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Abstract
Löfgren, J. 2020. The Powers of Perturbation Theory. Loops and Gauge Invariance in Particle 
Physics. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of 
Science and Technology 1978. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 
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The Standard Model is the best particle physics theory we have, but there are still phenomena 
that it cannot explain. In this thesis I have worked on two different projects that connect to two 
of the biggest unsolved questions of the Standard Model.

From observations of neutrino oscillations we know that at least one of the neutrinos has to 
be massive. But the neutrinos of the Standard Model are massless. The first paper in the thesis 
investigates a simple extension of the Standard Model that realizes a fifth force as a 
U(1) gauge group. In such models, extra care has to be taken to not introduce 
inconsistencies known as anomalies. It turns out that the simplest way to avoid these problems 
is to introduce three right-handed neutrinos. Such models can then incorporate 
neutrino masses in a convenient way. In the second paper we have investigated a twist on 
this model that does not have neutrino masses, but which makes other interesting models 
possible—such as a model with gauged lepton number.

The observed asymmetry between matter and antimatter cannot be explained by 
the Standard Model. One of the more popular of the possible explanations is known 
as electroweak baryogenesis. In this scenario the asymmetry is determined during 
the electroweak phase transition in the early universe. The second project—spanning the 
three final papers of the thesis—has aimed to improve the approximation methods we 
use to calculate features of this phase transition. Such calculations are plagued by two big 
problems that seem to compete with each other. On the one hand, gauge invariant 
results seem to demand that a strict loop counting must be enforced. On the other 
hand, the loop approximation does not work well close to the phase transition. We argue that 
the solution is to use a different power counting, but still be strict about sticking to it.
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My contribution to the papers

Paper I A. Ekstedt, T. Mandal, and I performed the original model-building calcu-
lations together. I wrote the Mathematica script which we used to perform
the numerical calculations, while T. Mandal and A. Ekstedt performed the
Madgraph simulations. R. Enberg and G. Ingelman supervised the project.
We all contributed to writing the paper.

Paper II A. Ekstedt had the original idea to implement the Green-Schwarz mecha-
nism for the U(1) extended Standard Model. We performed this derivation
together. Andreas took the lead on the 1-loop calculations necessary to test
the theory, with me checking the results. The rest of the project proceeded
as for paper I.

Paper III Though I first had the idea that started this project, the project evolved
and changed as A. Ekstedt and I worked on it together; in the end it is an
amalgamation of our shared insights. We did almost all of the calculations
together, and we both wrote the paper.

Paper IV I had as a goal for a very long time to combine the ħh-expansion with ther-
mal resummations. Then A. Ekstedt had the realization that the problem
laid in the power counting. We developed the formalism together and
tested it by performing thermal 2-loop calculations. We wrote the paper
together.

Paper V The realization that the method of regions could be useful for thermal
sum-integrals grew from our work on paper III. A. Ekstedt performed the
original calculation and wrote a first draft. I double-checked the derivation
and contributed to writing the paper.



Foreword

“Let me share with you the terrible
wonders I have come to know. . . ”

—The Narrator

Darkest Dungeon

The goal of my research is to test, or enable others to test, particle physics models
against reality. In my PhD studies this has taken the form of two different projects,
with some common aspects. In my first two papers, papers I and II, I have explored
the collider phenomenology of a U(1) extension of the Standard Model of particle
physics. In such extensions, gauge anomalies must cancel such that the theory is
consistent. This requires that particular care is applied during model building.

Papers III and IV concern the effective potential—a device used to understand
spontaneous symmetry breaking and the Higgs mechanism when quantum and
thermal fluctuations are included. Such calculations are relevant for the electroweak
phase transition that took place in the early universe. The work behind these papers
strives to improve the results of perturbation theory by taking certain consistency
conditions very seriously.

Paper V is a derivation of sub-leading terms in an expansion of a thermal sum-
integral called the sunset. The sunset shows up in 2-loop calculations of the effective
potential; the sub-leading terms of the expansion are needed at higher orders in
perturbation theory, as we discuss in paper IV.

A unifying principle of these two different projects is the quest to maintain
gauge invariance. Or, more colloquially, to ensure proper accounting of the degrees
of freedom. A gauge invariance represents a redundancy in the description; to not
maintain it would mean wrongful accounting. This is especially troubling because
we typically introduce artificial unphysical degrees of freedom to simplify calcula-
tions. These unphysical contributions must cancel in the end. If not, we have twisted
our formalism such that predictions become inconsistent and untrustworthy.

In chapter 1 I give a brief overview of the Standard Model and why physicists
believe it must be extended. Chapter 2 describes spontaneous symmetry break-
ing and the Higgs mechanism, which are relevant to modern model building and
to understanding the electroweak phase transition. Chapter 3 concerns quantum
corrections and how they relate to symmetries, and chapter 4 brings thermal correc-
tions into the picture. Each of these chapters ends with an annotated bibliography
of recommended readings. The final chapter, chapter 5, is a popular summary in
Swedish.

Thank you for reading,

Johan Löfgren
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1. Particle physics and you

The story so far: In the beginning
the Universe was created. This has
made a lot of people very angry and
been widely regarded as a bad move.

Douglas Adams, The Restaurant at
the End of the Universe

Physics is an ambitious endeavor that aims to consistently describe planets, solar-
systems, galaxies, (and beyond), and everything as small as molecules, atoms, elec-
trons, (and beyond). Though this project is far from complete, great progress was
made in the last century. There were several paradigm shifts that forever changed
our view of reality. With the introduction of relativity and quantum mechanics, the
20th century marked the advent of the field particle physics. We learned that to
study particles we must study quantum fields—quantum field theory can combine
the principles of special relativity and quantum mechanics.

The most well-tested quantum field theory we have is the Standard Model of
particle physics, which I describe in the following section. This introductory chapter
has a light tone, with the aim to place my research into a larger context. In future
chapters I get into more technical details.

1.1 A brief introduction to the Standard Model
The Standard Model is a quantum field theory—a collection of quantum fields
with different properties, linked together by interactions. Excitations of these fields
appear to us as particles, and when the particles affect each other it is due to the
fields interacting. The discovery of all the different building blocks, and how they fit
into the Standard Model, is an impressively large scientific project that culminated
during the previous century. The Higgs boson—the final piece—was discovered in
2012 at the Large Hadron Collider [1, 2, 3].

There are several different types of fields in the Standard Model. We think of
the fermionic fields as matter because their particle excitations obey Fermi-Dirac
statistics. Loosely speaking, they cannot be compressed together indefinitely—they
take up space. This is in contrast to bosonic fields, such as electromagnetic waves,
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that can be layered on top of each other with little limitation. There are three gener-
ations of fermions in the Standard Model, where the first generation corresponds to
particles like the electron, or the quarks that form atomic nuclei. That is, atoms con-
sist of protons and neutrons—composite particles of up- and down-quarks—orbited
by electrons.

Fermions from the other two generations are not as well-known, for good reasons:
they are very heavy and decay quickly into other particles. But they are of course
important to physics at short distances.

There is in addition another kind of matter particle that is abundant in the
universe. Though we do not notice neutrinos in our daily life, they are ever-present.
They are created in nuclear processes, but they hardly interact with other particles.

With the Standard Model’s matter-content out of the way, we turn to its forces.
The concept of a force is, in particle physics, a slippery one. In the physics of our
everyday lives, we typically think of a force as something that pushes or pulls
something else. These forces may be emergent effects that arise from microscopic
interactions, such as how the ground pushes your feet up when you are standing
on it. Or a force might be the manifestation of the presence of a fundamental
force-field—such as the electromagnetic field.

In contrast, quantum fields can in one instance act like a particle (something
that scatters) and in another instance like a field (something that mediates inter-
action). Particles interact through intermediate states—fields are excited and their
excitations trigger the excitations of other fields through interactions—and really all
fields are forces in this sense. An electron can scatter off a photon (the particle that
mediates the electromagnetic force) by “exchanging” an intermediate electron.1 In
this sense we might talk of the “electron force.”

But this is not how particle physicists usually use the word force. Typically, we
only refer to forces if they are mediated by gauge bosons. In this sense there are
four different forces that particles are subject to. There is the electromagnetic force
mediated by the photon γ, the weak force mediated by the Z and W bosons, the
strong force mediated by the gluon g, and gravity (presumably) mediated by gravi-
tons. All of these forces, except gravity, are a part of the Standard Model—the first
three correspond to the gauge group SU(3)c×SU(2)L×U(1)Y . In particular, SU(3)c
corresponds to the strong force, and SU(2)L×U(1)Y to the electroweak unification
of the electromagnetic and the weak force. The electroweak gauge group is “broken”
by the Higgs mechanism, leaving us with the two separate forces we usually speak
of.

That said, there are physicists who think that we should really call all bosons
forces. In particular, this would imply that the Higgs field mediates a fifth force—the
Higgs force. After all, propagating massive particles can interact with each other by
exchanging a Higgs boson. Just like how an electron and a proton might attract each

1Or a more complicated intermediate state, represented by a Feynman diagram with loops.
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other by exchanging a photon. Most physicists do not subscribe to this nomenclature
though, and I will not use it further in this thesis.

The Higgs field implements the Higgs mechanism. All the gauge bosons and all
the fermions of the Standard Model would need to be massless if there was no such
mechanism. This mechanism plays a key role in both of the research projects that
this thesis is based on; I elaborate on it in chapter 2.

1.2 Beyond the Standard Model
Now that we are familiar with the Standard Model, let’s scrutinize its imperfections.
There are flaws, both theoretical and experimental.

The Standard Model does not contain gravity. General relativity, the theory
of gravity at large distances, has technical issues when constructed as a quantum
field theory. Constructing a well-functioning quantum theory of gravity is one of
the biggest challenges of theoretical physics. There are a few different approaches,
with string theory as the most popular candidate (for good reasons). The fact that
the Standard Model does not deal with gravity at all means that the theory does
not make accurate predictions for certain extreme cases—such as near black holes
or in the very early universe, where the quantum nature of gravity is important.
But the Standard Model together with general relativity works well for the energies
that are available in our colliders.

Neutrinos are massive. Due to the observed phenomenon of neutrino mixing,
we have known since the 90s that at least one neutrino must be massive. But the
neutrinos in the Standard Model are massless. Their masses could in principle be
added to the Standard Model, but to do it correctly we need to know more about
neutrinos. Depending on if they behave as Dirac or Majorana fermions, the fine
details of their mass terms and their interactions will be different. I discuss this
issue more in subsection 1.3.1.

Darkmatter is likely to have a particle nature. Yet the particles of the Standard
Model cannot explain the various phenomena that we need dark matter for, such as
the rotation curves of galaxies. This problem can be addressed by adding massive
particles to the Standard Model that interact weakly with everything besides gravity.
The problem is of course to knowwhichmodel is correct, and there is a large industry
dedicated to test such models in different ways.

Matter and antimatter do not exist in equal amounts. This fact is very puz-
zling from the Standard Model’s point of view. Though matter and antimatter can
be differentiated in the Standard Model, since the CP symmetry is slightly broken,
it cannot explain the sheer difference we have observed. There are a few competing
explanations, but they all require additional particles. I will discuss the prospect of
electroweak baryogenesis in subsection 1.3.2.
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Dark energy. Cosmological observations suggest that we live in an accelerating
universe. The simplest explanation (there are other candidates) is that there exists
a very small, but nonzero and positive, cosmological constant—a background energy
density. The Standard Model can accommodate such a constant, but there would
have to be some serious fine-tuning of the parameters in the Lagrangian to explain
its small value. It is up to extensions of the Standard Model to explain why the
value is what it is, or to propose another mechanism that explains the cosmological
observations.

