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Resumo

Estudamos neste trabalho as contribuições de 1-loop da eletrodinâmica quântica não-comutativa a altas

temperaturas. Obtivemos as amplitudes de n-pontos por meio do método de diagramas de Feynman e mos-

tramos que os mesmos resultados podem ser obtidos pelo método das equações de transporte de Boltzmann.

Em paralelo estudamos as massas de blindagem que seguem do setor não-comutativo da teoria no limite

estático, assim como a ação efetiva em 1-loop que gera todas as funções de n-pontos com ı́ndices espaciais.

Também estudamos a quantização do campo de gauge no espaço não-comutativo pelo método do campo

de fundo, obtendo uma generalização da base de ondas planas que se transforma covariantemente.
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Abstract

In this work we study the 1-loop contributions for noncommutative electrodynamics at high temperature.

We calculate the n-point amplitudes by the Feynman diagrams method and we show that the same results

can be obtained by the method of Boltzmann transport equations. We also study the screening mass de-

rived from the noncommutative sector in the static limit case and the effective generating functional that

determine all the amplitudes at one loop with spatial indices only. We quantize noncommutative QED by

the background field gauge method and obtain a generalization of plane waves that transforms covariantly.
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Introdução

A teoria quântica de campos é um conjunto de idéias e de ferramentas que combina três das mais im-

portantes áreas da fı́sica moderna, são elas a teoria da relatividade, a mecânica quântica e o conceito de

campos, análogo aos campos eletromagnéticos da teoria de Maxwell. Ela é a base da moderna fı́sica das

partı́culas elementares, e fornece o ferramental necessário para entender a fı́sica nuclear, a fı́sica atômica,

a fı́sica da matéria condensada e a astrofı́sica, além de fazer uma ponte entre a matemática e muitas áreas

da fı́sica. A necessidade de uma nova fı́sica para tratar de sistemas em escalas de distâncias muito peque-

nas e escalas de energias muito altas se revelou necessária quando a aplicação da mecânica quântica de

Schrödinger não foi capaz de explicar alguns efeitos conhecidos, como a produção de novas partı́culas em

colisões em aceleradores, ou a discrepância entre o valor medido experimentalmente e o calculado teorica-

mente para o momento magnético anômalo do elétron, ou ainda a pequena diferença de energia que existe

entre os estados 2S1/2 e 2P1/2 do átomo de hidrogênio, efeito conhecido como “Lamb shift”. Estas e ou-

tras dificuldades levaram Schwinger, Feynman, Dirac e outros à formulação da Eletrodinâmica Quântica,

ou QED (Quantum Electrodynamics), considerada uma das melhores e mais fundamentais teorias de toda

a fı́sica e nascida da teoria quântica de campos. É a teoria que explica corretamente as interações entre

elétrons e fótons, formulada por meio de um conjunto simples de equações: as equações de Maxwell da

eletrodinâmica e a equação de Dirac para os elétrons. As soluções que derivam desta teoria dão previsões

detalhadas de fenômenos eletromagnéticos desde distâncias macroscópicas até regiões centenas de vezes

menor que o tamanho do núcleo atômico.

A Eletrodinâmica Quântica apareceu alguns anos depois da mecânica quântica de Schrödinger. A idéia

original de Planck da quantização da energia foi estendida e aplicada ao eletromagnetismo, e os “quan-

tas” correspondentes ao campo eletromagnético foram identificados como sendo os fótons. Mais uma vez

a dualidade onda-partı́cula se manifestava, já que o campo eletromagnético clássico é descrito por uma

onda, mas a hipótese de quantização associa a este mesmo campo uma partı́cula, o fóton, que se pro-

paga também como uma partı́cula. A esse processo deu-se o nome de segunda quantização, pois agora os

campos associados às partı́culas também satisfazem a uma relação de comutação análoga àquela satisfeita

pelas coordenadas e momentos conjugados da mecânica quântica usual. O desenvolvimento da QED se

mostrou tão eficiente que os fı́sicos formularam uma teoria nas mesmas bases para descrever as interações

nucleares fracas, responsável pelo decaimento β por exemplo, sendo as partı́culas mediadoras os chamados

bósons massivos W+, W− e Z0. Um modelo semelhante também foi aplicado para explicar as interações

nucleares fortes, que são as interações entre os quarks, constituintes dos prótons e nêutrons, cujo campo
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análogo ao do fóton seria o glúon, de maneira que nasceu então a Cromodinâmica Quântica, ou QCD

(Quantum Cromodynamics). Assim como os fótons são os quantas que intermediam as interações eletro-

magnéticas entre elétrons por exemplo, os glúons são os quantas que intermediam as interações nucleares

fortes entre os quarks. Por último fez-se a tentativa de quantizar a gravitação, em um esforço para juntar a

mecânica quântica com a teoria da relatividade geral de Einstein, sendo o gráviton a partı́cula mediadora

das interações gravitacionais. Mas esta é uma área que ainda está em desenvolvimento, a teoria de cordas

é uma das possı́veis candidatas, mas existem inúmeras dificuldades que ainda precisam ser contornadas e

portanto trata-se de um problema ainda em aberto.

Vamos retornar então à QED, a teoria que estamos interessados aqui. Um dos principais métodos de

cálculo, que derivaram do desenvolvimento da teoria quântica de campos e em particular da QED, são

os conhecidos diagramas de Feynman. Este método se mostrou bastante útil no tratamento de processos

de espalhamento e de produção de partı́culas, já que uma análise exata destes processos não é factı́vel

na prática. Então o que se propõe é tratá-los perturbativamente ordem a ordem em algum parâmetro do

problema, geralmente a constante de acoplamento, de maneira que os cálculos explı́citos possam ser feitos

ordem a ordem, fornecendo correções cada vez mais precisas. Para sermos mais claro, imagine um processo

simples que envolva elétrons e fótons, como o espalhamento Møller, que nada mais é que o efeito clássico

de repulsão coulombiana entre duas partı́culas de mesma carga, por exemplo dois elétrons se aproximando,

interagindo de alguma maneira e em seguida se distanciando. Do ponto de vista da QED podemos desenhar

o que acontece neste processo por um diagrama de Feynman, ele é dado pela figura abaixo, que deve ser

“lido” da esquerda para a direita, indicando que dois elétrons se aproximam, interagem entre si trocando

um fóton, e em seguida continuam seus caminhos. Sabemos que a um tal espalhamento está associada

e

e e

e

uma amplitude, que está diretamente relacionada à seção de choque do processo em questão. Portanto,

calcular um diagrama de Feynman do tipo ilustrado nesta figura significa calcular com qual probabilidade

este espalhamento deve ocorrer. Mas temos de dizer aqui que este cálculo é apenas uma aproximação

do que acontece realmente. De fato, este diagrama representando o espalhamento Møller não é tudo o

que acontece. Apenas em primeira aproximação o resultado está correto, e uma caracterı́stica notável

desta formulação por meio de diagramas de Feynman é que podemos construir, ordem a ordem, qual é o

processo real que de fato acontece, e obter uma expressão cada vez mais precisa para a amplitude envolvida

no espalhamento, ou seja, temos como tornar o cálculo da seção de choque envolvida cada vez mais preciso.

Vamos ser mais claros no que estamos querendo dizer. O fóton que está intermediando a interação entre

os elétrons pode, segundo a formulação da QED, sofrer uma outra interação antes de fazer a intermediação
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entre os dois elétrons, o que poderia mudar um pouco o valor da amplitude final deste processo. De

fato isto acontece, e outro diagrama que pode também contribuir para a amplitude final é, por exemplo,

representado abaixo. Ele indica que o fóton trocado pelos elétrons pode, em algum instante, formar um

e e

e e

par elétron-pósitron, que se aniquilam logo em seguida formando novamente um fóton, que só depois vai

transferir a interação. Dizemos que o propagador do fóton foi modificado. Diagramas deste tipo são

chamados diagramas de 1-laço, ou 1-loop, como é mais comum na literatura. Portanto, a amplitude final

a ser considerada deve levar em conta também este possı́vel efeito, sendo a contribuição para a seção de

choque final uma soma sobre todas as possibilidades. Na verdade existem muitos outros diagramas que

podem contribuir para este espalhamento, mas felizmente eles dão contribuições cada vez menores, de

maneira que em primeira aproximação podemos nos restringir ao cálculo de uns poucos diagramas. Este é

o mérito dos diagramas de Feynman. Podemos obter, se quisermos, correções cada vez mais precisas para a

amplitude em questão analisando apenas os possı́veis diagramas que contribuem para o espalhamento. Não

é preciso dizer que os cálculos se tornam cada vez mais complicados, mas o fato é que temos um método

sistemático de fazer cálculos. Portanto, as primeiras correções a um processo direto vêm de diagramas do

tipo 1-loop, como o representado acima, e serão diagramas desse tipo que estaremos interessados aqui.

Agora vamos adicionar mais um ingrediente a esta nossa brevı́ssima introdução a teoria quântica de

campos. Imagine que um processo do tipo representado nos diagramas anteriores esteja ocorrendo imerso

em um reservatório térmico de temperatura T , banhando todo o sistema. Será que a temperatura tem

alguma influência no cálculo das amplitudes? É de se esperar que sim, afinal de contas uma fonte externa

de calor significa uma fonte de energia, o que pode perfeitamente influenciar processos de espalhamento e

produção de partı́culas. Sabemos que as partı́culas estão interagindo entre si, processos como os descritos

anteriormente estão ocorrendo a todo momento, entre milhares de outros que são também representados

por diagramas de Feynman, e todos eles ocorrem imersos em um banho térmico. Portanto, nada mais

natural que perguntarmos: o que muda com os cálculos da teoria quântica de campos usual se o sistema

estiver sob efeito de altas temperaturas e densidades? Foi então que nasceu a teoria quântica de campos a

temperatura finita.

São diversos os sistemas onde efeitos de temperatura e densidade ocorrem. O interior de estrelas por

exemplo é um bom exemplo. Qual o mecanismo que rege o comportamento da matéria nos núcleos de

estrelas de nêutrons ou de anãs brancas? De que forma o limite de Chandrasekhar, que determina se
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uma estrela vai ou não colapsar para um buraco negro, pode ser influenciado por efeitos de temperatura

e densidade? Além desses interesses astrofı́sicos, uma questão fundamental na fı́sica atual é entender o

comportamento de plasmas da QCD a altı́ssimas temperaturas e densidades. Acredita-se que acima de uma

certa temperatura crı́tica possa existir uma fase da matéria onde quarks e glúons possam coexistir de forma

independente, ao contrário do que ocorre na matéria hadrônica nuclear, onde eles não são encontrados

separadamente. Este possı́vel estado da matéria ficou conhecido como “plasma de quarks e glúons”, que

pode ter existido naturalmente no universo primordial. Cálculos de QCD na rede indicam que de fato

deve ocorrer uma transição de fases com a matéria nuclear a altı́ssimas temperaturas e/ou densidades. O

diagrama de fases Temperatura (T ) × Potencial quı́mico (µ) da figura abaixo dá uma visão mais clara

desse processo. A baixas temperaturas e densidades da ordem da densidade nuclear, quarks e glúons estão

confinados formando hádrons. Não existem quarks ou glúons livres se propagando no vácuo. Mas esta

situação pode mudar se a temperatura subir acima de um valor crı́tico da ordem de 150MeV. Nesta situação

podemos ter um gás de quarks e glúons quase livres, o chamado plasma de quarks e glúons. Esta mesma

situação pode ocorrer em temperaturas muito baixas e densidades muito altas, da ordem de cinco vezes

a densidade nuclear (que corresponde a cerca de duas vezes o potencial quı́mico nuclear), de forma que

também pode haver esta transição de fases. Cálculos de QCD na rede confirmam o valor da temperatura

crı́tica acima para potencial quı́mico nulo, mas ainda não existem valores confiáveis para o caso inverso,

de temperatura nula e µ grande. A figura indica alguns “laboratórios” onde estas situações fı́sicas podem

ocorrer.

São vários os métodos desenvolvidos para tratar sistemas quânticos a temperatura finita. O mais co-

mum é o que faz uma ligação direta entre a termodinâmica estatı́stica e a teoria de campos, que ficou

conhecido como formalismo do tempo imaginário, em que a parte temporal da ação de um sistema da

teoria quântica de campos usual é estendida para o eixo imaginário. Como resultado temos uma estreita

analogia entre o funcional gerador das funções de Green da teoria de campos com a função de partição

da termodinâmica estatı́stica, da qual derivam as relações de entropia, energia livre, pressão, etc, para um

sistema em equilı́brio térmico. Desta forma o método dos diagramas de Feynman continua sendo válido,
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apenas com algumas modificações.

Um outro tratamento que leva em conta diretamente a temperatura de um sistema foi desenvolvido

por Boltzmann no final do século XIX. Um sistema perto do equilı́brio pode ser descrito por uma função

distribuição que caracteriza várias propriedades do sistema. Devido a algum efeito externo, a situação

de equilı́brio não é mais satisfeita e isto se reflete em uma mudança na função distribuição do sistema,

que agora deve satisfazer a uma equação dependente das equações de movimento clássicas do sistema.

Esta equação é a chamada equação de transporte, que quando tratada perturbativamente é um conjunto de

equações. Portanto, obtidas as correções para a função distribuição estamos obtendo as caracterı́sticas do

sistema fora do equilı́brio. À primeira vista este é um método totalmente clássico, mas em alguns limites,

por exemplo quando a temperatura do sistema é muito alta, podemos aplicá-lo para tratar de problemas da

teoria quântica de campos. Existe uma segunda formulação das equações de transporte, baseada em uma

construção quântica, que foi desenvolvida por Wigner e é mais apropriada para tratar sistemas em teoria de

campos. Tanto o método tradicional do formalismo do tempo imaginário quanto o método das equações de

transporte clássica e quântica serão discutidos com mais detalhes nos capı́tulos que seguem. Vamos agora

adicionar mais um ingrediente final à nossa teoria quântica de campos.

Sabemos que uma caracterı́stica importante e marcante da mecânica quântica e que tem reflexos em

muitas situações fı́sicas importantes é a quantização da energia de sistemas microscópicos. Isto decorre

do fato básico de que na mecânica quântica os operadores que representam as coordenadas e momentos

conjugados de uma partı́cula não comutam, ou seja, [x̂ , p̂x] = i~. A teoria quântica de campos é construı́da

nesta mesma base, sendo a quantização imposta aos operadores de campo (segunda quantização), e isso

tem implicações profundas em toda a fı́sica nuclear e atômica por exemplo. Agora imagine que, além da

não-comutatividade entre coordenadas e momentos, impomos também que as próprias coordenadas não

comutem entre si, ou seja, [x , y] 6= 0 por exemplo. Você poderia se perguntar agora que implicações isto

teria para a teoria quântica de campos tal como a conhecemos até agora e qual a motivação para se estudar

sistemas que satisfaçam esta relação de comutação estranha. E a resposta é que são muitas as motivações

assim como as modificações da teoria usual. Recentemente tem havido um interesse muito grande por

teorias quânticas de campos definidas em espaços não-comutativos, em parte pelos novos desenvolvimentos

da teoria das cordas, que prevê que em determinado limite onde um campo magnético intenso está presente

a não-comutatividade das coordenadas aparece naturalmente.

Temos portanto todas as ferramentas necessárias para dizer a que se propõe nosso trabalho aqui. Quere-

mos fazer cálculos de diagramas de 1-loop da eletrodinâmica quântica a temperatura finita definida em um

espaço não-comutativo. Primeiro vamos utilizar o método tradicional dos diagramas de Feynman, e depois

vamos mostrar que, a altas temperaturas, os mesmos cálculos podem ser feitos usando-se um método base-

ado nas equações de transporte de Boltzmann, portanto um método clássico. Isto acontece porque termos

de ordem dominante (clássicos) aparecem também dos diagramas de 1-loop a altas temperaturas.

No primeiro capı́tulo vamos rever algumas caracterı́sticas da eletrodinâmica quântica, tanto a tempe-

ratura nula quanto a temperatura finita, a fim de fazermos uma conexão entre os resultados existentes para

a QED usual e os resultados novos que vamos apresentar nos capı́tulos seguintes. No segundo capı́tulo
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discutimos alguns aspectos da teoria de campos em espaços não-comutativos, algumas motivações e um

exemplo quase clássico, em que uma partı́cula carregada na presença de um campo magnético uniforme

desenvolve naturalmente a não-comutatividade das coordenadas. Um tratamento da generalização para

campos magnéticos facamente não-uniformes também é apresentada, o que resultou na publicação dos

artigos [72, 73]. Também vamos discutir como as regras de Feynman se modificam para a QED não-

comutativa e a expressão para alguns diagramas de 1-loop. No terceiro capı́tulo desenvolvemos a primeira

parte de nosso trabalho, aplicando as técnicas dos dois primeiros capı́tulos especificamente para a QED

em espaços não-comutativos e a temperatura finita. Os principais resultados apresentandos neste capı́tulo

foram publicados na referência [70]. No quarto capı́tulo fazemos uma breve exposição geral do método

das equações de transporte de Boltzmann, apresentamos alguns modelos já estudados anteriormente por

outros e no quinto capı́tulo aplicamos o modelo ao nosso caso da QED não-comutativa, mostrando que os

mesmos resultados do terceiro capı́tulo podem ser obtidos. Para isso estudamos a quantização do campo de

gauge quântico na presença de um campo, resultado apresentado no Apêndice G e publicado na referência

[71].

Para não tornar o texto cansativo com tecnicalidades matemáticas, algum material foi colocado no

apêndice, para ser consultado quando necessário sem perder a lógica do texto principal.

Notações e convenções

Ao longo do texto usaremos as seguintes notações e convenções:

Métrica de Minkovski ηµν = diag(1,−1,−1,−1).

Exceto no capı́tulo 1, adotaremos ~ = c = kB = 1.

