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As vezes penso a Fisica como sendo uma grande
e majestosa drvore. As raizes sao as teorias fundamentais,
ou teorias de grande unificacdo, que embora saibamos
que devam existir, elas ndo sdo visiveis a nds.

O tronco sdo a teoria da relatividade, a mecanica quantica,
o eletromagnetismo e a termodinamica, das quais muitos galhos
se ramificam, dos mais diversos tamanhos
e para todos os lados.

Fico triste quando penso que este trabalho é apenas uma
pequena folha desta imensa arvore. Mas a tristeza logo passa
ao me lembrar que uma arvore sem folhas

ndo tem beleza alguma.
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Resumo

Estudamos neste trabalho as contribuicdes de 1-loop da eletrodinamica quantica ndo-comutativa a altas
temperaturas. Obtivemos as amplitudes de n-pontos por meio do método de diagramas de Feynman e mos-
tramos que os mesmos resultados podem ser obtidos pelo método das equacdes de transporte de Boltzmann.
Em paralelo estudamos as massas de blindagem que seguem do setor ndo-comutativo da teoria no limite
estético, assim como a agdo efetiva em 1-loop que gera todas as fungdes de n-pontos com indices espaciais.
Também estudamos a quantizagdo do campo de gauge no espaco ndo-comutativo pelo método do campo

de fundo, obtendo uma generalizacao da base de ondas planas que se transforma covariantemente.
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Abstract

In this work we study the 1-loop contributions for noncommutative electrodynamics at high temperature.
We calculate the n-point amplitudes by the Feynman diagrams method and we show that the same results
can be obtained by the method of Boltzmann transport equations. We also study the screening mass de-
rived from the noncommutative sector in the static limit case and the effective generating functional that
determine all the amplitudes at one loop with spatial indices only. We quantize noncommutative QED by

the background field gauge method and obtain a generalization of plane waves that transforms covariantly.
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Introducao

A teoria quantica de campos € um conjunto de idéias e de ferramentas que combina trés das mais im-
portantes areas da fisica moderna, sdo elas a teoria da relatividade, a mecénica quantica e o conceito de
campos, andlogo aos campos eletromagnéticos da teoria de Maxwell. Ela € a base da moderna fisica das
particulas elementares, e fornece o ferramental necessdrio para entender a fisica nuclear, a fisica atbmica,
a fisica da matéria condensada e a astrofisica, além de fazer uma ponte entre a matematica e muitas areas
da fisica. A necessidade de uma nova fisica para tratar de sistemas em escalas de distancias muito peque-
nas e escalas de energias muito altas se revelou necessdria quando a aplicacdo da mecanica quantica de
Schrédinger ndo foi capaz de explicar alguns efeitos conhecidos, como a produgio de novas particulas em
colisdes em aceleradores, ou a discrepancia entre o valor medido experimentalmente e o calculado teorica-
mente para 0 momento magnético andmalo do elétron, ou ainda a pequena diferenca de energia que existe
entre os estados 257 /5 € 2Py /5 do dtomo de hidrogénio, efeito conhecido como “Lamb shift”. Estas e ou-
tras dificuldades levaram Schwinger, Feynman, Dirac e outros a formulac¢do da Eletrodindmica Qudntica,
ou QED (Quantum Electrodynamics), considerada uma das melhores e mais fundamentais teorias de toda
a fisica e nascida da teoria quintica de campos. E a teoria que explica corretamente as interacdes entre
elétrons e fétons, formulada por meio de um conjunto simples de equagdes: as equacdes de Maxwell da
eletrodindmica e a equacdo de Dirac para os elétrons. As solucdes que derivam desta teoria ddo previsdes
detalhadas de fendmenos eletromagnéticos desde distancias macroscOpicas até regides centenas de vezes
menor que o tamanho do nicleo atémico.

A Eletrodindmica Quantica apareceu alguns anos depois da mecanica quantica de Schrodinger. A idéia
original de Planck da quantizacdo da energia foi estendida e aplicada ao eletromagnetismo, e os “quan-
tas” correspondentes ao campo eletromagnético foram identificados como sendo os fétons. Mais uma vez
a dualidade onda-particula se manifestava, j4 que o campo eletromagnético cldssico é descrito por uma
onda, mas a hipdtese de quantizacio associa a este mesmo campo uma particula, o féton, que se pro-
paga também como uma particula. A esse processo deu-se o nome de segunda quantizacdo, pois agora 0s
campos associados as particulas também satisfazem a uma relacdo de comutagdo anédloga aquela satisfeita
pelas coordenadas e momentos conjugados da mecénica quantica usual. O desenvolvimento da QED se
mostrou tao eficiente que os fisicos formularam uma teoria nas mesmas bases para descrever as interacdes
nucleares fracas, responsavel pelo decaimento 3 por exemplo, sendo as particulas mediadoras os chamados
bésons massivos W+, W~ e Z°. Um modelo semelhante também foi aplicado para explicar as interagdes

nucleares fortes, que sdo as interagdes entre os quarks, constituintes dos prétons e néutrons, cujo campo



analogo ao do féton seria o glion, de maneira que nasceu entdo a Cromodindmica Qudntica, ou QCD
(Quantum Cromodynamics). Assim como os fétons sdo os quantas que intermediam as interagdes eletro-
magnéticas entre elétrons por exemplo, os glions sdo os quantas que intermediam as interacdes nucleares
fortes entre os quarks. Por dltimo fez-se a tentativa de quantizar a gravitagdo, em um esforgo para juntar a
mecanica quantica com a teoria da relatividade geral de Einstein, sendo o graviton a particula mediadora
das interagdes gravitacionais. Mas esta é uma drea que ainda estd em desenvolvimento, a teoria de cordas
¢ uma das possiveis candidatas, mas existem indmeras dificuldades que ainda precisam ser contornadas e
portanto trata-se de um problema ainda em aberto.

Vamos retornar entdo a QED, a teoria que estamos interessados aqui. Um dos principais métodos de
célculo, que derivaram do desenvolvimento da teoria quéntica de campos e em particular da QED, sdo
os conhecidos diagramas de Feynman. Este método se mostrou bastante ttil no tratamento de processos
de espalhamento e de producdo de particulas, j4 que uma andlise exata destes processos nao € factivel
na prética. Entdo o que se propde € tratd-los perturbativamente ordem a ordem em algum parametro do
problema, geralmente a constante de acoplamento, de maneira que os cdlculos explicitos possam ser feitos
ordem a ordem, fornecendo corre¢cdes cada vez mais precisas. Para sermos mais claro, imagine um processo
simples que envolva elétrons e fétons, como o espalhamento Mgller, que nada mais € que o efeito cldssico
de repuls@o coulombiana entre duas particulas de mesma carga, por exemplo dois elétrons se aproximando,
interagindo de alguma maneira e em seguida se distanciando. Do ponto de vista da QED podemos desenhar
0 que acontece neste processo por um diagrama de Feynman, ele é dado pela figura abaixo, que deve ser
“lido” da esquerda para a direita, indicando que dois elétrons se aproximam, interagem entre si trocando

um féton, e em seguida continuam seus caminhos. Sabemos que a um tal espalhamento estd associada

uma amplitude, que estd diretamente relacionada a secdo de choque do processo em questdo. Portanto,
calcular um diagrama de Feynman do tipo ilustrado nesta figura significa calcular com qual probabilidade
este espalhamento deve ocorrer. Mas temos de dizer aqui que este cdlculo é apenas uma aproximagao
do que acontece realmente. De fato, este diagrama representando o espalhamento Mgller nao é tudo o
que acontece. Apenas em primeira aproximac¢do o resultado estd correto, e uma caracteristica notdvel
desta formulagdo por meio de diagramas de Feynman é que podemos construir, ordem a ordem, qual € o
processo real que de fato acontece, e obter uma expressao cada vez mais precisa para a amplitude envolvida
no espalhamento, ou seja, temos como tornar o cdlculo da se¢do de choque envolvida cada vez mais preciso.

Vamos ser mais claros no que estamos querendo dizer. O féton que estd intermediando a interagdo entre

os elétrons pode, segundo a formulacdo da QED, sofrer uma outra interacfo antes de fazer a intermediagcao



entre os dois elétrons, o que poderia mudar um pouco o valor da amplitude final deste processo. De
fato isto acontece, e outro diagrama que pode também contribuir para a amplitude final é, por exemplo,

representado abaixo. Ele indica que o féton trocado pelos elétrons pode, em algum instante, formar um

par elétron-pésitron, que se aniquilam logo em seguida formando novamente um féton, que sé depois vai
transferir a interacdo. Dizemos que o propagador do féton foi modificado. Diagramas deste tipo sao
chamados diagramas de 1-laco, ou 1-loop, como é mais comum na literatura. Portanto, a amplitude final
a ser considerada deve levar em conta também este possivel efeito, sendo a contribui¢do para a se¢do de
choque final uma soma sobre todas as possibilidades. Na verdade existem muitos outros diagramas que
podem contribuir para este espalhamento, mas felizmente eles ddo contribuicdes cada vez menores, de
maneira que em primeira aproximac¢ao podemos nos restringir ao célculo de uns poucos diagramas. Este é
o mérito dos diagramas de Feynman. Podemos obter, se quisermos, corre¢des cada vez mais precisas para a
amplitude em questdo analisando apenas os possiveis diagramas que contribuem para o espalhamento. Nao
¢ preciso dizer que os cdlculos se tornam cada vez mais complicados, mas o fato é que temos um método
sistemdtico de fazer cdlculos. Portanto, as primeiras corre¢des a um processo direto vém de diagramas do
tipo 1-loop, como o representado acima, e serdo diagramas desse tipo que estaremos interessados aqui.

Agora vamos adicionar mais um ingrediente a esta nossa brevissima introducdo a teoria quantica de
campos. Imagine que um processo do tipo representado nos diagramas anteriores esteja ocorrendo imerso
em um reservatorio térmico de temperatura 7', banhando todo o sistema. Serd que a temperatura tem
alguma influéncia no célculo das amplitudes? E de se esperar que sim, afinal de contas uma fonte externa
de calor significa uma fonte de energia, o que pode perfeitamente influenciar processos de espalhamento e
producdo de particulas. Sabemos que as particulas estdo interagindo entre si, processos como os descritos
anteriormente estao ocorrendo a todo momento, entre milhares de outros que sdo também representados
por diagramas de Feynman, e todos eles ocorrem imersos em um banho térmico. Portanto, nada mais
natural que perguntarmos: o que muda com os cdlculos da teoria quintica de campos usual se o sistema
estiver sob efeito de altas temperaturas e densidades? Foi entdo que nasceu a teoria qudntica de campos a
temperatura finita.

Sao diversos os sistemas onde efeitos de temperatura e densidade ocorrem. O interior de estrelas por
exemplo ¢ um bom exemplo. Qual o mecanismo que rege o comportamento da matéria nos nuicleos de

estrelas de néutrons ou de anas brancas? De que forma o limite de Chandrasekhar, que determina se



uma estrela vai ou nao colapsar para um buraco negro, pode ser influenciado por efeitos de temperatura
e densidade? Além desses interesses astrofisicos, uma questdo fundamental na fisica atual é entender o
comportamento de plasmas da QCD a altissimas temperaturas e densidades. Acredita-se que acima de uma
certa temperatura critica possa existir uma fase da matéria onde quarks e glions possam coexistir de forma
independente, ao contrdrio do que ocorre na matéria hadronica nuclear, onde eles ndo sdao encontrados
separadamente. Este possivel estado da matéria ficou conhecido como “plasma de quarks e glions”, que
pode ter existido naturalmente no universo primordial. Célculos de QCD na rede indicam que de fato
deve ocorrer uma transi¢ao de fases com a matéria nuclear a altissimas temperaturas e/ou densidades. O
diagrama de fases Temperatura (7') x Potencial quimico (u) da figura abaixo dd uma visdo mais clara

desse processo. A baixas temperaturas e densidades da ordem da densidade nuclear, quarks e glions estdo
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confinados formando hidrons. Nao existem quarks ou glions livres se propagando no vicuo. Mas esta
situacdo pode mudar se a temperatura subir acima de um valor critico da ordem de 150MeV. Nesta situacdo
podemos ter um gas de quarks e glions quase livres, o chamado plasma de quarks e glions. Esta mesma
situagdo pode ocorrer em temperaturas muito baixas e densidades muito altas, da ordem de cinco vezes
a densidade nuclear (que corresponde a cerca de duas vezes o potencial quimico nuclear), de forma que
também pode haver esta transicao de fases. Célculos de QCD na rede confirmam o valor da temperatura
critica acima para potencial quimico nulo, mas ainda ndo existem valores confidveis para o caso inverso,
de temperatura nula e x grande. A figura indica alguns “laboratérios” onde estas situacdes fisicas podem
OCOTrTer.

Sao varios os métodos desenvolvidos para tratar sistemas quanticos a temperatura finita. O mais co-
mum é o que faz uma ligacdo direta entre a termodindmica estatistica e a teoria de campos, que ficou
conhecido como formalismo do tempo imagindrio, em que a parte temporal da acdo de um sistema da
teoria quantica de campos usual é estendida para o eixo imaginario. Como resultado temos uma estreita
analogia entre o funcional gerador das fungdes de Green da teoria de campos com a fungdo de particao
da termodinamica estatistica, da qual derivam as relagdes de entropia, energia livre, pressao, etc, para um

sistema em equilibrio térmico. Desta forma o método dos diagramas de Feynman continua sendo vélido,



apenas com algumas modificacoes.

Um outro tratamento que leva em conta diretamente a temperatura de um sistema foi desenvolvido
por Boltzmann no final do século XIX. Um sistema perto do equilibrio pode ser descrito por uma fungdo
distribuicdo que caracteriza varias propriedades do sistema. Devido a algum efeito externo, a situagdo
de equilibrio ndo é mais satisfeita e isto se reflete em uma mudanga na fungdo distribuicdo do sistema,
que agora deve satisfazer a uma equacdo dependente das equacdes de movimento cldssicas do sistema.
Esta equagdo é a chamada equacdo de transporte, que quando tratada perturbativamente ¢ um conjunto de
equacdes. Portanto, obtidas as corre¢des para a funcao distribui¢ao estamos obtendo as caracteristicas do
sistema fora do equilibrio. A primeira vista este é um método totalmente cldssico, mas em alguns limites,
por exemplo quando a temperatura do sistema é muito alta, podemos aplicé-lo para tratar de problemas da
teoria quantica de campos. Existe uma segunda formulagao das equacdes de transporte, baseada em uma
construcio quantica, que foi desenvolvida por Wigner e é mais apropriada para tratar sistemas em teoria de
campos. Tanto o método tradicional do formalismo do tempo imagindrio quanto o método das equacdes de
transporte cldssica e quantica serdo discutidos com mais detalhes nos capitulos que seguem. Vamos agora
adicionar mais um ingrediente final a nossa teoria quantica de campos.

Sabemos que uma caracteristica importante e marcante da mecénica quantica e que tem reflexos em
muitas situacdes fisicas importantes é a quantizacdo da energia de sistemas microscépicos. Isto decorre
do fato bésico de que na mecanica quantica os operadores que representam as coordenadas € momentos
conjugados de uma particula ndo comutam, ou seja, [Z , p,,] = ihi. A teoria quintica de campos é construida
nesta mesma base, sendo a quantizacdo imposta aos operadores de campo (segunda quantizacao), e isso
tem implica¢des profundas em toda a fisica nuclear e atdbmica por exemplo. Agora imagine que, além da
ndo-comutatividade entre coordenadas e momentos, impomos também que as proprias coordenadas nao
comutem entre si, ou seja, [x,y] # 0 por exemplo. Vocé poderia se perguntar agora que implicag¢des isto
teria para a teoria quantica de campos tal como a conhecemos até agora e qual a motivagio para se estudar
sistemas que satisfacam esta relacdo de comutacio estranha. E a resposta € que sdo muitas as motivagdes
assim como as modificacdes da teoria usual. Recentemente tem havido um interesse muito grande por
teorias quanticas de campos definidas em espacos nao-comutativos, em parte pelos novos desenvolvimentos
da teoria das cordas, que prevé que em determinado limite onde um campo magnético intenso estd presente
a nao-comutatividade das coordenadas aparece naturalmente.

Temos portanto todas as ferramentas necessdrias para dizer a que se propde nosso trabalho aqui. Quere-
mos fazer célculos de diagramas de 1-loop da eletrodinamica quantica a temperatura finita definida em um
espaco ndo-comutativo. Primeiro vamos utilizar o método tradicional dos diagramas de Feynman, e depois
vamos mostrar que, a altas temperaturas, os mesmos calculos podem ser feitos usando-se um método base-
ado nas equacdes de transporte de Boltzmann, portanto um método clédssico. Isto acontece porque termos
de ordem dominante (cldssicos) aparecem também dos diagramas de 1-loop a altas temperaturas.

No primeiro capitulo vamos rever algumas caracteristicas da eletrodindmica quintica, tanto a tempe-
ratura nula quanto a temperatura finita, a fim de fazermos uma conexao entre os resultados existentes para

a QED usual e os resultados novos que vamos apresentar nos capitulos seguintes. No segundo capitulo



discutimos alguns aspectos da teoria de campos em espacos nao-comutativos, algumas motiva¢des e um
exemplo quase cldssico, em que uma particula carregada na presenca de um campo magnético uniforme
desenvolve naturalmente a ndo-comutatividade das coordenadas. Um tratamento da generalizacdo para
campos magnéticos facamente nao-uniformes também ¢é apresentada, o que resultou na publicagdo dos
artigos [72, 73]. Também vamos discutir como as regras de Feynman se modificam para a QED n#o-
comutativa e a expressdo para alguns diagramas de 1-loop. No terceiro capitulo desenvolvemos a primeira
parte de nosso trabalho, aplicando as técnicas dos dois primeiros capitulos especificamente para a QED
em espagos ndo-comutativos e a temperatura finita. Os principais resultados apresentandos neste capitulo
foram publicados na referéncia [70]. No quarto capitulo fazemos uma breve exposicdo geral do método
das equagdes de transporte de Boltzmann, apresentamos alguns modelos j4 estudados anteriormente por
outros e no quinto capitulo aplicamos o modelo ao nosso caso da QED ndo-comutativa, mostrando que os
mesmos resultados do terceiro capitulo podem ser obtidos. Para isso estudamos a quantizagido do campo de
gauge quantico na presenca de um campo, resultado apresentado no Apéndice G e publicado na referéncia
[71].

Para ndo tornar o texto cansativo com tecnicalidades matematicas, algum material foi colocado no

apéndice, para ser consultado quando necessério sem perder a légica do texto principal.

Notacoes e convencgoes

Ao longo do texto usaremos as seguintes notagdes e convengdes:
Métrica de Minkovski " = diag(1,—1,—1,—1).
Exceto no capitulo 1, adotaremos h = ¢ = kg = 1.
Neste sistema, 1GeV~! ~ 10~ 4cm. 1GeV~ 103K.

Exceto no capitulo 1, k se refere a0 momento interno ao loop € p a0 momento externo.



Capitulo 1

Alguns Aspectos da Eletrodinamica

Quantica

Neste primeiro capitulo vamos apresentar alguns resultados basicos da eletrodinamica quantica que
serdo importantes para o entendimento do contexto em que se insere o presente projeto. O objetivo é
mostrar onde nossos célculos serdo relevantes, quais as motivacdes fisicas, enfim, fazer uma conexdo com
o mundo fisico dos nossos resultados. Na primeira se¢do derivamos alguns resultados da eletrodindmica
quantica usual, ou a temperatura nula, para entender onde exatamente os calculos a temperatura finita serdo
relevantes. Alguns aspectos da QED a temperatura finita sdo apresentados na segunda se¢o. Nada do que
estd apresentado neste capitulo é novo, queremos apenas fornecer informagdes para que possamos ter com
o que comparar quando nossos calculos forem apresentados nos capitulos seguintes. Além disso, detalhes
de célculos complexos nao sdo feitos, mas referéncias onde eles podem ser encontrados sdo dadas ao longo

do texto.

1.1 QED a temperatura nula

Ja foi dito na introducdo que a eletrodindmica quantica € a teoria fisica mais completa e precisa que
existe até o momento, sendo capaz de reproduzir valores experimentais com altissimo grau de precisdo. As
chamadas correc¢des radiativas para um dado processo aproximam cada vez mais o valor tedrico do obtido
experimentalmente, embora os cédlculos fiquem cada vez mais complicados de serem feitos. Mas antes de
nos embrenharmos por célculos longos e complicados que t&€m muito pouco a ver com a fisica do nosso
dia-a-dia, vamos tentar situar num contexto mais amplo qual é exatamente o nosso objetivo neste trabalho.
Para isto vamos retomar a teoria de campos usual, ou teoria de campos a temperatura nula, com o objetivo

de mostrar exatamente onde entrard o tratamento a temperatura finita.



1.1.1 Lagrangeana e regras de Feynman da QED

Vamos apresentar brevemente aqui algumas das ferramentas mateméticas necessdrias para se fazerem
7 . A . A . ~ 1 . . . .
célculos na eletrodinamica quantica. Sao as chamadas regras de Feynman', cujos objetos mais importantes
sa0 os “propagadores” e “vértices”. Eles derivam diretamente da lagrangeana do sistema em questao,
no nosso caso a lagrangeana da eletrodindmica quéntica, que é composta de campos fermidnicos 1 (z) e
Y(x) de spin 1, necessdrios para descrever elétrons, pésitrons, mions, etc., e de campos que representam
2

o potencial vetor eletromagnético, A*(x), de spin 1, para descrever os fétons que sdo responsdveis pela
interacdo eletromagnética.

1 - Propagadores - A lagrangeana da QED ¢é dada por:

1 1 1 —(1 T
L= | IELE A A E(@AM)Z] T [w(§ P - m) u)} + [ ecrpat],
(1.1)

onde FH = (9* AY — 9" AM) € o tensor eletromagnético. A carga do elétron é representada por e, € esta
notagio ficard mais clara adiante. No primeiro colchetes, o termo com 2 representa uma massa para o
féton, em alguns cédlculos é conveniente tomar a massa do f6ton ndo-nula e s6 no final fazé-la tender a
zero. Para nossa discussdo isto ndo importa, de modo que podemos tomar y? = 0. O termo contendo 1/¢&
¢ chamado termo de fixacdo de calibre, ou fixacdo de gauge, mas os resultados finais ndo devem depender
de &, o que reflete uma “invariancia de gauge” da teoria. Dois limites importantes de £ sdo & — 1 (gauge
de Feynman) e £ — 0 (gauge de Landau). Observe que todos os fatores dentro do primeiro colchetes sdo
proporcionais a AA. Isto indica a possibilidade de uma particula, no caso um féton, se “propagar” de um
ponto ao outro, sendo criada por um dos A’s e destruida pelo outro®. Isto dard uma contribuigio as regras

de Feynman no espago dos momentos com a seguinte regra:

- "¢
B aAAAANANANANANAN VL D(:L)‘V = _q—2 <77“ -1 —5)?> (1.2)

O termo seguinte da lagrangeana, formado por 1) e 1, representa a possibilidade de um férmion, um

elétron por exemplo, se propagar de um ponto ao outro, e a correspondente regra de Feynman é:

p ' 5o = i i(p+me)

= 1.3
p—mc  p?—m3c? (1.3)

E finalmente o tltimo termo, proporcional a 1)) A, é o responsavel pela interagio entre o féton e o
elétron. Ele nos diz que estas particulas podem estar “ligadas” em algum momento do espago-tempo.
Outra maneira de entender isso € que o campo eletromagnético produzido pelo elétron é transmitido pelo

espaco através de fétons. A correspondente regra de Feynman € chamada fator de vértice, e € representada

'Nso vamos apresentar a deducéo completa das regras para propagadores e vértices, isto estd feito em vérios livros texto
de teoria de campos. Queremos apenas dar uma idéia formal de como elas sdo derivadas. Boas referéncias neste assunto sao
[1,2,3,4,5,6]

%Esta é apenas uma descricdo formal. Os campos que compdem a lagrangeana sio operadores, e estes operadores agindo no
espaco de Hilbert é que sdo interpretados como operadores de criacdo e de aniquilagio de particulas.



por:
tee Y (1.4)

A constante e, é a constante de acoplamento (ou intensidade) da interacdo, e no caso da eletrodindmica
quantica € a carga do elétron.

Estas foram as regras dos propagadores e vértice. Agora vamos apresentar brevemente as regras para
as linhas externas:

2 - A cada elétron (ou outro férmion qualquer) com momento p entrando em um vértice, devemos
atribuir um espinor u(*) (p), e para um elétron saindo, um espinor #(*)(p), onde s = 1,2 indica o spin da

particula. Estes espinores satisfazem as equacgdes de Dirac no espago dos momentos

(Y'pu — mc)u(s) (p)=0 a® (p)(Y*py —mc) =0 (1.5)

e sdo ortogonais @M u(?) = 0 e normalizados wu = 2mec.
3 - Para um pésitron (ou antiférmion) entrando, atribuimos um espinor v(*)(p), e para um pésitron

saindo, um espinor 7(*) (p). Eles satisfazem as equagdes

(Ypy + me)v®) (p) = 0 7 (p)(Y'pu + me) = 0 (1.6)

e sdo ortogonais 7(Mv(2) = 0 e normalizados v = —2mec.
4 - Para um f6ton entrando, escrevemos €, e para um féton saindo €*, que correspondem as diferentes
polarizagoes do foton.

5 - Conservagdo de energia e momento - Para cada vértice, incluir uma fun¢fo delta da forma
(2m) 404 (kg + ko + k3) . (1.7)

6 - Integracdo sobre momentos internos - Para cada momento interno g, incluir um termo
d4
4 (1.8)
(2m)

7 - Para cada loop fermionico incluir um fator (—1).

e integrar.

8 - No resultado final vai restar um fator

2m)54 (p1 +p2 + - — pn) (1.9)

correspondente a conservacdo de energia e momento. Cancelando este termo, o que resta é a amplitude



—iM.
Estas s@o as pecas fundamentais para construirmos diagramas de Feynman, e acredite, muitos diagra-

mas diferentes podem ser construidos utilizando somente estas regras, como veremos mais a frente.

1.1.2 Secao de choque

Uma das quantidades fisicas mais importantes e que podem ser obtidas experimentalmente no labo-
ratério € a se¢do de choque de uma reagdo, que nada mais é que a probabilidade de que uma certa reagdo
ou processo de espalhamento possa ocorrer. Considere por exemplo um processo em que uma particula A

se choca com uma particula B dando origem a duas outras particulas C' e D,
A+ B —- C + D. (1.10)

Este processo simples pode muito bem descrever vdrias situacdes fisicas de interesse, por exemplo, os

seguintes processos:

e +e —e +e” espalhamento elétron-elétron
y+e —y+e espalhamento Compton
e +pt —e +pt espalhamento elétron-préton
e +et = y+7y aniquilacdo de pares
e et = +put producgdo de muions

dentre outros. Para qualquer um deles o esquema (1.10) é valido, e no referencial do centro de massa do

sistema a secao de choque diferencial pode ser escrita como

do _ p(heN™  IMIP 2_|j|, (1.11)
e 87 ) (Ea+ Ep)? |pil
onde py = [pc| = |[pp| é o momento final das particulas, p; = [pa| = |[ps| € o momento inicial, 4 e

E'p sdo as energias relativisticas E; = /m?c4 + ]3?02 das particulas e p; = (E;/c, pj) é o quadrivetor
momento, com j = A, B. O fator F' € um produto de fatores estatisticos que leva em conta as particulas
no estado final serem iguais ou ndo. Fica faltando dizer o que é M. Esta quantidade recebe o nome
de amplitude de transicdo ou simplesmente amplitude, e seu cilculo depende basicamente das regras de
Feynman indicadas anteriormente. Qualquer um dos processos descritos anteriormente pode ocorrer de
varias maneiras, com estagios intermedidrios, e o que diz qual é o processo mais provavel é a amplitude
M, sendo o processo completo formado pela soma de todas as amplitudes. Para ficar mais claro o que
estamos querendo dizer, vamos considerar dois exemplos a seguir, a produ¢do de mions pela aniquilagdo

entre um elétron e um pdsitron e o espalhamento pelo potencial coulombiano.
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1.1.3 Producao de miions

O muon € um Iépton com exatamente todas as mesmas propriedades do elétron, mesma carga, mesmo

spin, exceto sua massa, que € m,, ~ 200m.. A reagido
e +et - pu +put

ocorre em grande quantidade dentro de aceleradores, como no LEP, no SLAC, no RHIC, e o valor tedrico
de sua secao de choque é muito facil de calcular, podendo ser confrontada com os valores obtidos naqueles
laboratérios.

Uma forma diagramaética simples de representar esta reacdo é a dada na Figura 1.1. “Lendo” da es-

Figura 1.1: Produ¢do de muons através da colisdo elétron-pésitron.

querda para a direita, este grafico diz o seguinte. Um elétron e um pdsitron se aniquilam, dando origem a
um féton virtual v que logo se desintegra, formando em seguida um par mdon-antimion. Este diagrama

dard origem a uma amplitude M, que de acordo com as regras de Feynman (1.2)-(1.9), serd dada por

My = —e? [a<p3>v“u<p4>1’Q%mem(pl)] : (1.12)

onde ¢ = p; — po. Embora tenha uma aparéncia complicada, o cdlculo de M pode ser feito sem
complicacdes, e o resultado é simplesmente um nimero, que deve ser colocado na equacdo (1.11) e a
secdo de choque diferencial pode ser calculada.

Mas esta ndo € toda a histéria. Como dissemos anteriormente, outros diagramas também podem con-
tribuir para o processo com alguma amplitude, e de fato € isto o que realmente acontece. O diagrama da
Figura 1.2 mostra uma outra maneira possivel de ocorrer a producido de mions. O elétron e o pdsitron se
aniquilam formando um féton virtual, este f6ton se desintegra em um par elétron-pdsitron que em seguida
se aniquilam formando novamente um féton virtual, e finalmente este féton se desintegra em um par de
muons. Esta é uma possibilidade ditada pelas regras da QED e que de fato acontece, mesmo tendo uma
amplitude My com ordem de grandeza bem menor. Trata-se de um diagrama de 1-lago, ou 1-loop, conhe-

cido como “polarizacdo do vacuo”, tendo a propriedade de modificar a carga do elétron e., como ficara

11



Figura 1.2: Diagrama de 1-loop que contribui para o processo de produg¢do de muons.

mais claro adiante. A expressdo matemaética para esta amplitude é, usando as regras de Feynman,

ie2 4 T me me
A@:Eﬁmmww@m{%/{““rm”+¢* @+ ”}mew@m.

2m)% ((p + q)? — m2c?)(p? — m2c?)
(1.13)

Note que esta contribuigio é de ordem eZ, portanto muito menor que a contribuicio de M, que é de ordem

e2. O termo entre chaves recebe um nome especial, é a “auto-energia do féton”, 1., (q),

- d*p Tr[y,( + ¢ + mc)y, (p + me))
M) = =6t | G £ a7 ey e 9

Note que esta expressdo é exatamente aquela que obtemos se aplicarmos as regras de Feynman somente ao

loop da Figura 1.3,

Figura 1.3: Diagrama de auto-energia do féton.

Comparando M e My percebemos o que aconteceu. O propagador do féton, que era simplesmente
N/ q?, fica modificado para
/N (1.15)

q? @ ¢

se levarmos em conta também a contribui¢do de M. Para fazermos a integral em (1.14) devemos desen-

volver o traco no numerador, e ndo € dificil mostrar que 11,,, pode ser escrito da seguinte forma:

. (q) = —inuwa*I(q*) + quq T (¢*) . (1.16)
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O segundo termo € nulo quando inserido dentro de M, e feitas as contra¢des com y* e ~+¥. Portanto resta
apenas fazer a integragio que estd em I(g?). Mas infelizmente esta integral é divergente quando |p| — oc.
Basta olhar para a expressio (1.14). O denominador é de ordem p?, enquanto que o numerador’ é de
ordem p°, portanto a integral é quadraticamente divergente. Para contornarmos este problema devemos
adotar algum procedimento de regularizacdo, que permite isolar a parte divergente do cdlculo a fim de
entendermos melhor o resultado. Uma maneira é fazer a integragio até um valor de corte A% que s6 depois

de todos os célculos terem sido feitos deve tender ao infinito. O resultado sera*

2 A2d 1 2
I(¢?) = 1;;2{/m2 ;y—6/0 z2(1—2z)ln (l_m(]QCQZ(l_z))dz}’ (1.17)

de maneira que a parte divergente est4 na primeira integral, que é In(A? /m?). A segunda integral é finita e

por isso ndo precisamos nos preocupar com ela, sendo do tipo

1
f(z) = 6/0 2(1 = 2)In(1 + z2(1 — 2))dz (1.18)

O resultado desta integral e alguns de seus limites estdo no Apéndice C.4. Portanto temos

2 A2 2
1(¢%) = 1;;2 { In (W) - f(m562> } : (1.19)

Desta forma, a amplitude total M = M + M para a producdo de mions é dada por
A2 o q2 ~
In (W) - f(m) [u(p2)y"u(p1)] -

Agora vamos ver como nos “livrar” do infinito que estd contido no pardmetro A? quando ele tende ao

2
25 Nuv €
M = —¢; [U(PS)’Y“U(M)](J—Q{l - 12;2

(1.20)

infinito. O truque € redefinir a constante de acoplamento e, (que é a carga do elétron) da seguinte maneira

e2 A2
eREee\/l— 12;2 In (W) ) (1.21)

Reescrevendo (1.14) em termos desta nova constante de acoplamento, temos

12727 \ ' m2c2

M= —%{a@@%@@]’%{u h f( 4 )}meu(pn].
(1.22)

Agora note o que aconteceu. A divergéncia estd toda contida na constante de acoplamento (1.21) e o

resultado que sobra € finito e muito bem definido. Portanto, se na lagrangeana original (1.1) introduzirmos

3Lembre-se que o elemento de volume em quatro dimensdes é proporcional a p.
*0Os detalhes destes célculos podem ser encontrados em diversos livros texto de teoria de campos, por exemplo as referéncias
(4,7, 8].
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er no lugar de e, os célculos ja saem finitos. Este é o chamado processo de renormalizacdo. A constante
de acoplamento é redefinida, ou renormalizada, de forma a absorver a divergéncia, e os cdlculos que seguem
sdo finitos. Mas esta constante de acoplamento € a carga do elétron, que é muito bem conhecida e tem valor
finito. No entanto, a carga que se mede no laboratdrio € a carga ep, que ja leva em consideragdo todas as
correcdes devido a processos do tipo da Figura 1.2, e a carga real que € medida por exemplo na repulsao
entre dois elétrons é na verdade uma diferenca entre cargas, e nfo a carga exata do elétron, que ¢ e., mas
a esta ndo temos acesso direto. No exemplo seguinte do espalhamento coulombiano vamos discutir um

pouco mais este aspecto.

1.1.4 Espalhamento coulombiano

A repulsdo coulombiana entre dois elétrons ou a atracao entre o elétron e o préton sdo conceitos bdsicos
da fisica conhecidos ja ha alguns séculos. Mas do ponto de vista quantico os mecanismos desta interagao
entre as cargas s veio mesmo a ser bem entendido com o advento da teoria de campos em meados do século
passado. Vamos considerar aqui o espalhamento de uma particula leve, o elétron por exemplo, por um
nicleo muito mais pesado, de carga — Ze, de forma que o recuo sofrido pelo nicleo pesado serd considerado

desprezivel. Uma forma de representar esta interagio é dada na Figura 1.4. O elétron se aproxima do nicleo

Figura 1.4: Espalhamento coulombiano entre um elétron e um nicleo pesado de carga —Ze.

com momento p = p 4, sofre a repulsdo transmitida pelo f6ton virtual v, sendo desviado de seu caminho e
seguindo com momento pc. A secdo de choque para este processo pode ser obtida de (1.11) considerando

2

o nicleo B em repouso antes e depois da colisdo. Na aproximag¢do mpc® >> F4 a se¢do de choque

diferencial é dada por

2
do <L> (M), (1.23)

an - 8mrmpce
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onde ( ) significa uma média sobre os spins das particulas. Para o espalhamento simples descrito pela

Figura 1.4, a média do quadrado da amplitude serd dada por’

(M) = (omeeme 2 (me)? + [ cos? 2 (1.24)
N hq? P 2)’ '
onde ¢ = —4|p]?sin?(0/2). Se o elétron incidente for ndo-relativistico, ou seja, se |p]? << (mc)?, a

secdo de choque (1.23) se reduz a férmula do espalhamento Rutherford

do <2meg>2 m2e? (1.25)

|\ ¢ - 4|plsint(6/2)

que como sabemos também pode ser obtida por consideragdes puramente cldssicas. Mas como j4 discuti-
mos anteriormente, este espalhamento também deve ter uma contribui¢ao devido a polarizacdo do vécuo.

O diagrama que representa este processo € dado na Figura 1.5. Levando em conta esta contribui¢do, usando

Figura 1.5: Contribuicao de 1-loop para o espalhamento coulombiano.

os resultados (1.14)-(1.21), concluimos que a amplitude total do espalhamento fica modificada para

2
16 2 —¢? 0
(MJ?) = (%%{1 + éizf(mi?) }) ((mc)2 + [p12 cos? 5) . (1.26)

Para o caso em que o espalhamento € de baixa energia, ou seja, o momento transferido ¢ € pequeno, usando

oresultado f(x) ~ x/5 dado em (C.14), vemos que a se¢@o de choque de Rutherford (1.25) fica modificada

para

do _ (2mep\*f) ek g )’ (1.27)
dQ q? 602 m2c2 | '

SPara mais detalhes desta deducio ver pag. 240 de [9]
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Para o caso estatico, quando g = 0, temos a simples repulsio de duas cargas coulombianas. Mas a medida
que a transferéncia de momento ¢ aumenta, a secdo de choque muda, indicando um desvio da lei de
Coulomb. A carga elétrica ez muda de valor com o momento g, ou seja, com a escala de energia em
que ocorre o processo fisico. Podemos entdo escrever a carga como fun¢do do momento ¢, da seguinte

forma:

ent®) = ent0)yf1 + MO (L

1272 7 Ym?2¢2

), (1.28)

onde er(0) representa a carga de repouso, ou seja, a carga que medimos no laboratério. Por isso, daqui
para frente, usaremos e (0) = e, pois esta € a carga real presente nos experimentos.

