lot of mileage from this equation. If we differentiate it with respect to
¢;, we find
ajvo (T°¢); = T30;Vs, (2.18)

where 85 V, is the scalar mass-matrix as a function of the background field ¢. The
equations above must hold for any static scalar field configuration, even if it does
not minimize the potential. But let’s get more specific and consider vacuum solutions
that do extremize the potential.

First off, if we consider the standard non-breaking type of solutions with 50 =
0, then the equations above trivially hold—all generators annihilate the vacuum:
Ta(j_;o = 0. This equation tells us that (j_;O does not transform under the group G. In
other words, the vacuum does not break any symmetries; we say that all generators
that annihilate the vacuum are unbroken.

But if we consider vacua located away from the origin, then the situation is more
interesting. We can split the generators into two families, {T¢} = {7%, t’}, where t?
annihilate the vacuum and 7% do not. So, if 7%¢, # 0 then the vacuum transforms
under this “part” of the group , and we say that the generators 7% are broken.

Using group theory, it is possible to show that the D,, unbroken generators
form a subgroup, H, that we call the unbroken subgroup. The broken generators
T% a=1,...,Dg— D, do not in general form a subgroup, but they are interesting
in their own right.

Returning to equation (2.18), but focusing on a vacuum and its broken genera-
tors, we find

B5Vo) ; (T*$o); =0. (2.19)
0

We hence conclude that 7 ql_;o is an eigenvector of the mass-matrix with eigenvalue
zero. In other words, there are (Dg; — D,,) massless scalar bosons—one for each
broken generator. This is Goldstone’s theorem, and the massless scalar bosons are
known as Goldstone bosons.

In the context of the Abelian U(1) example above, there is only one generator to
begin with; in the real 2-dimensional representation the generator is proportional
to the antisymmetric symbol €;;. The non-trivial vacuum breaks this generator, and
the resulting unbroken subgroup is trivial. There is Dg —D;;, = 1—0 = 1 Goldstone
boson.

Furthermore, we chose a representative vacuum d_;o = (¢0,0)7, and did not
worry about a loss of generality. With this representative we found that ¢, corre-
sponded to the Goldstone boson G, and we let H refer to the massive fluctuation
along the direction of the vacuum expectation value (vev) 50.

The Goldstone field corresponds to fluctuations perpendicular to the vev direc-
tion. This is because any static field configuration ql_; is orthogonal to the correspond-
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ing Goldstone direction 7%¢,
¢(T*P),; = 517:;151 =0, (2.20)

due to the antisymmetry of 7*. In the Abelian case, if we instead would have
considered a generic backg£ound field ¢ = (¢, P,)", we would haye found the
Goldstone direction to be € = (¢, —p, )" —which is orthogonal to ¢.

Of course, because the potential is invariant under the group G, we are free to
transform $ into the simplest form possible. That is why we can simply choose to
work with the vev in the ¢, direction in Abelian case. But I think it helps to see that
it can be done with general fields as well.

To summarize, for a particular vacuum q_5 that breaks the generators 7%, we are
free to choose a form of d_; that makes our lives simpler—as long as that form is
reachable by a G-transformation.

2.2 Gauge symmetries and the Higgs mechanism

We are now ready to tackle the Higgs mechanism.

2.2.1 A (kind-of) simple example

Let’s return to the Abelian U(1) example, but now consider a gauge symmetry,
®(x) — e 89™)@(x).* Such an invariance can be dealt with by introducing a com-
panion gauge field A* with appropriate interactions to the fields, such that the full
action is gauge invariant. Assuming that A" transforms as A* — A* — 9*0, the form
of the Lagrangian can be found by a simple construction, and involves the covariant
derivative D" = 0" —igA" and the field-strength F,,, = §,A,—0,A,,; the Lagrangian
is 1

L= -2 F*'F,,—(D"®)'D,®—V,[o', 8], (2.21)
with V}, as in subsection 2.1.1.

Again, let’s find the vacua of this theory. We consider the energy,

E= J dcxH = f d3x GF& + %Ffj + %D()(E-DO(E + %Dl& Dig + v0[¢?]),
(2.22)
and note that the first four “kinetic” terms are positive squares—their minimum
contribution is zero.
In the global symmetry case we could conclude that minimizing the energy
required a static configuration. When there are gauge fields involved, we then

4This subsection is based on Rubakov [14] and Srednicki [15].
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instead have covariant derivatives, and all we can say is that the vacua are static
up to a gauge transformation. That is, we can in principle remove all the spatial
dependence by performing a transformation; the vacua take the form

A,(x)=-3,6, (2.23)
B(x) = 800k, (2.24)

where i€ is the generator of the real 2-dimensional representation of U(1), and 4_5
is a static configuration.

Though this technicality will become relevant later when we want to perform
a gauge-fixing, we can forget about it for now. The remaining part of the energy
resides in the potential V), and due to its gauge invariance we can again focus on a
static solution. Hence the minimum energy is

Enin = J dBXVO[fgo] =Vx Vo(d_;o), (2.25)

where again V is the volume of space and (50 is a static field that minimizes V.

From here the analysis proceeds just as for the global symmetry; we must consider
the form of V, and the values of the parameters. The case analysis is the same
for each case where there is no expectation value for ¢_§ , with the addition of the
massless vector boson.” There are four physical degrees of freedom, two modes of
the massless vector boson and two massive scalars.

We can focus on the interesting case of A > 0,m? < 0, for which the ground
state fulfills |$0| = /—m2/A. Again, there is one massive and one massless scalar,
but now the vector field has also acquired a mass:

mi = g2p2. (2.26)

Counting the degrees of freedom again, there appears to be two scalar modes and
three modes of the vector boson. It seems as if the number of degrees of freedom
has increased from four to five.

To resolve this issue we need to reconsider the role of the massless scalar, the
Goldstone boson. By examining the square terms in the Lagrangian, we find

1 ., 1 PR PSS Y SV PR &
A

We can perform a change of variables by introducing B* = A* + miAa“G, which
completely removes G as a propagating field. The conclusion is that there in fact are

5The m? = 0 case is special, as I discuss in subsection 3.3.4.
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only four degrees of freedom, three modes of the massive vector and one massive
scalar.

This is the Higgs mechanism. We started with a theory that is fully gauge in-
variant, and we spontaneously “broke” the gauge symmetry analogously to how
we would a global symmetry. In the end we found a spectrum of a massive scalar—
the Higgs boson H—and a massive vector boson. The would-be Goldstone boson is
“eaten” (technical term) by the gauge boson, which gives it the missing degree of
freedom it needed to obtain a mass.

Before moving on to a general model, I want to discuss the terminology a bit. We
say that these gauge theories have a “local symmetry,” and we speak of breaking
them with the Higgs mechanism. But the gauge transformations are not symmetries
in the usual sense, they are redundancies in our description of the physical world. We
can usually forget about this difference, but we might naively be lead to believe false
statements if we are not careful. Above, we first figured that an additional degree
of freedom had surfaced in the non-trivial vacuum. But we had not considered that
there was a redundancy and that one of the degrees of freedom was not actually
free. Later in this thesis this kind of reasoning will become important. For now
I will note that saying a gauge invariance is spontaneously broken is a bit of a
misnomer, and some physicists would rather not use this phrasing.® But the phrase
“spontaneously broken” brings to mind the correct analogy of the global case, and I
will hence continue using this phrasing in this thesis. But keep in mind that, really,
gauge symmetries are not symmetries and they cannot break [13].

2.2.2 The general case

Consider again a compact semi-simple Lie group G that acts on a real vector of the
theory’s scalars q§ with generators T%,a =1,...,Dg. Now there are also Dg vector
bosons AZ that transform under the adjoint representation.”

The same equations as in the global case now hold, but before discussing these
again I want to focus on the object F*, = (T“d_; );- As we have seen, F¢. will play
the role of the Goldstone directions in the minimum. And in general F*, is always
perpendicular to the corresponding field value (;E . It can be thought of as a rectan-
gular matrix with Dg rows and N columns, and as such it can be rewritten using a
singular value decomposition,

_ cabpsb pT
F? =s®Mb RY, (2.28)

6Some physicists do not like to use the phrase spontaneously broken at all, even for global symmetries.
Instead they might say that the symmetries are hidden, because the underlying equations respect the
symmetry—only the ground state breaks it.