Neste sistema, 1GeV−1 ∼ 10−14cm. 1GeV∼ 1013K.

Exceto no capı́tulo 1, k se refere ao momento interno ao loop e p ao momento externo.
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Capı́tulo 1

Alguns Aspectos da Eletrodinâmica
Quântica

Neste primeiro capı́tulo vamos apresentar alguns resultados básicos da eletrodinâmica quântica que

serão importantes para o entendimento do contexto em que se insere o presente projeto. O objetivo é

mostrar onde nossos cálculos serão relevantes, quais as motivações fı́sicas, enfim, fazer uma conexão com

o mundo fı́sico dos nossos resultados. Na primeira seção derivamos alguns resultados da eletrodinâmica

quântica usual, ou a temperatura nula, para entender onde exatamente os cálculos a temperatura finita serão

relevantes. Alguns aspectos da QED a temperatura finita são apresentados na segunda seção. Nada do que

está apresentado neste capı́tulo é novo, queremos apenas fornecer informações para que possamos ter com

o que comparar quando nossos cálculos forem apresentados nos capı́tulos seguintes. Além disso, detalhes

de cálculos complexos não são feitos, mas referências onde eles podem ser encontrados são dadas ao longo

do texto.

1.1 QED a temperatura nula

Já foi dito na introdução que a eletrodinâmica quântica é a teoria fı́sica mais completa e precisa que

existe até o momento, sendo capaz de reproduzir valores experimentais com altı́ssimo grau de precisão. As

chamadas correções radiativas para um dado processo aproximam cada vez mais o valor teórico do obtido

experimentalmente, embora os cálculos fiquem cada vez mais complicados de serem feitos. Mas antes de

nos embrenharmos por cálculos longos e complicados que têm muito pouco a ver com a fı́sica do nosso

dia-a-dia, vamos tentar situar num contexto mais amplo qual é exatamente o nosso objetivo neste trabalho.

Para isto vamos retomar a teoria de campos usual, ou teoria de campos a temperatura nula, com o objetivo

de mostrar exatamente onde entrará o tratamento a temperatura finita.

7



1.1.1 Lagrangeana e regras de Feynman da QED

Vamos apresentar brevemente aqui algumas das ferramentas matemáticas necessárias para se fazerem

cálculos na eletrodinâmica quântica. São as chamadas regras de Feynman1, cujos objetos mais importantes

são os “propagadores” e “vértices”. Eles derivam diretamente da lagrangeana do sistema em questão,

no nosso caso a lagrangeana da eletrodinâmica quântica, que é composta de campos fermiônicos ψ(x) e

ψ̄(x) de spin 1
2 , necessários para descrever elétrons, pósitrons, múons, etc., e de campos que representam

o potencial vetor eletromagnético, Aµ(x), de spin 1, para descrever os fótons que são responsáveis pela

interação eletromagnética.

1 - Propagadores - A lagrangeana da QED é dada por:

L =

[

− 1

4
FµνF

µν +
1

2
µ2AµA

µ − 1

2ξ
(∂µA

µ)2
]

+

[

ψ̄

(

i

2

←→
/∂ −m

)

ψ

]

+
[

− eeψ̄γµψAµ
]

,

(1.1)

onde F µν = (∂µAν − ∂νAµ) é o tensor eletromagnético. A carga do elétron é representada por ee, e esta

notação ficará mais clara adiante. No primeiro colchetes, o termo com µ2 representa uma massa para o

fóton, em alguns cálculos é conveniente tomar a massa do fóton não-nula e só no final fazê-la tender a

zero. Para nossa discussão isto não importa, de modo que podemos tomar µ2 = 0. O termo contendo 1/ξ

é chamado termo de fixação de calibre, ou fixação de gauge, mas os resultados finais não devem depender

de ξ, o que reflete uma “invariância de gauge” da teoria. Dois limites importantes de ξ são ξ → 1 (gauge

de Feynman) e ξ → 0 (gauge de Landau). Observe que todos os fatores dentro do primeiro colchetes são

proporcionais a AA. Isto indica a possibilidade de uma partı́cula, no caso um fóton, se “propagar” de um

ponto ao outro, sendo criada por um dos A’s e destruı́da pelo outro2. Isto dará uma contribuição às regras

de Feynman no espaço dos momentos com a seguinte regra:

q

: Dµν
0 ≡ −

i

q2

(

ηµν − (1− ξ)q
µqν

q2

)

(1.2)

O termo seguinte da lagrangeana, formado por ψ̄ e ψ, representa a possibilidade de um férmion, um

elétron por exemplo, se propagar de um ponto ao outro, e a correspondente regra de Feynman é:

p
: S0 ≡

i

/p−mc =
i(/p+mc)

p2 −m2c2
(1.3)

E finalmente o último termo, proporcional a ψ̄ψA, é o responsável pela interação entre o fóton e o

elétron. Ele nos diz que estas partı́culas podem estar “ligadas” em algum momento do espaço-tempo.

Outra maneira de entender isso é que o campo eletromagnético produzido pelo elétron é transmitido pelo

espaço através de fótons. A correspondente regra de Feynman é chamada fator de vértice, e é representada
1Não vamos apresentar a dedução completa das regras para propagadores e vértices, isto está feito em vários livros texto

de teoria de campos. Queremos apenas dar uma idéia formal de como elas são derivadas. Boas referências neste assunto são
[1, 2, 3, 4, 5, 6]

2Esta é apenas uma descrição formal. Os campos que compõem a lagrangeana são operadores, e estes operadores agindo no
espaço de Hilbert é que são interpretados como operadores de criação e de aniquilação de partı́culas.
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por:

: ieeγ
µ (1.4)

A constante ee é a constante de acoplamento (ou intensidade) da interação, e no caso da eletrodinâmica

quântica é a carga do elétron.

Estas foram as regras dos propagadores e vértice. Agora vamos apresentar brevemente as regras para

as linhas externas:

2 - A cada elétron (ou outro férmion qualquer) com momento p entrando em um vértice, devemos

atribuir um espinor u(s)(p), e para um elétron saindo, um espinor ū(s)(p), onde s = 1, 2 indica o spin da

partı́cula. Estes espinores satisfazem as equações de Dirac no espaço dos momentos

(γµpµ −mc)u(s)(p) = 0 ū(s)(p)(γµpµ −mc) = 0 (1.5)

e são ortogonais ū(1)u(2) = 0 e normalizados ūu = 2mc.

3 - Para um pósitron (ou antiférmion) entrando, atribuı́mos um espinor v(s)(p), e para um pósitron

saindo, um espinor v̄(s)(p). Eles satisfazem as equações

(γµpµ +mc)v(s)(p) = 0 v̄(s)(p)(γµpµ +mc) = 0 (1.6)

e são ortogonais v̄(1)v(2) = 0 e normalizados v̄v = −2mc.

4 - Para um fóton entrando, escrevemos εµ, e para um fóton saindo εµ∗, que correspondem às diferentes

polarizações do fóton.

5 - Conservação de energia e momento - Para cada vértice, incluir uma função delta da forma

(2π)4δ4(k1 + k2 + k3) . (1.7)

6 - Integração sobre momentos internos - Para cada momento interno q, incluir um termo

∫

d4q

(2π)4
(1.8)

e integrar.

7 - Para cada loop fermiônico incluir um fator (−1).

8 - No resultado final vai restar um fator

(2π)4δ4(p1 + p2 + · · · − pn) , (1.9)

correspondente à conservação de energia e momento. Cancelando este termo, o que resta é a amplitude
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−iM.

Estas são as peças fundamentais para construirmos diagramas de Feynman, e acredite, muitos diagra-

mas diferentes podem ser construı́dos utilizando somente estas regras, como veremos mais à frente.

1.1.2 Seção de choque

Uma das quantidades fı́sicas mais importantes e que podem ser obtidas experimentalmente no labo-

ratório é a seção de choque de uma reação, que nada mais é que a probabilidade de que uma certa reação

ou processo de espalhamento possa ocorrer. Considere por exemplo um processo em que uma partı́cula A

se choca com uma partı́cula B dando origem a duas outras partı́culas C e D,

A + B → C + D . (1.10)

Este processo simples pode muito bem descrever várias situações fı́sicas de interesse, por exemplo, os

seguintes processos:

e− + e− → e− + e− espalhamento elétron-elétron

γ + e− → γ + e− espalhamento Compton

e− + p+ → e− + p+ espalhamento elétron-próton

e− + e+ → γ + γ aniquilação de pares

e− + e+ → µ− + µ+ produção de múons

dentre outros. Para qualquer um deles o esquema (1.10) é válido, e no referencial do centro de massa do

sistema a seção de choque diferencial pode ser escrita como

dσ

dΩ
= F

(

~c

8π

)2 |M|2
(EA + EB)2

|~pf |
|~pi|

, (1.11)

onde ~pf = |~pC | = |~pD| é o momento final das partı́culas, ~pi = |~pA| = |~pB| é o momento inicial, EA e

EB são as energias relativı́sticas Ej =
√

m2
jc

4 + ~p2
jc

2 das partı́culas e pj = (Ej/c, ~pj) é o quadrivetor

momento, com j = A, B. O fator F é um produto de fatores estatı́sticos que leva em conta as partı́culas

no estado final serem iguais ou não. Fica faltando dizer o que é M. Esta quantidade recebe o nome

de amplitude de transição ou simplesmente amplitude, e seu cálculo depende basicamente das regras de

Feynman indicadas anteriormente. Qualquer um dos processos descritos anteriormente pode ocorrer de

várias maneiras, com estágios intermediários, e o que diz qual é o processo mais provável é a amplitude

M, sendo o processo completo formado pela soma de todas as amplitudes. Para ficar mais claro o que

estamos querendo dizer, vamos considerar dois exemplos a seguir, a produção de múons pela aniquilação

entre um elétron e um pósitron e o espalhamento pelo potencial coulombiano.
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1.1.3 Produção de múons

O múon é um lépton com exatamente todas as mesmas propriedades do elétron, mesma carga, mesmo

spin, exceto sua massa, que é mµ ≈ 200me. A reação

e− + e+ → µ− + µ+

ocorre em grande quantidade dentro de aceleradores, como no LEP, no SLAC, no RHIC, e o valor teórico

de sua seção de choque é muito fácil de calcular, podendo ser confrontada com os valores obtidos naqueles

laboratórios.

Uma forma diagramática simples de representar esta reação é a dada na Figura 1.1. “Lendo” da es-

e

e

p1

p2 p4

p3

qq

Figura 1.1: Produção de múons através da colisão elétron-pósitron.

querda para a direita, este gráfico diz o seguinte. Um elétron e um pósitron se aniquilam, dando origem a

um fóton virtual γ que logo se desintegra, formando em seguida um par múon-antimúon. Este diagrama

dará origem a uma amplitudeM1, que de acordo com as regras de Feynman (1.2)-(1.9), será dada por

M1 = −e2e[ū(p3)γ
µu(p4)]

ηµν
q2

[ū(p2)γ
νu(p1)] , (1.12)

onde q = p1 − p2. Embora tenha uma aparência complicada, o cálculo de M1 pode ser feito sem

complicações, e o resultado é simplesmente um número, que deve ser colocado na equação (1.11) e a

seção de choque diferencial pode ser calculada.

Mas esta não é toda a história. Como dissemos anteriormente, outros diagramas também podem con-

tribuir para o processo com alguma amplitude, e de fato é isto o que realmente acontece. O diagrama da

Figura 1.2 mostra uma outra maneira possı́vel de ocorrer a produção de múons. O elétron e o pósitron se

aniquilam formando um fóton virtual, este fóton se desintegra em um par elétron-pósitron que em seguida

se aniquilam formando novamente um fóton virtual, e finalmente este fóton se desintegra em um par de

múons. Esta é uma possibilidade ditada pelas regras da QED e que de fato acontece, mesmo tendo uma

amplitudeM2 com ordem de grandeza bem menor. Trata-se de um diagrama de 1-laço, ou 1-loop, conhe-

cido como “polarização do vácuo”, tendo a propriedade de modificar a carga do elétron ee, como ficará
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e

p1

p2 p4

p
3

q q

e

e

e

p

p+q

Figura 1.2: Diagrama de 1-loop que contribui para o processo de produção de múons.

mais claro adiante. A expressão matemática para esta amplitude é, usando as regras de Feynman,

M2 =
ie2e
q4

[ū(p3)γ
µu(p4)]

{

− e2e
∫

d4p

(2π)4
Tr [γµ(/p+ /q +mc)γν(/p+mc)]

((p+ q)2 −m2c2)(p2 −m2c2)

}

[ū(p2)γ
νu(p1)] .

(1.13)

Note que esta contribuição é de ordem e4e, portanto muito menor que a contribuição deM1, que é de ordem

e2e. O termo entre chaves recebe um nome especial, é a “auto-energia do fóton”, Πµν(q),

Πµν(q) = −e2e
∫

d4p

(2π)4
Tr [γµ(/p+ /q +mc)γν(/p+mc)]

((p+ q)2 −m2c2)(p2 −m2c2)
. (1.14)

Note que esta expressão é exatamente aquela que obtemos se aplicarmos as regras de Feynman somente ao

loop da Figura 1.3,

qq

p

p+q

Figura 1.3: Diagrama de auto-energia do fóton.

Comparando M1 e M2 percebemos o que aconteceu. O propagador do fóton, que era simplesmente

ηµν/q
2, fica modificado para

ηµν
q2
→ ηµν

q2
− i

q4
Πµν (1.15)

se levarmos em conta também a contribuição deM2. Para fazermos a integral em (1.14) devemos desen-

volver o traço no numerador, e não é difı́cil mostrar que Πµν pode ser escrito da seguinte forma:

Πµν(q) = −iηµνq2I(q2) + qµqνJ(q2) . (1.16)
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O segundo termo é nulo quando inserido dentro deM2 e feitas as contrações com γµ e γν . Portanto resta

apenas fazer a integração que está em I(q2). Mas infelizmente esta integral é divergente quando |p| → ∞.

Basta olhar para a expressão (1.14). O denominador é de ordem p4, enquanto que o numerador3 é de

ordem p5, portanto a integral é quadraticamente divergente. Para contornarmos este problema devemos

adotar algum procedimento de regularização, que permite isolar a parte divergente do cálculo a fim de

entendermos melhor o resultado. Uma maneira é fazer a integração até um valor de corte Λ2 que só depois

de todos os cálculos terem sido feitos deve tender ao infinito. O resultado será4

I(q2) =
e2e

12π2

{

∫ Λ2

m2

dy

y
− 6

∫ 1

0
z(1− z) ln

(

1− q2

m2c2
z(1− z)

)

dz

}

, (1.17)

de maneira que a parte divergente está na primeira integral, que é ln(Λ2/m2). A segunda integral é finita e

por isso não precisamos nos preocupar com ela, sendo do tipo

f(x) ≡ 6

∫ 1

0
z(1− z) ln(1 + xz(1− z))dz (1.18)

O resultado desta integral e alguns de seus limites estão no Apêndice C.4. Portanto temos

I(q2) =
e2e

12π2

{

ln

(

Λ2

m2

)

− f
( −q2
m2c2

)

}

. (1.19)

Desta forma, a amplitude totalM =M1 +M2 para a produção de múons é dada por

M = −e2e[ū(p3)γ
µu(p4)]

ηµν
q2

{

1− e2e
12π2

[

ln

(

Λ2

m2

)

− f
( −q2
m2c2

)

]}

[ū(p2)γ
νu(p1)] .

(1.20)

Agora vamos ver como nos “livrar” do infinito que está contido no parâmetro Λ2 quando ele tende ao

infinito. O truque é redefinir a constante de acoplamento ee (que é a carga do elétron) da seguinte maneira

eR ≡ ee

√

1− e2e
12π2

ln

(

Λ2

m2

)

. (1.21)

Reescrevendo (1.14) em termos desta nova constante de acoplamento, temos

M = −e2R[ū(p3)γ
µu(p4)]

ηµν
q2

{

1 +
e2R

12π2
f

( −q2
m2c2

)

}

[ū(p2)γ
νu(p1)] .

(1.22)

Agora note o que aconteceu. A divergência está toda contida na constante de acoplamento (1.21) e o

resultado que sobra é finito e muito bem definido. Portanto, se na lagrangeana original (1.1) introduzirmos
3Lembre-se que o elemento de volume em quatro dimensões é proporcional a p3.
4Os detalhes destes cálculos podem ser encontrados em diversos livros texto de teoria de campos, por exemplo as referências

[4, 7, 8].
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eR no lugar de ee, os cálculos já saem finitos. Este é o chamado processo de renormalização. A constante

de acoplamento é redefinida, ou renormalizada, de forma a absorver a divergência, e os cálculos que seguem

são finitos. Mas esta constante de acoplamento é a carga do elétron, que é muito bem conhecida e tem valor

finito. No entanto, a carga que se mede no laboratório é a carga eR, que já leva em consideração todas as

correções devido a processos do tipo da Figura 1.2, e a carga real que é medida por exemplo na repulsão

entre dois elétrons é na verdade uma diferença entre cargas, e não a carga exata do elétron, que é ee, mas

a esta não temos acesso direto. No exemplo seguinte do espalhamento coulombiano vamos discutir um

pouco mais este aspecto.