Esta variag@o da constante de acoplamento da interacao eletromagnética é um fendmeno que acontece
também na teoria das interagdes nucleares forte e fraca, e é dai que vem a idéia de que as forcas fundamen-
tais da natureza podem ser unificadas, pois as constantes de acoplamento de todas elas parecem convergir

para um mesmo valor a altissimas energias, conforme mostrado esquematicamente na Figura 1.6.

Intensidade
da
forca

eletromagnetica

Energia

Figura 1.6: Variacdo das constantes de acoplamento das intera¢des forte, fraca e eletromagnética.

Para terminar, note que nao € dificil imaginar outros diagramas que contribuem também para o espa-
lhamento coulombiano. Uma familia de gréaficos com 1-/oop de férmion estd indicada na Figura 1.7. Basta
acrescentar cada vez mais fétons ligando o loop ao férmion espalhado. Embora as contribui¢des sejam cada
vez menores, elas existem e devem ser consideradas a medida que resultados mais precisos sao requeridos.

O desvio dado pela equagdo (1.26) € uma das contribui¢des para explicar corretamente o desvio nas

linhas espectrais do atomo de hidrogénio, ou “Lamb shift”, conforme citado na introdugao.
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Figura 1.7: Outros diagramas de 1-loop fermidnico que contribuem para o espalhamento coulombiano.

1.1.5 Funcoes de Green

Vamos apresentar agora alguns aspectos mais formais da teoria de campos, mas que serdo muito im-
portantes para entendermos como € formulada a teoria de campos a temperatura finita. Sdo as fungdes de
Green, da qual as regras de Feynman originam-se naturalmente. Faremos uma exposi¢ao breve, apresen-
tando apenas os resultados necessarios para a inclusdo de efeitos de temperatura®.

Em mecanica quantica, uma quantidade de extrema importancia no estudo de um sistema € a probabili-
dade de transi¢do, ou amplitude de probabilidade, de que o sistema faca uma transi¢ao de um estado inicial

l¢*, ") para um estado final |¢/,¢/), e é dada por
. . 71 kot fi 7 .
(@ g’ 1) = (gf | e i =gy | (1.29)

onde g representa a coordenada generalizada que descreve o sistema e H=H (q,p) é a hamiltoniana
escrita em termos dos operadores ¢ € p (momento canonicamente conjugado a ¢). Esta amplitude de
transi¢do pode ser calculada usando-se o método das integrais de trajetéria desenvolvido por Feynman, e
pode-se mostrar que [2, 10]

+f

(@ g 1) O</Dq/Dp exp [% /t dt(pg— H(p,q)) |, (1.30)

onde H(q, p) ndo é mais um operador e estd escrito em termos dos autovalores ¢ e p. A integracdo nos diz

que devemos “somar” sobre todos os caminhos possiveis ¢(t) que satisfacam as condi¢des de contorno
q(t) =4q", a(t’) =q’, (1.31)

e sobre todos os momentos possiveis da particula entre estes pontos, o que significa que nos instantes
inicial ¢* e final ¢/ a particula estd em uma posicdo bem determinada ¢* e ¢/, respectivamente. O sinal de
proporcionalidade estd sendo usado para indicar que existe ainda um fator de normalizac@o, mas ele nio é
importante para nossa discussao.

Em teoria de campos, sabemos que a coordenada generalizada ¢(t) deve ser substituida (generalizando

®Para uma exposicdo completa indicamos [1, 2, 3, 10], embora a maioria dos livros de teoria de campos tratem deste assunto.
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para o espago tridimensional) por um campo ¢(¢, Z). Desta forma, a generalizagao de (1.30) é

. tf
(! (@), | (&), 1) o / Do / Dr exp [% / dt / dPx(rdop — H(m,0)) |,  (132)
tl

onde 7 € a densidade de hamiltoniana, 7 = 9.2 /9(0Jyp) é o momento conjugado de ¢, .Z é a densidade
de lagrangeana e Jy = 0/0x¢. A integral de trajetéria é sobre todas as fun¢des 7 (t, &) (autovalores de 7),

e sobre as fungdes ¢(t, I) (autovalores de @) que satisfagam
ot 7) = o (T) (', ) = ¢'(D). (1.33)

Estas s@o as condi¢des de contorno andlogas de (1.31). Em geral, ou pelo menos na maioria dos casos em
que estamos interessados, a densidade de hamiltoniana € apenas quadratica no momento 7, de forma que a

integral funcional nesta varidvel pode ser feita, e ficamos com

. tf
@t lp @) =N [Dpow | [ at [ 260.0,0)]. (134

onde agora tanto o fator de proporcionalidade anterior quanto o resultado da integracdo em 7 estdo re-
presentados por N. Note que o argumento da exponencial € algo conhecido, é proporcional a agdo S do
sistema’.

Mas esta ndo é uma quantidade muito ttil para cdlculos explicitos, pois em geral ndo sabemos em que
estado |¢(Z),t) se encontra o sistema. O que conhecemos de um sistema quantico sdo seus autovalores
de energia e os respectivos auto-estados. Um estado importante € o estado de menor energia, ou estado
fundamental, ou ainda estado de vacuo |0). Uma quantidade que nos interessa é amplitude de probabilidade
de que o sistema faca uma transi¢@o, sob acdo de alguma interagdo externa J(t, Z), do estado fundamental,
em t’, para o préprio estado fundamental, em ¢/. Isto é conhecido como amplitude de transicdo vacuo-
vécuo sobre influéncia da interagdo J, e é representado por Z[J] = (0/0)’. Isto pode ser calculado

partindo-se de (1.34). Ndo vamos mostrar os detalhes do célculo®, o que nos interessa é somente a expressio

final, e é dada por

Z[J] = (00} =N lim /Dgo exp [ / dt/d3 (Z+ J(p)} (1.35)
zl_> Te—16
tf —Te—id

Neste ponto, alguns comentdarios se fazem necessarios. A expressao (1.35) sé faz sentido se a integracao no
tempo for feita através de uma rotago para eixo imaginario, caracterizado pelo pardmetro 4. Isto acontece
por causa de problemas de convergéncia® que aparecem nos calculos intermedidrios entre (1.34) e (1.35).

Se 6 = /2 eT — oo, de maneira que o tempo varia em todo o eixo imagindrio, isto é conhecido

"Classicamente temos S = [ dtL(q,q)

8Para uma boa discusséo, vide pags. 174-177 de [2] por exemplo.

“Basicamente o que acontece é que, como o argumento da exponencial é um niimero complexo, a exponencial oscila quando
t varia, de forma que no se pode assegurar sua convergéncia. J4 no eixo imagindrio a exponencial se torna real e decrescente, de
forma que a convergéncia fica garantida.
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como rotacdo de Wick, que corresponde a uma rotagio do espaco de Minkowski para o espagco Euclidiano,
conforme Figura 1.8. Mas isto também nao € um problema, trata-se apenas de um artificio matematico para
garantir a convergéncia da integral, e depois de todos os cdlculos terem sido feitos devemos voltar para o
eixo real do tempo. Quanto ao fator de normalizagdo N, ele é escolhido de forma que Z[J] = 1 quando
J=0.

Figura 1.8: Rotacdo de Wick para o eixo imagindrio do tempo.

Com isto, podemos introduzir uma quantidade de extrema importancia em teoria de campos, conhecida

como fungdo de Green de n-pontos, denotada por
G (@1, wn) = (OIT[@(z1) - @(0)][0) (1.36)

que nada mais € que o valor esperado no vicuo do produto ordenado no tempo de n operadores de campo

$. Através de derivadas funcionais de Z[J] ndo € dificil mostrar que

hn "Z[J]
0|T'|¢ e o(p)]]0) = (= ) 1.37
OITR() - @)} = (3)" 570y 57 (137)
J(z)=0
onde z; = (29,%;), i =1,--- ,neT[ -] representa o ordenamento temporal dos campos .

Este é o resultado final a que queriamos chegar. Dada uma densidade de lagrangeana %, através da
equacdo (1.35) podemos calcular a amplitude de transi¢do vacuo-vdcuo, e com ela, pelas (1.36) e (1.37)
podemos calcular as fungdes de Green de n-pontos. Mas na verdade as coisas ndo sdo tdo faceis assim.
O cilculo exato de Z[.J] s6 é possivel para o caso de teorias livres, sem interagdes, € 0 que nos interessa
¢ exatamente o0 caso em que as interacdes estdo presentes. Por exemplo, queremos saber como se da a
interacdo do féton (campo eletromagnético) com os elétrons (particulas fermidnicas). A solugdo a este
problema também € conhecida, o que se faz é separar a lagrangeana em uma parte livre, .%, ¢ em uma

parte de interagdo .Z7. A parte de interacdo deve ser expandida em poténcias da constante de acoplamento
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da interacao (carga elétrica no caso da eletrodindmica), e o problema € entdo tratado perturbativamente. Por
exemplo, gostariamos de saber quais sdo exatamente os propagadores do féton e do elétron para uma teoria
com interagdo (lembre-se que as expressdes dadas em (1.2) e (1.3) sdo os propagadores livres). Na falta de
uma resposta exata, o tratamento perturbativo nos diz que o propagador exato do féton por exemplo pode

ser expresso diagramaticamente'? pela Figura 1.9. O primeiro termo desta expansio é o propagador livre

D" _ ’\AA/V\/+W©\M+/\NU@’V\N+---

Figura 1.9: Expansao perturbativa para o propagador do féton. O primeiro diagrama corresponde ao pro-
pagador livre D}

(ordem zero em e), equacao (1.2), o segundo termo € a auto-energia do féton (ordem €?), o terceiro termo
é um diagrama de 2-loops (ordem e*), e um niimero infinito de diagramas contribuem para esta expansao.
Portanto, o interesse em se conhecer as fungdes de Green é saber exatamente quais os diagramas que
contribuem para um processo, dada uma interacdo. Como j4 foi citado nas secdes anteriores, o diagrama de
auto-energia do féton € a primeira corre¢fio perturbativa a um processo direto, e € neste tipo de diagrama
que estaremos interessados nos capitulos seguintes.

Outros dois diagramas de 1-loop muito importantes nos estudos da eletrodindmica quéntica sdo os
diagramas de auto-energia do féton e o de correcdo de vértice, mostrados nas Figuras 1.10 e 1.11. O pri-
meiro dard uma contribui¢@o para a renormaliza¢do da massa do elétron, enquanto o segundo € a principal
contribuicdo para explicar o momento magnético andmalo do elétron.

Como vimos brevemente nesta secdo, os diagramas de Feynman sdo uma ferramenta importante para
se obter resultados precisos em fisica de altas energias, principalmente quando os processos envolvidos s@o
processos de espalhamento e producdo de particulas. A ligacdo entre a teoria e o experimento € feita por
meio das se¢des de choque que descrevem o fendmeno, e o cdlculo preciso destas secdes de choque envolve
o célculo de diagramas de 1-loop por exemplo, que sdo as primeiras corre¢des perturbativas a um dado
processo. A medida que as técnicas experimentais avancam, torna-se cada vez mais possivel testar uma
teoria olhando para suas contribui¢cdes ou modifica¢des nas se¢des de choque correspondentes. Teorias que
envolvem interacdes entre particulas sdo as mais interessantes, € como vimos, termos de interacdo dardo
origem a vértices nas regras de Feynman, que conseqiientemente dardo contribui¢des a diagramas de 1-
loop, por isso o interesse no estudo de tais digramas. Quando tratarmos da QED ndo-comutativa no préximo
capitulo, ficard claro que uma possivel maneira de se testar a existéncia ou nido da ndo-comutatividade
das coordenadas é por meio do célculo de se¢des de choque de determinados processos por exemplo. A
nio-comutatividade dara origem a novos termos de interacdo, que por sua vez contribuirdo com novos
diagramas que podem ser significativos no calculo de determinadas secdes de choque.

Agora vamos discutir um pouco a teoria de campos a temperatura finita.

19A expressdo matematica deste diagrama segue diretamente da funcdo de Green de 2-pontos, os detalhes estdo nos livros de
teoria de campos, queremos apenas mostrar qualitativamente o que acontece.
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Figura 1.10: Auto-energia do elétron.

Figura 1.11: Correcdo de vértice.

1.2 QED a temperatura finita

Antes de iniciarmos nossos estudos da teoria quantica de campos a temperatura finita, vamos apresentar
algumas questdes que se relacionam a ela.

O que acontece com a matéria ordindria quando ela é submetida a altissima pressdo de tal maneira
que os elétrons que a compde formam um gés degenerado relativistico? E isto o que acontece em estrelas
anas brancas por exemplo. E quando os nicleos sao comprimidos a ponto de se juntarem para formar
uma matéria nuclear superdensa, como nas estrelas de néutrons? E quando a matéria nuclear € aquecida a
altissimas temperaturas de forma que os prétons e néutrons se quebram em quarks e glions? E isso que se
supde acontecer em uma colisdo nicleo-nicleo de alta energia. O que acontece com a quebra espontanea de
simetria da teoria unificada eletrofraca durante o big bang? Questdes como estas fascinaram os fisicos nas
dltimas décadas, e as respostas envolvem estudos de mecénica estatistica, de fisica de particulas elemen-
tares, fisica nuclear, astrofisica e cosmologia. Sistemas como esses estdo fora do alcance das experiéncias
humanas mas o universo estd ai como um grande laboratério. Portanto, para entendermos um pouco sobre
0s mecanismos que agem sob condicdes tdo extremas de temperatura e densidade, necessitamos de uma
formulagdo da teoria de campos que leve em conta tais aspectos. As ferramentas estdo na teoria de campos
a temperatura finita.

Teorias de campos ndo relativisticas a temperatura e densidade finitas apareceram por volta de 1950
para descrever sistemas da matéria condensada em condicdes de laboratério, ou seja, fora do regime ex-
tremo de altissimas densidades e temperaturas. Os conceitos envolvidos eram baseados apenas na equac¢do
de Schrodinger e em mecanica estatistica, ja que se tratava de sistemas de muitas particulas. Isto ficou

conhecido como ‘“Problema de muitos corpos”. A teoria de campos relativistica a temperatura finita foi
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primeiramente estudada por Fradkin em 1965 e redescoberta dez anos depois, motivada pela busca de uma
descri¢do da transicdo de fase que deve ocorrer com a teoria eletrofraca a uma energia da ordem de 200
MeV, de grande interesse para se entender a histéria do universo, pois esta transicdo de fase pode ter de-
sempenhado um papel importante na formagcdo de matéria escura, que € um dos grandes problemas da
cosmologia moderna. Por volta de 1980, estudos de teoria de campos na rede sugeriram a existéncia de
uma fase da matéria nuclear em que quarks e glions poderiam existir separadamente, o chamado plasma de
quarks e glions, a uma energia estimada da ordem de 150 MeV, conforme ilustrado na introdugao pelo dia-
grama de fases. A possibilidade da observagdo deste novo estado da matéria em colisdes ultra-relativisticas
de fons pesados deu um novo impulso ao estudo da teoria de campos a temperatura finita.

Nosso objetivo aqui é dar uma breve introducdo a este assunto do ponto de vista da eletrodinamica

quantica.

1.2.1 Revisdo de termodinamica

O principal objeto do estudo da termodinamica de sistemas em equilibrio ou da mecénica estatistica é a
funcdo de parti¢cdo Z. Dela derivam todas as quantidades macroscdpicas de interesse do sistema. A fungdo

de particdo que caracteriza o ensemble “grande candnico” é dada por

Z = Tr exp[-B(H — uN)]

=S | e~ PUH=1N) |y (1.38)
com
Hin) = E,|n) (1.39)
e
Nn) = n|n) (1.40)

onde |n) e F, sdo, respectivamente, os auto-estados e autovalores da energia do hamiltoniano H e N
representa o operador “ndmero de particulas” do sistema, caracterizando o nimero n de particulas que
compde determinado estado. O potencial quimico p caracteriza a possibilidade do sistema trocar particulas
com o meio externo. O caso u = 0 representa o ensemble candnico, caracterizado por um ndmero fixo
de particulas. Vamos trabalhar no sistema de unidades onde a constante de Boltzmann € igual a unidade,
de forma que 5 = 1/kpT = 1/T representa o inverso da temperatura. De posse da fungdo de particdo,

podemos determinar quantidades como a pressdo P, a entropia S, o nimero médio de particulas N e a
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energia interna F pelas relacdes

olnZz olnZz
ov ou '
52%7 E=—PV+TS+uN. (1.41)

Uma outra quantidade muito importante € a energia livre de Helmholtz F', que se relaciona a energia

interna por meio de
F=FE-TS, (1.42)
e também deriva da fun¢do de parti¢do
F ! InZz (1.43)
=——InZz. .
g

Se tivermos um sistema unidimensional composto por bdsons livres, por exemplo um gés de bdsons,
teremos F,, = hw(n + %), onden = 0,1,2,---o00. Por simplicidade vamos adotar 7 = 1 e desconsiderar
o fator 1/2, que representa apenas a energia de ponto zero do sistema, de maneira que F,, = nw. A fungio

de particdo (1.38) fica

7 — i e—Olw—p)n
n=0

1
pE =k (149
e o nimero médio de bdsons sera
olnZ 1
N=T o e 1 (1.45)
No limite ¢ = 0 temos a fungao distribui¢do de Bose-Einstein np,
= ! 1.46
nB(w)_eﬁ“’—l' ( )
Para o caso de um gés de férmions, temos n = 0, 1, de maneira que a funcao de parti¢do fica
1
7 — Z e Blw—p)n
n=0
=1+ e Pl—m 1.47)
e o nimero médio de férmions
olnZ 1
N=T7<E2 (1.48)

6# eﬁ(“’*ﬂ) +1 '
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No caso p = 0 temos a funcao distribuicdo de Fermi-Dirac np,

1

PR (1.49)

np(w) =

1.2.2 Funcoes de Green a temperatura finita

Vamos ver agora como ficam as regras de Feynman apresentadas na primeira se¢c@o devido a presenca
da temperatura. J4 vimos no caso a temperatura nula que as regras de Feynman sdo derivadas através do
estudo das fungdes de Green de n-pontos do sistema, entdo nosso objetivo é apresentar qual o andlogo das
funcgdes de Green para o caso a temperatura finita. No caso anterior, somente o estado de vicuo tinha um
papel importante, s6 que agora todos os estados devem contribuir para o funcional gerador das fungdes de
Green, cada um com um peso estatistico diferente, dependente de sua energia. Desta forma, a generalizacao

correta de (1.36) deve ser
G (@1, 2 Ze Bl (oI Tp(x1) - - p(an)]lps) (1.50)

onde a soma € sobre um conjunto completo de estados |¢;) com energia E(y;). Isto nada mais é que o
valor médio do produto ordenado no tempo de n-operadores de campo no ensemble grande candnico com

potencial quimico igual a zero

Tr e ST [p(x1) - plan)]
Tr e—BH

g(”)(x1,~~- L Tp) = , (1.51)
onde H é a hamiltoniana do sistema. Para entendermos quais as mudangas que ocorrem nas regras de
Feynman, é mais facil usarmos de um artificio matematico que ficou conhecido por formalismo do tempo
imagindrio. Note que se fizermos t; — t; = —if3 na equacdo (1.29), aquela amplitude fica tendo a mesma
cara da fun¢@o de parti¢do se os estados |¢) forem auto-estados da energia. O fato do tempo variar no
eixo complexo significa que devemos ir para o espago euclidiano. Desta forma, tudo o que foi feito para
temperatura zero € valido desde que o intervalo temporal, antes variando de [—o0, 00|, agora fique restrito
ao intervalo [0, 3]. Isto faz com que a expansdo de Fourier de um campo no eixo temporal seja restrita a um
intervalo finito, portanto ao invés de usarmos uma integracao devemos usar um somatorio para escrevermos
a parte temporal da expansao de Fourier de um campo. Desta forma, a regra de Feynman nimero 6 da se¢ao
1.1.1 fica modificada para:

9 - Soma sobre freqgiiéncias - No espago euclidiano, em um loop interno, as freqiiéncias devem ser

[ il

somadas
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onde kg = iw, no espaco euclidiano e

nr bdésons
Wn
2n+1 .
%, férmions

Estas sdo as chamadas freqiiéncias de Matsubara. Varios livros texto discutem de forma bastante clara a
formulagdo da teoria de campos a temperatura finita, por isso ndo vamos nos deter nestes detalhes técnicos.
Vamos apenas aplicar os métodos ja desenvolvidos e muito bem estabelecidos desta teoria a problemas de
nosso interesse. Para o leitor interessado indicamos os livros de J. I. Kapusta [11], M. Le Bellac [12] e A.

Das [13].

1.2.3 Funcao de particao

Desta breve introdugao a teoria de campos a temperatura finita, fica claro a estreita analogia com o caso
a temperatura zero. As funcdes de Green podem ser definidas de maneira semelhante, os diagramas que
contribuem para um processo sdo semelhantes aos encontrados no caso anterior, o que difere é o método
de célculo dos diagramas, como ficard claro quando fizermos o cédlculo do tensor de auto-energia do f6ton.
Mas existe uma outra quantidade de extrema importancia que podemos calcular, agora usando a teoria de
campos a temperatura finita, que € funcio de particdo de um sistema. Conforme descrito na se¢do 1.2.1,
de posse da funcdo de particio podemos derivar relagdes importantes da termodindmica, como pressao,
entropia, energia interna, etc.

Vamos fazer uma aplica¢do ao caso de um gas de elétrons e um gés de fotons a altas temperaturas,

usando as ferramentas da teoria de campos a temperatura finita.

Gas de elétrons

Vamos considerar novamente a fun¢ao de particdo de um sistema quantico, equacao (1.38), no caso de

potencial quimico nulo:
Z=3"(nle*n). (1.53)
n

Note a semelhanca desta expressdo com a (1.29), que foi o ponto de partida para a obten¢do da funcao de
Green. Naquele caso, o intervalo de tempo ¢y — ¢; ndo desempenhou nenhum papel importante, pois de
acordo com (1.35), estes intervalos foram tomados tendendo ao infinito de forma que a tnica contribui¢do
para a amplitude veio dos estados de vicuo. Aqui o tempo também nio desempenha nenhum papel impor-
tante, pois estamos tratando de sistemas em equilibrio. A pergunta agora €: Qual o andlogo da fungdo de

particdo (1.53) para o caso de férmions livres do ponto de vista da teoria de campos? A resposta é:

7 =" (@) e | — (@) . (1.54)
»(Z)
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Mas porque o sinal negativo no campo do lado direito? Podemos afirmar que isso é especifico para o
caso de férmions. Os observdveis fisicos sempre envolvem poténcias pares dos campos de Dirac ¥, ja
que estes mudam de sinal por uma rotagio de 2. Assim, os auto-estados | + (%)) do operador (&)
correspondem ao mesmo valor dos observaveis fisicos e descrevem o mesmo estado. Para evitar problemas
€ sermos consistente com a estatistica de Fermi, devemos tomar como ponto de partida a expressao (1.54).
O desenvolvimento agora pode ser feito analogamente ao caso da secdo 1.1.5, levando em conta que agora

estamos trabalhando no eixo imaginario do tempo, com a seguinte mudanca de varidveis:

=it =ixz", (1.55)
com t' = 0 et/ = —if. Isso corresponde a definirmos z* = (7,Z) = (iz°,#) = (—i7,Z) (estamos
usando ¢ = 1). Podemos mostrar entdo que

_ s _
Z = N(B) DD exp / dr / dBzL(Y, ), (1.56)
antiperiod 0

onde em £ o campo ) é entendido como sendo fungdo de 7 e Z, e € anti-periddico no intervalo 0 < 7 < 3,

Y(1=0,7) = —¢Y(r = 3,7). (1.57)

A expansdo de Fourier apropriada para ¢(z) €

_ 1 dgp —ipT, T
w(x>=5; / Tl (1.58)

onde p* = (pY, ﬁ) = (—ip, p) e as freqiiéncias de Matsubara para férmions sio

2n+ )7

; 1.59
3 (1.59)

Wnp =

com p° = iw, e n inteiro.
Para o caso de um campo livre, a lagrangeana apropriada é a lagrangeana de Dirac, escrita em termos

da variavel z,

L(P,¥) = P(T)(in"0, — m)p(T) (1.60)
de forma que temos
— /s _ 4= 4= 7 (= = = =
2=N@) [ DiDyes ( [dta’ [ awi@p, a)o) (1.61)
com
D(7,z) = (iv"0, + m)é* (7' — 7), (1.62)

26



onde 9,1 = (i0v /01, V1p). Usando a propriedade!!

/ Déexp ( - % / da’ / dz qb(a:’)A(m’,x)gi)(:c)) — oxp < - %Tr In A> , (1.63)

onde A € a matriz que representa A(x’, x), podemos entdo escrever
Z = N(fB)exp(Tr InD), (1.64)
onde o trago Tr significa [ dr [ d3ztr e tr significa soma sobre os indices de Dirac. Escrevendo
N7 —z)=0(r' — 1)@ - T) (1.65)

e representando 64(Z’' — Z) por uma transformada de Fourier da forma

A, 1L Z Pp -z
5(33/*33)—5 ; We P( ), (166)
obtemos
1 d3p (5 = -
D(T,Z) = - ) —ip (@) : 1.
(@', 7) Epa /(2ﬂ)3e (—p+m) (1.67)
Com isto

1 d?
TrlnD = /dT/d3 Z/ p21nm—p)

a3
— 9 [ &z P n(w? + @ +m?), (1.68)

onde usamos a identidade tr In(—p 4 m) = 21In(m? — p?).

A soma sobre as freqiiéncias pode ser feita usando-se a identidade

(X m@ra) =2 Y (1.69)

n=—oo n=—0oo

e os resultados do Apéndice B.3. Fazendo isso chegamos a
TrInD = 2 / dx /

onde C1(f) é uma constante dependente da temperatura mas independente de p. Na verdade esta é uma

P2 +m?

p% 4 m?)]

(1.70)

constante infinita, pois se ela nio depende de 7 a integral em d3p diverge. No entanto pode-se mostrar que

"Vide pags. 1-4 de [3] por exemplo.
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este fator cancela exatamente o termo N (/3) ainda presente na fung@o de parti¢do. Este cancelamento é um
fato notdvel'2, mostrando a consisténcia da formulagdo por meio de integrais de trajetéria. A integral em

d3x representa o volume V' do sistema. A funcio de parti¢iio, portanto, fica dada por:

7 = exp (zwv/ &y (1 T+ m? + = Infl + exp(— BV + m2)}>> :

(2 \2 3
(1.71)
e a energia livre de Helmholtz (1.43)
F = —4V/ d—sp (1 P+ m?2 + 1 In[1 + exp(—B+v/p? + m2)])
(2r)3 \2 3 ’
(1.72)

Quando a massa do campo fermidnico € desprezivel comparada com a temperatura, podemos calcular
a integral explicitamente. O primeiro termo na integral d4 uma contribui¢@o infinita, que representa uma
energia de ponto zero, portanto deve ser cancelada por algum procedimento de renormalizagdo. Tomando

o limite T" >> m, que equivale a fm << 1, obtemos

F=- 1.73
180 v (1.73)

Tm2T3 72Tt
’ 180

Z = exp <V

de maneira que a pressdo, a densidade de entropia e a densidade de energia sdo, usando (1.41),

24
pP— 77;85 , (1.74)
S Tm2T3
E Tt
e = (1.76)

como esperado, ou seja, com dependéncia do tipo T para a energia.

Gas de fotons

Para o caso de um géds de fétons o tratamento € semelhante, s6 que devemos tomar alguns cuidados.
Intuitivamente, poderiamos tomar a expressao para a funcio de parti¢do andloga a de um campo escalar, s6
levando em conta que temos um campo vetorial com quatro componentes, A* = (A% Al A% A3). Mas
existe um problema. O campo vetorial sem massa (f6ton) possui apenas 2 graus de liberdade independentes
(2 transversais), embora uma lagrangeana tipica que seja renormalizdvel possua 4 graus de liberdade (2
transversais, 1 longitudinal, 1 tipo tempo). Os dois graus de liberdade extras ndo sao fisicos, e diz-se que
eles ndo podem estar em equilibrio térmico com o meio. Em vista destas particularidades, percebemos

que Tr e P nio é uma quantidade de significado fisico em todos os gauges. Em alguns gauges aparecem

12Uma boa discussdo sobre isso é feita por Bernard em [14].
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particulas que representam graus de liberdade extras, que ndo podem estar em equilibrio térmico e nao
devem ser levados em consideracdo. Se fizermos os cdlculos num gauge que seja covariante, obtemos
uma quantidade que é duas vezes o esperado. O erro estd no fato de, mesmo no caso abeliano, os campos
“fantasmas” (ghosts) de Faddeev-Popov contribuirem para a fungdo de particdo. A contribuigdo € tal que
anula exatamente a parte vinda dos dois campos extras (longitudinal e tipo tempo). E uma surpresa que
os campos de Faddeev-Popov sejam importantes mesmo no caso abeliano, pois ao contrério, a temperatura
nula, a contribui¢do vinda destes campos fornece apenas uma constante multiplicativa ao funcional gerador,
e podem ser ignorados. Aqui os termos sdo importantes e dao uma contribui¢do que cancela exatamente a
dos graus de liberdade ndo fisicos. A fun¢do de particdo Z deve ser definida como Tr e 81 somente em
um gauge que represente uma situagdo fisica, a fim de contarmos os graus de liberdade corretamente.

O que queremos dizer com toda esta explicagdo é que a lagrangeana para o campo de gauge deve ser

modificada para

=R P 2%(3“/1#)2 +9,C0"C (1.77)

onde C' e C representam os campos de Faddeev-Popov. Desta forma, a fungio de particio que devemos

tomar como ponto de partida é

_ 1. _ 1 - o
7 = [N(8))? / DA*DCDC exp / d497:( — F, - —(§,A"? +,C aﬂc)
period 4 2€

(1.78)

escrita em termos da coordenada Z. Agora o tratamento é o mesmo do caso anterior. Podemos reescrever

(1.78) como

Z = [N(B))? / DAM exp ( - % / d*z’ / d4:7:Au(:7:’)B“”(f’,a?)Au(a?))

period

x [ DCDCexp ( — /d4az=’/d%C(f’)G(f’,f)C(f)) (1.79)

period

onde

B™ (%' %) = [nuva/’)ap —(1- 1/5)8,’,8“] 5(7 — 7)

G(T',z) = 0,0°0(%' — 7). (1.80)

Usando a representagio (1.65) para fungo delta, podemos escrever B e G como transformadas de Fourier

Vit - d p i —a p“p PPy
B (', PR (e ) T 7 ]
T,1) = lZ/ﬂe—iP(I’—x)p? (1.81)
’ B4~ ) (2m)3 7 '
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de forma que obtemos
1
7 = [N(B)]Qexp(—§Tr In B) exp(Tr InG) . (1.82)

O trago deve ser tomado sobre & e sobre os indices de Lorentz, e obtemos (termos independentes da

temperatura foram desprezados)

TrInB = /d3 Z/ —4In(wh + p°)

& n(w? + 7). (1.83)

onde w,, = 27n/f é a freqiiéncia de Matsubara para bosons. Obtemos assim para a fungo de parti¢do

Z = [N(B)]? exp ——/d3 Z/ —=2In(w] +52)), (1.84)

de maneira que, usando (1.69) e os resultados do Apéndice B.2,

d3p

nZ=-2[d%

SVl - exp(—6VP)] + Ca(B)} + N

(1.85)

onde Co(f) é uma constante dependente da temperatura mas independente de , de maneira que sua
integracdo fornece uma contribui¢do infinita para In Z. Mas também pode ser mostrado [14] que este
termo cancela exatamente o termo In[N(/3)]? em (1.85).

Voltando entdo a fungdo de particdo, podemos escrever para a energia livre

:——an—Q/d3

O primeiro termo dd uma contribuicao infinita que deve ser desconsiderada, pois representa a energia do

f+ 5 Inl1— ex( 5\/;5)]). (1.86)

vacuo. Desta forma obtemos para a densidade de energia livre

F d3p 1
:2/< a0 PV

Vv
—2><47T1 ! /oop21n(1—e_pﬂ)dp
B (2m)?

1 1 -t
= 87— ——
B (2m)3 4533
2T4
- _2”90 : (1.87)
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Com isto, a pressao, a densidade de entropia e a densidade de energia sao

2T4
P = 2”90 : (1.88)
S 4n?T3
Qo 1.
v T (1.89)
E  2rn?T*
L 1.90
% 30 (1.90)

que é exatamente o dobro do caso de um campo escalar, que é o esperado, ja que o campo vetorial A*
s6 tem dois graus de liberdade fisicos. Além disto, tanto aqui quanto no caso de férmions, € satisfeita a

equacdo de estado
1
P=<E/V, (1.91)
como deve ser para o caso de um gés ideal relativistico.

1.2.4 Auto-energia do féton

Vamos ver agora como fica o cdlculo de um diagrama de 1-loop para o caso a temperatura finita. Para
isso vamos aplicar os resultados anteriores para um caso especifico, que € o da auto-energia do f6ton, re-
presentado pelo diagrama da Figura 1.3. Aqui o quadrimomento do féton sera representado por k, portanto
q — k naquela figura. A auto-energia pode ser representada em termos do propagador livie DE” e do

propagador exato D*" por

I, = D, — Dy, (1.92)

onde o propagador esta relacionado ao seu inverso por

DHep il =it (1.93)

v

Além disso, o propagador e a auto-energia devem satisfazer a alguns vinculos. Denotando k* o quadrimo-

mento do féton, a conservagdo da corrente requer que II,,, seja transversal ao quadrimomento do f6ton
EFIL,, =0, (1.94)
e a invariancia de gauge requer que
E'K' D, =&, (1.95)

onde ¢ especifica uma escolha de gauge. No caso a temperatura nula, o tensor de auto-energia do féton
[I1#¥ depende somente de n*¥ e do momento externo k* do féton, conforme (1.16). Agora, a temperatura

finita, precisamos de mais um quadrivetor para especificar o sistema corretamente, e este quadrivetor é
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representado por u*. Ele é o quadrivetor que representa a velocidade do reservatério térmico onde o
sistema se encontra, e o caso u, = (1,0,0,0) especifica o sistema de repouso desse reservatério. Em
célculos especificos podemos sempre adotar este sistema como o de referéncia, o que indica que estamos
no sistema do reservatério térmico. Dito isto, a auto-energia, o propagador e seu inverso siao tensores
simétricos de segunda ordem formados pelas estruturas acima. Para que satisfaga as relagdes (1.92)-(1.95),

pode-se mostrar que eles devem ter as formas

" (k) = IIp PEY + 11, P (1.96)
. 1 5 1 L, & kMEY
D et e e o
—1\pr _ 2 uv 2 uv K EY
(D" = (k* — r)PfY + (k* — L) P + (1.98)

€ 9
onde IIt e Iy, sdo funcdes escalares que podem ser determinadas. Vamos nos restringir'® ao sistema de

referéncia do reservatério térmico, u* = (1,0,0,0) e ao limite estatico, kg = 0. A parte tensorial fica por

conta dos operadores

P = vt (1.99)
y kHEY
Pr# :’)/]MV—’LLNUV—F, (1100)
e satisfazem as seguintes propriedades:
P{‘LVPLMV =4,
P{Y Pry, = (d—2),
k, Py =k,P" =0,
P Pr,, =0, (1.101)

onde d € a dimensdo do espago-tempo e vem da contragdo n*’n,,, = d. Usando (1.96)-(1.101) pode-se
verificar que as relagdes (1.93)-(1.95) sdo de fato satisfeitas. Com estas relacdes os coeficientes II e Il

podem ser determinados facilmente. Basta contrair os dois lados de (1.96) por P/’ e PL”, e usando as

Para o caso geral ver pags. 70-71 daref. [11] ou pags. 118-119 de [12].
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relacdes (1.101) obtemos

P11, =11,

P, = (d— 2)Tr. (1.102)

Vamos entdo calcular I1#”.
Usando as regras de Feynman a temperatura finita, a expressao para o diagrama que representa [1#” €,

conforme Figura 1.3,

3
I (k) = —e2T§l:/ (gﬂl))?’tr (7“¢+;él—m7y;¢—1m>’ (1.103)

onde p® = (20 + 1)7T' estd associada a freqiiéncia para os férmions e k0 = 2n7T% a freqiiéncia para o
foton. Pode-se mostrar que sempre podemos escrever o tensor de auto-energia como a soma de uma parte

de vacuo (independente de T") e uma parte de matéria (dependente de 7°), na forma

" = H’(‘;ac) + Hg:at) , (1.104)
de tal maneira que
H’(‘U”ac) = lTl_I% Hl(Lant) . (1.105)
n—0

A parte de viacuo é exatamente igual aquela que foi calculada em (1.14), como era de se esperar. A
parte de matéria ndo pode ser calculada exatamente, mas alguns de seus limites e varias outras aplicacdes
envolvendo esta expressao foram extensivamente estudas por J. I. Kapusta e varios outros autores, conforme
referéncias [11, 12, 15, 16, 17]. Vamos discutir aqui apenas um dos limites da expressao (1.103), que é o
limite estdtico a altas temperaturas'®. Para obtermos este limite basta tomar o momento interno ao loop p

muito maior que o momento externo k e a massa m, de forma de que a expressao (1.103) fica

we = —ary [ ot (vg)
-1y [ (v )

3
- —e2TZ/ 4p_pabs,, (Y*v*v*¥?)
l

(2m)3 pt
d*p [(2ptp”
= —4e°T — 1.1
) zz:/(27f)3< )] (1100

14Na literatura é comum a nomenclatura Hard thermal loop approximation, ou simplesmente limite HTL.
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onde foi usada a propriedade do traco
tr (YY) = Al P — ). (1.107)

Usando (1.102) podemos determinar os coeficientes Il e IIt. No sistema de repouso do reservatorio,

temos

I = 1%

_ d’p 1 2|1
a _462/ (27r)3TZl: ([(21 + 1)nTi)? — p? + ([(21 4 1)7Ti)2 _52)2>

e [ e o (M) (i)
- ,/<2wﬁ[ P ( 2 2l >}

3
= et [ S

__167'&'62/00 of 1 ’d
T ens ), P\erir) Y

2T2
= C - (1.108)

A primeira soma sobre as freqii€ncias fermionicas foi feita usando os resultados do Apéndice B.3, eq.
(B.25). A segunda soma pode ser feita a partir da primeira, derivando com relag@o a |p] dos dois lados, e
nr(|p]) é a fungdo distribui¢do de Fermi-Dirac, eq. (1.49). A dltima integral pode ser feita por integragdo
por partes.