The hierarchy problem. This is one of the Standard Model’s longest-standing
theoretical problems. If there are heavier particles that couple to the Higgs, then
the Higgs boson’s mass should get large quantum corrections. But because we know
that the Higgs mass is actually around the weak scale, then there must be minute
cancellations between these corrections such that they do not contribute too much.
This is a fine-tuning. These considerations lead particle physicists to believe that
the LHC would reveal more particles than what we have seen so far—particles that
would enact some mechanism that renders fine-tuning unnecessary. Models with
supersymmetry, and models in which the Higgs is a composite particle, are examples
of such models. There is no concrete evidence for such extensions of the Standard
Model as of yet.

1.3 Particle physics and me
In this section I elaborate on two of the problems I mentioned above, because they
are related to my own work. This section is necessarily more technical than the
previous one.

1.3.1 The neutrino masses
The Standard Model does not contain neutrino masses. But even though we are
sure that at least one of the neutrinos is massive, it is not clear how to add mass
terms for neutrinos.2 Indeed, the type of mass term to add depends on whether
neutrinos are Majorana or Dirac particles. Consider a left-handed neutrino νL . A
Dirac mass term needs an accompanying right-handed neutrino νR, and is written
as

mD(νLνR + νRνL). (1.1)

If such right-handed neutrinos do exist (though we have not observed them), the
coefficient mD would have to be incredibly small to explain the observed neutrino
masses—which are around a few eV. In the Standard Model, such mass terms
2This subsection is based on the paper [4], and the textbook [5].
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would be generated by interactions between the neutrinos and the Higgs field. With
additional right-handed neutrinos, the mass term would be of the form

yl LνRH̃ + h.c., (1.2)

where H is the Higgs doublet, H̃ = iσ2H∗, and l is the left-handed fermion doublet.
Here y would need to be very small compared to other Yukawa couplings in the
Standard Model.

On the other hand, a Majorana mass term can be written purely in terms of νL ,

1
2

mMνc
LνL . (1.3)

However, there are additional complications with Majorana mass terms. Such terms
are not possible with renormalizable operators in the Standard Model, because
of gauge invariance. Though it is possible to induce such a mass term with non-
renormalizable higher-dimensional operators like

c
Λ
(l c

LH)(lLH) + h.c., (1.4)

where Λ is a cut-off scale and c is a numerical coefficient. This explanation for the
fermion mass would hence also require new physics (around the scale Λ). But an
added bonus is that it could explain why neutrinos are very light. Because the mass
terms are then suppressed by the high scale Λ.

To know which of these mechanisms is realized in nature, we need more experi-
mental data about neutrino interactions. But such data is sparse because neutrinos
interact weakly with other particles. Hence it is currently unknownwether neutrinos
are Dirac or Majorana fermions. So far we have only observed the three left-handed
neutrinos. A generic prediction of Majorana neutrinos is that of neutrinoless double-
beta decay, where certain atomic decays produce two electrons (or positrons) and
no neutrinos. This kind of decay cannot occur if the neutrinos are Dirac particles—it
is forbidden by lepton-number conservation. No such decay has yet been observed.

Although there’s a good case for believing in pure Majorana neutrinos, there
are other compelling possibilities. If right-handed neutrinos νR exist, they can form
both Majorana and Dirac mass terms simultaneously. And so a neutrino mass matrix
M with off-diagonal elements is possible:

M∼
�

0 mD

mD mM

�
. (1.5)

If MM � mD, then the masses of the propagating states are approximately

m1 ∼ m2
D

mM
, m2 ∼ mM . (1.6)

15



In other words, there are two classes of neutrinos—one that is very light, and one
that is very heavy. This is known as a seesaw-mechanism.

In paper I we have considered a simple extension of the Standard Model, with an
extra U(1) gauge symmetry. Such theories have certain consistency requirements—
possible gauge anomalies must cancel, see section 3.2—and it turns out that the
simplest way to resolve these is to add three fermions that are not charged under the
Standard Model gauge group [4]. This precisely corresponds to three right-handed
neutrinos.

The model also features a new complex scalar field ϕ which acquires a vacuum
expectation value to break the new U(1) group and give mass to the new neutral
gauge boson Z ′. It is then possible to have Majorana mass terms for these three
right-handed neutrinos, such as

ϕ†νc
RνR + h.c. (1.7)

The vacuum expectation value of ϕ is on the same order as the mass of Z ′, which
should be around the TeV-scale to have evaded the experimental bounds so far. With
mD ∼ 1 MeV (close to the electron mass), and mM ∼ 1 TeV, we find m1 ∼ 1 eV.

Such anomaly-free U(1) extensions of the Standard Model hence conveniently
support the existence and smallness of the neutrino masses.

1.3.2 Matter-antimatter asymmetry
Though it is clear that there are more baryons than anti-baryons in our universe,
it is possible to be more quantitative about it. By observing cosmic rays that reach
the earth, and comparing the number of incoming anti-protons p to the number of
incoming protons p, we have measured that [6]

p
p
∼ 10−4. (1.8)

This fraction is consistent with an abundance of primordial protons that have per-
sisted since the early universe. The small fraction of antiprotons is just what you
expect if they were created in the cosmic rays [7]—any primordial antiprotons have
long since annihilated.

Just how the matter-antimatter asymmetry came about is an open question.
There are a number of different proposed explanations, but none with much evi-
dence in favour of it. One popular mechanism is known as electroweak baryogene-
sis [8]. Just before the electroweak phase transition—which broke the electroweak
symmetry—a net baryon number can be generated by certain non-perturbative
processes known as sphalerons. To prevent this number from being washed away,
it is important that the phase transition is first-order. Such phase transitions oc-
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cur through bubble nucleation, just like boiling water, and offer just the correct
circumstances to make electroweak baryogenesis possible.

In the Standard Model, the phase transition is known to be second-order from
lattice simulations [9, 10]. But because physics at the electroweak scale is difficult
to test experimentally—especially the Higgs potential, which is relevant for the
phase transition—it is possible that there is new physics lurking there. Such new
physics might change the nature of the phase transition, and therefore there is much
interest in extensions of the Standard Model that modify the Higgs potential.

But, as I describe further in chapter 4, it is tricky to perform perturbative cal-
culations relating to the phase transition. In papers III and IV, a colleague and I
have developed perturbative methods to improve such calculations. Paper V is our
calculation of further terms in the high-temperature expansion of a 2-loop thermal
sum-integral known as the sunset. As we discuss in paper IV, such terms are relevant
at high orders of perturbation theory.

Recommended readings
Sean Carroll, The Particle at the End of the Universe [11]. This popular science book
explores the discovery of the Higgs boson at the LHC. It is well written but still
keeps a good level of accuracy.

A. Zee,Quantum Field Theory in a Nutshell [12]. This is a textbook. But it emphasizes
the physical content of quantum field theory, not the technical details.
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2. Spontaneous symmetry breaking

Symmetry: you break it, you buy it.

Label on coffee mug from University of
Washington, Seattle.

The general idea of spontaneous symmetry breaking is one of the most far reaching
and interesting ones in modern physics; see [13] for a recent and comprehensive
review. In gauge theory it shows itself in the guise of the Higgs mechanism.

The Higgs mechanism, and also spontaneously broken global symmetries, play
a key role in the Standard Model and in many of its extensions. In this chapter and
those that follow, I will dig into some of the details these mechanisms. I start with a
simple example and build on it sequentially. Though the concept of broken discrete
symmetries is also interesting, I will focus on continuous symmetries for brevity.

2.1 Global symmetries, spontaneously broken
2.1.1 A simple example
Let’s start by considering a 4D quantum field theory with a complex scalar field
Φ(x), and a global U(1) symmetry. The Lagrangian is

L= −∂ μΦ†∂μΦ− V0[Φ,Φ†], (2.1)

V0[Φ,Φ†] = m2
�
Φ†Φ
�
+λ
�
Φ†Φ
�2

. (2.2)

These are all the possible terms with mass-dimension ≤ 4. Here V0 is the classical
potential, a functional that defines the interactions among the theory’s scalar fields.
As we shall see shortly, the form of the classical potential is crucial for determining
the spectrum of the theory.

Though the complex representation used above realizes the U(1) transforma-
tion in a simple manner, Φ → e−iθΦ, the rest of the discussion will benefit from
introducing the real and imaginary components of Φ,

Φ=
1�
2
(φ1 + iφ2) . (2.3)
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Introducing the real vector 
φ = (φ1,φ2)T , we can write the potential as

V0[ 
φ] =
1
2

m2 
φ2 +
1
4
λ 
φ4. (2.4)

As this theory stands, a naive derivation of the spectrum would lead us to believe
that there are two real scalar particles, both with mass m. Is this correct? Well,
sometimes.

When we are constructing a quantum field theory, we should try to be as general
as possible: write down all possible terms and consider all possible values of the
parameters. In general, the Hamiltonian must be a Hermitian operator to produce a
physical spectrum. In our case this tells us that the parameters must be real (though
in more complicated theories they may be complex). From the argument above we
might also expect that m should be positive, because it seems to correspond to the
mass of a particle. But this assumption would be a mistake.

To see why, we need to consider the ground state of the theory.1 We can start with
the classical energy, and focus on quantum corrections later. The classical energy is
given by the space-integral of the Hamiltonian density,

E =

∫
d3 xH =
∫

d3 x
�

1
2
∂0

φ · ∂ 0 
φ +

1
2
∂i

φ · ∂ i 
φ + V0[ 
φ]

�
, (2.5)

where we can think of the first two terms as the kinetic energy of the scalar fields.
The aptly named classical potential corresponds to the potential energy.

To find the ground state we should minimize this energy. Because the kinetic
terms contribute as positive squares, their minimal contribution is zero. We then
immediately draw the conclusion that the field with minimal energy, 
φ0, should be
static: ∂μ 
φ0 = 0. All that remains is the potential energy,

Emin =

∫
d3 xV0[ 
φ0] = V ×

�
1
2

m2 
φ2
0 +

1
4
λ 
φ4

0

�
, (2.6)

where V is the volume of space and 
φ0 minimizes the classical potential,

∂iV0|φ=φ0

!
= 0. (2.7)

Here I used the shorthand ∂i ≡ ∂
∂ φi

.
To solve this equation we should first consider the possible values of the param-

eters, and to do so we must let go of their physical interpretations—forget that m
usually corresponds to a mass. If λ is negative then the energy is unbounded from
below. This theory is unstable and is not of interest to us. If λ = 0, then the theory

1The following demonstration is based on Rubakov’s textbook [14].
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is unstable if m2 < 0; if m2 ≥ 0 it describes two free scalar fields, both with mass
m.

When λ > 0 the theory is bounded from below and the existence of a ground
state is guaranteed. To find it, we solve equation (2.7) to find possible extrema,

0
!
=
�
m2 +λ| 
φ0|2
�

φ0 =⇒ 
φ0 = 0 or | 
φ0|2 = −m2

λ
. (2.8)

The natures of the extrema are found by computing the second derivative matrix
(the Hessian). Due to the U(1) invariance, it is enough to focus on the absolute
value of 
φ0. Defining φ ≡ | 
φ|, and ∂ ≡ ∂

∂ φ , we have that

∂ 2V0

		

φ=0 = m2, (2.9)

∂ 2V0

		
φ2=− m2

λ

= −2m2. (2.10)

Now it is time to face to the possible values of m2. If m2 = 0, then the two extrema
are both minima and located at the origin—the two scalars are massless.2 If m2 > 0,
then the second extremum is not realized (there are no real values of 
φ which satisfy
that equation); the ground state is at the origin and the naive analysis holds: there
are two real scalars with mass m.

