IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 April 2025, accepted 15 May 2025, date of publication 21 May 2025, date of current version 2 June 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3572416

==l TuTorIAL

Framework for Implementing Quantum Neural
Networks in Wireless Communications

SALIK SIDDIQUI"™, (Student Member, IEEE), JUSTIN HOLZER ™, (Student Member, IEEE),
JOSHUA MALCARNE, (Student Member, IEEE), GALAHAD M. B. WERNSING ",
AND ALEXANDER M. WYGLINSKI™, (Senior Member, IEEE)

Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA

Corresponding author: Salik Siddiqui (ssiddiqui@wpi.edu)

ABSTRACT While quantum computing is already being employed in different domains to solve large
scale and highly complex optimization problems, the wireless communications community has only recently
begun exploring the potential of Quantum Machine Learning (QML). This paper provides a reference design
approach that allows the wireless community to effectively leverage QML in optimizing their own wireless
communications networks. Such an approach will become increasingly valuable as quantum computing
matures and conventional computing methods reach their practical limits due to the high dimensionality of
optimization problems. We present a detailed methodology enabling wireless communications practitioners
to construct their own Quantum Neural Networks (QNN) implementations and benchmark their performance
against conventional techniques. Optimization strategies for wireless communication channels using QNNs
are explored. The resulting framework provides a generalizable, easy-to-adopt methodology for integrating
QML into wireless networks, requiring minimal prior knowledge of quantum computing.

INDEX TERMS Quantum neural network, quantum machine learning, variational quantum circuit, quantum

computing, neural network, machine learning, wireless communication, network optimization.

I. INTRODUCTION
As wireless communication networks continue to advance
and improve, the demand for increased computational power
has become inevitable [1], [2], [3], [4]. This surge is
driven by several factors, including the development of
cognitive radio technology and the integration of artificial
intelligence algorithms [2], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. These advances
enable networks to autonomously and dynamically adapt
to spectrum availability, interference conditions, changing
channel conditions, and reliability requirements [20], [21],
[22]. Consequently, the processing requirements for real-time
decision making and data analysis have increased.

To meet these demands, the potential of quantum com-
puting has emerged as a promising solution [23], [24],
[25]. Quantum computing has the potential to address these

The associate editor coordinating the review of this manuscript and

approving it for publication was Ayaz Ahmad

challenges by leveraging concepts in quantum mechanics to
perform computations at speeds that far surpass classical
computers. Using quantum computing’s significant parallel
processing capabilities, future wireless networks can achieve
unprecedented levels of efficiency, scalability, and adapt-
ability, thus ushering in a new era of high-performance
telecommunications infrastructure [26].

The intersection of quantum computing and wireless com-
munications represents a frontier of technological advance-
ment [27], poised to revolutionize wireless communication
networks [13], [14], [15], [16], [17]. Commercial 5G com-
munication networks are complex and require the handling
of a large number of devices [28]. Futhermore, 6G and
future cellular networks promise additional complexity and
even more devices, which could become impossible to
manage if employing conventional computing technology.
Current research and development are now focused on
leveraging quantum computing’s capabilities to address crit-
ical challenges in wireless networks, such as improvements

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/

91655

https://orcid.org/0009-0003-7134-4935
https://orcid.org/0009-0001-3306-3468
https://orcid.org/0000-0001-7504-7565
https://orcid.org/0000-0002-3357-0064
https://orcid.org/0000-0002-2253-6004

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

Wireless Network

1. Clients attempt to connect

Legend

2. Server accepts/rejects
clients based on ruleset

Start

Server

Ruleset

Channels

I Traditional Computer |

Sub-component

Quantum-enabled

= Data 9

6. Model provides learned parameters (e.g., ruleset)

Quantum Neural Network <

3. Save relevant
connectivity data

4. Quantum Model Trained with Data

= Training 9 Quantum Model Training

Connectivity Data

5. Quantum Model deployed

FIGURE 1. High level block diagram of system components. Data is extracted from network, and used to train quantum model. Resulting QNN is used to
enable decision-making in network. A detailed explanation is presented in Section IV-A.

in cryptography, transmitter localization, route planning,
simulations of complex propagation environments, power
allocation, edge computing and Ultra-Reliable Low Latency
Communications (URLLC) [13], [15], [16], [17], [19], [29],
[30], [31], [32], [33]. Quantum algorithms have shown
promise in solving combinatorial optimization problems,
which are prevalent in network resource allocation and
scheduling tasks [94]. Despite these advancements, prac-
tical implementations of quantum computing in wireless
communications are still in their infancy and are yet to
prove their viability, not to mention their efficacy and
reliability [35], [36]. However, with ongoing research
and collaboration between academia and industry, quan-
tum computing has the potential to redefine the capa-
bilities and efficiency of future wireless communication
networks.

To the authors’ knowledge, a detailed framework for the
wireless community describing exactly how to implement
quantum artificial intelligence algorithms [37] aimed at
wireless communications applications is notably absent from
the open literature. This paper addresses this knowledge
gap and serves as a do-it-yourself (DIY) document for
describing the process of performing optimization of wireless
communication networks via Quantum Neural Networks
(QNNs) (see Figure 1).

In this paper, we present the following novel contributions:

o A generalized architecture for implementing QNNs and
Quantum Machine Learning (QML) [37] into a target
wireless network.

o An implementation example of how a QNN can be
used to solve a wireless communications optimization
problem.

o A practical step-by-step tutorial on tuning and evaluating
the performance of our example QNN which can be used
by those in the wireless community who are interested to
apply this framework to their own implementations for
other wireless applications.

91656

The framework described in the following sections will
provide guidance on how to use QNN for future applications
in wireless communications. The remainder of the paper
is organized as follows. Section II provides an overview
of quantum computing and QNNSs. Section III discusses
the general process for training, testing, evaluating, and
tuning a QNN. Section IV provides details about our QNN
framework for wireless network optimization. Section V
explains experiment setup, details about how we trained and
tuned our specific QNN, and provides advice about key
tuning parameters. Section VI contains a detailed evaluation
and discussion about our results. Detailed discussion of
parameters such as: number of qubits, layer counts, and
training batch size will be tuned and evaluated. In this section,
we will establish that a QNN can arrive at a result comparable
to a Traditional Neural Network (TNN). A TNN will also
be used as a baseline to validate our QNN results and
demonstrate the potential of quantum computing for wireless
network optimization. Our paper concludes with Section VII,
where we discuss potential for future applications of QNNs
in the wireless communications space.

We refer readers interested in traditional or state-of-the-
art artificial intelligence algorithms for optimizing wireless
communications to recent examples in the literature: [5], [6],
[71, [8], [9], [10], [11], [12]. A small neural network will be
introduced Section V-C to use as an experimental baseline for
our QNN.

Il. OVERVIEW AND MOTIVATION FOR USE OF QUANTUM

COMPUTING AND QUANTUM NEURAL NETWORKS
Quantum computing [2] and QNNs [1], [38], [39], [40]

have emerged as two promising paradigms to solve complex
computational problems that are intractable for classical
methods. Quantum computers leverage the principles of
quantum mechanics, such as superposition and entanglement,
to process vast amounts of data simultaneously, offering a
potential speedup in areas like optimization, cryptography,

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

[11)— Re(th1) —-- — Ro(01) — Ry(61) - R.(61) D ..
|pa)— R (1h2) — - — Rx(62) — Ry(02) —| R=(62) —B - —=]
|th3)— R (1h3) f— -+ — Ra(63) —{ Ry(0s) — R-(63) o ..

(1) Input encoding

(2) Learnable Parameter &

(3) Measure decoding

Entanglement Layers

FIGURE 2. 3-qubit Quantum circuit for QNN Regression. A single layer consists of a series of Rx, Ry, Rz gates, fully entangled. Input encoding is
performed by the first set of Ry gates (1). The following gates are where parameters are trained (2). The measure decoding step (3) allow extraction of

data and results from quantum network. Details in Sections II-A & II-B.

and machine learning [35]. As transistor sizes in traditional
computers grow smaller, “Quantum-effects” [42] begin to
degrade transistor reliability and performance [43]. Quantum
computing is a mode of computing that leverages the
properties of quantum mechanics.

One key example of a quantum property is superposition,
[44], [45] where quantum bits (qubits) exist in multiple states
simultaneously, unlike classical bits that can only be in one
of two states (0 or 1). Since qubits can represent both 0 and
1 at the same time, quantum computers can process vast
amounts of information in parallel, exponentially increasing
computational power for certain tasks. By utilizing this prop-
erty of quantum mechanics, quantum computers can explore
multiple computational states simultaneously, thereby poten-
tially solving certain types of problems exponentially faster
than classical computers. One relevant motivation for using
quantum computing is its ability to handle high-dimensional
data and solve complex optimization problems that would
be infeasible for classical approaches due to resource
constraints. In areas such as drug discovery, materials
science, and large-scale simulations, quantum computers can
provide an advantage by simulating molecular interactions
and physical systems with unparalleled accuracy [2], [24],
[25].

In wireless communications, quantum computing has the
potential to revolutionize areas where data and interactions
between systems becomes increasingly complex. There are
already many examples in the open literature of researchers
investigating areas such as Transport Network Design [4],
Channel Estimation, Routing, Indoor Localization, and
Data Analysis [14]. Quantum computing can also optimize
massive Multiple Input, Multiple Output (MIMO) systems
by efficiently solving high-dimensional matrix operations
and complex beamforming problems, which are critical for
enhancing the performance of 5G and beyond networks.
Additionally, quantum computing can be applied to solve
difficult combinatorial optimization problems in network
routing and spectrum allocation, ensuring optimal use

VOLUME 13, 2025

of resources in increasingly congested wireless environ-
ments [15], [16], [17], [33], [34].

The justification for using quantum computers and QNNs
lies not only in their ability to solve previously intractable
problems, but also in their potential to revolutionize industries
by providing computational power beyond the reach of
classical systems. As classical hardware improvements slow
down and data become more complex, quantum computing
stands out as a revolutionary tool for advancing research
and development in a variety of fields, including machine
learning, cryptography, and material science. As technology
matures, quantum computing could transform industries by
providing unparalleled speed and efficiency in solving some
of the most computationally expensive problems known
today [2].