1.1.4 Espalhamento coulombiano

A repulsão coulombiana entre dois elétrons ou a atração entre o elétron e o próton são conceitos básicos

da fı́sica conhecidos já há alguns séculos. Mas do ponto de vista quântico os mecanismos desta interação

entre as cargas só veio mesmo a ser bem entendido com o advento da teoria de campos em meados do século

passado. Vamos considerar aqui o espalhamento de uma partı́cula leve, o elétron por exemplo, por um

núcleo muito mais pesado, de carga−Ze, de forma que o recuo sofrido pelo núcleo pesado será considerado

desprezı́vel. Uma forma de representar esta interação é dada na Figura 1.4. O elétron se aproxima do núcleo

e
e −

p
C

p
A

q

−Ze

e −

Figura 1.4: Espalhamento coulombiano entre um elétron e um núcleo pesado de carga −Ze.

com momento p = pA, sofre a repulsão transmitida pelo fóton virtual γ, sendo desviado de seu caminho e

seguindo com momento pC . A seção de choque para este processo pode ser obtida de (1.11) considerando

o núcleo B em repouso antes e depois da colisão. Na aproximação mBc
2 >> EA a seção de choque

diferencial é dada por

dσ

dΩ
=

(

~

8πmBc

)2

〈|M|2〉 , (1.23)
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onde 〈 〉 significa uma média sobre os spins das partı́culas. Para o espalhamento simples descrito pela

Figura 1.4, a média do quadrado da amplitude será dada por5

〈|M|2〉 =

(

16πe2emB

~q2

)2(

(mc)2 + |~p|2 cos2
θ

2

)

, (1.24)

onde q2 = −4|~p|2 sin2(θ/2). Se o elétron incidente for não-relativı́stico, ou seja, se |~p|2 << (mc)2, a

seção de choque (1.23) se reduz à fórmula do espalhamento Rutherford

dσ

dΩ
=

(

2me2e
q2

)2

=
m2e4e

4|~p|4 sin4(θ/2)
, (1.25)

que como sabemos também pode ser obtida por considerações puramente clássicas. Mas como já discuti-

mos anteriormente, este espalhamento também deve ter uma contribuição devido a polarização do vácuo.

O diagrama que representa este processo é dado na Figura 1.5. Levando em conta esta contribuição, usando

pp
A C

q

q

e −e −

e − e+

−Ze

Figura 1.5: Contribuição de 1-loop para o espalhamento coulombiano.

os resultados (1.14)-(1.21), concluı́mos que a amplitude total do espalhamento fica modificada para

〈|M|2〉 =

(

16πmB

~q2
e2R

{

1 +
e2R

12π2
f

( −q2
m2c2

)

})2
(

(mc)2 + |~p|2 cos2
θ

2

)

. (1.26)

Para o caso em que o espalhamento é de baixa energia, ou seja, o momento transferido q é pequeno, usando

o resultado f(x) ≈ x/5 dado em (C.14), vemos que a seção de choque de Rutherford (1.25) fica modificada

para

dσ

dΩ
=

(

2me2R
q2

)2{

1− e2R
60π2

q2

m2c2

}2

. (1.27)

5Para mais detalhes desta dedução ver pág. 240 de [9]
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Para o caso estático, quando q = 0, temos a simples repulsão de duas cargas coulombianas. Mas à medida

que a transferência de momento q aumenta, a seção de choque muda, indicando um desvio da lei de

Coulomb. A carga elétrica eR muda de valor com o momento q, ou seja, com a escala de energia em

que ocorre o processo fı́sico. Podemos então escrever a carga como função do momento q, da seguinte

forma:

eR(q2) = eR(0)

√

1 +
eR(0)2

12π2
f
( −q2
m2c2

)

, (1.28)

onde eR(0) representa a carga de repouso, ou seja, a carga que medimos no laboratório. Por isso, daqui

para frente, usaremos eR(0) ≡ e, pois esta é a carga real presente nos experimentos.

Esta variação da constante de acoplamento da interação eletromagnética é um fenômeno que acontece

também na teoria das interações nucleares forte e fraca, e é daı́ que vem a idéia de que as forças fundamen-

tais da natureza podem ser unificadas, pois as constantes de acoplamento de todas elas parecem convergir

para um mesmo valor a altı́ssimas energias, conforme mostrado esquematicamente na Figura 1.6.

Figura 1.6: Variação das constantes de acoplamento das interações forte, fraca e eletromagnética.

Para terminar, note que não é difı́cil imaginar outros diagramas que contribuem também para o espa-

lhamento coulombiano. Uma famı́lia de gráficos com 1-loop de férmion está indicada na Figura 1.7. Basta

acrescentar cada vez mais fótons ligando o loop ao férmion espalhado. Embora as contribuições sejam cada

vez menores, elas existem e devem ser consideradas a medida que resultados mais precisos são requeridos.

O desvio dado pela equação (1.26) é uma das contribuições para explicar corretamente o desvio nas

linhas espectrais do átomo de hidrogênio, ou “Lamb shift”, conforme citado na introdução.
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...

...

Figura 1.7: Outros diagramas de 1-loop fermiônico que contribuem para o espalhamento coulombiano.

1.1.5 Funções de Green

Vamos apresentar agora alguns aspectos mais formais da teoria de campos, mas que serão muito im-

portantes para entendermos como é formulada a teoria de campos a temperatura finita. São as funções de

Green, da qual as regras de Feynman originam-se naturalmente. Faremos uma exposição breve, apresen-

tando apenas os resultados necessários para a inclusão de efeitos de temperatura6.

Em mecânica quântica, uma quantidade de extrema importância no estudo de um sistema é a probabili-

dade de transição, ou amplitude de probabilidade, de que o sistema faça uma transição de um estado inicial

|qi, ti〉 para um estado final |qf , tf 〉, e é dada por

〈qf , tf |qi, ti〉 = 〈qf | e− i
~
Ĥ(tf−ti)|qi〉 , (1.29)

onde q representa a coordenada generalizada que descreve o sistema e Ĥ ≡ Ĥ(q̂, p̂) é a hamiltoniana

escrita em termos dos operadores q̂ e p̂ (momento canonicamente conjugado a q̂). Esta amplitude de

transição pode ser calculada usando-se o método das integrais de trajetória desenvolvido por Feynman, e

pode-se mostrar que [2, 10]

〈qf , tf |qi, ti〉 ∝
∫

Dq

∫

Dp exp

[

i

~

∫ tf

ti
dt
(

pq̇ −H(p, q)
)

]

, (1.30)

onde H(q, p) não é mais um operador e está escrito em termos dos autovalores q e p. A integração nos diz

que devemos “somar” sobre todos os caminhos possı́veis q(t) que satisfaçam às condições de contorno

q(ti) = qi , q(tf ) = qf , (1.31)

e sobre todos os momentos possı́veis da partı́cula entre estes pontos, o que significa que nos instantes

inicial ti e final tf a partı́cula está em uma posição bem determinada qi e qf , respectivamente. O sinal de

proporcionalidade está sendo usado para indicar que existe ainda um fator de normalização, mas ele não é

importante para nossa discussão.

Em teoria de campos, sabemos que a coordenada generalizada q(t) deve ser substituı́da (generalizando

6Para uma exposição completa indicamos [1, 2, 3, 10], embora a maioria dos livros de teoria de campos tratem deste assunto.
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para o espaço tridimensional) por um campo ϕ(t, ~x). Desta forma, a generalização de (1.30) é

〈ϕf (~x), tf |ϕi(~x), ti〉 ∝
∫

Dϕ

∫

Dπ exp

[

i

~

∫ tf

ti
dt

∫

d3x
(

π∂0ϕ−H (π, ϕ)
)

]

, (1.32)

onde H é a densidade de hamiltoniana, π = ∂L /∂(∂0ϕ) é o momento conjugado de ϕ, L é a densidade

de lagrangeana e ∂0 ≡ ∂/∂x0. A integral de trajetória é sobre todas as funções π(t, ~x) (autovalores de π̂),

e sobre as funções ϕ(t, ~x) (autovalores de ϕ̂) que satisfaçam

ϕ(tf , ~x) = ϕf (~x) ϕ(ti, ~x) = ϕi(~x) . (1.33)

Estas são as condições de contorno análogas de (1.31). Em geral, ou pelo menos na maioria dos casos em

que estamos interessados, a densidade de hamiltoniana é apenas quadrática no momento π, de forma que a

integral funcional nesta variável pode ser feita, e ficamos com

〈ϕf (~x), tf |ϕi(~x), ti〉 = N

∫

Dϕ exp

[

i

~

∫ tf

ti
dt

∫

d3xL (ϕ, ∂µϕ)

]

, (1.34)

onde agora tanto o fator de proporcionalidade anterior quanto o resultado da integração em π estão re-

presentados por N . Note que o argumento da exponencial é algo conhecido, é proporcional à ação S do

sistema7.

Mas esta não é uma quantidade muito útil para cálculos explı́citos, pois em geral não sabemos em que

estado |ϕ(~x), t〉 se encontra o sistema. O que conhecemos de um sistema quântico são seus autovalores

de energia e os respectivos auto-estados. Um estado importante é o estado de menor energia, ou estado

fundamental, ou ainda estado de vácuo |0〉. Uma quantidade que nos interessa é amplitude de probabilidade

de que o sistema faça uma transição, sob ação de alguma interação externa J(t, ~x), do estado fundamental,

em ti, para o próprio estado fundamental, em tf . Isto é conhecido como amplitude de transição vácuo-

vácuo sobre influência da interação J , e é representado por Z[J ] ≡ 〈0|0〉J . Isto pode ser calculado

partindo-se de (1.34). Não vamos mostrar os detalhes do cálculo8, o que nos interessa é somente a expressão

final, e é dada por

Z[J ] ≡ 〈0|0〉J = N lim
ti→−T e−iδ

tf→T e−iδ

∫

Dϕ exp

[

i

~

∫ tf

ti
dt

∫

d3x
(

L + Jϕ
)

]

. (1.35)

Neste ponto, alguns comentários se fazem necessários. A expressão (1.35) só faz sentido se a integração no

tempo for feita através de uma rotação para eixo imaginário, caracterizado pelo parâmetro δ. Isto acontece

por causa de problemas de convergência9 que aparecem nos cálculos intermediários entre (1.34) e (1.35).

Se δ = π/2 e T → ∞, de maneira que o tempo varia em todo o eixo imaginário, isto é conhecido

7Classicamente temos S =
R

dtL(q, q̇)
8Para uma boa discussão, vide pags. 174-177 de [2] por exemplo.
9Basicamente o que acontece é que, como o argumento da exponencial é um número complexo, a exponencial oscila quando

t varia, de forma que não se pode assegurar sua convergência. Já no eixo imaginário a exponencial se torna real e decrescente, de
forma que a convergência fica garantida.
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como rotação de Wick, que corresponde a uma rotação do espaço de Minkowski para o espaço Euclidiano,

conforme Figura 1.8. Mas isto também não é um problema, trata-se apenas de um artifı́cio matemático para

garantir a convergência da integral, e depois de todos os cálculos terem sido feitos devemos voltar para o

eixo real do tempo. Quanto ao fator de normalização N , ele é escolhido de forma que Z[J ] = 1 quando

J = 0.

Figura 1.8: Rotação de Wick para o eixo imaginário do tempo.

Com isto, podemos introduzir uma quantidade de extrema importância em teoria de campos, conhecida

como função de Green de n-pontos, denotada por

G(n)(x1, · · · , xn) ≡ 〈0|T [ϕ̂(x1) · · · ϕ̂(xn)]|0〉 , (1.36)

que nada mais é que o valor esperado no vácuo do produto ordenado no tempo de n operadores de campo

ϕ̂. Através de derivadas funcionais de Z[J ] não é difı́cil mostrar que

〈0|T [ϕ̂(x1) · · · ϕ̂(xn)]|0〉 =
(~

i

)n δnZ[J ]

δJ(x1) · · · δJ(xn)

∣

∣

∣

∣

∣

J(x)=0

, (1.37)

onde xi ≡ (x0
i , ~xi) , i = 1, · · · , n e T [· · · ] representa o ordenamento temporal dos campos ϕ̂.

Este é o resultado final a que querı́amos chegar. Dada uma densidade de lagrangeana L , através da

equação (1.35) podemos calcular a amplitude de transição vácuo-vácuo, e com ela, pelas (1.36) e (1.37)

podemos calcular as funções de Green de n-pontos. Mas na verdade as coisas não são tão fáceis assim.

O cálculo exato de Z[J ] só é possı́vel para o caso de teorias livres, sem interações, e o que nos interessa

é exatamente o caso em que as interações estão presentes. Por exemplo, queremos saber como se dá a

interação do fóton (campo eletromagnético) com os elétrons (partı́culas fermiônicas). A solução a este

problema também é conhecida, o que se faz é separar a lagrangeana em uma parte livre, L0, e em uma

parte de interação LI . A parte de interação deve ser expandida em potências da constante de acoplamento
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da interação (carga elétrica no caso da eletrodinâmica), e o problema é então tratado perturbativamente. Por

exemplo, gostarı́amos de saber quais são exatamente os propagadores do fóton e do elétron para uma teoria

com interação (lembre-se que as expressões dadas em (1.2) e (1.3) são os propagadores livres). Na falta de

uma resposta exata, o tratamento perturbativo nos diz que o propagador exato do fóton por exemplo pode

ser expresso diagramaticamente10 pela Figura 1.9. O primeiro termo desta expansão é o propagador livre

D = + + + ...

Figura 1.9: Expansão perturbativa para o propagador do fóton. O primeiro diagrama corresponde ao pro-
pagador livre Dµν

0 .

(ordem zero em e), equação (1.2), o segundo termo é a auto-energia do fóton (ordem e2), o terceiro termo

é um diagrama de 2-loops (ordem e4), e um número infinito de diagramas contribuem para esta expansão.

Portanto, o interesse em se conhecer as funções de Green é saber exatamente quais os diagramas que

contribuem para um processo, dada uma interação. Como já foi citado nas seções anteriores, o diagrama de

auto-energia do fóton é a primeira correção perturbativa a um processo direto, e é neste tipo de diagrama

que estaremos interessados nos capı́tulos seguintes.

Outros dois diagramas de 1-loop muito importantes nos estudos da eletrodinâmica quântica são os

diagramas de auto-energia do fóton e o de correção de vértice, mostrados nas Figuras 1.10 e 1.11. O pri-

meiro dará uma contribuição para a renormalização da massa do elétron, enquanto o segundo é a principal

contribuição para explicar o momento magnético anômalo do elétron.

Como vimos brevemente nesta seção, os diagramas de Feynman são uma ferramenta importante para

se obter resultados precisos em fı́sica de altas energias, principalmente quando os processos envolvidos são

processos de espalhamento e produção de partı́culas. A ligação entre a teoria e o experimento é feita por

meio das seções de choque que descrevem o fenômeno, e o cálculo preciso destas seções de choque envolve

o cálculo de diagramas de 1-loop por exemplo, que são as primeiras correções perturbativas a um dado

processo. À medida que as técnicas experimentais avançam, torna-se cada vez mais possı́vel testar uma

teoria olhando para suas contribuições ou modificações nas seções de choque correspondentes. Teorias que

envolvem interações entre partı́culas são as mais interessantes, e como vimos, termos de interação darão

origem a vértices nas regras de Feynman, que conseqüentemente darão contribuições a diagramas de 1-

loop, por isso o interesse no estudo de tais digramas. Quando tratarmos da QED não-comutativa no próximo

capı́tulo, ficará claro que uma possı́vel maneira de se testar a existência ou não da não-comutatividade

das coordenadas é por meio do cálculo de seções de choque de determinados processos por exemplo. A

não-comutatividade dará origem a novos termos de interação, que por sua vez contribuirão com novos

diagramas que podem ser significativos no cálculo de determinadas seções de choque.

Agora vamos discutir um pouco a teoria de campos a temperatura finita.
10A expressão matemática deste diagrama segue diretamente da função de Green de 2-pontos, os detalhes estão nos livros de

teoria de campos, queremos apenas mostrar qualitativamente o que acontece.
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Figura 1.10: Auto-energia do elétron.

Figura 1.11: Correção de vértice.

1.2 QED a temperatura finita

Antes de iniciarmos nossos estudos da teoria quântica de campos a temperatura finita, vamos apresentar

algumas questões que se relacionam a ela.

O que acontece com a matéria ordinária quando ela é submetida a altı́ssima pressão de tal maneira

que os elétrons que a compõe formam um gás degenerado relativı́stico? É isto o que acontece em estrelas

anãs brancas por exemplo. E quando os núcleos são comprimidos a ponto de se juntarem para formar

uma matéria nuclear superdensa, como nas estrelas de nêutrons? E quando a matéria nuclear é aquecida a

altı́ssimas temperaturas de forma que os prótons e nêutrons se quebram em quarks e glúons? É isso que se

supõe acontecer em uma colisão núcleo-núcleo de alta energia. O que acontece com a quebra espontânea de

simetria da teoria unificada eletrofraca durante o big bang? Questões como estas fascinaram os fı́sicos nas

últimas décadas, e as respostas envolvem estudos de mecânica estatı́stica, de fı́sica de partı́culas elemen-

tares, fı́sica nuclear, astrofı́sica e cosmologia. Sistemas como esses estão fora do alcance das experiências

humanas mas o universo está aı́ como um grande laboratório. Portanto, para entendermos um pouco sobre

os mecanismos que agem sob condições tão extremas de temperatura e densidade, necessitamos de uma

formulação da teoria de campos que leve em conta tais aspectos. As ferramentas estão na teoria de campos

a temperatura finita.

Teorias de campos não relativı́sticas a temperatura e densidade finitas apareceram por volta de 1950

para descrever sistemas da matéria condensada em condições de laboratório, ou seja, fora do regime ex-

tremo de altı́ssimas densidades e temperaturas. Os conceitos envolvidos eram baseados apenas na equação

de Schrödinger e em mecânica estatı́stica, já que se tratava de sistemas de muitas partı́culas. Isto ficou

conhecido como “Problema de muitos corpos”. A teoria de campos relativı́stica a temperatura finita foi
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primeiramente estudada por Fradkin em 1965 e redescoberta dez anos depois, motivada pela busca de uma

descrição da transição de fase que deve ocorrer com a teoria eletrofraca a uma energia da ordem de 200

MeV, de grande interesse para se entender a história do universo, pois esta transição de fase pode ter de-

sempenhado um papel importante na formação de matéria escura, que é um dos grandes problemas da

cosmologia moderna. Por volta de 1980, estudos de teoria de campos na rede sugeriram a existência de

uma fase da matéria nuclear em que quarks e glúons poderiam existir separadamente, o chamado plasma de

quarks e glúons, a uma energia estimada da ordem de 150 MeV, conforme ilustrado na introdução pelo dia-

grama de fases. A possibilidade da observação deste novo estado da matéria em colisões ultra-relativı́sticas

de ı́ons pesados deu um novo impulso ao estudo da teoria de campos a temperatura finita.