With negative m2, the extremum at the origin is a maximum, and the second
one is a minimum. The ground state satisfies

| 
φ0|=
√√−m2

λ
, (2.11)

and is hence actually a continuum of states—all 2D vectors with this length.
The existence of this multitude of states is related to the symmetry of the original

theory, which will be more apparent when we consider the general case in subsec-
tion 2.1.2. Because these states all have the same energy, we can pick one of them
as a representative. Take


φ0 = (φ0, 0)T ; φ0 =

√√−m2

λ
. (2.12)

Now that we have the ground state, we should expand around it to find the
spectrum of the theory; in that vein,

φ1 = φ0 + H,φ2 = G, (2.13)

2The second-derivative test actually fails in this case, but they can be confirmed to be minima by
inspection.
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where I gave the fluctuations around the ground state the names H and G—for
reasons that shall soon become apparent. To find their masses, simply insert this
expansion into the Lagrangian and look at the appropriate terms (H2 and G2),

m2
H = m2 + 3λφ2

0 = −2m2, (2.14)

m2
G = m2 +λφ2

0 = 0. (2.15)

The spectrum hence consists of two scalars: H, which has squared mass −2m2 (a
positive number), and G, which is massless.

Though we started with a theory in which all fields were treated the same,
where φ1 and φ2 were interchangeable—and could be intermingled with a U(1)
rotation—we ended up with a spectrum in which the two “physical” fields are not
interchangeable. This is the essence of spontaneous symmetry breaking; though the
theory is invariant, the ground state breaks the symmetry—splitting the spectrum.

In this section we considered a simple Abelian symmetry, that was spontaneously
broken. In the spectrum we found one massive scalar and one massless one. In the
next section I will discuss the general case of a non-Abelian symmetry.

2.1.2 The general case (global)
The most general continuous symmetry that is of interest to us corresponds to a
compact semi-simple Lie group G [14]. To specify how the various fields of our
model transform under G, we must specify in which representation they are. It is
enough for our interests to consider the transformation of the scalars in the model.3

Because our end goal is to do perturbation theory, it is simplest to use a real
representation of the scalars (this can be done without loss of generality). We collect
the N real scalars in the vector 
φ, with components φi .

Let’s denote the generators of this representation as T a, with a = 1, . . . , DG and
DG is the dimension of the group G. An infinitesimal transformation of φi is then
given by

φ′i = (1− iθ a T a)i jφ j , (2.16)

where θ a are arbitrary infinitesimal parameters. Note that this representation is
real, and hence the generators T a are antisymmetric Hermitian matrices.

For this to be a symmetry, we require that the action is unchanged under G
transformations, δS

!
= 0. For our purposes we can focus on the scalars, and in

particular on static configurations. Then we just require that the classical potential
is invariant, δV0

!
= 0, that is

V0( 
φ)
!
= V ′0( 
φ′) =⇒ (T a 
φ)i∂iV0 = 0. (2.17)

3The following discussion is partially based on Srednicki’s textbook [15], and partially on the two
papers [16] and [17].
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We can get a lot of mileage from this equation. If we differentiate it with respect to
φi , we find

∂ 2
i j V0 (T

a 
φ) j = T a
i j∂ jV0, (2.18)

where ∂ 2
i j V0 is the scalar mass-matrix as a function of the background field φ. The

equations above must hold for any static scalar field configuration, even if it does
not minimize the potential. But let’s get more specific and consider vacuum solutions
that do extremize the potential.

First off, if we consider the standard non-breaking type of solutions with 
φ0 =
0, then the equations above trivially hold—all generators annihilate the vacuum:
T a 
φ0 = 0. This equation tells us that 
φ0 does not transform under the group G. In
other words, the vacuum does not break any symmetries; we say that all generators
that annihilate the vacuum are unbroken.

But if we consider vacua located away from the origin, then the situation is more
interesting. We can split the generators into two families, {T a}= {T α, t b}, where t b

annihilate the vacuum and T α do not. So, if T α 
φ0 �= 0 then the vacuum transforms
under this “part” of the group , and we say that the generators T α are broken.

Using group theory, it is possible to show that the DH unbroken generators
form a subgroup, H, that we call the unbroken subgroup. The broken generators
T α,α= 1, . . . , DG − DH do not in general form a subgroup, but they are interesting
in their own right.

Returning to equation (2.18), but focusing on a vacuum and its broken genera-
tors, we find

∂ 2
i j V0

			

φ0

(T α 
φ0) j = 0. (2.19)

We hence conclude that T α 
φ0 is an eigenvector of the mass-matrix with eigenvalue
zero. In other words, there are (DG − DH) massless scalar bosons—one for each
broken generator. This is Goldstone’s theorem, and the massless scalar bosons are
known as Goldstone bosons.

In the context of the Abelian U(1) example above, there is only one generator to
begin with; in the real 2-dimensional representation the generator is proportional
to the antisymmetric symbol εi j . The non-trivial vacuum breaks this generator, and
the resulting unbroken subgroup is trivial. There is DG − DH = 1−0= 1 Goldstone
boson.

Furthermore, we chose a representative vacuum 
φ0 = (φ0, 0)T , and did not
worry about a loss of generality. With this representative we found that φ2 corre-
sponded to the Goldstone boson G, and we let H refer to the massive fluctuation
along the direction of the vacuum expectation value (vev) 
φ0.

The Goldstone field corresponds to fluctuations perpendicular to the vev direc-
tion. This is because any static field configuration 
φ is orthogonal to the correspond-
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ing Goldstone direction T α 
φ,


φi(T α 
φ)i = 
φiT αi j

φ j = 0, (2.20)

due to the antisymmetry of T α. In the Abelian case, if we instead would have
considered a generic background field 
̃φ = (φ̃1, φ̃2)T , we would have found the
Goldstone direction to be ε 
̃φ = (φ̃2,−φ̃1)T—which is orthogonal to 
̃φ.

Of course, because the potential is invariant under the group G, we are free to
transform 
φ into the simplest form possible. That is why we can simply choose to
work with the vev in the φ1 direction in Abelian case. But I think it helps to see that
it can be done with general fields as well.

To summarize, for a particular vacuum 
φ that breaks the generators T α, we are
free to choose a form of 
φ that makes our lives simpler—as long as that form is
reachable by a G-transformation.

2.2 Gauge symmetries and the Higgs mechanism
We are now ready to tackle the Higgs mechanism.

2.2.1 A (kind-of) simple example
Let’s return to the Abelian U(1) example, but now consider a gauge symmetry,
Φ(x)→ e−i gθ (x)Φ(x).4 Such an invariance can be dealt with by introducing a com-
panion gauge field Aμ with appropriate interactions to the fields, such that the full
action is gauge invariant. Assuming that Aμ transforms as Aμ→ Aμ− ∂ μθ , the form
of the Lagrangian can be found by a simple construction, and involves the covariant
derivative Dμ = ∂ μ− i gAμ and the field-strength Fμν = ∂μAν−∂νAμ; the Lagrangian
is

L= −1
4

FμνFμν − (DμΦ)†DμΦ− V0[Φ
†,Φ], (2.21)

with V0 as in subsection 2.1.1.
Again, let’s find the vacua of this theory. We consider the energy,

E =

∫
d3 xH =
∫

d3 x
�

1
2

F2
0i +

1
4

F2
i j +

1
2

D0

φ · D0 
φ +

1
2

Di

φ · Di 
φ + V0[ 
φ]

�
,

(2.22)
and note that the first four “kinetic” terms are positive squares—their minimum
contribution is zero.

In the global symmetry case we could conclude that minimizing the energy
required a static configuration. When there are gauge fields involved, we then
4This subsection is based on Rubakov [14] and Srednicki [15].
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instead have covariant derivatives, and all we can say is that the vacua are static
up to a gauge transformation. That is, we can in principle remove all the spatial
dependence by performing a transformation; the vacua take the form

Aμ(x) = −∂μθ , (2.23)


ϕ(x) = egθ (x)ε 
φ, (2.24)

where iε is the generator of the real 2-dimensional representation of U(1), and 
φ
is a static configuration.

Though this technicality will become relevant later when we want to perform
a gauge-fixing, we can forget about it for now. The remaining part of the energy
resides in the potential V0, and due to its gauge invariance we can again focus on a
static solution. Hence the minimum energy is

Emin =

∫
d3 xV0[ 
φ0] = V × V0( 
φ0), (2.25)

where again V is the volume of space and 
φ0 is a static field that minimizes V0.
From here the analysis proceeds just as for the global symmetry; wemust consider

the form of V0 and the values of the parameters. The case analysis is the same
for each case where there is no expectation value for 
φ, with the addition of the
massless vector boson.5 There are four physical degrees of freedom, two modes of
the massless vector boson and two massive scalars.

We can focus on the interesting case of λ > 0, m2 < 0, for which the ground
state fulfills | 
φ0|=

�−m2/λ. Again, there is one massive and one massless scalar,
but now the vector field has also acquired a mass:

m2
A = g2φ2

0 . (2.26)

Counting the degrees of freedom again, there appears to be two scalar modes and
three modes of the vector boson. It seems as if the number of degrees of freedom
has increased from four to five.

To resolve this issue we need to reconsider the role of the massless scalar, the
Goldstone boson. By examining the square terms in the Lagrangian, we find

− 1
4

FμνFμν − 1
2
∂μH∂ μH − 1

2
m2

H H2 − 1
2

m2
A

�
Aμ +

1
mA
∂ μG
�2

. (2.27)

We can perform a change of variables by introducing Bμ ≡ Aμ + 1
mA
∂ μG, which

completely removes G as a propagating field. The conclusion is that there in fact are

5The m2 = 0 case is special, as I discuss in subsection 3.3.4.
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only four degrees of freedom, three modes of the massive vector and one massive
scalar.

This is the Higgs mechanism. We started with a theory that is fully gauge in-
variant, and we spontaneously “broke” the gauge symmetry analogously to how
we would a global symmetry. In the end we found a spectrum of a massive scalar—
the Higgs boson H—and a massive vector boson. The would-be Goldstone boson is
“eaten” (technical term) by the gauge boson, which gives it the missing degree of
freedom it needed to obtain a mass.

Before moving on to a general model, I want to discuss the terminology a bit. We
say that these gauge theories have a “local symmetry,” and we speak of breaking
them with the Higgs mechanism. But the gauge transformations are not symmetries
in the usual sense, they are redundancies in our description of the physical world. We
can usually forget about this difference, but we might naively be lead to believe false
statements if we are not careful. Above, we first figured that an additional degree
of freedom had surfaced in the non-trivial vacuum. But we had not considered that
there was a redundancy and that one of the degrees of freedom was not actually
free. Later in this thesis this kind of reasoning will become important. For now
I will note that saying a gauge invariance is spontaneously broken is a bit of a
misnomer, and some physicists would rather not use this phrasing.6 But the phrase
“spontaneously broken” brings to mind the correct analogy of the global case, and I
will hence continue using this phrasing in this thesis. But keep in mind that, really,
gauge symmetries are not symmetries and they cannot break [13].

2.2.2 The general case
Consider again a compact semi-simple Lie group G that acts on a real vector of the
theory’s scalars 
φ with generators T a, a = 1, . . . , DG . Now there are also DG vector
bosons Aa

μ that transform under the adjoint representation.7

The same equations as in the global case now hold, but before discussing these
again I want to focus on the object F a

i ≡ (T a 
φ)i . As we have seen, F a
i will play

the role of the Goldstone directions in the minimum. And in general F a
i is always

perpendicular to the corresponding field value 
φ. It can be thought of as a rectan-
gular matrix with DG rows and N columns, and as such it can be rewritten using a
singular value decomposition,

F a
i = Sab M b

jR
T
i j , (2.28)

6Some physicists do not like to use the phrase spontaneously broken at all, even for global symmetries.
Instead they might say that the symmetries are hidden, because the underlying equations respect the
symmetry—only the ground state breaks it.
7Also this subsection is based on Srednicki [15] and the two papers [16] and [17].
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where S and R are orthogonal DG × DG and N × N matrices respectively; M is a
DG × N rectangular matrix with the singular values on the diagonal: M b

j = M bδb
j

(no summation over b). All of these matrices inherit the 
φ dependence from the
definition of F a

i .
From this object we can construct two square matrices that will be relevant later,

by contracting the indices of two Fs in two different ways. The matrices are

(m2
A)

ab = F a
i(F

T ) b
i = Sac M c

j(M
T ) d

j (S
T )bd , (2.29)

(m2
A)i j = (F

T ) a
i F a

j = Rik(M
T ) a

k M a
l(R

T ) jl . (2.30)

These two square matrices are, perhaps confusingly, given the same name. This is
because they have the same non-zero eigenvalues, though the multiplicities of the
zero eigenvalues may be different. The matrices will relate the Goldstone bosons
to the appropriate gauge bosons, as we shall see. The singular value decomposition
above suggests the existence of bases (one in the a space and one in the i space)
that diagonalize these mass-matrices.