7 Also this subsection is based on Srednicki [15] and the two papers [16] and [17].
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where S and R are orthogonal Dg x Dg and N x N matrices respectively; M is a
Dg x N rectangular matrix with the singular values on the diagonal: M® =M bg ;’
(no summation over b). All of these matrices inherit the (j_; dependence from the
definition of F,.

From this object we can construct two square matrices that will be relevant later,
by contracting the indices of two Fs in two different ways. The matrices are

(mf‘)ab — Fai(FT)i b _ SacMcj(MT)j d(ST)bd’ (229)
(m3);; = (F"), “F¢; = Rye(M"), “M,(R");. (2.30)

These two square matrices are, perhaps confusingly, given the same name. This is
because they have the same non-zero eigenvalues, though the multiplicities of the
zero eigenvalues may be different. The matrices will relate the Goldstone bosons
to the appropriate gauge bosons, as we shall see. The singular value decomposition
above suggests the existence of bases (one in the a space and one in the i space)
that diagonalize these mass-matrices.

We will return to the matrix (mf‘)i ; later when we discuss the details of gauge-
fixing. For now I will simply state that the matrix (mi)ab is what shows up in the
Lagrangian as a mass-matrix for the gauge bosons. We are well advised to use the
basis AZ = S“bAZ , which diagonalizes the gauge boson mass-matrix.

We can say something further about this matrix by considering its form in a
nontrivial vacuum d_;o- Then we again split up the generators into two families, the
D,, unbroken tb and the (Dg—D;,) broken 7“. Hence we know, in the vacuum, that
the zero eigenvalues of (mf‘ ab
generators. The (Dg — D) non-zero eigenvalues form their own block given by the
broken generators.

must lie in the block specified by the D,, unbroken

The general conclusion is that the unbroken subgroup H still comes with D,
massless gauge bosons. And the rest of the group G that is broken by the Higgs
mechanism comes with (Dg; — D;) massive vector bosons. From the analysis of
the global symmetry case we know that this is the same number as the number of
would-be Goldstone bosons.

The counting of degrees of freedom hence still works out, but the argument is
somewhat more complicated than in the simple Abelian case. I will return to it
when I discuss gauge-fixing in chapter 3.

Recommended readings

Valerij Rubakov, Classical Theory of Gauge Fields [14]. This textbook does an amazing
job balancing mathematical rigor and physical motivations. It treats spontaneous
symmetry breaking and the Higgs mechanism in great detail.
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3. Symmetries and quantum effects

“You have to be realistic about
these things.”
—Logen Ninefingers

Joe Abercrombie, The First Law

The calculations and arguments in chapter 2 all related to classical symmetries. In
this chapter I will explore what can happen when quantum effects are included.

3.1 The path integral

The transition from a classical theory to a quantum one can most intuitively be
understood from the path integral formalism.

In classical physics we write down an action in terms of our degrees of freedom,
following certain rules and regulations. Then we minimize the action to find physical
solutions. This is the principle of least action, and has been used to great success to
derive field equations for electromagnetism and general relativity, and for deriving
classical trajectories for particles present in such force fields.

The principle of least action, useful as it is, might seem a bit arbitrary. To clarify
what I mean by that, let’s consider the path integral in field theory. The path integral
of a field ¢ in the presence of a classical source J is, schematically,

Z[J]= J Dt (S[e1+[ ) (3.1

This is a functional integral, with a functional integration measure D®. From this
definition we can now “derive” the principle of least action. If we treat this path
integral just like any other complex contour integral, then we can approximate it
using the stationary phase approximation. For the following demonstration, I will
set the classical source to zero, J = 0. But a similar analysis is applicable if J is
nonzero.

If we have a solution @, that extremizes the action, 6S|s, = 0, then we can
expand the action around this solution,

S[@]ZS[¢01+W+% 5251% (@—®p)* +... (3.2)
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Using this expansion inside the path integral—the stationary phase approximation—
we get that the logarithm of the path integral schematically obeys [18]

log Z[0] = i%g[%]— %logdet[?izS] +0(h). (3.3)

%o

The classical solution ®, dominates the path integral, and then there is an array
of quantum corrections. We can imagine taking the limit # — 0, picking out the
classical result. In this formalism, the principle of least action is just the statement
that the classical physics dominate the path integral.

Observables can then be derived from the path integral, generally by taking
functional derivatives with respect to the classical sources. For a typical theory with
interactions, we need to approximate the path integral in a fashion analogous to
the expansion above. Perturbation theory is typically done with Feynman diagrams,
ordered by the number of loops. But sometimes this expansion breaks down, and it
is more useful to use another expansion parameter. I will return to this later.

3.1.1 The path integral and symmetries

If we have a symmetry of the classical action, is it guaranteed to be a symmetry of
the path integral? In other words, do quantum effects preserve symmetries? Not
always.

Again, we can gain som intuition by thinking of the path integral as just another
integral.! If we consider an ordinary integral,

fdxf(x), 3.4

and we know that the function f (x) is invariant under some transformation x — x’,
that is f(x) = f’(x’), then the only way for the whole integral to be invariant is if
the integration measure is invariant as well: dx’ = dx.

Hence if the classical theory is invariant under some group G, but the path
integral integration measure D® transforms under G, then we say that the symmetry
is anomalous.

A global anomalous symmetry is not a problem. But, as I emphasized before,
gauge symmetries are not really symmetries—they are redundancies in our descrip-
tion. We are now ready to consider this statement in further detail.

Imagine that the theory specified by £ has a local U(1) symmetry with an ac-
companying gauge boson A*. This vector field has four degrees of freedom, but we
know that any physical manifestation of this field only has two. Somewhere along
the way we must compensate for the extra redundancy that we have introduced.

IThis subsection is based on Srednicki [15].
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Think of the path integral. A part of the integration measure will now be DA ~
DAyDA,;DA,DA;, which shows our overcounting. To compensate for this overcount-
ing we perform a trick that is attributed to Faddeev and Popov [19]. The delicate
part in our treatment of this overcounting is to ensure that we extract the physical
contributions of A, and quotient away the rest. But this is hard because of the
redundancy; which parts that are extraneous depends on which gauge we are in.

Again, the intuition comes from a regular integral. Imagine that we are integrat-
ing over x and y, but we know that the integrand does not depend on y,

dedyf(x). (3.5)

We recognize that the integral over y is redundant, and we can divide the expression
above by V = fdy, which in effect drops the integral over y. If the situation is
more complicated and we are integrating over some 2-dimensional space in which
we know there is a redundancy, then the process is not as simple. Instead we can
imagine starting with f dxf (x), dividing by V, inserting an integral over y and a
delta function that extracts the correct contribution,

lfdxdy det a—G5(G)f(x), (3.6)
1% dy

where G(x, y) is a cleverly chosen function.
In the path integral formalism, we start with an integral over DA and then insert
a delta functional and a functional determinant,

Z[J] o< J DAdet (g—g) 5(G)e's, 3.7)

and we call G the gauge-fixing function. Here 6 refers to a redundant degree of
freedom. The trick now is to rewrite this functional determinant and the delta
functional to something which we can use to calculate observables.

The functional determinant and the gauge-fixing delta functional are incorpo-
rated into our theory by introducing unphysical degrees of freedom, Faddeev-Popov
ghosts ) and 7, and by including new parts in the action,

Z[J] o< f DAD7D7)eS iSentiSss (3.8)

where S, is the ghost action and S, ¢ is the gauge-fixing action.

Loosely speaking, we can think of ghosts as anti degrees-of-freedom; we can use
them to cancel other unphysical contributions. Because they must cancel modes
of the gauge boson, they also need to obey Bose-Einstein statistics. But, at the
same time, for the construction in equation (3.7) to work out, they also need to
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anticommute. This means that they appear to violate the spin-statistics theorem.
Even though this is unintuitive, it is not really an issue. After all, the ghosts are not
physical. I dig into this statement, and show some possible forms of the new actions
Sgn and S, ¢, in the next subsection.

3.1.2 BRST symmetry and gauge-fixing

After appending extra degrees of freedom to our theory, and extra pieces to the
Lagrangian, we might be concerned that we are distorting the physical picture.
Though we are right to be worried, it is possible to show that any unphysical degrees
of freedom cannot contribute to a physical observable.? Our original action S is
invariant under gauge transformations. But the gauge-fixing action S, ¢ and ghost
action S, are cooked up to explicitly fix a particular gauge, and they must break
gauge invariance. But any theory that has gauge invariance also has an additional
global symmetry, called BRST [20].

