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Abstract. The transition from a hydrodynamical modeling to a particle-based approach is a
crucial element of the description of high-energy heavy-ion collisions. Assuming this ”freeze out”
happens instantaneously at each point of the expanding medium, we show that the local phase-
space distribution of the emitted particles is asymmetric in momentum space. This suggests
the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how
observables depend on the amount of momentum-space anisotropy at freeze out and how smaller
or larger anisotropies allow for different values of the freeze-out temperature.

1. The need for a kinetic freeze out
Hydrodynamics has emerged as being very successful at describing a large amount of the
evolution of the fireball created in a ultrarelativistic heavy ion collision.

However, hydrodynamics is an effective field theory which assumes the medium to be
continuous. An appropriate measure for this continuity is the Knudsen number Kn, defined
as the ratio between the mean free path and some macroscopic length scale like the system size.
For hydrodynamics to be applicable, this number has to be small. Even if at the beginning of
the evolution the condition Kn � 1 is fulfilled, yet as the fireball expands, it becomes more
dilute and the Knudsen number grows. Obviously, at the very end detectors detect individual
particles, which have long ceased to interact with each other. Going backwards in time to the
point where interactions became rare, this amounts to a very large mean free path (and Kn), in
which case kinetic theory provides an appropriate modeling of the particles evolution.

Thus, the description of the fireball evolution needs to include a prescription for switching
from the hydrodynamic approach at Kn � 1 to the transport models used at Kn � 1. This
prescription, which for consistency should conserve all relevant quantum numbers of the fireball
as well as its local energy and momentum densities, is the kinetic freeze out. Note that in the
simplified application we shall present hereafter, we consider the direct conversion from a fluid
to free particles, omitting the stage consisting of interacting particles described by a kinetic
theory.

2. The Cooper–Frye formula
The basic idea of the Cooper–Frye freeze out is that the medium description changes suddenly
from a fluid-dynamical to a kinetic one as the medium is passing through a hypersurface Σ [1].
From this point on, the particles decouple from the fluid and, assuming the emitted particles
are then free, their momenta are frozen. Σ is a closed three-dimensional surface in space-time,
since eventually the whole fluid has to freeze out.

http://creativecommons.org/licenses/by/3.0
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Introducing the on-shell phase-space distribution f(xµ, ~p), the Lorentz-invariant particle
spectrum, which basically expresses the number of particles per momentum interval, is given by
the Cooper–Frye integral

Ep
d3N

d3~p
=

1

(2π)3

∫
Σ
f(xµ, ~p) pµd3σµ(xµ), (1)

where dσµ(xµ) is a unit vector standing perpendicular to the hypersurface Σ. For the particle
distribution function f(xµ, ~p) at freeze out entering the Cooper–Frye formula, popular choices
are the Maxwell–Jüttner distribution, or its quantum generalizations to fermions and bosons,
possibly with terms accounting for dissipative effects in the fluid.

An important issue is now to characterize the hypersurface Σ. It is often assumed to
correspond to the space-time points where some property of the fluid (e.g. its temperature
T , or its particle-number or energy density) reaches some “critical” value, or when a given
proper time is reached.

One problem here is that there are regions of Σ where dσµdσ
µ < 0, which likely leads to

negative contributions to the particle spectrum (1). However the idea of the particle spectrum
is just to count particles, not quantum numbers, so that negative contributions are unexpected
(for a proposal on how to deal with this problem, see e.g. Ref. [2]).

A second issue with the Cooper–Frye freeze out is the dependence of the computed observables
on the initially chosen freeze out parameter, which characterizes Σ. Since the hypersurface is not
associated with a phase transition, there is no reason why an observable should depend on the
point where a theoretical physicist changes her/his “tool” to describe the medium. Accordingly,
one should rather expect that nature performs a smooth transition between the two asymptotic
models valid at small and for large Knudsen numbers.

Because of its simplicity, the Cooper–Frye recipe is however much too attractive to be
discarded. Our idea is, instead of just gluing together the two models (hydrodynamic and
kinetic theory), to try to first tune them, so that they fit together in a better way. The desired
result should be a much weaker (or almost no) dependence of observables on the point where
we glued together the two models.

