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Abstract In this work, we construct a traversable worm-
hole by providing a suitable embedding function ensuring
the fulfilling of the flaring-out condition. The solution con-
tains free parameters that are reduced through the study of
the acceptable conditions of a traversable wormhole. We
compute both the quantifier of exotic matter and the quasi-
normal modes through the 13th order WKB as a function of
the remaining free parameters. We obtain that the wormhole
geometry can be sustained by a finite amount of exotic matter
and seems to be stable under scalar perturbations.

1 Introduction

Since the seminal work by Morris and Thorne [1], the study
of traversable wormholes has remain as an attractive research
line for many years given the intriguing features it encodes
[2–18]. However, the detection of gravitational waves by
LIGO/Virgo from the merger of binary black holes [19–
21] has driven the attention on the possibility of considering
wormholes as black holes mimickers [22–24]. To be more
precise, as the ringdown phase of black hole mergers is dom-
inated by the quasinormal modes of the final object, it has
been claimed that wormholes can mimic black holes based
on the similitude of their quasinormal modes spectrum.

From a technical point of view, any traversable wormhole
could be constructed by providing its geometry in terms of
free parameters which should be constrained based on the
acceptability conditions it must satisfy: (i) the existence of a
throat connecting two asymptotically flat regions, (ii) small
tidal forces bearable by a human being (iii) finite proper time
to traverse the throat, among others. However, the fulfilling of
all the requirements is not always possible. For example, the
solution should not be asymptotically flat or should require
an infinite amount of exotic matter supporting it. It should
be emphasized that the above mentioned requirements are
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not universal but sufficient for a wormhole to be a phys-
ically viable and suitable for interstellar travel by human
beings. For example, we can construct asymptotically AdS
wormholes which are suitable for interstellar travels [25].
Nevertheless, in this work, it is our main goal to construct
an asymptotically flat traversable wormhole supported by a
finite amount of exotic matter by assuming a general embed-
ding function. Besides, we explore its stability thorough its
response to scalar perturbation.

The response of a wormhole to perturbations is dominated
by damped oscillations called quasi-normal modes. The com-
putation of the QNM modes can be performed through a
variety of methods (for an incomplete list see [26–42] and
references therein, for example). However, in this work, we
shall use the recently developed WKB approximation to the
13th order which has brought the attention of the community
[43]. It should be emphasized that, for the application of the
method in the context of traversable wormholes, a bell-shape
potential must be ensured. In this work, we study the QNM
for the model after providing the suitable sets of parameters
that ensure a bell-shaped potential.

This work is organized as follows. In Sect. 2 we review
the mains aspects related to traversable wormholes. Next, in
Sect. 3 we propose the embedding function, obtain the shape
of the wormhole and analyse the quantifier of the exotic mat-
ter. In Sect. 4 we implement the 13th order WKB approxima-
tion to compute and interpret the quasinormal modes associ-
ated to the scalar perturbations of the wormhole. Finally, in
the last section we conclude the work.

2 Traversable wormholes

Let us consider the spherically symmetric line element

ds2 = −e2φdt2 + dr2/(1 − b/r) + r2(dθ2

+ sin2 θdφ2), (1)
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with φ = φ(r) and b = b(r) the redshift and shape functions
respectively. Assuming that (1) is a solution of Einstein’s
equations

Rμν − 1

2
gμνR = κTμν, (2)

with κ = 8πG/c4,1 sourced by Tμ
ν = diag(−ρ, pr , pt , pt )

we arrive at

ρ = 1

8π

b′

r2 (3)

pr = − 1

8π

[
b

r3 − 2

(
1 − b

r

)
φ′

r

]
(4)

pt = 1

8π

(
1 − b

r

)[
φ′′ + (φ′)2 − b′r − b

2r2(1 − b/r)
φ′

− b′r − b

2r3(1 − b/r)
+ φ′

r

]
. (5)

In what follows we shall describe the main aspects of a
traversable wormhole by its embedding in the three dimen-
sional Euclidean space. First, note that as our solution is
spherically symmetric, we can consider θ = π/2 without loss
of generality. Now, considering a fixed time, t = constant ,
the line element reads

ds2 = dr2

1 − b/r
+ r2dφ2. (6)

The surface described by (6) can be embedded in R3 where
the metric in cylindrical coordinates (r, φ, z) reads

ds2 = dz2 + dr2 + r2dφ2. (7)

Next, as z is a function of the radial coordinate we have

dz = dz

dr
dr, (8)

from where

ds2 =
[

1 +
(
dz

dr

)2
]
dr2 + r2dφ2. (9)