Nosso objetivo aqui é dar uma breve introdução a este assunto do ponto de vista da eletrodinâmica

quântica.

1.2.1 Revisão de termodinâmica

O principal objeto do estudo da termodinâmica de sistemas em equilı́brio ou da mecânica estatı́stica é a

função de partição Z. Dela derivam todas as quantidades macroscópicas de interesse do sistema. A função

de partição que caracteriza o ensemble “grande canônico” é dada por

Z = Tr exp[−β(Ĥ − µN̂)]

=
∑

n

〈n| e−β(Ĥ−µN̂)|n〉 , (1.38)

com

Ĥ|n〉 = En|n〉 (1.39)

e

N̂ |n〉 = n|n〉 (1.40)

onde |n〉 e En são, respectivamente, os auto-estados e autovalores da energia do hamiltoniano Ĥ , e N̂

representa o operador “número de partı́culas” do sistema, caracterizando o número n de partı́culas que

compõe determinado estado. O potencial quı́mico µ caracteriza a possibilidade do sistema trocar partı́culas

com o meio externo. O caso µ = 0 representa o ensemble canônico, caracterizado por um número fixo

de partı́culas. Vamos trabalhar no sistema de unidades onde a constante de Boltzmann é igual a unidade,

de forma que β = 1/kBT ≡ 1/T representa o inverso da temperatura. De posse da função de partição,

podemos determinar quantidades como a pressão P , a entropia S, o número médio de partı́culas N e a
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energia interna E pelas relações

P = T
∂ lnZ

∂V
, N = T

∂ lnZ

∂µ
,

S =
∂(T lnZ)

∂T
, E = −PV + TS + µN . (1.41)

Uma outra quantidade muito importante é a energia livre de Helmholtz F , que se relaciona à energia

interna por meio de

F = E − TS , (1.42)

e também deriva da função de partição

F = − 1

β
lnZ . (1.43)

Se tivermos um sistema unidimensional composto por bósons livres, por exemplo um gás de bósons,

teremos En = ~ω(n+ 1
2), onde n = 0, 1, 2, · · ·∞. Por simplicidade vamos adotar ~ = 1 e desconsiderar

o fator 1/2, que representa apenas a energia de ponto zero do sistema, de maneira que En = nω. A função

de partição (1.38) fica

Z =
∞
∑

n=0

e−β(ω−µ)n

=
1

1− e−β(ω−µ)
, (1.44)

e o número médio de bósons será

N = T
∂ lnZ

∂µ
=

1

eβ(ω−µ) − 1
. (1.45)

No limite µ = 0 temos a função distribuição de Bose-Einstein nB ,

nB(ω) =
1

eβω − 1
. (1.46)

Para o caso de um gás de férmions, temos n = 0, 1, de maneira que a função de partição fica

Z =
1
∑

n=0

e−β(ω−µ)n

= 1 + e−β(ω−µ) , (1.47)

e o número médio de férmions

N = T
∂ lnZ

∂µ
=

1

eβ(ω−µ) + 1
. (1.48)
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No caso µ = 0 temos a função distribuição de Fermi-Dirac nF ,

nF (ω) =
1

eβω + 1
. (1.49)

1.2.2 Funções de Green a temperatura finita

Vamos ver agora como ficam as regras de Feynman apresentadas na primeira seção devido à presença

da temperatura. Já vimos no caso a temperatura nula que as regras de Feynman são derivadas através do

estudo das funções de Green de n-pontos do sistema, então nosso objetivo é apresentar qual o análogo das

funções de Green para o caso a temperatura finita. No caso anterior, somente o estado de vácuo tinha um

papel importante, só que agora todos os estados devem contribuir para o funcional gerador das funções de

Green, cada um com um peso estatı́stico diferente, dependente de sua energia. Desta forma, a generalização

correta de (1.36) deve ser

G(n)(x1, · · · , xn) ≡
∑

j

e−βE(ϕj)〈ϕj |T [ϕ̂(x1) · · · ϕ̂(xn)]|ϕj〉 , (1.50)

onde a soma é sobre um conjunto completo de estados |ϕj〉 com energia E(ϕj). Isto nada mais é que o

valor médio do produto ordenado no tempo de n-operadores de campo no ensemble grande canônico com

potencial quı́mico igual a zero

G(n)(x1, · · · , xn) =
Tr e−βĤT [ϕ̂(x1) · · · ϕ̂(xn)]

Tr e−βĤ
, (1.51)

onde Ĥ é a hamiltoniana do sistema. Para entendermos quais as mudanças que ocorrem nas regras de

Feynman, é mais fácil usarmos de um artifı́cio matemático que ficou conhecido por formalismo do tempo

imaginário. Note que se fizermos tf − ti = −iβ na equação (1.29), aquela amplitude fica tendo a mesma

cara da função de partição se os estados |q〉 forem auto-estados da energia. O fato do tempo variar no

eixo complexo significa que devemos ir para o espaço euclidiano. Desta forma, tudo o que foi feito para

temperatura zero é válido desde que o intervalo temporal, antes variando de [−∞,∞], agora fique restrito

ao intervalo [0, β]. Isto faz com que a expansão de Fourier de um campo no eixo temporal seja restrita a um

intervalo finito, portanto ao invés de usarmos uma integração devemos usar um somatório para escrevermos

a parte temporal da expansão de Fourier de um campo. Desta forma, a regra de Feynman número 6 da seção

1.1.1 fica modificada para:

9 - Soma sobre freqüências - No espaço euclidiano, em um loop interno, as freqüências devem ser

somadas

∫

d4k

(2π)4
→ 1

β

∑

n

∫

d3k

(2π)3
(1.52)
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onde k0 ≡ iωn no espaço euclidiano e

ωn =

{

2nπ
β , bósons

(2n+1)π
β , férmions

Estas são as chamadas freqüências de Matsubara. Vários livros texto discutem de forma bastante clara a

formulação da teoria de campos a temperatura finita, por isso não vamos nos deter nestes detalhes técnicos.

Vamos apenas aplicar os métodos já desenvolvidos e muito bem estabelecidos desta teoria a problemas de

nosso interesse. Para o leitor interessado indicamos os livros de J. I. Kapusta [11], M. Le Bellac [12] e A.

Das [13].

1.2.3 Função de partição

Desta breve introdução à teoria de campos a temperatura finita, fica claro a estreita analogia com o caso

a temperatura zero. As funções de Green podem ser definidas de maneira semelhante, os diagramas que

contribuem para um processo são semelhantes aos encontrados no caso anterior, o que difere é o método

de cálculo dos diagramas, como ficará claro quando fizermos o cálculo do tensor de auto-energia do fóton.

Mas existe uma outra quantidade de extrema importância que podemos calcular, agora usando a teoria de

campos a temperatura finita, que é função de partição de um sistema. Conforme descrito na seção 1.2.1,

de posse da função de partição podemos derivar relações importantes da termodinâmica, como pressão,

entropia, energia interna, etc.

Vamos fazer uma aplicação ao caso de um gás de elétrons e um gás de fótons a altas temperaturas,

usando as ferramentas da teoria de campos a temperatura finita.

Gás de elétrons

Vamos considerar novamente a função de partição de um sistema quântico, equação (1.38), no caso de

potencial quı́mico nulo:

Z =
∑

n

〈n| e−βĤ |n〉 . (1.53)

Note a semelhança desta expressão com a (1.29), que foi o ponto de partida para a obtenção da função de

Green. Naquele caso, o intervalo de tempo tf − ti não desempenhou nenhum papel importante, pois de

acordo com (1.35), estes intervalos foram tomados tendendo ao infinito de forma que a única contribuição

para a amplitude veio dos estados de vácuo. Aqui o tempo também não desempenha nenhum papel impor-

tante, pois estamos tratando de sistemas em equilı́brio. A pergunta agora é: Qual o análogo da função de

partição (1.53) para o caso de férmions livres do ponto de vista da teoria de campos? A resposta é:

Z =
∑

ψ(~x)

〈ψ(~x)| e−βĤ | − ψ(~x)〉 . (1.54)
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Mas porque o sinal negativo no campo do lado direito? Podemos afirmar que isso é especı́fico para o

caso de férmions. Os observáveis fı́sicos sempre envolvem potências pares dos campos de Dirac ψ, já

que estes mudam de sinal por uma rotação de 2π. Assim, os auto-estados | ± ψ(~x)〉 do operador ψ̂(~x)

correspondem ao mesmo valor dos observáveis fı́sicos e descrevem o mesmo estado. Para evitar problemas

e sermos consistente com a estatı́stica de Fermi, devemos tomar como ponto de partida a expressão (1.54).

O desenvolvimento agora pode ser feito analogamente ao caso da seção 1.1.5, levando em conta que agora

estamos trabalhando no eixo imaginário do tempo, com a seguinte mudança de variáveis:

τ = it = ix0 , (1.55)

com ti = 0 e tf = −iβ. Isso corresponde a definirmos x̄µ ≡ (τ, ~̄x) = (ix0, ~x) = (−iτ, ~x) (estamos

usando c = 1). Podemos mostrar então que

Z = N(β)

∫

antiperiod
Dψ̄Dψ exp

∫ β

0
dτ

∫

d3xL(ψ̄, ψ) , (1.56)

onde em L o campo ψ é entendido como sendo função de τ e ~x, e é anti-periódico no intervalo 0 < τ < β,

ψ(τ = 0, ~x) = −ψ(τ = β, ~x) . (1.57)

A expansão de Fourier apropriada para ψ(x̄) é

ψ(x̄) =
1

β

∑

n

∫

d3p

(2π)d
e−ip̄·x̄ψ̃(p̄) , (1.58)

onde p̄µ ≡ (p̄0, ~̄p) = (−ip0, ~p) e as freqüências de Matsubara para férmions são

ωn =
(2n+ 1)π

β
, (1.59)

com p0 ≡ iωn e n inteiro.

Para o caso de um campo livre, a lagrangeana apropriada é a lagrangeana de Dirac, escrita em termos

da variável x̄,

L(ψ̄, ψ) = ψ̄(x̄)(iγµ∂̄µ −m)ψ(x̄) (1.60)

de forma que temos

Z = N(β)

∫

antiperiod
Dψ̄Dψ exp

(

−
∫

d4x̄′
∫

d4x̄ψ̄(x̄′)D(x̄′, x̄)ψ(x̄)
)

(1.61)

com

D(x̄′, x̄) = (iγµ∂̄µ +m)δ4(x̄′ − x̄) , (1.62)
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onde ∂̄µψ ≡ (i∂ψ/∂τ,∇ψ). Usando a propriedade11

∫

Dφ exp

(

− 1

2

∫

dx′
∫

dxφ(x′)A(x′, x)φ(x)

)

= exp

(

− 1

2
Tr lnA

)

, (1.63)

onde A é a matriz que representa A(x′, x), podemos então escrever

Z = N(β) exp(Tr ln D) , (1.64)

onde o traço Tr significa
∫

dτ
∫

d3x tr e tr significa soma sobre os ı́ndices de Dirac. Escrevendo

δ4(x̄′ − x̄) ≡ δ(τ ′ − τ)δ3(~x′ − ~x) (1.65)

e representando δ4(x̄′ − x̄) por uma transformada de Fourier da forma

δ4(x̄′ − x̄) =
1

β

∑

n

∫

d3p

(2π)3
e−ip̄·(x̄

′−x̄) , (1.66)

obtemos

D(x̄′, x̄) =
1

β

∑

n

∫

d3p

(2π)3
e−ip̄·(x̄

′−x̄)(−/̄p+m) . (1.67)

Com isto

Tr ln D =

∫ β

0
dτ

∫

d3x
1

β

∑

n

∫

d3p

(2π)3
2 ln(m2 − p̄2)

= 2

∫

d3x
∑

n

∫

d3p

(2π)3
ln(ω2

n + ~p2 +m2) , (1.68)

onde usamos a identidade tr ln(−/̄p+m) = 2 ln(m2 − p̄2).

A soma sobre as freqüências pode ser feita usando-se a identidade

d

dx

(

∞
∑

n=−∞

ln(ω2
n + x2)

)

= 2x
∞
∑

n=−∞

1

ω2
n + x2

(1.69)

e os resultados do Apêndice B.3. Fazendo isso chegamos a

Tr ln D = 2

∫

d3x

∫

d3p

(2π)3

{

β
√

~p2 +m2 + 2 ln[1 + exp(−β
√

~p2 +m2)] + C1(β)
}

(1.70)

onde C1(β) é uma constante dependente da temperatura mas independente de ~p. Na verdade esta é uma

constante infinita, pois se ela não depende de ~p a integral em d3p diverge. No entanto pode-se mostrar que
11Vide págs. 1-4 de [3] por exemplo.
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este fator cancela exatamente o termo N(β) ainda presente na função de partição. Este cancelamento é um

fato notável12, mostrando a consistência da formulação por meio de integrais de trajetória. A integral em

d3x representa o volume V do sistema. A função de partição, portanto, fica dada por:

Z = exp

(

4βV

∫

d3p

(2π)3

(1

2

√

~p2 +m2 +
1

β
ln[1 + exp(−β

√

~p2 +m2)]
)

)

,

(1.71)

e a energia livre de Helmholtz (1.43)

F = −4V

∫

d3p

(2π)3

(1

2

√

~p2 +m2 +
1

β
ln[1 + exp(−β

√

~p2 +m2)]
)

,

(1.72)

Quando a massa do campo fermiônico é desprezı́vel comparada com a temperatura, podemos calcular

a integral explicitamente. O primeiro termo na integral dá uma contribuição infinita, que representa uma

energia de ponto zero, portanto deve ser cancelada por algum procedimento de renormalização. Tomando

o limite T >> m, que equivale a βm << 1, obtemos

Z = exp

(

V
7π2T 3

180

)

, F = −V 7π2T 4

180
(1.73)

de maneira que a pressão, a densidade de entropia e a densidade de energia são, usando (1.41),

P =
7π2T 4

180
, (1.74)

S

V
=

7π2T 3

45
, (1.75)

E

V
=

7π2T 4

60
, (1.76)

como esperado, ou seja, com dependência do tipo T 4 para a energia.

Gás de fótons

Para o caso de um gás de fótons o tratamento é semelhante, só que devemos tomar alguns cuidados.

Intuitivamente, poderı́amos tomar a expressão para a função de partição análoga a de um campo escalar, só

levando em conta que temos um campo vetorial com quatro componentes, Aµ = (A0, A1, A2, A3). Mas

existe um problema. O campo vetorial sem massa (fóton) possui apenas 2 graus de liberdade independentes

(2 transversais), embora uma lagrangeana tı́pica que seja renormalizável possua 4 graus de liberdade (2

transversais, 1 longitudinal, 1 tipo tempo). Os dois graus de liberdade extras não são fı́sicos, e diz-se que

eles não podem estar em equilı́brio térmico com o meio. Em vista destas particularidades, percebemos

que Tr e−βĤ não é uma quantidade de significado fı́sico em todos os gauges. Em alguns gauges aparecem
12Uma boa discussão sobre isso é feita por Bernard em [14].
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partı́culas que representam graus de liberdade extras, que não podem estar em equilı́brio térmico e não

devem ser levados em consideração. Se fizermos os cálculos num gauge que seja covariante, obtemos

uma quantidade que é duas vezes o esperado. O erro está no fato de, mesmo no caso abeliano, os campos

“fantasmas” (ghosts) de Faddeev-Popov contribuı́rem para a função de partição. A contribuição é tal que

anula exatamente a parte vinda dos dois campos extras (longitudinal e tipo tempo). É uma surpresa que

os campos de Faddeev-Popov sejam importantes mesmo no caso abeliano, pois ao contrário, a temperatura

nula, a contribuição vinda destes campos fornece apenas uma constante multiplicativa ao funcional gerador,

e podem ser ignorados. Aqui os termos são importantes e dão uma contribuição que cancela exatamente a

dos graus de liberdade não fı́sicos. A função de partição Z deve ser definida como Tr e−βĤ somente em

um gauge que represente uma situação fı́sica, a fim de contarmos os graus de liberdade corretamente.