Procedendo de forma andloga obtemos

1
It = §P{“’HW

—-0. (1.109)

Vamos ver a seguir uma aplicacao destes resultados.
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1.2.5 Blindagem dos campos elétrico e magnético em um plasma

Quando a temperatura de um gés € elevada a valores muito altos, os 4&tomos que compdem este gis se
ionizam facilmente, deixando os elétrons livres, e isto caracteriza um estado chamado de plasma eletro-
magnético. Se uma carga positiva () for introduzida neste plasma, os elétrons rapidamente sdo atraidos pela
carga positiva, distribuindo-se em torno dela de maneira a neutraliza-la. A este fendmeno di-se o nome de
“blindagem”. O campo elétrico produzido pela carga () perde a intensidade a medida que afastamos de seu

centro, e o potencial criado por essa carga tem a forma

V(r)= Qoo (1.110)

r

onde rp caracteriza o “raio de blindagem” da carga, ou seja, a distancia a partir da qual o potencial é
praticamente nulo. Este comprimento é conhecido como “raio de Debye”, e seu inverso caracteriza a
“massa elétrica” do meio, m¢; = 1/rp. Um gds ionizado é considerado um plasma se o raio de Debye rp
for pequeno em relacao a outras dimensdes fisicas de interesse. Em uma escala maior que rp, os elétrons
tendem a cooperar de maneira a neutralizar um excesso de cargas positivas em um determinado ponto. E
esta resposta coletiva as flutuagdes de carga que dé origem as oscilagdes do plasma em larga escala.

As massas elétrica e magnética estdo relacionadas ao tensor de auto-energia do féton. Elas sdo definidas
como sendo os polos I, e IIt presentes no propagador do féton, equagdo (1.97), no chamado limite
estatico, kg = 0. Lembre-se que k£ € o quadrimomento do féton, e o féton € o verdadeiro responsavel pela
“transmissdo” dos campos eletromagnéticos. Quando k* = (0, E), significa que a freqiiéncia associada aos
campos eletromagnéticos € nula, ou seja, estamos diante de campos estéticos, o que caracteriza o limite
estatico. A massa elétrica corresponde ao polo da parte longitudinal do propagador e a massa magnética

ao poélo da parte transversal. Elas sdo definidas por

m2 =1 (ko = 0, k), (1.111)
M2 g = Hr(ko = 0, k). (1.112)

Usando os resultados (1.108) e (1.109) obtemos no limite estético a altas temperaturas

. 2T2
mgIZHL(k‘o:O,k—)O):eg y
(1.113)
m?nag = 0.

Portanto, campos elétricos estiticos em um plasma a altas temperaturas sao blindados, e campos magnéticos
nao.
A massa elétrica pode ser entendida como uma massa efetiva adquirida pelo féton dentro do plasma. Se

o féton adquire uma massa, o alcance de sua interacdo ndo € mais infinito como antes, o que corresponde
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a dizer que o campo elétrico gerado pela carga tem um alcance finito, além do qual ele nio atua mais. E a
blindagem de que estamos falando. Quanto maior a temperatura, maior a massa elétrica, e portanto menor
o raio de blindagem. Isto significa que o alcance do campo elétrico vai diminuindo com o aumento da
temperatura, até o limite em que a carga passa se comportar como sendo neutra, que é quando 7" — oo.
Como ja dissemos no inicio desta se¢do, classicamente este fendmeno é conhecido na fisica de plasmas,
e a visdo cléssica € a de que ha uma polarizacdo das cargas, formando dipolos elétricos em torno da carga

central, o que provoca sua blindagem. Isto pode ser melhor visualizado na Figura 1.12. Cargas positivas se

Figura 1.12: Blindagem do campo elétrico produzido por uma carga —Ze no centro.

aproximam da carga central, e cargas negativas sdo repelidas. Sucessivamente outras cargas positivas sdo
atraidas e negativas repelidas, levando a uma quase neutralidade do ponto de vista macroscépico. Do ponto

de vista quantico podemos representar a blindagem da carga conforme a Figura 1.13. Os f6tons, que sdo

Figura 1.13: Visao quantica da blindagem do campo elétrico de uma carga () no centro.
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os responsaveis pela interacdo eletromagnética da carga central com os ions do plasma, podem, segundo a
QED, sofrer os processos representados pelos diagramas de 1-loop. Isto acarreta em uma geracao efetiva de
massa ao féton, que portanto deixa de ter o seu alcance infinito, ou seja, o campo elétrico associado a este
féton tem uma acao finita, deixando de agir a partir de uma certa distincia, o que caracteriza a blindagem
da carga.

Nesta secdo discutimos como a presenca da temperatura pode modificar os calculos da teoria de campos
usual da secdo anterior. Cdlculos a temperatura finita nos ddo a possibilidade de obter novas quantidades
de interesse de um sistema, como a funcio de particao por exemplo e todas as quantidades fisicas que dela

derivam. Também vimos que o tensor de auto-energia do féton (1.103) a altas temperaturas é dado por,

e2T?

3

H'uu == HHV ) +

(vac

ubu” (1.114)

onde a parte de vacuo foi calculada na secdo 1.1.4. Observe que o método da teoria de campos a temperatura
finita € mais geral do que a teoria de campos usual no sentido de que ela fornece todos os resultados
a temperatura nula acrescido de uma corre¢do devido a presenca da temperatura. Da expressdo acima
fica evidente que a secdo de choque de uma reacdo se modifica se ela acontecer imersa em um banho
térmico, e quanto mais alta a temperatura, maior serd a contribuicdo. Mas também temos que lembrar
que as expressodes anteriores foram obtidas no limite de altas temperaturas, ou seja, quando a temperatura
€ muito maior que a massa das particulas envolvidas. Para uma particula como o elétron por exemplo,
a temperatura correspondente A sua massa de repouso é da ordem de 10°K, portanto uma temperatura
muito alta, lembrando que uma estrela tipica como sol tem uma temperatura superficial da ordem de 10*K.
No entanto existem outros lugares onde temperaturas muito altas devem ocorrer, como em explosdo de
supernovas, nicleos galaticos, e certamente nos primoérdios do universo. Por isso o interesse de se entender

corretamente como incluir efeitos de temperatura em teoria de campos.
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Capitulo 2

Teorias Nao-Comutativas

O advento da teoria de campos a partir da década de 1930 foi acompanhado por uma busca incansavel
de mecanismos que pudessem dar conta de remover corretamente os inimeros infinitos a que a teoria estava
sujeital. As chamadas divergéncias ultravioletas e infravermelhas sé foram completamente entendidas
com o desenvolvimento do programa de renormalizacdo, no entanto outras alternativas foram propostas.
Uma delas foi sugerida por um dos fundadores da mecanica quéntica e da eletrodindmica quantica, W.
Heisenberg. Ele prop0s que uma estrutura ndo-comutativa do espago em escalas de comprimento muito
pequenas era capaz de introduzir um pardmetro de corte (cutoff) ultravioleta, de tal forma a se evitar o
aparecimento das divergéncias. Snyder [18] foi o primeiro a formular esta idéia de maneira consistente.

Evidéncias mais concretas da ndo-comutatividade do espago-tempo vém do limite de baixas energias
da teoria de cordas, no momento a melhor teoria candidata a incorporar efeitos quanticos da gravidade.
Como as cordas tém uma escala de comprimento finito da ordem do comprimento de Planck [/ p, ndo é
possivel observar distdncias menores que [ p.

Outra motivagdo para se aceitar com mais naturalidade a ndo-comutatividade do espaco-tempo em es-
calas de comprimento muito pequenas vem da gravitagdo. Em escalas da ordem do comprimento de Planck
o conceito de medida perde o seu significado. Quanto mais tentamos localizar uma particula, por exemplo
pelo espalhamento de um féton, menor deve ser o seu comprimento de onda, e conseqiientemente maior
a energia associada a ela. Desta forma mais energia estd sendo transferida ao sistema, o que significa
uma contribui¢do para o campo gravitacional local através das equagdes de Einstein da relatividade ge-
ral, gerando uma curvatura do espaco e interferindo nos sinais luminosos que dariam informagao sobre a
medida.

De fato, todos estes efeitos sé tém validade em escalas de energia muitissimo altas, onde a fisica
provavelmente deve seguir outras leis que ndo as que conhecemos. Desta forma devemos considerar a
nio-comutatividade do espagco-tempo como uma teoria efetiva, capaz de levar em conta a existéncia de um
comprimento minimo. Além disso no limite de baixas energias, ou § — 0, ela recai nas teorias usuais que
conhecemos bem.

A idéia por trds da ndo-comutatividade do espago-tempo é muito proXxima a que encontramos na

"Um exemplo destes infinitos apareceu no célculo do tensor de auto-energia do féton do capitulo anterior.
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mecanica quantica, onde o espago de fases quantico é obtido pela troca das varidveis candnicas de posi¢ao
x; € momento p; por operadores hermiteanos ; , p; que obedecem as relagdes de comutacdo de Heisen-
berg [2;,p;] = ihd;j. A estarelagdo de comutagdo sabemos estar associada uma relac@o de incerteza na
medida da posi¢do e do momento de uma particula, expressa na forma AzAp, > h/2. Da mesma ma-
neira o espago-tempo nio-comutativo € definido pela troca das coordenadas do espago-tempo usual x* por

geradores hermiteanos £# de uma édlgebra ndo-comutativa que obedega a relacdo de comutacio
[zH, "] = 0"

onde, no caso mais simples, ¥ é um tensor real, constante e anti-simétrico, com dimensao de comprimento
ao quadrado. A relagdo de incerteza associada é do tipo Az*Ax” > 6/2, onde 6 = |6#"| deve ter dimensdo
de comprimento ao quadrado. Devido a esta relagdo de incerteza, nesta escala um ponto do espago-tempo
deve ser trocado por uma “célula” com dimensdo de darea da ordem de 6. Para descrever fendmenos nesta
escala devemos entdo utilizar uma dlgebra que seja ndo-comutativa. Desta forma, a teoria de campos é
vélida apenas até uma escala de comprimento da ordem de v/, abaixo da qual uma nova teoria deve
ser adotada, por exemplo a teoria de cordas. Portanto as divergéncias ultravioletas da teoria ndo devem
existir, pois a um comprimento minimo estd associado um momento méaximo, que deve ser tomado como
o parametro de corte da integragao.

Para termos uma idéia da ordem de grandeza de v/#, vamos considerar que de fato a ndo-comutatividade
€ uma teoria efetiva que segue do limite de baixas energias da teoria de cordas. Se a escala de comprimento
da teoria de cordas € o comprimento de Planck, [p ~ 10~33cm, a ndo-comutatividade deve ter uma es-
cala muito maior que [p mas ainda assim muito menor que a escala quantica, que é da ordem de 1fm
~ 10~13¢m. De fato, limites experimentais [19, 20] impdem um valor de v/ < 10~ '8cm, que corres-
ponde em energia® a @ ~ (10TeV) 2.

Neste capitulo vamos apresentar brevemente uma motivacao para o estudo da ndo-comutatividade entre
as coordenadas que vem da fisica cldssica. Os resultados apresentados na se¢do 2.1.2 foram publicados nas
referéncias [72, 73]. Em seguida apresentaremos a formulacdo do ponto de vista da teoria de campos e
terminamos com uma breve apresentacdo das regras de Feynman para o caso da eletrodindmica quintica

ndo-comutativa, que serd Util no capitulo seguinte.

2.1 Nao-comutatividade na fisica classica

Nesta secdo faremos uma breve exposicao de como a ndo-comutatividade das coordenadas aparece ja
na mecanica classica, no conhecido problema de Landau, onde uma particula carregada sujeita a um campo
magnético forte tem seu movimento restrito ao plano perpendicular ao campo. A quantizacdo deste sistema

foi estudada por Landau [21] e rediscutida por intimeros autores [22].

ZEstamos usando 1GeV ™! ~ 10~ cm.
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2.1.1 Particula carregada em um campo magnético intenso e uniforme

Considere uma particula de massa m e carga e movendo-se no plano x — y sob acdo de um campo
magnético constante B na dire¢do z e sujeita a um potencial escalar externo —V (z,y). Nosso obje-
tivo € mostrar que para este sistema cldssico, quando o campo magnético constante B é muito intenso,
a quantizagdo do sistema leva a uma nio-comutatividade das coordenadas, ou [x ,y] # 0. Este problema
foi extensivamente estudado por Jackiw e colaboradores, conforme referéncias [23, 24, 25, 26].

A lagrangeana para este sistema deve ter a forma geral

—

1 "
- Z%A(x,y) —V(z,y), (2.1)

onde ¥ ¢ a velocidade da particula, ¥ = (v, vy) = (,9), A € o potencial vetor eletromagnético e V um

potencial escalar qualquer, da forma
V(z,y) = az" + by", (2.2)

para a e b constantes. N&o hd perda de generalidade se tomarmos o potencial V' como sendo o de um

oscilador harmonico, portanto vamos nos restringir a
L 2 2
com k constante. A fim de que o campo magnético seja constante na direcdo z, vamos escolher?

de forma que V x A = BZ. Com isto, a lagrangeana pode ser escrita como

1 B 1
L= Sm(i?+37) + Z—C(xy —yi) = Sh(? + 7). 2.5)

As equacdes de movimento deste sistema seguem diretamente das equacdes de Euler-Lagrange (ver Apéndice
A.1 para uma breve revisio), e sao dadas por

mi = Ly ke mij =~ — ky. (2.6)
C C

Os momentos canonicamente conjugados a x € y sdo

OL_ . eB _OL_ . eB

p=2" - & p, =2 i 27
* T e T Y ¥E gy T T 27

e como sabemos, as coordenadas x, y € 0s momentos conjugados P,, P, satisfazem as relagoes dos colche-

3Poderiamos fazer outra escolha, por exemplo A = (0, Bx), pois a teoria é invariante por uma transformacio de gauge.
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tes* de Poisson,

{x7y}:{PI7Py}:{$7Py}:{y7P$}:07 {$7P$}:{yapy}:1- (2.8)

A hamiltoniana pode ser obtida facilmente por meio de H = P - ¥ — L, conforme (A.3), de onde seguem

as equacdes de Hamilton do movimento

ab:{x,H}:%(Pz+§y>, yz{y,H}:%<Py—§x), (2.9)

que sdo exatamente equivalentes aquelas da eq. (2.7), como deve ser.
Agora vamos tomar o limite em que o campo magnético B € muito intenso. Uma forma de implementar
isso € tomar o limite m — 0 na lagrangeana, de forma que toda a cinética fica por conta da acdo do campo

magnético, sob influéncia do potencial V, que vamos manter apenas por generalidade. A lagrangeana neste

caso fica
B 1
Lo =5 (wy = yi) = Sk( + 7). (2.10)
e as equacdes de movimento (2.6) se reduzem a
ke kc
L e = —— . 2.11
T BY y=_g= (2.11)
A hamiltoniana fica dada simplesmente por
L o 2

mas agora aparece um problema. As equacdes de Hamilton (2.9) ndo podem ser obtidas através do comu-

tador de Poisson, pois de acordo com as relagdes (2.8)

i={x,Ho} = {x, %k(:f +y7)}
—0, (2.13)

em desacordo com (2.11). Uma maneira de resolver este problema € propondo que
{z.y} ° (2.14)
T, Yt =—— .
=B

de forma a restabelecer os resultados (2.11). Mas este comutador nfo deve ser o de Poisson, pois este

sabemos que é nulo. Admitindo por um momento a existéncia deste novo comutador, a extensdo quantica

#*Usaremos a notagio { , } para colchetes de Poisson ou comutador de Poisson, { , }p para colchetes de Dirac ou comutador
de Dirac, e [, | para o comutador quantico.
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de um sistema cldssico ¢ feita por meio da substituicao

{f.q} = %[f, dl. (2.15)

onde f, g sdo fungdes cldssicas do lado esquerdo e operadores quanticos do lado direito. Quando aplicamos
a0 nosso problema obtemos
the

R (2.16)

[xvy]:_

Desta forma podemos dizer que as coordenadas ndo comutam, sendo a intensidade do pardmetro de nfo-
comutatividade proporcional ao inverso do campo magnético B que atua no sistema.

No entanto existe uma maneira mais rigorosa de se obter este resultado. Ela foi proposta por Dirac para
quantizar sistemas sujeitos a vinculos [27], que é exatamente quando os colchetes de Poisson nio fornecem
uma boa descri¢@o para a quantiza¢do, que é o nosso caso, afinal {z,y} = 0.

Vamos ver entdo como fica o problema por meio do método de Dirac. Segundo este método, quando o
sistema esta sujeito a vinculos, o colchetes de Poisson entre duas quantidades ()1 e (2 deve ser generalizado

para o chamado colchetes de Dirac
{Q1,Q2}p = {Q1, Q2} — {Q1, X'}Ci; {}/, Q2} , (2.17)
onde ! sdo os vinculos a que o sistema est4 sujeito, e Cj; € obtido através de
Cii {x? X"} = o, (2.18)

onde 5f ¢ o delta de Kronecker. Vamos aplicar ao nosso problema. Temos dois vinculos, que aparecem

quando impomos m — 0 nas equagdes (2.7)

B
X' =Pt Sy =min0,
2c
B
XQEPy—Z—m — my ~0. (2.19)
C

Estes vinculos sio de segunda classe’, pois

B B B
- Zay =" 2o, (2.20)
2c c

1 .2
—(p
XX ={P+ 5

>Nido vamos nos deter nas definicdes aqui. Para um tratamento rigoroso sugerimos consultar as referéncias [27, 28]. Apenas
por completeza, vinculos de primeira classe possuem parénteses de Poisson nulo com qualquer outro vinculo, e vinculos de
segunda classe sdo aqueles cujos parénteses de Poisson ¢ diferente de zero com pelo menos um dos vinculos. Como regra geral,
os vinculos devem ser escolhidos de maneira a maximizar os de primeira classe. Isto pode ser feito levando-se em conta que uma
combinacdo linear de vinculos também é um vinculo.
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onde usamos os resultados (2.8). Os coeficientes C'15 e Cy1 podem ser facilmente obtidos, por exemplo
Cra{x?, X"} = of
Cra{x*. X'} =1

(2.21)

e da mesma forma obtemos C3; = _%. Portanto, calculando os comutadores de Poisson de x, y com ' 2

obtemos

{xvxl}: L, {.’L‘,XQ}ZO, {X17y}207 {X2ay}:_1 (2.22)

de forma que temos finalmente

{z,y}p = {z,y} — {z,x"}C2{x"*, v} — {2, x*}Cu {x", v}

c
= -5 2.23
B (2.23)
A extensao quantica deste sistema deve ser feita por meio de
I
{f.9}p = —f. 4], (2.24)

e entdo o resultado (2.16) para a ndo comutatividade das coordenadas aparece naturalmente aqui pelo
método de quantizacdo de Dirac de sistemas sujeitos a vinculos. Para um campo magnético constante,

podemos escrever entdo

[z, 7] = 16", (2.25)
onde §% é um tensor anti-simétrico constante, que neste caso pode ser representado por §% = — i,

onde ¢,7 = 1,2 e € € o tensor unitdrio totalmente anti-simétrico.

2.1.2 Particula carregada em um campo magnético intenso nao-uniforme

Motivados pela andlise anterior, nos surgiu a seguinte questdo: se o campo magnético néo for uniforme,
qual a generalizacdo da relagdo de comutagdo cldssica (2.23)? E a extensdo quantica (2.16)7 Sera que

podemos escrevé-la na forma
[z, 27] = i0% (), (2.26)

com i,j7 = 1,2,3 e 6% uma funcdo local das coordenadas? A resposta é sim. Fizemos um estudo

da generalizacdo do sistema anterior para o caso de uma particulas sujeita a um campo magnético nio-
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uniforme B(7), e o resultado é que a comutacgio quéntica entre as coordenadas é generalizada para a forma

(2%, 27]) = —ih—€¥ (i,7,k=1,2,3). (2.27)
Para mostrar como chegamos a este resultado, vamos apresentar brevemente aqui o que foi feito. Para

mais detalhes sugerimos consultar a referéncia [72].

No caso tridimensional, as equacdes de movimento que seguem da lagrangeana (2.1) com AeV gerais

sdo
mi = S?x B(#) + (), (2.28)
onde ¥ = (2!, 22, 2%) e f = _VVéa forca derivada do potencial externo. No limite m — 0 as equagdes
de movimento se reduzem a
eriji' BI + g fo =0, (2.29)
de onde segue diretamente a relacao
Bify=B-f=0 (2.30)

que assegura que a forca liquida na direcdo de B se anula, 0 que representa uma condi¢ao necessdria para
obter equagdes de movimento consistentes no limite m — 0. De fato, como a forca de Lorentz € ortogonal
ao campo magnético, esta condi¢do nos permite dizer que a projecdo de m7 a0 longo de B ¢é nula. Entdo,
no caso em que a velocidade é perpendicular ao campo magnético, podemos inverter a equacgdo (2.29) e

obtermos as equagdes de movimento,

4, ¢ fiBk

Por outro lado, a hamiltoniana é dada simplesmente por Hy = V' (7), e as equagdes de Hamilton fornecem
i' = {a', Ho} = — fi{z", 27} (2.32)

e a Unica forma de obter corretamente as equagdes de movimento (2.31) é impondo a comutacio

o c Bk
{a', 27} = —Cijk gz - (2.33)

que leva diretamente a relacdo (2.27) depois da quantizacdo.
Podemos obter o mesmo resultado pelo método de Dirac. A hamiltoniana para o sistema é da forma

geral

)2+ V(7 (2.34)



onde 7 é 0 momento cinético, p'é o momento candnico e B = V x A. Para que possamos tomar o limite

m — 0, devemos impor os vinculos 7 == 0, que correspondem a
mi=pf = ZAi ~0 (i=1,2,3), (2.35)
e satisfazem
(ni, i} = Z(aiAj _ AT = geijkBk. (2.36)

E facil verificar que com estes trés vinculos podemos construir dois outros vinculos de segunda classe,

—

X =f7; X =(Bx[)-7. (2.37)

Sao estes vinculos que devemos usar em (2.17) e (2.18) para obtermos o comutador de Dirac. Usando as

relacdes (2.8) obtemos
, , . .. e
{a' X'y = 1" {«', X’} = €7"Bjfi. ; XY = —B2 (2.38)

de forma que chegamos finalmente a

By, (7)
B2(r)

Portanto, a quantizacdo leva diretamente a (2.27), mostrando que neste caso a ndo-comutatividade das

(2i, 29} p = — ek (2.39)
e

coordenada € uma fungdo local do espaco.

Como aplica¢do do resultado anterior, considere o caso de um campo magnético fracamente nao uni-
forme na dire¢do z. Um campo deste tipo ocorre em um espelho magnético, produzido por um par de
espiras alinhadas, como em uma bobina de Helmholtz. Este sistema tem a propriedade de confinar o mo-
vimento de uma particula dentro do espelho, onde o campo magnético pode ser descrito em coordenadas

cilindricas por

= 1 0B.(2) . .
B = —§p76p + BZ(Z)ez s (2.40)

onde pB! << B,. Entdo, a solugdo (2.27) implica nas seguintes relagdes de ndo-comutatividade entre as

coordenadas
.cB . czB c yB!
[x,y] = —zh;B—; ; ly, 2] = th—e B2Z ; [z,2] = th—e BQZ . (2.41)

Vemos que a intensidade da ndo-comutatividade é mais forte no plano x — y, enquanto que nos planos z — 2
e y — z ela é enfraquecida por um fator pB’, /B, << 1. A quantizagéo deste sistema no caso bidimensional
com um campo magnético constante foi estudado por Landau [21], e os niveis de energia associados sdo os

conhecidos niveis de Landau, infinitamente degenerados. Fizemos um estudo da quantizagcio deste sistema
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quando o campo magnético é ndo uniforme, da forma (2.40), onde apresentamos uma generalizacdo aos
niveis de energia de Landau, que sdo obtidos no limite de campo constante. Estes resultados estdo na

referéncia [73].

Antes de comecgarmos a estudar a formulacao de teorias de campos em espagos ndo-comutativos, de-
vemos fazer alguns comentdrios. A nao-comutatividade do espaco ndo é s6 uma abstracdo matemadtica
no sentido de generalizar alguns resultados. Muitos trabalhos tém sido publicados ultimamente sugerindo
testes concretos para a ndo-comutatividade ser de fato medida. Um trabalho de Chaichian e colabora-
dores [19] tenta explicar o efeito PVLAS® observado recentemente, que é a rotacdo da polarizagio da luz
propagando-se no vacuo na presenca de um campo magnético de fundo. Outros testes a ndo-comutatividade
foram propostos pelos mesmos autores anteriormente [29], por exemplo eles calcularam qual o efeito da
nao-comutatividade nos niveis de energia do dtomo de hidrogénio e no Lamb shift, quais as correcdes
ao efeito Stark e ao efeito Zeeman. Também vale citar trabalhos recentes que tentam incorporar a nao-

comutatividade a relatividade geral e a gravitacdo [30, 31, 32].

2.2 Aspectos gerais de teorias de campos nao-comutativos

Nesta se¢ao vamos implementar as mudancas necessarias na teoria de campos usual para incluir efeitos
da n3o-comutatividade.
O estudo de teorias de campos definidas em variedades onde as coordenas do espago-tempo satisfazem
arelacdo
[zH, 2" = 10" (2.42)

tem aumentado nos tltimos anos. Como ja foi dito no inicio, a teoria de cordas é um cendrio comum onde
a ndo-comutatividade aparece naturalmente. Sendo um pouco mais especifico, quando se estuda a teoria de
cordas no regime de baixas energias na presenca de um campo de fundo constante, a teoria resultante é bem
descrita por uma teoria de campos definida no espaco ndo-comutativo’. Talvez esta seja a maior motivagio
para se estudar teorias ndo-comutativas, pois a teoria de cordas é esperada ser o ponto de partida no sentido
de uma grande unificac@o. Varios outros autores descrevem com clareza e detalhes a formulacao de teorias
de campos em espagos ndo-comutativos. As referéncias [36, 37, 38, 39, 40] sdo especialmente completas
e detalhadas no aspecto geral e com aplicagdes diversas. Vamos expor aqui apenas as propriedades e
caracteristicas principais que aparecem no tratamento de teorias de campos ndo-comutativos. Para maiores
detalhes sugerimos as referéncias citadas acima.

A primeira regra para tratarmos teorias de campos em espacos ndo-comutativos € substituir o produto

dos campos, que aparece na acdo da teoria por exemplo, pelo chamado produto estrela de Gronewold-

®Polarizzazione del Vuoto con LASer (Polarizagdo do vacuo com laser).
"Este resultado foi apresentado primeiramente por Seiber e Witten [35]. Uma discussdo mais detalhada e mais pedagdgica
pode ser encontrada nas pags. 22-34 da dissertacdo de mestrado de Bruno Charneski, ref. [33].
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Moyal entre duas funcdes, definido por

f(z)* g(z) = exp (%0“”;%8§V>f($)g(y)lz—y

1

— f(@lata) + 3097 09 + 51

i

2
) 000,00 @,09) + .

(2.43)

onde, na segunda linha, temos a expansido em termos do produto ordinério das fungdes f e g e suas de-
rivadas em todas as ordens. Note que o primeiro termo é o produto ordindrio das fungdes, que € o limite
esperado quando § — 0. Este produto introduz de maneira natural o chamado comutador Moyal® de duas

funcoes

[fs9hB = f(z) *g(x) — g(z) » f(z)

= 2if(z)sin 6@9“”8_;) g(z), (2.44)

onde a seta na primeira derivada parcial significa que ela atua na funcédo f, a esquerda, e a segunda atua
em g, a direita’. A forma dada na segunda linha obtém-se facilmente utilizando-se a expressdo expandida
em (2.43). As poténcias pares em #*” anulam-se, sobrando apenas as poténcias impares, que podem ser
reagrupadas de forma a serem escritas como a fungdo seno. Da mesma forma define-se o anticomutador

Moyal

[f.9]m = f(z) * g(x) + g(z) * f(z)

1+ wa
= 2f(x) cos 5(9”9 Oy |g(z). (2.45)
Da defini¢ao (2.44) segue diretamente a comutacao entre as coordenadas (2.42)
[Z"u, .TV]MB = 0" N (2.46)

por isso podemos dizer que a dlgebra definida por (2.42) implica que o produto entre funcdes deve ser
tomado de acordo com (2.43).
Outra propriedade importante € a integracdo do produto de fungdes. Pode-se mostrar que a integral

d-dimensional do produto Moyal de duas fun¢des € igual a integral do produto ordinario das fungdes

[ dtat@)=gta) = [ dlof@gto). (247)

8Na literatura chama-se Moyal Bracket, por isso o subscrito yg.
“Esta é apenas uma notacio alternativa 2 dada na eq. (2.43), onde estd explicito que as derivadas agem em x e em y sem
ambiguidade.
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e para o produto de n funcdes vale a propriedade de ciclicidade

/dda?fl(x) * fo(x)x - x fr(z) = /ddacfn(af) *x fi(z) * - x fno1(2) . (2.48)

Outras duas propriedades importantes sio'?:

. 1.0 _ 1Pl /
1kx ik'x — e 29 kzk] ez(k’-i—k )CE (249)

e x f(x) « e *T = IR0 f(2) = f(a' + 0Vk;), (2.50)

que podem ser obtidas por expansdo do produto Moyal e reagrupamento dos termos de forma conveniente.
No que segue vamos estudar a eletrodindmica quéntica definida em um espaco ndo-comutativo'l,

usando as propriedades anteriores.

2.3 QED nao-comutativa

Nesta secdo vamos apresentar os principais resultados j4 existentes na literatura de estudos da eletro-
dindmica quantica ndo-comutativa. Vamos apresentar as regras de Feynman da teoria e os diagramas em
1-loop que contribuem por exemplo para a auto-energia do féton. O objetivo € introduzir a NCQED para

que possamos fazer calculos a temperatura finita no préximo capitulo.

2.4 Acao da QED nao-comutativa

A formulacgao da eletrodindmica quantica em espagos ndo-comutativos difere um pouco da QED usual
(comutativa). Como vimos, a ndo-comutatividade das coordenadas do espaco-tempo definida por (2.42)
implica numa redefinicdo do produto de funcdes, que deve obedecer ao produto de Gronewold-Moyal
(2.43). A eletrodindmica quantica também pode ser formulada em um espago ndo-comutativo desse tipo,
precisamos apenas tomar alguns cuidados. Em primeiro lugar, para evitar problemas com a unitariedade
da teoria, vamos assumir que somente as componentes espaciais de *” sdo diferentes de zero, ou seja,
6% = 9°° = % = 0. Em segundo lugar, o tensor eletromagnético F** deve ser generalizado. Para que a

lagrangeana seja invariante por transformacoes de gauge, devemos ter
Fu = 0,A, — 0,A, —ie[A,, AyluB, (2.51)
e a derivada covariante agindo em um campo de gauge A” deve ser da forma

DAY = 9,A" —ie[A,, Ay, (2:52)

OVer pag. 5 de [36].

"Neste capitulo e nos que seguem, na maioria das vezes vamos nos referir 2 eletrodinimica quintica nio-comutativa sim-
plesmente como NCQED (Noncommutative Quantum Electrodynamics), como encontramos usualmente na literatura. A eletro-
dindmica quantica usual (comutativa) serd denominada simplesmente por QED ou QED usual.

49



e quando agindo em um campo fermidnico

D, =0, —ieA, x 1. (2.53)
Com isto, a acdo para a QED ndo-comutativa deve ser definida como!?
Siny = / diz Liny = / d*x <—iFW *x FM 4 o) x (i) — m)i/)) . (2.54)
Esta acdo é invariante por uma transformagdo de gauge do tipo
b(x) — P (x) = Ulz) « ()
Ap(z) — Al (x) =U(x) * Ay(z) U~ (z) + éU(x) * 0, U (2). (2.55)

Do ponto de vista infinitesimal, esta transformac¢ao toma a seguinte forma

dp(x) = ie(x) * ¢(x)

1 .
§A, = . Dye(z) = = (Oue — ie[Ay, €lyp) (2.56)

o

onde ¢(x) é o parAmetro da transformag@o infinitesimal. A esta agdo podemos ainda somar um termo

fixador de gauge (fg) e um termo devido a campos fantasmas (gh)'3. Estes termos devem contribuir com
1 _
Stg + Sen = /d4x <_i(8MAH) * (0,AY) + 0"C * (0,C — ie[A,, C]MB)> (2.57)

onde ¢ € parametro fixador de gauge. Desta forma, a agdo completa da QED ndo-comutativa é expressa

por:

SNcQED = Sinv + Stg + Sen

1 - 1
= /d4x ( — ZF’W * FFY + ) % (ilp— m)y — 2—5(8MA“) * (0,A")
+0"C % (9,C — ie[A,, C]MB)> : (2.58)
Fica facil perceber desta forma da acdo que ela tem a mesma estrutura de uma teoria de gauge ndo-
abeliana!#, sendo o produto Moyal o responsédvel por esta estrutura nio-abeliana, explicito no tdltimo

termo do tensor eletromagnético (2.51). Alids, sdo muitas as analogias entre uma teoria de gauge SU(N)

2Em teorias nio-comutativas é mais comum escrever a acio da teoria, ao invés da lagrangeana, pois em geral a invariéncia de
gauge € satisfeita pela acdo neste caso, e ndo pela lagrangeana propriamente dita, devido a necessidade do uso de integra¢des por
partes para se justificar a invariancia.

Lembre-se que este termo é necessdrio mesmo na QED usual para incluir corretamente o nimero de graus de liberdade em
célculos a temperatura finita, conforme discutido na se¢@o 1.2.3 para o caso do gés de fétons.

4Teoria de Yang-Mills por exemplo.
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ndo-abeliana definida no espago comutativo usual e uma teoria de gauge U(N) definida no espago ndo-
comutativo.

Vamos ver agora como ficam as regras de Feynman para esta teoria.

2.4.1 Regras de Feynman da NCQED

O produto Moyal tem conseqiiéncias interessantes nas regras de Feynman da teoria. Como vimos
em (2.47), quando o produto Moyal de duas fung¢des € integrado, o resultado é o mesmo que no produto
ordindrio das fungdes'?. Isto se reflete no fato de que os propagadores da teoria nio mudam, sio os mesmos

da teoria comutativa. Portanto, para os propagadores temos as seguintes regras:

férmion S S m =iS(p)
. i PuPv ,
foton h_o P Vo TRt <77/w - (1-¢) ;2 ) = iDyuu(p)
i ,
ghost P e —iPw) (2:59)

que sdo as mesmas de (1.2) e (1.3) da QED usual, com a adi¢@o do propagador D(p) devido aos campos
fantasmas (ghosts).

Outra caracteristica é que, sob uma integracdo, qualquer nimero de funcdes multiplicadas segundo o
produto Moyal satisfazem a propriedade de ciclicidade, conforme (2.48). Isto leva a uma modificag@o dos
vértices da teoria. Eles devem depender do pardmetro de ndo-comutatividade 6#. De fato isto acontece.
Para entendermos como ficam os vértices da teoria, vamos detalhar um pouco como aparece um deles. Da
andlise direta da acdo (2.58), vemos que aparecem vértices contendo trés e quatro linhas de fétons, assim
como vértices contendo dois campos fermidnicos e um campo de f6ton, e 0 mesmo para campos fantasmas.