Quantum computers are constrained by the number of
qubits available and their susceptibility to noise. As the
size and complexity of quantum circuits grow, the noise
introduced by qubit interactions becomes more significant,
potentially degrading the performance of quantum algo-
rithms. For convenience, here is a list of the strengths and
weaknesses of quantum computing:

STRENGTHS
« Exponential speed-up for specific algorithms (factoring,
search, optimization).
« Efficient simulation of quantum systems.
« Potential improvements in machine learning.
o Quantum cryptography for secure communications.

WEAKNESSES
« High error rates due to noise and decoherence.
o Complex, costly, and sensitive hardware.
« Few demonstrated practical use cases.
« Difficulty scaling qubit count.

The exploration of QML in wireless communication
applications has increased progressively in the past five

91657

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

years. However, there is a need for detailed implementation
information to be presented in the open literature. Further-
more, several of these published solutions are focused on
a specific domain within wireless communications. For a
comprehensive overview on the topic of quantum computing
in the field of wireless communications, we refer the
interested reader to [13], specifically the tables, which
provide a detailed list of the many optimization problems
in wireless communications which are being explored with
quantum computing. For more examples and details about
deployment of QML in wireless networks we refer readers
to [14], [15], [16], [17], [18], [19], [20], [21], and [22].
A detailed theoretical explanation and implementation of
QNNs from the perspective of wireless communications is
presented in [18].

A. QUANTUM NEURAL NETWORKS

QNNs [1], [38], [39], [40], [41] are a popular quantum
artificial intelligence technique, making them an ideal
candidate for illustrating implementation of our architecture
and methodology. The basis of a QNN is the concept of
Variational Quantum Circuits (VQCs) [46], [47]. These are
a type of quantum circuit designed to solve optimization
problems by leveraging a series of parameterized quantum
gates applied to qubits [48]. Gate parameters are tuned during
training using classical optimization methods. This allows the
quantum circuit to function similarly to a TNN and make
predictions based on training data.

The theoretical advantages of QNN include the potential
for exponential speedup in processing complex tasks, the
ability to operate in higher dimensional feature spaces
through qubits, and more efficient handling of quantum data.
Additionally, QNNs may offer resource-efficient solutions
to certain optimization problems that are computationally
intensive for TNNs. These benefits make QNNs a promising
alternative for solving problems that classical methods
struggle with. As mentioned briefly in Section II, these
are not realized improvements. Quantum computers, and by
extension QNNs, remain an experimental technology with
promising theoretical advantages, but they are still limited by
current hardware challenges, error rates, and scalability issues
that need to be overcome before practical applications can be
fully realized. It is well established in the open literature that
QNN can theoretically, or in a simulation, achieve equal or
superior performance compared to a TNN [57], [58], [59],
[60]. This allows us to confidently use a TNN as a baseline
when implementing our own QNN.

In the field of wireless communications, QNNs have
notably been discussed for 6G communications [15],
[16], [17] and Resource Allocation [18]. As discussed
in Section II, any application in wireless communications
with a high-dimensionality dataset (e.g., resource allocation,
beamforming, 6G, route planning) could be significantly
enhanced by the computational power of QNNs. Some
exploration exists for reinforcement learning [46], [49] as

91658

well as generative networks [41]. Outside the field of wireless
communications, QNN architectures exist for a variety of
applications in open literature [30], [47], [50], [51].

B. EXAMPLE QNN ARCHITECTURE

The core architecture of a QNN consists of layers of
quantum gates. Each layer employs quantum gates such as
Ry, Ry, R;, and controlled operations like CNOT. This QNN
architecture is shown in Figure 2, and is a well-established
architecture for QNNs [16], [52], [53]. The first layer of
gates (1) in Figure 2 consists entirely of R, gates for input
encoding. This layer encodes the traditional dataset of real
numbers into qubit state according to the circuit’s qubit
count. The next layer (2) in Figure 2 processes and learns
from the input data. Each set of Ry, Ry, R;, and CNOT
gates in (2) is considered a single layer. The network is
trained to adjust the parameters of these quantum gates
to minimize the difference between predicted and actual
output values. Like TNNs, layers can be stacked [54].
Simply increasing layers is not a viable solution, as QNNs
are highly sensitive to arbitrarily large layer counts. They
are prone to a well-known issue called the Barren Plateau
Phenomenon [55], [56], in which an excessive number of
qubits or layers leads to vanishing gradients. This means
that the cost function’s gradient becomes exponentially small
across most of the parameter space, causing the training
process to slow down significantly and making it nearly
impossible for the optimization algorithm to find a good
solution.

The final step is (3) measure decoding, where the
encoding process is essentially reversed, and qubits values
are measured and decoded. After this point, the outputs are
in the realm of traditional computing. The next step could
be to apply a technique such as regression, classification,
or even clustering, depending on the nature of the data and
the specific goals of the network.

C. TOOLS FOR QUANTUM NEURAL NETWORK
IMPLEMENTATION AND EMULATION

As discussed in Section II-A, available literature has shown
that QNNs can perform as well as or even outperform
TNNs. Given the unreliability, noise, and cost associated with
quantum hardware, researchers may opt to test their QNNs
in an emulator to ensure the soundness of their network and
implementation. Emulation on traditional hardware is com-
putationally resource-intensive, but not as cost-inhibitive as
deploying a QNN to real quantum hardware. An emulation-
first approach allows researchers to establish as a baseline
that their techniques work before using time on a real
quantum computer. Once a network is proven to be effective
in an emulator, one might then progress to a simulator,
or quantum hardware to debug and evaluate real-world
performance. A major downside of this approach is that
computational performance will be worst. Getting responses
from an emulated QNN will inherently be slower than getting

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

TABLE 1. Overview of quantum computing libraries.

Library Description Key Features Notes and issues Reference
Qiskit An open-source SDK by IBM Python-based, first-class IBM Moderate pytorch and tensorflow [96]
for programming quantum comput- quantum hardware support. Many library support. Limited hardware
ers, simulators, and emulators in tutorials, very popular. options compared to other libraries
Python. and tools.
Cirg+TensorFlow Cirq is a library for running quan- Tight TensorFlow integration, Primarily designed for Google’s [89]
Quantum (TFQ) tum simulations, with TFQ integrat- quantum circuit creation, built-in quantum processors. TFQ software
ing QML using TensorFlow primi- Google hardware simulators. on GitHub is infrequently updated,
tives. with gaps of over a year between
releases
PennyLane Python library for quantum ML, in- Cross-platform, hybrid models, Many outdated tutorials. Quality [97]
tegrating classical ML with quan- integrates reasonably well with of pytorch or tensorflow integra-
tum computing. frameworks like PyTorch and tion varies depending on applica-
TensorFlow. tion. Focused heavily on hybrid
quantum-classical algorithms.
TorchQuantum PyTorch-compatible library for High quality Pytorch integration. Active development, certain tasks [88]

QNNs with
emulations.

GPU-accelerated

Large-scale emulations, classical
optimization. Simplified API to fa-
cilitate easy transition for machine
learning practitioners.

are unstable. Limited resources and
documentation compared to other
libraries.

responses from a TNN. This is due to the overhead cost
associated with emulation.

To address some of the challenges described earlier
in Section II, and to simplify the process of quantum
circuit creation, the TorchQuantum library is used within
the framework of this paper [61], [62]. Table 1 shows a
list of libraries that one might use for quantum machine
learning. All of these libraries are viable options and selection
will be dependent on an experimenter’s requirements and
preferences.

TorchQuantum was selected for this paper because it
enables fast prototyping with PyTorch primitives in an
emulator [88]. TorchQuantum abstracts away many of the
complexities of quantum circuit design, making it more
accessible to machine learning practitioners who are familiar
with PyTorch, thus facilitating a more rapid development
of QNNs. These features enable users to quickly and easily
explore the potential speedups and advantages that quantum
computing could bring to machine learning tasks, without
having to make major changes to their datasets.

One of the primary strengths of TorchQuantum is that it
also allows quantum networks to be run in emulation, lever-
aging classical hardware to mimic quantum operations. The
library provides an emulation environment where researchers
can validate their models and experiment with different
quantum circuit architectures without the need for immediate
access to quantum computers. This emulation capability is
essential for developing and testing quantum algorithms.
As mentioned earlier in this section, it reduces the cost of
experimentation and allows users to explore the performance
of their algorithm without having to accommodate for
quantum noise and error [36].

TorchQuantum does not natively support quantum hard-
ware, but it integrates with the Qiskit library [90] for stream-
lined deployment. Once a quantum network is developed

VOLUME 13, 2025

and tested, it can be converted to and directly executed on
Qiskit-compatible quantum processors [89]. This capability
allows researchers to move seamlessly from experimentation
in an emulated environment to real-world applications on
quantum devices, thus shortening the development cycle for
QML solutions [89], [90].

Other libraries and tools shown in Table 1 are viable
options depending on the application. For practitioners more
accustomed to the Tensorflow library, Tensorflow Quantum
accompanied by Cirq may be a better alternative. Qiskit
is another very popular library shown in Table 1, although
it has limited hardware options outside of IBM’s quantum
hardware ecosystem. Given the advantages of fast proto-
typing, emulation, and rapid deployment, TorchQuantum
is an appropriate solution with respect to exploring the
potential of quantum machine learning for wireless networks.
Users should consider their own needs when selecting the
appropriate library for their research.

Ill. QNN TRAINING, TESTING, TUNING, PERFORMANCE
Given the TorchQuantum library, the data pipeline for

training a QNN closely follows that of a classical neural
network. Input and output features are preprocessed using
normalization techniques such as MinMax scaling [92]. The
dataset is split into training, testing, and validation sets, thus
enabling the evaluation of a model’s performance on unseen
data. For a machine-learning practitioner new to training
QNNgs, parameters of particular interest in a QNN will be:

o Qubits - the number of qubits in the QNN

« Layers - the number of layers in the QNN

« Batch size - the size of each training batch shown to the

QNN

Similarly to a TNN, standard loss functions such as mean
squared error (MSE), mean absolute error (MAE), binary
cross-entropy (BCE), and categorical cross-entropy (CCE)

91659

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

can be applied. To learn more about Loss Functions, the
authors recommend to the interested reader the following
references [65], [66]. Additionally, a wide range of popular
optimizers can be used, including Gradient Descent and its
variants, as well as Adaptive Learning Rate methods [67],
[68]. The choice of loss function or optimizer depends on the
dataset, neural network layout, and specific objectives.