The BRST symmetry is analogous to the original gauge symmetry, but with Grass-
man (anticommuting) valued parameters; call such a transformation s. This trans-
formation is by construction nilpotent, s? = 0.

With this extra symmetry in mind, it is possible to assign transformation rules
for the ghosts and simultaneously construct S, ¢ and Sy, such that the complete
action is BRST invariant in the end. The trick is to construct the new parts as a
BRST transformation of some operator O, S, ¢ + Sg;, = sO. The nilpotence of s then
assures the full theory is still BRST invariant.

The reason that we care about BRST invariance is that it protects us from ac-
counting mistakes. We can assuage the worries we had about the unphysical states
and interactions that now populate our theory. The precise statement is that physical
states are in the cohomology of s. What this means is that if |¢) is a physical state,
then s|vy) =0 and |¢) is physically equivalent to some state |1) + s|y). Any state
that can be written as a BRST transformation of some other state, such as s|y), can
only contain fluctuations of unphysical degrees of freedom.

These statements are robust under time-evolution. Meaning, if we start with a
physical state, then we must end with a physical state. For calculations in quantum
field theory, this means that although we use propagators that include all modes of
the gauge bosons, and loops including ghosts, in the end all unphysical contributions
will cancel.

At this stage it is good if the niggling worry starts creeping back up again. What if
we make a mistake in the calculation and the ghosts somehow actually contribute?
How would we know? One way is to generalize the operator sO from which we
constructed the new parts of the action. In this way we can introduce some param-
eters, let’s say £9, that in the end cannot affect our results. Any physical observable

2This subsection is also based on Srednicki [15].
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should be independent of £°. If we find that it is not, this means that we have made
a mistake somewhere.

A simple example

Let’s consider how this could be done in the Abelian Higgs model. I won’t go through
the details of the BRST transformation; a suggestion for gauge-fixing and ghost
Lagrangians are

Eg-f-z__g (3HA _ggd)l €ij )) > (3.9

Lenos = =9, 10"1 —Eg>d:($: + R (3.10)

where £ and £ are gauge-fixing parameters. Here I use the notation of [17]. To
translate to the basis I used in chapter 2, use R, = H,R, = G and ¢ = ¢, ¢, =0.

Though it is important to recognize that the above gauge-fixing procedure has
two parameters & and &, calculations in this theory are much more tractable when
&€ = &. This special case is known as the background-field R gauge.?

In this gauge the Goldstone fields get a contribution to its propagator and the
mass is now m2 +& m2 The ghosts interact with the scalars, and they also have a
mass Em? . The longitudinal mode of the gauge boson has propagator & o gm E :f .
When we calculate an observable, £ will enter our expressions through these terms.
In the end all such contributions must cancel.

The general case
Though the gauge-fixing can be done in many ways, I suspect it is hard to do better
than the generalized R, ¢ gauges [17] A

In principle, the requirements for constructing the gauge-fixing terms are not
very strict—there are many different possible choices. We know that the terms in
the end must be BRST invariant. But from a practical point of view, we want the
new terms to simplify our calculations as much as possible.

Borrowing from [17], generalized slightly, we can use

Eg.f.:—l(a“Aa+i€a¢igaTi‘?R-)(<§_1) (01Ab + &g TIR;),  (3.11)

Lonose = =0,M" 31" + 8o f P OFT N A, + €8l TS ;851 T (¢ + RN
(3.12)

Here & is a symmetric Dg x Dg matrix, with Dg(Dg +1)/2 independent components.
This gauge-fixing has several advantageous properties that I will list here. (1), it
is renormalization invariant if the running of both £ and 5 is taken into account [17].

3As Srednicki points out, “the R stands for renormalizable. The & stands for £.”
4The & stands for .

31



(2), it is what Fukuda and Kugo [21] dubs a good gauge, meaning that it does not
induce any spurious minima. (3), it is invariant under the global remnant of the
gauge group G. This is good because it allows us to consistently change bases.

To see further advantages, we first need to discuss a few things. We know that
the non-trivial vacua of the Higgs mechanism are related by gauge transforma-
tions, q_5 (x) = e7i80°(IT" q%, where 7T are the broken generators. We can choose
a representative of this vacuum such that the rest of the calculations are simpler.
The global invariance of the Lagrangian and the specific form of the gauge-fixing
function above ensures that we can do this without loss of generality.

When we pick such a representative, we also automatically pick out the corre-
sponding perpendicular Goldstone directions T“qg. Any basis change we perform
will mix fields in such a way that the Goldstone field afterwards still are perpendic-
ular to the vacuum representative.

This property, together with the global invariance of the full Lagrangian, implies
that we can specify a basis without losing any information. In particular, we can
choose the basis suggested by the singular value decomposition of F¢,.

At this point it is helpful to change notation to that introduced in [17]. In the
mass basis of the vector fields we use the bold indices a, b, c,.... In the subspace of
the massive vectors we use A, B, C,...; in the massless subspace we use a, b,c,...
Similarly for the scalar bosons; in this basis we use j,k,1,... for the scalars R;. In
the “non-Goldstone” subspace we use the indices i, j, k, ..., and in the Goldstone
subspace we use A, B, C, ... and represent the fields as G4. That is, we have the fields

{Aay=1{z,,A%),  {R}={GsR;}. (3.13)

We should now rethink the matrix & ;. It is helpful if £, is diagonal in the mass
basis, that is &, = diag{&,, &,}. With this in mind, it is in general not necessary
to specify the whole matrix & ;, and just use the eigenvalues in the end. But note
that if one wishes to compare between different bases, the full form including the
matrix must be used.

In the end, the gauge-fixing Lagrangian becomes

_ 1
£= "5
¢ 28,4

(arz2— SAMAGA)2 - % (arac )2 . (3.14)

L

Specifying to &, = &, leaves us with D gauge-fixing parameters, one for each real
vector boson. These are the background-field R; gauges for a general model; they
are free from kinetic mixing between the Goldstone bosons and the longitudinal
gauge bosons.

In this simplified gauge-fixing, the scalars will get a contribution to their masses
as & (mi)ij, where (mi)ij is the matrix introduced in equation (2.30). To find out
what this means for the scalars, we can multiply equation (2.18) by F“, (summing
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over a), giving
(mj)ijajivo|$ = T{¢;Tg 9 Vo- (3.15)

In particular, at the vacuum we have that

=0. (3.16)

2 2
(mA)ijajkVO

This equation tells us that the non-zero eigenvalues of & (mA)izj (the gauge-fixing
induced scalar mass matrix) and those of the scalar mass matrix 85 V, live in different
subspaces [15, 16, 17]. In other words, only the Goldstone bosons get £-dependent
masses.

In the simple cases, G, can also be a mass eigenstate on its own. But this only
occurs when the real scalars transform under an irreducible representation of the
gauge group. In the more complicated cases (such as in the Two Higgs Doublet
Model), the non-Goldstone scalars and Goldstone scalars actually mix outside the
vacua. At the vacua, equation (3.16) applies and the scalar subspaces separate
again.

I will return to discussing gauge-fixing in subsection 3.3.3.

3.2 More on anomalies

As I mentioned briefly in subsection 3.1.1, an anomaly arises when the path integral
does not respect the same symmetries as the classical Lagrangian. In the path
integral language this means that the integration measure is not invariant under
the symmetry transformation. In practice, anomalies of internal symmetries arise in
theories with chiral fermions: if a 2-component fermion ) transforms under some
group, v — 1)’, then the measure transforms as Dy — Dv)’.

Non-chiral transformations then always cancel—leaving the measure invariant.
But if the symmetry is chiral, then there might be a trace left of the transformation.
For global symmetries this is not an issue.

For gauge symmetries, on the other hand, anomalies are disastrous. Gauge sym-
metries are not symmetries in the usual sense, they are more like redundancies.
As T have discussed before, the distinction is important. For such gauge anoma-
lies to exist would break our counting of degrees of freedom, and invalidate our
calculations.