Por exemplo, o vértice com trés linhas de fétons € originado de um termo do tipo
(OuAy(x) — 0, Au(x)) * (—ie)[A(z), A (2)]ms

vindo do primeiro termo da a¢do. Vamos desenvolver o primeiro termo desta expressdo. Ele pode ser

15Basta fazer uma integracio por partes na expressio expandida do produto e considerar que as fun¢es se anulam no infinito.
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escrito como

OpAy () * (—ie) [AM(x), A (7))

= —ied, A, (x) * [A“(x) ’Ay(x)]MB

= —ieaHAl,(x) * N [Aa (ZL’) , Aﬁ(l‘)] MBT’ﬁV

= —ied, A, () % " <Aa(:c) * Ag(x) — Ag(z) Aa(af)> P

= —ien™0,A, () * <2iAa(x) sin (%Eeﬂ’fa—;) Aﬁ(x)) nPv (2.60)

onde usamos a propriedade (2.44) na ultima linha. Agora, para que as derivadas possam agir nos campos

de gauge A(x), escrevemos para cada um deles uma expanséo de Fourier do tipo

Au(z) = /d4p114a(p1)eip1'x,

e similarmente para Ag(z) e A, (), com integragdo nos momentos ps € p3, respectivamente. Desta forma,
o efeito das derivadas é gerar um termo do tipo (ip;) por exemplo, cada um com o momento correspon-

dente. Fazendo isto na dltima linha de (2.60) obtemos

—ie(24)n™" (ip3u) Av(x) * [Aa (z) sin <%(ip1j)9jk(ip2k)> AI@(LU):| 776”

= —2iep§‘ sin <1¥> UBVAV(JJ) * Aa(x)Aﬁ(x) ) (2'61)

onde introduzimos a notacdo p x g = p,0""q,, que serd muito utilizada daqui em diante. O tnico produto
Moyal que resta € idéntico ao produto ordindrio das fungdes, como ja vimos, pois esta expressao estd sob
uma integracdo. A conservacdo do momento requer que p3 = p; — p2. Desta forma, retirando os campos

A’s da expressio, o que resta é um termo do tipo!'®
. [ P1 X D2
—2esin <T> (p1— PZ)QUBV )

que deve ser um termo tipico do fator de vértice para o caso de trés linhas de fétons. De fato é exatamente

isso que acontece. Os fatores de vértice sdo dados por

160 fator 4 € absorvido por expiS.
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APy

w5 . D1 X P2
1 —2esin (p1 — p2)* 0™ + (p2 — p3)"n” + (ps — p1)”77A“}
v. D,

(2.62)

W, P p. 7

X X
47 62 (,rru)\nup _ np,pnuk) sin P1 . P2 sin p3 5 P4
v.p AP
X X
_i_(nup,rll//\ _ n/,u/n)\p) sin p3 . pP1 sin P2 . P4
X X
+ (P — gt yP) sin p 5 P4 in P2 5 P3 (2.63)
7 Fr
13 ’ X
< N : 2iep‘]f sin bi > by (2.64)
N 2
N pl
By
" ieytesPiXPs (2.65)
p

A dedugdo de cada um deles segue de maneira similar a anélise que fizemos para o caso do vértice com

trés fotons.

2.4.2 Auto-energia do foton

Vamos estudar aqui a a auto-energia do féton, cujas contribuicdes vém dos graficos de 1-loop represen-

tados na Figura 2.1.
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Figura 2.1: Contribuicdes para auto-energia do féton na eletrodindmica quantica ndo-comutativa.

Vamos entdo obter as expressdes correspondentes para cada um dos diagramas que contribuem para o
tensor de auto-energia do féton IT#”(p). Uma das contribui¢des vem do grifico de 1-loop de ghost da
Figura 2.1(a), que pode ser representado com detalhes pela Figura 2.2. Neste capitulo e nos seguintes
vamos usar sempre k para indicar o momento interno ao loop e p para indicar 0 momento externo, ao

contrdrio do que foi usado no capitulo anterior. Usando as regras de Feynman dadas em (2.59) e (2.64)

k
//’—5\\
I N
4 \
/ \
/ \

! \
ANNNANBNANNY {\f\f\/\/k/\/\/\/
Mo v
P \ , P
\ /

N\ 7/

N 7
~ -

-~ -
p+k

Figura 2.2: Diagrama de 1-loop de ghost que contribui para a auto-energia do féton na NCQED.

podemos escrever a contribui¢cdo deste grafico como

(2.66)

e, (k X p) k¥ (K + pH)

" (p) = (—1)(—462)/ @n) sin 5 Rhtp)?

O fator (—1) vem do loop de ghost'”.
O diagrama da Figura 2.1(b), conhecido como tadpole, pode ser representado em detalhes conforme a

Figura 2.3. Usando as regras de Feynman (2.59) e (2.63) e restringindo ao gauge de Feynman, onde £ = 1,

k

Figura 2.3: Diagrama do tipo tadpole que contribui para auto-energia do f6ton na NCQED.

Campos de ghost tém a mesma propriedade que campos fermidnicos, por isso vale a regra 7 dada na secdo 1.1.1.
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podemos escrever a contribuicao deste grafico como

L1 A% kX py i
" (p) = 52462/ L sin? < 5 P)77k_2 (2.67)

onde o fator (1/2) € o fator combinatorial associado a este tipo de diagrama.

Para o grafico da Figura 2.1(c), a representacdo detalhada estd na Figura 2.4. Usando as regras de

p+k

Figura 2.4: Diagrama de 1-loop de féton que contribui para a auto-energia do féton na NCQED.

Feynman a contribuicdo deste gréfico é

1Ie" (p) =
_1462/ d*k sin? (k Xp)[(5p2+2k'p+2k2)n“”—2p“p”—|—5(k“p” + phEY) + 10kMEY
2 (2m)4 k2(k + p)2

(2.68)

lembrando que estamos nos restringindo ao gauge de Feynman. O fator (1/2) também se deve ao fator
combinatorial do diagrama.

Por ultimo, considere o diagrama do loop fermionico, representado na Figura 2.5. A expressdo para

p+k

Figura 2.5: Diagrama de 1-loop fermi6nico que contribui para a auto-energia do f6ton na NCQED.

este diagrama é dada por

4

y ik 1,1
15 (p)z—eQ/Wtr <v“%+¢_mfy %_m>. (2.69)
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A contribuicio total para a auto-energia do féton na eletrodindmica quantica ndo-comutativa serd dada

pela soma
" (p) = 113" (p) + 11," (p) + 112 (p) + 115" (p) - (2.70)

No entanto, vejam que a expressdo do ultimo diagrama, o de loop fermidnico, ndo tem dependéncia com
o pardmetro de ndo-comutatividade #%/, sendo que todos os outros tém uma dependéncia no fator trigo-
nométrico, do tipo sin?(k;0% p;j/2). Isto se deve ao fato de que o fator de vértice (2.65) ¢ do tipo expo-
nencial, e portanto ha um cancelamento do expoente. De fato, a expressdo obtida para este diagrama ¢é
exatamente idéntica a obtida em (1.14), basta tomar ¢ = 1 naquele caso. Concluimos com isso que a
parte fermidnica da eletrodindmica quantica ndo-comutativa em 1-loop é exatamente igual a da teoria co-
mutativa. Para estudarmos contribui¢es vindas da parte ndo-comutativa basta nos restringirmos aos trés
primeiros diagramas somente.

Como dissemos antes, as expressdes que compdem o tensor de auto-energia do féton (2.70) foram ob-
tidas no gauge de Feynman, o que simplifica muito a expressdo final. Um tratamento mais detalhado em
uma dimensao arbitraria do espago-tempo e em um gauge covariante geral foi estudado por Frenkel, Das
e Brandt [41], onde eles calcularam a integracdo em k explicitamente. Como resultado eles encontraram
que o tensor de auto-energia € transversal em todas as ordens para um gauge geral em d dimensdes. Os
célculos foram feitos explicitamente em 1-/oop, e para isto uma generaliza¢ao das férmulas de regulariacdo
dimensional foram desenvolvidas para incorporar os efeitos de nao-comutatividade. Eles também obtive-
ram que a auto-energia é dependente de gauge, da mesma forma que a QCD usual a temperatura nula!®,
mas ndo se desenvolve nenhum tipo novo de divergéncia ultravioleta, de forma que a teoria é renorma-
lizavel. Aqui estamos interessados apenas na forma do tensor, pois nosso objetivo € calcula-lo levando em
conta a temperatura finita do sistema, o que faremos no capitulo seguinte.

Analisando um pouco mais a fundo as expressdes dos diagramas que dependem do pardmetro de ndo-
comutatividade, percebemos algumas caracteristicas interessantes. Primeiro note que todos eles dependem

de 0 da mesma forma, através do fator trigonométrico

k 1
sin2< >2<p> = 5(1 —cosk X p)

que segue diretamente da identidade trigonométrica (C.13). Desta forma vemos que esses diagramas sdo
formados por duas partes distintas, uma totalmente independente do pardmetro ¢ e outra dependente. A
parte independente é chamada usualmente na literatura de parte “planar”, enquanto que a parte dependente
da ndo-comutatividade € chamada parte “ndo-planar”. Observe também que se § = 0 estas contribui¢cdes
se anulam, como deveria, afinal isto significa que nenhum dos vértices (2.62)-(2.64) existe, portanto nao hd
auto-interagao entre os fétons. Observe também que todos os integrandos, exceto pelo fator trigonométrico,

sdo proporcionais'® a k, portanto a integral é quadraticamente divergente, quando k — oo, para a parte

8 A QED usual a temperatura nula é independente de gauge em 1-loop.
Lembre-se que o elemento de volume em quatro dimensdes contribui com k2.
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planar. Isto € conhecido como “divergéncia ultravioleta”, e a renormalizagao usual da QED se aplica da
mesma forma aqui. No entanto a parte ndo-planar é convergente para k — oo, pois a parte trigonométrica
oscila de forma a melhorar a convergéncia no ultravioleta. No entanto, como acontece em geral em teorias
nao-comutativas, o cédlculo explicito da integral da parte ndo-planar mostra uma dependéncia com 6 e
com o momento externo p do tipo?® 1/(6p)2, de forma que aparece agora uma divergéncia no setor de
baixos momentos externos, p — 0. Isto é conhecido como “divergéncia infravermelha”. Portanto h4
uma “mistura” das divergéncias ultravioletas (UV) e infravermelhas (IR) quando a ndo-comutatividade
esta presente, e na literatura isto é conhecido como “UV/IR mixing”. Uma boa discussio neste assunto
foi feita por Szabo [37] e por Girotti [38]. Aplicagdes diversas de teorias ndo-comutativas foram feitas,
citamos, por exemplo, estudos de teorias de Chern-Simons supersimétricas [42], modelos de Gross-Neveu
tridimensional [43], estudos de renormalizagdo da teoria [39, 44], estudos de invariincia de gauge quando

0 depende das coordenadas [45], entre outros.

2Veremos uma dependéncia deste tipo nos calculos do préximo capitulo.
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Capitulo 3

QED Nao-Comutativa a Temperatura

Finita

Neste capitulo vamos apresentar alguns dos principais resultados de nosso trabalho. Vamos juntar a
nao-comutatividade do capitulo anterior com a eletrodinamica quéntica a temperatura finita do primeiro
capitulo a fim de estudarmos qual a contribuicdo da ndo-comutatividade naqueles resultados. Comecamos
fazendo uma exposi¢do mais detalhada do cdlculo da auto-energia do f6ton, mas devido a dificuldades
em se calcular o tensor exatamente, cdlculos exatos s6 podem serem feitos quando tomamos algum limite
especifico, e investigaremos o caso do chamado limite estético a altas temperaturas. As mesmas dificulda-
des j4 apareceram no capitulo 1, e aqui, com a presenca do fator de ndo-comutatividade, os célculos sdo
ainda mais dificeis. Em seguida estudamos as blindagens dos campos elétrico e magnético, andlogo ao que
aparece na teoria usual a temperatura finita, descrito na secao 1.2.5. Depois calculamos as amplitudes de
3 e 4-pontos em 1-loop também no limite estético, e por meio de identidades de Ward conseguimos cons-
truir uma acao efetiva para a teoria em 1-/oop. Finalizamos apresentando alguns resultados j4 presentes na
literatura para a energia livre de Helmholtz e a pressdo de um gas de fétons ndo-comutativos a altas tem-
peraturas. Parte do material relacionado aos cdlculos matemaéticos foi deixado para o Apéndice. Com isto
queremos evitar a perda de continuidade na exposi¢io do tema principal. Todos os resultados apresentados

neste capitulo, exceto os da secdo 3.9, foram publicados, conforme ref. [70].

3.1 Decomposicao do tensor de auto-energia

Como j4 foi dito no capitulo anterior, a contribui¢do ao propagador do féton devido ao loop fermi6nico
ndo tem dependéncia com o parametro de ndo-comutatividade. Portanto a contribuicdo para a auto-energia
com dependéncia em 6 vird somente da parte dos campos de gauge da lagrangeana, ou seja, da parte
envolvendo os campos do féton.

Antes de iniciarmos o cdlculo da funcdo de 2-pontos, vamos discutir uma maneira conveniente de se
decompor o tensor I1#¥, levando em conta tanto a temperatura finita quanto a ndo-comutatividade.

No caso comutativo a temperatura finita descrito na secdo 1.2.4, vimos que, na sua forma mais ge-
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ral, o tensor de auto-energia devia depender de n*", do momento externo p* e da quadrivelocidade do

reservatorio térmico u*. Em uma teoria ndo-comutativa temos mais um tensor do qual deve depender a
. » 9/“1/11 . ~ o . . 1

auto-energia, que € o tensor , que caracteriza a ndo-comutatividade espacial'. Ele entra acoplado ao

momento externo p através da definicao

P =0"p,. 3.1

Devido as identidades de Ward sabemos que o tensor de auto-energia deve ser transversal a0 momento
externo,

p 1" = 0. (3.2)

Por defini¢do p* é transversal a p*, e podemos verificar que no caso v = (1,0,0,0) temos u - p = 0, ja
que 6** envolve apenas os indices espaciais. Também temos w - p = 0, pois no limite estatico py = 0.

A forma geral do tensor II*¥ deve ser
" = P*IIp + QM 1Ly, + R 1y, (3.3)

com

pHp”  ptp”
= (e P BT

Q" = utu,

Sy
p

Estas estruturas correspondem a operadores de projecdo ortogonais e normalizados, como pode ser facil-

mente verificado,

P"Qu =0, Q"R,=0, P"R, =0

Pi=1, R‘=1, Q'=1. (3.5)

Os coeficientes IlT, I, e IIT sdo fatores de forma que devem ser determinados. Os subscritos “T” e
“L” se referem, respectivamente, a ‘transversal’ e ‘longitudinal’, e a razdo desta nomenclatura ficard mais
claro adiante. A vantagem de se escrever o tensor na forma (3.3) € que estes fatores de forma podem

ser determinados simplesmente fazendo-se a contragio de II*¥ com as trés estruturas (3.4), de forma que

Conforme discutido no capitulo anterior, vamos tomar §°° = 6% = 9°© = ( para evitarmos problemas de unitariedade.
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obtém-se

Iy, = wyu, 11"

My = p_%];),j I

bup v =
(d - 3)HT = (77,uu - /;2”)1‘[“ - 1_[L - HT (36)
Aqui d representa a dimensdo do espago-tempo, € vem do termo 7*"7,, = d. Note que para d = 3
ndo temos nenhuma informacgao sobre o fator de forma transversal IIt, que para uma teoria convencional
acontece quando d = 2, conforme eq. (1.102).

O inverso do propagador exato pode ser escrito como

(DY = P (p2 — TIp) + Q" (p* — II,) + R* (p* — TIt) + p“gp” (3.7)

onde ¢ representa um parametro fixador de gauge em um gauge covariante. Como os operadores de
projecdo sdo ortonormais, o inverso da expressdo acima pode ser facilmente calculado, levando ao pro-

pagador

1 1 1 DuDv
D, =P, —— ——  +R _ Hy 3.8
" MVPQ*HT+Q“VPQ*HL+ IWPQ—HT—'_S p? :5)

Os pdlos que aparecem no propagador sdo distintos em conseqiiéncia da nossa escolha dos operadores de
projecdo. Se tivéssemos usado uma base diferente, os polos estariam misturados. Percebemos a presenca
de trés podlos fisicos e um vindo da fixagdo de gauge. Assim como no caso comutativo, estes polos estao
relacionados a blindagem dos campos elétrico e magnético, e serdo discutidos mais a frente.

Vamos partir agora para o calculo explicito do tensor de auto-energia do féton a altas temperaturas.

3.2 Auto-energia do foton (amplitude de 2-pontos)

Vamos entdo calcular a auto-energia do féton IT*¥(p) a temperatura finita. Como sabemos, os diagra-
mas que contribuem para a auto-energia sdo dados na Figura 2.1 e a expressao correspondente para o tensor
no gauge de Feynman a temperatura nula é dada por (2.70), excluindo-se o dltimo termo, que corresponde
ao loop fermidnico. Vamos trabalhar aqui no gauge de Feynman, £ = 1, pois conforme demonstrado por
Frenkel e colaboradores em [46], em ordem dominante a auto-energia € independente de gauge a altas
temperaturas.

A temperatura finita, o primeiro passo € calcular a soma sobre as freqiiéncias w,,, que aparecem com a
substitui¢do (1.52), e existem varios métodos para isso. Vamos descrever trés deles.

O primeiro método é fazer o calculo diretamente das expressdes de cada diagrama, por meio da soma

sobre as freqiiéncias, no entanto o cilculo exato nio é muito simples de ser feito?, e ainda vai restar a

*Lembre-se do caso do loop fermidnico do capitulo 1. A integragio no momento interno ndo foi feita naquele caso, e s6 pode
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integracao no momento interno, que s6 pode ser feita em algum limite especifico, e o caso que nos interessa
¢ o limite estdtico (pg = 0, p — 0). Portanto, para fazermos a soma diretamente, é mais conveniente
primeiro tomar o limite estético.

O segundo método, chamado método da amplitude de espalhamento frontal?, foi desenvolvido inicial-
mente por G. Barton e generalizado por Frenkel, Taylor e Brandt [47, 48] para uma classe geral de gauges
covariantes. Este método nos diz basicamente que os grificos que representam uma determinada ampli-
tude podem ser escritos como a soma de graficos que representam a amplitude de espalhamento frontal
da particula, ja com a parte térmica fatorada. Vamos apresentar os resultados deste método no final desta
secdo, e os célculos exatos estdo no Apéndice D.3.

Um terceiro método, desenvolvido recentemente por Frenkel e colaboradores [49], diz que a parte
térmica de um grafico qualquer pode ser obtida pela simples aplicagdo de um operador a correspondente
expressdo do grifico a temperatura nula*. Desta forma muitas das propriedades da teoria a temperatura
finita podem ser estudadas diretamente através dos graficos a temperatura nula.

Uma caracteristica interessante em célculos a temperatura finita é que o resultado pode depender de
como tomamos alguns limites. O tensor de auto-energia por exemplo serd uma fun¢do do momento externo
p, € um limite de interesse é quando p — 0. No entanto os cdlculos mostram que, se tomarmos primeiro
po = 0 edepois p — 0, o resultado serd diferente de tomarmos primeiro = 0 e depois pg — 0. Isto mostra
que o mesmo grafico, quando calculado de diferentes maneiras para o0 momento externo tendendo a zero,
possui diferentes valores quando calculado a temperatura finita. De fato isto acontece para todos os graficos
considerados aqui, e isto mostra que o tensor de auto-energia do féton € ndo-analitico na origem do espago
dos momentos. E o exemplo mais direto que temos da chamada nio-analiticidade quando fazemos calculos
a temperatura finita. No caso a temperatura nula, a invariancia de Lorentz faz com que as amplitudes sejam
funcgdes analiticas com relacdo ao momento externo p. J4 no caso a temperatura finita, a invariancia de
Lorentz é quebrada devido a escolha de um sistema de referéncia privilegiado, que é aquele especificado
pelo quadrivetor u”, que caracteriza a velocidade do reservatério térmico. Desta maneira as amplitudes
dependem de p e de p’ de maneira independente, portanto os limites acima considerados nio precisam ser
necessariamente os mesmos. O fato de os dois limites terem valores diferentes implica em efeitos fisicos
interessantes. De fato, o limite p° = 0, 7 — 0 corresponde a tomar o limite estético, o que d4 origem a
uma massa de blindagem para o campo elétrico no caso da QED usual. No caso da QED nao-comutativa
isto também acontece, como veremos mais adiante. J4 o limite p’ = 0, p° — 0, por outro lado, d4 origem
a uma massa associada com o amortecimento das oscilacdes em um plasma, conhecida como plasmon, e

as massas obtidas pelos diferentes limites nio coincidem®.

ser feita exatamente em alguns limites.
3Conhecido na literatura como Forward Scattering Amplitude Method.
*Este método é conhecido como Thermal Operator Representation.
Ver discussdo na pagina 25 de [13].
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3.2.1 Soma sobre as freqiiéncias para a auto-energia do féton

Vamos utilizar aqui o primeiro método descrito acima. Os detalhes estdo no Apéndice D.1, onde estd
feito o célculo para cada um dos trés primeiros diagramas da Figura 2.1 no limite estatico, que correspon-
dem aos diagramas que envolvem apenas os campos de gauge. O resultado para a parte dependente da

temperatura é

I (p) = % (p) + T2 (p) + T2 ()

43k kxpy 1 . np(|k)) n' (k)
= —862/ sin? — | np(|k)n*" + —=—=kHEY — Bfk“ku
(2m)3 ( 2 >k|{ s(Ik)n |2 k|

~2np ()" (3.9)

kO=|k|

Note que o tltimo termo sé dard contribuicio para a componente I1°. Desta forma podemos calcular os
fatores de forma (3.6), e por meio de (3.3) obter o tensor no limite estdtico no caso de 1-loop. Usando (3.6)

e (3.9) obtemos

v

st 122
Iy, = uyu, Il

Bk, kxpy , -
:862/(%)351112( . )ngg(\/q)

2 2T - -
= 2T+ % coth(r|F|T) — e2T2cossech? (x| T) (3.10)
mlp
a3k k k 5 k)2 np(|k 5 k)2 (|k
s [ O () o) | G2 () G-k )
(2m) 2 k| D k|3 b k|2
2 2 2T N .
= 20 ST coth(n|fIT) + 2T cossech? (x|F|T) G.11)

w[p? - wlp]

Pubv
2

H;glt“ = (77/w - )Hgty - Hit - ﬁth

s [ i (S52) i + (L o) (oD _ ol
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As integrais estdo feitas no Apéndice D.2. O tensor de auto-energia do féton no limite estatico é dado entao

por

i
4 = ufu T} + rr

. (3.13)

Vamos estudar o comportamento de IT5” em dois limites diferentes. Observe que o argumento das
fungdes hiperbdlicas nas expressdes (3.10) e (3.11) é dado por 7 = 7| ﬁ\T = w0pT, onde escolhemos um
sistema de coordenadas onde 610 = —f3; = 6 sdo as linicas componentes ndo nulas do parametro de nao-
comutatividade, ou seja, f3; = 0, e renomeamos p? = |p]?> = p2. Desta forma obtemos para as expressoes
(3.10) e (3.11):

st 2 50 €T° 22 2
I = -3¢ T° + coth(7) — e“T“cossech®(7)
- ) 2T2 2T2
I = — € — + ¢ coth(7) + e?T?cossech?(7).. (3.14)
T T

No limite 70pT" << 1 ou7 << 1, podemos usar as expansdes das fun¢des hiperbdlicas dadas no Apéndice

C.3, de forma que obtemos

, 4
I ~ ——e2T%(nfpT)>

45
- 1
I ~ —4—5621“2(779;51’)2 . (3.15)

No limite oposto, ou seja, 7p1 >> 1 ou 7 >> 1, podemos usar a forma assintdtica das funcdes hi-
perbdlicas

lim coth(r) =1 lim cossech(7) =0

T—00 T—00

de forma que obtemos

2
Hst ~ _Z 2T2
L 36

st
HT

1
<

(3.16)

Portanto, o tensor de auto-energia no limite estatico se comporta de duas maneiras diferentes em ordem

dominante,

3.17)

— e2T?(n0pT)? (m0pT << 1)
¥ e2T? (m0pT >>1).

Vemos que no limite (76pT")? >> 1 o tensor de auto-energia se comporta como 272, portanto da mesma

ordem da contribui¢io do loop fermidnico, conforme resultado (1.114). Se o processo ocorrer a uma tem-
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peratura menor, o fator (70pT)%? << 1 vai suprimir o comportamento e272, de forma que s6 a parte
fermidnica contribui. E interessante notar também que no limite de altissimas temperaturas nao ha de-

pendéncia com o parametro de ndo comutatividade para o tensor.

3.3 Blindagem dos campos elétrico e magnético

Da mesma forma que no caso da eletrodindmica comutativa a temperatura finita estudada na sec@o
1.2.5, podemos ter também uma contribui¢do para os raios de blindagem (raio de Debye) dos campos
elétrico e magnético vindos da parte ndo-comutativa da teoria.

Como ja vimos, as massas elétrica e magnética sao definidas como os inversos do raio de Debye para
as partes longitudinal e transversal, respectivamente, do propagador. Aqui no caso nao-comutativo temos
o aparecimento de trés polos fisicos, ao contrdrio do caso comutativo com dois. Estes p6los fisicos estdo
presentes no denominador do propagador (3.8), e a eles estdo associadas 3 massas diferentes. Para enten-
dermos como se definem essas massas, lembre-se que uma particula relativistica de massa m deve satisfazer
a equacio de energia p? = pg —p? = m?2. No caso do féton a temperatura zero, esta massa é nula, o que sig-
nifica que o alcance do campo elétrico € infinito. No entanto, devido a efeitos térmicos e ndo-comutativos,
o féton pode adquirir uma massa efetiva dentro de um meio, o que o torna uma particula de alcance finito,
levando ao amortecimento dos campos eletromagnéticos (blindagem). O propagador exato do féton deve
levar isto em consideragdo, por isso a presenca dos trés fatores no denominador da expressdo (3.8). Se
algum deles for diferente de zero, significa que os fétons correspondentes (longitudinais ou transversais)
estdo adquirindo uma massa efetiva, levando ao amortecimento da respectiva componente do campo.

Para definirmos estas massas, basta substituir p?> = m? no denominador correspondente. Portanto, aos

trés denominadores do propagador (3.8), podemos definir as seguintes massas no limite estatico® (pp = 0,

p— 0):
Miae = (0, 9) (3.18)
m2 = +I13(0, ) (3.19)
e = +HIT(0, 7). (3.20)

A primeira € a massa magnética, associada a parte transversal do propagador, que ja apareceu no caso
comutativo, sendo nula naquele caso. A segunda é a massa elétrica, associada a parte longitudinal do
propagador, e também apareceu no caso comutativo, conforme ja vimos anteriormente’. A terceira é uma

nova componente, podemos chamé-la de massa magnética ndo-comutativa, pois ela sé aparece aqui na

®Note que ainda existe uma dependéncia com § vinda dos vértices ndo-comutativos, mas ji foi tomado o limite p << k no
célculo do tensor.

"Lembre-se que estas duas massas se deviam a um loop fermidnico no caso comutativo da secdo 1.2.5, sendo que aqui, se elas
existirem, devem-se somente a nao-comutatividade da teoria, que d4 origem a outros diagramas de 1-loop, que ndo tém nada a ver
com o fermidnico.
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teoria ndo-comutativa. Vamos ver quais as contribuicdes para estas massas devido a ndo-comutatividade.
Vamos comecar pela massa elétrica (3.19), que corresponde ao pdlo do segundo termo do propagador

(3.8). A singularidade acontece quando
p? —1II;, = 0. (3.21)
No limite estdtico isto corresponde a

7* = —TI3(0, 5) (3.22)

Observe que esta expressido depende do momento externo p'do lado direito, portanto a condi¢ao (3.21) sera

satisfeita quando
P2+ 1140,p) = 0. (3.23)

Em geral esta equag@o ndo € facil de se resolver, mesmo que ja tenhamos tomado o limite p << k. Ainda
existe uma contribuicdo de p vinda de ﬁ no lado direito, onde cada componente de ﬁ se relaciona a p por
Pt =09 pj. A equacdo (3.23) entdo fica, usando (3.10) e a mesma parametrizacdo adotada anteriormente,

onde 7r|5]T = w0pT,

i §e2T2 + fj(; coth(m0pT) — e*T?cossech®(n0pT) = 0. (3.24)
A pergunta é: para qual valor de temperatura 71" esta equacao tem solugdo para algum valor real de p? A
solugdo s6 pode ser obtida numericamente. Uma forma é fazer o grafico desta equacdo e ver onde ela
cruza o eixo horizontal. Para este valor de p a temperatura corresponde a temperatura critica que estamos
procurando. Alguns grificos estdo plotados na Figura 3.1, para diversos valores de 7' e com § = 1076,
Percebemos destes gréficos que tanto para 7' = 1026 como para 7' = 1033 nao ha solu¢do para a equagao
(3.24). Ja para o valor T' = 1037 comeca a ficar evidente a existéncia de uma solucio, que é ébvia para
T = 1043 e valores superiores. Desta forma a temperatura critica 7, para que exista uma solucdo da
equacdo deve estar entre 7' = 1033 e T' = 1037. O valor quase exato de 7. pode ser encontrado da
seguinte maneira. Note que, com os parametros utilizados, o momento p para o qual existe solugdo é da
ordem de 100 (grafico (c)). Para este valor do momento e da temperatura correspondente, o argumento
das fungdes hiperbdlicas é dado por w6pT ~ 0, 33, portanto w0pT < 1, de forma que podemos expandir
as fung¢des hiperbdlicas usando as séries dadas no Apéndice C.3. Obtemos assim para a equacao (3.24) a
seguinte expressao:

4
P E627T292]52T4 —0, (3.25)
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Figura 3.1: Graficos da funcio dada no lado esquerdo da eq. (3.24) como fun¢io do momento p. Adotamos
e=1e6=10"5. Os valores de T sdo: (a) T = 1026; (b) T = 1033; (c) T' = 1037; (d) T' = 1043.

que fornece diretamente o valor da temperatura critica

T? 3V5

¢~ 9red)’

(3.26)

acima da qual existird uma solucao real da equacdo (3.24), e portanto, uma massa elétrica. Para o valor de
0 dado acima, T, ~ 1033, 27, em perfeito acordo com o que foi discutido acima. No sistema de unidades
onde c = h = kp = 1, a dimensdo de 6 é [eV] 2 e da temperatura é [eV]. Na verdade, estima-se que o
valor do parimetro 6 deva ser da ordem de (10TeV) 2, o que leva a uma temperatura critica da ordem® de
10'7K, portanto uma temperatura muitissimo alta.

Vamos estudar agora a massa magnética ndo-comutativa, vinda da equacao (3.20). Usando o resultado
(3.11) para a contribui¢do do tensor, a equacdo que deve ser satisfeita para a existéncia de um pdélo no

denominador do terceiro termo do propagador (3.8) é

9 2¢? e2T ~ o 0
— 77r292ﬁ2 + % coth(mlpT") + e“T“cossech”(m0pT) = 0. (3.27)

i1l

$Usamos 1GeV~ 10*3K.
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Um gréfico tipico desta funcao esta representado na Figura 3.2, onde podemos perceber que esta equacao
nao tem solucdo real, ou seja, ela ndo cruza o eixo horizontal para nenhum valor real de p. Isto mostra que
ndo hd a geragdo de uma massa magnética associada a parte ndo-comutativa da teoria. Nao ha blindagem

para os campos magnéticos neste caso.

150000

100000

50000 -

Figura 3.2: Grafico da funcdo dada no lado esquerdo de (3.27) como fun¢do do momento p. Adotamos
e=1,6=10"%eT = 1000.

Para a massa magnética da equacgdo (3.18), pelo resultado (3.12) fica claro que também nao ha blinda-
gem associada a este termo, assim como no caso da QED comutativa.

Portanto, o dnico efeito de blindagem que aparece da parte ndo-comutativa € a blindagem do campo
elétrico, que de fato ja existe no caso comutativo. No entanto somente a altissimas temperaturas este efeito

¢ significativo.

No que segue estaremos interessados em estudar a acdo efetiva em 1-loop desta teoria no limite de altas
temperaturas e no limite estitico, e para isso vamos precisar das amplitudes de n-pontos em 1-loop, dadas

nas secdes seguintes.

3.4 Amplitude de 3-pontos

No estudo da amplitude de 2 pontos (auto-energia do f6ton) obtivemos o resultado geral que ITI% # 0,
HZ{ # 0e Y = MY = 0. Esta caracteristica também & obtida no caso da amplitude de 3 ou mais
pontos, ou seja, as amplitudes com um nimero impar de indices temporais se anulam, e cdlculos explicitos

mostram isso. Neste caso, para a amplitude de 3-pontos temos

o0 — o =r2% (3.28)

ijk
t

e precisamos calcular apenas I'%" e T';

. Os diagramas de 1-loop que contribuem para a amplitude de 3

pontos da QED nao-comutativa estio representados na Figura 3.3.
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Figura 3.3: Diagramas de 1-loop que contribuem para a amplitude de 3-pontos.

Das discussdes anteriores vimos que as contribuicdes dominantes para a amplitude vieram, no limite
estdtico, dos termos de ordem mais baixa no momento externo. Isto corresponde a tomar 0os momentos
externos iguais a zero, exceto no fator trigonométrico de vértice, que “carrega” a informacgdo da ndo-
comutatividade.

Devido a simetria das amplitudes na ordem dominante, concluimos que qualquer amplitude com um
ndmero fmpar de indices temporais se anula, o caso mais trivial sendo I1% = 0 obtido anteriormente. Para
a amplitude de trés pontos obtemos que

9% — o =r2% (3.29)

e precisamos calcular apenas [0 e I/

Para o caso da amplitude de 2-pontos temos que o termo dominante da amplitude corresponde a um
termo de grau zero no momento externo no integrando, exceto pelo fator trigonométrico, que € linear no
momento externo. Aqui esta mesma caracteristica pode ser observada, pois a contribuicdo quadrética no
momento externo no fator trigonométrico de vértice pode ser desprezada com relacdo a contribui¢do linear,

pois p << k. Desta forma, um fator trigonométrico tipico sera da forma (ver Figura 3.3(a) por exemplo)

: <k><p1>. ((k—p3)><p2>. <k><ps>
S11n Sin _— S11n _—
2 2 2
~ sin (k a pl) sin <k a p2> gin (M) (3.30)
2 2 2
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Isto corresponde a usar a aproximagao
op* << 1, (3.31)

onde p representa a magnitude tipica do momento externo. Como os fatores trigonométricos ndo dependem
da componente temporal (8% = 0), os célculos das amplitudes de ordens mais altas simplificam-se enor-
memente no limite estitico, e podem ser feitos diretamente pela soma sobre as freqiiéncias de Matsubara.
Os célculos explicitos mostram que, quando todos os gréificos para uma determinada amplitude sdo soma-
dos, os fatores trigonométricos correspondentes a uma amplitude de n-pontos podem ser escritos como o
produto de n fatores da forma sin(k x p;/2), comi = 1, 2, --- ,n. Isto estd de acordo com a simetria
esperada da amplitude total.

Seguindo esta “receita” para o calculo da amplitude, € ficil ver que a correspondente amplitude de

3-pontos pode ser escrita como

. d3]€ k x P1 k x P2 k x P3 128k, k k)\
Fst — 3T . . . %%
a = 1€ / (2m)? sin < 5 ) sin < 5 sin 5 En [(@mnT)? + K23

32
_ (%b + Oy + mku)] . (3.32)

[(2nnT)2 + K22

Nao vamos fazer aqui os cdlculos explicitos da amplitude de 3-pontos. O que queremos € encontrar as
componentes nio nulas ' ¢ T'%* no limite estatico. Os detalhes estio no Apéndice E.1. Os resultados

sao:

L80:(p1,p2,p3) = i€ [p1,s oy (p1) + Pa,s Moo (p2) + Ps,s Mo (p3)] (3.33)

Te(p1,p2,p3) = e [Pk IEH(p1) + o,k 15 (p2) + P31 1155 (p3)] (3.34)

de forma que o conhecimento da auto-energia do f6ton IT5” é suficiente para calcularmos também a ampli-

tude de 3-pontos no limite estatico.

3.5 Amplitude de 4-pontos

De maneira semelhante ao caso da fungdo de 3-pontos, as componentes I'%0% e thij ¥ sdo nulas. Além
disto, assim como IT% representa uma componente independente, também temos que T'%'%° deve ser cal-
culada independentemente, pois ela dard contribui¢ao para a amplitude de 5-pontos, mas vamos nos con-
centrar aqui somente nas componentes espaciais.

Alguns dos diagramas que contribuem para a amplitude de 4-pontos em 1-loop da QED ndo-comutativa

sdo mostrados na Figura 3.4. Nao estdo representados os diagramas que envolvem ghosts.
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Figura 3.4: Alguns diagramas de 1-loop que contribuem para a amplitude de 4-pontos. Nao estdo repre-
sentados diagramas que envolvem ghosts.

A amplitude de 4-pontos no limite estitico serd

thl/)\p(plvp%p&pél)

—3264/ d* sin kX p sin kX po sin kX ps sin kX pa
(271)3 2 2 2 2

24k, k, k\k 4
xT ((271_”%)2 mn ]:2)4 — [(27rnT)2 n k2]3 <5uyk)\kp + 5pukl,k7,\ + (5)\pkuk,, + 5,,)\kpku)
2
et Ot Ol (-3

Escrita em termos das amplitudes de 3-pontos, a amplitude com componentes puramente espaciais €

(os detalhes desta dedugdo estdo no Apéndice E.2)

T3 (p1, p2, p3, pa) = ie [@,lrigk(m + pa, P2, p3) + P2l (1, P2 + pa, p3)

+ P3 L5 (p1, P2, p3 + pa) | - (3.36)

3.6 Identidades de Ward

Dos resultados apresentados nas se¢des anteriores vemos que as amplitudes de 3 e 4-pontos satisfazem
a identidades de Ward simples e podem ser completamente determinadas a partir da auto-energia do f6ton,
exceto quando todas as componentes das amplitudes sdo temporais. E para o caso de um nimero impar de

indices temporais, as amplitudes sdo nulas.
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Para a amplitude de 3-pontos podemos facilmente verificar que

3,50 (P12, p3) = e [ps - p1 115G (p1) + p3 - P2 I155 (p2)]

3,k U55k (p1, P2, p3) = e [p3 - p1IT5;(p1) + p3 - P2 1155 (p2)] (3.37)

e para a amplitude de 4-pontos apenas com componentes espaciais temos

Pa U5k (p1, D2, p3,pa) = ie | (B1 - pa)T5ik(p1 + pas p2,03) + (B2 - pa) 55k (P15 P2 + P4, p3)

+ (P3 - pa)Tiix (p1, P2, p3 + pa) | - (3.38)

Fica claro desta discussao que, no limite estatico, as amplitudes de 3 e 4-pontos satisfazem a identidades
de Ward, pelo menos quando nem todos os indices s@o temporais, € isto segue de uma invariancia da teoria
por transformacgdes de gauge no limite estitico. Dessa forma, estas amplitudes podem ser relacionadas
recursivamente, todas escritas em termos do tensor de auto-energia. O caso da componente '}, da
funcdo de 4-pontos € diferente, ela ndo pode ser expressa por meio da correspondente fungio de 3-pontos,
pois esta se anula. Desta forma, e no caso geral, uma amplitude com todas as componentes temporais ndo
pode ser relacionada a uma amplitude de ordem inferior, elas precisam ser calculadas individualmente, e
em geral ndo se anulam, exceto no caso de um nimero impar de componentes. Portanto, para o célculo da
amplitude I';,o; por exemplo, precisarfamos do conhecimento da correspondente amplitude de 4-pontos.
Desta forma néo € possivel estabelecer uma acdo efetiva que gere todas as amplitudes. Mas isto pode ser

feito para as amplitudes que envolvam apenas indices espaciais, e € isto que faremos na secio seguinte.