Tuning and evaluating the performance of the QNN is done
by evaluating the network’s accuracy against test data. For
a detailed understanding of the tuning process, the QNN’s
performance should also be compared to a TNN or known
algorithm:

1) Train QNN with a given dataset,

2) Generate predictions from trained QNN,

3) Evaluate QNN predictions against predictions gener-
ated by a known TNN or established algorithm,

4) Modify a parameter (qubits, layers, batch size) and train
QNN again,

5) Repeat training and tuning in above steps until satisfied
with results.

Per Step (3) in the tuning steps described above, we must
define which evaluation techniques will be used when
comparing a TNN and a QNN. Two common evaluation
techniques are Euclidean distance and cosine similarities.
These two metrics are often used together to analyze data and
offer complimentary insights [69], [70], [71], [72]. Euclidean
distance (Eq (1)) is an effective metric for comparing the out-
puts of two neural networks in regression tasks, as it directly
quantifies the geometric distance between corresponding
points in Euclidean space. This metric excels at measuring the
magnitude of differences between output values, offering a
clear and interpretable indication of the proximity or disparity
between the outputs [73], [74]. A smaller Euclidean distance
value indicates greater similarity.

In N-dimensional space, with a vector consisting of x;
elements representing QNN outputs, and a vector consisting
of y; elements representing TNN outputs, the distance d(X, y)
can be calculated with Eq (1). For any given set of outputs,
the difference in magnitude between a prediction from a QNN
and a TNN can be compared.

n

dx,y) = | D (xi—y)? (1
i=1

Cosine similarity (Eq (2)) captures directional alignment of
the same vectors, x; and y; in N-dimensional space. As we
can see in Eq (2), cosine similarity is a normalized value.
Results are fixed between -1 and 1. While Euclidean distance
measures absolute magnitude in distance, cosine similarity is
better at detecting semantic differences between vectors [69],
[75], [76]. Values of 1 indicate perfect alignment, while
values of -1 indicate complete opposition of vectors.

D Xii
\/Z?=1 x?\/Z?:l i

Se(x,y) = @

91660

Together, Euclidean distance and cosine similarity are useful
as an evaluation metric because for any tuning change,
we will be able to measure change in magnitude as well
as directionality. Depending on the dataset and goals of the
QNN, one technique may be more important to optimize than
the other.

By measuring and tracking both Euclidean distance and
cosine similarity throughout the tuning process, the influence
of one metric over the other may be discovered. In such cases,
the appropriate metric should be optimized accordingly.
These two metrics are able to provide complimentary insights
into data and both should be used in tandem throughout the
tuning process to achieve optimal results.

IV. FRAMEWORK FOR OPTIMIZING QNN-OPTIMIZED
WIRELESS NETWORKS

In this section, we present our proof-of-concept QNN
framework that can be employed to perform wireless network
optimization. This implementation serves as an initial step
towards exploring the potential advantages of quantum
machine learning in network optimization. By integrating
the QNN within a wireless communication application,
we demonstrate how quantum computing can be leveraged to
enhance various decision-making processes. We also discuss
the specific architecture of the QNN, and the methods used
for training and evaluation. Subsequently, we explain how
its performance compares to that of an equivalent TNN in
Section VI.

The goal of this framework is to provide both practitioners
and researchers alike within the field of wireless commu-
nications with a reference implementation of a QNN that
can be adapted and employed in their own applications. The
impact of various parameters on the QNN and its performance
will also be explored as we demonstrate the feasibility
and effectiveness of QNNs in real-world wireless network
applications.

A. SYSTEM BLOCK DIAGRAM

Figure 1 illustrates our high-level architecture of the
QNN-based wireless network. The design is generalized to
support a wide range of wireless networks with varying
degrees of complexity. Previous studies have introduced
architectures that integrate quantum computing and quantum
machine learning [3], [4], [15], [16], [17], [19], while
other studies have focused on the theoretical aspects of
quantum machine learning when exploring various QNN
architectures and implementations [18]. By contrast, our
proposed framework emphasizes the practical application of
this architecture, enabling practitioners across the wireless
community to develop, deploy, and optimize their own QNNs
within diverse network environments. A brief description of
each step in Figure 1 is given as follows:

1) Clients attempt to connect to a wireless network with
limited or constrained resources (channels or spectrum,
for example).

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

2) Network and clients apply a ruleset to allocate
resources (e.g., wireless channels) similar to protocols
used in various wireless standards, such as WiFi [77],
Bluetooth [78], Zigbee [79], LoRaWAN [80], or
DECT [81].

3) Wireless network saves relevant connectivity data in a
database.

4) Connectivity data is used to train the QNN.

5) Training is complete and the model is deployed. The
size of the model will help dictate the nature of the
wireless network and ruleset.

o If the model is small enough, the ruleset can be
deployed close to the wireless network, so ruleset
decisions can be made quickly and frequently.

o If the model is larger, the ruleset can be deployed
in a way that introduces higher latencies with less
frequent updates to rulesets.

6) The resulting QNN has learned the intricacies of the
network, and can suggest new rulesets to better opti-
mize utilization of the resource-constrained wireless
network based on the requirements of the operator.

o Note: Depending on the wireless network and
protocol design, the ruleset may be partially or
fully shared with clients through the access point
server.

Given this high-level architecture, along with evaluation
techniques and operational flow of our QNN-based wireless
network optimization system, we now delve into implemen-
tation details when applying this framework to a specific
wireless networking use case, namely of a generic CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance)
algorithm. Without loss of generality, the approach presented
can be employed in other wireless use cases.

V. EXPERIMENTATION AND RESULTS: CSMA/CA
USE-CASE
This section provides a comprehensive overview of how the
proposed architecture and methodology can be implemented
for a specific wireless application. To validate the efficacy
of our QNN-based optimization strategy, we conducted a
series of experiments using a simulated wireless network.
The network model, based on a generalized version of
a priority-based CSMA/CA protocol [82], allowed us to
generate a diverse dataset capturing the connectivity behavior
of clients under various rulesets. The network was designed
to allocate channels to clients who were attempting to
connect. Connection acceptance/rejection for open channels
was decided by a ruleset. When a client failed to connect,
it was granted a retry time based on its priority (high,
medium, low). Client retry time was dictated by the ruleset,
where higher priority clients would be allowed to attempt
connections more frequently, while low priority clients would
be allowed to attempt connections less frequently.

By training both a TNN and a QNN on the same dataset,
we aimed to compare their performance in predicting optimal

VOLUME 13, 2025

retry times for different client priority levels. The training
goal for both models was to predict an optimal retry that
would ensure the desired connection probability for different
classes of clients. Quality of predictions were compared by
using the evaluation methods initially discussed in Section I1I.

The experimental process involved several key steps as
described in Section III:

1) Train QNN with a given dataset.

2) Generate predictions from trained QNN.

3) Evaluate (using Euclidean distance and cosine similar-
ity) QNN predictions against predictions generated by
TNN.

4) Modify a parameter (qubits, layers, batch size) and train
QNN again.

5) Repeat training and tuning in above steps until satisfied
with results.

Before the experiment can begin, the following items must

be discussed in greater detail:

o Priority-based CSMA/CA simulation (see Section V-A).

o Data Generation (see Section V-B).

o Neural Network used as a baseline must be trained and

tested (see Section V-C).

Having laid the groundwork for our QNN-based architec-
ture, we now turn our attention to the practical application of
this approach, specifically demonstrating its implementation
in a priority-based CSMA/CA wireless network simulation.
Examples are available in our code repository [83].

A. EXPERIMENT SETUP AND SIMULATED NETWORK

Our priority-based CSMA/CA network was executed as a
simulation on a conventional computer workstation. A typical
workstation for our tests was conducted using an Intel Xeon
CPU with 2.2GHz clock speed, and S0GB of system RAM.
For tests with very high qubit counts (shown in Table 4),
a server with an AMD EPYC CPU at 3.7GHz clock speed
and 1.6TB of RAM was used. Each network had 20 clients
attempting to connect to a server which had 5 channels.
There were 7 high priority clients, 7 medium priority clients,
and 6 low priority clients. Without a model, the ruleset
was configured manually. Additional information regarding
the specific ruleset used for generating data is presented in
Section V-B.

Connection Probability Pgonn of a given client is described
by Eq (3), where Ng; is the number of rejections that client
received, and k is the number of connection attempts made.
This metric can be used to calculate the exact performance of
each client type given a selected ruleset:

Nrail

X 3)
Between the ruleset and our connection probability metric,
we can analyze the results of each simulator run. Figures 3
and 4 illustrate the results of a single 30 second simulation
run with 20 clients and 5 channels, where the clients are
split roughly evenly, with 7 high priority clients, 7 medium
priority clients, and 6 low priority clients. The ruleset in this

Pconnzl_

91661

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

Connection time of 20 clients running for 30 seconds

6 i

| h |
T |
N |

|

_ [
MERAuEn
ey
NI
LR o

o

I

Total Connection Time (seconds)

[ee]

— —

— —

— —
—
—
—

0_ T T 1 1 T
L £ £ £ £ £ £
5555555888888 5555E5565
EffEfcfrc 2232223
Q0 VvV VLV VO
EEEEEEE

Client Priority

FIGURE 3. Example of total connection time of each client in simulation.
All high priority clients were able to connect. Most medium priority
clients were able to connect, and only two low priority clients were able
to connect. The system is working as expected.

specific example permits higher priority clients to retry after a
failed connection attempt more frequently than lower priority
clients.

In Figure 3, we can see that the high priority clients all
managed to connect for at least several seconds during the
30-second window. Only a handful of the medium priority
clients were able to form a connection, and only two low
priority clients managed to connect. This is desired behavior
given the nature of our priority-based ruleset. The high
priority clients are more likely to spend time connected to the
server.

Figure 4 shows more detailed statistics about the simula-
tion. The results are as expected - the high priority clients
spent the most time connected, while the medium and low
priority clients performed progressively worst. The high
priority clients had the best overall performance - they were
most likely to achieve a connection, were able to make more
frequent connection attempts, spent the most time connected,
and spent the most average time connected. None of the
high priority clients failed to make a connection. Based on
the retry rules shown in Table 2, we can see the probability
of a high priority client forming a connection was 34.61%.
For medium priority clients, this number was 20.41%. Low
priority clients had a 14.36% chance of forming a connection.
This table validates the expected behavior: higher priority
clients receive preferential treatment and are more likely
to successfully connect, while lower priority clients receive
a lower quality of service. These metrics prove that our
simulation is behaving in a predictable and consistent manner.