3. Anisotropic Cooper-Frye freeze out
3.1. Motivation
In our opinion, one way of achieving this “improved gluing” is to resort to an explicitly
anisotropic distribution at freeze out [3]. A first hint towards that direction comes from a series of
studies, starting with Ref. [4], of non-relativistic hypersonic flows which expand through a nozzle
into vacuum. The conclusion of these studies is that the frozen-out particle distribution can be
characterized by two effective temperatures, which stand on the one hand for the “thermal”
motion perpendicular to the streamlines (T⊥) and on the other hand for the motion parallel
to the streamlines (T‖). We are currently working on a generalization of these studies to the
relativistic heavy ion collision case.

A second motivation for invoking a momentum-asymmetric phase-space distribution is that
there is already a transition between models in the description of heavy ion collisions, namely
from the pre-equilibrium model(s) to hydrodynamics, which can be improved by the use of
anisotropic hydrodynamics, see e.g. Ref. [5].

3.2. Implementation
The basic idea of the anisotropic freeze out [3] is to implement an anisotropy in the phase-space
distribution along the radial direction. As ansatz for the functional form of f(xµ, ~p), we used
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the Romatschke–Strickland distribution [6], which reads in the local rest frame:

fLRFaniso(x
µ, ~p,Λ, ξ) ∝ exp

(
−
√

(p · u)2 + ξ(xµ)(pr)2

Λ(xµ)

)
, (2)

where ξ(xµ) is the anisotropy parameter and Λ(xµ) the “anisotropic temperature”, which is
going to be the temperature in the case of isotropy. To implement this distribution function
into the Cooper–Frye formula, one must boost it into the laboratory frame.

As a consequence of using the Romatschke–Strickland distribution, we get an additional
parameter, which gives us the possibility to tune the anisotropy in the radial direction. In
principle this parameter has only the lower boundary −1, since we need the distribution function
to be real valued. In order to generate a higher effective temperature/pressure in the radial
direction, we need to choose ξ to be less than 0.

Because we are up to now just interested in how the technique of the anisotropic freeze
out works, we inserted a blast-wave like fluid velocity profile of the form uφ = uη = 0,
ur = ūmax

r
R (1 + 2

∑
n Vn cos(nφ)), where we chose the parameters to be R = 10 fm,

τfo = 7.5 fm/c, V2 = V3 = 0.05 and we investigated the emission of pions. Because of the
lack of a microscopical model we ignored a possible position-space dependence of the anisotropic
temperature Λ and the anisotropy parameter ξ. Now that we have all ingredients (1) and (2)
together, we are able to compute observables for the anisotropic freeze out.

4. Observables
4.1. Particle spectra
The first observable which we present is the transverse particle spectrum. We plotted this
for various values for the anisotropy parameter in Figure 1. As one can see, the smaller the
anisotropy parameter is chosen, the more particle one will detect with higher momenta. This
behavior is to be expected, since in anisotropic hydrodynamics one obtains a higher pressure in
a direction if one chooses the corresponding anisotropy parameter to be negative. Such a higher
pressure will then push the particles to higher momenta in the out-direction, which results in
the deviations of the ideal momentum spectrum. As a cross-check we plotted the spectrum for
positive ξ-values as well.

In Figure 2 we now “optimized” (by eye) the pairs of anisotropy parameter ξ and anisotropic
temperature Λ. As one can see there, we are able to reproduce the same particle spectrum
while varying the “temperature” over a range of 30 MeV. This behavior is a first hint that the
additional parameter ξ works the way it should, relaxing the need for a well-defined value of the
freeze-out temperature
4.2. Anisotropic flow coefficients vn
The second observables which we now present are the anisotropic flow coefficients vn. These
coefficients arise through a Fourier series of the particle spectrum in the momentum angle φp.
We computed the coefficients up to v5. They all follow the same trend, so here we are only
showing the elliptic flow coefficient v2.

In Figure 3 we plotted v2 as a function of momentum for different values of the anisotropy.
As one can see, v2 decreases when the anisotropy decrease. This trend reflects the fact that
the negative ξ induces a higher effective temperature in the out-direction. This higher effective
temperature results in a higher thermal motion along this direction, which then overcomes the
effect of collective motion that is measured by the flow coefficient v2.