3.7 Acao efetiva

A andlise anterior mostrou que todas as componentes ndo triviais da amplitude de 3-pontos podem ser
determinadas do conhecimento da auto-energia no limite estdtico. No entanto, para a amplitude de 4-pontos
precisamos calcular explicitamente a componente I'{|,,, pois ela ndo estd relacionada & amplitude de ordem
inferior. Esta componente, entretanto, serd importante para o completo conhecimento da amplitude de 5-
pontos. De fato, para toda amplitude de ordem par, teremos uma estrutura independente, que nio se
relaciona a de ordem inferior, o que leva a uma impossibilidade de se obter a aca@o efetiva completa. Por
outro lado, como vimos, as componentes das amplitudes apenas com indices espaciais sdo relacionadas
recursivamente a amplitudes de ordem inferior, satisfazendo a identidades de Ward simples. Podemos
entdo tentar obter a parte da acdo efetiva que dependa apenas das componentes espaciais dos campos de
gauge, ou seja, de A;.

Vamos representar por I'[A;] a parte da ac@o efetiva a altas temperaturas que dependa somente das

componentes espaciais do campo de gauge. A invariancia por uma transformacio gauge infinitesimal no
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limite estatico leva a identidade de Ward

OT[Ax] _ /dy 0Ai(y) OT[A] _ 5F[f4k] —0 (3.39)

ow(z)
onde w(Z) representa o pardmetro infinitesimal da transformagdo, e depende somente das coordenadas
espaciais. Vista de outra forma, a equacao (3.39) pode ser interpretada como a conservagio covariante da
corrente

D; ji[Ax] = 0. (3.40)

Na aproximagio #p? << 1 que estamos interessados, a derivada covariante (2.52) toma a seguinte forma’

D; =0; + 6(({9]'142') 8j . (3.41)

Com isto, a conservacdo da corrente (3.39) fica

OL[Ay] a5, OT[AR]

0i =5 +el0340) 8 =5 = 0 (3.42)
ou

(0T[4 0T

8Z< 54 T e sa, ) =0 (3.43)

Isto determina que a quantidade entre parénteses representa uma quantidade que se conserva, sendo trans-

versal a derivada 0;. Podemos representar esta quantidade por

ST[Ay]

g 3. _ xT
(61 + e4;0,) I (3.44)
de maneira que
XTI =0. (3.45)
Tomando a derivada funcional de (3.44) com relagdo a A, obtemos
0 T 0 ~\ OI'[A,]
— X = =14 A0; J
oA, T §A, (5is + 4 5 Ay
§’T[4;] = 0T[4)] -~ 0°T[A}]
= 0; J Ay0; I 3.46
A, U Tsa s aeA, (3.46)
Em primeira ordem (ordem e = 0)
2 .
O xT ~ T _ e (3.47)

SA; T T GA A T T

Basta expandir o produto Moyal e tomar somente o termo linear em 6.
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que como sabemos ¢ a defini¢ao para a fun¢do de 2-pontos (auto-energia) derivada da acao efetiva I'[A;].
Desta forma, em primeira ordem temos
T(0
X0 =1t a;. (3.48)

E claro que X ZT contém termos de ordens mais altas nos campos, como podemos ver de (3.46). No entanto,
pode-se mostrar que tomar derivadas funcionais de ordens mais altas em (3.44) corresponde a fazer uma
simetrizacdo dos indices das amplitudes de ordens mais altas. Tendo esta simetrizacdo em mente, pode-
mos descartar as contribuicdes vindas dos termos com ordens mais altas nos campos em X ZT . Podemos
entdo resolver a equagdo (3.39) para a corrente, e isto é feito verificando-se que o inverso do termo entre

parénteses em (3.44) é

~\ —1 ~ ~ ~ ~ ~ ~
(6 + eA8,) = 6y — eA0; + A0 A0y — ¢ AD, A A, + -+ (3.49)
de maneira que 4]
O [Ag =\ "1 T
= (517 +eAjai) x© (3.50)

Além disso, da definicdo da derivada covariante (2.52) podemos ver que
0; (8i + eAidy) = D, (3.51)
de maneira que podemos escrever
o\ -1 L
(% + eAjai) ~ D;'9;. (3.52)

Usando (3.52), podemos determinar a corrente (3.50) como sendo

ST[Ay]
0A;

JilAg] = = D; Ol Ay . (3.53)

J

Esta corrente se conserva covariantemente, pois a auto-energia é transversal, e além disso esta expressao
leva corretamente as amplitudes de n-pontos, como pode ser verificado explicitamente!®. Vamos mostrar
brevemente como se obtém as amplitudes de 2 e 3-pontos. A amplitude de 2-pontos € obtida trivialmente

da (3.53) por meio de

8Ji[Ax]
0A,;

_ 8°T[A)]
o OAGA;

(3.54)

A0
Para a amplitude de 3-pontos, sem levar em conta a simetrizacdo dos momentos, devemos tomar a forma
completa de X ZT dada na (3.46). Usando as expressdes (3.46) e (3.49-3.53), a amplitude de 3-pontos vird
do termo linear em “e” de

52
Ao OAGA,

6%5i[Ax]

0A10A,

(05 — eA;0;) (IL} Ay, + e Ay0; ;TF) . (3.55)
n |A=0

1%Para isso deve-se levar em conta a simetrizagéio dos momentos externos p;.
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No espaco dos momentos (escrevendo os campos A’s como transformadas de Fourier), obtemos

6%j;

——=— =ie [p1,: Iy, (p1) + P2, Iy, (p2) — Br,i Iy, (—p1 — p2) — Po,i It (—p1 — p2)]
0A0A,,

(3.56)
que ¢ exatamente a expressao obtida em (3.34), lembrando da conserva¢ao de momento p; + p2 + p3 = 0.
Podemos também derivar uma expressao para a acao efetiva estdtica, que vai envolver integracdo fun-

cional da corrente, o que parece ser ndo trivial. De fato isto acontece, mas em um determinado limite

podemos derivar uma acao efetiva. Para isto tomamos o limite
Pal < T |pa| < 16|72, (3.57)

onde a = 1,2,... indica os indices dos momentos externos. Neste regime o momento interno k deve ser
da ordem de 1/[p|.
Vamos definir a fun¢éo U (p, A), dada por

Up,A) = /d4a: exp[—ip - x + iep - A(z)], (3.58)

que é uma funcdo do quadrivetor momento p (que pode ser uma combinacdo de momentos externos p,),
e um funcional com relacdo as componentes espaciais de A. No limite (3.57), a transformacdo de gauge

geral (2.56) pode ser aproximada por
SAi(x) = [0; + ie(D; Ai(x))d;]w(x) . (3.59)

Por esta transformacgdo, U definido em (3.58) € invariante de gauge. Podemos provar isto da seguinte

maneira. Note que

5(p-A) =[p-0+e(9;p- Az))djlw(z),

Slexp(iep - A(x))] = iexp(iep - A)[p- 0 + e(9;p - A(x))d;lw(x)
_ 4,

= iexp(iep- A)p - Ow lexp(iep - A)O;w], (3.60)

onde usamos 9 - & = 0.

Substituindo (3.60) em (3.58) e integrando por partes (de maneira que 5]- age em e~ P"), obtemos
oU = i/d4xe_ip'$ exp(iep - A)[p- 0w — p - Ow| = 0. (3.61)
Agora podemos construir a acdo efetiva em termos de U

= m / d'pf(P)U(p, A)U(—p, A) = 5 / d'pf()|U (p, A)I%, (3.62)

1
2 x (2m)
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onde

ﬁst ~
fp) = ;5;5)- (3.63)

Esta € a acdo efetiva correta no limite (3.57). Ela € invariante de gauge e fornece corretamente as amplitudes
de 2, 3 e 4-pontos, como pode-se verificar.

Uma tarefa muito mais dificil € encontrar a acdo efetiva no caso quando assumimos apenas o limite
|pa| < T, ao invés dos dois limites em (3.57). Neste caso temos de usar a transformacgdo de gauge exata
(2.55), e ndo apenas a aproximada (3.59). Mas podemos encontrar uma fun¢@o generalizada W que seja

invariante pela transformacao de gauge (2.55), e ela é dada por

1
W(p,A) = /d4x exp (—ip - x) x P exp [z’e/ dép- A(z +¢€p) |, (3.64)
0

onde P denota um ordenamento de trajetdrias na variedade definida pelo produto ndo-comutativo x. W (p, A)
representa a transformada de Fourier de uma linha aberta de Wilson invariante de gauge!', que se estende
ao longo de uma linha reta que vai de = a = +p. Note apenas que se tomarmos o limite (3.57), W se reduz a
U. Mas mesmo com esta generalizacdo, a a¢do efetiva ndo pode ser obtida simplesmente pela substitui¢do
de U por W na equacdo (3.62). A razdo € que o momento interno do féton, k, é esperado ser da ordem
1/(0|pa)), entdo, sem o limite (3.57), ndo podemos fazer a aproximagao de altas temperaturas |p,| < |k|.
As amplitudes sdo, neste caso, muito mais complicadas, e ndo € evidente que possa ser expressa em termos

de uma funcédo simples f do tipo (3.63). Essa é uma questdo que precisa ser melhor estudada.

3.8 Método da amplitude de espalhamento frontal

Vamos apresentar aqui brevemente outro método de cdlculo que ji fornece diretamente a parte térmica
de um diagrama sem a necessidade de se fazer a soma sobre as freqiiéncias de Matsubara. E o método da
amplitude de espalhamento frontal. Como j4 foi dito, Frenkel, Taylor e Brandt estudaram extensivamente
este método. Vdrias aplicacdes com este método podem ser encontradas nas referéncias [46, 47, 48], e sua
equivaléncia com o método tradicional foi demonstrada em [48] para o caso da QCD em um gauge geral
covariante. Vamos apresentar aqui os resultados para as amplitudes de 2 e 3-pontos em 1-loop para a parte
de gauge da NCQED e também o resultado da amplitude de 2-pontos para o caso de 1-loop fermionico,
todos no limite p << k.

Com este método, o tensor de auto-energia (amplitude de 2-pontos) para a parte de gauge da teoria
(diagramas das Figuras 2.1 (a), (b) e (c)) a altas temperaturas pode ser representado simplesmente por

4e? 3k

e (p) = -~

(27)3 ﬁ”B(Va)(l —cosk x p) " —

HEY 4 pVkH PRk
PR D b } (3.65)

_|_
p-k (p-k)?

KO=|k|

Os célculos desta expressao estdo feitos no Apéndice D.3, para ilustrar a aplicagcdo do método. Note que

""N3o vamos nos aprofundar neste tema aqui. Para mais referéncias neste assunto, ver referéncias [50, 51].
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esta é somente a parte dependente da temperatura. Da mesma forma que em (3.9), existe uma parte de vicuo
que ndo estamos considerando aqui, pois queremos analisar apenas a dependéncia com a temperatura do
tensor.

No entanto esta forma do tensor ndo é muito conveniente para fazermos a integragdo em k. Observe
que os dois dltimos termos proporcionais a 1/(p - k) apresentam uma nao-localidade, caracterizada pelo
momento externo p no denominador. Por isso vamos reescrever o tensor de maneira mais apropriada

fazendo uso da identidade

(3.66)

PR PR PR D (kR
pk o k2 Pk \p k)

Com um pouco de algebra e fazendo de uso de uma integracao por partes pode-se mostrar que a eq. (3.65)

pode ser escrita como

oy ; ns([F)
0 (p) = ~ s [ ot (1= cosh )| ni(Fl) = (08" 4P ™22
! @2m)3 ) k| 7
Frn(kDpo +< 0_ 7 *)( ——n'g(|k]) — TQnB(|k|)>]
Pk \pok" —p-k )\ [kl k| o

onde n'y (|k|) significa a derivada de nz com relagdo a |k|, e entdo podemos perceber que no limite estatico

a ndo-localidade desaparece totalmente, ou seja, fazendo py = 0 obtemos finalmente para o tensor

4e2 [ d3k N I -
o (p) = ———= [ —=(1 —cosk x p) |n"np(lk]) — —=—n'g(|k]) + —=—np(k])
a(s) 2n)* ) k| I Lk
_(nﬂokunoykﬂ)wum)]
‘k’ k0:|E|

(3.67)

Pode-se ver facilmente que esta expressdo da exatamente a mesma contribuicdo que (3.9), que foi calculada
pelo método direto da soma sobre as freqiiéncias.
Para o caso de 1-loop fermidnico, representado pelo diagrama da Figura 2.1 (d), obtemos a seguinte
expressao pelo método da amplitude de espalhamento frontal:
82 [k

10 (0) =~ oo [ e D) [ -

- 3.68
@2m)3 ) k| (3.68)

puky +pyku ka,uku:|
p-k (p- k)2

KO=|k|

Para a amplitude de 3-pontos vinda somente da parte de gauge, representado pelos diagramas da Figura
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3.3, este método fornece

4ie3 P1 X P2 A3k -
g _ : g .
T =~ 3y sm< f ) {11 = contn xR} L0 propac)

— [1 — COS(pQ X k)] Li)\y(kﬂ p17p37p2) - [1 - COS(pl X k)] Liyu(k’ p37p27p1)}‘

ko=|k|’
(3.69)
onde
2 2 2
LE (K p1,pa,ps) = k k,,k( L + o - b5 >
ol P12 ps) = Kb A\ G )+ )2 pe) o pe (6 )
1
w7 |kvk - k, (k —k,
Tk p2) (k- pa) { » (P2 = ps)y, - (Rapay p“)}
kg Ry 2
(k-p1)(k-pa) " A D2y T By P2y & - p1) U
— (s p1) < (v, p2)- (3.70)

Estas expressdes serdo importantes no capitulo 5, onde faremos os célculos usando o método das

equacdes de transporte.

3.9 Pressao de um gas de fotons nao-comutativos

Antes de terminarmos este capitulo, vamos apresentar brevemente uma aplicagdo interessante dos
métodos da QED ndo-comutativa para o célculo da pressdo de um gés de f6tons nido-comutativos. De
acordo com o que foi apresentado na secdo 1.2.3 do primeiro capitulo, o cdlculo da pressdo de um géds
de fétons (comutativos) a altas temperaturas pode ser feito por meio da funcéo de parti¢do do sistema, ou
da energia livre de Helmholtz. Da mesma forma podemos estar interessados nas corregdes a esta pressao
devido a efeitos da ndo-comutatividade. Isso foi feito primeiramente por Arcioni e Vazquez-Mozo [52],
que estudaram as corre¢coes de diagramas de 2-loops vindos apenas da parte de gauge da teoria, ou seja,
sem considerar contribuicdes vindas da parte fermidnica. Recentemente, Frenkel, Brandt e Muramoto con-
sideraram as corregdes vindas de 3-loops no caso da QED sem férmions [53], e depois as contribui¢des
devidas a loops de férmions [54].

Vamos nos restringir a apresentar aqui os resultados do caso de 2-loops da QED sem férmions, que é
o que estamos estudando neste capitulo. Os diagramas que contribuem para a energia livre de Helmholtz
nesta ordem sdo dados na Figura 3.5. Pode-se mostrar que as contribui¢des dos 3 gréficos se reduzem ao

calculo da seguinte expressdo para a densidade de energia livre F' em segunda ordem'? em e,

_ Bq [ Ep np(d)ns(pl) . 5 (Pxq
P =t [ o [ o e (220 G70

12Nio h4 contribui¢io de ordem e.

78



~ -7
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q p q q
Figura 3.5: Diagramas de 2-loops que contribuem para a energia livre de um gés de fétons ndo-comutativos.

onde ¢ e p sdo os momentos internos agora. De acordo com as relagdes (1.41) e (1.43), a pressdo aqui é
dada diretamente como o negativo da densidade de energia livre, P = —F'. No limite de altas temperaturas,

quando AT >> 1, a contribui¢io para a pressio é

e?T4 n e2T* In(0T?)
72 82 0T?

P=—-F?0OT? > 1)~ — (3.72)

indicando surpreendentemente que a altissimas temperaturas ndao ha dependéncia com o pardmetro de nao-

comutatividade, pois o tltimo termo se anula. J4 para o limite 7 < 1 a contribuigio é dada por

2
@72 (TN s
P=-FOOr <)~ -5 (L) 0°7°, (3.73)

indicando uma forte dependéncia com 6. Para mais discussdes neste assunto sugerimos a referéncia [53].

Neste capitulo apresentamos a primeira parte dos principais resultados de nosso trabalho. O tensor de
auto-energia do féton dependente do pardmetro de ndo-comutatividade foi encontrado no caso do limite
estdtico a altas temperaturas, que € quando os cdlculos se simplificam e podem ser efetuados. Vimos que
a temperatura correspondente para que efeitos de ndo-comutatividade sejam aprecidveis, por exemplo no
célculo de uma secdo de choque, deve ser muito alta, assim como a temperatura para que uma massa
elétrica se desenvolva no setor ndo-comutativo. Mostramos que as amplitudes se relacionam por meio
de identidades de Ward, de forma que uma agao efetiva que gere amplitudes somente com componentes
espaciais pode ser obtida no limite estatico. Os principais resultados apresentados neste capitulo, exceto a
ultima secdo, foram publicados em [70].

Nos capitulos que se seguem vamos mostrar que os mesmos resultados para as amplitudes podem ser

obtidos por um método bem mais direto, que é o método das equagdes de transporte.
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Capitulo 4
Equacoes de Transporte

Veremos agora uma outra formulagdo que nos permite fazer cdlculos em teoria de campos levando em
conta efeitos de temperatura de um sistema. E o método das equacdes de transporte. Vamos mostrar que
muitos dos resultados obtidos de maneira trabalhosa na formulacao tradicional da teoria de campos podem
ser obtidos, pelo menos em alguns limites, por este método muito mais intuitivo, ja que a temperatura entra
de forma natural nos cédlculos. Toda a construgdo da teoria das equacdes de transporte é baseada na teoria
cinética dos gases, formulada por Boltzmann e outros ja na segunda metade do século 19. A idéia principal
¢ de que as propriedades de interesse de um sistema qualquer em equilibrio podem ser representadas em
termos de uma funcdo, chamada funcdo distribuicdo. Quando o sistema sofre alguma intera¢do, podemos
caracterizar as mudangas ocorridas no sistema por uma mudancga na fun¢do distribuicdo, que deixa de ser
a de equilibrio. A equacdo que deve ser satisfeita pela funcdo distribui¢do é a equacdo de transporte, que
pode ser obtida basicamente conhecendo-se o tipo da interacdo que age no sistema, ou seja, suas equacdes
dindmicas. A equacgdo de transporte pode ser resolvida iterativamente, de forma que corre¢des a fungao
distribuicdo podem ser obtidas, e desta forma as propriedades de interesse do sistema podem ser obtidas
ordem a ordem, como corre¢des as propriedades do sistema em equilibrio.

O primeiro passo no sentido de se estender a teoria cinética dos gases - conforme desenvolvida por
Bernoulli, Clausius, Maxwell e Boltzmann - para o dominio relativistico, foi feito por Jiittner em 1911. Ele
derivou uma generalizagdo relativistica para a funcao distribui¢dao de Maxwell, e em 1928 ele estabeleceu
a forma da funcao distribui¢do em equilibrio vélida para sistemas de bdésons e férmions. O passo seguinte
para o desenvolvimento de uma equacao cinética relativistica, que é a equacdo que a fungio distribui¢ao
deve satisfazer, foi dado por Walker em 1935 para o caso de particulas que ndo sofram colisdes entre si.
Foi somente em 1946 que uma generalizagdo relativistica da equacdo de Boltzmann, incluindo efeitos de
colisdo, foi publicada por Marrot, e seguiram-se estudos de Chernikov, Clemmow, Willson e Bergmann.
Ao mesmo tempo outros tipos de equacdes cinéticas relativisticas foram consideradas, em particular a
generalizacdo relativistica da equacdo de Vlasov e da equagdo de Fokker-Planck.

Um dos propdsitos da teoria cinética € derivar leis macroscopicas de conservacao baseada na equacdo
cinética adotada. Marrot e Taub foram os primeiros a mostrar que leis macroscopicas de massa, momento

e energia podiam ser obtidas desta maneira. A generalizagdo relativistica do teorema H da termodindmica
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- que garante a positividade da entropia para sistemas fora do equilibrio - foi derivada por Marrot, Eh-
lers, Tauber, Weinberg e Chernikov. Muitas das férmulas obtidas nesta época para um sistema gasoso
relativistico em equilibrio ainda estavam em uma forma que ndo eram manifestamente covariante, € uma
vez que estas equacdes fossem escritas covariantemente, elas poderiam ser aplicadas para a gravitag@o.
Isto foi feito primeiramente por Marrot, Weinberg e Chernikov, que colocaram as equacdes no contexto
da relatividade geral. Formalmente, o que eles fizeram foi considerar derivadas covariantes em lugar das
derivadas ordindrias do espago-tempo. Isto resultou numa teoria em que a gravidade aparece como uma
forca de longo alcance auto-consistente. Como esta forca ndo influencia as propriedades locais do sistema,
que sofrem acdo somente de forcas de curto alcance, a estrutura formal da teoria permanece essencialmente
amesma. No inicio da década de 60, Israel, Kelly e Chernikov adaptaram, independentemente, os métodos
cldssicos de Chapman-Enskog e de Maxwell e Grad ao dominio relativistico, € por muitos anos varios pes-
quisadores trabalharam e desenvolveram estes métodos. Desta maneira, cada vez mais tornou-se mais facil
determinar expressoes para os coeficientes de transporte de sistemas de particulas movendo-se a velocida-
des relativisticas, e mesmo para sistemas contendo neutrinos ou fétons. Na década de 70 Weinberg estudou
a formacdo de galaxias com estes modelos, o que serviu como uma boa motivacao para a construcdo de
uma descrigio coerente de fendmenos fora do equilibrio’.

Como j4 foi dito na introducio, existem duas maneiras de se obter a fungdo distribui¢do de um sistema
por meio das equacdes de transporte. A primeira é a forma cldssica, que se baseia nas equacdes de mo-
vimento cléssicas do sistema. A segunda é uma formulacdo quantica, desenvolvida por Wigner. Vamos
apresentar as duas formulacdes aqui. Nosso objetivo é estudar as amplitudes de n-pontos em 1-loop da
eletrodindmica quantica ndo-comutativa por meio das equacdes de transporte, que serd feito no préximo

capitulo. Neste capitulo vamos apenas apresentar a teoria.

4.1 Teoria classica de transporte

As propriedades de um sistema de muitos corpos depende essencialmente das interagdes entre as
particulas que constituem o sistema e das intera¢gdes devido a acdo de alguma forca externa. Estaremos
interessados em obter certas propriedades macroscépicas deste sistema, como pressdo, energia, entropia,
etc, no equilibrio. Nosso propdsito entdo € expressar estas quantidades macroscdpicas (que sao fungdes do
espaco-tempo) em termos de varidveis de estado macroscopicas, como densidade de particula e tempera-
tura por exemplo, e de parametros microscOpicos caracteristicos do sistema. Na teoria cinética dos gases
isto € feito por meio de descricdes estatisticas em termos da chamada func¢ao distribuicao de uma particula.
Esta fun¢do pode ser interpretada como sendo a fungio que fornece o niimero médio de particulas com um
certo momento  em cada ponto do espago-tempo (Z,t). Para encontrar a forma explicita desta funcéo,
temos de postular ou derivar equacdes cinéticas satisfeitas pelas particulas, equacdes estas também chama-
das de equacgdes de transporte. Estas equacdes estabelecem como a funcio distribuicdo muda no espago e

no tempo devido as interagdes das particulas. Na prética estas equagdes sdo dificeis de serem resolvidas

"Uma boa lista de referéncias nestes assuntos estio na introducio de [56].
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exatamente e temos de nos limitar a simplificacdes, como por exemplo considerar apenas colisdes entre
duas particulas e considerar sistemas perto do equilibrio, mas mesmo nestes casos obtemos bons resulta-
dos. Vamos entdo introduzir algumas quantidades fisicas de interesse, onde estaremos trabalhando com a
notagio relativistica usual z = z# = (2°,%) e p = p* = (p%,p) onde 2° = ct e cp® = \/p2c2 + m2ct éa

energia relativistica de uma particula de massa m e c € a velocidade da luz.

4.1.1 Corrente de particulas

Para descrever um sistema nao-uniforme, introduzimos uma densidade local n(Z, t), de maneira que
n(%,t)A3z nos di o nimero médio de particulas no elemento de volume A3z localizado no ponto &
no instante de tempo ¢. Da mesma maneira definimos o fluxo de particulas j(&,t), assim formamos o

quadrivetor corrente ou simplesmente corrente de particulas, dado por:
JH(x) = (en(T, 1), J(7.1). (4.1)

Se o nimero de particulas for grande, entdo faz sentido introduzirmos uma func¢do f(x,p) que dé a
distribui¢io do momento p em cada ponto do espaco-tempo. Esta definicdo é tal que f(z,p)A3zA3p
d4 o nimero médio de particulas que no instante ¢ estejam localizadas no elemento de volume A3z em
torno de £ e com momento entre p'e p + Ap. Esta definicdo pressupde que o nimero de particulas con-
tida no volume A3z seja grande mas por outro lado que o tamanho A3z é pequeno do ponto de vista

macroscépico. Em termos da fun¢do distribui¢do a densidade e o fluxo de particulas podem ser escritos

como
n(Z,t) = / &p f(z,p). (42)
.;(57 t) = /dgpﬁf(l',p) 5 (43)
onde .
i = % (4.4)

¢ a velocidade de uma particula relativistica com momento p. Como conseqiiéncia de (4.2) e (4.3) podemos

escrever o quadrivetor corrente (4.1) como

d3
Jh(r) = ¢ / P, 4.5)

Esta expressdo mostra que a fungdo distribuicdo f(x, p) deve ser um escalar por transformagdes de Lorentz.

Usando a identidade

0(p°)8(p* — m*c?) = L(;(po — VP2 +m2e?), (4.6)
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onde 6 é a fungdo degrau unitdrio, J € a fungdo delta de Dirac e p? = ptp,, = (p°)% — p? = m?c?, podemos

reescrever a corrente (5.88) como

Ji(z) = 2 / dp )5 (% — m>)p f (. p) @.7)

Assumimos aqui, sem uma demonstragdo rigorosa, que J#(x) se transforma como um quadrivetor de
Lorentz, assim como o fato de a funcio distribui¢io f(z,p) ser um escalar?.
4.1.2 Tensor de energia-momento

Vamos considerar agora a densidade de energia. Desde que a energia por particula é cp®, podemos

escrever a densidade de energia macroscépica 7% como sendo:
T%(z) =c / &*pp° f(x,p). (4.8)
De maneira semelhante definimos o fluxo de energia ¢T'% como
cT%(z) = c/d3pp0ujf(m,p), j=1,2,3 (4.9)
e a densidade de momento 7% /¢, que é o valor médio do momento /5’ da particula, como sendo
TO(z)/c = /d?’ppif(x,p). i=1,2,3 (4.10)

Finalmente, definimos o fluxo de momento 7'/ (ou tensor de pressdo) que é o fluxo na direcdo j do mo-

mento na dire¢ao %

T (x) = / d*pp'ul f(x,p). (4.11)

Estas quantidades podem ser expressas por meio de um tensor, chamado tensor de energia-momento, que

¢ dado pela forma covariante
T () = 2¢ / d*p0(po)d(p* — m*c*)p"p" f (x,p). (4.12)

E importante notar aqui que esta defini¢io do tensor momento-energia leva em conta apenas a ener-
gia de repouso das particulas e suas energias cinéticas. Estamos assumindo que as possiveis energias de
interacdo entre as particulas sdo pequenas comparadas com suas energias cinéticas. Se ndo fosse assim, o
tensor energia-momento deveria conter também uma contribui¢do devido a energia potencial.

Veremos agora como obter a funcdo distribuicdo do sistema, ou melhor, que equagao deve ser satisfeita

por f para que possamos determina-lo. E a equagio de transporte.

2Mais detalhes sobre esta discussdo estdo na referéncia [56].
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4.1.3 Equacao de transporte para f (7, p, t)

O principal objeto de estudo na teoria de transporte é a chamada fungdo distribuicdo f(Z,p,t), que
representa a densidade de particulas com momento p em um ponto & do espago num instante de tempo t.
Na mecanica estatistica isto é conhecido como densidade do espaco de fases. Por exemplo, para uma tnica
particula no ponto z; com momento p;, no espago unidimensional teriamos f(x,p,t) = 6(x —x1(t))d(p—

p1(t)). Para um sistema com N particulas, um gas ou um plasma por exemplo, a generalizagdo é imediata

F(@,pt) = Zé(f—@(f))é(ﬁ—@(t)) (4.13)

sendo Z;(t) e p;(t) os vetores posi¢do e momento da i-ésima particula do sistema no instante ¢. As equagdes

de movimento satisfeitas por Z;(t) e p;(t) sdo

I

—

Z;i(1)) (4.14)

sendo F' (Z;(t)) a soma de todas as for¢as que agem na particula localizada em ;. Se, por simplicidade,
pensarmos que este nosso sistema € composto por moléculas de um gés e que as colisdes entre elas sdo des-
preziveis, temos entdo que cada molécula forma um subsistema independente, assim a funcao distribui¢ao
das moléculas deve obedecer ao teorema de Liouville, que nos diz que ela deve ser constante no espago de

fases, caracterizando um estado de equilibrio do sistema,

d = _
Ef(w,p,t) =0 (4.15)

sendo a derivada total correspondente a uma diferenciacdo ao longo do espaco de fases da molécula, deter-

minado pelas equacdes do movimento (4.14). Na auséncia de uma forca externa temos

0 L =
Sl = f VS (4.16)

Se, por outro lado, a molécula estiver sob a influéncia de uma forga externa F’, entao

_9,. P g, g 9f
=5 ft Vf+F TS 4.17)

4
dt

onde usamos ' = p/m. Se a colisdo entre as moléculas for levada em conta, entdo a equagdo (4.15) ndo é

mais vélida, e a funcao distribuicdo nao € mais constante ao longo do espacgo de fases. Devemos ter entdo

d
o/ =C). (4.18)

onde C(f) é chamado integral de colisdo e caracteriza a taxa de mudanga da fungéo distribuigdo devido as

colisdes. Obtemos entdo a chamada equacdo de transporte para uma particula cldssica sujeita as equacgdes
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de movimento (4.14),

—
-

o P G
AN VAT B . 4.1
8t+m V+ 5 f=0C(f) (4.19)

Em geral é bastante complicado encontrar a integral de colisdo C'(f), e em muitas aplica¢des a primeira
aproximacdo € tomé-la igual a zero. Desta forma, conhecida a forma da forca que age na particula, por
mais complicada que ela seja, podemos resolver a equagio acima iterativamente e obter a expressao para f
ordem a ordem. Isto fica mais claro se tomarmos o caso da for¢a eletromagnética. Em notagao relativistica,
tomando ¢ = 1 por simplicidade, as coordenadas do espago-tempo serdo representadas por x# = (t, %) e
o momento p* = (p%, ), com p° = \/m O vetor velocidade é dado por 7 = 5/p°, e o operador
gradiente 0, = 0/0z" = (0, V). Desta forma, tomando C(f) = 0, a equacdo (4.19) pode ser escrita

como

of

Iz - _ v ©J
PrOuf(@,p) = —ep, P50 (4.20)
onde F* = o' AY — 9, A* é o tensor eletromagnético. Esta € a equacdo de Vlasov, que pode ser resolvida
da seguinte maneira. Veja que o lado esquerdo € de ordem zero no acoplamento e, enquanto que o lado

direito é de primeira ordem. Portanto, expandindo f em poténcias de e,
f= f(O) —I—ef(l) —|—e2f(2) 4. (4.21)

e conhecendo-se o termo de ordem zero, f(9), que é simplesmente a solucdo do problema sem interaco,
obtém-se, com a equagio (4.20), o termo f(1). Repetindo o processo obtém-se o termo f ), ¢ assim por
diante, de forma que todas as quantidades fisicas de interesse, por exemplo a corrente (4.7) e o tensor de
energia-momento (4.12), podem ser obtidos com precisao cada vez maior, desde que as corre¢des a fungao

distribuicdo do sistema sejam obtidas. Esta € a idéia bdsica por trds do método das equagdes de transporte.

4.2 Teoria quantica de transporte

Nesta se¢do vamos apresentar outro método de se trabalhar com as equagdes de transporte, que € a
formulacdo quéntica inicialmente desenvolvida por Wigner [57], e posteriormente estudada por varios ou-
tros autores em diferentes contextos. Vale citar em especial os trabalhos de Elze, Heinz, Vasak e Gyulassy
[58, 59, 60], entre outros, que deram uma atenc@o especial a este assunto com o objetivo de aplicar os
métodos cinéticos existentes na época para estudar sistemas de quarks e glions da QCD. O problema
maior era que, como as interacdes entre quarks e glions devem ser descritas por uma teoria de gauge nio-
abeliana, a teoria cinética correspondente deveria fornecer resultados invariantes de gauge, e portanto ser
formulada de uma forma covariante de gauge desde o inicio. Para isto era necessdria uma modificagao
na definicdo da funcdo distribuicdo para o espaco de fases com relacdo as defini¢cdes existentes. Além
disso, uma funcdo distribuicdo quéntica para campos de gauge ainda nao existia, até o advento dos estudos

em fisica de plasmas de quarks e glions, e era necessdria uma formulacdo covariante de gauge para tais
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sistemas.
A breve discussao que se segue é baseada nos trabalhos daqueles autores para uma formulagio consis-

tente da teoria de transporte para quarks e gldons, conforme [60].

4.2.1 Operador de Wigner nao-relativistico

Vamos ver agora qual o equivalente da fungé@o distribuicdo cldssica f(Z,p,t) no caso da mecanica

quantica. Sabemos que, para uma fungdo de onda 1(z) que seja solucéo da equagdo de Schrodinger

- 'hg—h—2V2+V( ) =0 (4.22)
"ot T 2m z)|¥(z) =0, ’

a quantidade 9 (x)(x) representa a densidade de particulas no espago das coordenadas, onde x agora diz
respeito tanto ao trivetor Z quanto ao tempo t. Para o momento p devemos levar em consideragio que ele
age como um operador p no espaco das coordenadas. Assim, em analogia com a equagdo (4.13) do caso

cléssico, obtemos o andlogo quantico da densidade no espaco de fases, a chamada funcdo de Wigner [57]
Wz, p) = ' (2)8(p — p)v(x). (4.23)

A funcdo delta age como um projetor no espago dos momentos e é melhor definida como uma transformada

de Fourier. Desta maneira a equacao (4.23) fica

3 . ~
W(op) = [ ool @) ().

A fim de que W seja hermiteano, faremos com que o operador $ aja tanto em 1 quanto em 1) T, substituindo

) — —Lih(d, — ,), de manei b
D 54h(0; — 0;), de maneira que obtemos

3 —
W(z,p) = / %em/w (z) e 3¥@ =)y (1) . (4.24)

Para finalizar, observe que o operador exp(—yd,) gera uma translacdo por uma quantidade —y quando

agindo a direita,

e*yazf(a:) =flz—y), (4.25)

que pode ser facilmente demonstrado expandindo-se a exponencial e tomando a expansao de Taylor de uma

funcdo. Desta maneira obtemos uma expressao mais familiar para a fungcao de Wigner,

d3 , 1 1
W(x,p) = / ﬁ /Myl (z + §y)¢($ - 53/) - (4.26)

A equacao de transporte a ser satisfeita por W deve seguir da equacdo de Schrodinger (4.22). Vamos
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comegar calculando a quantidade p'- VW. Ela é dada por

5 3 , i
7 IW(p) = m | (;T—hy)/( —ot 5[V D) V- %)])w(x + 3= 3)

3 .
=m / (2(;,2’)3 e”’p/h( — 0+ (VT eWz”)V(a:))w*(x + 2 2)

= m( — O+ %sin (;ﬁz : 6p)V(l‘)> W (z,p) (4.27)

onde V, age somente em V' (z) e ﬁp age em W. Para obter esta expressdo note que, dentro da integral,

fizemos p — ihﬁy apds uma integragdo por partes. Depois escrevemos
> o _ 1o 2
Vy Vg = §(vz+y/2 — foy/2) , (4.28)

e usamos a equagio de Schrodinger (4.22) para substituir V2. Na segunda linha usamos o operador de
translagdo (4.25), e para obter a ultima linha trocamos y — —ihV,, de forma que a exponencial pode ser

colocada fora da integrac@o. Desta forma, obtemos a equacao de transporte nio-relativistica para W,

S S S 2 he o S
(m@t +p-V, =V, V- Vp>W(x,p) = <ﬁ sin (§V$ . Vp) AV Vp> V(z)W (x,p)
1 o= =
~ —ﬂfﬂ(vx V)2V (2)W (z,p), (4.29)

onde usamos a expansao da funcdo seno (C.9) na dltima linha para ficar mais claro o resultado. Em primeiro
lugar note que esta expressdo é exatamente andloga a (4.19). No limite 2 — 0 obtemos a equago classica
de Vlasov com F' = —V'V. Esta é, portanto, a equacio de transporte que fornece as correcdes quanticas
(proporcionais a &) a fungdo distribui¢do de Wigner. O lado esquerdo € independente de 7, enquanto que
o lado direito depende do “acoplamento” quantico 4. Podemos entdo obter ordem a ordem as correcdes a

W, e com isto calcular correcdes quanticas a sistemas classicos.