The following steps directly align with the generalized
process outlined in Section IV-A and Figure 1:

1) 20 clients (7 high, 7 medium, 6 low priority) attempted
to access 5 channels available at an access point server.

91662

2) If channels are available, the client can connect and
transmit data. If no channels are available, the client
is rejected and can retry after a timeout defined in
the ruleset. The ruleset is fixed and unchanging for a
simulation run. An example ruleset:

« High priority client can retry in 2 seconds

o Medium priority client can retry in 5 seconds

o Low priority client can retry in 7 second

3) Data from each simulation run is stored.

4) Data is used to train a machine learning model for
regression. In our specific experiment, we trained both
a TNN and a QNN to evaluate performance of the
QNN.

5) Models are trained to select appropriate retry times,
based on desired connection probabilities.

e “Deployment” in the case of our model was
simply that it was available for us to query in our
codebase.

6) The model is queried to provide rulesets that will allow
the network to achieve the desired performance.

With the experiment set up and simulation parameters
defined, the next step involved generating the necessary
dataset by repeatedly running the simulation with various
rulesets and storing the resulting connectivity data for further
analysis.

Client Statistics by Priority

Total Connected Time

Connection Prol;‘ ili Clients wjth 0 Connected Time

erage Connected Time

FIGURE 4. Client statistics by priority. High priority clients have the best
performance for metrics such as Connection Probability, Connection
Attempts, Average Connected Time, Clients with 0 connected time, and
Total Connected Time. Medium priority clients performed slightly worst.
Low priority clients had the worst performance.

B. GENERATING DATASET

Our dataset was generated by executing our network
simulation 1500 times with human-selected rulesets. The
large number of runs was to ensure we had ample data to
train our neural networks. For each simulation, we assign
a connectivity rule set that dictates which types of clients
could connect and under which conditions. Clients that

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

TABLE 2. Example retry time and average connection probabilities for a
single simulator run.

Worker Priority X, Retry Times (sec) Y, Peonn
High 1.7002 0.3461
Medium 3.7157 0.2041
Low 5.6736 0.1436

failed to connect were given a retry time, before which
they could not make another connection attempt. Each
simulation generated data describing the assigned ruleset
for that simulation and the connection probability of each
client for the duration of the simulation. By executing
1500 simulations and saving the results, we generated a
dataset which described the connectivity behavior of the
clients across a variety of conditions. The data relevant to our
models:

o Client Priority (from ruleset)

« Retry times after connection failures (from ruleset)

« Connection Probability of each client (from simulation
data)

Table 2 shows an example data set from a single simulation
run. Although the simulator is not fully deterministic, it con-
sistently produces results that are similar and statistically
converge to the same average outcome over multiple runs.
Thus, we generated a large dataset where the features X are
the retry times for each simulation run, and the labels Y are
the average connection probabilities for each class of client
corresponding to that run.

C. TRADITIONAL NEURAL NETWORK AS A BASELINE

To establish a performance baseline in the traditional
computing space before exploring the potential of a QNNss,
we trained a TNN to perform regression across three
parameters in our dataset (high, medium, low priority
retry times). This benchmark allowed us to compare the
performance of our QNN against a well-established and
widely-used machine learning approach, using our evaluation
techniques from Section III.

To perform regression across three parameters, a simple
feed-forward neural network with 4 fully-connected hidden
layers was used. A more complex or deep neural network was
not used due to the simple structure and relatively low volume
of the data. Studies show that a Deep Neural Network (DNN)
with many layers is not required to achieve good performance
for small, simple, low-dimensionality datasets [63], [64]. The
input layer and output layers each had 3 input features: one
for each priority level. For forward propagation, we used the
ReLU activation function for the hidden layers and a linear
activation function for the output layer.

We used Mean Squared Error loss function and an Adam
optimizer with a learning rate of .001 to train the network. The
training process was run for 250 epochs. A dataset consisting
of 1,500 simulations, each with a unqiue ruleset were used
for training/testing/evaluation. Training took a few minutes

VOLUME 13, 2025

TABLE 3. Target connection probabilities, actual connection probabilities,
and retry times selected by the neural network.

Observed Connection
Probability
(Avg of 500 runs)

(High, Medium, Low)

Desired Connection
Probability

Predicted Retry
Time

(High, Medium, Low) (High, Medium, Low)

0.3,0.2,0.05 0.35,0.20, 0.14 1.06, 3.8, 6.1

0.4,0.2,0.1 0.44,0.18,0.11 0.96, 3.9, 6.28
0.2,0.2,0.2 0.18,0.27,0.23 3.65,3.76,3.3
0.6,0.3,0.1 0.45,0.22,0.18 6.16, 8.21, 8.33

on modern hardware. We achieved a training loss of 0.047 and
a test loss of 0.049.

Once the neural network was trained, we used it to suggest
optimal retry times for each priority level, given a desired
connection probability. We tested the quality of these predic-
tions by running the simulation with the suggested back-off
times and comparing the actual connection probability to the
desired connection probability.

Based on results presented in Table 3, the observed
connection probabilities are close to the expected values,
demonstrating a high level of consistency between the
model’s predictions and the actual outcomes. Thus, we can
rely on this TNN as a benchmark for our QNN.

Sections V-D2 and V-D3 use the TNN’s predictions as a
baseline to discuss the effects of each parameter on QNN
accuracy. Euclidean distance and cosine similarity metrics
presented in Section III will be applied to compare the
QNN’s predictions against those of the TNN. Section V-D4
will providing a summary of optimal QNN Architecture
Parameters selected by this evaluation and tuning process.

D. TUNING QNN PERFORMANCE

The QNN architecture used for this experiment is exactly
as shown in Section II, Figure 2. It was trained with the
same dataset used to train TNN discussed in Sections V-B
and V-C. The same loss function (Mean Square Error) and
Adam optimizer as the TNN were also used. As described
in the beginning of Section V, the network was trained,
then evaluated against the TNN, and then trained again with
a different training parameters each time. We developed a
simple parameter sweeping script to train the (QNN) across
various combinations of qubit counts, layer counts, and batch
sizes. The predictions generated and simulation performance
of each combination was written out to a file to be analyzed at
the end of a sweep. The optimal configuration was selected
based on the comparison of Euclidean distance and cosine
similarity against the performance of the TNN.

1) IMPACT OF QUBIT COUNT ON HARDWARE UTILIZATION
AND TRAINING TIME

Training the QNN proved to be significantly more resource
intensive than the TNN. Notably, as the number of qubits
increased, RAM usage grew exponentially, as presented

91663

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

Euclidean Distance across different batch sizes and qubit counts

Batch Size
32 16

64

Number of Qubits

Batch Size

Cosine Similarity across different batch sizes and qubit counts

BN

64

Number of Qubits

FIGURE 5. Euclidean distance and cosine similarity between QNN and TNN predictions, for varying qubit counts and batch sizes. Euclidean distance and
cosine similarity generally agree on which configurations are best. Smaller batch sizes tend to improve performance. Increasing qubit count can have a

positive impact on cosine similarity, but the return is diminishing.

in Table 4. This finding is consistent with other works
presented in the open literature [50], [84], which highlights
the steep computational costs of scaling quantum systems.
For instance, the jump from 10 qubits (8300MB RAM) to
12 qubits (81GB RAM) represents a 100-fold increase in
memory requirements, illustrating the steep resource curve.
Additionally, training time showed a marked slowdown with
the increase in both qubits and network layer, further under-
scoring the substantial computational demands associated
with scaling QNNs.

It should be noted that Table 4 presents a practical
limitation on the size and complexity of QNNs that can be
emulated on classical hardware. It also demonstrates how
rapidly hardware and time requirements escalate with qubit
count. To mitigate scaling challenges, it is preferable to
minimize the number of qubits and leverage the benefits of
small batch sizes coupled with large layer counts.

TABLE 4. RAM usage and training time for various qubit configurations.

Qubits Layers Peak RAM Usage Training Time

2 20 49MB 21s

3 20 103MB 31s

5 20 254MB 54s

8 20 586MB 1m 50s

10 20 800MB 3m11s

12 20 81GB 4m 39s

15 20 233GB 6h 44m

20 20 580GB 22h 46m

21 20 1.21TB 24h 9m

Note: Table 4 shows networks trained only with 20 layers,
because an increase in layers by a single order of magnitude at
high qubit counts exponentially increased RAM consumption
and significantly increased training time. Therefore, it was
not used for the timing and resource allocation experiments.

91664

A layer count of 20 sufficiently illustrates the drastic increase
in resource consumption.

2) IMPACT OF QUBIT COUNT AND BATCH SIZES ON QNN
PERFORMANCE

Figure 7 shows the relationship between qubit count, batch
size, and network performance. Batch size controls the
number of training samples used in each iteration of the
neural network’s training process, and is an important tuning
parameter in TNNs [91]. The Euclidean distance and cosine
similiarities between QNN and TNN predictions were plotted
as a heatmap. The Euclidean heatmap shows that smaller
batch sizes and fewer qubits produce the best results (3
qubits, batch size of 4). 8 qubit networks also demonstrated
acceptable performance, however, smaller qubit networks
consume less hardware resources.

The cosine similarity heatmap shows a similar trend, where
smaller batch sizes produce the best results. There are minor
discrepancies between the two heatmaps. cosine similarity
shows minor improvements by using 8 qubits instead of 3 for
batch sizes of 16, 8 and 4. Since there is a 1% difference
in cosine similarity for the best-case scenarios (3 qubits
versus 8 qubits for batch sizes of 4) we elect to use the
configuration parameters where our two metrics agree, and
hardware utilization is lower.

The observation that increasing the number of qubits does
not necessarily lead to improved performance is consistent
with findings report in literature [47], [85]. In scenarios where
data complexity is high, fewer qubits may be insufficient.
One proposed solution is a Distributed QNN, where the data
and corresponding QNN are partitioned into multiple smaller
datasets and QNNs [86], [87].

