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Momentum anisotropy at freeze out

S. Feld, N. Borghini, C. Lang
Universitat Bielefeld, Fakultat fiir Physik, Bielefeld, Germany

E-mail: s.feld@physik.uni-bielefeld.de

Abstract. The transition from a hydrodynamical modeling to a particle-based approach is a
crucial element of the description of high-energy heavy-ion collisions. Assuming this ”freeze out”
happens instantaneously at each point of the expanding medium, we show that the local phase-
space distribution of the emitted particles is asymmetric in momentum space. This suggests
the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how
observables depend on the amount of momentum-space anisotropy at freeze out and how smaller
or larger anisotropies allow for different values of the freeze-out temperature.

1. The need for a kinetic freeze out
Hydrodynamics has emerged as being very successful at describing a large amount of the
evolution of the fireball created in a ultrarelativistic heavy ion collision.

However, hydrodynamics is an effective field theory which assumes the medium to be
continuous. An appropriate measure for this continuity is the Knudsen number Kn, defined
as the ratio between the mean free path and some macroscopic length scale like the system size.
For hydrodynamics to be applicable, this number has to be small. Even if at the beginning of
the evolution the condition Kn < 1 is fulfilled, yet as the fireball expands, it becomes more
dilute and the Knudsen number grows. Obviously, at the very end detectors detect individual
particles, which have long ceased to interact with each other. Going backwards in time to the
point where interactions became rare, this amounts to a very large mean free path (and Kn), in
which case kinetic theory provides an appropriate modeling of the particles evolution.

Thus, the description of the fireball evolution needs to include a prescription for switching
from the hydrodynamic approach at Kn < 1 to the transport models used at Kn > 1. This
prescription, which for consistency should conserve all relevant quantum numbers of the fireball
as well as its local energy and momentum densities, is the kinetic freeze out. Note that in the
simplified application we shall present hereafter, we consider the direct conversion from a fluid
to free particles, omitting the stage consisting of interacting particles described by a kinetic
theory.

2. The Cooper—Frye formula

The basic idea of the Cooper—Frye freeze out is that the medium description changes suddenly
from a fluid-dynamical to a kinetic one as the medium is passing through a hypersurface ¥ [1].
From this point on, the particles decouple from the fluid and, assuming the emitted particles
are then free, their momenta are frozen. ¥ is a closed three-dimensional surface in space-time,
since eventually the whole fluid has to freeze out.
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Introducing the on-shell phase-space distribution f(x*,p), the Lorentz-invariant particle
spectrum, which basically expresses the number of particles per momentum interval, is given by
the Cooper—Frye integral
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where do,(x#) is a unit vector standing perpendicular to the hypersurface 3. For the particle
distribution function f(z#,p) at freeze out entering the Cooper—Frye formula, popular choices
are the Maxwell-Jiittner distribution, or its quantum generalizations to fermions and bosons,
possibly with terms accounting for dissipative effects in the fluid.

An important issue is now to characterize the hypersurface . It is often assumed to
correspond to the space-time points where some property of the fluid (e.g. its temperature
T, or its particlenumber or energy density) reaches some “critical” value, or when a given
proper time is reached.

One problem here is that there are regions of ¥ where do,do" < 0, which likely leads to
negative contributions to the particle spectrum (1). However the idea of the particle spectrum
is just to count particles, not quantum numbers, so that negative contributions are unexpected
(for a proposal on how to deal with this problem, see e.g. Ref. [2]).

A second issue with the Cooper—Frye freeze out is the dependence of the computed observables
on the initially chosen freeze out parameter, which characterizes 2. Since the hypersurface is not
associated with a phase transition, there is no reason why an observable should depend on the
point where a theoretical physicist changes her /his “tool” to describe the medium. Accordingly,
one should rather expect that nature performs a smooth transition between the two asymptotic
models valid at small and for large Knudsen numbers.

Because of its simplicity, the Cooper—Frye recipe is however much too attractive to be
discarded. Our idea is, instead of just gluing together the two models (hydrodynamic and
kinetic theory), to try to first tune them, so that they fit together in a better way. The desired
result should be a much weaker (or almost no) dependence of observables on the point where
we glued together the two models.

3. Anisotropic Cooper-Frye freeze out

3.1. Motivation

In our opinion, one way of achieving this “improved gluing” is to resort to an explicitly
anisotropic distribution at freeze out [3]. A first hint towards that direction comes from a series of
studies, starting with Ref. [4], of non-relativistic hypersonic flows which expand through a nozzle
into vacuum. The conclusion of these studies is that the frozen-out particle distribution can be
characterized by two effective temperatures, which stand on the one hand for the “thermal”
motion perpendicular to the streamlines (7)) and on the other hand for the motion parallel
to the streamlines (7j)). We are currently working on a generalization of these studies to the
relativistic heavy ion collision case.