4.2.2 Operador de Wigner relativistico

Para trabalharmos com a teoria de campos relativistica e sermos capazes de passar de uma descricdo de
uma dnica particula para uma teoria de muitos corpos, precisamos fazer a segunda quantizacio na fungao
de Wigner e escrevé-la como um operador W. Para isto basta trocar 1 (x) pelo operador de campo de
Heisenberg &(x) Uma média apropriada de W ird corresponder a densidade no espago de fases cléassico.
O operador de Wigner relativistico W ¢é definido como

. Aty ns 1o 1
Wiaw) = [ AR LG IR (4.30)
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e a equacgao de transporte deve ser obtida usando-se as equacdes satisfeitas pelos campos 1[)(3:), e isto vai
depender de a particula ser um béson ou um férmion.
4.2.3 Operador de Wigner para férmions

Vamos brevemente apresentar aqui o operador de Wigner para o caso de particulas de spin %, quarks

por exemplo, representadas por um espinor de quatro componentes (), que satisfaz a equagao de Dirac
(ihy" D, (z) — me)g(x) = 0. (4.31)
D,, € a derivada covariante, quando agindo em um operador de campo fermidnico tem a forma

0 ig
D) = 5 — 22 A4, (@), (4.32)

e quando agindo em um operador de campo de gauge tem a forma

5
Dulw) = 5 %[Au(x), ]. (4.33)

Queremos discutir a covariancia de gauge do operador de Wigner. E imediato supormos que o operador

tenha a forma

. dy e 1 . 1
W) = [ G e™/ e+ 5) © G - 50

_ dly iyp/h o 3y-0 ), —5Y-0a),
= [ Gare et i@ o e i)
onde o produto tensorial @ implica que W ¢é uma matriz 4 x 4 nos indices espinoriais e 1) = 1140,
Mas esta definicdo ainda ndo estd correta, pelo menos para uma teoria de gauge sabemos que ela nao se
transforma covariantemente. Podemos encontrar uma definicdo que seja covariante por transformagdes de
gauge se fizermos a substituicdo da derivada usual pela derivada covariante (4.32), de maneira que obtemos

o operador de Wigner para particulas de spin %,

A~ d4y . 1 t 2 1 N
— iyp/h o5y D (z) -3y D(z) ) 4.34
Wz, p) /(%h)ﬁ e? Y(r) @ e 2 Y(x) (4.34)
Por uma transformagdo de gauge local, S(z) = exp if,(x)tq, temos (x) — S(x)d(z) e DF —

S DS, e o operador de Wigner se transforma covariantemente
W (x,p) = S(z)W (z,p)S™ (x). (4.35)

O procedimento para se obter a equagdo de transporte correspondente é o mesmo adotado no exem-

plo da equacdo de Schrodinger. Calcula-se a quantidade p* D, (x)W (x,p), que é o andlogo relativistico

quadridimensional de p'- VW, e em algum momento usa-se a equagdo de Dirac (4.31). Os detalhes s@o
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complicados e o cdlculo exato bastante trabalhoso. Vamos apenas apresentar o resultado para a ordem
dominante, a fim de ilustrar a forma da equagdo de transporte. Para o leitor interessado sugerimos a re-
feréncia [58], onde a equagdo completa estd feita em detalhes, inclusive com a adicdo de efeitos de spin. A

expressdo que se obtém para ordem dominante da equacgao de transporte para W no caso de férmions é

1
p“Du(az)W(x,p) = —2%])“8;/0 ds{ [e_SAFW(m)]W(:B,p) + W(:U,p) [eSAFW(:B)]}

viiney [ ass{ [ @] DHOW (2.0) = D (0) [ Futo)] |
(4.36)

onde A = 1ing, - D(z).

4.2.4 Operador de Wigner para campos de gauge

Para campos de gauge que se transformam covariantemente pelo grupo de gauge SU(N), o tensor de

campo que representa a particula € dado por F),,, = Fjj,t,, onde

Fo, = 0,A% — 9,A% + % FaneALAS (4.37)
e tq sdo os geradores do grupo SU(N) que satisfazem
[ta ,to] = ihfapete - (4.38)
e a equacdo de movimento para o campo é
Dy(@)F* (z) = [Dy(), P (@)] = ~ " (w). (4.39)

Em analogia com o operador de Wigner definido para férmions anteriormente, o correspondente ope-
rador de Wigner para campos de gauge ndo-abelianos (glions por exemplo) em termos dos operadores de

campo F'*(x) é

. d4 .
Ly (2, p) = / ﬁ e_lyp/h[e%y'D(x)F/f‘(x)] ® [e ¥ PPy (2)], (4.40)

e o produto tensorial aqui significa que I' € uma matriz N x N nos indices de cor. Usando o andlogo

covariante do operador de translagdo (4.25) agindo em um operador O(z),

e v P@O(2) = Uz, 2 — y)O(x — y)U(z — y, ), (4.41)
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obtemos uma forma mais conveniente para o operador de Wigner (4.40),

4

. d .
Ly (2,p) = / ﬁe‘””’/hU(m,xg)F,i(m)U(xg,x)®U(x,x1>FAu<m1)U(m1,m), (4.42)

ondex; =z — ¥

_ y
9, T2 = T + 5 € o operador

U(a,b) = Pexp <% /a dz“AM(z)> (4.43)
b

€ o chamado “operador de link”. Aqui, P indica um ordenamento do caminho de integracao entre os pontos

a e b, que deve ser tomado com sendo uma linha reta
z(s) =a+s(b—a), 0<s<1 (4.44)

para que a propriedade (4.41) seja satisfeita.
A equacgdo de transporte satisfeita pela funcdo distribuicdo de Wigner para este caso €, em ordem
dominante

1
r 9 oar —s - - s
b D($)ij(l‘,p) = 72_Cp ap A ds |:( € Afaf)ruu + F/W( € Afar):|

. 1
tg T —s ot o1 s
+4—0h6p A dss |:(e AfTo—)D F/ﬂ, - D F“y(e A.FTO—>:|

—% [(eAFH,\)fﬁ - fﬁ(eA}}y)] , (4.45)
onde A = %ih(‘)p - D(x). Os detalhes desta dedugdo podem ser encontrados em [59].
A conexdo com observaveis fisicos do campo de gauge pode ser feito por meio da defini¢cdo do tensor

de energia-momento em termos da funcdo de Wigner, ele é dado por

N N 1 N
Tw(x) =Tr /d4p [Fﬂy(:p,p) — Znuyf‘ﬁ(w,p)} , (4.46)

onde o trago se refere aos indices de cor.

Da mesma forma que no caso quantico anterior, as equagdes de transporte (4.36) para quarks e (4.45)
para glions devem ser resolvidas ordem a ordem no acoplamento g. Note que elas sdo explicitamente de
ordem g do lado direito, enquanto que o lado esquerdo contém um termo independente do acoplamento, o
que permite um tratamento recursivo. O procedimento ficard mais claro no préximo capitulo, onde vamos
considerar o caso da NCQED.

Mais recentemente tem havido grande interesse no estudo de solu¢des das equagdes de transporte para
quarks e glios apresentadas aqui, com aplicacdes diversas. Citamos os trabalhos de Litim, Manuel e
Mrowczynski [61, 62] com estudos de plasmas quentes fracamente acoplados da QCD e acdo efetiva,

supercondutividade em quarks ndo-massivos e sistemas densos de quarks. Prozorkevich, Smolyansky e

91



Ilyin [63] estudaram a criac@o de um plasma de quarks-antiquarks pela acdo de campos intensos de glions
quase-cléssicos, usando o formalismo de Wigner. Elze [64] estudou o comportamento dindmico de po-
eira relativistica quantica resolvendo equacdes de transporte quanticas com condi¢des iniciais arbitrarias.
Muitos outros trabalhos podem ser encontrados atualmente aplicando as equagdes de transporte a sistemas

antes descritos apenas pela teoria de campos tradicional.
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Capitulo 5

Equacoes de Transporte na QED

Nao-Comutativa

Agora ja temos tudo que precisamos para comecar a fazer cdlculos da QED nao-comutativa usando
ferramentas da teoria de transporte.

Conforme discutido no capitulo anterior, as equacdes de transporte se mostraram muito uteis para des-
crever o comportamento de plasmas da QCD no regime de altas temperaturas, ou limite HTL como vamos
chamar aqui vdrias vezes por simplicidade de notacdo, que € o limite definido pela relacdo p << k ~ T,
onde p representa um momento externo caracteristico, £ denota 0 momento interno ao loop do diagrama e T’
representa a temperatura do plasma. Neste limite sabemos que as amplitudes, ou fun¢des de n-pontos, em
1-loop apresentam um comportamento dominante proporcional a 7' e sio todas independentes de gauge.
No entanto, para levar em conta corretamente todos os termos dominantes que ddo contribui¢do do tipo
T? e que sejam invariantes de gauge, é necessério realizar um processo de “ressomagio” das contribuicdes
a altas temperaturas. Na QCD convencional este procedimento € tecnicamente complicado, € um método
alternativo mais simples significaria um avanco consideravel. Este método existe, é o método das equacdes
de transportes cldssicas, que fornecem resultados mais transparentes e mais diretos, pelo menos no limite
HTL. Isto nos leva a perguntar se os mesmos métodos podem ser aplicados 2 QED ndo-comutativa, ja que
ela tem a mesma estrutura da QCD. A resposta ndo € 6bvia, pois embora os resultados para os termos
dominantes sejam corretos quando aplicados a QCD, sabemos que para os termos subdominantes isto ndo
acontece. Talvez isto seja reflexo do fato de os termos subdominantes serem dependentes de gauge, e as
equacdes de transportes serem manifestamente covariantes por transformacoes de gauge.

O comportamento de plasmas quentes em uma teoria ndo-comutativa tem suas peculiaridades, con-
forme descrito no capitulo 3. Vimos que, devido a presenca do pardmetro de ndo-comutatividade, a
aproximacdo de altas temperaturas tem duas regides distintas onde os cdlculos podem ser feitos analiti-
camente, que sdo as regides m0pT >> 1 e mOpT << 1, conforme discutido no final da se¢do 3.2.1. Vimos
14 que a auto-energia do féton na regidio mApT >> 1 é simplesmente proporcional a 72, nio havendo
nenhuma dependéncia com o parametro de ndo-comutatividade, ou seja, o plasma se comporta como sendo

livre de auto-interagdes. Ja no limite 70pT << 1 o comportamento dominante é proporcional a 8, da
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forma T2 (mfpT)?, ou seja, o fator T2 é suprimido pelo fator entre parénteses. Mesmo para uma teoria
ndo-abeliana, como a teoria de Yang-Mills, definida no espago ndo-comutativo, este comportamento se
repete, e isso foi extensivamente estudado por Frenkel e colaboradores [46] no formalismo tradicional de
diagramas de Feynman. O que vamos mostrar aqui € que estes resultados podem ser obtidos pelo método
das equagdes de transporte, e mostrar que ha concordancia com os resultados obtidos no capitulo 3. Na pri-
meira se¢do vamos apresentar a formulagdo cldssica do problema, e discutir porque um tratamento quantico
¢ necessério na discussdo de campos de gauge (ou fétons). Este tratamento quantico € apresentado na se-
gunda secdo, onde € derivada uma equacdo de transporte apropriada para o caso dos fétons. Algumas
dificuldades ainda persistem devido a ndo-comutatividade da teoria, e a solugdo € discutida na terceira
secdo, junto com uma equagdo de transporte simplificada que fornece corretamente os termos dominantes

que estamos interessados.

5.1 Tratamento classico

A idéia principal aqui é imaginar que as particulas do sistema s@o particulas cldssicas que estdo imersas
em um banho térmico, formando um plasma quente cuja dindmica é governada pelas equacgdes de trans-
porte classicas. Isto vale também para as particulas movendo-se em um loop interno, que embora sejam
particulas puramente quanticas, aqui elas serao tratadas como particulas cldssicas cujas equacdes dindmicas
sdo aquelas de uma particula na presenca de um campo eletromagnético de fundo.

Sejam as equacdes de movimento cldssicas de uma particula sujeita a um campo eletromagnético dadas

por
dz#
hdip— W7
mn dr
m
m% = eF* 5.D

onde T se refere ao tempo préprio da particula e F'* representa a forga que ela sente na presenca de um
campo eletromagnético. A forma explicita de F'* ird depender de ela ser carregada ou neutra, e os dois

casos serdo analisados separadamente. Em geral, a forma de F'# deve ser tal que

k= k'k, = m®

Flk, =0 (5.2)

a primeira condi¢do indicando que a particula deve estar na camada de massa e a segunda que a forca € per-
pendicular ao seu movimento. Além disso a evolucdo temporal de k* deve se transformar covariantemente
por uma transformacao de gauge. Para um elétron por exemplo na presenca de um campo eletromagnético

usual, a forma explicita para a forca é

Ft =F*E, . (5.3)
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Portanto, dadas as equagdes de movimento (5.1), podemos derivar a equagdo de transporte para a fungcao
distribuicdo f(x, k) em analogia ao que foi feito no caso cldssico da se¢do 4.1.
Assumindo por enquanto a natureza covariante da fungao distribuicdo, o andlogo da equagdo de trans-
porte (4.18) serd da seguinte forma:
D, f(x,k)=C (5.4)

onde D, é a derivada covariante ao longo da trajetéria da particula e C, em geral, é um termo de colisdo,

em total analogia com (4.18). A forma explicita de D, €, no caso ndo-comutativo,

. daxH

d
D= — —je—
dr e dr

[Aus B, (5.5)

e usando as equagdes de movimento (5.1) e a relacdo

df  of dat  Of dkr

dr ~ Ban dr | Okn dr 60
podemos escrever a equagdo de transporte (5.4) para f(x, k) como
of
k“D“f(x,k)—l—eF“*akH =mC. (5.7)

Esta é uma generalizacdo natural para uma teoria ndo-comutativa da equacao de transporte para a funcao
distribuicdo f. Note que no limite comutativo usual a eletrodindmica de Maxwell é recuperada e a equacdo
de transporte para o caso de um plasma na auséncia de termos de colisdo se reduz, como esperado, a
equacdo de Vlasov (4.20).

Em analogia com (4.7), vamos definir a corrente associada a particula por

Jul@)=e> /dK kuf (k) (5.8)

onde o sinal de somatdrio se refere a soma sobre as helicidades no caso de férmions e também sobre
diferentes espécies de particulas se for o caso. A fung¢ao distribui¢do é representada por f(x, k) e a medida
de integracdo € definida como y

dK = % 20(ko) 6(k* — m?), (5.9)
onde a fung¢do (ko) garante que a particula tem energia positiva e a fungdo § garante que ela estd na camada
de massa. Note que em relacio a (4.7) estamos adotando ¢ = 1 e o fator 1/(27)? foi introduzido apenas por
simplicidade nos cdlculos posteriores. Como veremos adiante esta corrente se conserva covariantemente

como conseqiiéncia do fato de que ela pertence a representacdo adjunta do grupo de gauge U(1),
Dyj* = 0uj" —ie[Au, " lyg =0, (5.10)

de maneira que a funcdo distribuicao também deve se transformar covariantemente. Mas a forma (5.7) para

a equacdo de transporte é valida apenas no limite m6pT >> 1, onde a for¢a que age no sistema é dada
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efetivamente por (5.3) e o termo de colisdo C é nulo. E somente neste limite que a conservagio da corrente
(5.10) € identicamente satisfeita.

Estamos interessados aqui no caso em que o parametro 6 possa assumir qualquer valor, de maneira que
um termo de colisdo deve estar presente, mesmo na ordem mais baixa dos calculos. Isto se deve ao fato de
a teoria ndo-comutativa ser auto-interagente, entdo devemos ter uma forma mais complicada para a forga
na equacdo de movimento (5.1), de maneira a levar em conta a ndo-comutatividade. Isso deve dar origem

inevitavelmente a um termo de colisdo. Baseado nisso, € f4cil verificar que um termo de colisao do tipo

e OFH

leva corretamente a conservagdo da corrente (5.10). Antes de demonstrarmos isto, note que a equagdo de

transporte (5.7) com este termo de colisdo pode finalmente ser escrita como

d(eFH x f(x,k))
KAD, f (2, k) + o ~0. (5.12)

A conservacdo da corrente pode ser demonstrada como segue. Aplicando a derivada covariante a

corrente e usando a equacao de transporte (5.12) obtemos

DHj, = eZ/deuD“f(a;k)

4 * T
-y %29(14:0)5(16‘2 ) 2T )

A4k /
=) / (27)? 20 (ko) 2k, F* * f(x, k)8 (k* — m?)
=0 (5.13)

onde na pentiltima igualdade fizemos uma integracéo por partes e ¢’ significa a derivada da fung¢do § com
relacdo ao seu argumento. Na dltima linha usamos a condi¢do (5.2) que a for¢a deve satisfazer.
Para continuarmos os cdlculos devemos agora supor uma forma explicita para a for¢a agindo na particula.

Isto vai depender dela ser carregada (elétrons) ou neutra (f6tons).

5.1.1 Particulas carregadas - elétrons

Para particulas carregadas, como o elétron por exemplo, a forma usual de se escrever a equagdo de

forca em termos do tensor eletromagnético F'* é
FH = F*E, (5.14)

de maneira que obtemos C = 0 da equagéo (5.11), pois F}; = 0, o que significa que estamos falando de um
plasma livre de colisdes. No entanto, se a forca tiver uma dependéncia um pouco mais complicada em k*,
como parece ser o caso quando tratamos da QED nao-comutativa, haverd inevitavelmente uma contribui¢do

devida ao termo de colisdo, e esta contribuicdo deve estar presente se quisermos tratar de maneira correta
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um plasma nao-comutativo a altas temperaturas. De fato, como sabemos, a teoria ndo-comutativa tem uma
estrutura caracteristica de dipolos, de maneira que é natural generalizar a expressdo da forca para incluir

além do termo (5.14), um termo de dipolo. A proposta dos autores! foi entdo uma forca da forma
Ft = (1+4sink xiD) F*k, (5.15)

onde k X iD = ikjej !D;. O primeiro termo é a forca de Lorentz usual para uma particula pontual carre-
gada. O segundo termo pode ser pensado como uma interagao de dipolo, sendo uma generalizacao natural,
considerando-se que particulas ndo-comutativas apresentam uma caracteristica de dipolos. Além do mais,
este termo se anula quando #*¥ — 0, reduzindo naturalmente a teoria convencional para uma particula
carregada. A presenga deste termo de dipolo dard uma contribui¢@o néo-trivial vinda de C, mas ja sabemos
dos resultados do capitulo 3 que uma contribui¢@o deste tipo ndo estd presente nas amplitudes em ordem
dominante a altas temperaturas. Portanto, no limite que estamos interessados, é suficiente tomar apenas o

primeiro termo da for¢a, de maneira que a equacgdo de transporte que temos de resolver é da forma

O(eky, FHM % f(z,k))

BT =0 (5.16)

‘D, f(x, k) +
onde, no limite HTL, temos efetivamente,
Pt =F"Ek, (5.17)

e vemos que a equagdo (5.16) tem a forma parecida com a da equacdo de transporte para a QED usual,
sendo a Unica diferenca o produto Moyal que leva em conta a ndo-comutatividade espacial.

Vamos entdo demonstrar brevemente que a equacao de transporte acima € a correta para obtermos as
amplitudes de n-pontos em 1-loop no limite de altas temperaturas. Em primeiro lugar escrevemos a fun¢ao

distribuicao expandida em poténcias do acoplamento e,
Fla, k) = fO@@, k) + efO(x, k) + 2 f P (a, k) + - - (5.18)

onde s6 conhecemos f(9), dado pela funcdo distribuicdo de Fermi-Dirac,

1

(0) ~ -
P, k) ~ (ko) = S

(5.19)

Entdo substituimos a funcdo distribuicdo expandida na equacdo de transporte (5.16), e obtemos para
FO (k)
0

k-8fM(z, k) = o

((k C0A, — Ok - A) % fO(z, k)> . (5.20)

Escrevemos f()(x, k) e A*(z) como transformadas de Fourier,

fO (2, k) = / d*pfW (p, k) e'?e (5.21)

"Frenkel, Das e Brandt, conforme eq. (29) da ref. [68].
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AH(z) = / d*pAr(p) e ® (5.22)

substituimos em (5.20) e obtemos (V) (p, k),

1 0

W) k) = ——
fHp, k) T

((k - pAy(p) — puk - Ap)) f<0>> . (5.23)

Note que f(©) ndo depende de z, por isso ndo é mais necessério usar o produto Moyal. Usando a expanso

(5.18) para f, a corrente fica

Julz) =e Z / ((2147];329(14:0)5@2 _ mQ)k“ {f(o) (x, k) + ef(l)(:r, k) + le(Z) (k) +---
(5.24)

de maneira que, calculando cada termo de f por meio da equagdo de transporte, a corrente fica comple-
tamente determinada também ordem a ordem no pardmetro e. Por exemplo, a corrente em ordem e?, que

daré contribuicdo para a amplitude de 2-pontos, é dada em termos de f(!) por

) d*k
i) =e*dy / er(ko)a(zﬂ —m2)k, O (x, k). (5.25)
Escrevemos entdo a corrente como transformada de Fourier
i (x) = / d*pj{? (p) e®* (5.26)

de maneira que, usando (5.21) e (5.23) obtemos

4
Po=ey | %29(%)5(/{2 ) " <(k A (p) = pok- A<p>)f<°)> .

(5.27)
Integrando por partes obtemos
. a4k 8 [k
i (p) = —622/W29(ko)5(k2 -m) g [ﬁ} (k- pAu(p) — puk - A(p)) f©
a4k ) p k
== S [ a0 — ) o)~ P )~ - 4G
+(k]f*]”g)2p2k‘f1(p)]f(0), (5.28)

onde f(%) & dado por (5.19). No limite de altas temperaturas podemos desprezar a massa da particula, e a
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medida de integracdo fica

d*k Bk 1
er(ko)a(/#) = @n? T

(5.29)

A somatdria é sobre os spins, (2s + 1), portanto fornece um fator 2. Desta forma a fun¢do de 2-pontos para

o loop fermidnico pode ser determinada por meio de

H(fermion) (p) — 5]M(p) — 53/(?) (p)
w SAY(=p)|4,—g GA”(-P)
8 e? d3k —»[ puky + kup kK, p?
= —— —= N k v Sk e i :| ) (530)
e ) g D e T ) e

que é exatamente o mesmo resultado obtido em (3.68) no capitulo 3, pelo método da amplitude de espa-
lhamento frontal.

Como demonstramos acima, a equacgdo de transporte (5.16) fornece corretamente a primeira corre¢ao
a fungdo distribuicio f(©) no equilibrio. Com ela a corrente até ordem e? pode ser calculada e a fungio
de 2-pontos fica completamente determinada para um loop fermidnico no limite de altas temperaturas. Da
mesma forma, utilizando a equagdo de transporte (5.16), podemos determinar a corregdo f @) 3 funcdo

3

distribuicdo e por meio dela determinar a corrente até ordem e e assim obter a fung¢do de 3-pontos, con-

forme demonstrado em [68].

5.1.2 Particulas neutras - fotons

Vamos agora tratar do caso de particulas neutras, como o féton por exemplo, que como vimos no
capitulo 3 tem sua auto-energia modificada devido exclusivamente a ndo-comutatividade das coordenadas.
O caso das equagdes de transporte para particulas neutras € muito mais interessante, pois como sabemos,
uma particula neutra usual ndo sofre nenhum tipo de forca eletromagnética. Mas no caso ndo-comutativo
ndo € bem assim por causa da estrutura “estendida” das particulas devido a ndo-comutatividade. Desta
forma, mesmo uma particula neutra pode ter uma natureza do tipo dipolo, e assim sentir alguma forca de-
vido a algum campo eletromagnético externo. Mas também sabemos que, como visto na secd@o anterior, a
natureza dipolar devido ao pardmetro de ndo-comutatividade 6 ndo esta presente no célculo de termos do-
minantes. Entdo, ja que a estrutura de dipolo ndo d4 qualquer contribui¢cao na ordem dominante, podemos
pensar que uma estrutura do tipo quadrupolo possa dar alguma contribui¢do. De fato € isto que acontece.
A forma da forga para o caso de particulas neutras proposta pelos mesmos autores da discussdo anterior se

reduz 4 uma interaco do tipo quadrupolo no limite de baixos momentos. Ela é dada por?

. 1 )
Xl cutra) = 2{1 — cosk x <1D+e [ﬁ F, ]MB)} Fk, (5.31)

2Ver eq. (38) da ref. [68].
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Vemos que no limite § — 0 a for¢a se anula, como deve ser para uma particula neutra. Substituindo esta
for¢a na equacdo de transporte (5.12) e usando os mesmos passos da secdo anterior, obtemos a corre¢ao

M a funcao distribuicdo, dada por

FO = %% (0= cosk x i0)(k- 94, — 0k - 4)fO (2. b)) (5.32)
’ [z

Q

onde agora
1

0 _
FO (@, k) ~ np(ko) = T 1

(5.33)

é a funcio distribuicio de Bose-Einstein. Com isto calculamos a corrente em ordem e? e finalmente a

funcdo de 2-pontos, ou auto-energia do féton, dada por

H(gauge) (p) _ 6]# (p)

214 v(_
§AY(—p) A=0
4e? [ B3k - puky + kupy | kukup?
= — — np(|k))(1 = cosp x k) [nu, — £ = " .

(5.34)

Os célculos sdo exatamente semelhantes ao do caso anterior, a tnica diferenga sendo a presenca do fator tri-
gonométrico que caracteriza a ndo-comutatividade. Este resultado é o mesmo obtido em (3.65) no capitulo
3. Da mesma forma, pode-se obter a correcao f @ 3 funcdo distribui¢do, e com ela a fung¢do de 3-pontos
no limite de altas temperaturas. Isto estd feito em [68], demonstrando que a equagdo de transporte para
uma particula neutra esta de fato correta, assim como a forma da for¢a (5.31) para uma particula neutra na
NCQED.

Olhando para a equagdo de transporte (5.12), vemos que, para o caso da for¢a (5.31), ela pode ser

escrita como
(X x f(x, k))

KD, f(x, k) = —e (5.35)

Okt ’
e a forga é, em primeira aproximacao, dada por
Xlreutray = 2[1 — cosk x i0] F*F, . (5.36)

5.2 Tratamento quantico - O operador de Wigner para os fétons

Na dificuldade em se justificar a forma explicita para a forca que age em uma particula neutra com o
tratamento cldssico da se¢do anterior, os autores procuraram por uma nova formulagdo para o problema,
seguindo o método quantico apresentado no capitulo anterior, que diz respeito ao método de Wigner de
se formular as equagdes de transporte. O objetivo € formular a fungdo distribuicdo quantica do problema,
que ¢é a funcdo de Wigner, cuja equacdo de evolucdo segue diretamente das equacdes satisfeitas pelos
campos correspondentes. Portanto ndo é necessario conhecer a forma da forca que age na particula, como

acontece no tratamento cldssico. No entanto, no caso de campos auto-interagentes, como € o caso da QED
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ndo-comutativa, devemos tomar cuidado com duas coisas. A primeira € que a funcdo de Wigner deve ser
formulada de uma maneira covariante de gauge, e a segunda é que devemos usar aproximagcodes de campo
médio apropriadas para extrair o contetdo fisico do sistema.

Apresentaremos aqui brevemente as principais idéias para se chegar a uma equacgdo de transporte con-
veniente para a NCQED. Estes resultados foram apresentados por Frenkel, Brandt e Das em [69], em
estreita analogia com a formulacdo apresentada na secdo 4.2.4 para campos de gauge ndo-abelianos. Os
célculos explicitos das amplitudes de 2 e 3-pontos serdo feitos na se¢io seguinte, utilizando-se uma forma
mais simples para a equagao de transporte que a apresentada aqui, derivada posteriormente.

Ja que o campo para o féton ndo-comutativo apresenta a mesma estrutura auto-interagente dos glions
da QCD usual, define-se, para os fétons nio-comutativos, um operador de Wigner® covariante de gauge

andlogo a (4.42),

d? i _
W (2, k) = / : %;;)4 e~k GO (1) % GAO) (a) (537)
onde definimos também
GE(2) = Uz, vy) * Fu(ws) x U(zs, ) (5.38)

e U representa o operador de /ink para a teoria ndo-comutativa, definido ao longo de uma trajetdria retilinea,

e [Ldt L A(z£(1-1)Y)

Uz, 2s) = Ple] ™ ) (5.39)

e P indica ordenamento da esquerda para a direita, e pode-se checar que por uma transformacao de gauge

do tipo (2.55) o operador de link (5.39) se transforma covariantemente,
Uz,zs) — QN (2) « Uz, z4) * Qzs) . (5.40)
Note que, com o operador de /ink definido desta maneira, podemos também escrever
G (@) = (7 () (5.41)
onde a derivada covariante deve ser definida na representacdo adjunta. Também € fécil checar que

Wi, (x, k) = Wyu(z, k). (5.42)

A derivacdo da equagdo de transporte para a funcdo de Wigner (5.37) se faz da seguinte maneira.
Precisamos calcular a quantidade k - D W, (z, k), e para isto precisaremos das relagdes abaixo:
ie

DU (z,21) = 0PU (v, 21) — 2 (Au(2) x U, 02) — Ulw, 22) * Ay (1))

ie 1 +
=F—1Y dt | ey
:Fthy </0 <e

3Por simplicidade de notago, vamos omitir o simbolo operatorial daqui para frente, de forma que W — W, etc.

I

PBule) )« Ulaas)
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" - e
DL WU (xy,x) = 6( WU (s, x) — = (Ap(zs) xU(z4,2) — U(zs, z) * Ay(x))

1 ty
— 1l yU(zs, ) * (/ dt (efz'DFW(x)» (5.43)
2hc 0

DPGH (@) = (DPU(r,32)) * Fu(ws) * Ulwe, )
+U (2, 22) * (DS Fp (22)) * U (22, 2)
+U(z,24) % Flp(xs) * (DéI)U($i, :B))

Com isto pode-se mostrar que a fungdo de Wigner na QED ndo-comutativa deve satisfazer a seguinte

equacdo de transporte:

k- DW,,(z,k) =

L0 [( ””8 DF,W(@)) W Wy % ( / Lar (e* m;a’“'Dchf(w)))
- [ ks i) < [ it (e 7Bt + <e:?‘DFpo<x>)D *G%—)(x)]

4 )
+kp/ (2d 5)4 e Yk [U(x,x+) * (D,(J“)FNA)(M) *U(2g,z)» GN)(2)
s

+ Gf:;) (2) *U(x,z_)* (fo—)F;}) (x_)*U(z_, :c)} (5.44)

onde Jj, representa a derivada com relacio a k. Esta equag@o representa a equagdo de transporte completa
para a fungdo de Wigner dos fétons da QED ndo-comutativa e sua soluc@o geral é muito dificil de ser
obtida. No entanto, como estamos interessados apenas no limite de altas temperaturas, ou limite HTL,

pode-se mostrar que neste limite a equagao de transporte assume a forma mais simples,

)
k- DW,, (2, k) = 26(; T {Fpg(:z:)*WW(:z:,k)—i—WW(x,k)*Fpg(a:)
d'y i) N
_Q/We G (@) % Fyo(a) « G (33)] (5.45)

conforme discutido em [69].
Sendo a QED ndo-comutativa uma teoria auto-interagente devemos, da mesma forma que na QCD, se-
parar os campos em uma parte quantica a,,, € outra parte em campo de fundo flu, fazendo uma decomposi¢ao

da forma
Au(z) = Ay(z) + ay() (5.46)

onde
d3k —ik-x ik-x
@) =3 [ g @ (7 wal ). (547

€ a solugdo de ondas planas para o campo de gauge quantico. Assumimos que na aproximagao de campo
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médio valem as relacdes
(Au(x)) = Au@),  (au(z)) =0 (5.48)

de maneira que por uma transformacio de gauge os campos se transformam como

Ay(x) — Q Ha)x Ay(z) % Qz) + ? Q1 (x) % 9,0(x), (5.49a)
au(r) — Q71 (2) % au(z) * Qz). (5.49b)
Além disto, nesta decomposicao temos
_ _ _ e
Fu(xz) = Fu(x) + Dyay(x) — Dyay(x) — e la,(x), av(2)]yp (5.50)
onde
_ e - -
Dya, = d,a, — e (A a) g (5.51a)
_ _ _ e - - -
Fuy = 0pAy = 0,4, — o [Au, Ay - (5.51b)
Definindo entdo
Gu(z, k) = (Wy(z, k) — WW(Q:, k) (5.52)

onde Wuy(x, k) representa a fungio de Wigner associada com o campo de fundo A*, podemos escrever a

equacdo de transporte para G, (x, k) na aproximagdo de altas temperaturas como

_ o _ _
k-DGu(x, k) = Q%a—kakp{Fpg(x) * G (x, k) + G (2, k) * Fpo ()
dty i, _ _ . _ .
—Q/We nyk[<G$)(m’)*FpU(w)*G’\V( )(:c)> — (G (@) % Fpo(2) x G >(x))] }
(5.53)
Se definirmos entdo a quantidade
1
Fla k) = 25 1" Gu (2, k), (5.54)
ela deve satisfazer a seguinte equacao:
_ e 0 - _
k-DF,(z, k)= %8—1@,1{: Foo(2) * Fuu(x, k) + Fuu(x, k) * Fpp ()

4 )
) / (2(1473;)4 e—%y"% [<G,‘$) (&) % Fpa (@) % GA) (@) = (GL3) (@) % Fpo () » GAV(‘)@))] } ’

(5.59)

que é manifestamente covariante por transformacdes de gauge e pode ser resolvida ordem a ordem no
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parametro e para dar o valor médio da fun¢do de Wigner. Se definirmos a corrente como

ue) = 5 [ 4RO T Gue )~ Gt )
=< / Ak O(KO) ki (F(, k) — F(a, —k)) (5.56)

¢ facil verificar que esta corrente se transforma corretamente por uma transformagao de gauge e é covari-

antemente conservada
Dy J"(z) = 9, J" — %[Zx# s =0. (5.57)

Da mesma forma que no tratamento da equacao de Schrédinger da secdo 4.2.1, podemos ver que o lado
direito j4 é explicitamente de ordem e, enquanto que o lado esquerdo contém um termo independente, de
forma que F pode ser obtida ordem a ordem no parametro e, e entdo a corrente (5.56) também pode ser
obtida ordem a ordem, e as funcdes de n-pontos podem ser determinadas por meio de

0"t J# (—p1)

THLIM2: Pn cee n) = 7 A . -
(p17 P ) 614/12 (pQ) cee 6Ap,n (p’fL) A=0 ( )

A equacdo de transporte (5.55) € o principal resultado. Junto com a corrente (5.56) podemos obter todas
as fungdes de n-pontos da mesma forma que no caso classico anterior. Nao faremos esta demonstracao aqui
porque queremos ainda ir um pouco além e apresentar uma forma mais simples para funcdo de Wigner e
para a equacdo de transporte, com a qual calcularemos as fun¢des de n-pontos. Vamos terminar dizendo
0 que nos motivou a procurar uma forma mais simples para a funcdo de Wigner. Em primeiro lugar note
que a definicdo (5.54) é singular, pois a principio k> = 0 deve estar na camada de massa. Este termo
vai se cancelar apenas posteriormente, quando aparecer no numerador um termo proporcional a k2, mas
até entdo ela ndo faz muito sentido. Outra coisa que se percebeu depois é que para obter corretamente as
contribuicdes para as amplitudes de 3 e 4-pontos era necessario incluir uma contribui¢do de ordem e vinda
da quantizagdo correta do campo a*(x) dado em (5.47), pois para o caso ndo-comutativo aquela nio é a
expressdo correta, como se percebeu depois. Isto foi chamado de covariantizagdo em [69], pois ainda ndo
estava claro que a solucdo viria desta quantizacdo. Isto foi feito no trabalho posterior, o qual apresentamos

na sessao seguinte.

5.3 Forma simplificada da funcao de Wigner para f6tons

Nesta dltima parte vamos ver em detalhes como uma forma mais simples para a fun¢do de Wigner
leva corretamente as amplitudes de 2 e 3-pontos em 1-loop da QED ndo-comutativa a altas temperaturas.

Devido a algumas dificuldades ja citadas com a formulacdo anterior, propomos a seguinte forma para a
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funcdo de Wigner wy,, (z, k), vélida para a aproximagdo de altas temperaturas, ou aproximagao HTL:

d4y —iy-k _
Wy (2, k) = / @ vk GO (2) % GG)(x), (5.59)
onde
GH(x) = UN (2, 21) % a(21) *UD (24, 2) . (5.60)

com x4+ = = £ & e os operadores de /ink U sdo dados por

UD (g, 24) = PeTisfo ds3-Alx(1-9)%) (5.61)

UD gy, 2) = Petislo dsf-Alatsy) (5.62)

A funcio distribuicdo é dada por
F(z, k) = 0" (wu (2, k), (5.63)

evitando assim o problema do fator 1/k? presente na (5.54). A equagio de transporte a ser satisfeita por

¢ dada simplesmente por

4 . —
b D) = S B n P For b =2 [ e G0 w Fp GO 6

com a derivada covariante Du = 0, — ie[A, Jyp. Resolvendo iterativamente esta equagio para JF

expandido em poténcias da constante de acoplamento e,
F(z, k) = FO>2, k) + eFD (a, k) + FD (2, k) + - - (5.65)
vamos obter uma corrente
Ju(w) = —e/d4k ky[F(z, k) — F(z,—k)] (5.66)
para todas as ordens em e, com a qual calculamos as fun¢des de n-pontos

5n71‘]u1(_p1)
Dosstn (e ) = _ 567
P ) = S ) A )| een

No que segue, vamos calcular explicitamente estes termos.