Now we followed the same procedure as before and optimized the pairs of anisotropic
temperature Λ and anisotropy parameter ξ, so that we are able to reproduce the same observable
although we vary the value of the temperature at freeze out. The results are plotted in Figure
4. Again we are able to reproduce nearly the same v2 for an freeze out temperature interval of
nearly 30 MeV.
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to deviations from the almost exponential shape valid in the
isotropic case. More precisely, the spectrum becomes harder
when ξ goes to increasingly negative values. This clearly
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Fig. 1 Transverse spectra for fixed " and varying anisotropy parame-
ter ξ

reflects the growing radial pressure—or equivalently the
effective radial temperature "/

√
1 + ξ—obtained by assum-

ing ξ < 0. In Fig. 2, we display the various HBT radii,
together with the ratio Rout/Rside, as functions of the pair
transverse momentum KT . To be more precise, the radii R2

side
and R2

long are the fan.-weighted averages over the freeze-out
hypersurface of y2 = r2 sin2 φ and z2 = τ 2 sinh2 ς , respec-
tively, while R2

out is the average of (x − KT t/EK )
2, where

x = r cos φ and t = τ cosh ς .
As was just mentioned, negative values of ξ amount to a

larger “radial temperature”, and thus to higher thermal veloc-
ities in the outwards direction. Since at the same time the
emission duration barely changes, this naturally leads to a
larger Rout, as observed in the upper left panel, as well as
to a larger ratio Rout/Rside (lower right panel) In turn, the
longitudinal radius Rlong shown in the lower left panel is
to a large extent unaffected by ξ ; this could be anticipated
since the longitudinal part of the occupation factor remains
unchanged. On the other hand, the behaviour of the sidewards
radius Rside with varying ξ seen in the upper right panel of
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Figure 1. Transverse particle spectrum for
various anisotropies ξ.
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Fig. 2 is more involved, and we did not find a satisfactory
explanation describing all its details.

The transverse-momentum dependence of elliptic flow
v2 for various ξ values is shown in Fig. 3; the triangular
flow v3 follows exactly the same trend, so that we do not
show it. Thus, anisotropic flow decreases when ξ becomes
more negative, that is, as the radial temperature grows. This
behaviour reflects the fact that an increase in random ther-
mal motion tends to dilute the effect of directed collective
behaviour encoded in the flow velocity and its anisotropies,
i.e., it diminishes the vn values, as seen here.

Before going any further, let us note that in a more com-
plete approach, the local anisotropy parametrised in this work
by ξ should not be uniform, but rather position-dependent.
In particular, ξ (or a similar parameter) would normally be
a function of the azimuthal angle φ, parallelling the cor-
responding dependence of the velocity profile, as we now
argue.2 The fluid–particle conversion, whose modelling ξ is
supposed to facilitate, roughly happens when the fluid expan-
sion rate ∇µuµ(x) becomes comparable to that of elastic
scatterings. Since the flow velocity varies with φ, so does the
expansion rate, which motivates an azimuthal dependence
of ξ . On the other hand, the scattering rate depends on the
particle density, obtained by integrating the occupancy factor
over momentum, and on the relative velocity of particles. As
follows from a straightforward change of integration vari-
able [16], the density is inversely proportional to

√
1 + ξ(x),

thus it is a priori φ-dependent. In turn, the typical relative
velocity is controlled by the (effective) temperature(s) of
the decoupling medium, thus function of φ as well…All in
all, every relevant physical quantity depends on azimuth, so
it is non-trivial—and within the scope of this paper rather
academic—to determine the actual dependence of ξ . In any

2 Similarly, ! also might depend on φ, yet we leave this possibility
aside to simplify the discussion.
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Fig. 4 Transverse spectra for various choices of ! and ξ

case, there will be such a dependence, which will affect the
anisotropic flow coefficients vn . The results shown in Figs. 3
and 6 are thus to be taken with a grain of salt, since they
neglect this ingredient.

After having investigated the influence of ξ when all other
parameters are fixed, we now want to illustrate the degen-
eracy introduced by this new parameter, showing that very
similar values of the observables can be obtained with dif-
ferent pairs (!, ξ). Note that we did not attempt to optimise
the results we now report by fine tuning the parameters, as
will be made apparent by the values of the latter.