Figure 5 establishes that networks trained with smaller
batch sizes tend to achieve better performance. This was
especially true for networks with smaller qubit counts. The
primary drawback of smaller batch sizes is the increase
in training time. As shown in Figure 6, the improved
performance associated with smaller batch sizes comes at

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

a significant cost. For example, training a 3-qubit network
with a batch size of 4 takes approximately 15 minutes. This
is manageable for a small, three-dimensional dataset, larger
datasets or more complex networks may render very small
batch sizes impractical.

Training Time vs. Batch Size Grouped by Number of Qubits

4000 1

g \
2 3000 \
S v
b H Number of Qubits
2 : -e- 2
o A
£ * 3
= 2000 \ & 5
2 ., —-A=- 8
= .
- N
= Ao
1000 . =
., ..
... AL
T
0\. O LT &
0 s -
10 2 30 40 50 60

Batch Size

FIGURE 6. Training time versus batch size, grouped by qubit count.
Convergence is observed, but the fastest training time came from smaller
qubit counts.

3) IMPACT OF LAYERS ON QNN PERFORMANCE

As shown in Figure 2, one layer of the network consists
of a block of Ry, Ry, R;, and CNOT gates [61]. Layer
counts were increased across training runs to evaluate their
impact on performance. The results are shown in Figure 7.
They indicate that increasing the layer count initially leads
to significant performance improvements, but these gains
diminish rapidly as the number of layers grows. For our
specific dataset, we observed this plateau occur between
100 and 200 layers. Euclidean distances drop sharply until
around 100 layers. After this, we observe a diminished or
even negative improvement.

These trends continue with the cosine similarity metric.
With the exception of 2 qubit networks, which categorically
perform worst beyond layer counts of 20, cosine similarity
converges until roughly 100 layers. For 3 qubit networks,
we see a 2% improvement between 100 and 200 layer
networks. Cosine similarity of 5 qubit networks diverges by
1%, and for 8 qubit networks it remains the same.

Based on Figures 5 and 7, the overall best performance
would be achieved by using a 3 qubit, 200 layer network.
It achieved the best performance in terms of Euclidean
distance (2.61), and a second-best cosine similarity (0.96).
While 5 qubit and 8 qubit networks were trained and achieved
similar performance characteristics, a 3 qubit network would
be preferred due to its faster and less resources-intensive
training times, as discussed in Section V-DI.

Larger layer counts (400, 1000, 2000) were briefly
explored, but not examined in detail, as they significantly
increased training time and resource usage without yielding

VOLUME 13, 2025

notable performance improvements. On actual Quantum
Hardware, very large layer counts are not desirable, as they
have been found to exhibit degraded performance [60].
Specifically, very large layer counts result in the Barren
Plateau Phenomenon mentioned earlier in Section II-A [55],
[56].

4) OPTIMAL QNN ARCHITECTURE PARAMETERS
We found the following parameters to give us overall best
performance:

o Qubits: 3

o Layers: 200

« Batch size: 8
This setup achieved a training loss of 0.062 and a test loss of
0.065. Based on the evaluation methods of Euclidean distance
and cosine similarity this configuration achieves accurate
results while maintaining a reasonable computational cost
and training duration.

Three qubits were selected as they provided a good balance
between computational resources and did not cause any
significant loss in performance as compared to five and eight
qubit networks. A batch size of eight was optimal because it
allowed for high accuracy without significantly slowing down
training time. The layer count was set to 200 as it was found
to provide the best overall performance for the three qubit
configuration.

Table 5 summarizes the final configurations for the TNN
and the QNN. The QNN benefited from having smaller batch
sizes, more layers, and fewer epochs. The TNN was able to
achieve good performance with a much higher batch size.
Layers between the neural network types are not equivalent
and have been differentiated as ‘““Traditional Layers” and
“Quantum Gate layers.” As shown in the quantum circuit
from Figure 2, each “layer” in a QNN consists of quantum
gates, and is not the same as a conventional layer of
neurons in a TNN. Since QNNs use the same training
techniques as TNNs, entries like batch size, learning rate, loss
function, and optimizer are directly comparable. Fields such
as qubits, conventional layers, and quantum gate layers, are
not comparable since both types of neural networks do not
use them, and are marked as N/A for such cases in Table 5.

TABLE 5. Comparison of TNN and QNN configurations.

Metric TNN QNN
Batch Size 32 8
Learning Rate .001 .001
Loss Function MSE MSE
Optimizer Adam (0.001) Adam (0.001)
Qubits N/A 3
Conventional Layers 4 N/A
Quantum Gate Layers N/A 200

By carefully tuning these parameters, a high prediction
accuracy was achieved. In Section VI, we will evaluate the

91665

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

Euclidean Distance across different layers and qubit counts

* -®- 2 Qubits
! 3 Qubits
i -4-- 5 Qubits
1
6 L] -4 - 8 Qubits
ll\‘
1
|l \‘
] ! \ A
% o\ Vil Y
35 i ~
= Ha S~
g i o
§ & u
o 4 & N e
Al Ny “~
'S ’\\\\ * S
\\\\ \’~‘~~‘~‘ \\.
3 N e —
_______________ D S LR
510 20 40 100 200
Layers

Cosine Similarity

Cosine Similarity across different layers and qubit counts

1.0
0.9
1
1
08 ®
i
!
07 i
i
I
i
I,
0.6 |
'
H
! -@- 2 Qubits
05 & 3 Qubits
-49-- 5Qubits
-4- 8 Qubits
0.4
510 20 40 100 200
Layers

FIGURE 7. Euclidean distance and cosine similarity for varying qubit and layer counts. Significant fluctuations in Euclidean distance are observed for
2-qubit networks. Networks with 3, 5, and 8 qubits show convergence as the number of layers increases, with higher-qubit networks converging more

rapidly.

TABLE 6. TNN and QNN retry time predictions for desired connection
probabilities of 0.3, 0.2, and 0.05 for each type of client.

Priority Connection Probability Pre;l;l?cljion Prglli\lcljion
High 0.30 1.06 1.20

Medium 0.20 3.80 2.60
Low 0.05 6.10 5.00

predictions made by the TNN and QNN, and compare their
performance in our simulator.

VI. EVALUATION AND COMPARISON
As shown in Section V-D, the QNN could be made to
converge to comparable performance to the TNN after
parameter tuning. To rigorously assess its consistency, one
thousand simulation runs were conducted for each type of
neural network. These were the steps for evaluation:
1Y)
2)
3)

Input a set of probabilities into the TNN.

Input the same set of probabilities into the QNN.

Run one thousand simulation runs for each set of
predictions times generated in Steps 1 and 2.

Compare the connection probabilities of clients in each
simulator run.

4)

For the remainder of the results section we will discuss
the set of probabilities and retry times shown in Table 6.
Any reasonable values can be used. These values were
selected merely as examples. Inspection of each individual
prediction does not yield any insights. The predictions for
high priority clients are quite similar between the TNN
and QNN (1.06 versus 1.20, respectively). The predictions
for medium priority workers are more than 1 second off
(3.80 versus 2.60). The same is true of the low priority

91666

workers (6.10 versus 5.00). Our evaluation techniques from
Section III, however, indicate that these results are quite
similar. The Euclidean distance between the TNN and
QNN predictions is 1.63, and the cosine similarity is
0.995. Therefore, we expect the QNN’s performance in our
simulator to be similar to the TNN’s. We will investigate this
empirically in a simulation in Section VI-A.

A. EMPIRICAL EVALUATION OF PREDICTION ACCURACY

As described in Section VI, once we have predictions for
retry times from the TNN and QNN, these predictions
are run in the simulator. Figure 8 allows us to visualize
the alignment in performance between the TNN and the
QNN, for each type of client. Five metrics are compared
for each: Total connected time, clients with O connected
time, connection probability, connection rejected count, and
connection attempts. The alignment for all client types is
almost exact. The greatest differences are in connection
attempts and connection reject count. The QNN-managed
ruleset made less frequent connection attempts, and was less
frequently rejected. The total connected times are almost
the same, and the connection probabilities varied slightly.
In all cases, the QNN connection probabilities were slightly
higher than the TNN. A higher connection probability is
not the desired behavior in this case. The objective is
to achieve the exact target probability requested for each
client type. Both networks failed at keeping the low priority
workers close to the 0.05 mark requested. However, they
both achieved similarly poor performance in this area. The
TNN achieved a slightly better connection probability for
low priority clients at 0.14 than the QNN at 0.15. This
indicates that while both networks were wrong, the QNN’s
performance is consistent with the TNN. Both networks
roughly matched their target connection probabilities for

VOLUME 13, 2025

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

High Priority Clients —— NN
Total Connected Time

—— QNN

Connection Pyobability Clients with § Connected Time

Connection Attempts ofh Rejected Count

Medium Priority Clients —— TNN
Total Connected Time QNN

Connection Pyobability Clients with § Connected Time

Connection Attempts ofi Rejected Count

Low Priority Clients —— TNN
Total Connected Time —— ONN

Connection Pyobability Clients with § Connected Time

ieh Rejected Count

FIGURE 8. Results from experiments across 1000 simulation runs for the
TNN and QNN. Performance pattern for each client shows similar
responses between TNN and QNN. All values normalized for plot
consistency.

high priority workers. The TNN’s medium priority workers
achieved the desired connection probability, while again the
QNN’s medium priority workers slightly overshot.

The graph in Figure 9 also allows us to inspect the spread
of client connection probabilities for all 1000 simulation runs.
This graph illustrates the variations and consistency across
all runs. The spread is largely symmetrical, again indicating
consistent performance between the TNN and QNN.

VOLUME 13, 2025

i Connection Probability by Client Priority

Source
m— TNN
QNN

0.8 4

o
o
L

|
|
I |
({
L

High Medium
Client Priority

Connection Probability
(=]
A
L

Low
FIGURE 9. Connection probabilities across 1000 simulation runs for QNN

and TNN. Shape of responses from TNN and QNN are similar, indicating
similar performance across all runs for the two networks.

VII. CONCLUSION AND MOVING FORWARD

In this work, we introduce a framework that employs a
generalizable system architecture designed to integrate a
QNN into wireless networks. With this framework, and the
authors’ source code available at [83], we have demonstrated
a successful integration of a QNN within a simulated wireless
network, highlighting its potential for future applications
in network optimization. With careful tuning across many
parameters, the QNN presented in this paper was able to
achieve, in emulation, similar results to a TNN. We found
that qubit counts are severely limited during emulation, due
to memory and time constraints during training.