5.3.1 Calculo de F(z, k)

O primeiro termo da fungio distribui¢do, F(?), que é de ordem “zero” em e, deve ser obtido dire-

tamente da defini¢do (5.63), tomando a fungdo de Wigner w,, (x, k) em ordem “zero” no acoplamento.

(%) (A)

Mas as tnicas contribui¢des de ordem e para w,,, vém de G, * através dos operadores de U'*", que na
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aproximacdo até ordem e sdo dados apenas por

UN(2,22) ~ 1 i—e/ldsg Az £ (1 -9 (5.68)
R 7 2 '
. 1
(4) ~ 26’/ U y
U Nxg,x) ~ lzlzhc ; ds2 A(x:l:sQ) (5.69)

Portanto, em ordem “zero” em e, devemos tomar U(4) ~ 1, de maneira que (%) pode ser escrito como

4
FO(z,k) = " (w© )(a: k)) = / (;17:;4 eV (a(xy) *at(zo)). (5.70)

O célculo de F(©) pode ser feito sem dificuldades. Os detalhes estio no Apéndice F.1. Vamos precisar da

solugdo de ondas planas para o campo quantico a,(z),
d3k A .
§ / 3;143 ape” ke 4 gl e“ﬁ'“") : (5.71)

onde a; = a(ky,s1) e ai = af(k1, s1). Eles possuem “médias térmicas” dadas por*

(arad) = (2m)32k96,,4,8° (k1 — ko) (1 + np(|KY))) (5.72)
(afas) = (2m)*2k00,,5,6% (k1 — ka)np(IK7)) (5.73)

e satisfazem a relacdo de comutacdo usual
[a1,a}] = (2m)32k06,,5,6% (k1 — ko) . (5.74)
O vetor de polarizacdo €| = i (k1, s1) € real e transversal ao vetor de onda k¥, satisfazendo

kil . 61(]4;1, Sl) =0 Z €1M(k1, 51)6’1‘(1451, Sl) =-2. (575)
s1=1,2

Estas sdo as principais propriedades que precisamos para obter

4
(2m)?

FO(a,k) = —o—gnp(k°)O(K)S (k). (5.76)

Tendo sido obtida a expressdo para F(?), vamos agora obter a expressio para F (1), que deve vir dos

termos de ordem e na equacgdo de transporte (5.64) quando substituida nela a expansao (5.65). Obtemos

*Ver pags. 124-125 de [1].
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assim

kM8, — ielA,, up)(FO + FL)

_ 0 | f sk FO L FO L 2/ WY ik () 5 o w0 ()
2 0k, e re (2m)4 pAT re B
(5.77)
onde fpg é a parte de Fpo independente de e, ou seja
foo(z) = 0,A,(z) — 05 A,(z) . (5.78)

Note que o lado esquerdo vai dar apenas uma contribui¢io de ordem e, vinda de k-0F (1), pois —ie[A s F (0)] MB =

0, j4 que F) ndo depende das coordenadas. Desta forma, a equagio de transporte para F(!) é dada por

o _ d4 . _
k-0F D (2, k) = ga—kakp [21‘,,0-?(0) -2 / (27:;4 e (a(x1) * fpo * a“(x)>] :

(5.79)

Precisamos calcular apenas a integral do lado direito, pois F(?) j4 foi calculado. O calculo de F() estd

feito no Apéndice F.2. O resultado que obtemos é:

4e 1

_a%fkp |:nB<‘k0’)9<k0)5<k2)(f_pg(l') — foolz + Hk))] _

FO(a,k) = T 2n)pk-0

(5.80)

O célculo de @), que é de ordem 2, deve vir da seguinte expressio para a equacio de transporte
(5.64)

k(0 —ield, , D(FY + F?)

_ %a%kp [fpa(x) x FO (2, k) + FO (2, k) % foo(2)

—ie[A,(x), Ag(x)]mp * FO —ieF O« [A,(x), Ay ()]MB

_2/ (3754 e WP (G (xy) * (—ie[A,, Aylmp) x G*(z_))

4 . —
9 / ((217;;4 R (G (24) % Foo(@) %GR )| - (5.81)

As contribuicdes da primeira e segunda linhas do lado direito da igualdade sdo explicitamente de ordem
e2, lembrando que F() é de ordem e, e sdo ficeis de serem calculadas, pois F(© ¢ F() j4 estdo deter-
minados. A terceira linha também ¢é fécil de ser calculada, visto que o termo ja é de ordem e?, portanto

G (r+) = a,(x+) nesta ordem, e assim podemos usar diretamente o resultado da integral (F.11), simples-
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mente trocando fpa — —ie[ﬁp , AU]MB, de maneira que obtemos para a integral da terceira linha

4, _ . T i
/ ((21771)/4 e W (ay(ws) x (—ielAy(x) , Ag(w)mp) * @ (z-)) = —ieF O [Ay(w + 0k), Ay (x + Ok)|m
(5.82)

O célculo da contribui¢do vinda da dltima linha é um pouco mais elaborado, mas pode ser feito sem grandes
dificuldades. Note que ela parece ser de ordem e, mas lembre-se que existe ainda uma possivel contribui¢do
de ordem e vinda de G*, e olhando para sua forma em (5.60), esta contribui¢do podera vir tanto dos U (A)g
quanto de a,, que neste caso serd a solugdo quantica covariante, ou seja, a solu¢do de ondas planas que se
transforma covariantemente, conforme discutido no Apéndice G.

Em primeiro lugar note que as possiveis contribui¢des vindas dos U (A)g, quando vistos na forma ex-
pandida (5.69), serdo proporcionais a i, mas visto no espago dos momentos, y corresponde a uma derivacao
com relacdo a0 momento k,

0
Yt — zhﬁ
e portanto dard uma contribui¢do de k£ no denominador, portanto subdominante na aproximagao de altas

temperaturas p << k. As tnicas contribui¢des virdo, portanto, de a,, covariante, dado por

d3k
Z / 321k0 ¢ (aye X 4 gl eibr X) (5.83)
onde X* = zM + ef" A, (x) é a coordenada covariante e A, (x) = A, () + %5 F,o(x)k®. Os detalhes

dos célculos estdo no Apéndice F.3. A expressio final para F(2) é

FO(x, k) = ie ﬁ [k; - A(x), FO(x, k)}MB
4ie? 1 0 2) 0 . _ _ _
~2n)? ma—,{bk%(’f np(|k !){ [A(2), Ag(2)] yyp — [Ap(a +0k), Ag(z + &)y
gt () = A +01). ol + 61y | (584

de maneira que ja podemos calcular as amplitudes de 2 e 3-pontos em 1-loop.

5.3.2 Amplitude de 2-pontos

Para o célculo da amplitude de 2-pontos, precisamos obter a expressdo para a corrente (5.66) até a

ordem e?. Usando a definiciio (5.66), em primeira ordem em e a corrente serd

JV(z) = —e / Yk by [FO (2, k) — FO(2, k)]
=0, (5.85)
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como esperado. Para a ordem seguinte temos

J?(z) = —e / Ak b [FO (2, k) — FO (2, —k)]

m
62
- éw)s / a'h k“ﬁa(z W [”B“’CO’) (K)3(k?)
X [For () = Foor (x + OK) + Foo () — fpo(a — OK)] (5.86)

Escrevendo os campos A,(x) e A,(z + 0k) como transformada de Fourier
Aola) = [ dpdaper,
Az +0k) = / d*pAy(p) P HOM), (5.87)

e substituindo em (5.86), obtemos

62 - -
J) = sy [ At R (RO 20,0 5) ~ 2004, (1)

_pﬂleo (p) e — ppAa (p) e POk 4 Pa/‘_lp(P) ek 4 paf_lp(p) e ipOk

4e? 0 _ _

— (2;)3 /d4k;l<: MOk —kPng(|k°)O(K)o (k) [2(1 — cos(p x k)) (ppAs(p) —pUAp(p)):| ,

(5.88)

Integrando por partes obtemos
2
(2) N 8e 4 0 0 2 . i puku + kupu k kyp v
IP0) = gy [ A (RDOEN)1 — cosp x 1), - PeBe R g G
(5.89)

Com isto, usando a (5.67), obtemos a funcdo de 2-pontos a altas temperaturas

@) _
Huu(p) = w

SAY (p

puku + k',upu kukup2 :|
kop (k- p)?

d*knp(|K°)0(K*)6(k?)(1 — cosp x k) [77#,, -

p,ukv + k’upv + k,ukup2:|

COSPXk)[n“”_ kop (k- p)?

(5.90)

que é exatamente igual ao resultado obtido no capitulo 3 pelo método da amplitude de espalhamento frontal,

conforme (3.65).
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5.3.3 Amplitude de 3-pontos

Para calcularmos a fungdo de trés pontos, devemos primeiro obter a corrente até terceira ordem em e.

Usando (5.84) e a expansdo (F.19) para o tltimo termo, a corrente é dada por

16ie3
I (p1) = Zj /d4pzd4p3d4k 0(K*)6 (k) (k°)3(p1 + pa + ps) sin (2 >2<p2>

(2
ku kﬂ
X (1 —cos(ps X k)) | Luo(p1,k)—— + Luo(p3, k)
p1-k P

k- A(ps)
p1-k

k:> A" (p2) L (p3, k) Ax(ps)

+ (1 —cos(p1 x k)) Lyo(p1, k)L (p1, k) Ay (p2)

kk-A .
- oos(pr x ) = costp x 1) 2L 2R 1227 1 )
pi-k p2-k
(5.91)
onde
kyup
L. =Ny, — 2. 92
o (0 ) = 1y = (5.92)
Isto nos fornece a fungdo de 3-pontos
;7 (~p1)
19 — i o] _
yy)\(plap27p3) 514”(])2)(514)‘(]?3) i
B 8ied | [p1 X po d3k .
= G s (2572) [ T 0 0 cosi ) G

+ [1 - COS(k X p3)] [kp, Gy)\<k ps) +k, Gua<k;p1) Gi(k;pg)]

k-
+ [cos(k x p1) — cos(k X p3)] e b3 k Go(k;p1) GS (ks p3)

—(p2 < p3;v < A)] , (5.93)

onde

G;w(k; p) = Nuv

2
. k:/,tpu + kl/p,u, ]Z k,u I;I/ . (5.94)

(k- p) k- p)?
Com um pouco de manipulacdo algébrica pode-se mostrar que este resultado é exatamente igual ao resul-
tado obtido pelo método FSA, conforme equagio (3.69).

5.3.4 Forca para particulas neutras

Vamos agora mostrar, pelo menos qualitativamente, que com os resultados anteriores conseguimos

obter a forma da forca agindo em uma particula neutra ndo-comutativa, conforme equacao (5.36). Para
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isto, note que a equacao de transporte (5.64) pode ser escrita como

_ e 0 dy ol = _ A
k-DF(x, k) = 55—%/(271)46 yk [<Fp0k/’*G}(j‘)*GM( )+GL+)*GM( )*Fpakp

26 4 By Gu<—>>}

4
= e 0 / Ay e~k [2 cos (%Gaﬁ(aaﬁpgkp)(ag(fo) % Gu())))

20k, ) (2m)*
—2(G(M * Fp x G“(‘))] : (5.95)
onde usamos (5.63), (5.59) e a propriedade (2.45). Olhando para a forma (5.60) de G,(f), vemos que ela
depende essencialmente de a, em ordem dominante, pois como jd discutimos, os termos U (4) contribuem

somente com termos subdominantes. Também vemos que (5.95) € quadritica em G, portanto quadratica
em a,,, de forma que o termo contendo a derivada Jg vai contribuir com 85<G,(f) * GH)Y ~ —2ikg, pois
k representa 0 momento do campo quantico a, no espagco dos momentos. Além disto, pelos resultados
(5.70), (F.11), (5.82) e (F.15) podemos concluir que

Y ik ), o) (0) 7
o © G 5 GO) e FO ()

d* . _ - L
/ (27:;4 etk <G}(j‘) * Flog % GH(—)> ~ f(O)FpU ~ nB(‘k“)Fpg ’ (5.96)

de forma que (5.95) pode ser escrita como

k-DF(x, k) = —ea% <nB(\E|) [1—cosk x i0] F,,Jk;f’) : (5.97)

Comparando a expressao (5.97) com (5.35), vemos que a for¢a neste caso € dada por
Xo ~ [1 = cosk x 0| Fpok”, (5.98)
portanto tem a mesma forma de (5.36), o que justifica a forma (5.31) para a for¢a no caso cléssico.

5.3.5 Pressao na NCQED

Da mesma forma que no caso do campo de gauge da se¢io 4.2.4, podemos definir um tensor de energia

momento para a NCQED em termos da fungdo de Wigner (5.37), dado por

Ty (z) = { / k[ W (2, k) — %nuyw)’\\(x,k)]), (5.99)

onde o traco foi trocado pela média térmica dos campos. Em ordem mais baixa, podemos calcular W

facilmente. Fazendo os campos de fundo iguais a zero, A, = 0, resta apenas a média térmica dos campos
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quanticos. Usando (5.38), (G.3) e as relacdes (5.71-5.75), obtemos

(W (x, k) = / (;{7;4 e W ((9u0M(wy) — P ap(wy)) * (Oraw(z-) — Oraw(x-)))

4
——kuku0(ko)d(k*)np (ko) , (5.100)

- (2m)

onde desprezamos um termo independente da temperatura. O tensor de energia-momento em ordem mais

baixa é dado entdo por
. 1 A
TO(z) = / AW (2, k) ~ ZnWWA(O) (z,k)])

= (;)3 /d4k: 9(’f0)5(k2)n3(k0)<kuku _ %mka)

4
= Gy /d4k9(ko)5(k2)n3(ko)k#k,,, (5.101)

pois k> = 0. Com isto calculamos a componente temporal do tensor, que corresponde & densidade de

energia do campo

E=T{(z) = @) / d*k 0(ko )6 (k*)np(ko)koko

2 k]
= PBr—1
(2m)3 / elkl/T — 1

8 /Oodk: K3
(2m)3 ), ek/T —1

2
S (5.102)
15

Para um gés relativistico, como vimos em (1.91), a pressdo é dada por F/3, de forma que

2
pO) _ EE 4

5.103
3 TR ( )

exatamente os mesmos resultados obtidos em (1.88) e (1.90) para o gas de fotons livres.

Como sabemos da secdo 3.8, a proxima correcdo a pressdo de um gas de fétons ndo-comutativos é de

2

ordem e, conforme expressdo (3.71) para a energia livre de Helmholtz. Portanto, devemos olhar para o

tensor de energia-momento em segunda ordem em e. A funcdo de Wigner em segunda ordem ¢é

4
W) :/ (%4 e E(—ie)*([ap(w ), 0 (1) Jms * [ax (), ay () ms) . (5.104)

O célculo desta expressao € bastante trabalhoso, mas pode ser feito sem dificuldades. Isto foi feito, e o resul-
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tado € que, quando colocado no tensor de energia-momento, fornece exatamente o resultado para a pressao
em segunda ordem vinda de (3.71). E f4cil entender a estrutura desta expressdo. Ela contém o produto de
quatro campos quanticos, de forma que, pelas relagdes (5.71)-(5.75), teremos no resultado final o produto
de duas fungdes de Bose, np, exatamente conforme encontrado na expressao (3.71). Além disso, cada
comutador Moyal presente na expressao (5.104) dard origem a uma fung@o seno envolvendo o pardmetro
nio-comutativo, portanto o resultado final ser proporcional a seno ao quadrado. O que € interessante é que
a expressio obtida é exatamente igual, o que néio é Gbvio, pois outras contribui¢cdes proporcionais a e? de-
vem vir da quantizagdo do campo a,,. Estes termos dariam contribui¢do a outra parte da fungdo de Wigner
W®), por exemplo na parte contendo (A — A)?, como em (5.100). Mas estas contribuicdes devem se
cancelar de maneira ndo-trivial, pois o calculo de (5.104) j& fornece o resultado correto. Este cancelamento
exato da parte vinda da covariantizacdo do campo quantico deve ter um significado mais profundo que
precisa ser melhor estudado.

Os principais resultados apresentados nesta se¢do, equagdes (5.59)-(5.64), assim como a quantiza¢do
do campo quantico pelo método do campo de fundo apresentado no Apéndice G, foram publicados em

[71].
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Conclusao

Neste trabalho abordamos dois tépicos de grande interesse na teoria de campos atualmente. O primeiro
foi a teoria de campos a temperatura finita, generalizagao direta da teoria de campos usual, necessdria para
incluir efeitos de altas temperaturas e densidades no estudo de sistemas fisicos, visto que sdo muitos os
cendrios do universo onde estas caracteristicas se apresentam. O exemplo mais préximo do nosso cotidiano
s30 os plasmas produzidos em laboratério, indo mais longe temos interiores de estrelas, niicleos galacticos
e fendmenos intrinsecos ao universo primordial. O outro tépico abordado neste trabalho foi o estudo
de teorias definidas em espagos ndo-comutativos, visto que um dos limites de baixa energia da teoria
de cordas pode ser descrito efetivamente por estas teorias ndo-comutativas. Na falta de uma teoria que
descreva de maneira correta as interacdes em escalas de energia muito alta, ou distancias muito pequenas,
que € quando efeitos quanticos e gravitacionais se misturam, temos de utilizar teorias que, pelo menos
efetivamente, possam responder a perguntas que o modelo padrdo ndo descreva satisfatoriamente. A teoria
ndo-comutativa nasceu da tentativa de se entender as divergé€ncias que cercam a QED e a QCD. Neste
trabalho tentamos dar uma idéia de como tratar sistemas onde estes dois topicos aparecem juntos. Para isso
tomamos como referéncia a eletrodindmica quantica usual, que é uma teoria muito bem fundamentada e
bem estabelecida ja ha quase um século.

O método dos diagramas de Feynman para tratar da QED, tanto a temperatura zero quanto a tempera-
tura finita, ja foi extensivamente utilizado, obtendo-se resultados muito bons. No tratamento de sistemas a
temperatura finita os cdlculos sdo bastante complicados devido a necessidade de se fazer somatérias sobre
freqii€ncias, e na maioria das vezes estes cdlculos ndo sdao 6bvios. Além disso, as vezes diagramas de ordens
diferentes dao contribuicdes de mesma ordem, portanto deve-se adotar um procedimento de “ressomacgio”,
de forma a se considerar todos os possiveis diagramas que contribuem para um dado termo, e isto pode
tornar o calculo muito complicado. Entretanto na maioria das vezes o limite de altas temperaturas de um
sistema pode ser visto como uma média estatistica de um sistema em equilibrio térmico, e entdo outros
métodos podem ser utilizados. Sem divida o método de Feynman € muito eficaz, porém muito compli-
cado em alguns casos. Desta forma, dependendo da quantidade fisica que estamos querendo calcular, ou
dependendo do limite em que o cédlculo deve ser feito, podemos utilizar algum outro método que forneca
exatamente os mesmos resultados. Esta foi exatamente uma das propostas do nosso projeto: mostrar que
o método das equacdes de transporte cldssicas de Boltzmann pode ser aplicado a QED nao-comutativa a
altas temperaturas. De fato € intuitivo pensar que um plasma a altas temperaturas deva se comportar, na

média, como um conjunto de particulas classicas em equilibrio térmico.
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No primeiro capitulo fizemos uma breve exposi¢io da teoria quantica de campos, tanto a temperatura
nula quanto a temperatura finita. No segundo capitulo discutimos uma generalizacdo para campos nao-
uniformes ao problema de um elétron movendo-se em um plano, sujeito a um campo magnético intenso,
conhecido como problema de Landau, onde a ndao-comutatividade das coordenadas aparece naturalmente.
Apresentamos em seguida a formulagdo ndo-comutativa da QED a temperatura nula. No terceiro capitulo
estudamos a formulagdo da QED em espacos ndo-comutativos a temperatura finita, e apresentamos os re-
sultados obtidos para o calculo das amplitudes de 2, 3 e 4-pontos no limite estitico a altas temperaturas pelo
método de Feynman. Mostramos que as amplitudes com indices puramente espaciais estao relacionadas
por meio de identidades de Ward, de forma que a agdo efetiva no limite estdtico a altas temperaturas pdde
ser obtida. No quarto capitulo fizemos uma breve revisdo da teoria das equacdes de transporte, método que
€ muito 1til para o cdlculo de propriedades fisicas de sistemas em equilibrio térmico a altas temperaturas.
Aplicamos este método ao caso da QED nao-comutativa a altas temperaturas € mostramos que 0s mesmos
resultados em 1-loop do terceiro capitulo podem ser obtidos de maneira muito mais direta. Uma carac-
teristica comum aos dois métodos € a presenca da ndo-comutatividade, que torna os cdlculos extremamente
complexos. Os calculos realizados utilizando-se as equacdes de transporte dependem basicamente do co-
nhecimento das forcas que agem na particula, ou seja, das suas equacdes dindmicas. Para uma particula
carregada, mesmo no espaco ndo-comutativo, é intuitivo propor uma forma para a forca conforme a eq.
(5.15), devido ao comportamento parecido com o de dipolos da estrutura da teoria. J4 para uma particula
neutra a forma desta forga nao € trivial, e diante disso tornou-se necessaria uma formulacio que pudesse dar
uma idéia de como se justificar a forma da forga (5.31) a ser utilizada nas equacdes de transporte cldssicas.
O método de Wigner, utilizado para tratar sistemas quanticos pelas equacdes de transporte, forneceu a res-
posta que queriamos. Em analogia com o tratamento existente para a QCD, desenvolvido por Elze, Heinz e
colaboradores, foi possivel propor uma equagdo de transporte a ser satisfeita pelos fétons nao-comutativos,
e entdo a forma da forca pdde ser derivada naturalmente. Isto mostra que este método pode ser muito ttil
quando ndo temos nenhuma informagao sobre a for¢a que age no sistema.

Paralelo a esta linha principal do projeto, que era demonstrar, em altas temperaturas, a equivaléncia dos
métodos de equagdes de transporte com o método tradicional de Feynman, desenvolvemos vdarios outros
tépicos relacionados. Com respeito a efeitos de temperatura finita, estudamos as massas de blindagem
dos campos elétrico e magnético devido a efeitos puramente ndo-comutativos, e vimos que uma corre¢ao
a massa elétrica deve existir devido a presenca da ndo-comutatividade, embora ela se desenvolva apenas
acima de uma temperatura muito alta, o que caracteriza uma transicdo de fases de primeira ordem. Ja para
a parte magnética ndo hd nenhuma contribuicdo. Outro resultado interessante € que, a altissimas tempera-
turas, o tensor de auto-energia do féton ndo depende do parametro de ndo-comutatividade, conforme eq.
(3.17), e a contribui¢do € da mesma ordem que aquela vinda da QED comutativa a temperatura finita.

Com relacdo ao aspecto da ndo-comutatividade, o principal resultado que obtivemos foi a quantizacado
correta do campo de gauge a, pelo método do campo de fundo, no limite em que o campo de fundo
varia fracamente com relagdo ao campo quantico. Isto se fez necessario quando se percebeu que faltavam

termos de ordem e para que as contribui¢des as amplitudes de 3-pontos em 1-loop fornecessem o resultado
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correto. O tnico lugar de onde estes termos poderiam vir era do préprio campo quantico, que no caso
geral apresenta uma estrutura bem complexa, dependente do campo de fundo flu. Levar em conta de forma
correta estas contribuicdes €, sem divida, a parte mais trabalhosa, mas isto € inerente a ndo-comutatividade,
e ndo ao método das equacdes de transporte. Por dltimo citamos a tentativa em se obter a pressdo de
um géas de fétons ndo-comutativos através do tensor de energia-momento. Como foi discutido na dltima
secdo do capitulo 5, o primeiro termo que contribui a pressdo € facil de se calcular, depende basicamente
do conhecimento da fun¢do distribui¢do em ordem mais baixa, e ndo tem dependéncia com o parametro
de ndo-comutatividade. J4 para a primeira corre¢cdo nao-nula os calculos sdo mais trabalhosos, e ainda
assim ndo foi demonstrado porque as outras possiveis corre¢des vindas do campo quantico se cancelam
exatamente. Deve haver um motivo mais geral para explicar porque estas contribui¢des se cancelam, mas
este € um assunto que precisa ser melhor estudado.

Um dos interesses no cédlculo de correcdes a pressao de um gas de férmions ou bésons vem da as-
trofisica. Sabemos que o produto final da evolucdo de uma estrela pode ser uma ana branca, uma estrela
de néutrons ou um buraco negro, dependendo basicamente de sua massa inicial. Em uma and branca, o
colapso gravitacional é contrabalancado pela pressao de degenerescéncia dos elétrons, enquanto que em
uma estrela de néutrons é a pressdo dos néutrons que impede que ela colapse para um buraco negro. A
determinagdo correta do limite de massa para o qual uma estrela vai evoluir para o colapso ¢ uma questdo
importante em astrofisica, e ¢ conhecido como limite de Chandrasekhar, dado por M ~ 1,4 Mg onde Mg
corresponde a uma massa solar. Ands brancas com massa maior que o limite de Chandrasekhar ndo podem
existir, e uma maneira de se entender este limite é considerar que os elétrons estdo a uma densidade tao
alta que eles se tornam relativisticos, ai podemos usar os resultados da teoria de campos a temperatura e
densidade finitas. Correcdes de primeira ordem na pressao de degenerescéncia dos elétrons devem mudar
o valor do limite de Chandrasekhar. Para uma estrela de néutrons os célculos sdo muito mais complicados,
pois o equilibrio se da entre a pressdo dos néutrons e a pressdo gravitacional. S6 que um gés de néutrons
relativisticos deve ser tratado por meio da QCD a altas temperaturas e densidade, conforme indicado no
diagrama de fases T' x p da introducdo. Ainda nao € claro qual a contribui¢cao devida a corre¢des a pressao
de um gés de néutrons ao limite de Chandrasekhar, no entanto observa-se estrelas de néutrons com mas-
sas que variam de 1,4 a 1,6 Mg, portanto um valor maior que o limite anterior, indicando que efeitos da
interagdo nuclear forte devem desempenhar um papel fundamental. Outra aplicac@o onde calculos a densi-
dade e temperatura finita sdo importantes é na perda de energia por estrelas devido a emissdo de particulas
fracamente interagentes, como os neutrinos por exemplo. Esta ¢ uma questio muito importante na as-
trofisica. Os principais sistemas onde esses processos ocorrem s3o nos nuicleos de supernovas do tipo 11,
com temperaturas da ordem de 50MeV e potencial quimico da ordem de 350MeV. Também podem ocorrer
em nucleos de estrelas gigantes vermelhas ou anids brancas. O processo dominante que envolve a emissao
de neutrinos em estrelas ¢ chamado “decaimento plasmon”, que nada mais é que o decaimento dos f6tons
transversais e longitudinais em pares de neutrinos. Com relacdo a efeitos da ndo-comutatividade, como
vimos, a altas temperaturas seus efeitos podem ser mais notdveis, pois a presenca comum de um termo

do tipo 07 mostra que a altissimas temperaturas a ndo-comutatividade pode se tornar mais evidente em
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determinados processos. A época da inflagcdo do universo é, sem divida, um dos melhores “laboratérios”
para se testar seus efeitos.

Estas e outras questdes ainda em aberto da astrofisica e da cosmologia necessitam, sem ddvida, de um
tratamento da teoria de campos a temperatura finita, ¢ muitas vezes calculos por meio de equagdes de trans-
porte podem fornecer resultados tdo bons quanto os obtidos pelo método de Feynman, como demonstramos
aqui.

Os principais resultados apresentados e discutidos nesta tese foram publicados, conforme referéncias

[70,71,72,73].
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Apéndice A

A.1 Revisao de conceitos de mecanica

Seja uma lagrangeana L(q, ¢), funcéo das coordenadas generalizadas ¢;(t) e das velocidades corres-

pondentes ¢;(t). As equagdes de movimento de Euler-Lagrange deste sistema sdo dadas por

oL d oL
dqi(t)  dt9g;(t)

Os momentos canonicamente conjugados de ¢° sdo obtidos por

)

pi—a—qi

e a hamiltoniana do sistema pode ser construida por meio de uma transformacao de Legendre
H(q,p) =Y _ pidi(p,q) — Llg, d(p, )],
i

onde a soma € sobre todas as coordenadas e momentos do sistema.

As equagdes de Hamilton que seguem da hamiltoniana (A.3) sdo

__OH . oH
qgi = i ) bi = 94 .

O parénteses de Poisson ou comutador de Poisson de duas quantidades f, g € definido por

. of 0g  Of Og
Uhop= Z (3—%‘32% ; 8]%5_%') ’

(2

e seguem diretamente as propriedades

{gi,q;} = 0= {pi,p;} , {gi,p;} = dij .
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Apéndice B

B.1 Algumas propriedades do teorema dos residuos

Para o cédlculo de alguns somatdrios algumas vezes é mais conveniente usarmos integrais no plano
complexo e aplicarmos algumas propriedades do teorema dos residuos. As propriedades abaixo podem ser

encontradas nas pags. 84-86 da ref. [66]:

1. Seja g(z) uma fun¢@o analitica no interior de um contorno fechado e sobre C, exceto em um nimero

finito de singularidades isoladas em z = ay, a9, - - - , a,, todas situadas no interior de C. Entdo
n
?{ g(z)dz = 2mi ZRes[g(aj)] , (B.1)
c =
onde Res[g(a;)] € o residuo de g no ponto a;. O caminho C' estd orientado no sentido anti-horario.

2. Para uma singularidade (ou pélo) de ordem m em z = a, vale a férmula seguinte para calcular o

residuo:

m—1

Res[g(a)] = (m i 0 ;I_I?Cll P [(z — a)mg(z)] . (B.2)

3. Outra maneira de calcular o residuo € a seguinte: Se g for da forma

9(z) = (B.3)

Res[g(a)] = . (B.4)
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B.2 Soma de freqiiéncias para bosons

Queremos mostrar a seguinte relacao:

TEZf%wﬂw0=§g[fmﬁgwww+ﬂ—mﬂ

n=—oo
1 +i00+€ 1
— dk k —ko)| ——— B.5
+27Ti o O[f( 0) + f( 0)] eBko — 1 ( )
onde f (ko) é uma fungdo que ndo possui singularidades ao longo do eixo imagindrio de kg e w,, = 2”7",
onde = 1/T.
Vamos comegar mostrando a seguinte relagdo:
T Z fko = iwp) = 7{ dko f (ko) ﬁcoth( ﬁko) (B.6)
n=—oo
sendo o contorno C' no plano complexo de kg da forma indicada na Figura B.1.
Im kO
O,
\(%/{ iy,
N
Eﬁ Re ko
Figura B.1: Contorno de integracao da equacio (B.6).
Primeiro note que a fun¢do cotangente hiperbdlico pode ser escrita de diversas formas:
1 1+ e Fhko 1 2 1 2
B.7
e tem polos em kg = 2”% = ay,, e ¢ analitica e limitada em todos os outros pontos. Aplicando a propriedade
(B.1) ao lado direito de (B.6) temos
L dﬂ)ﬂdm =13 Rels )50 coth(s )] (B.8)
co es[f(a co an)| . .
2mi n) "
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Agora os residuos podem ser calculados usando-se a propriedade (B.4), fazendo
plan) = flan)(L+ e ) Ylan) = (1— e %), (B.9)

onde usamos (B.7), de forma que v/ (a,,) = e~ 7%, e entio

p(an)
V' (an
P04 e
ﬁe—2m’n
2min
f( 3 )
fko = iwy) (B.10)

Res[f(ay) %ﬂ coth(%ﬁan)] =

~—

pois e 2™" — 1 para qualquer n inteiro. Substituindo finalmente em (B.8) obtemos a relacdo que

queriamos demonstrar:

T 1 1 >
ﬁj{cdkof(ko)i/@wth(iﬂko) =T Z f ko = iwy). (B.11)

n=—oo

Agora vamos mostrar a relacdo (B.5). Em primeiro lugar note que o contorno da Figura B.1 pode ser

deformado da seguinte forma, representado na Figura B.2.

Im ko

Re ko

Figura B.2: Contorno de integracdo equivalente ao da Fig. B.1.

A integral de contorno no lado esquerdo de (B.11) pode ser escrita em termos do contorno da Figura
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B.2 como

T 1 1 1 —100—€ 1 1
— @ dkof(ko)= th(=0ko) = — dko f (K 5T T Bk 4
o st ggcomGam) = o [ anos o < 5 - )
“+100+€ 1 1
L dko f(ko)( = + ——— B.12
"o —ioo+e of O)(2 e = 1) (12

onde usamos (B.7) para reescrever o cotangente hiperbdlico de uma forma apropriada. Como o parametro e
deve ser tomado como zero no final, ndo estamos incluindo as integrais nas extremidades superior e inferior
do contorno, elas ndo contribuem. Agora, fazendo kg — —kg na primeira integral, podemos escrever tudo

em termos do caminho do lado direito da figura, de forma que obtemos finalmente

T 1 1 1 +i00 1
Tﬂj{cdkof(ko)iﬁcoth(iﬁko) = 507 | o [F (ko) + f(=ko)]
1 +ioco+e€ 1
27i —ioote dkio|f (ko) + f(=ho)] ePko — 17

(B.13)

onde fizemos € — 0 na primeira integral porque f (ko) néo € singular em nenhum ponto do eixo imaginario,
ao contrdrio da segunda integral, que ainda contém uma dependéncia singular no denominador. Com isto

demonstramos a relacdo (B.5).

Vamos aplicar os resultados anteriores para um caso especifico, que € quando f é da forma

-1
ko) = ————. B.14
f( 0) k% — w2 ( )
Substituindo em (B.5), obtemos:
. _ A
~1 1 [reee —1 1 [rreete -2 1
T —:—,/ dkoi—i——,/ dko )
n:zoo k2 —w? 2w ) [k‘% — w2} 270 _joote [kg - w2] efko — 1

(B.15)

onde kg = iw, = 2“% Na primeira integral fazemos a mudanca de varidveis
tko = ky, dkg = —idky, (B.16)

que corresponde a uma rotacdo para o eixo imagindrio dos momentos. A segunda integral deve ser feita
ao longo do caminho /;, e uma maneira de fazer isso € usar mais uma vez o teorema dos residuos. Vamos
fechar o caminho /; com um semicirculo /5 ao longo do plano do lado direito do eixo kg, da forma mostrada

na Figura B.3. Desta forma temos um caminho fechado C' = [; + 2, e vale a propriedade (B.1), escrita
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formalmente como:

/h+/12 —fc——zm';Res[g(aj)]. (B.17)

O sinal negativo € porque neste caso a curva C' estd orientada no sentido horario. No entanto, o Ginico pélo

que existe no semiplano direito € o ponto kg = w, de segunda ordem.

Im ko
)
I
10} Re ky
Figura B.3: Contorno C' = [y + [5.
Estamos interessados na integral ao longo de /;. Portanto, tomando
-2 1 1
= — ) B.18
96 = S o (o - 1) (®.18)
obtemos
/ g(z)dz = —/ g(z)dz — 2miRes[g(z = w)] . (B.19)
l1 l2

A integral ao longo de 5 é nula, pois neste caminho devemos tomar |kg| — oo, portanto a integral se anula

devido ao denominador. Ficamos portanto com

50 s CE— A (D) - RS D)

d -2 1 1
= 27 lim — [(z —w)*=—

z—w dz 27i (22 — w?) (efz — 1)
1 1
= —— B.20
oo 1 (B.20)

onde usamos a propriedade (B.2) para calcular o residuo no ponto z = w. Substituindo este resultado de
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volta na (B.15) e fazendo a mudanca de varidveis (B.16) na primeira integral, obtemos finalmente:

Ti - —1/%0 Lok 1 (B.21)
k2 —w? 2w J_o kI +w? I e '

n=-—oo -

que ¢ o resultado final desejado. A soma sobre as freqiiéncias foi feita, o que restou foi um termo indepen-

dente da temperatura e outro dependente.

B.3 Soma de freqiiéncias para férmions

Para o caso de férmions a relacio analoga de (B.5) é:

oo ' 1 +i00 1
T > hipo = iwn) = i ) dp0§[h(po) + h(—po)]
n=-—o00
1 —+100+€ 1
- dpo|h h(— —_— B.22
o=l po[h(po) + h(—po)] T T 1 (B.22)
onde h(pg) é uma fungio que ndo possui singularidades ao longo do eixo imagindrio de pg e w,, = (2";1)”.

A demonstragdo pode ser feita seguindo os mesmos passos do caso dos bdsons. O anélogo de (B.6) sera:

o
. T 1 1
T 3" hioo = iwn) = 5§ domh(po) B tan(55p0). 8.23)
= ™ Jo 2 2
n=-—o0o
. £ ~ <. _ (2n+1)mi
pois agora € a fun¢do tanh que possui pélos em py = =57

Para o caso especifico em que h é da forma

-1
hpo) = =5 (B.24)
P — w?
obtemos
oo
—1 1 +oo 1 1 1
! pi—w?  2mi AT D B.25
nz_:oopg—uﬂ 2772'/00 P2+ w? Pa— CBe 11 (B.25)
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Apéndice C

C.1 Integrais uteis

As integrais seguintes podem ser obtidas na ref. [65]:

[e%e) 22
/ dp 2 =TT (C.1)
0 eT — 1 6
° i T 1
/ dzx :;n JUyl = % <coth myT — 7Ty—T> (C.2)
0 _
[e%¢) 1 2T2
dz xios v_ - T cosech?myT (C.3)
0 eT — 1 2y2 2

C.2 Somas sobre freqiiéncias

A primeira destas relagdes foi deduzida no Apéndice B.2, equagdes (B.14)-(B.21). As demais seguem

por derivacao dos dois lados com relacdo a k.