In Fig. 4, we display the transverse-momentum spectra
for four sets of values of (!, ξ), with ! varying between
130 and 160 MeV and ξ ranging from −0.5 to 0.3. In all
four cases, the values of all other parameters are the same
as above, in particular ūmax = 1. All four curves are barely
distinguishable below pT = 1.5 GeV, above which that with
(! = 130 MeV, ξ = −0.5) starts curving up. The spectrum
for (! = 140 MeV, ξ = −0.25) only starts to differ from
those with larger ! from about 2 GeV onwards, while the
remaining two stay very close up to at least 3 GeV. In addition,
we show in the same figure the spectrum for (! = 130 MeV,
ξ = −0.5) and a different flow velocity, namely with ūmax =
0.8. The change in ūmax makes the spectrum almost collapse
on that for (! = 150 MeV, ξ = 0), with at most a 15 %
relative difference over the whole momentum range.

The HBT radii Rout and Rside and the elliptic flowv2 for the
same sets of parameters as in Fig. 4 are, respectively, shown
in Figs. 5 and 6. As in the case of the transverse spectra,
the values of Rout or v2 for all four pairs (!, ξ) in the case
ūmax = 1 are very close to each other, with (! = 130 MeV,
ξ = −0.5) being most apart from the other three. We also
include the result of the computation with ūmax = 0.8 which
gives a good approximation to the pT -distribution: for v2, it
basically makes no difference with respect to the case ūmax =
1, whereas the departure is more marked for Rout.
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Figure 2. Transverse particle spectrum for
optimized ξ, Λ pairs.
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explanation describing all its details.

The transverse-momentum dependence of elliptic flow
v2 for various ξ values is shown in Fig. 3; the triangular
flow v3 follows exactly the same trend, so that we do not
show it. Thus, anisotropic flow decreases when ξ becomes
more negative, that is, as the radial temperature grows. This
behaviour reflects the fact that an increase in random ther-
mal motion tends to dilute the effect of directed collective
behaviour encoded in the flow velocity and its anisotropies,
i.e., it diminishes the vn values, as seen here.
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by ξ should not be uniform, but rather position-dependent.
In particular, ξ (or a similar parameter) would normally be
a function of the azimuthal angle φ, parallelling the cor-
responding dependence of the velocity profile, as we now
argue.2 The fluid–particle conversion, whose modelling ξ is
supposed to facilitate, roughly happens when the fluid expan-
sion rate ∇µuµ(x) becomes comparable to that of elastic
scatterings. Since the flow velocity varies with φ, so does the
expansion rate, which motivates an azimuthal dependence
of ξ . On the other hand, the scattering rate depends on the
particle density, obtained by integrating the occupancy factor
over momentum, and on the relative velocity of particles. As
follows from a straightforward change of integration vari-
able [16], the density is inversely proportional to

√
1 + ξ(x),

thus it is a priori φ-dependent. In turn, the typical relative
velocity is controlled by the (effective) temperature(s) of
the decoupling medium, thus function of φ as well…All in
all, every relevant physical quantity depends on azimuth, so
it is non-trivial—and within the scope of this paper rather
academic—to determine the actual dependence of ξ . In any

2 Similarly, ! also might depend on φ, yet we leave this possibility
aside to simplify the discussion.
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case, there will be such a dependence, which will affect the
anisotropic flow coefficients vn . The results shown in Figs. 3
and 6 are thus to be taken with a grain of salt, since they
neglect this ingredient.

After having investigated the influence of ξ when all other
parameters are fixed, we now want to illustrate the degen-
eracy introduced by this new parameter, showing that very
similar values of the observables can be obtained with dif-
ferent pairs (!, ξ). Note that we did not attempt to optimise
the results we now report by fine tuning the parameters, as
will be made apparent by the values of the latter.

In Fig. 4, we display the transverse-momentum spectra
for four sets of values of (!, ξ), with ! varying between
130 and 160 MeV and ξ ranging from −0.5 to 0.3. In all
four cases, the values of all other parameters are the same
as above, in particular ūmax = 1. All four curves are barely
distinguishable below pT = 1.5 GeV, above which that with
(! = 130 MeV, ξ = −0.5) starts curving up. The spectrum
for (! = 140 MeV, ξ = −0.25) only starts to differ from
those with larger ! from about 2 GeV onwards, while the
remaining two stay very close up to at least 3 GeV. In addition,
we show in the same figure the spectrum for (! = 130 MeV,
ξ = −0.5) and a different flow velocity, namely with ūmax =
0.8. The change in ūmax makes the spectrum almost collapse
on that for (! = 150 MeV, ξ = 0), with at most a 15 %
relative difference over the whole momentum range.