QML holds as-yet unrealized potential to outperform
traditional machine learning in tasks requiring the processing
of data within highly complex and nonlinear systems. This
framework provides the wireless communications commu-
nity with a pathway to integrate quantum models into wireless
networks and assess their viability in addressing pressing
challenges. Through constructing a QNN and embedding it
within a simulated network, we showcased the process of
tuning and evaluating QML in an emulator, thereby exploring
its feasibility and impact in real-world applications.

This paper lays the groundwork for a variety of wireless
communications efforts that could benefit from QNNs,
including optimizations in the physical, data link, and MAC
layers. The insights presented here better equip practitioners
to leverage QML in solving complex challenges in wireless
communications. Key applications include: handling rapidly
time-varying channels, optimizing large antenna and MIMO
arrays, improving channel estimation, interference mitigation
in dense networks, adaptive beamforming, access control
optimization, or power amplifier distortion compensation.

As demonstrated in this paper, QML paves the way for
enhanced performance, reliability, and efficiency of modern

91667

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

and future wireless communication systems. We hope to
see practitioners apply the proposed framework and tuning
process in their own wireless networks.

REFERENCES

[1]

[2]

[3]

[4]
[51

[6

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

N. Abdelgaber and C. Nikolopoulos, “Overview on quantum computing
and its applications in artificial intelligence,” in Proc. IEEE 3rd Int. Conf.
Artif. Intell. Knowl. Eng. (AIKE), Dec. 2020, pp. 198-199.

McKinsey & Company. (2024). The Rise of Quantum Computing.
[Online]. Available: https://www.mckinsey.com/featured-insights/the-
rise-of-quantum-computing

S. Wang, Z. Pei, C. Wang, and J. Wu, “Shaping the future of the
application of quantum computing in intelligent transportation system,”
Intell. Converged Netw., vol. 2, no. 4, pp. 259-276, Dec. 2021.

V. V. Dixit and C. Niu, “Quantum computing for transport network design
problems,” Sci. Rep., vol. 13, no. 1, p. 12267, 2023.

X. Liu, J. Xu, K. Zheng, G. Zhang, J. Liu, and N. Shiratori, “Through-
put maximization with an Aol constraint in energy harvesting D2D-
enabled cellular networks: An MSRA-TD3 approach,” IEEE Trans.
Wireless Commun., vol. 24, no. 2, pp. 1448-1466, Feb. 2025, doi:
10.1109/TWC.2024.3509475.

K. Zheng, R. Luo, X. Liu, J. Qiu, and J. Liu, “Distributed DDPG-based
resource allocation for age of information minimization in mobile wireless-
powered Internet of Things,” IEEE Internet Things J., vol. 11, no. 17,
pp. 29102-29115, Sep. 2024, doi: 10.1109/JI0T.2024.3406044.

N. A. Khalek, D. H. Tashman, and W. Hamouda, ‘“Advances in machine
learning-driven cognitive radio for wireless networks: A survey,” IEEE
Commun. Surveys Tuts., vol. 26, no. 2, pp. 1201-1237, 2nd Quart., 2024,
doi: 10.1109/COMST.2023.3345796.

R. Pal, N. Gupta, A. Prakash, R. Tripathi, and J. J. P. C. Rodrigues, “Deep
reinforcement learning based optimal channel selection for cognitive radio
vehicular ad-hoc network,” IET Commun., vol. 14, no. 19, pp. 3464-3471,
Dec. 2020.

X. Liu, C. Sun, M. Zhou, B. Lin, and Y. Lim, “Reinforcement learning
based dynamic spectrum access in cognitive Internet of Vehicles,” China
Commun., vol. 18, no. 7, pp. 58-68, Jul. 2021.

H. Xie, R. Lin, J. Wang, M. Zhang, and C. Cheng, “Power allocation of
energy harvesting cognitive radio based on deep reinforcement learning,”
in Proc. 5th Int. Conf. Commun. Inf. Syst. (ICCIS), Oct. 2021, pp. 45-49.
D. H. Tashman, S. Cherkaoui, and W. Hamouda, “‘Performance opti-
mization of energy-harvesting underlay cognitive radio networks using
reinforcement learning,” in Proc. Int. Wireless Commun. Mobile Comput.
(IWCMC), Jun. 2023, pp. 1160-1165.

M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,” JEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039-3071, 4th Quart., 2019.
W. Zhao, T. Weng, Y. Ruan, Z. Liu, X. Wu, X. Zheng, and N. Kato,
“Quantum computing in wireless communications and networking:
A tutorial-cum-survey,” IEEE Commun. Surveys Tuts., early access,
Nov. 20, 2025, doi: 10.1109/COMST.2024.3502762.

P. Botsinis, D. Alanis, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng,
and L. Hanzo, “Quantum search algorithms for wireless communica-
tions,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1209-1242,
2nd Quart., 2019.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M.
Asaduzzaman, “Quantum machine learning for 6G communication
networks: State-of-the-Art and vision for the future,” IEEE Access, vol. 7,
pp. 46317-46350, 2019.

T. Q. Duong, J. A. Ansere, B. Narottama, V. Sharma, O. A. Dobre, and
H. Shin, “Quantum-inspired machine learning for 6G: Fundamentals,
security, resource allocations, challenges, and future research directions,”
IEEE Open J. Veh. Technol., vol. 3, pp. 375-387, 2022.

B. Narottama, Z. Mohamed, and S. Aissa, ‘“Quantum machine learning
for next-G wireless communications: Fundamentals and the path ahead,”
1IEEE Open J. Commun. Soc., vol. 4, pp. 2204-2224, 2023.

B. Narottama and S. Y. Shin, ‘“Quantum neural networks for
resource allocation in wireless communications,” IEEE Trans.
Wireless Commun., vol. 21, no. 2, pp. 1103-1116, Feb. 2022, doi:
10.1109/TWC.2021.3102139.

F. Zaman, A. Farooq, M. A. Ullah, H. Jung, H. Shin, and M. Z.
Win, “Quantum machine intelligence for 6G URLLC,” IEEE Wireless
Commun., vol. 30, no. 2, pp. 22-30, Apr. 2023.

91668

(20]

[21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

A. Singh, K. Dev, H. Siljak, H. D. Joshi, and M. Magarini, ‘“‘Quantum
internet—Applications, functionalities, enabling technologies, challenges,
and research directions,” IEEE Commun. Surveys Tuts., vol. 23, no. 4,
pp. 2218-2247, 4th Quart., 2021.

Z. Li, K. Xue, J. Li, L. Chen, R. Li, Z. Wang, N. Yu, D. S. L. Wei,
Q. Sun, and J. Lu, “Entanglement-assisted quantum networks: Mechan-
ics, enabling technologies, challenges, and research directions,” IEEE
Commun. Surveys Tuts., vol. 25, no. 4, pp.2133-2189, 4th Quart.,
2023.

Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in
quantum computing and communications,” IEEE Commun. Surveys Tuts.,
vol. 25, no. 2, pp. 1059-1094, Feb. 2023.

J. L. O’Brien, “Optical quantum computing,” Science, vol. 318, no. 5856,
pp. 1567-1570, Dec. 2007.

Q. A. Memon, M. Al Ahmad, and M. Pecht, “Quantum computing:
Navigating the future of computation, challenges, and technological
breakthroughs,” Quantum Rep., vol. 6, no. 4, pp. 627-663, Nov. 2024, doi:
10.3390/quantum6040039.

D. S. Srivastava, D. M. Malik, and S., “Advances in quantum
computing: A comprehensive review of quantum algorithms and
applications in physics,” Int. J. Phys. Math. Sci., vol. 5, no. 1, pp. 50-56,
Jul. 2023. [Online]. Available: https://www.physicsjournal.net/archives/
2023.v5.i1.A.60/advances-in-quantum-computing-a-comprehensive-
review-of-quantum-algorithms-and-applications-in-physics

R. Mandelbaum, A. Corcoles, and J. Gambetta. IBM’s Big Bet on the
Quantum-Centric Supercomputer. Accessed: Sep. 19, 2024. [Online].
Available: https://spectrum.ieee.org/ibm-quantum-computer-2668978269
S. K. Sood and Pooja, “Quantum computing review: A decade of
research,” IEEE Trans. Eng. Manag., vol. 71, pp. 6662-6676, 2023, doi:
10.1109/TEM.2023.3284689.

M. Settembre, “A 5G core network challenge: Combining flexibility and
security,” in Proc. AEIT Int. Annu. Conf. (AEIT), Milan, Italy, Oct. 2021,
pp. 1-6, doi: 10.23919/AEIT53387.2021.9627014.

F. Arute et al., ““Quantum supremacy using a programmable superconduct-
ing processor,” Nature, vol. 574, no. 7779, pp. 505-510, Oct. 2019, doi:
10.1038/s41586-019-1666-5.

C. Zhan and H. Gupta, “Quantum sensor network algorithms for
transmitter localization,” in Proc. IEEE Int. Conf. Quantum Com-
put. Eng. (QCE), Bellevue, WA, USA, Sep. 2023, pp. 659-669, doi:
10.1109/QCE57702.2023.00081.

E. Colella, L. Bastianelli, M. Khalily, F. Moglie, Z. Peng, and
G. Gradoni, “Quantum optimisation of reconfigurable surfaces in
complex propagation environments,” in Proc. 18th Eur. Conf. Anten-
nas Propag. (EuCAP), Glasgow, U.K., Mar. 2024, pp.1-5, doi:
10.23919/EUCAP60739.2024.10500955.

S. Park, J. P. Kim, C. Park, S. Jung, and J. Kim, “Quantum multi-
agent reinforcement learning for autonomous mobility cooperation,” IEEE
Commun. Mag., vol. 62, no. 6, pp. 106-112, Jun. 2024.

J. Prados-Garzon, T. Taleb, L. Chinchilla-Romero, and M. Shokrnezhad,
“Deterministic 6GB-assisted quantum networks with slicing support:
A new 6GB use case,” IEEE Netw., vol. 38, no. 1, pp.87-95,
Jan. 2024.