We will return to the matrix (m2
A)i j later when we discuss the details of gauge-

fixing. For now I will simply state that the matrix (m2
A)

ab is what shows up in the
Lagrangian as a mass-matrix for the gauge bosons. We are well advised to use the
basis Ãa

μ ≡ SabAb
μ, which diagonalizes the gauge boson mass-matrix.

We can say something further about this matrix by considering its form in a
nontrivial vacuum 
φ0. Then we again split up the generators into two families, the
DH unbroken t b, and the (DG−DH) broken T α. Hence we know, in the vacuum, that
the zero eigenvalues of (m2

A)
ab must lie in the block specified by the DH unbroken

generators. The (DG − DH) non-zero eigenvalues form their own block given by the
broken generators.

The general conclusion is that the unbroken subgroup H still comes with DH
massless gauge bosons. And the rest of the group G that is broken by the Higgs
mechanism comes with (DG − DH) massive vector bosons. From the analysis of
the global symmetry case we know that this is the same number as the number of
would-be Goldstone bosons.

The counting of degrees of freedom hence still works out, but the argument is
somewhat more complicated than in the simple Abelian case. I will return to it
when I discuss gauge-fixing in chapter 3.

Recommended readings
Valerij Rubakov, Classical Theory of Gauge Fields [14]. This textbook does an amazing
job balancing mathematical rigor and physical motivations. It treats spontaneous
symmetry breaking and the Higgs mechanism in great detail.
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3. Symmetries and quantum effects

“You have to be realistic about
these things.”

—Logen Ninefingers

Joe Abercrombie, The First Law

The calculations and arguments in chapter 2 all related to classical symmetries. In
this chapter I will explore what can happen when quantum effects are included.

3.1 The path integral
The transition from a classical theory to a quantum one can most intuitively be
understood from the path integral formalism.

In classical physics we write down an action in terms of our degrees of freedom,
following certain rules and regulations. Thenweminimize the action to find physical
solutions. This is the principle of least action, and has been used to great success to
derive field equations for electromagnetism and general relativity, and for deriving
classical trajectories for particles present in such force fields.

The principle of least action, useful as it is, might seem a bit arbitrary. To clarify
what I mean by that, let’s consider the path integral in field theory. The path integral
of a field Φ in the presence of a classical source J is, schematically,

Z[J] =

∫
DΦei 1

ħh (S[Φ]+
∫

JΦ). (3.1)

This is a functional integral, with a functional integration measure DΦ. From this
definition we can now “derive” the principle of least action. If we treat this path
integral just like any other complex contour integral, then we can approximate it
using the stationary phase approximation. For the following demonstration, I will
set the classical source to zero, J = 0. But a similar analysis is applicable if J is
nonzero.

If we have a solution Φ0 that extremizes the action, δS|Φ0
= 0, then we can

expand the action around this solution,

S[Φ] = S[Φ0] +�������
δS|Φ0

(Φ−Φ0) +
1
2
δ2S
		
Φ0
(Φ−Φ0)

2 + . . . (3.2)
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Using this expansion inside the path integral—the stationary phase approximation—
we get that the logarithm of the path integral schematically obeys [18]

log Z[0] = i
1
ħhS[Φ0]− 1

2
log det
�
δ2S
�				
Φ0

+O (ħh) . (3.3)

The classical solution Φ0 dominates the path integral, and then there is an array
of quantum corrections. We can imagine taking the limit ħh → 0, picking out the
classical result. In this formalism, the principle of least action is just the statement
that the classical physics dominate the path integral.

Observables can then be derived from the path integral, generally by taking
functional derivatives with respect to the classical sources. For a typical theory with
interactions, we need to approximate the path integral in a fashion analogous to
the expansion above. Perturbation theory is typically done with Feynman diagrams,
ordered by the number of loops. But sometimes this expansion breaks down, and it
is more useful to use another expansion parameter. I will return to this later.

3.1.1 The path integral and symmetries
If we have a symmetry of the classical action, is it guaranteed to be a symmetry of
the path integral? In other words, do quantum effects preserve symmetries? Not
always.

Again, we can gain som intuition by thinking of the path integral as just another
integral.1 If we consider an ordinary integral,

∫
dx f (x), (3.4)

and we know that the function f (x) is invariant under some transformation x → x ′,
that is f (x) = f ′(x ′), then the only way for the whole integral to be invariant is if
the integration measure is invariant as well: dx ′ = dx .

Hence if the classical theory is invariant under some group G, but the path
integral integration measure DΦ transforms under G, then we say that the symmetry
is anomalous.

A global anomalous symmetry is not a problem. But, as I emphasized before,
gauge symmetries are not really symmetries—they are redundancies in our descrip-
tion. We are now ready to consider this statement in further detail.

Imagine that the theory specified by L has a local U(1) symmetry with an ac-
companying gauge boson Aμ. This vector field has four degrees of freedom, but we
know that any physical manifestation of this field only has two. Somewhere along
the way we must compensate for the extra redundancy that we have introduced.
1This subsection is based on Srednicki [15].
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Think of the path integral. A part of the integration measure will now be DA∼
DA0DA1DA2DA3, which shows our overcounting. To compensate for this overcount-
ing we perform a trick that is attributed to Faddeev and Popov [19]. The delicate
part in our treatment of this overcounting is to ensure that we extract the physical
contributions of Aμ, and quotient away the rest. But this is hard because of the
redundancy; which parts that are extraneous depends on which gauge we are in.

Again, the intuition comes from a regular integral. Imagine that we are integrat-
ing over x and y , but we know that the integrand does not depend on y ,

∫
dxdy f (x). (3.5)

We recognize that the integral over y is redundant, and we can divide the expression
above by V =
∫

dy, which in effect drops the integral over y. If the situation is
more complicated and we are integrating over some 2-dimensional space in which
we know there is a redundancy, then the process is not as simple. Instead we can
imagine starting with

∫
dx f (x), dividing by V , inserting an integral over y and a

delta function that extracts the correct contribution,

1
V

∫
dxdy det

∂ G
∂ y
δ(G) f (x), (3.6)

where G(x , y) is a cleverly chosen function.
In the path integral formalism, we start with an integral over DA and then insert

a delta functional and a functional determinant,

Z[J]∝
∫

DAdet
�
δG
δθ

�
δ(G)eiS , (3.7)

and we call G the gauge-fixing function. Here θ refers to a redundant degree of
freedom. The trick now is to rewrite this functional determinant and the delta
functional to something which we can use to calculate observables.

The functional determinant and the gauge-fixing delta functional are incorpo-
rated into our theory by introducing unphysical degrees of freedom, Faddeev-Popov
ghosts η and η, and by including new parts in the action,

Z[J]∝
∫

DADηDηeiS+iSgh+iSg.f. , (3.8)

where Sgh is the ghost action and Sg.f. is the gauge-fixing action.
Loosely speaking, we can think of ghosts as anti degrees-of-freedom; we can use

them to cancel other unphysical contributions. Because they must cancel modes
of the gauge boson, they also need to obey Bose-Einstein statistics. But, at the
same time, for the construction in equation (3.7) to work out, they also need to
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anticommute. This means that they appear to violate the spin-statistics theorem.
Even though this is unintuitive, it is not really an issue. After all, the ghosts are not
physical. I dig into this statement, and show some possible forms of the new actions
Sgh and Sg.f., in the next subsection.

3.1.2 BRST symmetry and gauge-fixing
After appending extra degrees of freedom to our theory, and extra pieces to the
Lagrangian, we might be concerned that we are distorting the physical picture.
Though we are right to be worried, it is possible to show that any unphysical degrees
of freedom cannot contribute to a physical observable.2 Our original action S is
invariant under gauge transformations. But the gauge-fixing action Sg.f. and ghost
action Sgh are cooked up to explicitly fix a particular gauge, and they must break
gauge invariance. But any theory that has gauge invariance also has an additional
global symmetry, called BRST [20].

The BRST symmetry is analogous to the original gauge symmetry, but with Grass-
man (anticommuting) valued parameters; call such a transformation s. This trans-
formation is by construction nilpotent, s2 = 0.

With this extra symmetry in mind, it is possible to assign transformation rules
for the ghosts and simultaneously construct Sg.f. and Sgh such that the complete
action is BRST invariant in the end. The trick is to construct the new parts as a
BRST transformation of some operator O, Sg.f.+ Sgh = sO. The nilpotence of s then
assures the full theory is still BRST invariant.

The reason that we care about BRST invariance is that it protects us from ac-
counting mistakes. We can assuage the worries we had about the unphysical states
and interactions that now populate our theory. The precise statement is that physical
states are in the cohomology of s. What this means is that if |ψ〉 is a physical state,
then s |ψ〉= 0 and |ψ〉 is physically equivalent to some state |ψ〉+ s |χ〉. Any state
that can be written as a BRST transformation of some other state, such as s |χ〉, can
only contain fluctuations of unphysical degrees of freedom.

These statements are robust under time-evolution. Meaning, if we start with a
physical state, then we must end with a physical state. For calculations in quantum
field theory, this means that although we use propagators that include all modes of
the gauge bosons, and loops including ghosts, in the end all unphysical contributions
will cancel.

At this stage it is good if the niggling worry starts creeping back up again. What if
we make a mistake in the calculation and the ghosts somehow actually contribute?
How would we know? One way is to generalize the operator sO from which we
constructed the new parts of the action. In this way we can introduce some param-
eters, let’s say ξa, that in the end cannot affect our results. Any physical observable
2This subsection is also based on Srednicki [15].
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should be independent of ξa. If we find that it is not, this means that we have made
a mistake somewhere.

A simple example
Let’s consider how this could be done in the Abelian Higgs model. I won’t go through
the details of the BRST transformation; a suggestion for gauge-fixing and ghost
Lagrangians are

Lg.f. = − 1
2ξ

�
∂ μAμ − ξ̃gφiεi jR j

�2
, (3.9)

Lghost = −∂μη∂ μη− ξ̃g2φi(φi + Ri)ηη (3.10)

where ξ and ξ̃ are gauge-fixing parameters. Here I use the notation of [17]. To
translate to the basis I used in chapter 2, use R1 = H,R2 = G and φ1 = φ0,φ2 = 0.

Though it is important to recognize that the above gauge-fixing procedure has
two parameters ξ and ξ̃, calculations in this theory are much more tractable when
ξ̃= ξ. This special case is known as the background-field Rξ gauge.3

In this gauge the Goldstone fields get a contribution to its propagator and the
mass is now m2

G + ξm2
A. The ghosts interact with the scalars, and they also have a

mass ξm2
A. The longitudinal mode of the gauge boson has propagator ξ 1

p2+ξm2
A

pμpν

p2 .
When we calculate an observable, ξ will enter our expressions through these terms.
In the end all such contributions must cancel.

The general case
Though the gauge-fixing can be done in many ways, I suspect it is hard to do better
than the generalized Rξ,ξ̃ gauges [17].4

In principle, the requirements for constructing the gauge-fixing terms are not
very strict—there are many different possible choices. We know that the terms in
the end must be BRST invariant. But from a practical point of view, we want the
new terms to simplify our calculations as much as possible.

Borrowing from [17], generalized slightly, we can use

Lg.f. = −1
2

�
∂ μAa

μ + iξ̃aφi g
a T a

i jR j

� �
ξ−1
�

ab

�
∂ μAb

μ + iξ̃bφi g
b T b

i jR j

�
, (3.11)

Lghost = −∂μηa∂ μηa + ga f abc∂ μηaηbAc
μ + ξ̃a gaiT a

i jφ j gbiT b
ik(φk + Rk)η

aηb.