Finally, from (6) and (9) we obtain

dz

dr
= ±

( r
b

− 1
)−1/2

, (10)

where is clear that b > 0 for r ∈ [r0,∞). At this point some
comments are in order. First, the wormhole geometry must
be endowed with minimum radius which leads to dz/dr →
∞ as r → b0 (that occurs when b = r ). Accordingly, the
existence of a minimum radius requires that at r = b0 the
shape function must be b = b0. Second, we demand that the
solution is asymptotically flat which implies both, b/r → 0

1 In this work we shall assume c = G = 1.

(from where dz/dr → 0) and φ → 0 as r → ∞. Third, as
the conditions

lim
r→b0

dz

dr
→ ∞ (11)

lim
r→∞

dz

dr
= 0, (12)

must be satisfied, the smoothness of the geometry is ensured
whenever the embedding surface flares out at or near the
throat, namely

d2r

dz2 > 0, (13)

from where

b − b′r
2b2 > 0, (14)

which corresponds to the flaring-out condition.
It is worth mentioning that, the flaring out condition (14)

leads to the violation of the null energy condition (NEC) as
we shall see in what follows. Let us define the quantity

ξ = − pr + ρ

|ρ| = b/r − b′ − 2(r − b)φ′

|b′| , (15)

which can be written as

ξ = 2b2

r |b′|
d2r

dz2 − 2(r − b)
φ′

|b′| . (16)

Now, as (r − b) → 0 at the throat, we have

ξ = 2b2

r |b′|
d2r

dz2 > 0 (17)

so that

ξ = − pr + ρ

|ρ| > 0. (18)

Note that if ρ > 0 the above condition implies pr < 0 which
entails that T 1

1 should be interpreted as a tension. Further-
more, if we define τ = −pr the flaring out condition leads
to

τ − ρ > 0, (19)

which implies that, for this exotic matter, the throat tension
must be greater than the total energy density which violates
the NEC, as we stated before. Although there is not evidence
of exotic matter in the universe, we can minimize the amount
required to construct a traversable wormhole by demanding
that the quantifier [44]

I =
∫

dV (ρ + pr ) = −
∞∫

r0

(1 − b′)
[

ln

(
e2φ

1 − b/r

)]
dr

(20)

is finite.
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Fig. 1 Embedding diagrams
for c = 0.4 (first row, left panel),
0.8 (first row, right panel), 1.2
(second row, first panel), 1.6
(second row, right panel) and
d = 0.2 (black), d = 0.6 (blue),
d = 1.4 (green), d = 1.8 (red)

From a technical point of view, the construction of traversable
wormholes require solving the system (3)–(5), namely three
equations with five unknowns. The strategy should be either
supplying the metric functions that satisfy the geometric con-
straints listed above or giving one of the metrics and an aux-
iliary condition, namely an equation of state or a metric con-
straint. In this work we follow an alternative route which
consists of proposing a suitable embedding function.

3 A wormhole model

In this section, we construct a traversable wormhole geome-
try by providing a general embedding function with the aim
to integrate Eq. (10) and obtain the shape function b. Note
that, although Eq. (10) can always be inverted numerically,
in this work we look for analytical solutions so we propose

z(r) =
√√√√log

(
a +

(
cr

r0
+ d

)2
)

(21)

where a, c and d are free parameters. The free parameters
can be constrained by imposing both the existence of a throat
(a minimum radius r0) and the flaring out condition given by
Eqs. (11) and (12) which lead to

a = 1 − c2 − 2cd − d2 (22)

In Fig. 1 we show the embedding function for different values
of the parameters involved. Note that the profiles flare out
slowly as both c and d increases.

The shape function is obtained by replacing (21) in (10).
As a result we obtain

b(r) = c2ζ 2r

c2ζ 2 + r2
0

(
a + ζ 2

)2 log
(
a + ζ 2

) (23)

where

ζ =
(
cr

r0
+ d

)
. (24)

Note that the conditions z(r0) = 0 and b(r0) = r0 hold,
as expected. In Fig. 2 we show the embedding function
and the shape function for different values of the parame-
ters involved. Note that, the solution is asymptotically flat as
required.

In order to specify the wormhole metric completely, we
must propose a suitable redshift function. In this work we
shall take the simplest choice, namely φ = 0, so the solution
has a vanishing radial tidal force. At this point, the matter
sector can be completely specified but the expressions of the
density and pressure are too long to be shown here. Neverthe-
less, a more interesting issue is the analysis of the quantifier
of the exotic matter which is finite for all the parameters
under consideration as shown in Fig. 3. Besides, for c = 0.4,
the amount of exotic matter required to sustain the wormhole
increases as d grows. In contrast, for c = {0.8, 1.2, 1.6} the
decreasing of the amount of exotic matter is associated with
an increasing of the free parameter d.