O que queremos dizer com toda esta explicação é que a lagrangeana para o campo de gauge deve ser

modificada para

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + ∂µC̄ ∂
µC (1.77)

onde C e C̄ representam os campos de Faddeev-Popov. Desta forma, a função de partição que devemos

tomar como ponto de partida é

Z = [N(β)]2
∫

period
DAµDC̄DC exp

∫

d4x̄
(

− 1

4
F̄µνF̄

µν − 1

2ξ
(∂̄µA

µ)2 + ∂̄µC̄ ∂̄
µC
)

(1.78)

escrita em termos da coordenada x̄. Agora o tratamento é o mesmo do caso anterior. Podemos reescrever

(1.78) como

Z = [N(β)]2
∫

period
DAµ exp

(

− 1

2

∫

d4x̄′
∫

d4x̄Aµ(x̄
′)Bµν(x̄′, x̄)Aν(x̄)

)

×
∫

period
DC̄DC exp

(

−
∫

d4x̄′
∫

d4x̄C̄(x̄′)G(x̄′, x̄)C(x̄)
)

(1.79)

onde

Bµν(x̄′, x̄) =

[

ηµν ∂̄′ρ∂̄
ρ − (1− 1/ξ)∂̄′ν ∂̄

µ

]

δ(x̄′ − x̄)

G(x̄′, x̄) = ∂̄′ρ∂̄
ρδ(x̄′ − x̄) . (1.80)

Usando a representação (1.65) para função delta, podemos escrever B e G como transformadas de Fourier

Bµν(x̄′, x̄) =
1

β

∑

n

∫

d3p

(2π)3
e−ip̄·(x̄

′−x̄)[p̄2(ηµν − p̄µp̄ν

p̄2
) +

p̄2

ξ

p̄µp̄ν

p̄2
]

G(x̄′, x̄) =
1

β

∑

n

∫

d3p

(2π)3
e−ip̄·(x̄

′−x̄)p̄2 , (1.81)
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de forma que obtemos

Z = [N(β)]2 exp(−1

2
Tr lnB) exp(Tr lnG) . (1.82)

O traço deve ser tomado sobre x̄ e sobre os ı́ndices de Lorentz, e obtemos (termos independentes da

temperatura foram desprezados)

Tr lnB =

∫

d3x
∑

n

∫

d3p

(2π)3
4 ln(ω2

n + ~p2)

Tr lnG =

∫

d3x
∑

n

∫

d3p

(2π)3
ln(ω2

n + ~p2) . (1.83)

onde ωn = 2πn/β é a freqüência de Matsubara para bósons. Obtemos assim para a função de partição

Z = [N(β)]2 exp
(

− 1

2

∫

d3x
∑

n

∫

d3p

(2π)3
2 ln(ω2

n + ~p2)
)

, (1.84)

de maneira que, usando (1.69) e os resultados do Apêndice B.2,

lnZ = −2

∫

d3x

∫

d3p

(2π)3

{β

2

√

~p2 + ln[1− exp(−β
√

~p2)] + C2(β)
}

+ ln[N(β)]2 ,

(1.85)

onde C2(β) é uma constante dependente da temperatura mas independente de ~p, de maneira que sua

integração fornece uma contribuição infinita para lnZ. Mas também pode ser mostrado [14] que este

termo cancela exatamente o termo ln[N(β)]2 em (1.85).

Voltando então à função de partição, podemos escrever para a energia livre

F = − 1

β
lnZ = 2

∫

d3x

∫

d3p

(2π)3

(1

2

√

~p2 +
1

β
ln[1− exp(−β

√

~p2)]
)

. (1.86)

O primeiro termo dá uma contribuição infinita que deve ser desconsiderada, pois representa a energia do

vácuo. Desta forma obtemos para a densidade de energia livre

F

V
= 2

∫

d3p

(2π)3
1

β
ln[1− exp(−β

√

~p2)]

= 2× 4π
1

β

1

(2π)3

∫ ∞

0
p2 ln(1− e−pβ)dp

= 8π
1

β

1

(2π)3
−π4

45β3

= −2
π2T 4

90
, (1.87)
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Com isto, a pressão, a densidade de entropia e a densidade de energia são

P = 2
π2T 4

90
, (1.88)

S

V
=

4π2T 3

45
, (1.89)

E

V
=

2π2T 4

30
, (1.90)

que é exatamente o dobro do caso de um campo escalar, que é o esperado, já que o campo vetorial Aµ

só tem dois graus de liberdade fı́sicos. Além disto, tanto aqui quanto no caso de férmions, é satisfeita a

equação de estado

P =
1

3
E/V , (1.91)

como deve ser para o caso de um gás ideal relativı́stico.

1.2.4 Auto-energia do fóton

Vamos ver agora como fica o cálculo de um diagrama de 1-loop para o caso a temperatura finita. Para

isso vamos aplicar os resultados anteriores para um caso especı́fico, que é o da auto-energia do fóton, re-

presentado pelo diagrama da Figura 1.3. Aqui o quadrimomento do fóton será representado por k, portanto

q → k naquela figura. A auto-energia pode ser representada em termos do propagador livre Dµν
0 e do

propagador exato Dµν por

Πµν = D−1
µν −D−1

0µν , (1.92)

onde o propagador está relacionado ao seu inverso por

DµαD−1
αν = ηµν . (1.93)

Além disso, o propagador e a auto-energia devem satisfazer a alguns vı́nculos. Denotando kµ o quadrimo-

mento do fóton, a conservação da corrente requer que Πµν seja transversal ao quadrimomento do fóton

kµΠµν = 0 , (1.94)

e a invariância de gauge requer que

kµkνDµν = ξ , (1.95)

onde ξ especifica uma escolha de gauge. No caso a temperatura nula, o tensor de auto-energia do fóton

Πµν depende somente de ηµν e do momento externo kµ do fóton, conforme (1.16). Agora, a temperatura

finita, precisamos de mais um quadrivetor para especificar o sistema corretamente, e este quadrivetor é
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representado por uµ. Ele é o quadrivetor que representa a velocidade do reservatório térmico onde o

sistema se encontra, e o caso uµ = (1, 0, 0, 0) especifica o sistema de repouso desse reservatório. Em

cálculos especı́ficos podemos sempre adotar este sistema como o de referência, o que indica que estamos

no sistema do reservatório térmico. Dito isto, a auto-energia, o propagador e seu inverso são tensores

simétricos de segunda ordem formados pelas estruturas acima. Para que satisfaça as relações (1.92)-(1.95),

pode-se mostrar que eles devem ter as formas

Πµν(k) = ΠTP
µν
T + ΠLP

µν
L , (1.96)

Dµν =
1

k2 −ΠT
PµνT +

1

k2 −ΠL
PµνL +

ξ

k2

kµkν

k2
, (1.97)

(D−1)µν = (k2 −ΠT)PµνT + (k2 −ΠL)PµνL +
kµkν

ξ
, (1.98)

onde ΠT e ΠL são funções escalares que podem ser determinadas. Vamos nos restringir13 ao sistema de

referência do reservatório térmico, uµ = (1, 0, 0, 0) e ao limite estático, k0 = 0. A parte tensorial fica por

conta dos operadores

PµνL = uµuν (1.99)

PµνT = ηµν − uµuν − kµkν

k2
, (1.100)

e satisfazem as seguintes propriedades:

PµνL PLµν = 1 ,

PµνT PTµν = (d− 2) ,

kµP
µν
T = kµP

µν
L = 0 ,

PµνL PTµν = 0 , (1.101)

onde d é a dimensão do espaço-tempo e vem da contração ηµνηµν = d. Usando (1.96)-(1.101) pode-se

verificar que as relações (1.93)-(1.95) são de fato satisfeitas. Com estas relações os coeficientes ΠL e ΠT

podem ser determinados facilmente. Basta contrair os dois lados de (1.96) por P µν
L e P µνT , e usando as

13Para o caso geral ver págs. 70-71 da ref. [11] ou págs. 118-119 de [12].
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relações (1.101) obtemos

PµνL Πµν = ΠL

PµνT Πµν = (d− 2)ΠT . (1.102)

Vamos então calcular Πµν .

Usando as regras de Feynman a temperatura finita, a expressão para o diagrama que representa Πµν é,

conforme Figura 1.3,

Πµν(k) = −e2T
∑

l

∫

d3p

(2π)3
tr
(

γµ
1

/p+ /k −mγν
1

/p−m

)

, (1.103)

onde p0 = (2l + 1)πT i está associada à freqüência para os férmions e k0 = 2nπTi à freqüência para o

fóton. Pode-se mostrar que sempre podemos escrever o tensor de auto-energia como a soma de uma parte

de vácuo (independente de T ) e uma parte de matéria (dependente de T ), na forma

Πµν = Πµν
(vac) + Πµν

(mat) , (1.104)

de tal maneira que

Πµν
(vac) = lim

T→0
µ→0

Πµν
(mat) . (1.105)

A parte de vácuo é exatamente igual àquela que foi calculada em (1.14), como era de se esperar. A

parte de matéria não pode ser calculada exatamente, mas alguns de seus limites e várias outras aplicações

envolvendo esta expressão foram extensivamente estudas por J. I. Kapusta e vários outros autores, conforme

referências [11, 12, 15, 16, 17]. Vamos discutir aqui apenas um dos limites da expressão (1.103), que é o

limite estático a altas temperaturas14. Para obtermos este limite basta tomar o momento interno ao loop p

muito maior que o momento externo k e a massa m, de forma de que a expressão (1.103) fica

Πµν = −e2T
∑

l

∫

d3p

(2π)3
tr
(

γµ
1

/p
γν

1

/p

)

= −e2T
∑

l

∫

d3p

(2π)3
tr
(

γµ
/p

p2
γν

/p

p2

)

= −e2T
∑

l

∫

d3p

(2π)3
pαpβ
p4

tr
(

γµγαγνγβ
)

= −4e2T
∑

l

∫

d3p

(2π)3

(

2pµpν

p4
− ηµν

p2

)

, (1.106)

14Na literatura é comum a nomenclatura Hard thermal loop approximation, ou simplesmente limite HTL.
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onde foi usada a propriedade do traço

tr (γµγαγνγβ) = 4(ηµαηνβ + ηµβηνα − ηµνηαβ) . (1.107)

Usando (1.102) podemos determinar os coeficientes ΠL e ΠT. No sistema de repouso do reservatório,

temos

ΠL = Π00

= −4e2T
∑

l

∫

d3p

(2π)3

(

2p0p0

p4
− η00

p2

)

= −4e2T
∑

l

∫

d3p

(2π)3

(

1

p2
+

2|~p|2
p4

)

= −4e2
∫

d3p

(2π)3
T
∑

l

(

1

[(2l + 1)πT i]2 − ~p2
+

2|~p|2
([(2l + 1)πT i]2 − ~p2)2

)

= −4e2
∫

d3p

(2π)3

[

nF (|~p|)
|~p| + 2|~p|2

(

n′F (|~p|)
2|~p|2 −

nF (|~p|)
2|~p|3

)]

= −4e2
∫

d3p

(2π)3
n′F (|~p|)

= −16πe2

(2π)3

∫ ∞

0
p2

(

1

eβp + 1

)′

dp

=
e2T 2

3
. (1.108)

A primeira soma sobre as freqüências fermiônicas foi feita usando os resultados do Apêndice B.3, eq.

(B.25). A segunda soma pode ser feita a partir da primeira, derivando com relação a |~p| dos dois lados, e

nF (|~p|) é a função distribuição de Fermi-Dirac, eq. (1.49). A última integral pode ser feita por integração

por partes.

Procedendo de forma análoga obtemos

ΠT =
1

2
PµνT Πµν

= 0 . (1.109)

Vamos ver a seguir uma aplicação destes resultados.
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1.2.5 Blindagem dos campos elétrico e magnético em um plasma

Quando a temperatura de um gás é elevada a valores muito altos, os átomos que compõem este gás se

ionizam facilmente, deixando os elétrons livres, e isto caracteriza um estado chamado de plasma eletro-

magnético. Se uma carga positivaQ for introduzida neste plasma, os elétrons rapidamente são atraı́dos pela

carga positiva, distribuindo-se em torno dela de maneira a neutralizá-la. A este fenômeno dá-se o nome de

“blindagem”. O campo elétrico produzido pela carga Q perde a intensidade a medida que afastamos de seu

centro, e o potencial criado por essa carga tem a forma

V (r) =
Q

r
e−r/rD , (1.110)

onde rD caracteriza o “raio de blindagem” da carga, ou seja, a distância a partir da qual o potencial é

praticamente nulo. Este comprimento é conhecido como “raio de Debye”, e seu inverso caracteriza a

“massa elétrica” do meio, mel = 1/rD. Um gás ionizado é considerado um plasma se o raio de Debye rD
for pequeno em relação a outras dimensões fı́sicas de interesse. Em uma escala maior que rD, os elétrons

tendem a cooperar de maneira a neutralizar um excesso de cargas positivas em um determinado ponto. É

esta resposta coletiva às flutuações de carga que dá origem às oscilações do plasma em larga escala.

As massas elétrica e magnética estão relacionadas ao tensor de auto-energia do fóton. Elas são definidas

como sendo os pólos ΠL e ΠT presentes no propagador do fóton, equação (1.97), no chamado limite

estático, k0 = 0. Lembre-se que k é o quadrimomento do fóton, e o fóton é o verdadeiro responsável pela

“transmissão” dos campos eletromagnéticos. Quando kµ = (0, ~k), significa que a freqüência associada aos

campos eletromagnéticos é nula, ou seja, estamos diante de campos estáticos, o que caracteriza o limite

estático. A massa elétrica corresponde ao pólo da parte longitudinal do propagador e a massa magnética

ao pólo da parte transversal. Elas são definidas por

m2
el ≡ ΠL(k0 = 0, ~k) , (1.111)

m2
mag ≡ ΠT(k0 = 0, ~k) . (1.112)

Usando os resultados (1.108) e (1.109) obtemos no limite estático a altas temperaturas

m2
el = ΠL(k0 = 0, ~k → 0) =

e2T 2

3
,

(1.113)

m2
mag = 0.

Portanto, campos elétricos estáticos em um plasma a altas temperaturas são blindados, e campos magnéticos

não.

A massa elétrica pode ser entendida como uma massa efetiva adquirida pelo fóton dentro do plasma. Se

o fóton adquire uma massa, o alcance de sua interação não é mais infinito como antes, o que corresponde
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a dizer que o campo elétrico gerado pela carga tem um alcance finito, além do qual ele não atua mais. É a

blindagem de que estamos falando. Quanto maior a temperatura, maior a massa elétrica, e portanto menor

o raio de blindagem. Isto significa que o alcance do campo elétrico vai diminuindo com o aumento da

temperatura, até o limite em que a carga passa se comportar como sendo neutra, que é quando T →∞.

Como já dissemos no inı́cio desta seção, classicamente este fenômeno é conhecido na fı́sica de plasmas,

e a visão clássica é a de que há uma polarização das cargas, formando dipolos elétricos em torno da carga

central, o que provoca sua blindagem. Isto pode ser melhor visualizado na Figura 1.12. Cargas positivas se

Figura 1.12: Blindagem do campo elétrico produzido por uma carga −Ze no centro.

aproximam da carga central, e cargas negativas são repelidas. Sucessivamente outras cargas positivas são

atraı́das e negativas repelidas, levando a uma quase neutralidade do ponto de vista macroscópico. Do ponto

de vista quântico podemos representar a blindagem da carga conforme a Figura 1.13. Os fótons, que são

Figura 1.13: Visão quântica da blindagem do campo elétrico de uma carga Q no centro.
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os responsáveis pela interação eletromagnética da carga central com os ı́ons do plasma, podem, segundo a

QED, sofrer os processos representados pelos diagramas de 1-loop. Isto acarreta em uma geração efetiva de

massa ao fóton, que portanto deixa de ter o seu alcance infinito, ou seja, o campo elétrico associado a este

fóton tem uma ação finita, deixando de agir a partir de uma certa distância, o que caracteriza a blindagem

da carga.

Nesta seção discutimos como a presença da temperatura pode modificar os cálculos da teoria de campos

usual da seção anterior. Cálculos a temperatura finita nos dão a possibilidade de obter novas quantidades

de interesse de um sistema, como a função de partição por exemplo e todas as quantidades fı́sicas que dela

derivam. Também vimos que o tensor de auto-energia do fóton (1.103) a altas temperaturas é dado por,

Πµν = Πµν
(vac) +

e2T 2

3
uµuν , (1.114)

onde a parte de vácuo foi calculada na seção 1.1.4. Observe que o método da teoria de campos a temperatura

finita é mais geral do que a teoria de campos usual no sentido de que ela fornece todos os resultados

a temperatura nula acrescido de uma correção devido à presença da temperatura. Da expressão acima

fica evidente que a seção de choque de uma reação se modifica se ela acontecer imersa em um banho

térmico, e quanto mais alta a temperatura, maior será a contribuição. Mas também temos que lembrar

que as expressões anteriores foram obtidas no limite de altas temperaturas, ou seja, quando a temperatura

é muito maior que a massa das partı́culas envolvidas. Para uma partı́cula como o elétron por exemplo,

a temperatura correspondente à sua massa de repouso é da ordem de 109K, portanto uma temperatura

muito alta, lembrando que uma estrela tı́pica como sol tem uma temperatura superficial da ordem de 104K.

No entanto existem outros lugares onde temperaturas muito altas devem ocorrer, como em explosão de

supernovas, núcleos galáticos, e certamente nos primórdios do universo. Por isso o interesse de se entender

corretamente como incluir efeitos de temperatura em teoria de campos.
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Capı́tulo 2

Teorias Não-Comutativas

O advento da teoria de campos a partir da década de 1930 foi acompanhado por uma busca incansável

de mecanismos que pudessem dar conta de remover corretamente os inúmeros infinitos a que a teoria estava

sujeita1. As chamadas divergências ultravioletas e infravermelhas só foram completamente entendidas

com o desenvolvimento do programa de renormalização, no entanto outras alternativas foram propostas.

Uma delas foi sugerida por um dos fundadores da mecânica quântica e da eletrodinâmica quântica, W.

Heisenberg. Ele propôs que uma estrutura não-comutativa do espaço em escalas de comprimento muito

pequenas era capaz de introduzir um parâmetro de corte (cutoff) ultravioleta, de tal forma a se evitar o

aparecimento das divergências. Snyder [18] foi o primeiro a formular esta idéia de maneira consistente.

Evidências mais concretas da não-comutatividade do espaço-tempo vêm do limite de baixas energias

da teoria de cordas, no momento a melhor teoria candidata a incorporar efeitos quânticos da gravidade.

Como as cordas têm uma escala de comprimento finito da ordem do comprimento de Planck lP , não é

possı́vel observar distâncias menores que lP .