(3.12)

Here ξ is a symmetric DG×DG matrix, with DG(DG+1)/2 independent components.
This gauge-fixing has several advantageous properties that I will list here. (1), it

is renormalization invariant if the running of both ξ and ξ̃ is taken into account [17].

3As Srednicki points out, “the R stands for renormalizable. The ξ stands for ξ.”
4The ξ̃ stands for ξ̃.
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(2), it is what Fukuda and Kugo [21] dubs a good gauge, meaning that it does not
induce any spurious minima. (3), it is invariant under the global remnant of the
gauge group G. This is good because it allows us to consistently change bases.

To see further advantages, we first need to discuss a few things. We know that
the non-trivial vacua of the Higgs mechanism are related by gauge transforma-
tions, 
φ(x) = e−i gθα(x)T α 
φ0, where T are the broken generators. We can choose
a representative of this vacuum such that the rest of the calculations are simpler.
The global invariance of the Lagrangian and the specific form of the gauge-fixing
function above ensures that we can do this without loss of generality.

When we pick such a representative, we also automatically pick out the corre-
sponding perpendicular Goldstone directions T α 
φ. Any basis change we perform
will mix fields in such a way that the Goldstone field afterwards still are perpendic-
ular to the vacuum representative.

This property, together with the global invariance of the full Lagrangian, implies
that we can specify a basis without losing any information. In particular, we can
choose the basis suggested by the singular value decomposition of F a

i .
At this point it is helpful to change notation to that introduced in [17]. In the

mass basis of the vector fields we use the bold indices a,b,c, . . .. In the subspace of
the massive vectors we use A, B, C , . . .; in the massless subspace we use a, b, c, . . .
Similarly for the scalar bosons; in this basis we use j,k, l, . . . for the scalars Rj. In
the “non-Goldstone” subspace we use the indices i, j, k, . . ., and in the Goldstone
subspace we use A, B, C , . . . and represent the fields as GA. That is, we have the fields

{Aa
μ}= {ZA

μ,Aa
μ}, {Rj}= {GA,Rj}. (3.13)

We should now rethink the matrix ξab. It is helpful if ξab is diagonal in the mass
basis, that is ξab = diag{ξA,ξa}. With this in mind, it is in general not necessary
to specify the whole matrix ξab, and just use the eigenvalues in the end. But note
that if one wishes to compare between different bases, the full form including the
matrix must be used.

In the end, the gauge-fixing Lagrangian becomes

Lg.f. = − 1
2ξA

�
∂ μZA

μ − ξ̃AMAGA

�2 − 1
2ξa

�
∂ μAa

μ

�2
. (3.14)

Specifying to ξ̃A = ξA leaves us with DG gauge-fixing parameters, one for each real
vector boson. These are the background-field Rξ gauges for a general model; they
are free from kinetic mixing between the Goldstone bosons and the longitudinal
gauge bosons.

In this simplified gauge-fixing, the scalars will get a contribution to their masses
as ξ(m2

A)i j , where (m2
A)i j is the matrix introduced in equation (2.30). To find out

what this means for the scalars, we can multiply equation (2.18) by F a
k (summing
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over a), giving
(m2

A)i j∂
2
jkV0

			

φ
= T a

i jφ j T
a
kl∂l V0. (3.15)

In particular, at the vacuum we have that

(m2
A)i j∂

2
jkV0

			

φ0

= 0. (3.16)

This equation tells us that the non-zero eigenvalues of ξ(mA)2i j (the gauge-fixing
induced scalar massmatrix) and those of the scalar massmatrix ∂ 2

i j V0 live in different
subspaces [15, 16, 17]. In other words, only the Goldstone bosons get ξ-dependent
masses.

In the simple cases, GA can also be a mass eigenstate on its own. But this only
occurs when the real scalars transform under an irreducible representation of the
gauge group. In the more complicated cases (such as in the Two Higgs Doublet
Model), the non-Goldstone scalars and Goldstone scalars actually mix outside the
vacua. At the vacua, equation (3.16) applies and the scalar subspaces separate
again.

I will return to discussing gauge-fixing in subsection 3.3.3.

3.2 More on anomalies
As I mentioned briefly in subsection 3.1.1, an anomaly arises when the path integral
does not respect the same symmetries as the classical Lagrangian. In the path
integral language this means that the integration measure is not invariant under
the symmetry transformation. In practice, anomalies of internal symmetries arise in
theories with chiral fermions: if a 2-component fermion ψ transforms under some
group, ψ→ψ′, then the measure transforms as Dψ→ Dψ′.

Non-chiral transformations then always cancel—leaving the measure invariant.
But if the symmetry is chiral, then there might be a trace left of the transformation.
For global symmetries this is not an issue.

For gauge symmetries, on the other hand, anomalies are disastrous. Gauge sym-
metries are not symmetries in the usual sense, they are more like redundancies.
As I have discussed before, the distinction is important. For such gauge anoma-
lies to exist would break our counting of degrees of freedom, and invalidate our
calculations.

At the perturbative level, anomalous gauge symmetries reveal themselves in loop
diagrams with external gauge bosons and chiral fermions running in the loops.
For Abelian symmetries it is enough to consider triangle diagrams—-diagrams with
one chiral fermion loop, and three external gauge bosons. Such diagrams carry
anomalous factors that depend on the charges of the fermions in the loops. As an
example, consider a theory with a U(1) symmetry, an accompanying Z ′, and some
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chiral fermions with U(1) charges zi . Summing all triangle diagrams with external
Z ′ bosons gives a result proportional to

A3 ≡∑
i

z3
i . (3.17)

If this factor is non-zero, then we say that there is a [U(1)]3 anomaly. On the other
hand, if the charges line up in such a way that A3 = 0, then the theory is anomaly
free.

In a gauge theory with chiral fermions, such as the Standard Model, there are
a number of different possible anomalies. For the theory to be consistent all of
them must exactly cancel. This does happen in the Standard Model, with no great
explanation as to why. It is a fact that invites speculation: perhaps there is a larger
symmetry group that is broken at some higher scale? The answer as to why the
Standard Model is anomaly free is not settled.

Because the Standard Model contains chiral fermions, we need to be careful
when considering extensions of the Standard Model. For the theory to make sense
we need all gauge anomalies to cancel, and care must be taken to ensure that this
is the case. In paper I we considered a simple extension of the Standard Model with
an extra U(1) gauge group, taking care to cancel anomalies. The simplest way to
cancel the anomalies is by introducing three right-handed fermions neutral under
the Standard Model gauge groups [4]—three right-handed neutrinos. As I discussed
in subsection 1.3.1, it is also possible to give the neutrinos Majorana masses. This
minimal model hence contains a convenient solution to the neutrino mass problem.

Cancellation Mechanisms
Having established the necessity of cancelling anomalies in theories with chiral
fermions, some questions may arise.

As an example, if we did not know of the top-quark’s existence, we would think
our current theory to be anomalous. This is not a completely implausible scenario,
because the top quark is heavier than all the other particles in the Standard Model.

But how can this be? From the effective field theory perspective we would expect
the theory to make sense when we integrate out the heaviest particles. This tells us
that some extra care has to be taken when we construct such effective theories.

To resolve this question we can again turn to the path integral. We think of
the anomaly as the measure transforming under the gauge transformation. The
problem is that the Lagrangian is invariant by construction, and hence there is an
uncancelled transformation left in the end.

This perspective also suggests an alternative scenario, where the Lagrangian does
transform under such transformations, in just the way to cancel the transformation
of the measure! The path integral is then invariant again. In reality the story is
a bit more complicated, but by following this line of argument one can carefully
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construct an effective theory that is not gauge-invariant at the Lagrangian level, but
still produces gauge-invariant observables.

This is known as the Green-Schwarz mechanism, and was first used to cancel
anomalies in string theory [22]. But the constructionworks equally well for quantum
field theory, though there the terms can be due to heavy fermions instead of string
theory effects. In paper II we explore the collider phenomenology of such a theory.
In particular, we consider the same theory as described above—the Standard Model
with an extra U(1) gauge symmetry—but without any neutrinos. We worked out
the details of this theory, based on the formalism developed in [23].

3.3 The effective potential
We have seen that the classical potential V0 plays a key role in understanding
spontaneous symmetry breaking and the Higgs mechanism. But how is this picture
changed by quantum effects?

To find the classical minimum and the corresponding spectrum, we had to first
consider general static field-values 
φ. We considered the classical potential as a
function of these real numbers and thenminimized it to find the physical solution. In
other words, we had to go “off-shell,” outside the solution to the classical equations
of motion, to actually find the solution in the first place.

For quantum effects there is a similar picture. It is possible to formulate an
effective potential, which has the quantum corrected static background field as its
minimum. See [24] for a detailed analysis and review of the effective potential.

We obtain the effective action Γ [φ] by performing a Legendre transform of the
functional W [J] = i log Z[J], trading the classical source J for a static field φ. It
can be shown that a minimum of the effective action corresponds to J = 0 [18].

To find the pattern of symmetry breaking in these quantum theories, we can
restrict ourselves to static fields (up to gauge transformations, as usual). Then we
find that the effective action is proportional to the effective potential V (φ),

Γ [φ] = −VT × V (φ), (3.18)

with VT the spacetime volume. We can then minimize the effective potential to
find the true quantum corrected minimum 
φmin, and the accompanying minimal
energy density Vmin ≡ V ( 
φmin).

At this stage we have to consider how to calculate V (φ). In general, exact results
are not available and we must turn to perturbation theory.5 From the sketch in

5Or lattice calculations.
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equation (3.3), we infer that the solution will be something like

V (φ) = V0(φ) + V1(φ) + V2(φ) + . . . , V1(φ)∼ −i
1
2

log
�
det D−1
		
φ

�
, (3.19)

where D represents a propagator, and det is a functional determinant. The higher
order corrections V2(φ), . . . are better represented as Feynman diagrams [24].

3.3.1 Symmetries and the effective potential
Global symmetries
If the Lagrangian and the path-integral measure are invariant under some internal
and global group G, then we expect the effective potential to also be invariant
under such transformations. Much of the analysis performed in the classical case in
chapter 2 now carries over to the effective potential. In particular, we can upgrade
equation (2.18) to a quantum corrected version,

∂ 2
i j V (T

a 
φ) j = T a
i j∂ jV. (3.20)

Evaluating this at the vacuum 
φmin, we find a quantum version of Goldstone’s
theorem,

∂ 2
i j V
			

φmin

(T α 
φmin) j = 0. (3.21)

In the completely general case, one should consider that the effective potential
might have different broken generators than the classical potential. That is, the
quantum effects might change the picture of symmetry breaking. In practice this
only happens for very particular theories where regular perturbation theory breaks
down—see subsection 3.3.4 for an example. In the standard cases, we can relax
and consider the same directions in field space as for the classical potential.

Local symmetries
For local symmetries the situation is more tricky. Remember that to perform the
path integral we needed to fix a gauge, spoiling the gauge invariance of the theory.

This gauge-fixing does not have to respect the global part of the gauge symmetry
in general. If it does not, then there are complications for general off-shell values of

φ. As an example, we are not free to upgrade equation (2.18) to the effective poten-
tial for general field values. Even though on-shell, in the minimum, the Goldstone
theorem will always apply.

But since we have to go off-shell to find the minimum in the first place, it is more
convenient to work with a gauge-fixing that is invariant under the global transfor-
mations. This is another reason why the gauge-fixing described in subsection 3.1.2
is highly recommended.
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3.3.2 The 1-loop potential
At one loop, the effective potential can be calculated either by a functional loga-
rithmic determinant [25], or by a particular perturbative expansion that involves
infinite “prototype” Feynman diagrams [26]. Both derivations offer their own in-
sights, but I will not detail either of them here.