At the perturbative level, anomalous gauge symmetries reveal themselves in loop
diagrams with external gauge bosons and chiral fermions running in the loops.
For Abelian symmetries it is enough to consider triangle diagrams—-diagrams with
one chiral fermion loop, and three external gauge bosons. Such diagrams carry
anomalous factors that depend on the charges of the fermions in the loops. As an
example, consider a theory with a U(1) symmetry, an accompanying Z’, and some
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chiral fermions with U(1) charges z;. Summing all triangle diagrams with external
Z' bosons gives a result proportional to

A="50 3.17)

i

If this factor is non-zero, then we say that there is a [U(1)]> anomaly. On the other
hand, if the charges line up in such a way that .4 = 0, then the theory is anomaly
free.

In a gauge theory with chiral fermions, such as the Standard Model, there are
a number of different possible anomalies. For the theory to be consistent all of
them must exactly cancel. This does happen in the Standard Model, with no great
explanation as to why. It is a fact that invites speculation: perhaps there is a larger
symmetry group that is broken at some higher scale? The answer as to why the
Standard Model is anomaly free is not settled.

Because the Standard Model contains chiral fermions, we need to be careful
when considering extensions of the Standard Model. For the theory to make sense
we need all gauge anomalies to cancel, and care must be taken to ensure that this
is the case. In paper I we considered a simple extension of the Standard Model with
an extra U(1) gauge group, taking care to cancel anomalies. The simplest way to
cancel the anomalies is by introducing three right-handed fermions neutral under
the Standard Model gauge groups [4]—three right-handed neutrinos. As I discussed
in subsection 1.3.1, it is also possible to give the neutrinos Majorana masses. This
minimal model hence contains a convenient solution to the neutrino mass problem.

Cancellation Mechanisms
Having established the necessity of cancelling anomalies in theories with chiral
fermions, some questions may arise.

As an example, if we did not know of the top-quark’s existence, we would think
our current theory to be anomalous. This is not a completely implausible scenario,
because the top quark is heavier than all the other particles in the Standard Model.

But how can this be? From the effective field theory perspective we would expect
the theory to make sense when we integrate out the heaviest particles. This tells us
that some extra care has to be taken when we construct such effective theories.

To resolve this question we can again turn to the path integral. We think of
the anomaly as the measure transforming under the gauge transformation. The
problem is that the Lagrangian is invariant by construction, and hence there is an
uncancelled transformation left in the end.

This perspective also suggests an alternative scenario, where the Lagrangian does
transform under such transformations, in just the way to cancel the transformation
of the measure! The path integral is then invariant again. In reality the story is
a bit more complicated, but by following this line of argument one can carefully
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construct an effective theory that is not gauge-invariant at the Lagrangian level, but
still produces gauge-invariant observables.

This is known as the Green-Schwarz mechanism, and was first used to cancel
anomalies in string theory [22]. But the construction works equally well for quantum
field theory, though there the terms can be due to heavy fermions instead of string
theory effects. In paper II we explore the collider phenomenology of such a theory.
In particular, we consider the same theory as described above—the Standard Model
with an extra U(1) gauge symmetry—but without any neutrinos. We worked out
the details of this theory, based on the formalism developed in [23].

3.3 The effective potential

We have seen that the classical potential V;, plays a key role in understanding
spontaneous symmetry breaking and the Higgs mechanism. But how is this picture
changed by quantum effects?

To find the classical minimum and the corresponding spectrum, we had to first
consider general static field-values qg . We considered the classical potential as a
function of these real numbers and then minimized it to find the physical solution. In
other words, we had to go “off-shell,” outside the solution to the classical equations
of motion, to actually find the solution in the first place.

For quantum effects there is a similar picture. It is possible to formulate an
effective potential, which has the quantum corrected static background field as its
minimum. See [24] for a detailed analysis and review of the effective potential.

We obtain the effective action I'[ ¢ ] by performing a Legendre transform of the
functional W[J] = ilog Z[J], trading the classical source J for a static field ¢. It
can be shown that a minimum of the effective action corresponds to J =0 [18].

To find the pattern of symmetry breaking in these quantum theories, we can
restrict ourselves to static fields (up to gauge transformations, as usual). Then we
find that the effective action is proportional to the effective potential V' (¢),

Ig]l=—VT xV(¢), (3.18)

with VT the spacetime volume. We can then minimize the effective potential to
find the true quantum corrected minimum d_;mm, and the accompanying minimal
energy density V;, = V($min).

At this stage we have to consider how to calculate V(¢ ). In general, exact results
are not available and we must turn to perturbation theory.®> From the sketch in

50r lattice calculations.
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equation (3.3), we infer that the solution will be something like

V($) =Vo(d) + Vi(@) + Vo(@) +...,  Vi($)~ —i%log[det o7, ], 3.19)

where D represents a propagator, and det is a functional determinant. The higher
order corrections V,(¢), ... are better represented as Feynman diagrams [24].

3.3.1 Symmetries and the effective potential

Global symmetries
If the Lagrangian and the path-integral measure are invariant under some internal
and global group G, then we expect the effective potential to also be invariant
under such transformations. Much of the analysis performed in the classical case in
chapter 2 now carries over to the effective potential. In particular, we can upgrade
equation (2.18) to a quantum corrected version,

ajv (Te¢); =T50,V. (3.20)
Evaluating this at the vacuum (;Emin: we find a quantum version of Goldstone’s
theorem,

azv i (T*Pmin); = 0. (3.21)
In the completely general case, one should consider that the effective potential
might have different broken generators than the classical potential. That is, the
quantum effects might change the picture of symmetry breaking. In practice this
only happens for very particular theories where regular perturbation theory breaks
down—see subsection 3.3.4 for an example. In the standard cases, we can relax
and consider the same directions in field space as for the classical potential.

Local symmetries
For local symmetries the situation is more tricky. Remember that to perform the
path integral we needed to fix a gauge, spoiling the gauge invariance of the theory.

This gauge-fixing does not have to respect the global part of the gauge symmetry
in general. If it does not, then there are complications for general off-shell values of
¢? . As an example, we are not free to upgrade equation (2.18) to the effective poten-
tial for general field values. Even though on-shell, in the minimum, the Goldstone
theorem will always apply.

But since we have to go off-shell to find the minimum in the first place, it is more
convenient to work with a gauge-fixing that is invariant under the global transfor-
mations. This is another reason why the gauge-fixing described in subsection 3.1.2
is highly recommended.
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3.3.2 The 1-loop potential

At one loop, the effective potential can be calculated either by a functional loga-
rithmic determinant [25], or by a particular perturbative expansion that involves
infinite “prototype” Feynman diagrams [26]. Both derivations offer their own in-
sights, but I will not detail either of them here.

Using MS and dimensional regularisation vzviyth ed = i— 2€, u as the MS renor-
malization scale, and the short-hand fp = (“ 4‘;: ) f (ngd, the contribution for a
degree of freedom with squared mass x to the effective potential is

1 1 p2ers\° T(=%)
f(x)== | log[p*+x]|=—= d/2
(x) ZJ; og[p®+x] 2( pp ) i

=@(—z—2+xg(log[‘%]—g)+0(e)). (3.22)

The 1-loop basis function f(x) in this equation is not renormalized; the 1/€ terms

can be removed with local counterterms.

When the propagators of a theory is diagonal, then each mode with squared
mass X will contribute simply as f(X). But, when the propagators of particles are not
diagonal—which they are not in the general case—the logarithmic determinant has
to be separated as a trace over logarithms of eigenvalues: logdet D™! ~ Trlog D™*.

This seems like it might make an analysis of possible &-dependence of a 1-loop
calculation difficult. But, as is shown in [16], it is still possible to make a straight-
forward analysis in background-field R;-gauges. Here I repeat their argument. The
general structure of the 1-loop potential, in a generic non-Abelian gauge theory
with this gauge-fixing, looks like

% L (Trlog [pz + Ml.zj + é(mf‘)ij] +(d —1)Trlog [ p* + (m?)?"]
+ Trlog[p? + £(m2)** | —2Trlog[ p? + E(m2)** ]). (3.23)

Here, the first log corresponds to the scalars, the second to the transverse gauge
bosons, the third to longitudinal gauge bosons, and the fourth to ghosts. The three
&-dependent logarithms include unphysical degrees of freedom. For general off-
shell values of ¢, the logarithms do not separate and there is a £ dependence.
But, at the broken minimum ¢, the matrices M 121 = ajvo and (m3); j are mutu-
ally diagonalizable—their non-zero eigenvalues live in different subspaces. The
logarithm hence separates at the minimum,

= Trlog [p2 +Mi2j]

Trlog[ p® + M2 + &(m2); | .+ Trlog [p? +Em2); ], -

(3.24)

b0
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A cancellation now occurs in equation (3.23), because the matrices (mf‘

(mi)“b have the same non-zero eigenvalues. All £-dependence cancels, in a con-
ceited effort between the Goldstones, the longitudinal modes of the gauge bosons,

);; and

and the ghosts.