Outra motivação para se aceitar com mais naturalidade a não-comutatividade do espaço-tempo em es-

calas de comprimento muito pequenas vem da gravitação. Em escalas da ordem do comprimento de Planck

o conceito de medida perde o seu significado. Quanto mais tentamos localizar uma partı́cula, por exemplo

pelo espalhamento de um fóton, menor deve ser o seu comprimento de onda, e conseqüentemente maior

a energia associada a ela. Desta forma mais energia está sendo transferida ao sistema, o que significa

uma contribuição para o campo gravitacional local através das equações de Einstein da relatividade ge-

ral, gerando uma curvatura do espaço e interferindo nos sinais luminosos que dariam informação sobre a

medida.

De fato, todos estes efeitos só têm validade em escalas de energia muitı́ssimo altas, onde a fı́sica

provavelmente deve seguir outras leis que não as que conhecemos. Desta forma devemos considerar a

não-comutatividade do espaço-tempo como uma teoria efetiva, capaz de levar em conta a existência de um

comprimento mı́nimo. Além disso no limite de baixas energias, ou θ → 0, ela recai nas teorias usuais que

conhecemos bem.

A idéia por trás da não-comutatividade do espaço-tempo é muito próxima à que encontramos na
1Um exemplo destes infinitos apareceu no cálculo do tensor de auto-energia do fóton do capı́tulo anterior.
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mecânica quântica, onde o espaço de fases quântico é obtido pela troca das variáveis canônicas de posição

xi e momento pj por operadores hermiteanos x̂i , p̂j que obedecem às relações de comutação de Heisen-

berg [x̂i , p̂j ] = i~δij . A esta relação de comutação sabemos estar associada uma relação de incerteza na

medida da posição e do momento de uma partı́cula, expressa na forma ∆x∆px ≥ ~/2. Da mesma ma-

neira o espaço-tempo não-comutativo é definido pela troca das coordenadas do espaço-tempo usual xµ por

geradores hermiteanos x̂µ de uma álgebra não-comutativa que obedeça à relação de comutação

[x̂µ , x̂ν ] = iθµν

onde, no caso mais simples, θµν é um tensor real, constante e anti-simétrico, com dimensão de comprimento

ao quadrado. A relação de incerteza associada é do tipo ∆xµ∆xν ≥ θ/2, onde θ ≡ |θµν | deve ter dimensão

de comprimento ao quadrado. Devido a esta relação de incerteza, nesta escala um ponto do espaço-tempo

deve ser trocado por uma “célula” com dimensão de área da ordem de θ. Para descrever fenômenos nesta

escala devemos então utilizar uma álgebra que seja não-comutativa. Desta forma, a teoria de campos é

válida apenas até uma escala de comprimento da ordem de
√
θ, abaixo da qual uma nova teoria deve

ser adotada, por exemplo a teoria de cordas. Portanto as divergências ultravioletas da teoria não devem

existir, pois a um comprimento mı́nimo está associado um momento máximo, que deve ser tomado como

o parâmetro de corte da integração.

Para termos uma idéia da ordem de grandeza de
√
θ, vamos considerar que de fato a não-comutatividade

é uma teoria efetiva que segue do limite de baixas energias da teoria de cordas. Se a escala de comprimento

da teoria de cordas é o comprimento de Planck, lP ∼ 10−33cm, a não-comutatividade deve ter uma es-

cala muito maior que lP mas ainda assim muito menor que a escala quântica, que é da ordem de 1fm

∼ 10−13cm. De fato, limites experimentais [19, 20] impõem um valor de
√
θ ≤ 10−18cm, que corres-

ponde em energia2 a θ ∼ (10TeV)−2.

Neste capı́tulo vamos apresentar brevemente uma motivação para o estudo da não-comutatividade entre

as coordenadas que vem da fı́sica clássica. Os resultados apresentados na seção 2.1.2 foram publicados nas

referências [72, 73]. Em seguida apresentaremos a formulação do ponto de vista da teoria de campos e

terminamos com uma breve apresentação das regras de Feynman para o caso da eletrodinâmica quântica

não-comutativa, que será útil no capı́tulo seguinte.

2.1 Não-comutatividade na fı́sica clássica

Nesta seção faremos uma breve exposição de como a não-comutatividade das coordenadas aparece já

na mecânica clássica, no conhecido problema de Landau, onde uma partı́cula carregada sujeita a um campo

magnético forte tem seu movimento restrito ao plano perpendicular ao campo. A quantização deste sistema

foi estudada por Landau [21] e rediscutida por inúmeros autores [22].
2Estamos usando 1GeV−1 ∼ 10−14cm.

40



2.1.1 Partı́cula carregada em um campo magnético intenso e uniforme

Considere uma partı́cula de massa m e carga e movendo-se no plano x − y sob ação de um campo

magnético constante B na direção z e sujeita a um potencial escalar externo −V (x, y). Nosso obje-

tivo é mostrar que para este sistema clássico, quando o campo magnético constante B é muito intenso,

a quantização do sistema leva a uma não-comutatividade das coordenadas, ou [x , y] 6= 0. Este problema

foi extensivamente estudado por Jackiw e colaboradores, conforme referências [23, 24, 25, 26].

A lagrangeana para este sistema deve ter a forma geral

L =
1

2
m~v2 +

e

c
~v · ~A(x, y)− V (x, y) , (2.1)

onde ~v é a velocidade da partı́cula, ~v = (vx, vy) ≡ (ẋ, ẏ), ~A é o potencial vetor eletromagnético e V um

potencial escalar qualquer, da forma

V (x, y) = axn + byn , (2.2)

para a e b constantes. Não há perda de generalidade se tomarmos o potencial V como sendo o de um

oscilador harmônico, portanto vamos nos restringir a

V (x, y) =
1

2
k(x2 + y2) , (2.3)

com k constante. A fim de que o campo magnético seja constante na direção z, vamos escolher3

~A(x, y) =
(

− B

2
y,
B

2
x
)

, (2.4)

de forma que ~∇× ~A = Bẑ. Com isto, a lagrangeana pode ser escrita como

L =
1

2
m(ẋ2 + ẏ2) +

eB

2c
(xẏ − yẋ)− 1

2
k(x2 + y2) . (2.5)

As equações de movimento deste sistema seguem diretamente das equações de Euler-Lagrange (ver Apêndice

A.1 para uma breve revisão), e são dadas por

mẍ =
eB

c
ẏ − kx , mÿ = −eB

c
ẋ− ky . (2.6)

Os momentos canonicamente conjugados a x e y são

Px =
∂L

∂ẋ
= mẋ− eB

2c
y , Py =

∂L

∂ẏ
= mẏ +

eB

2c
x , (2.7)

e como sabemos, as coordenadas x, y e os momentos conjugados Px, Py satisfazem as relações dos colche-

3Poderı́amos fazer outra escolha, por exemplo ~A = (0, Bx), pois a teoria é invariante por uma transformação de gauge.
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tes4 de Poisson,

{x, y} = {Px, Py} = {x, Py} = {y, Px} = 0 , {x, Px} = {y, Py} = 1 . (2.8)

A hamiltoniana pode ser obtida facilmente por meio de H = ~P · ~v − L, conforme (A.3), de onde seguem

as equações de Hamilton do movimento

ẋ = {x,H} =
1

m

(

Px +
eB

2c
y
)

, ẏ = {y,H} =
1

m

(

Py −
eB

2c
x
)

, (2.9)

que são exatamente equivalentes àquelas da eq. (2.7), como deve ser.

Agora vamos tomar o limite em que o campo magnéticoB é muito intenso. Uma forma de implementar

isso é tomar o limite m→ 0 na lagrangeana, de forma que toda a cinética fica por conta da ação do campo

magnético, sob influência do potencial V , que vamos manter apenas por generalidade. A lagrangeana neste

caso fica

L0 =
eB

2c
(xẏ − yẋ)− 1

2
k(x2 + y2) . (2.10)

e as equações de movimento (2.6) se reduzem a

ẋ = − kc
eB

y , ẏ =
kc

eB
x . (2.11)

A hamiltoniana fica dada simplesmente por

H0 = V (x, y) =
1

2
k(x2 + y2) , (2.12)

mas agora aparece um problema. As equações de Hamilton (2.9) não podem ser obtidas através do comu-

tador de Poisson, pois de acordo com as relações (2.8)

ẋ = {x,H0} = {x, 1
2
k(x2 + y2)}

= ky{x, y}

= 0 , (2.13)

em desacordo com (2.11). Uma maneira de resolver este problema é propondo que

{x, y} = − c

eB
, (2.14)

de forma a restabelecer os resultados (2.11). Mas este comutador não deve ser o de Poisson, pois este

sabemos que é nulo. Admitindo por um momento a existência deste novo comutador, a extensão quântica
4Usaremos a notação { , } para colchetes de Poisson ou comutador de Poisson, { , }D para colchetes de Dirac ou comutador

de Dirac, e [ , ] para o comutador quântico.
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de um sistema clássico é feita por meio da substituição

{f, g} =
1

i~
[f̂ , ĝ] , (2.15)

onde f, g são funções clássicas do lado esquerdo e operadores quânticos do lado direito. Quando aplicamos

ao nosso problema obtemos

[x , y] = − i~c
eB

. (2.16)

Desta forma podemos dizer que as coordenadas não comutam, sendo a intensidade do parâmetro de não-

comutatividade proporcional ao inverso do campo magnético B que atua no sistema.

No entanto existe uma maneira mais rigorosa de se obter este resultado. Ela foi proposta por Dirac para

quantizar sistemas sujeitos a vı́nculos [27], que é exatamente quando os colchetes de Poisson não fornecem

uma boa descrição para a quantização, que é o nosso caso, afinal {x, y} = 0.

Vamos ver então como fica o problema por meio do método de Dirac. Segundo este método, quando o

sistema está sujeito a vı́nculos, o colchetes de Poisson entre duas quantidadesQ1 eQ2 deve ser generalizado

para o chamado colchetes de Dirac

{Q1, Q2}D = {Q1, Q2} − {Q1, χ
i}Cij{χj , Q2} , (2.17)

onde χi são os vı́nculos a que o sistema está sujeito, e Cij é obtido através de

Cij{χj , χk} = δki , (2.18)

onde δki é o delta de Kronecker. Vamos aplicar ao nosso problema. Temos dois vı́nculos, que aparecem

quando impomos m→ 0 nas equações (2.7)

χ1 ≡ Px +
eB

2c
y = mẋ ≈ 0 ,

χ2 ≡ Py −
eB

2c
x = mẏ ≈ 0 . (2.19)

Estes vı́nculos são de segunda classe5, pois

{χ1, χ2} = {Px +
eB

2c
y, Py −

eB

2c
x} =

eB

c
6= 0 , (2.20)

5Não vamos nos deter nas definições aqui. Para um tratamento rigoroso sugerimos consultar as referências [27, 28]. Apenas
por completeza, vı́nculos de primeira classe possuem parênteses de Poisson nulo com qualquer outro vı́nculo, e vı́nculos de
segunda classe são aqueles cujos parênteses de Poisson é diferente de zero com pelo menos um dos vı́nculos. Como regra geral,
os vı́nculos devem ser escolhidos de maneira a maximizar os de primeira classe. Isto pode ser feito levando-se em conta que uma
combinação linear de vı́nculos também é um vı́nculo.
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onde usamos os resultados (2.8). Os coeficientes C12 e C21 podem ser facilmente obtidos, por exemplo

C12{χ2, χk} = δk1

C12{χ2, χ1} = 1

C12(−
eB

c
) = 1

C12 = − c

eB
, (2.21)

e da mesma forma obtemos C21 = c
eB . Portanto, calculando os comutadores de Poisson de x, y com χ1, χ2

obtemos

{x, χ1} = 1 , {x, χ2} = 0 , {χ1, y} = 0 , {χ2, y} = −1 (2.22)

de forma que temos finalmente

{x, y}D = {x, y} − {x, χ1}C12{χ2, y} − {x, χ2}C21{χ1, y}

= − c

eB
. (2.23)

A extensão quântica deste sistema deve ser feita por meio de

{f, g}D =
1

i~
[f̂ , ĝ] , (2.24)

e então o resultado (2.16) para a não comutatividade das coordenadas aparece naturalmente aqui pelo

método de quantização de Dirac de sistemas sujeitos a vı́nculos. Para um campo magnético constante,

podemos escrever então

[xi, xj ] = iθij , (2.25)

onde θij é um tensor anti-simétrico constante, que neste caso pode ser representado por θij = − ~c
eB ε

ij ,

onde i, j = 1, 2 e εij é o tensor unitário totalmente anti-simétrico.

2.1.2 Partı́cula carregada em um campo magnético intenso não-uniforme

Motivados pela análise anterior, nos surgiu a seguinte questão: se o campo magnético não for uniforme,

qual a generalização da relação de comutação clássica (2.23)? E a extensão quântica (2.16)? Será que

podemos escrevê-la na forma

[xi, xj ] = iθij(~r) , (2.26)

com i, j = 1, 2, 3 e θij uma função local das coordenadas? A resposta é sim. Fizemos um estudo

da generalização do sistema anterior para o caso de uma partı́culas sujeita a um campo magnético não-
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uniforme ~B(~r), e o resultado é que a comutação quântica entre as coordenadas é generalizada para a forma

[xi, xj ] = −i~c
e
εijk

Bk(~r)

B2(~r)
, (i, j, k = 1, 2, 3) . (2.27)

Para mostrar como chegamos a este resultado, vamos apresentar brevemente aqui o que foi feito. Para

mais detalhes sugerimos consultar a referência [72].

No caso tridimensional, as equações de movimento que seguem da lagrangeana (2.1) com ~A e V gerais

são

m~̈r =
e

c
~̇r × ~B(~r) + ~f(~r), (2.28)

onde ~r = (x1, x2, x3) e ~f = −~∇V é a força derivada do potencial externo. No limite m→ 0 as equações

de movimento se reduzem a

εkij ẋ
iBj +

c

e
fk = 0, (2.29)

de onde segue diretamente a relação

Bkfk = ~B · ~f = 0 (2.30)

que assegura que a força lı́quida na direção de ~B se anula, o que representa uma condição necessária para

obter equações de movimento consistentes no limite m→ 0. De fato, como a força de Lorentz é ortogonal

ao campo magnético, esta condição nos permite dizer que a projeção de m~̈r ao longo de ~B é nula. Então,

no caso em que a velocidade é perpendicular ao campo magnético, podemos inverter a equação (2.29) e

obtermos as equações de movimento,

ẋi =
c

e
εijk

f jBk

B2
. (2.31)

Por outro lado, a hamiltoniana é dada simplesmente por H0 = V (~r), e as equações de Hamilton fornecem

ẋi = {xi, H0} = −fj{xi, xj} (2.32)

e a única forma de obter corretamente as equações de movimento (2.31) é impondo a comutação

{xi, xj} = −c
e
εijk

Bk

B2
, (2.33)

que leva diretamente à relação (2.27) depois da quantização.

Podemos obter o mesmo resultado pelo método de Dirac. A hamiltoniana para o sistema é da forma

geral

H =
~π2

2m
+ V (~r) =

1

2m
(~p− e

c
~A)2 + V (~r) (2.34)
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onde ~π é o momento cinético, ~p é o momento canônico e ~B = ~∇× ~A. Para que possamos tomar o limite

m→ 0, devemos impor os vı́nculos ~π ≈ 0, que correspondem a

πi = pi − e

c
Ai ≈ 0 (i = 1, 2, 3) , (2.35)

e satisfazem

{πi, πj} =
e

c
(∂iAj − ∂jAi) =

e

c
εijkBk . (2.36)

É fácil verificar que com estes três vı́nculos podemos construir dois outros vı́nculos de segunda classe,

χ1 = ~f · ~π ; χ2 = ( ~B × ~f) · ~π . (2.37)

São estes vı́nculos que devemos usar em (2.17) e (2.18) para obtermos o comutador de Dirac. Usando as

relações (2.8) obtemos

{xi, χ1} = f i ; {xi, χ2} = εijkBjfk ; {χ1, χ2} =
e

c
B2f2 , (2.38)

de forma que chegamos finalmente a

{xi, xj}D = −c
e
εijk

Bk(~r)

B2(~r)
. (2.39)

Portanto, a quantização leva diretamente à (2.27), mostrando que neste caso a não-comutatividade das

coordenada é uma função local do espaço.

Como aplicação do resultado anterior, considere o caso de um campo magnético fracamente não uni-

forme na direção z. Um campo deste tipo ocorre em um espelho magnético, produzido por um par de

espiras alinhadas, como em uma bobina de Helmholtz. Este sistema tem a propriedade de confinar o mo-

vimento de uma partı́cula dentro do espelho, onde o campo magnético pode ser descrito em coordenadas

cilı́ndricas por

~B = −1

2
ρ
∂Bz(z)

∂z
êρ +Bz(z)êz , (2.40)

onde ρB′z << Bz . Então, a solução (2.27) implica nas seguintes relações de não-comutatividade entre as

coordenadas

[x, y] = −i~ c
e

Bz
B2

; [y, z] = i~
c

2e

xB′z
B2

; [z, x] = i~
c

2e

yB′z
B2

. (2.41)

Vemos que a intensidade da não-comutatividade é mais forte no plano x−y, enquanto que nos planos x−z
e y−z ela é enfraquecida por um fator ρB ′z/Bz << 1. A quantização deste sistema no caso bidimensional

com um campo magnético constante foi estudado por Landau [21], e os nı́veis de energia associados são os

conhecidos nı́veis de Landau, infinitamente degenerados. Fizemos um estudo da quantização deste sistema
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quando o campo magnético é não uniforme, da forma (2.40), onde apresentamos uma generalização aos

nı́veis de energia de Landau, que são obtidos no limite de campo constante. Estes resultados estão na

referência [73].