Using MS and dimensional regularisation with d = 4− 2ε, μ as the MS renor-
malization scale, and the short-hand

∫
p ≡
�
μ2eγE

4π

�ε ∫ dd p
(2π)d , the contribution for a

degree of freedom with squared mass x to the effective potential is

f(x)≡ 1
2

∫
p

log
�
p2 + x
�
= −1

2

�
μ2eγE

4π

�ε
Γ (− d

2 )

(4π)d/2
xd/2

=
1

(16π)2

�
− x2

4ε
+

x2

4

�
log
�

x
μ2

�
− 3

2

�
+O (ε)
�

. (3.22)

The 1-loop basis function f(x) in this equation is not renormalized; the 1/ε terms
can be removed with local counterterms.

When the propagators of a theory is diagonal, then each mode with squared
mass X will contribute simply as f(X ). But, when the propagators of particles are not
diagonal—which they are not in the general case—the logarithmic determinant has
to be separated as a trace over logarithms of eigenvalues: logdet D−1 ∼ Tr log D−1.

This seems like it might make an analysis of possible ξ-dependence of a 1-loop
calculation difficult. But, as is shown in [16], it is still possible to make a straight-
forward analysis in background-field Rξ-gauges. Here I repeat their argument. The
general structure of the 1-loop potential, in a generic non-Abelian gauge theory
with this gauge-fixing, looks like

1
2

∫
p

�
Tr log
�
p2 +M2

i j + ξ(m
2
A)i j

�
+ (d − 1)Tr log

�
p2 + (m2

A)
ab
�

+ Tr log
�
p2 + ξ(m2

A)
ab
�− 2Tr log
�
p2 + ξ(m2

A)
ab
��

. (3.23)

Here, the first log corresponds to the scalars, the second to the transverse gauge
bosons, the third to longitudinal gauge bosons, and the fourth to ghosts. The three
ξ-dependent logarithms include unphysical degrees of freedom. For general off-
shell values of φ, the logarithms do not separate and there is a ξ dependence.
But, at the broken minimum φ0, the matrices M2

i j ≡ ∂ 2
i j V0 and (m2

A)i j are mutu-
ally diagonalizable—their non-zero eigenvalues live in different subspaces. The
logarithm hence separates at the minimum,

Tr log
�
p2 +M2

i j + ξ(m
2
A)i j

�			
φ0

= Tr log
�
p2 +M2

i j

�			
φ0

+ Tr log
�
p2 + ξ(m2

A)i j

�		
φ0

.

(3.24)
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A cancellation now occurs in equation (3.23), because the matrices (m2
A)i j and

(m2
A)

ab have the same non-zero eigenvalues. All ξ-dependence cancels, in a con-
ceited effort between the Goldstones, the longitudinal modes of the gauge bosons,
and the ghosts.

3.3.3 Gauge dependence and Nielsen identities
As noted above, the effective potential is gauge-dependent for general field values
φ. This can make it tricky to extract observables from it. It can help to understand
in what way the effective potential is gauge-dependent, which can be understood by
the help of Nielsen identities [27]. These non-perturbative identities can be thought
of asWard identities for the effective potential (they are derived in a similar manner),
and they take the form

∂ξV (φ,ξ) = −C(φ,ξ)∂φV (φ,ξ). (3.25)

Here C(φ,ξ) is a Nielsen coefficient that is calculable in perturbation theory. Se
the textbook by Das [28] for a pedagogical derivation of the identity, including a
calculation of C(φ,ξ) in a simple model.6

We expect that the energy density of any particular vacuum is an observable—
independent of ξ—because it can in principle be measured. The Nielsen identities
confirm this view, as can be seen by evaluating the equation in the minimum 
φmin:

∂ξV ( 
φmin,ξ) = 0. (3.26)

This is a neat story that seems to suggest that we can simply find Vmin by minimizing
V and then evaluating it at the minimum. But here we actually have to be a bit
careful, due to perturbation theory. This is emphasized in [16], which I base the
following analysis on—but see also the earlier papers by Fukuda and Kugo [21]
and Laine [29].

In practice, V is calculated in some perturbative expansion that we truncate at
some order, say one loop: V = V0 + ħhV1(φ) +O

�
ħh2
�
.7 If we would minimize this

function numerically, then we would find some minimum φ′(ξ) that depends on ξ.
And evaluating V ′min = V (φ′) = V0(φ′) + ħhV1(φ′) we would find a residual gauge
dependence. This seems to contradict the Nielsen identity. So what went wrong?

The issue is that we are not taking the powers of perturbation theory seriously.
We are treating V1(φ) and V0(φ) on the same footing, even though they clearly are
not—they are separated in size by the power counting. Indeed, by expanding the

6Das’ textbook really covers finite temperature field theory. But, as I mention in chapter 4, the formalism
is essentially the same.
7Here ħh just counts loops—it is in principle not related to the reduced Planck constant.
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Nielsen identity in perturbative powers, and equating order by order, we find that

O
�
ħh0
�

: ∂ξV0 = −C0∂φV0 =⇒ C0 = 0, (3.27)

O
�
ħh1
�

: ∂ξV1 = −C0∂φV1 − C1∂φV0 =⇒ ∂ξV1 = −C1∂φV0, (3.28)
...

which suggests that the 1-loop potential is actually gauge invariant when evaluated
in the tree-level extrema—and not in the minimum found from minimizing V0+ħhV1.

Looking back at equation 3.24 and the reasoning around it, this fact should not
surprise us. The contributions from the unphysical degrees of freedoms—Goldstones,
longitudinal modes, and ghosts—only cancel in two specific field points. At the
origin we have that m2

A = 0, which removes the ξ-dependence. At the tree-level
minimum φ0 the Goldstone masses are zero and the logarithms separate such that
the ξ-dependent contributions cancel.

I think of this fact in the following way. A gauge field Aμ has four degrees of
freedom, the real scalar G has one, and the ghosts η,η have two. We can now
consider going on-shell in two different ways. At the origin in field space (which
is a maximum, and hence unstable fluctuations occur) there is one massless vector
with two degrees of freedom, one “massive” scalar (the square mass is negative—
hence the quotes), and two massless ghosts. The accounting of degrees of freedom
reads

φ = 0 : 4+ 1− 2= 2+ 1+ 0. (3.29)

At the broken minimum, the massive scalar has three degrees of freedom, and the
G scalar must join the ghosts as unphysical,

φ = φ0 : 4+ 1− 2= 3+ 0+ 0. (3.30)

But anywhere outside these extrema we cannot really assign a physicality to the
different modes, and anything goes. There are 4+ 1+ 2 = 7 degrees of freedom,
and they all contribute to the effective potential. When we actually do approach a
vacuum of the tree-level potential, then the accounting has to resolve into the usual
one.

This distinction is relevant because we have to go off-shell to find a quantum
corrected vacuum expectation value 
φmin, and we must then take care with our
accounting. In other words, we must always expand around the tree-level vacua,
where the accounting makes sense. That is, we expand


φmin = φ0 +ħhφ1 +ħhφ2 + . . . , (3.31)
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and solve the minimum condition order-by-order in perturbation theory,

0
!
= ∂ V ( 
φmin) = ∂ V0|φ0

+ħh (∂ V1 +φ1∂
2V0)
		
φ0
+O
�
ħh2
�

, (3.32)

O
�
ħh0
�

: =⇒ ∂ V0|φ0

!
= 0, (3.33)

O (ħh) : =⇒ φ1
!
= − ∂ V1

∂ 2V0

				
φ0

, (3.34)

... (3.35)

And this expansion should then be used when evaluating Vmin,

Vmin = V ( 
φmin) = V0(φ0) +ħhV1(φ0) +O
�
ħh2
�

. (3.36)

This expression is now gauge invariant, order-by-order in ħh.
There is another, slightly more technical, interpretation as to why this careful

expansion is necessary. The gauge-dependence of the effective potential can in the
diagrammatic expansion be traced back to the lack of 1-particle-reducible diagrams.
As an example, in scalar electrodynamics such diagrams are necessary to cancel the
gauge dependence of the four-point function: the gauge dependence of the loop
corrections of the external legs cancel that of the loop corrected vertex.

The construction of the effective potential removes all such 1-particle-reducible
diagrams [25]. A particular class of such diagrams have tadpoles inserted, which
are subdiagrams with one external leg. Fukuda and Kugo [21] showed that the
ħh-expansion detailed above corresponds to putting a subset of all tadpoles back
into the diagrams (even in gauges such as the Rξ-gauge). Then φ1 corresponds
to the 1-loop tadpoles, φ2 to 2-loop, and so on. With the tadpoles reinserted, the
end-result is again gauge invariant.8

With all of these considerations in mind, let’s take an additional look at the
Nielsen identity in equation (3.25). We can think of this as a first-order partial
differential equation analogous to that which describes advection, and we can find
characteristics in the ξ–φ plane which keep the effective potential constant. Any
such characteristic φ(ξ) must satisfy

∂ξφ(ξ) = C(φ,ξ). (3.37)

In particular, the minimum 
φmin must be such a characteristic. This tells us that the
vacuum expectation value of the field is a gauge dependent quantity—and hence

8The diagrams on the cover of this thesis are those of the effective potential evaluated to two loops—with
the tadpoles reinserted.
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not an observable. In terms of our perturbative expansion, we would find that

O
�
ħh0
�

: ∂ξφ0 = 0, (3.38)

O
�
ħh1
�

: ∂ξφ1 = C1(φ0,ξ), (3.39)
... (3.40)

This tells us that the quantum correction φ1 is ξ-dependent. This dependence
exactly cancels the dependence of other terms, at higher orders in the expansion
of Vmin. The vacuum energy density is finite and gauge invariant, in the end.

There is an unfortunate confusion in the literature, that seems to have persisted
since the original and early papers on the effective potential. Many authors claim
that the background-field Rξ gauges are not suitable for studies of the effective
potential, because it introduces a fictitious dependence on the background field
φ—see for example [30, 31, 32, 33, 34, 35, 24]. But I think this statement is too
cautious. Fukuda and Kugo [21] showed that any spurious φ-dependence that is in-
troduced in this gauge-fixing does not matter in the end—as long as one consistently
reinserts the tadpoles in the calculation of the energy density. In other words, phys-
ical observables are gauge invariant in the ħh-expansion as detailed above. Though,
as explained in [17], there is a price to be paid: the background-field Rξ gauges are
not renormalizable at general field values φ. But this is also a non-issue once the
physical limit is taken with the ħh-expansion. Background-field Rξ gauge works well
as long as one calculates physical observables.

As a final comment, the perturbatively calculated Nielsen coefficient, C0( 
φmin,ξ),
C1( 
φmin,ξ), . . ., and the perturbative vacuum expectation value φ0,φ1, . . ., can be-
come infinite due to infrared divergences. But again we must remember that these
are not physical observables. Even though these divergences are inconvenient, they
cannot contribute to the result in the end. In paper III, a colleague and I have argued
that the ħh-expansion detailed above is well-behaved in this sense, and does not in
general need to be fixed with extra techniques.

But there are exceptions to this, as I will discuss in the next subsection.

3.3.4 Symmetry breaking by quantum effects
In the previous subsection I argued that quantum corrections to spontaneous symme-
try breaking must be organized as a perturbative expansion around some tree-level
effect. This implies that the quantum corrections cannot change the overall picture.

But this point of view is actually too strict. It is possible to have quantum cor-
rections affect spontaneous symmetry breaking—but it is still necessary to apply
proper care.
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The first application of the effective potential, and the first derivation of its 1-loop
contributions, was due to S. Coleman and E. Weinberg [26]—the 1-loop potential is
hence often called the Coleman-Weinberg potential. What they studied was the idea
of quantum-generated spontaneous symmetry breaking, also known as radiative
symmetry breaking.