3.3.3 Gauge dependence and Nielsen identities

As noted above, the effective potential is gauge-dependent for general field values
¢. This can make it tricky to extract observables from it. It can help to understand
in what way the effective potential is gauge-dependent, which can be understood by
the help of Nielsen identities [27]. These non-perturbative identities can be thought
of as Ward identities for the effective potential (they are derived in a similar manner),
and they take the form

9:V(¢,8) =—C(¢,E)3,V(¢, ). (3.25)

Here C(¢,&) is a Nielsen coefficient that is calculable in perturbation theory. Se
the textbook by Das [28] for a pedagogical derivation of the identity, including a
calculation of C(¢, &) in a simple model.®

We expect that the energy density of any particular vacuum is an observable—
independent of {—because it can in principle be measured. The Nielsen identities
confirm this view, as can be seen by evaluating the equation in the minimum d_;min:

B3V (Prmins €) = 0. (3.26)

This is a neat story that seems to suggest that we can simply find V,;, by minimizing
V and then evaluating it at the minimum. But here we actually have to be a bit
careful, due to perturbation theory. This is emphasized in [16], which I base the
following analysis on—but see also the earlier papers by Fukuda and Kugo [21]
and Laine [29].

In practice, V is calculated in some perturbative expansion that we truncate at
some order, say one loop: V =V + iV;(¢) + O (hz).7 If we would minimize this
function numerically, then we would find some minimum ¢’(£) that depends on &.
And evaluating V.. = V(¢") = Vy(¢') + 1V;(¢") we would find a residual gauge
dependence. This seems to contradict the Nielsen identity. So what went wrong?

The issue is that we are not taking the powers of perturbation theory seriously.
We are treating V;(¢) and V,(¢) on the same footing, even though they clearly are
not—they are separated in size by the power counting. Indeed, by expanding the

®Das’ textbook really covers finite temperature field theory. But, as I mention in chapter 4, the formalism
is essentially the same.
7Here H just counts loops—it is in principle not related to the reduced Planck constant.
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Nielsen identity in perturbative powers, and equating order by order, we find that

O(r%):  3:Vo=—Co4Vp = C,=0, (3.27)
O(f'): Vi =—CodVi —C10,V, = 8:V, =—C,13,V,, (3.28)

which suggests that the 1-loop potential is actually gauge invariant when evaluated
in the tree-level extrema—and not in the minimum found from minimizing V, +hV;.

Looking back at equation 3.24 and the reasoning around it, this fact should not
surprise us. The contributions from the unphysical degrees of freedoms—Goldstones,
longitudinal modes, and ghosts—only cancel in two specific field points. At the
origin we have that mi = 0, which removes the £-dependence. At the tree-level
minimum ¢, the Goldstone masses are zero and the logarithms separate such that
the £-dependent contributions cancel.

I think of this fact in the following way. A gauge field A, has four degrees of
freedom, the real scalar G has one, and the ghosts 1,7 have two. We can now
consider going on-shell in two different ways. At the origin in field space (which
is a maximum, and hence unstable fluctuations occur) there is one massless vector
with two degrees of freedom, one “massive” scalar (the square mass is negative—
hence the quotes), and two massless ghosts. The accounting of degrees of freedom
reads

¢=0: 4+1—-2=2+1+0. (3.29)

At the broken minimum, the massive scalar has three degrees of freedom, and the
G scalar must join the ghosts as unphysical,

p=¢o: 4+1—2=3+0+0. (3.30)

But anywhere outside these extrema we cannot really assign a physicality to the
different modes, and anything goes. There are 4+ 1+ 2 = 7 degrees of freedom,
and they all contribute to the effective potential. When we actually do approach a
vacuum of the tree-level potential, then the accounting has to resolve into the usual
one.

This distinction is relevant because we have to go off-shell to find a quantum
corrected vacuum expectation value $min, and we must then take care with our
accounting. In other words, we must always expand around the tree-level vacua,
where the accounting makes sense. That is, we expand

Goin = Po + AP, +Hpy + ..., (3.31)
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and solve the minimum condition order-by-order in perturbation theory,

0=V (Pumin) = OVolg, +1 (@V +$,8°Vp)|, +0O(h?), (3.32)
o(r%): = Vvl =0, (3.33)
om): = ¢ = 52‘30 R (3.34)

(3.35)

And this expansion should then be used when evaluating V,;,,

Vinin = V(@min) = Vol o) + V3 () + O (2). (3.36)

This expression is now gauge invariant, order-by-order in f.

There is another, slightly more technical, interpretation as to why this careful
expansion is necessary. The gauge-dependence of the effective potential can in the
diagrammatic expansion be traced back to the lack of 1-particle-reducible diagrams.
As an example, in scalar electrodynamics such diagrams are necessary to cancel the
gauge dependence of the four-point function: the gauge dependence of the loop
corrections of the external legs cancel that of the loop corrected vertex.

The construction of the effective potential removes all such 1-particle-reducible
diagrams [25]. A particular class of such diagrams have tadpoles inserted, which
are subdiagrams with one external leg. Fukuda and Kugo [21] showed that the
h-expansion detailed above corresponds to putting a subset of all tadpoles back
into the diagrams (even in gauges such as the R;-gauge). Then ¢, corresponds
to the 1-loop tadpoles, ¢, to 2-loop, and so on. With the tadpoles reinserted, the
end-result is again gauge invariant.®

With all of these considerations in mind, let’s take an additional look at the
Nielsen identity in equation (3.25). We can think of this as a first-order partial
differential equation analogous to that which describes advection, and we can find
characteristics in the E-¢ plane which keep the effective potential constant. Any
such characteristic ¢ (&) must satisfy

: (&) =C(¢,8). (3.37)

In particular, the minimum (j;mm must be such a characteristic. This tells us that the
vacuum expectation value of the field is a gauge dependent quantity—and hence

8The diagrams on the cover of this thesis are those of the effective potential evaluated to two loops—with
the tadpoles reinserted.
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not an observable. In terms of our perturbative expansion, we would find that

0(r%): 8:¢o=0, (3.38)
O(hl) i 01 =Ci(do, ), (3.39)
(3.40)

This tells us that the quantum correction ¢, is £-dependent. This dependence
exactly cancels the dependence of other terms, at higher orders in the expansion
of Vin- The vacuum energy density is finite and gauge invariant, in the end.

There is an unfortunate confusion in the literature, that seems to have persisted
since the original and early papers on the effective potential. Many authors claim
that the background-field R; gauges are not suitable for studies of the effective
potential, because it introduces a fictitious dependence on the background field
¢—see for example [30, 31, 32, 33, 34, 35, 24]. But I think this statement is too
cautious. Fukuda and Kugo [21] showed that any spurious ¢ -dependence that is in-
troduced in this gauge-fixing does not matter in the end—as long as one consistently
reinserts the tadpoles in the calculation of the energy density. In other words, phys-
ical observables are gauge invariant in the fi-expansion as detailed above. Though,
as explained in [17], there is a price to be paid: the background-field R, gauges are
not renormalizable at general field values ¢. But this is also a non-issue once the
physical limit is taken with the fi-expansion. Background-field R, gauge works well
as long as one calculates physical observables.

As a final comment, the perturbatively calculated Nielsen coefficient, C0($min, &),
Cl(d_;mm, &), ..., and the perturbative vacuum expectation value ¢, ¢, ..., can be-
come infinite due to infrared divergences. But again we must remember that these
are not physical observables. Even though these divergences are inconvenient, they
cannot contribute to the result in the end. In paper III, a colleague and I have argued
that the fi-expansion detailed above is well-behaved in this sense, and does not in
general need to be fixed with extra techniques.

But there are exceptions to this, as I will discuss in the next subsection.