Antes de começarmos a estudar a formulação de teorias de campos em espaços não-comutativos, de-

vemos fazer alguns comentários. A não-comutatividade do espaço não é só uma abstração matemática

no sentido de generalizar alguns resultados. Muitos trabalhos têm sido publicados ultimamente sugerindo

testes concretos para a não-comutatividade ser de fato medida. Um trabalho de Chaichian e colabora-

dores [19] tenta explicar o efeito PVLAS6 observado recentemente, que é a rotação da polarização da luz

propagando-se no vácuo na presença de um campo magnético de fundo. Outros testes à não-comutatividade

foram propostos pelos mesmos autores anteriormente [29], por exemplo eles calcularam qual o efeito da

não-comutatividade nos nı́veis de energia do átomo de hidrogênio e no Lamb shift, quais as correções

ao efeito Stark e ao efeito Zeeman. Também vale citar trabalhos recentes que tentam incorporar a não-

comutatividade à relatividade geral e à gravitação [30, 31, 32].

2.2 Aspectos gerais de teorias de campos não-comutativos

Nesta seção vamos implementar as mudanças necessárias na teoria de campos usual para incluir efeitos

da não-comutatividade.

O estudo de teorias de campos definidas em variedades onde as coordenas do espaço-tempo satisfazem

à relação

[xµ, xν ] = iθµν (2.42)

tem aumentado nos últimos anos. Como já foi dito no inı́cio, a teoria de cordas é um cenário comum onde

a não-comutatividade aparece naturalmente. Sendo um pouco mais especı́fico, quando se estuda a teoria de

cordas no regime de baixas energias na presença de um campo de fundo constante, a teoria resultante é bem

descrita por uma teoria de campos definida no espaço não-comutativo7. Talvez esta seja a maior motivação

para se estudar teorias não-comutativas, pois a teoria de cordas é esperada ser o ponto de partida no sentido

de uma grande unificação. Vários outros autores descrevem com clareza e detalhes a formulação de teorias

de campos em espaços não-comutativos. As referências [36, 37, 38, 39, 40] são especialmente completas

e detalhadas no aspecto geral e com aplicações diversas. Vamos expor aqui apenas as propriedades e

caracterı́sticas principais que aparecem no tratamento de teorias de campos não-comutativos. Para maiores

detalhes sugerimos as referências citadas acima.

A primeira regra para tratarmos teorias de campos em espaços não-comutativos é substituir o produto

dos campos, que aparece na ação da teoria por exemplo, pelo chamado produto estrela de Grönewold-

6Polarizzazione del Vuoto con LASer (Polarização do vácuo com laser).
7Este resultado foi apresentado primeiramente por Seiber e Witten [35]. Uma discussão mais detalhada e mais pedagógica

pode ser encontrada nas págs. 22-34 da dissertação de mestrado de Bruno Charneski, ref. [33].
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Moyal entre duas funções, definido por

f(x) ? g(x) = exp

(

i

2
θµν

∂

∂xµ
∂

∂yν

)

f(x)g(y)|x=y

= f(x)g(x) +
i

2
θµν∂µf ∂νg +

1

2!

(

i

2

)2

θµνθαβ(∂µ∂αf)(∂ν∂βg) + · · · ,

(2.43)

onde, na segunda linha, temos a expansão em termos do produto ordinário das funções f e g e suas de-

rivadas em todas as ordens. Note que o primeiro termo é o produto ordinário das funções, que é o limite

esperado quando θ → 0. Este produto introduz de maneira natural o chamado comutador Moyal8 de duas

funções

[f, g ]MB = f(x) ? g(x)− g(x) ? f(x)

= 2if(x) sin

(

1

2

←−
∂µθ

µν−→∂ν
)

g(x) , (2.44)

onde a seta na primeira derivada parcial significa que ela atua na função f , à esquerda, e a segunda atua

em g, à direita9. A forma dada na segunda linha obtém-se facilmente utilizando-se a expressão expandida

em (2.43). As potências pares em θµν anulam-se, sobrando apenas as potências ı́mpares, que podem ser

reagrupadas de forma a serem escritas como a função seno. Da mesma forma define-se o anticomutador

Moyal

[f, g ]+MB = f(x) ? g(x) + g(x) ? f(x)

= 2f(x) cos

(

1

2

←−
∂µθ

µν−→∂ν
)

g(x) . (2.45)

Da definição (2.44) segue diretamente a comutação entre as coordenadas (2.42)

[xµ, xν ]MB = iθµν , (2.46)

por isso podemos dizer que a álgebra definida por (2.42) implica que o produto entre funções deve ser

tomado de acordo com (2.43).

Outra propriedade importante é a integração do produto de funções. Pode-se mostrar que a integral

d-dimensional do produto Moyal de duas funções é igual à integral do produto ordinário das funções

∫

ddxf(x) ? g(x) =

∫

ddxf(x)g(x) , (2.47)

8Na literatura chama-se Moyal Bracket, por isso o subscrito MB.
9Esta é apenas uma notação alternativa à dada na eq. (2.43), onde está explı́cito que as derivadas agem em x e em y sem

ambiguidade.
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e para o produto de n funções vale a propriedade de ciclicidade

∫

ddxf1(x) ? f2(x) ? · · · ? fn(x) =

∫

ddxfn(x) ? f1(x) ? · · · ? fn−1(x) . (2.48)

Outras duas propriedades importantes são10:

eikx ? eik
′x = e−

i
2
θijkik

′
j ei(k+k

′)x (2.49)

eikx ? f(x) ? e−ikx = eθ
ijki∂jf(x) = f(xi + θijkj) , (2.50)

que podem ser obtidas por expansão do produto Moyal e reagrupamento dos termos de forma conveniente.

No que segue vamos estudar a eletrodinâmica quântica definida em um espaço não-comutativo11,

usando as propriedades anteriores.

2.3 QED não-comutativa

Nesta seção vamos apresentar os principais resultados já existentes na literatura de estudos da eletro-

dinâmica quântica não-comutativa. Vamos apresentar as regras de Feynman da teoria e os diagramas em

1-loop que contribuem por exemplo para a auto-energia do fóton. O objetivo é introduzir a NCQED para

que possamos fazer cálculos a temperatura finita no próximo capı́tulo.

2.4 Ação da QED não-comutativa

A formulação da eletrodinâmica quântica em espaços não-comutativos difere um pouco da QED usual

(comutativa). Como vimos, a não-comutatividade das coordenadas do espaço-tempo definida por (2.42)

implica numa redefinição do produto de funções, que deve obedecer ao produto de Grönewold-Moyal

(2.43). A eletrodinâmica quântica também pode ser formulada em um espaço não-comutativo desse tipo,

precisamos apenas tomar alguns cuidados. Em primeiro lugar, para evitar problemas com a unitariedade

da teoria, vamos assumir que somente as componentes espaciais de θµν são diferentes de zero, ou seja,

θ00 = θi0 = θ0i = 0. Em segundo lugar, o tensor eletromagnético F µν deve ser generalizado. Para que a

lagrangeana seja invariante por transformações de gauge, devemos ter

Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ]MB , (2.51)

e a derivada covariante agindo em um campo de gauge Aν deve ser da forma

DµA
ν = ∂µA

ν − ie[Aµ, Aν ]MB , (2.52)

10Ver pág. 5 de [36].
11Neste capı́tulo e nos que seguem, na maioria das vezes vamos nos referir à eletrodinâmica quântica não-comutativa sim-

plesmente como NCQED (Noncommutative Quantum Electrodynamics), como encontramos usualmente na literatura. A eletro-
dinâmica quântica usual (comutativa) será denominada simplesmente por QED ou QED usual.
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e quando agindo em um campo fermiônico ψ

Dµψ = ∂µψ − ieAµ ? ψ . (2.53)

Com isto, a ação para a QED não-comutativa deve ser definida como12

Sinv =

∫

d4xLinv =

∫

d4x

(

−1

4
Fµν ? F

µν + ψ̄ ? (iD/−m)ψ

)

. (2.54)

Esta ação é invariante por uma transformação de gauge do tipo

ψ(x) → ψ′(x) = U(x) ? ψ(x)

Aµ(x) → A′µ(x) = U(x) ? Aµ(x) ? U
−1(x) +

i

e
U(x) ? ∂µU

−1(x) . (2.55)

Do ponto de vista infinitesimal, esta transformação toma a seguinte forma

δψ(x) = iε(x) ? ψ(x)

δAµ =
1

e
Dµε(x) =

1

e

(

∂µε− ie [Aµ, ε]MB

)

, (2.56)

onde ε(x) é o parâmetro da transformação infinitesimal. A esta ação podemos ainda somar um termo

fixador de gauge (fg) e um termo devido a campos fantasmas (gh)13. Estes termos devem contribuir com

Sfg + Sgh =

∫

d4x

(

− 1

2ξ
(∂µA

µ) ? (∂νA
ν) + ∂µC ? (∂µC − ie[Aµ, C]MB)

)

(2.57)

onde ξ é parâmetro fixador de gauge. Desta forma, a ação completa da QED não-comutativa é expressa

por:

SNCQED = Sinv + Sfg + Sgh

=

∫

d4x

(

− 1

4
Fµν ? F

µν + ψ̄ ? (iD/−m)ψ − 1

2ξ
(∂µA

µ) ? (∂νA
ν)

+ ∂µC ? (∂µC − ie[Aµ, C]MB)

)

. (2.58)

Fica fácil perceber desta forma da ação que ela tem a mesma estrutura de uma teoria de gauge não-

abeliana14, sendo o produto Moyal o responsável por esta estrutura não-abeliana, explı́cito no último

termo do tensor eletromagnético (2.51). Aliás, são muitas as analogias entre uma teoria de gauge SU(N)

12Em teorias não-comutativas é mais comum escrever a ação da teoria, ao invés da lagrangeana, pois em geral a invariância de
gauge é satisfeita pela ação neste caso, e não pela lagrangeana propriamente dita, devido à necessidade do uso de integrações por
partes para se justificar a invariância.

13Lembre-se que este termo é necessário mesmo na QED usual para incluir corretamente o número de graus de liberdade em
cálculos a temperatura finita, conforme discutido na seção 1.2.3 para o caso do gás de fótons.

14Teoria de Yang-Mills por exemplo.
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não-abeliana definida no espaço comutativo usual e uma teoria de gauge U(N) definida no espaço não-

comutativo.

Vamos ver agora como ficam as regras de Feynman para esta teoria.

2.4.1 Regras de Feynman da NCQED

O produto Moyal tem conseqüências interessantes nas regras de Feynman da teoria. Como vimos

em (2.47), quando o produto Moyal de duas funções é integrado, o resultado é o mesmo que no produto

ordinário das funções15. Isto se reflete no fato de que os propagadores da teoria não mudam, são os mesmos

da teoria comutativa. Portanto, para os propagadores temos as seguintes regras:

férmion
p

:
i

p/−m+ iε
= iS(p)

fóton
pµ ν : − i

(p2 + iε)

(

ηµν − (1− ξ)pµpν
p2

)

= iDµν(p)

ghost
p

:
i

p2 + iε
= iD(p) (2.59)

que são as mesmas de (1.2) e (1.3) da QED usual, com a adição do propagador D(p) devido aos campos

fantasmas (ghosts).

Outra caracterı́stica é que, sob uma integração, qualquer número de funções multiplicadas segundo o

produto Moyal satisfazem a propriedade de ciclicidade, conforme (2.48). Isto leva a uma modificação dos

vértices da teoria. Eles devem depender do parâmetro de não-comutatividade θµν . De fato isto acontece.

Para entendermos como ficam os vértices da teoria, vamos detalhar um pouco como aparece um deles. Da

análise direta da ação (2.58), vemos que aparecem vértices contendo três e quatro linhas de fótons, assim

como vértices contendo dois campos fermiônicos e um campo de fóton, e o mesmo para campos fantasmas.

Por exemplo, o vértice com três linhas de fótons é originado de um termo do tipo

(∂µAν(x)− ∂νAµ(x)) ? (−ie)[Aµ(x), Aν(x)]MB

vindo do primeiro termo da ação. Vamos desenvolver o primeiro termo desta expressão. Ele pode ser
15Basta fazer uma integração por partes na expressão expandida do produto e considerar que as funções se anulam no infinito.
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escrito como

∂µAν(x) ? (−ie)
[

Aµ(x) , Aν(x)
]

MB

= −ie∂µAν(x) ?
[

Aµ(x) , Aν(x)
]

MB

= −ie∂µAν(x) ? ηαµ
[

Aα(x) , Aβ(x)
]

MBη
βν

= −ie∂µAν(x) ? ηαµ
(

Aα(x) ? Aβ(x)−Aβ(x) ? Aα(x)

)

ηβν

= −ieηαµ∂µAν(x) ?
(

2iAα(x) sin

(

1

2

←−
∂jθ

jk−→∂k
)

Aβ(x)

)

ηβν (2.60)

onde usamos a propriedade (2.44) na última linha. Agora, para que as derivadas possam agir nos campos

de gauge A(x), escrevemos para cada um deles uma expansão de Fourier do tipo

Aα(x) =

∫

d4p1Aα(p1) eip1·x ,

e similarmente para Aβ(x) e Aν(x), com integração nos momentos p2 e p3, respectivamente. Desta forma,

o efeito das derivadas é gerar um termo do tipo (ip1) por exemplo, cada um com o momento correspon-

dente. Fazendo isto na última linha de (2.60) obtemos

−ie(2i)ηαµ(ip3µ)Aν(x) ?

[

Aα(x) sin

(

1

2
(ip1j)θ

jk(ip2k)

)

Aβ(x)

]

ηβν

= −2iepα3 sin

(

p1 × p2

2

)

ηβνAν(x) ? Aα(x)Aβ(x) , (2.61)

onde introduzimos a notação p× q = pµθ
µνqν , que será muito utilizada daqui em diante. O único produto

Moyal que resta é idêntico ao produto ordinário das funções, como já vimos, pois esta expressão está sob

uma integração. A conservação do momento requer que p3 = p1 − p2. Desta forma, retirando os campos

A’s da expressão, o que resta é um termo do tipo16

−2e sin

(

p1 × p2

2

)

(p1 − p2)
αηβν ,

que deve ser um termo tı́pico do fator de vértice para o caso de três linhas de fótons. De fato é exatamente

isso que acontece. Os fatores de vértice são dados por
16O fator i é absorvido por exp iS.
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3
p

2
p

p
1

λ

µ,

,

,ν

: −2 e sin
p1 × p2

2

[

(p1 − p2)
ληµν + (p2 − p3)

µηνλ + (p3 − p1)
νηλµ

]

(2.62)

2
p,ν 3

pλ,

p
1µ, ρ, 4

p

: 4i e2
[

(ηµληνρ − ηµρηνλ) sin
p1 × p2

2
sin

p3 × p4

2

+(ηµρηνλ − ηµνηλρ) sin
p3 × p1

2
sin

p2 × p4

2

+(ηµνηλρ − ηµληνρ) sin
p1 × p4

2
sin

p2 × p3

2

]

(2.63)

p

p
i

f

µ
: 2iepµf sin

pi × pf
2

(2.64)

p
f

p
i

µ
: ieγµe

i
2
pi×pf (2.65)

A dedução de cada um deles segue de maneira similar à análise que fizemos para o caso do vértice com

três fótons.

2.4.2 Auto-energia do fóton

Vamos estudar aqui a a auto-energia do fóton, cujas contribuições vêm dos gráficos de 1-loop represen-

tados na Figura 2.1.
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(a) (b) (c) (d)

Figura 2.1: Contribuições para auto-energia do fóton na eletrodinâmica quântica não-comutativa.

Vamos então obter as expressões correspondentes para cada um dos diagramas que contribuem para o

tensor de auto-energia do fóton Πµν(p). Uma das contribuições vem do gráfico de 1-loop de ghost da

Figura 2.1(a), que pode ser representado com detalhes pela Figura 2.2. Neste capı́tulo e nos seguintes

vamos usar sempre k para indicar o momento interno ao loop e p para indicar o momento externo, ao

contrário do que foi usado no capı́tulo anterior. Usando as regras de Feynman dadas em (2.59) e (2.64)

p p

k

p+k

Figura 2.2: Diagrama de 1-loop de ghost que contribui para a auto-energia do fóton na NCQED.

podemos escrever a contribuição deste gráfico como

Πµν
a (p) = (−1)(−4e2)

∫

d4k

(2π)4
sin2

(k × p
2

)kν(kµ + pµ)

k2(k + p)2
. (2.66)

O fator (−1) vem do loop de ghost17.

O diagrama da Figura 2.1(b), conhecido como tadpole, pode ser representado em detalhes conforme a

Figura 2.3. Usando as regras de Feynman (2.59) e (2.63) e restringindo ao gauge de Feynman, onde ξ = 1,

pp

k

Figura 2.3: Diagrama do tipo tadpole que contribui para auto-energia do fóton na NCQED.

17Campos de ghost têm a mesma propriedade que campos fermiônicos, por isso vale a regra 7 dada na seção 1.1.1.
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podemos escrever a contribuição deste gráfico como

Πµν
b (p) =

1

2
24e2

∫

d4k

(2π)4
sin2

(k × p
2

)ηµν

k2
(2.67)

onde o fator (1/2) é o fator combinatorial associado a este tipo de diagrama.

Para o gráfico da Figura 2.1(c), a representação detalhada está na Figura 2.4. Usando as regras de

p p

k

p+k

Figura 2.4: Diagrama de 1-loop de fóton que contribui para a auto-energia do fóton na NCQED.

Feynman a contribuição deste gráfico é

Πµν
c (p) =

−1

2
4e2
∫

d4k

(2π)4
sin2

(k × p
2

)[(5p2 + 2k · p+ 2k2)ηµν − 2pµpν + 5(kµpν + pµkν) + 10kµkν

k2(k + p)2

]

(2.68)

lembrando que estamos nos restringindo ao gauge de Feynman. O fator (1/2) também se deve ao fator

combinatorial do diagrama.