The HBT radii Rout and Rside and the elliptic flowv2 for the
same sets of parameters as in Fig. 4 are, respectively, shown
in Figs. 5 and 6. As in the case of the transverse spectra,
the values of Rout or v2 for all four pairs (!, ξ) in the case
ūmax = 1 are very close to each other, with (! = 130 MeV,
ξ = −0.5) being most apart from the other three. We also
include the result of the computation with ūmax = 0.8 which
gives a good approximation to the pT -distribution: for v2, it
basically makes no difference with respect to the case ūmax =
1, whereas the departure is more marked for Rout.
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Figure 3. Elliptic flow coefficient v2 for
various ξ.
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All in all, the results for transverse-momentum distribu-
tions, Rout, and v2 support our claim that introducing an extra
parameter opens a much wider range for the “freeze-out tem-
perature”, here !, without affecting drastically the values of
the observables.

In contrast, the sidewards HBT radius Rside displayed in
the bottom panel of Fig. 5 is much more sensitive to the choice
of decoupling parameters (!, ξ). This is actually somewhat
reassuring, since femtoscopic measurements are precisely
designed to probe the space-time configuration at decou-
pling [33].

4 Discussion

We have argued that there are two main motivations for
resorting to an anisotropic momentum distribution to describe
the transition from usual dissipative fluid dynamics to a
particle description at the end of the evolution of the fire-
ball created in ultrarelativistic heavy-ion collisions. Firstly,
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Fig. 6 Elliptic flow for various choices of ! and ξ

this ansatz is supported by nonrelativistic studies of freeze-
out [24]. Secondly, this could help diminish the sensitivity of
computed observables on the parameters introduced by the
decoupling prescription, and thus lead to a smoother match-
ing between models, in the spirit of seeing fluid dynamics
emerging as the effective theory of some underlying, more
microscopic dynamics.

As a matter of fact, our findings for transverse spectra,
Rout, and v2 (Figs. 4, 5, 6) support the idea that introduc-
ing an extra parameter, which governs the local momentum
anisotropy at decoupling, opens a much wider range for the
“freeze-out temperature”, here !, without changing signifi-
cantly the values of the observables. This is admittedly not
too surprising, since we introduced one new degree of free-
dom. Yet at the risk of repeating ourselves, it emphasises
the fact that the “freeze-out temperature” is just a parameter
for switching between two models, not a real physical tem-
perature determined by some “critical”—in a loose sense—
energy or entropy density for which the medium properties
change drastically. Being such a parameter—like say a renor-
malisation scale—, it may not have a dramatic impact on
measurable quantities.

Accordingly, it seems possible to find a whole region of
parameters to which the “early time” signals like anisotropic
flow—which carry information on the properties of the fire-
ball along its whole evolution [34], rather than on decoupling
itself—are to a large extent insensitive. On the other hand,
some sensitivity remains for the observables which are gov-
erned by the freeze-out process.

In the present exploratory study, we postulated the asym-
metric form of the occupation factor at decoupling fan., and
investigated some of the consequences within a toy model.
The actual form of fan., together with that of the associ-
ated hydrodynamical quantities, still has to be calculated in
a more microscopic approach [27]. This involves at the same
time a discussion of the freeze-out hypersurface #, whose
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Figure 4. Elliptic flow coefficient v2 for
various pairs of ξ and Λ.

5. Conclusion
We showed that at the cost of an additional parameter, namely the anisotropy parameter ξ we
are able to establish a interval of freeze out temperatures, which all give the same observables.
So we get rid of the strong dependence of observables on the parameter where we glued together
the two asymptotic models, hydrodynamics and kinetic theory. As we showed for decreasing
freeze out temperatures Λ we have to choose more negative anisotropy parameters ξ. This
reflects the fact that we are able to tune the late times hydrodynamics in such a way, that it
crosses over to the (trivial) kinetic theory in a smoother manner.
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