3.3.4 Symmetry breaking by quantum effects

In the previous subsection I argued that quantum corrections to spontaneous symme-
try breaking must be organized as a perturbative expansion around some tree-level
effect. This implies that the quantum corrections cannot change the overall picture.

But this point of view is actually too strict. It is possible to have quantum cor-
rections affect spontaneous symmetry breaking—but it is still necessary to apply
proper care.
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The first application of the effective potential, and the first derivation of its 1-loop
contributions, was due to S. Coleman and E. Weinberg [26]—the 1-loop potential is
hence often called the Coleman-Weinberg potential. What they studied was the idea
of quantum-generated spontaneous symmetry breaking, also known as radiative
symmetry breaking.

Consider the Abelian Higgs theory. If the classical potential would have m? = 0,
then there would only be a minimum at the origin. The field-dependent squared
masses are

mé =e2¢?, (3.41)
my, = 3mZ, = 3¢, (3.42)

and these masses are zero when evaluated at the tree-level minimum ¢ = 0. The
effective potential to one loop accuracy is

2

V(¢) = %¢4+h%(m§)2 (m[%]—g). (3.43)
Here it seems as if the 1-loop terms could induce a non-zero value for ¢ . But—with
our strict loop counting discussed above—we are not allowed to have the 1-loop
terms mix with the tree-level terms, rendering this “quantum-breaking” impossible.
Or does it?

It all comes down to which power counting we should use. In the standard loop
expansion of perturbative quantum field theory, one would count A ~ e?. This would
make all 1-loop diagrams equally important, all 2-loop diagrams equally important,
and so on. From equation (3.43) we see that if we would instead count A ~ e*, then
the 1-loop effects would be just as important as the tree-level effects.

This modified power counting (which was recognized as important already by
Coleman and Weinberg [26]) will change the perturbative expansion. What then
happens with gauge invariance, that seemed to need a fixed loop counting? This
question has been resolved by Andreassen, Frost, and Schwartz [24].

In this modified power counting, it turns out that a resummation is necessary.
In Fermi gauges, there is an infinite amount of diagrams that contribute at next-
to-leading order. These can be resummed by shifting the masses of the scalars
according to the mass one would derive from the leading effective potential,

T _ 52 32 o my 1
H->H=03*Vo+V)=H+=e?m2|log| 2 |-= |, (3.44)
2 u? 3
and similarly for G. With these new masses, the accounting of degrees of freedom
works out just as in the regular loop expansion. An evaluation of V,,;, order-by-order
in powers of e results in a finite and gauge-invariant quantity.
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We can hence modify the previous verdict I made regarding the calculation of
observables. The point is not that the expansion has to be a proper loop expansion
centered on a classic effect. But, whatever power-counting is used, it has to be re-
spected and centered around some leading effect. In the example above we can count
powers of e instead of loops, with A ~ e*, and expand around the leading-order
vacuum expectation value found from equation (3.43). This is a proper accounting.

This kind of reasoning is useful in the next chapter, which looks at how thermal
fluctuations can modify the effective potential.

Recommended readings

Mark Srednicki, Quantum Field Theory [15]. This is my favourite quantum field
theory textbook. The exposition is technical but clear, and the chapters are very
self-contained—it’s great for looking things up.

Andreassen, Frost, and Schwartz, Consistent use of Effective Potentials [24]. This
paper is a great review of the different issues that arise in effective potential calcu-
lations, with references to the relevant original papers. The authors take the issues
of gauge invariance and infrared divergences seriously.

Martin and Patel, Two-loop effective potential for generalized gauge fixing [17]. This
paper details the calculation of the 2-loop effective potential in a generic gauge the-
ory, using a generalized gauge-fixing. Even though there are around 500 equations,
it is straight-forward to follow the logic—the structure of the paper is remarkable.
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4. Phase transitions

“Time is a flat circle.”
—Rust Cohle

True Detective

As the early universe expanded and cooled down, there was a phase transition
that broke the electroweak symmetry. The symmetric vacuum at the origin is lower
in energy at high temperatures, but at some point the broken vacuum becomes
energetically favorable, and the transition occurs.

The nature of this transition, if it is continuous or a sudden jump, is an important
question. A first-order transition occurs via bubble nucleation, and can leave imprints
for us to detect, such as a gravitational wave signal [36].

But how do we know how this transition occurs? From previous chapters we
expect that there should be a potential for us to minimize. Indeed, in finite tem-
perature field theory, the usual formalism of quantum field theory can be extended
to include temperature effects [37]. There are new contributions to the effective
potential that depend on the temperature, and this can in principle change the
picture of spontaneous symmetry breaking dictated by the classical potential [38].

The finite temperature formalism is in certain ways easier to interpret than the
quantum one. We can formulate thermodynamical observables in terms of the parti-
tion function, which encodes the thermal and quantum fluctuations. This partition
function can in turn be formulated like a path integral, and observables can be
derived from it.

In particular, the Helmholtz free energy of a theory at a particular temperature
T is given, in units with kg = 1, by

F=-TlogZ, 4.1

and represents the “useful” energy available in the system. The free energy as a
function of the background field is proportional to the thermal effective potential.

Taking the limit T — 0 recovers the quantum field theory effective potential. In
a sense, the finite temperature formalism offers us a second interpretation of the
zero temperature effective potential. It is just the free energy density of the system
at zero temperature, where all fluctuations are quantum in nature.
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4.1 Finite temperature effective potential

Finite temperature field theory can be formalized in several different ways. For
our purposes, the imaginary time formulation will be most useful [39]—in this
formalism time is imaginary and periodic. Operationally, we can think of it as a
quantum field theory on S! x E3, where S! is a circle with period 8 = 1/T, and E*
is 3D Euclidean space,

Z[j] o< f Dpels 47 [ ExL, (4.2)

For this path-integral to correspond to the partition function in our thermal theory,
we need the bosonic fields to be periodic in 7, while the fermionic fields must be
anti-periodic.

The Fourier composition of these fields then feature one sum (for the compact
dimension) and three integrals. A bosonic propagator with square mass x, in mo-
mentum space, is then of the form

1
$P2+ , with
x

P
0 QZeYE € dd—lp
P = (27nT)? + p> =T =
CEERTID ) ZOOJ f(4) 2
P

and d = 4—2¢, with u as the MS scale. A fermionic propagator is similar, but then
P2 =(m(2n+1)T)? + p?, and we use the notation ;‘i{P} to mark the difference.
Other than the differences noted above, the overall structure of the theory is

the same as for a zero temperature quantum field theory—the calculations of the
effective potential proceed exactly the same. In general it is possible to separate the
contributions as

V(g;T)=VI2($)+V'7(¢; T). 4.3)

But in the approximation scheme that is relevant for phase transitions, this separa-
tion is not useful. Instead one performs a high-temperature expansion, where the
involved square mass x is assumed to be much smaller than T2, x < T2.

The master-integral that corresponds to the 1-loop contribution of a boson to the
effective potential reads

f(x)= % j: log |:P2 + x] 4.9

P
x? 1 n? 4 T2x Tx32

e e —— + —
4(16m2) e 90 24 121

+0(x,e€), (4.5)
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in the high-temperature expansion. The corresponding fermionic master-integral

reads
— 1 2
fr(x)= 5 log[ P? + x| (4.6)
{P}
x2 1 7r? T?x
=+ —T*— —— + O(x,6), 4.7
4(16m2) ¢ 720 28 TO&e) “4.7)

in the high-temperature expansion. A qualitative difference between f(x) and fz(x)
is the absence of a term linear in T in fz(x).

At two loops there are additional master-integrals that are relevant. See appendix
A in paper IV for a more exhaustive list. Paper V is a calculation of further terms in
the high-temperature expansion of the 2-loop sunset sum-integral.

4.2 Phase transitions

We have seen that, perturbatively, the effective potential is the name of the game
when it comes to symmetry breaking. This still applies at finite temperature, with the
interesting complications that arise from temperature dependent coefficients [38].

As the temperature changes, so does the shape of the potential. To understand
the behavior for very large temperatures, we can look at the leading ¢ -dependent
term of the 1-loop potential. Imagine that a symmetry is broken at low temperatures,
as specified by the classical potential. Adding the leading temperature corrections
then gives

2
V(¢)=V0+h;—4a¢2+O(T,a2), (4.8)

where the collection of couplings « is determined by how the fields of the model
couple to the Higgs field. In the limit T — oo, this potential is a second degree
polynomial with its minimum at the origin. There is hence no symmetry breaking
for large temperatures. But as the temperature decreases, the other terms of the
potential become important again, and the shape of the potential goes through a
change.