Consider the Abelian Higgs theory. If the classical potential would have m2 = 0,
then there would only be a minimum at the origin. The field-dependent squared
masses are

m2
Z = e2φ2, (3.41)

m2
H = 3m2

G = 3λφ2, (3.42)

and these masses are zero when evaluated at the tree-level minimum φ = 0. The
effective potential to one loop accuracy is

V (φ) =
λ

4
φ4 +ħh3

4
(m2

Z)
2

�
log

�
m2

Z

μ2

�
− 5

6

�
. (3.43)

Here it seems as if the 1-loop terms could induce a non-zero value for φ. But—with
our strict loop counting discussed above—we are not allowed to have the 1-loop
terms mix with the tree-level terms, rendering this “quantum-breaking” impossible.
Or does it?

It all comes down to which power counting we should use. In the standard loop
expansion of perturbative quantum field theory, one would count λ∼ e2. This would
make all 1-loop diagrams equally important, all 2-loop diagrams equally important,
and so on. From equation (3.43) we see that if we would instead count λ∼ e4, then
the 1-loop effects would be just as important as the tree-level effects.

This modified power counting (which was recognized as important already by
Coleman and Weinberg [26]) will change the perturbative expansion. What then
happens with gauge invariance, that seemed to need a fixed loop counting? This
question has been resolved by Andreassen, Frost, and Schwartz [24].

In this modified power counting, it turns out that a resummation is necessary.
In Fermi gauges, there is an infinite amount of diagrams that contribute at next-
to-leading order. These can be resummed by shifting the masses of the scalars
according to the mass one would derive from the leading effective potential,

H → H = ∂ 2(V0 + V1) = H +
3
2

e2m2
Z

�
log

�
m2

Z

μ2

�
− 1

3

�
, (3.44)

and similarly for G. With these new masses, the accounting of degrees of freedom
works out just as in the regular loop expansion. An evaluation of Vmin order-by-order
in powers of e results in a finite and gauge-invariant quantity.
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We can hence modify the previous verdict I made regarding the calculation of
observables. The point is not that the expansion has to be a proper loop expansion
centered on a classic effect. But, whatever power-counting is used, it has to be re-
spected and centered around some leading effect. In the example above we can count
powers of e instead of loops, with λ ∼ e4, and expand around the leading-order
vacuum expectation value found from equation (3.43). This is a proper accounting.

This kind of reasoning is useful in the next chapter, which looks at how thermal
fluctuations can modify the effective potential.

Recommended readings
Mark Srednicki, Quantum Field Theory [15]. This is my favourite quantum field
theory textbook. The exposition is technical but clear, and the chapters are very
self-contained—it’s great for looking things up.

Andreassen, Frost, and Schwartz, Consistent use of Effective Potentials [24]. This
paper is a great review of the different issues that arise in effective potential calcu-
lations, with references to the relevant original papers. The authors take the issues
of gauge invariance and infrared divergences seriously.

Martin and Patel, Two-loop effective potential for generalized gauge fixing [17]. This
paper details the calculation of the 2-loop effective potential in a generic gauge the-
ory, using a generalized gauge-fixing. Even though there are around 500 equations,
it is straight-forward to follow the logic—the structure of the paper is remarkable.
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4. Phase transitions

“Time is a flat circle.”
—Rust Cohle

True Detective

As the early universe expanded and cooled down, there was a phase transition
that broke the electroweak symmetry. The symmetric vacuum at the origin is lower
in energy at high temperatures, but at some point the broken vacuum becomes
energetically favorable, and the transition occurs.

The nature of this transition, if it is continuous or a sudden jump, is an important
question. A first-order transition occurs via bubble nucleation, and can leave imprints
for us to detect, such as a gravitational wave signal [36].

But how do we know how this transition occurs? From previous chapters we
expect that there should be a potential for us to minimize. Indeed, in finite tem-
perature field theory, the usual formalism of quantum field theory can be extended
to include temperature effects [37]. There are new contributions to the effective
potential that depend on the temperature, and this can in principle change the
picture of spontaneous symmetry breaking dictated by the classical potential [38].

The finite temperature formalism is in certain ways easier to interpret than the
quantum one. We can formulate thermodynamical observables in terms of the parti-
tion function, which encodes the thermal and quantum fluctuations. This partition
function can in turn be formulated like a path integral, and observables can be
derived from it.

In particular, the Helmholtz free energy of a theory at a particular temperature
T is given, in units with kB = 1, by

F = −T log Z , (4.1)

and represents the “useful” energy available in the system. The free energy as a
function of the background field is proportional to the thermal effective potential.

Taking the limit T → 0 recovers the quantum field theory effective potential. In
a sense, the finite temperature formalism offers us a second interpretation of the
zero temperature effective potential. It is just the free energy density of the system
at zero temperature, where all fluctuations are quantum in nature.
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4.1 Finite temperature effective potential
Finite temperature field theory can be formalized in several different ways. For
our purposes, the imaginary time formulation will be most useful [39]—in this
formalism time is imaginary and periodic. Operationally, we can think of it as a
quantum field theory on �1 ×�3, where �1 is a circle with period β ≡ 1/T , and �3

is 3D Euclidean space,

Z[ j]∝
∫

Dφe
∫ β

0 dτ
∫

d3 xL. (4.2)

For this path-integral to correspond to the partition function in our thermal theory,
we need the bosonic fields to be periodic in τ, while the fermionic fields must be
anti-periodic.

The Fourier composition of these fields then feature one sum (for the compact
dimension) and three integrals. A bosonic propagator with square mass x , in mo-
mentum space, is then of the form

∑∫
P

1
P2 + x

, with

P ≡ (2πnT )2 + p2,
∑∫

P

= T
∞∑

n=−∞

∫
p

,

∫
p

≡
�

Q2eγE

4π

�ε∫
dd−1p
(2π)d−1

,

and d = 4−2ε, with μ as the MS scale. A fermionic propagator is similar, but then
P2 = (π(2n+ 1)T )2 + p2, and we use the notation ∑∫ {P} to mark the difference.

Other than the differences noted above, the overall structure of the theory is
the same as for a zero temperature quantum field theory—the calculations of the
effective potential proceed exactly the same. In general it is possible to separate the
contributions as

V (φ; T ) = V T=0(φ) + V T �=0(φ; T ). (4.3)

But in the approximation scheme that is relevant for phase transitions, this separa-
tion is not useful. Instead one performs a high-temperature expansion, where the
involved square mass x is assumed to be much smaller than T 2, x � T 2.

The master-integral that corresponds to the 1-loop contribution of a boson to the
effective potential reads

f(x)≡ 1
2

∑∫
P

log
�
P2 + x
�

(4.4)

= − x2

4(16π2)
1
ε
− π2

90
T 4 +

T 2 x
24
− T x3/2

12π
+O (x ,ε) , (4.5)
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in the high-temperature expansion. The corresponding fermionic master-integral
reads

fF (x)≡ 1
2

∑∫
{P}

log
�
P2 + x
�

(4.6)

= − x2

4(16π2)
1
ε
+

7π2

720
T 4 − T 2 x

48
+O (x ,ε) , (4.7)

in the high-temperature expansion. A qualitative difference between f(x) and fF (x)
is the absence of a term linear in T in fF (x).

At two loops there are additional master-integrals that are relevant. See appendix
A in paper IV for a more exhaustive list. Paper V is a calculation of further terms in
the high-temperature expansion of the 2-loop sunset sum-integral.

4.2 Phase transitions
We have seen that, perturbatively, the effective potential is the name of the game
when it comes to symmetry breaking. This still applies at finite temperature, with the
interesting complications that arise from temperature dependent coefficients [38].

As the temperature changes, so does the shape of the potential. To understand
the behavior for very large temperatures, we can look at the leading φ-dependent
term of the 1-loop potential. Imagine that a symmetry is broken at low temperatures,
as specified by the classical potential. Adding the leading temperature corrections
then gives

V (φ) = V0 +ħh
T 2

24
αφ2 +O
�
T,α2
�

, (4.8)

where the collection of couplings α is determined by how the fields of the model
couple to the Higgs field. In the limit T →∞, this potential is a second degree
polynomial with its minimum at the origin. There is hence no symmetry breaking
for large temperatures. But as the temperature decreases, the other terms of the
potential become important again, and the shape of the potential goes through a
change.

Depending on the particulars, this change can occur in two different ways, as
illustrated in figure 4.1. There can be a continuous transition where the minimum
at the origin bifurcates into a maximum at the origin and a broken vacuum. The
minimizing background field φ(T )—the order parameter of the transition—then
continuously moves away from the origin as T decreases, and finally stopping at
the zero temperature broken minimum.

But if a barrier develops, then the global minimum will jump from the origin to
some non-zero value. This minimum then settles at the zero temperature broken
minimum.
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Figure 4.1. An illustration of two different kinds of phase transitions. The top row illustrates
a first order phase transition, the bottom row a second order one. The left column shows
the effective potential as a function of a background field ϕ, evaluated at three different
temperatures. The right column shows the order parameter—the minimum of the potential—
as a function of temperature. This figure is from the review by Senaha [40].

Personally, I really like this picture of the phase transition. It is such a natural
extension of the classical results, with vivid imagery accompanying it. But, if I have
done my job correctly earlier in the thesis, you should also be noticing some red flags
right about now. How can a loop level effect—which is supposedly suppressed by
powers of the couplings—actually be large enough to warp the classical potential?
I dig into this question in the next section.

4.3 Perturbative problems
That finite temperature calculations suffer from perturbative problems is a well-
established fact [37, 39]. Here I want to highlight just how connected this is to
the phase transition. This analysis is based on the early work of Arnold and Es-
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pinosa [41], and our work in paper IV. It is an attempt to extend the gauge-invariant
methods of [16], using the logic laid out at the end of subsection 3.3.4.

Starting with the 1-loop diagram of the effective potential, we can consider a
class of higher-loop diagrams that arise from inserting loops on the propagator.
The most important contributions occur when the inner loop has soft momentum
k2� T 2, and the outer loops have hard momenta k2 ∼ T 2. An n-loop diagram dn

with (n− 1) insertions will then scale with the temperature as

dn ∼ T
�
e2T 2
�n−1

=⇒ dn

dn−1
∼ e2T 2, (4.9)

which means that sufficiently large temperatures will break the perturbative expan-
sion. When T ∼ 1/e, the (n− 1)-loop diagrams become as important as the n-loop
diagrams.

This breakdown of perturbation theory signals that we are not treating our
physics correctly. In this particular case, we can fix the problem by resumming
all the problematic diagrams into one single contribution. In this contribution, the
mass of the inner loop particle then gets shifted by ∼ e2T 2. The particle is screened
by the thermal bath, and gets an effective mass [37].

Second order transitions
Returning to phase transitions, let’s consider the leading contribution again. We
can focus on the simple example of Abelian Higgs. Then the leading terms in the
effective potential are schematically

V (φ)∼ 1
2
(m2 + (e2 +λ)T 2)φ2 +

1
4
λφ4, (4.10)

where the T 2 term arises from the 1-loop effective potential.
If these terms are a good approximation for the potential, then there is a second

order phase transition with a critical temperature Tc ∼ 1/e. This is precisely the
scale where perturbation theory breaks down, as seen in equation (4.9). Maybe it is
not actually surprising. For the temperature fluctuations to affect the phase structure
of the theory, we need 1-loop effects to be as large as tree-level effects. This means
that we cannot use loops to order perturbation theory, just as for the Coleman-
Weinberg mechanism explained in subsection 3.3.4. To reorder perturbation theory
then requires a resummation, with the end result that Vmin(T ) is finite and gauge
invariant near the phase transition. This enables us to study the phase transition in
a consistent way.

First order transitions
There has to be a barrier in the potential for a first-order transition to occur. Op-
erationally, with a positive quartic coupling we need a cubic term in the potential.
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To find it we can look to the next term in the high-temperature expansion of the
1-loop potential—the term linear in T that arises from bosonic fluctuations. The
potential is then schematically

V (φ)∼ 1
2
(m2 + (e2 +λ)T 2)φ2 − Te3φ3 +

1
4
λφ4. (4.11)

We should now perform a similar analysis as above. The analysis is a little more
complicated, but Arnold and Espinosa showed [41] that we can balance these terms
if we count the quartic coupling as λ∼ e3.