B. B. Yousif and E. E. Elsayed, ‘“Performance enhancement of an
orbital-angular-momentum-multiplexed free-space optical link under
atmospheric turbulence effects using spatial-mode multiplexing
and hybrid diversity based on adaptive MIMO equalization,” IEEE
Access, vol. 7, pp. 84401-84412, 2019, doi: 10.1109/ACCESS.2019.
2924531.

J. L. Hevia, G. Peterssen, C. Ebert, and M. Piattini, ‘““Quantum computing,”
IEEE Softw., vol. 38, no. 5, pp. 7-15, Sep. 2021.

A. M. Steane, “Error correcting codes in quantum theory,” Phys.
Rev. Lett., vol. 77, no. 5, pp. 793-797, Jul. 1996, doi: 10.1103/PHYS-
REVLETT.77.793.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202,
Sep. 2017, doi: 10.1038/nature23474.

S. C. Kak, “Quantum neural computing,” in Advances in Imaging and
Electron Physics, vol. 94. Amsterdam, The Netherlands: Elsevier, 1995,
pp. 259-313, doi: 10.1016/S1076-5670(08)70147-2.

R. Chrisley, “Quantum learning,” in Proc. New Directions Cogn. Sci.
Int. Symp., Aug. 1995, pp. 10-11. Accessed: Oct. 20, 2024. [Online].
Available: https://www.academia.edu/2623366/Quantum_learning

VOLUME 13, 2025

http://dx.doi.org/10.1109/TWC.2024.3509475
http://dx.doi.org/10.1109/JIOT.2024.3406044
http://dx.doi.org/10.1109/COMST.2023.3345796
http://dx.doi.org/10.1109/COMST.2024.3502762
http://dx.doi.org/10.1109/TWC.2021.3102139
http://dx.doi.org/10.3390/quantum6040039
http://dx.doi.org/10.1109/TEM.2023.3284689
http://dx.doi.org/10.23919/AEIT53387.2021.9627014
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1109/QCE57702.2023.00081
http://dx.doi.org/10.23919/EUCAP60739.2024.10500955
http://dx.doi.org/10.1109/ACCESS.2019.2924531
http://dx.doi.org/10.1109/ACCESS.2019.2924531
http://dx.doi.org/10.1103/PHYSREVLETT.77.793
http://dx.doi.org/10.1103/PHYSREVLETT.77.793
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1016/S1076-5670(08)70147-2

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

IEEE Access

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S. Gupta and R. K. P. Zia, “Quantum neural networks,” J. Comput. Syst.
Sci., vol. 63, no. 3, pp. 355-383, Nov. 2001, doi: 10.1006/jcss.2001.1769.
Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum neural net-
works: Concepts, applications, and challenges,” in Proc. 12th Int.
Conf. Ubiquitous Future Netw. (ICUFN), Aug. 2021, pp. 413-416, doi:
10.1109/ICUFN49451.2021.9528698.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge, U.K.: Cambridge
Univ. Press, 2010.

M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol. 530,
no. 7589, pp. 144—147, Feb. 2016, doi: 10.1038/530144a.

P. A. M. Dirac, “The principles of quantum mechanics,” in International
Series of Monographs on Physics. London, U.K.: Oxford Univ. Press,
1982.

J. J. Sakurai and J. Napolitano, “Modern quantum mechanics,”
in Quantum Physics, Quantum Information and Quantum Computa-
tion. Cambridge, U.K.: Cambridge Univ. Press, 2020, doi: 10.1017/
9781108587280.

W. J. Yun, Y. Kwak, J. P. Kim, H. Cho, S. Jung, J. Park, and J. Kim,
“Quantum multi-agent reinforcement learning via variational quantum
circuit design,” in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2022, doi: 10.1109/ICDCS54860.2022.00151.

R. Coelho, A. Sequeira, and L. Paulo Santos, “VQC-based reinforcement
learning with data re-uploading: Performance and trainability,” 2024,
arXiv:2401.11555.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit
learning,” Phys. Rev. A, Gen. Phys., vol. 98, no. 3, Sep. 2018,
Art. no. 032309, doi: 10.1103/PHYSREVA.98.032309.

F. A. Cardenas-Lépez, L. Lamata, J. C. Retamal, and E. Solano,
“Multiqubit and multilevel quantum reinforcement learning with quantum
technologies,” PLoS ONE, vol. 13, no. 7, Jul. 2018, Art. no. e0200455, doi:
10.1371/journal.pone.0200455.

S. Oh, J. Choi, J-K. Kim, and J. Kim, “Quantum convolutional
neural network for resource-efficient image classification: A quantum
random access memory (QRAM) approach,” in Proc. Int. Conf. Inf.
Netw. (ICOIN), Jan. 2021, pp. 50-52, doi: 10.1109/ICOIN50884.2021.
9333906.

J. Tian, X. Sun, Y. Du, S. Zhao, Q. Liu, K. Zhang, W. Yi, W. Huang,
C. Wang, X. Wu, M.-H. Hsieh, T. Liu, W. Yang, and D. Tao, “Recent
advances for quantum neural networks in generative learning,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 10, pp. 12321-12340,
Oct. 2023, doi: 10.1109/TPAMI.2023.3272029.

Q. C. Nguyen, L. B. Ho, L. Nguyen Tran, and H. Q. Nguyen, “Qsun:
An open-source platform towards practical quantum machine learning
applications,” Mach. Learn., Sci. Technol., vol. 3, no. 1, Mar. 2022,
Art. no. 015034, doi: 10.1088/2632-2153/ac5997.

M. Incudini, M. Grossi, A. Ceschini, A. Mandarino, M. Panella,
S. Vallecorsa, and D. Windridge, “Resource saving via ensemble tech-
niques for quantum neural networks,” Quantum Mach. Intell., vol. 5, no. 2,
pp. 9-17, Sep. 2023, doi: 10.1007/342484-023-00126-z.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, May 2015, doi: 10.1038/nature14539.

J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven,
“Barren Plateaus in quantum neural network training landscapes,” Nature
Commun., vol. 9, no. 1, p. 4812, Nov. 2018, doi: 10.1038/s41467-018-
07090-4.

M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function
dependent barren Plateaus in shallow parametrized quantum circuits,”
Nature Commun., vol. 12, no. 1, p. 1791, Mar. 2021, doi: 10.1038/s41467-
021-21728-w.

I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Phys., vol. 15, no. 12, pp. 1273-1278, Dec. 2019, doi:
10.1038/541567-019-0648-8.

S.Y. Chen, C. H. Yang, J. Qi, P-Y. Chen, X. Ma, and H.-S. Goan, ‘“Vari-
ational quantum circuits for deep reinforcement learning,” IEEE Access,
vol. 8, pp. 141007-141024, 2020, doi: 10.1109/ACCESS.2020.3010470.

L.-H. Gong, J.-J. Pei, T.-F. Zhang, and N.-R. Zhou, “Quantum
convolutional neural network based on variational quantum
circuits,” Opt. Commun., vol. 550, Jan. 2024, Art. no. 129993, doi:
10.1016/j.0optcom.2023.129993.

Y. Song, J. Li, Y. Wu, S. Qin, Q. Wen, and F. Gao, “A resource-efficient
quantum convolutional neural network,” Frontiers Phys., vol. 12, pp. 2-9,
Apr. 2024, doi: 10.3389/fphy.2024.1362690.

VOLUME 13, 2025

(61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

[72]

(73]

(74]

(751

[76]

(77]
(78]

[79]

(80]

(81]
(82]

(83]

H. Wang, Z. Liang, J. Gu, Z. Li, Y. Ding, W. Jiang, Y. Shi, D. Pan, F. Chong,
and S. Han, “TorchQuantum case study for robust quantum circuits,” in
Proc. 41st IEEE/ACM Int. Conf. Comput.-Aided Design. New York, NY,
USA: ACM, Dec. 2022, pp. 1-9, doi: 10.1145/3508352.3561118.

H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, F. T. Chong, and S. Han,
“QuantumNAS: Noise-adaptive search for robust quantum circuits,” in
Proc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Apr. 2022,
pp. 692-708, doi: 10.1109/HPCA53966.2022.00057.

Y. Ma, R. Han, and W. Wang, ‘“Prediction-based portfolio opti-
mization models using deep neural networks,” IEEE Access, vol. 8,
pp. 115393-115405, 2020, doi: 10.1109/ACCESS.2020.3003819.

Y. Assiri, “Stochastic optimization of plain convolutional neural networks
with simple methods,” 2020, arXiv:2001.08856.

Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss
functions in machine learning,” Ann. Data Sci., vol. 9, no. 2, pp. 187-212,
Apr. 2022, doi: 10.1007/s40745-020-00253-5.

L. Ciampiconi, A. Elwood, M. Leonardi, A. Mohamed, and A. Rozza,
“A survey and taxonomy of loss functions in machine learning,” 2023,
arXiv:2301.05579.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

R. M. Schmidt, F. Schneider, and P. Hennig, ‘“Descending through a
crowded valley-benchmarking deep learning optimizers,” in Proc. 38th Int.
Conf. Mach. Learning, Jul. 2021, pp. 9367-9376. Accessed: Oct. 6, 2024.
[Online]. Available: https://proceedings.mlr.press/v139/schmidt21a.html
J. Lin, H. Yin, W. Ping, P. Molchanov, M. Shoeybi, and S. Han, “VILA:
On pre-training for visual language models,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2024, pp. 26679-26689, doi:
10.1109/CVPR52733.2024.02520.

W. R. W. Mohd and L. Abdullah, “Similarity measures of Pythagorean
fuzzy sets based on combination of cosine similarity measure and
Euclidean distance measure,” AIP Conf. Proc., vol. 2018, pp. 1-5,
Jun. 2018, Art. no. 030017, doi: 10.1063/1.5041661.

T. Srikaewsiew, K. Khianchainat, A. Tharatipyakul, S. Pongnumkul, and
S. Kanjanawattana, “A comparison of the instructor-trainee dance dataset
using cosine similarity, Euclidean distance, and angular difference,” in
Proc. 26th Int. Comput. Sci. Eng. Conf. (ICSEC), Dec. 2022, pp. 235-240,
doi: 10.1109/ICSEC56337.2022.10049368.