4 QNM by the WKB approximation

The perturbations of the TW can be carried out by adding test
fields (scalar or vectorial) to the background or through per-
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Fig. 2 Plots of b/r as a
function of r/r0 for c = 0.4
(first row, left panel), 0.8 (first
row, right panel), 1.2 (second
row, left panel), 1.6 (second row,
right panel) and d = 0.2 (black),
d = 0.6 (blue), d = 1.4 (green),
d = 1.8 (red)

Fig. 3 Quantifier as a function
of d for c = 0.4 (first row, left
panel), 0.8, (first row, right
panel) 1.2 (second row, left
panel), 1.6 (second row, right
panel)

turbations of the space-time itself. However, independently
of how it is performed, the equation governing the evolu-
tion of the perturbation can be reduced to a like-Schrödinger
equation given by

(
d2

dr2∗
+ ω2 − V (r∗)

)
χ(r∗) = 0, (25)

where r∗ is the tortoise radial coordinates defines as

r∗(r) =
∫ r

r0

1√
1 − b(r ′)/r ′ dr

′, (26)

and V (r) is an effective potential. Notices that the tortoise
coordinate r∗ is defined in the interval (−∞,∞) in such
way that the spatial infinity at both sides of the wormhole
corresponds to r∗ = ±∞ and the wormhole throat is located
at r∗ = 0. In this work, we will focus on the study of scalar
perturbations, so the effective potential takes the form

VL(r) = e2φ

(
L(L + 1)

r2 − rb′ − b

2r3 + φ′

r

(
1 − b

r

))
, (27)

where L is called the multipole number or fundamental tone.
The solution of (25) with the boundary conditions

χ(r∗) ∼ C± exp(∓iωr∗), r∗ → ±∞, (28)
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Fig. 4 The potential of perturbation as a function of x (the tortoise
coordinate) for l = 6 (blue), l = 7 (green), l = 8 (red). We have
set c = 0.4 (first row), c = 0.8 (second row), c = 1.2 (third row)

and c = 1.6 (fourth row). For each row we have d = 0.2 (left panel),
d = 0.6 (center panel) and d = 1.4 (right panel)

corresponding to purely out-going waves at infinity, are the
QNM with frequency ω = Re(ω)+ i Im(ω). The real part of
the QNM frequencies corresponds to the frequency of oscil-
lation, while the imaginary part Im(ω) relates with the damp-
ing factor due to the loss of energy produced by the gravita-
tional radiation. It is worth noticing that when Im(ω) > 0,
the perturbation grows exponentially meaning an instability
in the system. For the system to be stable, is required that
Im(ω) < 0. Also consider that a complete perturbation will
be a superposition of different tones L , which means that we
need that every possible frequency satisfy Im(ω) < 0. The
QNM frequencies are usually obtained by numerical meth-
ods but, in this work, we shall implement the WKB approach

taking advantage of the similarity of Eq. (25) with the one-
dimensional Schrödinger equation with a potential barrier.
This method was first used by Schutz and Will in Ref. [45]
to study scattering around black holes and has been extended
to higher orders around the top of the bell-shaped potential
[40]. Specifically, the 13th order formula reads

i
ω2 − V0√

−2V ′′
0

−
13∑
j=2


 j = n + 1

2
, (29)

being V0 the maximum height of the potential and V ′′
0 its sec-

ond derivative with respect to the tortoise coordinate evalu-
ated at the radius where V0 reaches a maximum which for a
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Fig. 5 Imaginary part of the frequency as a function of d for n = 0
(black), n = 1 (blue), n = 2 (green), n = 3 (red). We have set c = 0.4
(first row), c = 0.8 (second row), c = 1.2 (third row) and c = 1.6

(fourth row). For each row we have l = 6 (left panel), l = 7 (center
panel) and l = 8 (right panel)

TW with a bell-shaped potential occurs at the throat (r = r0,
r∗ = 0). The higher order corrections are encoded in 
 j

which depend on the value of the potential its derivatives
evaluated at the maximum. The exact expressions for this
corrections can be found in [43].

In what follows, we shall show numerical results for the
QNM associated to scalar perturbations of the model. As we
stated previously, the implementation of the WKB method
requires a bell-shaped potential as a function of the tortoise
coordinate as shown in Fig. 4 for different values of the
parameters involved. We note that the peak of the potential
decreases as l decreases. Besides, the potential spread out
and its peak decreases as c grows.