In paper IV we put the two power-countings detailed above to the test by per-
forming resummed 2-loop calculations in Abelian Higgs and the Standard Model,
in Fermi gauges. We demonstrated that, if proper care is taken with the resumma-
tion and the power-counting—and the perturbative methods described in subsec-
tion 3.3.3 are used—then the result is finite and gauge-invariant.

Resummations and more complicated models
To find the thermal masses of the longitudinal vector bosons, one has to calculate
their zero-momentum thermal self-energies ΠA(T 2; p = 0) to O

�
e2T 2
�
. The corre-

sponding scalars’ self-energies can be found directly from the effective potential.
In simple models like Abelian Higgs or the Standard Model, the resummed Higgs
square mass H, and the resummed Goldstone square mass G, can be calculated as

H = ∂ 2VLO(φ), G =
∂ VLO(φ)
φ

, (4.12)

where VLO is the leading-order potential. In the first-order phase transition power
counting, VLO includes terms like T 2φ2 and Tφ3.

For more complicated theories, with more complicated field structure, the situa-
tion is more complicated. I would refer to the formula used to prove the Goldstone
theorem of the effective potential,

∂ 2
i j V (T

α 
φ) j = T αi j ∂ jV. (4.13)

If we use a gauge-fixing that preserves the global invariance of the Lagrangian
(and hence the effective potential), then we can use this formula to connect the
derivatives of the effective potential (with respect to whatever background-fields
we activate), to the mass-matrix of the Goldstone fields.

Final remarks
In the Standard Model, we already know from lattice studies that the Higgs is too
heavy to allow a first-order phase transition [9, 10]. With the power counting rules
detailed above, this is reflected in the fact that the Higgs quartic coupling λ is too
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large to be able to count it as λ ∼ g3, g ′3, where g, g ′ are the gauge-couplings of
the electroweak sector.

We can then make generic predictions based on this formalism. Any extension of
the Standard Model that does not change its phase structure will need to fulfill at
least one of the two following properties. Either, (1), there has to be new bosonic
fields that couple to the Higgs with couplings parametrically larger than λ (generi-
cally, there needs to be new bosons with a mass just above the electroweak scale).
Or, (2), there needs to be a mechanism that reduces the size of λ. The predictions
of property (1) are consistent with the predictions of [42].

In models where the phase structure is different, for example in models with
two-step phase transitions, the analysis is not as simple. But I expect that similar
judgments based on how the different couplings compare in size are still relevant.

Recommended readings
Kapusta and Gale, Finite-temperature field theory: principles and applications [37]. I
learned finite temperature field theory from this textbook. It is a book that rewards
deep study.

Patel and Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Per-
turbation Theory [16]. This paper is an amazing review of the issues of gauge
dependence in phase transition studies. It was a big influence on me.
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5. Populärvetenskaplig sammanfattning
(på svenska)

5.1 Introduktion
Standardmodellen, som är den bästa partikelfysik-teori vi har, kan förklara nästan
alla fenomen vi ämnar beskriva inom partikelfysik. Men inte alla. Vi vet därmed
att vi behöver förbättra våra teorier på olika sätt. Det övergripande målet med min
forskning är att testa, eller att hjälpa andra att testa, partikelfysik-teorier mot data.
Detta har tagit formen av två olika projekt som jag arbetat på.

Partikelfysik är relevant vid interaktioner som sker vid höga energier. Det bety-
der korta avstånd, där kvantmekanik beskriver verkligheten, och höga hastigheter,
där speciell relativitetsteori är nödvändig. Dessa två fysikaliska principer kan kom-
bineras med hjälp av kvantfältteori, ett teoretiskt ramverk som utvecklades under
1900-talet. I dessa teorier är de fundamentala objekten kvantfält som breder ut
sig över rummet. När ett sådant fält exciteras ser vi det som en partikel. Två olika
fält kan påverka varandra, och en resonans i ett fält kan därmed trigga resonanser
i ett annat. På detta sätt kan partiklar interagera med varandra och skapas eller
förstöras.

Kvantfältteori är på vissa sätt underbart, men på vissa andra sätt väldigt knepigt.
Det är en lång väg från att skriva ner en teori till att beräkna någonting mätbart, en
lång väg genom konceptuellt snårig skog: ofysikaliska frihetsgrader introduceras,
oändligt många oändligheter tar ut varandra, med mera. Det kan vara svårt att
hålla reda på vad som är matematiska knep och vad man skulle kalla för ”riktig
fysik.”

Därför tycker jag att det är extra viktigt att vi tar vara på de få möjligheter vi
har för att ha kontroll över våra teorier så att vi kan vara säkra på vad som kan
förutsägas från dem. Detta är ett övergripande tema för de två projekt jag arbetat
med.

5.2 Standardmodellen och dess problem
Standardmodellen etablerades under slutet på 1900-talet. Men det var först 2012
som den sista pusselbiten, Higgsbosonen, verifierades experimentellt. Det återstår
dock många öppna frågor. I den här sektionen diskuterar jag två av dessa problem
som relaterar till min forskning.
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5.2.1 Neutriner och deras massor
Neutriner är ett flyktigt slag av partiklar som ingår i Standardmodellen—de är
otroligt lätta jämfört med de andra partiklarna, samt så växelverkar de väldigt
svagt med allt. Trots att det alltid finns många neutriner runt omkring oss så vet vi
inte särskilt mycket om dem. När Standardmodellen formulerades så trodde man att
neutriner var helt masslösa, men nu vet man att så inte är fallet på grund av att man
observerat neutrino-oscillationer. Detta kvantmekaniska fenomen som beblandar
de olika arterna av neutriner kan bara ske om åtminstone en av dem är massiv.

Ett av de utstående problemen med Standardmodellen är därmed att den endast
beskriver masslösa neutriner. Samtidigt är det inte så enkelt som att bara lägga
till massor till modellen. Detta kan göras på olika sätt. Genom att testa neutriners
egenskaper med hjälp av partikelfysikexperiment kan vi försöka avgöra vilket som
är rätt.

Från den teoretiska sidan är en speciell klass av sådana förklaringar särskilt
attraktiva. Om det finns tunga partners till de neutriner vi redan känner till så kan
dessa tunga partiklar genom en balansmekanism förklara varför de neutrinerna vi
observerat är så lätta. Detta kallas för en ”seesaw-mechanism” på engelska, eftersom
det påminner om en tippande gungbräda.

I artikel I har jag och mina kollegor utforskat en enkel utvidgning av Standard-
modellen där en ny kraft realiseras. Denna kraft motsvarar en lokal U(1)-symmetri
(symmetrin av en cirkel). Sådana lokala symmetrier är väldigt speciella, för de an-
tyder att det finns en redundans i vår beskrivning. Det betyder att några av våra
frihetsgrader är ofysikaliska, och att vi måste vara extra försiktiga för att inte råka
få med deras bidrag när vi beräknar någonting mätbart.

Mer specifikt så behöver man i sådanamodeller se till att kvantfysikaliska effekter
inte bryter denna symmetri. Sådana effekter kallas för anomalier. Lokala symmetrier
måste vara anomalifria för att kunna beskriva verkligheten. Det visar sig att modeller
med en extra U(1)-symmetri är lättast att göra anomalifria genom att lägga till tre
nya partiklar som beter sig precis som neutriner. Dessa teorier kan därmed på ett
elegant sätt realisera en gungbräde-mekanism. I vår artikel använder vi data från
experimentet LHC för att begränsa de parametrar som finns i dessa teorier.

Artikel II frångår problemet med neutrinomassorna och fokuserar istället på
anomalifria teorier. För att kancellera anomalierna kan man föreställa sig att det
finns nya partiklar som är så tunga att de inte är relevanta för resten av modellen.
Detta kallas för Green-Schwarz mekanismen, och härstammar från strängteori (ett
teoretiskt ramverk som ämnar beskriva kvangravitation). I vår artikel översatte vi
i detalj hur detta skulle fungera för U(1)-symmetrin vi studerar, och sedan gjorde
vi förutsägelser för hur detta skulle manifesteras vid LHC. Dessa teorier är mindre
begränsade än de vanliga anomalifria teorierna.
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5.2.2 Materia och antimateria
En intressant förutsägelse av kvantfältteori är existensen av antimateria. För vissa
partiklar finns det en motsvarande antipartikel, som har några av sina egenskaper
spegelvända jämfört med sin partikelpartner. Ett exempel är elektronen, som vi
känner till som den lätta och negativt laddade partikeln i våra atomer. Elektronen
har en antipartikel, positronen, som har positiv elektrisk laddningmen sammamassa
som elektronen. Materia och antimateria kan annihilera varandra: en positron kan
annihilera en elektron och skapa två fotoner.

Eftersom materia och antimateria behandlas i stort sett likadant i Standardmo-
dellen, så kan man fundera på varför det bara finns materia runt omkring oss.
Antimateria bör vara ungefär lika vanligt som materia, vilket skulle innebära att
nästan all materia annihilerats för länge sedan. Att materia dominerar universum
just nu tyder på att någonting skedde tidigt i universums utveckling som skapade
lite mer materia än man naivt förväntar sig.

Elektrosvag baryogenes är en möjlig förklaring som är populär bland fysiker, där
materia-antimateria-asymmetrin utvecklades av tidiga termiska fluktuationer. Dessa
blev sedan kvar efter den elektrosvaga fasövergången. Tidiga universum expanderade
och svalnade av, och fasövergången skedde när den elektrosvaga symmetrin bröts.

Fasövergångar kan ske på flera olika sätt, men för att förenkla så kan vi dela upp
dem i två olika sorter. Vatten som omvandlas till ånga när det kokar är ett exempel på
en första ordningens fasövergång. Detta är en turbulent process där bubblor av ånga
bildas och expanderar. En andra ordningens fasövergång sker mer kontinuerligt, och
systemets egenskaper förändras under lugnare former. Ett exempel är hur ett block
av ferromagnetiskt material kan magnetiseras när det placeras i ett magnetfält.

Det är ännu okänt hur den elektrosvaga fasövergången gick till, men enligt
Standardmodellen var det en andra ordningens fasövergång. Vi är intresserade av
fasövergångens natur eftersom den kan lämna avtryck på det vi kan observera idag.
För att elektrosvag baryogenes ska kunna förklara materia-antimateria asymmetrin
så måste det ha skett en första ordningens fasövergång.

För att studera fasövergången i en kvantfältteori så använder man sig vanligtvis
av den effektiva potentialen, som beskriver den potentiella energin för olika möjliga
grundtillstånd, vilka även kallas vakuum. Genom att minimera potentialen kan man
hitta vakuumet när termiska och kvantmekaniska fluktuationer är med i bilden. Om
man studerar hur vakuumet förändras när temperaturen ändras kan man avgöra
hur fasövergången går till.

Men den här beräkningen har två motstridiga problem. För att kunna jämfö-
ra olika möjliga kandidater till vakuum så behöver man introducera ofysikaliska
fluktuationer. Man måste vara väldigt noggrann för att inte råka få med dem i slut-
resultatet när man använder en approximationsmetod som kallas för störningsteori.
Samtidigt så gör termiska fluktuationer nära fasövergången att den approximatio-
nen bryter ner. För att fixa det problemet så behöver man röra om i störningsteorin.
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Det förstör den känsliga balansen som krävs för att inte få med de ofysikaliska
bidragen till resultatet.

I artikel IV har jag och en kollega demonstrerat en metod som kan lösa båda
dessa problem samtidigt. För att få beräkningen att gå ihop krävs det att man
funderar extra noggrant på den approximationen man gör. Beroende på vilken sorts
fasövergång som sker så måste man använda olika approximationer. I artikel III
argumenterade vi att störningsteorin vanligtvis inte behöver repareras när man
inte har med termiska fluktuationer. Artikel V är vår beräkning av en särskild slags
termiska korrektioner som är relevanta om man vill studera fasövergången med
väldigt noggrann störningsteori.
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