1 _ np(k) 3
T; G2+l & + (termo T = 0) (C4)
1 B 1 nB(k) / -
T; (@mnT)2+ k22— 2k ( k ) + (termo T'=0) (C.5)
! _ A1 (ne®)\T _
Tzn: ((27rnT)2 n k‘2)3 =1 [Qk < A > ] + (termo T' = 0) (C.6)

+ (termo 7' = 0) (C.7)

" b~ ()]

onde k = |E | € 0 simbolo () significa derivada com relagdo a k.
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C.3 Expansoes em série e identidades trigonométricas

CcoST = —Z—?—FZ—?—E—T%-'-- (C.8)
sinx::ﬂ—z—?—i—z—?—i—:%—-" (C.9
e“:1+x+z—?+z—?+--- (C.10)
coth(z) :é+%az—%x3+%x5+~- (C.11)

1 1 1
cossech?(z) ~ — — = + —z?

4
L C.12
2 3715 0% T €.12)

sin? A = %(1 —cos2A4) (C.13)

C.4 Integral de auto-energia do féton

O célculo desta integral pode ser encontrado na referéncia [7], pag. 460.

f(z)

1
6/0 z(1—2)In(1+z2(1 — 2))dz

NI SR R WA SRV SR R
_[ 3+p+<1 2p>\/1+p1 =1’ (C.14)

onde p = /4. Alguns limites importantes sdo:

f(x)%{x/5 , r<<1

Inz , x>>1
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Apéndice D

D.1 Método da soma sobre freqiiéncias para a auto-energia do fé6ton

Vamos calcular separadamente cada uma das contribui¢des para o tensor de auto-energia do féton
usando diretamente o método da soma sobre as freqiiéncias de Matsubara. Comecamos com o tensor 115"

dado em (2.66), representado pela Figura 2.2:

d*k 5k x py (K* + pH)kY
v 4.2 2
I (p) = 4e / @) sin ( 5 ) EICESSER (D.1)

Em primeiro lugar, temos de ir para o espago euclidiano, fazendo a substituicio k* = (k°, E) — (iwp, E)
de maneira que k2 = (k2 — k2) — —(w? 4 k2), onde w,, = 2n7/f, e da mesma forma p* = (p°, ) —
(ipo, P). A parte trigonométrica do tensor ndo muda, pois ela sé depende das componentes espaciais. Assim

temos

dk k k HEY
T4 (p) — 4e? / ~sin’ ( “p ) _ (k+p) . : (D.2)
(27) 2/ (—wi = k?)[=(wn + po)? — (k + )7
e fazemos a substituicao
k1 & d*k
- D.3
[ a3 2. | ey (B
obtendo
1 rEY
2 ) S @R A R (wn + p0)? + (R + D))

de maneira que podemos fazer os calculos sobre a soma das freqiiéncias w,,. Note que o numerador do
integrando ainda contém uma dependéncia nas freqii€ncias, por exemplo se quisermos calcular a compo-

nente IT°° do tensor. Mas esta dependéncia no numerador pode ser facilmente simplificada, como veremos
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adiante. Vamos comegar calculando a parte espacial do tensor,

- 1 %] g%
T () — e dksing(kx;g>z KK Pk
(Wi + k) [(wn +p0)? + (k + p)?]

= 4¢? i sin MXPY ik 4 pikd) 1
- / (557 PRS2 57+ B o (5 7
(D.5)

Esta somatdria sera feita no chamado limite estético, que corresponde a fazer p° = 0 e em seguida 7’ — 0.
O caso inverso, p = 0, p” — 0 fornece um outro limite', caracterizando a nio-analiticidade de cdlculos a
temperatura finita. Para o nosso caso, o limite estatico corresponde a tomar p° = p = 0 no numerador de

(D.5) e fazer a soma. Mas isto se reduz a expressao (C.5) do Apéndice C.2, de forma que obtemos

ij | Bk 5 sk xp\EE 1 - . .
I (p° = 0,5 — 0) = 262/ E sin® ( 5 ) P [5 +ns(k]) — [Klnp(&])] - (D.6)

O fator 1/2 representa a parte independente da temperatura, que dard contribui¢do para a parte de vacuo.

Portanto, desconsiderando a parte independente da temperatura obtemos, para as componentes espaciais,

y d3k k x p\ k'k’ - - -
1) _ 2 -2 /
(o) =22 [ i (5 ) T P (R = i (7)), (.7
lembrando que a tnica dependéncia com o momento externo estd agora dentro do fator trigonométrico,
pois queremos ter alguma informacao sobre a ndo-comutatividade no resultado final.

Vejamos agora a parte temporal do tensor dado em (D.4). Ela pode ser escrita como

0 _421 dk ) kxp)z EOKO + pOk0
2 (W3 + £D)[(wn +p0)? + (k + )%
1 Bk k x —w? — pown,
= 4e?= sin? ( p) Z 5 p02 = 5 (D.8)
B (2m) 2 (W2 + k2)[(wn +po)? + (k +P)?]

mas ¢ facil ver que a soma sobre o segundo termo, linear em w,, no numerador, € nula, pois o denominador
¢ uma fung¢@o par em w,, enquanto o numerador é¢ uma fung¢do impar, entao a soma que vai de —oo até +o0o

se anula. Para o primeiro termo € mais conveniente escrevermos

1 d3k kxp —w? — k% 4 k2
00 _ 2 22 n
H“(p)_%ﬁ/@ )3s1n< 2 )Z 2 | 12 2 (K472
™ —~ (W2 + k?)[(wn + po)? + (k+ p)?]

= 621 &k sin? hxp -
=4 5/(277)3 ( 2 )Zn:[[(wn+po)2+(§+@2]
Ez
@2 )t 0 + 1)

(D.9)

No limite estético as somas se reduzem aquelas do Apéndice C.2. Desconsiderando a parte independente

!Conforme discutido na segdo 3.2.

129



da temperatura temos,

3 2 5 o o -
M) = 267 [ 5 sin 2 (BX2) R ) — () — 208 (). (D10

27)3 2 k)3

Ficou faltando calcularmos as componentes do tipo I1%, mas é ficil ver que todas as componentes
se anulam, pois o denominador é uma fung¢io par em w, enquanto o numerador € uma funcdo impar.
Além disto, no limite de altas temperaturas, que corresponde a fazer p << k, toda dependéncia em p no
numerador pode ser desconsiderada.

Dessa maneira, olhando atentamente para (D.7) e (D.10), percebemos que o tensor do diagrama (a) no

limite estatico pode ser escrito compactamente como

. (D.11)
KO=|F|

d*k Exp\ns(k) 0. 1) (’k‘|) np (k)
11 _262/ sin? ktEy — =B kP EY —2—— O
(P) (2m)3 ( 2 )[ EE BE k| g 770]

onde k¥ = ]k\ ou seja, estd na camada de massa. Note que o tltimo termo sé contribui para a componente
110 do tensor.

Para o grafico da Figura 2.4(b), o tensor a temperatura nula é dado pela equacdo (2.67). Fazendo as
mesmas substitui¢des e usando as mesmas técnicas do exemplo anterior, obtemos, a temperatura finita e no

limite estatico,

-

” Bk . kxp\ng(lk .
I (p) = —1262/(27T)3 Sln2< 5 ) B‘% Dn“ (D.12)

Para calcular a contribuicao do diagrama da Figura 2.1(c), dado pela equacdo (2.68), vamos usar desde
o inicio que estamos interessados no limite p << k, de maneira que toda dependéncia em p no numerador

pode ser desconsiderada. Desta maneira o ponto de partida € a expressao

d4k k X p 277“” 10]€uky
g ) D.13
¢ (p) e / (21" ( 2 ) [(k 0?1 ) 19

Agora fazemos as mesmas substituicdes que nos casos anteriores € vamos obter, no limite estético,

&k (k xpy[,ns(E) ng(|k]) (k)
v _ 2 2 uyo ni.v B ni.v
I (p) = 2e /(2ﬂ)3 sin ( 5 )[2 ]E] n 5 U_ﬂ?’ KFEY 4+ 5 7 2 kFE

P
+10720RD o

k]

o (D.14)

KO=|k|

Portanto, a contribui¢do total para o tensor de auto-energia do féton no limite estatico é dada finalmente
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por

5" (p) = Mos(p) + My (p) + Mg (p)

Bk okxp\ 11 = o ()., n(E) .,
= —862/ sm2( p)MnB(!kl)n“ +Tl§2|)k% —B’% D o,

~2n ()0 | (D.15)

kO=|R]
D.2 Integrais da auto-energia do féton

Vamos calcular os fatores de forma IIj', IT5 e IT% da segdo 3.2. O vetor momento p é perpendicular a
P, € 0 momento a ser integrado € k. Portanto, um sistema de coordenadas conveniente para fazermos os

calculos € representado na Figura D.1.

p

Figura D.1: Sistema de coordenadas usado para fazer a integracdo no momento interno k.
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st 1324
Iy, = uyullg,

3
- 862/ 4k 2 (M)n'qu)

(2m)3 2
462 / 3 = pw d =
= d’k (1 —cosk - p)—=npg(|k
4e? / 5 - - d np(k])
= d’k (1 — cosk - —
Gy | S R

2 d oo pm 2w & B
- (;f—yiﬁ@/o /0 /0 dkd¢d¢k251n¢nBT()[l—COS(]ﬁ\kcoszp)]

2 00 . =
_ 8e 2ﬂdi/ ;kk (1ismk:!p|)
(2m)27dB Jo ePF =1 k|p]

8e d [ =2 T p|> L]
@ )25d6{652 2\ﬁyﬁCOth<6 NPT E

2 e?T - -
= — 2272 + S coth(r|p|T) — e2T2cossech? (rr|5|T) (D.16)
3 7(p|
Hst — ﬁﬁiﬁu HMV
T p2 St
3k k k 5 k)2 np(|k 5 k)2 ny(|k
:_862/ d 381112( Xp) nBQ \)Jr(p?) nBEI |)_(p~2) nBEI )
(2m) 2 k| p k|3 b k|2
2¢? T =
= = 4 CZ coth(n|f|T) + 2T 2cossech? (x|F|T) (D.17)
m2[p> x|

I = (s — p;f”)ng” S .

et f st (£52) ) + (O824 01 (bl noti)

0. (D.18)

onde k = |k|, 8 = 1/T e usamos os resultados das integrais dada no Apéndice C.1.
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p p p p p »
-—-—=——— -« ——— - - - - -—-—=——— -« ———— - — —
k k-p k k o4 k+p B k o k k B
(ai) (i) (b)
u v v
M:iww/\éjmw A/\P\j\éwmwgim
ok k+p k B ok k-p k B

Figura D.2: Contribui¢do para o espalhamento frontal

D.3 Método da amplitude de espalhamento frontal

Neste método, a funcio de dois pontos para a auto-energia do féton pode ser escrita como

1 Pk -
pv - __ - | = af HY (1. .
T 0) = =555y | (g "D A~k D),y (D.19)
onde P*?(k) é um operador que leva em conta a dependéncia de gauge e é dado por
1-¢ d kok°
PP (k) = nP — 1-&d (D.20)

2 dko ko

e Agg(k‘, —k,p) é a amplitude de espalhamento frontal, que é obtida dos correspondentes graficos que
representam estes espalhamentos calculados na camada de massa (ko = |k|). Para os diagramas da Figura
2.1, os correspondentes graficos que representam o espalhamento frontal estdao indicados na Figura D.2.
Os diagramas (ai) e (aii) representam os gréficos de espalhamento frontal que contribuem para o loop
de ghost da Figura 2.1(a). Além deles devemos levar em conta também os mesmos diagramas fazendo
k — —k, por isso o fator —k presente no argumento da amplitude AZE O diagrama (b) representa o
espalhameto frontal da Figura 2.1(b) e os diagramas (ci) e (cii) sdo os correspondentes para o diagrama da
Figura 2.1(c). Devemos ainda considerar os fatores combinatoriais presentes nos graficos da Figura 2.1. O
fator (-1) do loop de ghost ndo se trata de um fator combinatorial, e ja estd levado em conta no sentido da

seta nos diagramas (ai) e (aii) da Figura D.2. Vamos agora calcular explicitamente estas amplitudes.

Comegando pelo diagrama mais simples, a contribui¢éo do diagrama (b) para a amplitude é dada por,

usando as regras de Feynman

v Lo (kXp v
PaﬁAgﬂ(b)(k,p) = —4e? sin? <T)(6n“ ) (D.21)
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onde estamos trabalhando no gauge de Feynman, £ = 1 e por simplicidade ja foi feita a contragdo com o
operador P9

Os diagramas (ci) e (cii) dardo contribui¢des do tipo

PaﬂAZZ(Ci) (k,p)

— _4e? 5in? (’“ X p) (=5p2 — 2k - p — 2k2)p + 2pp? — 5(kPpY + pPEY) — 10kPEY
2 (k +p)?

PaﬁAZg(cn') (k,p)

k x p) (=5p? + 2k - p — 2K2)H + 2ptp” + 5(kFp” + ptk¥) — 10kMEY

— _4e2gin?
esm( 5 0=

(D.22)

Para os diagramas (ai) e (aii) que descrevem a propagagdo de um ghost, ¢ mais conveniente redefinir a

amplitude Agg(k, p) como

ALk, p) = —3nj_ﬂ§AZZost(k,p) (D.23)

onde ASZOS ;(k, p) é amplitude de espalhamento frontal de um ghost pelo campo do féton. Desta maneira,

os diagramas (ai) e (ait) fornecem, no gauge de Feynman,

k Xp>kﬂ<k—p>”

afl AHV A2 2
P Aaﬁ(ai)(k,p)— 4e” sin ( 5 e

peB g

k x p\ kY (k + p)*
af(ait) )

422
(k,p) = —4e”sin ( 5 e

(D.24)

Lembrando que a contribui¢ao total ainda tem de levar em conta os diagramas obtidos da Figura D.2

fazendo k — —k, a amplitude total de cada diagrama é obtida por meio de
PO ARG (k, —k, p) = PP ALY (k, p) + PP AL (<, p) . (D.25)

Portanto, levando isto em consideragcdo e também os fatores combinatorias de cada gréfico, a contribui¢do

total para a auto-energia do féton obtido por meio de (D.19) é, no gauge de Feynman e na camada de massa
k=0,

2 3
) = oy [ e R (57) [—6n"”
N (5p% + 2k - ) — 2pkpY + A(KFp” + prEY) 4 SkHEY
p?+2k-p
n (5p? — 2k - p)nHV — 2pHp¥ — A(kHpY + prEY) + Sk“k”]
p?—2k-p

ko=]k|
(D.26)
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Para continuarmos nossos cédlculos vamos agora tomar o limite de altas temperaturas ou limite HTL
onde p < k ~ T, de maneira que vale a seguinte expansao para o denominador
1 1 P>

— 4 - D.2
p2+2k-p 2k - p (2k:-p)2+ (D-27)

Usando isto na (D.26), o tensor de auto-energia do féton a altas temperaturas pode ser escrito como

4e2 A3k
124 - _ -
1" (p) et ] i

np(|k))(1 = cosk x p) |n" —

1.V VL.pb 271,101,V
pHEY + p'k pk:k:] (D.28)

p-k (p-k)?

kO=|k|
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Apéndice E

E.1 Amplitude de 3-pontos

Nosso objetivo é demonstrar as relacdes (3.33) e (3.34) satisfeita pela amplitude de 3-pontos. Partimos

da expressao (3.32):

, d3k -k po - k ps - k 128k, ky ko
st _ 3 : . . nhy
I = ie T/ @) sin < 5 > sin <? sin ( =5~ En [@anT)2 + k2P

32
_ <5,ka + Gy + 5Mku)] . (E.1)

[(27nT)2 + k22

Fazendo uso da identidade trigonométrica

p1 - k Do - k p3 - k 1
sin <p1?> sin <192T> sin <p3 > =7 (sinpy - k +sinp - k +sinps - k) , (E.2)

2

podemos reescrever (E.1) como

d3k 4k, kK
st . 3 S S ino in p prVEA
Liwx = —8ie T/ (2m)3 (sinfy -k +sinpz -k +sinfs - k) Y [[(%mT)2 + k23

n

1
(G (5ka + Opuky + 5“1@)] : (E3)
Podemos ver desta expressdo que quando houver um nimero impar de indices temporais a amplitude se
anula, pois a soma sobre as freqiiéncias sera antissimétrica, sendo uma fungao par no denominador e impar
no numerador, de forma que se anula para n variando no intervalo —oo < n < +00. As somas explicitas
sobre as freqiiéncias podem ser feitas usando-se os resultados do Apéndice D.2. No entanto, note que a

expressdo (E.3) pode ser escrita como derivadas de uma func¢do logaritmica, na forma

s ) B, - o o?
IS\ = —2263T/ n ) (sinpy - k 4 sinpy - k + sin ps - k) O%,,95, %, zn:ln[(anT)2 + k2.

(E4)
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Agora fazemos duas integracdes a direita, agindo na funcfo logaritmica, e para a tltima derivada fazemos

uma integracao por partes, de forma que obtemos
3k
(P1,ucospi - k + Poycospa - k + P3y, cosps - k)

, d
= 22€3T/W
_4kuk)\ 2771//\
X[%;[@wnTV-+kﬂ2*‘2;[@wnTv-+kﬂ

(E.5)

st
F;w)\

Usando a relagdo

— (P1,ucospr - k + P2y cospa - k+ P3y cosps - k)
=pi1u(l —cospi - k) + P2 (1 —cosps - k) + ps (1l —cosps - k),
(E.6)

que pode ser demonstrada usando-se a conservacdo de momento pj + ps + p3 = 0, vemos que a amplitude
(E.7)

de 3-pontos pode ser escrita em termos da auto-energia do f6ton no limite estatico, na forma

oA (P1, 2, p3) = ie [Py IEN (p1) + Do, IS (p2) 4 B3, 155 (p3)] -

static(p2> +ﬁ37iH%%atic(p3>] 7 (ES)

0 (p1) + P, 1T

Desta forma, as componentes ndo-nulas na ordem dominante que estamos procurando podem ser represen-

tadas por:
(E.9)

01 (p1, p2, p3) = ie [pr,i 1T

atic

LS8 (1, po, p3) = de [P,k 1559 (p1) + o,k 115525 (p2) + P, & 15521 (p3))]

E.2 Amplitude de 4-pontos

Nosso objetivo € demonstrar a relacdo (3.36) satisfeita pela amplitude de 4-pontos. Partimos da relac@o

2k ke,
((27nT)? + k2)*

cmu)\p(php% P3, p4)

2

3 ~ ~ ~ ~
pr-k\ . (p2-k\ . (pP3-k\ . (Ps-k
>s1n <T> sin <T> sm( T En

= 32¢* / (‘;W’;S sin< 5
1
“[@wnTV-%kﬂ3<

2
i [(27nT)? + k22 (5“”5>‘P + 5pu5uA>] :

5uyk)\k‘p + 6pukz/k>\ + 5)\pkuky + 5V)\k‘pk‘u>
(E.10)
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Esta relacdo também pode ser escrita em termos de derivadas agindo em uma funcao logaritmica, da forma

d*k p1-k p2-k ps -k Pa-k
st _ 4 . . . .
Hl/)\p(p17p27p3;p4) = 32 T/ (2r)? sin (—2 )sm( 5 sin 5 sin 5

ot ) )
" Ok Ok, Okr Ok, Zn: In[(27nT)? + k7] (E.11)

O fator trigonométrico do vértice pode ser escrito como

S si pr-k\ . (D2-k\ . (DP3-k\ . (Pa-k
S11n _— Sin _— Sin B S11
2 2 2 2

= C(p1,k) + C(p2, k) + C(p3, k) + C(pa, k) — C(p1 + pa, k) — C(p2 + pa, k) — C(p3 + pa, k)
(E.12)

onde definimos
C(p,k)=1—cosp-k (E.13)

Agindo com duas derivadas a direita e fazendo duas integracdes por partes, pode-se mostrar que obtemos

o0\ (D1, P2, 3, P4)
= 11T ua(P1L + Pas P2, P3) + 2,0 Tia (P P2 + PasP3) + Do, o Uia(Pr, P2, 3 + pa).
(E.14)

de onde segue a relacao (3.36).
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Apéndice F

F1 Calculo de 7(z, k)

FO (2, k) = 0 (w)f) (z. k))

4
-/ (g& e~V {a (@) x o (@-)

d3k A3k
fz k 1 )
’ Z/ 271' 32k0 1 / 32k0 €2u

% <[ale tki-zy —f‘alelkl x*]*[az Zkg{E +a£elk2x ]>

d y vk 4’k d3k2
= Y Z/ 27T 32k0 1 32k0 2,u,

> [(alab —tkiay | oikoa— _'_<a]£a2> zkl Ty g th2a— ]

dy a3k, A3k,
_ —iy-k
- / (2m)*° / (2m)32k7 / 2732k Zzel%

283 — )1+ (R e ¢ e
(2722 80y0, 0 (et — ko) (JR]) 1% @ik

4 3 . |
- / (%4 et / (zi)fglk?(_Q) [(1+ np(RD) e #1Y 4 np((R9]) 1]

_ _2/ SRS 2)00060) [(1 4+ nis (K3 Ck + k) + s (K)3Ck — k)]

)

= _(Qi)gé(kz)[”B(l — KODO(—K®) + np(|k°)O (k)]
4 0 0 2
=~ g (KDBRB()
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onde utilizamos a solu¢@o de ondas planas para o campo quéntico a,(x),
d3k . .
=3 [ G e o).

onde aj; = a(ky,s1) e ai = af(ky, s1) possuem “médias térmicas” dadas por

(arab) = (2m)32k085,5,6% (k1 — ko) (1 + np(|KY]))
(alas) = (2m)32k005,5,08° (k1 — k2)np(|kY))

e satisfazem a relacdo de comutacdo usual
[y, ab) = (27)32k06,,4,0% (k1 — ko)
e e = €/(k1, 1) é o vetor de polarizagdo real que € transversal ao vetor de onda kY, satisfazendo

ky-ei(k,81) =0 Z 1k, s1)€l (ki,s1) = —2.
s1=1,2

Também utilizamos a representagdo integral em 4 dimensdes da funcio delta de Dirac,

4
s

e por tltimo escrevemos a integral em d3k; na forma

3 4
/ % - / %(zwk;)g(kg),

(F2)

(E3)
(E4)

(ES5)

(F.6)

FE7)

(E.8)

O produto Moyal entre as exponenciais pode ser facilmente feita usando a propriedade (2.50), de maneira

que temos

e*ikl'm-&- % eikl-m_ _ efikl-(m+y/2) % eikl-(xfy/Q)
efzkl-y efzkl-r % ezkl-m

— e—ikl-y
lembrando que a ndo-comutatividade se da apenas com a coordenada x, mas ndo com y.

F.2 Cilculo de 7 (x, k)

(1) e 1 0 ulof 70 dy iy £
F (.fU,k’) = §ma—kal{5 2fpg./f -2 (271_)4 € <CLH(£E+) *fpg*a (.%'7)>
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Vamos comegar calculando a integral do segundo termo do lado direito,

d4y —iy-k r "
(27.‘-)4 ¢ <a,u('r+) * fpa(x) *a (-%'—)> =
d3k A3k
—z -k 1 2
v 2/ 32k.0 1 / 32k‘0 €24
« <[a1 G ] ¢ o () fay e 1 o)

d y 71 k d kl d ]{32
- " Z/ 27r)32k0 “ / )32k

X [<a1a£> e kT fp,,(x) x etheo— 4 <aJ{a2> etkray o fpa(ﬂf) * e_“”"‘*]

d* . 3 ) |
— / (27-34 oWk / %(_2) [(1 + nB(]k(l)D)fpa(x — 0ky) etk Y
+ np(|kY)) foo (@ + Ok1) e™19]
4

=~y K N0 () fym (2 + 0K)

— f(O)pr(x + 0k) (F.11)
onde usamos a propriedade (2.50) para fazer o produto Moyal,

e—tkiTy o fpa($) % etbrz— _ o—iki(z+y/2) fpa(‘r) % etk (z—y/2)
— e—z’kl-y e—z’k1~m *fpg(l') * eikl-m

= e MYf (x— 0kp) (F.12)
Desta forma, F(!) pode ser escrito como

FO(z, k) = —

(2%76)3 ﬁa;:akp nB(‘kODH(kO)d(kQ)(fpg(:c) — foolz + gk))

(F.13)
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F.3 Calculo de 7(z, k)

3 _
+§a?kp [fpa(ﬂU) x FO (2, k) + FV (@, k) % fpo (@)

—ie[Ay(z), Ay ()M * FO —ieFO x [A,(z), Ag(2)]MB

4
_2/ ((217:;4 e WE (G, (21) * (—ie[A,, Aglmp) x G (z_))

4
2 [ e e (Gl ) o) Gﬂ(x-»] } ~ (F14)

As contribui¢des da primeira, segunda e terceira linhas podem ser obtidas diretamente, pois F(©) ¢ F(1) j4
estdo determinados. A quarta linha esté calculada em (5.82). O cdlculo da tltima linha pode ser feito como

segue:

4
/ (2754 eV (Gu(as) * fpo(x) x GH(z-)) =

4
- / (;17:;4 eV au(xy) * foo(x) * ak(x_))

d3k d3k
et k 1 2
v Z/ 271' 32]{30 1 / 32]{30 €2u

x(Jay e —ik1- X4 + aJ{ ik Xﬂ * fpa($) % [a2 otk X + a; eZk2'X7]>

d y vk d3ky A3k
- " Z/ )20 51 / )32k0

% [<a1a£>e ik1- X4 *fpo‘(x>* ik X _ + (a];a > tk1- X4 *fpa(x)* e—ikg-X_]

d*y —iy-k A3k Oy ikiy ik X . F X
) @nE© oy ("2 | skl e e * [po(z) % €
+np(|k)]) e® Y e® X i o (2) * eikl‘X]

(e)

-/ (33)/4 e | @g’%w) [(1+nB(|k?|))e_ik1’y<e*—lél.D fpa($)>
g (kY)) v (effl'f’ fpg(x)) (6)]

(e)

= (KNI (o))

(F.15)
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onde usamos a definigio X = '} 4 e#*” A, (z) e a propriedade,

Ciik'X*pr((E)* eik-X _ efi(k-erekXA) *fpo(x)* ei(k-x+ek><A)

— "), (F.16)

que pode ser obtida expandindo-se o produto Moyal e reagrupando-se os termos do lado esquerdo. O so-
brescrito ](e) significa que devemos tomar termos lineares em e desta expressao. Para concluir, precisamos

da propriedade

i(k-x+e A r —i(k-ztekx A (€) kD £
ez(k t+ekxA) fpa(l“)*e (k-z+ kxA)) — (ekDfpo(:E))

o

= —ie Y {0y A) 4 (R0 R AR 0) 44 (R A0

n=1

Feitas estas consideracdes, a expressio para F(?) serd

FO(2,k) = ie /~cl—8 [k; CA(z), FO (z, k)} .
<4w> k—la%’“”‘“"?)”ﬂl’f(’i){ [Ap(@), Ao ()] = [Ap(x + 0 k), Ax(z + 0 k)] g
+[%ak.(fi(x) —f_l(x+9k)),fpa(:c+¢9k:)]MB} (F.18)

No célculo explicito de J, l(j%) ¢ mais conveniente calcular o termo (F.17) no espaco dos momentos. Embora

um pouco trabalhoso, pode-se mostrar que o lado direito de (F.17) pode ser escrito como
' N X I _
—ie / d*pad*ps3d(p1 + pa + ps)(—2i) sin <1%) (k- A(p2)) foo (k3)
X Z { ik )"+ (6 p1)" 2 (ikpg) -+ (—ik - pa)"

. X - -
= —2e/d4pzd4p35(p1 + p2 + p3) sin (%) (k- A(p2)) foo(p3)

» Z i‘ (Zlf; p1)" — (—Z.lj‘ - p3)
= (ik-p1) — (—ik - p3)
X k-A
= —2je / d*pad*psd(p1 + p2 + p3) sin <p1 5 p2> )

];7‘132

Frnlp) (57— Y.
(F.19)

onde fpg(pg) = —Z.(p?,pAU(piS) - p3o‘Ap(p3))'

143



Apéndice G

G.1 Quantizacao da QED nao-comutativa em um campo de fundo

Sabemos que a quantizacdo canoOnica de teorias de gauge nao-abelianas é altamente ndo trivial [67],
por isso outros métodos foram desenvolvidos, como por exemplo a quantizagdo por integrais de trajetoria
€ mais recentemente a quantizacio estocastica. A dificuldade estd no fato de que ndo € facil encontrar
uma base completa para as equagdes do campo quantico, que sdo equagdes ndo-lineares. Um caso onde a
quantizacio candnica pode ser feita com sucesso € quando o campo de fundo € constante [67]. Entretanto,
existem situagdes fisicas onde o campo de fundo pode ser considerado como sendo fraco e com variagdes
mais lentas que o campo quantico, de forma que o método da quantizagdo candnica em um campo de
fundo pode ser realizado com sucesso. Vamos entdo aplicar este método a QED ndo-comutativa. Isto se
justifica na aproximacao de altas temperaturas (limite HTL) que estamos adotando aqui, pois no nosso caso
o plasma quente que estamos estudando é um exemplo onde os campos externos (campos de fundo) sao
fracos com relacdo aos campos que descrevem as particulas em um loop interno (campos quanticos), de
forma que € satisfeita a relagdo p << k ~ T, onde p representa um momento externo tipico e k representa
0 momento interno ao loop.

A quantizagado nio € afetada pela presenca de campos de férmions, de maneira que vamos nos restringir

ao caso da teoria de gauge U (1) ndo-comutaiva'. A agio da teoria é descrita por

S[A] = /d4x <—iFW*FW> , (G.1)

onde
F;w (A) = auAu - 8uAu —ie [Auy AV]MB . (G.2)

Fazemos entdo a decomposicao do campo de gauge em uma parte de campo de fundo fl#, € uma parte
quantica a,,,
A=A, +a,, (au) =0, (G.3)

onde (a,) representa o valor esperado do campo quéntico em um dado estado e A . satisfaz

Du(A)F*(A) = Dy F* = 9, F" —ie [A,, F* ], = 0. (G.4)

!'Que chamamos anteriormente de QED pura nio-comutativa, ou ainda teoria de Maxwell ndo-comutativa.
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Segue entdao que podemos escrever F'*¥ como

Fu = Fu + Dyay — Dyay, —ie lay, alyg (G.5)

e a a¢do (G.1) pode ser expandida como

_ 1_ _ 1 _ _ _ _
S[A+a] = /d4x [—ZFW *x FH — §(D“a” — D"a") x Dyay, + ieF™ xay, x a,
2
+ie(D*a” — D¥a*) x ay, * ay, + % [ah, a"|yp * @y * ay | (G.6)

A vantagem do método do campo de fundo é que a invaridncia de gauge original da teoria pela
transformacao

0A,(x) = Oue(z) —ie[Au(x), €(x)]yp (G.7)
pode ser vista de duas maneiras. Podemos pensa-la como uma invariancia de gauge quantica pela transformagao

§A,(z) =0,
bay(x) = Oue(x) —ie [Au(z) + au(x), €(z)] g - (G.8)

ou podemos pensd-la como uma invariancia de gauge do campo de fundo por

Oue(x) —ie [Au(m), e(:n)]MB ,
day(r) = —ielay(x), €(2)]yp - (G.9)

<
N
=
—~
8
~
I

Ou seja, por uma transformacao de gauge quantica, o campo de fundo permanece inerte enquanto o campo
quantico se transforma como um campo de gauge. Por outro lado, por uma transformacgio de gauge do
campo de fundo, o campo quantico se transforma na sua representacdo adjunta. Podemos ent@o tirar van-
tagem disso e adicionar a agao um termo fixador de gauge e um termo de ghost (fantasma)

1 _

ScF + Sghost = /d%; [ 2§(D~a)*(D~a) + DM x (8¢ — e [Ay + ay, c] (G.10)

MB) ?

que quebra a invariincia de gauge quintica (G.8), mas permanece invariante pela transformacao de gauge
do campo de fundo (G.9), com os campos de ghosts transformando-se na representacdo adjunta. Desta
forma, célculos realizados com este termo fixador de gauge leva a resultados manifestamente invariantes
por transformagdes de gauge do campo de fundo.

A parte da acdo total que € responsével pelos resultados em 1-loop € aquela que € quadratica nos

campos quanticos, de forma que podemos nos restringir a
1 - _ _ _
S, = /d4x [—Q(D“a” — D¥a!") x Dyay, + ieF" x a, % a,

—%(D-a)*(D-a)—i—D“E*D#c ) (G.11)
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Aqui £ representa o parametro fixador de gauge e no limite £ — 0 devemos ter a seguinte condi¢do de

gauge:

D-a= Dua“ = Jyat' —ie [f_lu, a“]MB =0. (G.12)

Neste gauge, a equacio de movimento que segue de

0<%, _ 07
—4 _p,—1 =0 (G.13)
Oay, dD,ay
para o campo quantico é
D?a* = DY D*a,, + ie[F"  a,]uB - (G.14)
Usando a propriedade
(DMDV — DVDM)GV = _Z'e[FIW7 al,]MB s (G.15)

podemos reescrever a equacdo de movimento (G.14) simplesmente como

D*a" = 2ie [F" ay] - (G.16)

A solucdo desta equacdo é muito dificil, mas no limite de altas temperaturas em que estamos interes-
sados ela pode ser resolvida. Em primeiro lugar lembre-se que o momento externo p estd associado ao
campo de fundo A e o momento interno ao loop, representado por k, estd associado ao campo quantico
a. Desta forma, uma derivada agindo em A é proporcional a p, ou seja A ~ pA, e quando agindo em
a é proporcional a k, ou seja da ~ ka. E fécil ver entdo que todos os termos do lado direito de (G.16)
sdo proporcionais a epAa e e? A%a, enquanto que do lado esquerdo temos termos proporcionais a Aka. O
lado direito representa a variacdo do campo de fundo A, enquanto o lado esquerdo representa a variagio
do campo quantico a. Como dissemos anteriormente, o0 método da quantizacdo em um campo de fundo se
aplica no caso em que o campo de fundo € fraco ou varia lentamente com relacdo ao campo quantico, que
é 0 Nosso caso, pois temos p << k. Por isso podemos fazer a aproximagio pAa << Aka, e despresar

os termos de ordem e A?, de forma que o lado direito de (G.16) ndo contribui para nossa aproximacio, e

ficamos com
D?*a" =0, (G.17)
onde o operador D’ Alembertiano na aproximacao considerada é dado simplesmente por
D? ~ 8 — 2ie[A,,0° |uB - (G.18)

Agora vamos encontrar uma base que seja solugdo da equacdo (G.17). Sabemos que, na auséncia de

qualquer campo de fundo, uma solugao para o operador D’ Alembertiano sdo as ondas planas, da forma
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¢™**_ Vamos entdo mostrar que, no nosso caso nio-comutativo na presen¢a de um campo de fundo A e nas

aproximacdes acima, a solugio até ordem e da equacio”

D% =0 (G.19)
é da forma
b= X, (G.20)
onde
XH =zt 4 ed A, (x), Ay (z) = A, (z) + %kaa : (G.21)

Nossa demonstragdo serd feita em primeira ordem para o parametro #, mas pode-se mostrar que o resultado
¢ vélido para o caso geral, conforme [71].
Em primeiro lugar, vamos expandir A, (x) em poténcias de e, e tomar somente o primeiro termo, de

ordem zero em e,

AN(IE) = AM + ﬁpuaka
_ 1 ~ - o
= AM + ﬁ((‘)uAa - (%Au - ’LG[AM, AQ]MB)]{J
_ 1 - 9, A
= A, — ——= (DA, k> + 2k
_ Ou(A-F)
k-D
Ou(A - k)
~ G.22
D (G.22)
Para ordem mais baixa em 6, podemos escrever>
otk X ~ ik gickadPAg ’ (G.23)
de forma que, até termos lineares em 6, temos
e X ~ —2ek, 0005k - A) e X 4 iek,0°P Ij—aag(k -A) e X 4 06?), (G.24)

onde usamos o resultado (G.22) e o fato que k2 = 0. Mas o segundo termo do lado direito contém um fator

do tipo 0%/k - O ~ p?/k - p com relagio ao primeiro, e no limite p << k temos p?/k - p << 1, portanto

Lembre-se que estamos interessados nas contribuigdes de ordem e vindas do campo quantico a,,.

3No caso geral, devido a ndo-comutatividade dos dois expoentes, a decomposigdo deve ser feita usando-se a férmula de Baker-
Campbell-Hausdorff et el = eATBHL/204,BIH1/12[A,[A4, B -1/12[B,[B, Al 4
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este termo pode ser despresado com relacdo ao primeiro. Portanto
e X ~ —2ek,0°P05(k - A)e* X 4 0(6%). (G.25)
Temos também que, até ordem 6,

ﬂﬂ&ﬁ%mmmzamwm(¥w@AM%mw%>

~ 2eka0°P05(k - A)e* X + 0(6?), (G.26)

onde usamos a propriedade (2.44) para o comutador Moyal entre duas fun¢des e tomamos apenas o primeiro

termo da expansdo da funcio seno, que ja € linear em 6. Portanto temos

DQ eik~X ~ 82 eikz'X _ 2’L'€[Ag, o° eik‘X]MB

=0+ 0(), (G27)

e assim fica demonstrado que até termos de ordem 6 a solugdo de (G.19) € dada por (G.20).

Portanto, a solugdo quéntica para o campo a,, que satisfaca (G.17) deve ser da forma

a'(z) =) Pk e (a e X 4 gl efh X ) (G.28)
- ) (2m)32k0 ’ '

que chamamos anteriormente de solu¢do quantica covariantizada, ja que ela se transforma covariantemente

por transformacdes de gauge.
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