Depending on the particulars, this change can occur in two different ways, as
illustrated in figure 4.1. There can be a continuous transition where the minimum
at the origin bifurcates into a maximum at the origin and a broken vacuum. The
minimizing background field ¢ (T )—the order parameter of the transition—then
continuously moves away from the origin as T decreases, and finally stopping at
the zero temperature broken minimum.

But if a barrier develops, then the global minimum will jump from the origin to
some non-zero value. This minimum then settles at the zero temperature broken
minimum.
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Figure 4.1. An illustration of two different kinds of phase transitions. The top row illustrates
a first order phase transition, the bottom row a second order one. The left column shows
the effective potential as a function of a background field ¢, evaluated at three different
temperatures. The right column shows the order parameter—the minimum of the potential—
as a function of temperature. This figure is from the review by Senaha [40].

Personally, I really like this picture of the phase transition. It is such a natural
extension of the classical results, with vivid imagery accompanying it. But, if I have
done my job correctly earlier in the thesis, you should also be noticing some red flags
right about now. How can a loop level effect—which is supposedly suppressed by
powers of the couplings—actually be large enough to warp the classical potential?
I dig into this question in the next section.

4.3 Perturbative problems

That finite temperature calculations suffer from perturbative problems is a well-
established fact [37, 39]. Here I want to highlight just how connected this is to
the phase transition. This analysis is based on the early work of Arnold and Es-
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pinosa [41], and our work in paper IV. It is an attempt to extend the gauge-invariant
methods of [16], using the logic laid out at the end of subsection 3.3.4.

Starting with the 1-loop diagram of the effective potential, we can consider a
class of higher-loop diagrams that arise from inserting loops on the propagator.
The most important contributions occur when the inner loop has soft momentum
k% < T2, and the outer loops have hard momenta k? ~ T2. An n-loop diagram d,,
with (n — 1) insertions will then scale with the temperature as

d~ T (272 = B o2, (4.9)
dyq
which means that sufficiently large temperatures will break the perturbative expan-
sion. When T ~ 1/e, the (n — 1)-loop diagrams become as important as the n-loop
diagrams.

This breakdown of perturbation theory signals that we are not treating our
physics correctly. In this particular case, we can fix the problem by resumming
all the problematic diagrams into one single contribution. In this contribution, the
mass of the inner loop particle then gets shifted by ~ e2T2. The particle is screened
by the thermal bath, and gets an effective mass [37].

Second order transitions

Returning to phase transitions, let’s consider the leading contribution again. We
can focus on the simple example of Abelian Higgs. Then the leading terms in the
effective potential are schematically

V(p)~ %(m2 + (2 +0)THP% + %ld)“, (4.10)

where the T2 term arises from the 1-loop effective potential.

If these terms are a good approximation for the potential, then there is a second
order phase transition with a critical temperature T, ~ 1/e. This is precisely the
scale where perturbation theory breaks down, as seen in equation (4.9). Maybe it is
not actually surprising. For the temperature fluctuations to affect the phase structure
of the theory, we need 1-loop effects to be as large as tree-level effects. This means
that we cannot use loops to order perturbation theory, just as for the Coleman-
Weinberg mechanism explained in subsection 3.3.4. To reorder perturbation theory
then requires a resummation, with the end result that V,;,(T) is finite and gauge
invariant near the phase transition. This enables us to study the phase transition in
a consistent way.

First order transitions
There has to be a barrier in the potential for a first-order transition to occur. Op-
erationally, with a positive quartic coupling we need a cubic term in the potential.
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To find it we can look to the next term in the high-temperature expansion of the
1-loop potential—the term linear in T that arises from bosonic fluctuations. The
potential is then schematically

V(@) ~ Sm? + (& + TP — Te*9° + %w. @.11)

We should now perform a similar analysis as above. The analysis is a little more
complicated, but Arnold and Espinosa showed [41] that we can balance these terms
if we count the quartic coupling as A ~ e3.

In paper IV we put the two power-countings detailed above to the test by per-
forming resummed 2-loop calculations in Abelian Higgs and the Standard Model,
in Fermi gauges. We demonstrated that, if proper care is taken with the resumma-
tion and the power-counting—and the perturbative methods described in subsec-
tion 3.3.3 are used—then the result is finite and gauge-invariant.

Resummations and more complicated models

To find the thermal masses of the longitudinal vector bosons, one has to calculate
their zero-momentum thermal self-energies I1,(T%; p = 0) to O (e2T?). The corre-
sponding scalars’ self-energies can be found directly from the effective potential.
In simple models like Abelian Higgs or the Standard Model, the resummed Higgs
square mass H, and the resummed Goldstone square mass G, can be calculated as

Vio(¢)
¢ >

where V,, is the leading-order potential. In the first-order phase transition power

H=0%,o(¢), G= (4.12)

counting, V;, includes terms like T?¢2 and T ¢°.

For more complicated theories, with more complicated field structure, the situa-
tion is more complicated. I would refer to the formula used to prove the Goldstone
theorem of the effective potential,

OV (T*¢); = T,V (4.13)
If we use a gauge-fixing that preserves the global invariance of the Lagrangian
(and hence the effective potential), then we can use this formula to connect the
derivatives of the effective potential (with respect to whatever background-fields
we activate), to the mass-matrix of the Goldstone fields.

Final remarks

In the Standard Model, we already know from lattice studies that the Higgs is too
heavy to allow a first-order phase transition [9, 10]. With the power counting rules
detailed above, this is reflected in the fact that the Higgs quartic coupling A is too
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large to be able to count it as A ~ g3, g’>, where g, g’ are the gauge-couplings of
the electroweak sector.

We can then make generic predictions based on this formalism. Any extension of
the Standard Model that does not change its phase structure will need to fulfill at
least one of the two following properties. Either, (1), there has to be new bosonic
fields that couple to the Higgs with couplings parametrically larger than A (generi-
cally, there needs to be new bosons with a mass just above the electroweak scale).
Or, (2), there needs to be a mechanism that reduces the size of A. The predictions
of property (1) are consistent with the predictions of [42].

In models where the phase structure is different, for example in models with
two-step phase transitions, the analysis is not as simple. But I expect that similar
judgments based on how the different couplings compare in size are still relevant.

Recommended readings

Kapusta and Gale, Finite-temperature field theory: principles and applications [37]. 1
learned finite temperature field theory from this textbook. It is a book that rewards
deep study.

Patel and Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Per-
turbation Theory [16]. This paper is an amazing review of the issues of gauge
dependence in phase transition studies. It was a big influence on me.
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5. Popularvetenskaplig sammanfattning
(pa svenska)

5.1 Introduktion

Standardmodellen, som &r den bésta partikelfysik-teori vi har, kan forklara ndstan
alla fenomen vi &mnar beskriva inom partikelfysik. Men inte alla. Vi vet ddrmed
att vi behover forbéttra vara teorier pa olika sétt. Det 6vergripande malet med min
forskning &r att testa, eller att hjdlpa andra att testa, partikelfysik-teorier mot data.
Detta har tagit formen av tva olika projekt som jag arbetat pa.

Partikelfysik ar relevant vid interaktioner som sker vid hoga energier. Det bety-
der korta avstand, dir kvantmekanik beskriver verkligheten, och héga hastigheter,
dar speciell relativitetsteori dr nodvindig. Dessa tva fysikaliska principer kan kom-
bineras med hjalp av kvantfiltteori, ett teoretiskt ramverk som utvecklades under
1900-talet. I dessa teorier dr de fundamentala objekten kvantfélt som breder ut
sig over rummet. Nér ett sddant félt exciteras ser vi det som en partikel. Tvé olika
falt kan péverka varandra, och en resonans i ett falt kan darmed trigga resonanser
i ett annat. P& detta sdtt kan partiklar interagera med varandra och skapas eller
forstoras.