A second motivation for invoking a momentum-asymmetric phase-space distribution is that
there is already a transition between models in the description of heavy ion collisions, namely
from the pre-equilibrium model(s) to hydrodynamics, which can be improved by the use of
anisotropic hydrodynamics, see e.g. Ref. [5].

3.2. Implementation
The basic idea of the anisotropic freeze out [3] is to implement an anisotropy in the phase-space
distribution along the radial direction. As ansatz for the functional form of f(x*,p), we used
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the Romatschke—Strickland distribution [6], which reads in the local rest frame:

Vipu)?+ 5(93“)(29’")2)
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where &(x*) is the anisotropy parameter and A(z#) the “anisotropic temperature”, which is
going to be the temperature in the case of isotropy. To implement this distribution function
into the Cooper—Frye formula, one must boost it into the laboratory frame.

As a consequence of using the Romatschke—Strickland distribution, we get an additional
parameter, which gives us the possibility to tune the anisotropy in the radial direction. In
principle this parameter has only the lower boundary —1, since we need the distribution function
to be real valued. In order to generate a higher effective temperature/pressure in the radial
direction, we need to choose & to be less than 0.

Because we are up to now just interested in how the technique of the anisotropic freeze
out works, we inserted a blast-wave like fluid velocity profile of the form u® = u?7 = 0,
u" = Umar 5 (1+23, Vicos(ng)), where we chose the parameters to be R = 10 fm,
Tto = 7.5 fm/c, Vo = V3 = 0.05 and we investigated the emission of pions. Because of the
lack of a microscopical model we ignored a possible position-space dependence of the anisotropic
temperature A and the anisotropy parameter . Now that we have all ingredients (1) and (2)
together, we are able to compute observables for the anisotropic freeze out.

4. Observables

4.1. Particle spectra

The first observable which we present is the transverse particle spectrum. We plotted this
for various values for the anisotropy parameter in Figure 1. As one can see, the smaller the
anisotropy parameter is chosen, the more particle one will detect with higher momenta. This
behavior is to be expected, since in anisotropic hydrodynamics one obtains a higher pressure in
a direction if one chooses the corresponding anisotropy parameter to be negative. Such a higher
pressure will then push the particles to higher momenta in the out-direction, which results in
the deviations of the ideal momentum spectrum. As a cross-check we plotted the spectrum for
positive £-values as well.

In Figure 2 we now “optimized” (by eye) the pairs of anisotropy parameter £ and anisotropic

temperature A. As one can see there, we are able to reproduce the same particle spectrum
while varying the “temperature” over a range of 30 MeV. This behavior is a first hint that the
additional parameter & works the way it should, relaxing the need for a well-defined value of the
freeze-out temperature
4.2. Anisotropic flow coefficients vy,
The second observables which we now present are the anisotropic flow coefficients v,,. These
coefficients arise through a Fourier series of the particle spectrum in the momentum angle ¢,.
We computed the coefficients up to vs. They all follow the same trend, so here we are only
showing the elliptic flow coefficient vs.

In Figure 3 we plotted vs as a function of momentum for different values of the anisotropy.
As one can see, vy decreases when the anisotropy decrease. This trend reflects the fact that
the negative £ induces a higher effective temperature in the out-direction. This higher effective
temperature results in a higher thermal motion along this direction, which then overcomes the
effect of collective motion that is measured by the flow coefficient wvs.

Now we followed the same procedure as before and optimized the pairs of anisotropic
temperature A and anisotropy parameter £, so that we are able to reproduce the same observable
although we vary the value of the temperature at freeze out. The results are plotted in Figure
4. Again we are able to reproduce nearly the same vo for an freeze out temperature interval of
nearly 30 MeV.
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Figure 1. Transverse particle spectrum for
various anisotropies &.

0.25 ‘
[ J
——-£=03 /'//
— = E=0.15 Lo
02 H——£=0 /;‘//‘.,/.;‘ﬁ
s
r /4'//‘_‘;/._/////’
0.15 - /‘//;‘ //:/:// -
= S
= ///*A‘/"/f//’
0.1 L /7A-)'/“//// ]
Tt S —
R A &=-0.1
S ——- &2
L 4 _
0.05 - i == £=-03
r LT ——= £=-04
[ ’/f:;/ﬁ" £=-05
ol -7 ! !
0 3
p, (GeV)
Figure 3. Elliptic flow coefficient vy for
various &.

5. Conclusion
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Figure 2. Transverse particle spectrum for
optimized &, A pairs.
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Figure 4. Elliptic flow coefficient vy for

various pairs of £ and A.

We showed that at the cost of an additional parameter, namely the anisotropy parameter ¢ we
are able to establish a interval of freeze out temperatures, which all give the same observables.
So we get rid of the strong dependence of observables on the parameter where we glued together
the two asymptotic models, hydrodynamics and kinetic theory. As we showed for decreasing
freeze out temperatures A we have to choose more negative anisotropy parameters £&. This
reflects the fact that we are able to tune the late times hydrodynamics in such a way, that it
crosses over to the (trivial) kinetic theory in a smoother manner.
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