In Fig. 5 we show the imaginary part of the frequency as a
function of the parameter d. For c = 0.4 (first row), we note
that the profile is monotonously increasing and approaches
asymptotically to zero. In contrast, for n = 2 and n = 3,
Im(ω) decreases with d, reach a minimum and grows again
approaching asymptotically to zero. Particularly, for l = 6,
the frequency has positives values for d ∈ (0.2, 0.3) which
means that the wormhole is unstable for this interval. For
c = 0.8 (second row), c = 1.2 (third row) and c = 1.6
(fourth row), Im(ω) is an increasing function and is always
negative for the values of d under consideration so the solu-
tion can be considered as stable under scalar perturbation
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Fig. 6 Real part of the frequency as a function of d for n = 0 (black), n = 1 (blue), n = 2 (green), n = 3 (red). We have set c = 0.4 (first row),
c = 0.8 (second row), c = 1.2 (third row) and c = 1.6 (fourth row). For each row we have l = 6 (left panel), l = 7 (center panel) and l = 8 (right
panel)

for this parameters. We also note that the value of Im(ω)

decreases as the overtone n increases.
In Fig. 6 we show the Re(ω) as a function of d for dif-

ferent values of the parameter c. For c = 0.4 (first row), the
profile reaches a minimum located at different values of d
depending of the overtone. More precisely, as n increases, the
location of the minimum shift to larger values of d. Besides,
except for n = 3, the Re(ω) converge to the same value as
d grows which means that the oscillatory behaviour of the
signal in indistinguishable for each overtone for large d. The
asymptotic line shift to bigger values of Re(ω) as l increases.
For c = 0.8 (second row) except for n = 0 which remains
constant, the Re(ω) reaches a maximum in contrast to the

previous case. Moreover, the signal approaches asymptoti-
cally to a constant value which is different for each overtone.
For c = 1.20 (third row) and l = 6, the signal is constant for
n = 0 and increases monotonously for n = 1 and n = 2 and
reach a minimum for n = 3. In contrast to the previous cases,
the Re(ω) do not approach asymptotically to any value in
the interval under consideration. For l = 7 and l = 8, except
for the lowest overtone, Re(ω) increases monotonously. For
c = 1.6, the signal is constant for n = 0, and increases
monotonously for n = 1 and n = 2. For n = 3, the sig-
nal increases with but undergoes some oscillatory behaviour
for large d. This behaviour can be associated to numerical
instabilities.
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Based on the previous results, at this point some com-
ments are in order. First, for c = 0.4, the behaviour of signal
for large d is almost independent of the overtone. In par-
ticular, the damping factor, given by eIm(ω), is almost the
same for each n under consideration. Similarly, the oscilla-
tory behaviour is almost monochromatic: Re(ω) converge to
the same value as l grows. In this regard, if the main goal
is to differentiate the behaviour from overtones for c = 0.4,
our model must be tested in the interval d ∈ (0.2, 1). It
is worth mentioning that the model seems unstable in this
interval for n = 3. However, it is a well known fact that the
model works well for lower overtones so that such instabil-
ity could be associated to inaccuracy of the method. Second,
for c = 0.8 the behaviour clearly depends on the value of
the overtone in the whole interval of d under consideration.
In particular, the damping is both stronger for large n and
weaker a d grows. Regarding the Re(ω), the behaviour of
the oscillatory part depends on the value of d. Indeed, Re(ω)

decreases as n grows in d ∈ (0.2, 0.4) but increases for large
n in d ∈ (0.4, 2). Interestingly, all the frequencies of the
oscillatory part coincide for d = 0.4. Finally, for c = 1.2
and c = 1.6, the pattern is clear: the damping is stronger as
n increases and d decreases and the frequency of the oscilla-
tions grow as n grows.

5 Conclusions

In this work we obtained a traversable wormhole with van-
ishing radial tidal force by proposing a general embedding
function with some free parameters. The parameters were
reduced by imposing the basic requirements that must be sat-
isfied by a wormhole geometry. In particular, we demanded
the existence of a minimum radius (which defines the throat
of the hole) and the flaring out condition. In order to explore
how the geometry behaves in terms of the remaining param-
eter we analyzed both the quantifier of the exotic matter and
the quasi normal modes of the solution. As a results, we
observed that the solution requires a finite amount of exotic
matter that decreases for certain values of the parameters
involved. Besides, we obtained that in general the solution
seems stable after scalar perturbations. Indeed, the imaginary
part of the quasinormal frequencies remains negative which
leads to a suitable damping factor for the signal.
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