Design and first test results of the CMS HGCAL on-detector ECON-T ASIC with a reconfigurable encoder algorithm for data compression

Cristina Mantilla Suarez¹ and Jim Hoff¹ on behalf of the CMS Collaboration

Huge data challenge: HGCAL is a 6M channel “imaging calorimeter” with good precision over wide dynamic range for amplitude and time of arrival.

- 4 selectable trigger data compression algorithms: variable and fixed-latency options.
- Includes formatter and smart buffer.
- PLL and 1.28GHz phase-aligners from lpGBT.

ECON-T: sums, selects and compresses trigger charge data @ 40 MHz

Eye diagram measured on one of the 13 outputs 1.28Gbps 4Tx channels.

Phase value selected at the center of the eye diagram to minimize the error rate.

Phase value selected at the center of the

- **Bench Tests and Radiation Tolerance SEE Tests**

 - SEE Tests with 200 MeV protons with fluence: 5.4E+12 p/cm² H-L-LHC fluence: 1E+14 p/cm²

 - ECON-T has triplication for SEE protection.

 - Chose not to replicate clocks for simplicity and power, I²C configuration protected with dedicated Hamming correction.

 - Observed serializer SEU in radiation tests. Serializer design improved for v2.

 - 1.28 Gbps outputs agree perfectly with simulation/emulation run on FPGA.

 - Verified functionality of power-up-state-machine, PLL, eRx, eTx, formatter, serializer and buffer.

Results

- Chip functionality has been verified.
- Few verilog bugs found, fixed for v2.
- SEE tests: no observed I²C errors or errors requiring chip reset.

Overview

- **AI on Chip: Reconfigurable Encoder**

 - Input (48x7bit)
 - Encoded 16 x 3bit outputs, 48 bits
 - Decode off-detector to 336 bits

 - Quantization Aware Training of Encoder algorithm based on LHC simulation.

 - Optimization of CNN architecture for physics performance and area and power requirements.

 - Reconfigurable weights and biases via I²C.

 - Full triplication of clocks, logic, and resets for I²C configuration.

Latency

<table>
<thead>
<tr>
<th>Buffer Latency</th>
<th>Target</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12 BX</td>
<td>0-12 BX</td>
<td></td>
</tr>
<tr>
<td>Other Latency</td>
<td></td>
<td>7 BX</td>
</tr>
<tr>
<td>Power consumption</td>
<td>500 mW</td>
<td>Most of detector: 385 mW Max 420 mW</td>
</tr>
<tr>
<td>TID</td>
<td>200 Mrad</td>
<td>In progress</td>
</tr>
</tbody>
</table>

SEE tolerance

- Cross section results:
 - IPC configuration: 0
 - Error requiring reset: <1err/30s on whole detector
 - eRx single bit error: 1.7E-11 cm²

ECON-T Testing Results