M. R. da Silva, O. A. de Carvalho, R. F. Guimaries, R. A. T. Gomes, and
C. R. Silva, “Wheat planted area detection from the MODIS NDVI time
series classification using the nearest neighbour method calculated by the
Euclidean distance and cosine similarity measures,” Geocarto Int., vol. 35,
no. 13, pp. 1400-1414, Oct. 2020, doi: 10.1080/10106049.2019.1581266.
C. X. Wang and W. P. Tay, ““Semi-nonparametric estimation of distribution
divergence in non-Euclidean spaces,” 2022, arXiv:2204.02031.

P.-E. Danielsson, “Euclidean distance mapping,” Comput. Graph. Image
Process., vol. 14, no. 3, pp.227-248, Nov. 1980, doi: 10.1016/0146-
664X(80)90054-4.

X. Peng, H. Liu, and X. Zhu, “A study on similarity and difficulty
evaluation of elementary school mathematics application problems based
on cosine similarity and AHP” Curriculum Teach. Methodol., vol. 6,
no. 20, pp. 108-115, Nov. 2023, doi: 10.23977/curtm.2023.062017.

R. T. Hassan and N. S. Ahmed, “Evaluating of efficacy semantic
similarity methods for comparison of academic thesis and dissertation
texts,” Sci. J. Univ. Zakho, vol. 11, no. 3, pp. 396402, Aug. 2023, doi:
10.25271/sju0z.2023.11.3.1120.

Wireless LANs, IEEE Standards Association, IEEE Standard 802.11, 2023.
[Online]. Available: https://standards.ieee.org/ieee/802.11/7

Bluetooth SIG. Specification of the Bluetooth System. Accessed: Oct. 2023.
[Online]. Available: https://www.bluetooth.com/specifications/specs/
IEEE Standard for Low-Rate Wireless Networks, IEEE IEEE Stan-
dard 802.15.4-2020, 2023. [Online]. Available: https://standards.ieee.
org/ieee/802.15.4/7029/.

LoRa Alliance. LoRaWAN Specification VI1.1. Accessed: Oct. 2023.
[Online]. Available: https://resources.lora-alliance.org/technical-
specifications/lorawan-specification-v1-1.

ETSI. DECT—Digital Enhanced Cordless Telecommunications. Accessed:
Oct. 2023. [Online]. Available: https://www.etsi.org/technologies/dect

A. S. Tanenbaum and D. Wetherall, Computer Networks. London, U.K.:
Pearson, 2010.

S. Siddiqui, J. Holzer, and J. Malcarne. (2024). Do-It-Yourself Quantum
Neural Networks for Wireless Comunication Optimization. [Online].
Available: https://github.com/TREXJET/DIY_QNN_Wireless_Paper

91669

http://dx.doi.org/10.1006/jcss.2001.1769
http://dx.doi.org/10.1109/ICUFN49451.2021.9528698
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.1017/9781108587280
http://dx.doi.org/10.1017/9781108587280
http://dx.doi.org/10.1109/ICDCS54860.2022.00151
http://dx.doi.org/10.1103/PHYSREVA.98.032309
http://dx.doi.org/10.1371/journal.pone.0200455
http://dx.doi.org/10.1109/ICOIN50884.2021.9333906
http://dx.doi.org/10.1109/ICOIN50884.2021.9333906
http://dx.doi.org/10.1109/TPAMI.2023.3272029
http://dx.doi.org/10.1088/2632-2153/ac5997
http://dx.doi.org/10.1007/s42484-023-00126-z
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1038/s41467-021-21728-w
http://dx.doi.org/10.1038/s41467-021-21728-w
http://dx.doi.org/10.1038/s41567-019-0648-8
http://dx.doi.org/10.1109/ACCESS.2020.3010470
http://dx.doi.org/10.1016/j.optcom.2023.129993
http://dx.doi.org/10.3389/fphy.2024.1362690
http://dx.doi.org/10.1145/3508352.3561118
http://dx.doi.org/10.1109/HPCA53966.2022.00057
http://dx.doi.org/10.1109/ACCESS.2020.3003819
http://dx.doi.org/10.1007/s40745-020-00253-5
http://dx.doi.org/10.1109/CVPR52733.2024.02520
http://dx.doi.org/10.1063/1.5041661
http://dx.doi.org/10.1109/ICSEC56337.2022.10049368
http://dx.doi.org/10.1080/10106049.2019.1581266
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.23977/curtm.2023.062017
http://dx.doi.org/10.25271/sjuoz.2023.11.3.1120

IEEE Access

S. Siddiqui et al.: Framework for Implementing Quantum Neural Networks in Wireless Communications

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

A. Ahmadkhaniha and M. Bathaee, “Noisy intermediate-scale quantum
computer-compatible error correction of quantum data using modified
dissipative quantum neural networks,” Phys. Rev. A, Gen. Phys., vol. 109,
no. 3, Mar. 2024, Art. no. 032620, doi: 10.1103/physreva.109.032620.

M. Kashif and S. Al-Kuwari, “The impact of cost function globality and
locality in hybrid quantum neural networks on NISQ devices,” Mach.
Learning: Sci. Technol., vol. 4, no. 1, Mar. 2023, Art. no. 015004, doi:
10.1088/2632-2153/acb12f.

A. Furutanpey, J. Barzen, M. Bechtold, S. Dustdar, F. Leymann, P. Raith,
and F. Truger, “Architectural vision for quantum computing in the edge-
cloud continuum,” in Proc. IEEE Int. Conf. Quantum Softw. (QSW),
Jul. 2023, pp. 88-103, doi: 10.1109/QSW59989.2023.00021.

Y. Kawase, “Distributed quantum neural networks via partitioned features
encoding,” Quantum Mach. Intell., vol. 6, no. 1, p. 15, Mar. 2024, doi:
10.1007/s42484-024-00153-4.

A.Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
and S. Chintala, “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., Red
Hook, NY, USA: Curran Associates, 2019, pp. 8026-8037.

Cirg Developers, Zenodo, Google Quantum Al, Mountain View, CA, USA,
May 29, 2024.

A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lish-
man, J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross,
B. R. Johnson, and J. M. Gambetta, “Quantum computing with giskit,”
2024, arXiv:2405.08810.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn., 2015, pp. 448-456.

S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing stage,”
2015, arXiv:1503.06462.

S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, “Hybrid quantum-classical
algorithms and quantum error mitigation,” J. Phys. Soc. Jpn., vol. 90, no. 3,
Mar. 2021, Art. no. 032001, doi: 10.7566/jpsj.90.032001.

A. Abbas et al., “Challenges and opportunities in quantum optimization,”
2023, arXiv:2312.02279.

A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll,
“Quantum annealing: A new method for minimizing multidimensional
functions,” Chem. Phys. Lett., vol. 219, nos. 5-6, pp. 343-348, Mar. 1994,
doi: 10.1016/0009-2614(94)00117-0.

A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R.
Johnson, and J. M. Gambetta, ‘“Quantum computing with Qiskit,” 2024,
arXiv:2405.08810.

V. Bergholm et al., “PennyLane: Automatic differentiation of hybrid
quantum-classical computations,” 2018, arXiv:1811.04968.

SALIK SIDDIQUI (Student Member, IEEE)
received the B.S. and ML.S. degrees in electrical and
computer engineering from Worcester Polytechnic
Institute, in 2014 and 2024, respectively. He is
currently an Engineer with NVIDIA, specializing
in artificial intelligence. His research interests
include artificial intelligence for engineering sys-
tems, applied quantum computing, quantum com-
munication, wireless communication networks in
space, and distributed systems.

91670

JUSTIN HOLZER (Student Member, IEEE)
received the B.S. degree in electrical engineering
from The University of Utah, Salt Lake City,
UT, USA, in 2001, the M.S. degree in electrical
engineering from Brigham Young University,
Provo, UT, USA, in 2004, and the Master of
Business Administration (M.B.A.) degree from
the University of California at Davis, Davis, CA,
USA, in 2007. He is currently pursuing the Ph.D.
[% A degree in electrical and computer engineering with
Worcester Polytechnic Institute (WPI), Worcester, MA, USA. In 2015,
he joined the MIT Lincoln Laboratory, Lexington, MA, USA, as a
Technical Staff. His research interests include wireless communications,
signal processing, cellular communications, machine learning, and quantum
computing applications.

JOSHUA MALCARNE (Student Member, IEEE)
received the B.S. and M.S. degrees in computer
science from WPI. He is a member with the WPI
Wireless Innovation Laboratory, with research
interests focused on machine learning and dis-
tributed computing. He has also completed work
in pulse compression, signal design, and related
domains during his academic career.

GALAHAD M. B. WERNSING received the B.S.,
M.S., and Ph.D. degrees in electrical and computer
engineering from Worcester Polytechnic Institute,
in 2019, 2020, and 2024, respectively. During
the Covid lockdowns, they started Holy Grail
Laboratories, a company focused on upgrading
vintage automotive electronics and has since
grown the company to be a global leader in
fuse box modernization. Their research interests
include wireless communications, novel radar
systems, low-level computer security, and analog circuits.

ALEXANDER M. WYGLINSKI (Senior Member,
IEEE) received the B.Eng. and Ph.D. degrees
in electrical engineering from McGill University,
Montreal, Canada, in 1999 and 2005, respectively,
and the M.Sc.(Eng.) degree in electrical engineer-
ing from Queen’s University, Kingston, Canada,
in 2000. He is currently the Associate Dean of
Graduate Studies, a Professor of electrical engi-
neering and robotics engineering, and the Director
of the Wireless Innovation Laboratory, Worcester
Polytechnic Institute (WPI), Worcester, MA, USA. His current research
interests include wireless communications, cognitive radio, machine learning
for wireless systems, software-defined radio prototyping, connected and
autonomous vehicles, and dynamic spectrum sensing, characterization, and
access. He served as the President of the IEEE Vehicular Technology Society,
from 2018 to 2019, as well as a Technical Editor for IEEE Communications
Magazine, from 2011 to 2021.

VOLUME 13, 2025

http://dx.doi.org/10.1103/physreva.109.032620
http://dx.doi.org/10.1088/2632-2153/acb12f
http://dx.doi.org/10.1109/QSW59989.2023.00021
http://dx.doi.org/10.1007/s42484-024-00153-4
http://dx.doi.org/10.7566/jpsj.90.032001
http://dx.doi.org/10.1016/0009-2614(94)00117-0