Kvantfaltteori 4r pa vissa sitt underbart, men pa vissa andra satt vildigt knepigt.
Det ar en 1ang vag frén att skriva ner en teori till att berdkna ndgonting métbart, en
lang vig genom konceptuellt snarig skog: ofysikaliska frihetsgrader introduceras,
odndligt manga oandligheter tar ut varandra, med mera. Det kan vara svart att
héalla reda pa vad som &r matematiska knep och vad man skulle kalla for “riktig
fysik.”

Dérfor tycker jag att det &r extra viktigt att vi tar vara pa de f& mojligheter vi
har for att ha kontroll 6ver vara teorier sa att vi kan vara sidkra pa vad som kan
forutsigas fran dem. Detta &r ett 6vergripande tema for de tva projekt jag arbetat
med.

5.2 Standardmodellen och dess problem

Standardmodellen etablerades under slutet pd 1900-talet. Men det var forst 2012
som den sista pusselbiten, Higgsbosonen, verifierades experimentellt. Det aterstar
dock manga 6ppna frégor. I den hér sektionen diskuterar jag tva av dessa problem
som relaterar till min forskning.
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5.2.1 Neutriner och deras massor

Neutriner &r ett flyktigt slag av partiklar som ingér i Standardmodellen—de &r
otroligt ldtta jaimfort med de andra partiklarna, samt s véxelverkar de valdigt
svagt med allt. Trots att det alltid finns manga neutriner runt omKkring oss s vet vi
inte sérskilt mycket om dem. Nir Standardmodellen formulerades sa trodde man att
neutriner var helt masslésa, men nu vet man att sd inte &r fallet pa grund av att man
observerat neutrino-oscillationer. Detta kvantmekaniska fenomen som beblandar
de olika arterna av neutriner kan bara ske om dtminstone en av dem 4r massiv.

Ett av de utstdende problemen med Standardmodellen 4r darmed att den endast
beskriver masslosa neutriner. Samtidigt ar det inte s& enkelt som att bara ldgga
till massor till modellen. Detta kan goras pé olika sitt. Genom att testa neutriners
egenskaper med hjalp av partikelfysikexperiment kan vi forsoka avgora vilket som
ar ratt.

Frén den teoretiska sidan ar en speciell klass av sddana forklaringar sarskilt
attraktiva. Om det finns tunga partners till de neutriner vi redan kanner till sa kan
dessa tunga partiklar genom en balansmekanism forklara varfor de neutrinerna vi
observerat ar sd latta. Detta kallas for en ”seesaw-mechanism” pa engelska, eftersom
det pdminner om en tippande gungbrada.

I artikel I har jag och mina kollegor utforskat en enkel utvidgning av Standard-
modellen dér en ny kraft realiseras. Denna kraft motsvarar en lokal U(1)-symmetri
(symmetrin av en cirkel). Sddana lokala symmetrier dr véldigt speciella, fér de an-
tyder att det finns en redundans i vir beskrivning. Det betyder att nigra av vara
frihetsgrader &r ofysikaliska, och att vi maste vara extra forsiktiga for att inte raka
fa med deras bidrag nér vi berdknar ndgonting métbart.

Mer specifikt s& behover man i sddana modeller se till att kvantfysikaliska effekter
inte bryter denna symmetri. Sddana effekter kallas for anomalier. Lokala symmetrier
maste vara anomalifria for att kunna beskriva verkligheten. Det visar sig att modeller
med en extra U(1)-symmetri &r lattast att gora anomalifria genom att 14gga till tre
nya partiklar som beter sig precis som neutriner. Dessa teorier kan darmed pé ett
elegant satt realisera en gungbrade-mekanism. I var artikel anvander vi data fran
experimentet LHC for att begrénsa de parametrar som finns i dessa teorier.

Artikel II fréngér problemet med neutrinomassorna och fokuserar istéllet pé
anomalifria teorier. For att kancellera anomalierna kan man forestélla sig att det
finns nya partiklar som &r sa tunga att de inte ar relevanta for resten av modellen.
Detta kallas for Green-Schwarz mekanismen, och harstammar fran strangteori (ett
teoretiskt ramverk som Amnar beskriva kvangravitation). I var artikel dversatte vi
i detalj hur detta skulle fungera for U(1)-symmetrin vi studerar, och sedan gjorde
vi forutsédgelser for hur detta skulle manifesteras vid LHC. Dessa teorier dr mindre
begrénsade dn de vanliga anomalifria teorierna.
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5.2.2 Materia och antimateria

En intressant forutsiagelse av kvantféltteori dr existensen av antimateria. For vissa
partiklar finns det en motsvarande antipartikel, som har négra av sina egenskaper
spegelvianda jamfort med sin partikelpartner. Ett exempel &r elektronen, som vi
kanner till som den litta och negativt laddade partikeln i vara atomer. Elektronen
har en antipartikel, positronen, som har positiv elektrisk laddning men samma massa
som elektronen. Materia och antimateria kan annihilera varandra: en positron kan
annihilera en elektron och skapa tva fotoner.

Eftersom materia och antimateria behandlas i stort sett likadant i Standardmo-
dellen, sa kan man fundera pa varfor det bara finns materia runt omkring oss.
Antimateria bor vara ungefér lika vanligt som materia, vilket skulle innebéra att
néstan all materia annihilerats for 1ange sedan. Att materia dominerar universum
just nu tyder pé att nagonting skedde tidigt i universums utveckling som skapade
lite mer materia &n man naivt forvantar sig.

Elektrosvag baryogenes ar en mojlig forklaring som ar populédr bland fysiker, dar
materia-antimateria-asymmetrin utvecklades av tidiga termiska fluktuationer. Dessa
blev sedan kvar efter den elektrosvaga fasévergdangen. Tidiga universum expanderade
och svalnade av, och fasévergdngen skedde nir den elektrosvaga symmetrin brots.

Fasovergangar kan ske pé flera olika sitt, men for att férenkla sa kan vi dela upp
dem i tva olika sorter. Vatten som omvandlas till &nga nar det kokar &r ett exempel pa
en forsta ordningens fasovergdng. Detta &r en turbulent process dar bubblor av anga
bildas och expanderar. En andra ordningens fasévergang sker mer kontinuerligt, och
systemets egenskaper fordndras under lugnare former. Ett exempel &r hur ett block
av ferromagnetiskt material kan magnetiseras nér det placeras i ett magnetfalt.

Det ar dannu okant hur den elektrosvaga fasovergangen gick till, men enligt
Standardmodellen var det en andra ordningens fasévergang. Vi dr intresserade av
fas6vergangens natur eftersom den kan lamna avtryck pé det vi kan observera idag.
For att elektrosvag baryogenes ska kunna forklara materia-antimateria asymmetrin
s& maéste det ha skett en forsta ordningens fasovergang.

For att studera fasovergéngen i en kvantféltteori sd anvander man sig vanligtvis
av den effektiva potentialen, som beskriver den potentiella energin for olika mdjliga
grundtillstand, vilka dven kallas vakuum. Genom att minimera potentialen kan man
hitta vakuumet nar termiska och kvantmekaniska fluktuationer &r med i bilden. Om
man studerar hur vakuumet férandras nir temperaturen dndras kan man avgora
hur fasévergéngen gar till.

Men den héar berdkningen har tva motstridiga problem. For att kunna jamfo-
ra olika mojliga kandidater till vakuum s& behéver man introducera ofysikaliska
fluktuationer. Man maste vara valdigt noggrann for att inte rdka fa med dem i slut-
resultatet ndr man anvander en approximationsmetod som kallas for stérningsteori.
Samtidigt sd gor termiska fluktuationer nira fasévergangen att den approximatio-
nen bryter ner. For att fixa det problemet sd beh6ver man rora om i stérningsteorin.
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Det forstor den kénsliga balansen som kravs for att inte f4 med de ofysikaliska
bidragen till resultatet.

I artikel IV har jag och en kollega demonstrerat en metod som kan 16sa bada
dessa problem samtidigt. For att fi berdkningen att ga ihop krivs det att man
funderar extra noggrant pa den approximationen man gor. Beroende pa vilken sorts
fasovergang som sker sa méste man anvénda olika approximationer. I artikel III
argumenterade vi att storningsteorin vanligtvis inte behéver repareras nar man
inte har med termiska fluktuationer. Artikel V &r var berdkning av en sarskild slags
termiska korrektioner som ar relevanta om man vill studera fasévergdngen med
valdigt noggrann storningsteori.
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