Por último, considere o diagrama do loop fermiônico, representado na Figura 2.5. A expressão para

p p

k

p+k

Figura 2.5: Diagrama de 1-loop fermiônico que contribui para a auto-energia do fóton na NCQED.

este diagrama é dada por

Πµν
d (p) = −e2

∫

d4k

(2π)4
tr
(

γµ
1

/k + /p−mγν
1

/k −m

)

. (2.69)
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A contribuição total para a auto-energia do fóton na eletrodinâmica quântica não-comutativa será dada

pela soma

Πµν(p) = Πµν
a (p) + Πµν

b (p) + Πµν
c (p) + Πµν

d (p) . (2.70)

No entanto, vejam que a expressão do último diagrama, o de loop fermiônico, não tem dependência com

o parâmetro de não-comutatividade θij , sendo que todos os outros têm uma dependência no fator trigo-

nométrico, do tipo sin2(kiθ
ijpj/2). Isto se deve ao fato de que o fator de vértice (2.65) é do tipo expo-

nencial, e portanto há um cancelamento do expoente. De fato, a expressão obtida para este diagrama é

exatamente idêntica à obtida em (1.14), basta tomar c = 1 naquele caso. Concluı́mos com isso que a

parte fermiônica da eletrodinâmica quântica não-comutativa em 1-loop é exatamente igual à da teoria co-

mutativa. Para estudarmos contribuições vindas da parte não-comutativa basta nos restringirmos aos três

primeiros diagramas somente.

Como dissemos antes, as expressões que compõem o tensor de auto-energia do fóton (2.70) foram ob-

tidas no gauge de Feynman, o que simplifica muito a expressão final. Um tratamento mais detalhado em

uma dimensão arbitrária do espaço-tempo e em um gauge covariante geral foi estudado por Frenkel, Das

e Brandt [41], onde eles calcularam a integração em k explicitamente. Como resultado eles encontraram

que o tensor de auto-energia é transversal em todas as ordens para um gauge geral em d dimensões. Os

cálculos foram feitos explicitamente em 1-loop, e para isto uma generalização das fórmulas de regulariação

dimensional foram desenvolvidas para incorporar os efeitos de não-comutatividade. Eles também obtive-

ram que a auto-energia é dependente de gauge, da mesma forma que a QCD usual a temperatura nula18,

mas não se desenvolve nenhum tipo novo de divergência ultravioleta, de forma que a teoria é renorma-

lizável. Aqui estamos interessados apenas na forma do tensor, pois nosso objetivo é calculá-lo levando em

conta a temperatura finita do sistema, o que faremos no capı́tulo seguinte.

Analisando um pouco mais a fundo as expressões dos diagramas que dependem do parâmetro de não-

comutatividade, percebemos algumas caracterı́sticas interessantes. Primeiro note que todos eles dependem

de θ da mesma forma, através do fator trigonométrico

sin2

(

k × p
2

)

=
1

2
(1− cos k × p)

que segue diretamente da identidade trigonométrica (C.13). Desta forma vemos que esses diagramas são

formados por duas partes distintas, uma totalmente independente do parâmetro θ e outra dependente. A

parte independente é chamada usualmente na literatura de parte “planar”, enquanto que a parte dependente

da não-comutatividade é chamada parte “não-planar”. Observe também que se θ = 0 estas contribuições

se anulam, como deveria, afinal isto significa que nenhum dos vértices (2.62)-(2.64) existe, portanto não há

auto-interação entre os fótons. Observe também que todos os integrandos, exceto pelo fator trigonométrico,

são proporcionais19 a k, portanto a integral é quadraticamente divergente, quando k → ∞, para a parte
18A QED usual a temperatura nula é independente de gauge em 1-loop.
19Lembre-se que o elemento de volume em quatro dimensões contribui com k3.
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planar. Isto é conhecido como “divergência ultravioleta”, e a renormalização usual da QED se aplica da

mesma forma aqui. No entanto a parte não-planar é convergente para k →∞, pois a parte trigonométrica

oscila de forma a melhorar a convergência no ultravioleta. No entanto, como acontece em geral em teorias

não-comutativas, o cálculo explı́cito da integral da parte não-planar mostra uma dependência com θ e

com o momento externo p do tipo20 1/(θp)2, de forma que aparece agora uma divergência no setor de

baixos momentos externos, p → 0. Isto é conhecido como “divergência infravermelha”. Portanto há

uma “mistura” das divergências ultravioletas (UV) e infravermelhas (IR) quando a não-comutatividade

está presente, e na literatura isto é conhecido como “UV/IR mixing”. Uma boa discussão neste assunto

foi feita por Szabo [37] e por Girotti [38]. Aplicações diversas de teorias não-comutativas foram feitas,

citamos, por exemplo, estudos de teorias de Chern-Simons supersimétricas [42], modelos de Gross-Neveu

tridimensional [43], estudos de renormalização da teoria [39, 44], estudos de invariância de gauge quando

θ depende das coordenadas [45], entre outros.

20Veremos uma dependência deste tipo nos cálculos do próximo capı́tulo.
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Capı́tulo 3

QED Não-Comutativa a Temperatura
Finita

Neste capı́tulo vamos apresentar alguns dos principais resultados de nosso trabalho. Vamos juntar a

não-comutatividade do capı́tulo anterior com a eletrodinâmica quântica a temperatura finita do primeiro

capı́tulo a fim de estudarmos qual a contribuição da não-comutatividade naqueles resultados. Começamos

fazendo uma exposição mais detalhada do cálculo da auto-energia do fóton, mas devido a dificuldades

em se calcular o tensor exatamente, cálculos exatos só podem serem feitos quando tomamos algum limite

especı́fico, e investigaremos o caso do chamado limite estático a altas temperaturas. As mesmas dificulda-

des já apareceram no capı́tulo 1, e aqui, com a presença do fator de não-comutatividade, os cálculos são

ainda mais difı́ceis. Em seguida estudamos as blindagens dos campos elétrico e magnético, análogo ao que

aparece na teoria usual a temperatura finita, descrito na seção 1.2.5. Depois calculamos as amplitudes de

3 e 4-pontos em 1-loop também no limite estático, e por meio de identidades de Ward conseguimos cons-

truir uma ação efetiva para a teoria em 1-loop. Finalizamos apresentando alguns resultados já presentes na

literatura para a energia livre de Helmholtz e a pressão de um gás de fótons não-comutativos a altas tem-

peraturas. Parte do material relacionado aos cálculos matemáticos foi deixado para o Apêndice. Com isto

queremos evitar a perda de continuidade na exposição do tema principal. Todos os resultados apresentados

neste capı́tulo, exceto os da seção 3.9, foram publicados, conforme ref. [70].

3.1 Decomposição do tensor de auto-energia

Como já foi dito no capı́tulo anterior, a contribuição ao propagador do fóton devido ao loop fermiônico

não tem dependência com o parâmetro de não-comutatividade. Portanto a contribuição para a auto-energia

com dependência em θ virá somente da parte dos campos de gauge da lagrangeana, ou seja, da parte

envolvendo os campos do fóton.

Antes de iniciarmos o cálculo da função de 2-pontos, vamos discutir uma maneira conveniente de se

decompor o tensor Πµν , levando em conta tanto a temperatura finita quanto a não-comutatividade.

No caso comutativo a temperatura finita descrito na seção 1.2.4, vimos que, na sua forma mais ge-
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ral, o tensor de auto-energia devia depender de ηµν , do momento externo pµ e da quadrivelocidade do

reservatório térmico uµ. Em uma teoria não-comutativa temos mais um tensor do qual deve depender a

auto-energia, que é o tensor θµν , que caracteriza a não-comutatividade espacial1. Ele entra acoplado ao

momento externo p através da definição

p̃µ = θµνpν . (3.1)

Devido às identidades de Ward sabemos que o tensor de auto-energia deve ser transversal ao momento

externo,

pµΠ
µν = 0 . (3.2)

Por definição p̃µ é transversal a pµ, e podemos verificar que no caso uµ = (1, 0, 0, 0) temos u · p̃ = 0, já

que θµν envolve apenas os ı́ndices espaciais. Também temos u · p = 0, pois no limite estático p0 = 0.

A forma geral do tensor Πµν deve ser

Πµν = P µνΠT +QµνΠL +RµνΠ̃T , (3.3)

com

Pµν =

(

ηµν − uµuν − pµpν

p2
− p̃µp̃ν

p̃2

)

,

Qµν = uµuν ,

Rµν =
p̃µp̃ν

p̃2
. (3.4)

Estas estruturas correspondem a operadores de projeção ortogonais e normalizados, como pode ser facil-

mente verificado,

PµνQµν = 0 , QµνRµν = 0 , P µνRµν = 0

Pµµ = 1 , Rµµ = 1 , Qµµ = 1 . (3.5)

Os coeficientes ΠT, ΠL e Π̃T são fatores de forma que devem ser determinados. Os subscritos “T” e

“L” se referem, respectivamente, a ‘transversal’ e ‘longitudinal’, e a razão desta nomenclatura ficará mais

claro adiante. A vantagem de se escrever o tensor na forma (3.3) é que estes fatores de forma podem

ser determinados simplesmente fazendo-se a contração de Πµν com as três estruturas (3.4), de forma que
1Conforme discutido no capı́tulo anterior, vamos tomar θ00 = θ0i = θi0 = 0 para evitarmos problemas de unitariedade.
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obtém-se

ΠL = uµuνΠ
µν

Π̃T =
p̃µp̃ν
p̃2

Πµν

(d− 3)ΠT =
(

ηµν −
pµpν
p2

)

Πµν −ΠL − Π̃T (3.6)

Aqui d representa a dimensão do espaço-tempo, e vem do termo ηµνηµν = d. Note que para d = 3

não temos nenhuma informação sobre o fator de forma transversal ΠT, que para uma teoria convencional

acontece quando d = 2, conforme eq. (1.102).

O inverso do propagador exato pode ser escrito como

(D−1)µν = P µν (p2 −ΠT) +Qµν (p2 −ΠL) +Rµν (p2 − Π̃T) +
pµpν
ξ

(3.7)

onde ξ representa um parâmetro fixador de gauge em um gauge covariante. Como os operadores de

projeção são ortonormais, o inverso da expressão acima pode ser facilmente calculado, levando ao pro-

pagador

Dµν = Pµν
1

p2 −ΠT
+Qµν

1

p2 −ΠL
+Rµν

1

p2 − Π̃T

+ ξ
pµpν
p2

. (3.8)

Os pólos que aparecem no propagador são distintos em conseqüência da nossa escolha dos operadores de

projeção. Se tivéssemos usado uma base diferente, os pólos estariam misturados. Percebemos a presença

de três pólos fı́sicos e um vindo da fixação de gauge. Assim como no caso comutativo, estes pólos estão

relacionados à blindagem dos campos elétrico e magnético, e serão discutidos mais à frente.

Vamos partir agora para o cálculo explı́cito do tensor de auto-energia do fóton a altas temperaturas.

3.2 Auto-energia do fóton (amplitude de 2-pontos)

Vamos então calcular a auto-energia do fóton Πµν(p) a temperatura finita. Como sabemos, os diagra-

mas que contribuem para a auto-energia são dados na Figura 2.1 e a expressão correspondente para o tensor

no gauge de Feynman a temperatura nula é dada por (2.70), excluindo-se o último termo, que corresponde

ao loop fermiônico. Vamos trabalhar aqui no gauge de Feynman, ξ = 1, pois conforme demonstrado por

Frenkel e colaboradores em [46], em ordem dominante a auto-energia é independente de gauge a altas

temperaturas.

A temperatura finita, o primeiro passo é calcular a soma sobre as freqüências ωn, que aparecem com a

substituição (1.52), e existem vários métodos para isso. Vamos descrever três deles.

O primeiro método é fazer o cálculo diretamente das expressões de cada diagrama, por meio da soma

sobre as freqüências, no entanto o cálculo exato não é muito simples de ser feito2, e ainda vai restar a
2Lembre-se do caso do loop fermiônico do capı́tulo 1. A integração no momento interno não foi feita naquele caso, e só pode
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integração no momento interno, que só pode ser feita em algum limite especı́fico, e o caso que nos interessa

é o limite estático (p0 = 0 , ~p → 0). Portanto, para fazermos a soma diretamente, é mais conveniente

primeiro tomar o limite estático.

O segundo método, chamado método da amplitude de espalhamento frontal3, foi desenvolvido inicial-

mente por G. Barton e generalizado por Frenkel, Taylor e Brandt [47, 48] para uma classe geral de gauges

covariantes. Este método nos diz basicamente que os gráficos que representam uma determinada ampli-

tude podem ser escritos como a soma de gráficos que representam a amplitude de espalhamento frontal

da partı́cula, já com a parte térmica fatorada. Vamos apresentar os resultados deste método no final desta

seção, e os cálculos exatos estão no Apêndice D.3.

Um terceiro método, desenvolvido recentemente por Frenkel e colaboradores [49], diz que a parte

térmica de um gráfico qualquer pode ser obtida pela simples aplicação de um operador à correspondente

expressão do gráfico a temperatura nula4. Desta forma muitas das propriedades da teoria a temperatura

finita podem ser estudadas diretamente através dos gráficos a temperatura nula.

Uma caracterı́stica interessante em cálculos a temperatura finita é que o resultado pode depender de

como tomamos alguns limites. O tensor de auto-energia por exemplo será uma função do momento externo

p, e um limite de interesse é quando p → 0. No entanto os cálculos mostram que, se tomarmos primeiro

p0 = 0 e depois ~p→ 0, o resultado será diferente de tomarmos primeiro ~p = 0 e depois p0 → 0. Isto mostra

que o mesmo gráfico, quando calculado de diferentes maneiras para o momento externo tendendo a zero,

possui diferentes valores quando calculado a temperatura finita. De fato isto acontece para todos os gráficos

considerados aqui, e isto mostra que o tensor de auto-energia do fóton é não-analı́tico na origem do espaço

dos momentos. É o exemplo mais direto que temos da chamada não-analiticidade quando fazemos cálculos

a temperatura finita. No caso a temperatura nula, a invariância de Lorentz faz com que as amplitudes sejam

funções analı́ticas com relação ao momento externo p. Já no caso a temperatura finita, a invariância de

Lorentz é quebrada devido à escolha de um sistema de referência privilegiado, que é aquele especificado

pelo quadrivetor uµ, que caracteriza a velocidade do reservatório térmico. Desta maneira as amplitudes

dependem de p0 e de ~p de maneira independente, portanto os limites acima considerados não precisam ser

necessariamente os mesmos. O fato de os dois limites terem valores diferentes implica em efeitos fı́sicos

interessantes. De fato, o limite p0 = 0, ~p → 0 corresponde a tomar o limite estático, o que dá origem a

uma massa de blindagem para o campo elétrico no caso da QED usual. No caso da QED não-comutativa

isto também acontece, como veremos mais adiante. Já o limite ~p = 0, p0 → 0, por outro lado, dá origem

a uma massa associada com o amortecimento das oscilações em um plasma, conhecida como plasmon, e

as massas obtidas pelos diferentes limites não coincidem5.

ser feita exatamente em alguns limites.
3Conhecido na literatura como Forward Scattering Amplitude Method.
4Este método é conhecido como Thermal Operator Representation.
5Ver discussão na página 25 de [13].
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3.2.1 Soma sobre as freqüências para a auto-energia do fóton

Vamos utilizar aqui o primeiro método descrito acima. Os detalhes estão no Apêndice D.1, onde está

feito o cálculo para cada um dos três primeiros diagramas da Figura 2.1 no limite estático, que correspon-

dem aos diagramas que envolvem apenas os campos de gauge. O resultado para a parte dependente da

temperatura é

Πµν
st (p) = Πµν

a st(p) + Πµν
b st(p) + Πµν

c st(p)

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

) 1

|~k|

[

nB(|~k|)ηµν +
nB(|~k|)
|~k|2

kµkν − n′B(|~k|)
|~k|

kµkν

−2nB(|~k|)ηµ0ην0

]

∣

∣

∣

∣

∣

k0=|~k|

. (3.9)

Note que o último termo só dará contribuição para a componente Π00. Desta forma podemos calcular os

fatores de forma (3.6), e por meio de (3.3) obter o tensor no limite estático no caso de 1-loop. Usando (3.6)

e (3.9) obtemos

Πst
L = uµuνΠ

µν
st

= 8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

n′B(|~k|)

= −2

3
e2T 2 +

e2T

π|~̃p|
coth(π|~̃p|T )− e2T 2cossech2(π|~̃p|T ) (3.10)

Π̃st
T =

p̃µp̃ν
p̃2

Πµν
st

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

[

nB(|~k|)
|~k|

+
(p̃ · k)2
p̃2

nB(|~k|)
|~k|3

− (p̃ · k)2
p̃2

n′B(|~k|)
|~k|2

]

= − 2e2

π2|~̃p|2
+
e2T

π|~̃p|
coth(π|~̃p|T ) + e2T 2cossech2(π|~̃p|T ) (3.11)

Πst
T =

(

ηµν −
pµpν
p2

)

Πµν
st −Πst

L − Π̃st
T

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

[

n′B(|~k|) +
((p̃ · k)2

p̃2
+

(p · k)2
p2

)(n′B(|~k|)
|~k|2

− nB(|~k|)
|~k|3

)

]

= 0 . (3.12)
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As integrais estão feitas no Apêndice D.2. O tensor de auto-energia do fóton no limite estático é dado então

por

Πµν
st = uµuνΠst

L +
p̃µp̃ν

p̃2
Π̃st

T . (3.13)

Vamos estudar o comportamento de Πµν
st em dois limites diferentes. Observe que o argumento das

funções hiperbólicas nas expressões (3.10) e (3.11) é dado por τ ≡ π|~̃p|T = πθp̄T , onde escolhemos um

sistema de coordenadas onde θ12 = −θ21 = θ são as únicas componentes não nulas do parâmetro de não-

comutatividade, ou seja, θ3i = 0, e renomeamos ~p2 = |~p|2 ≡ p̄2. Desta forma obtemos para as expressões

(3.10) e (3.11):

Πst
L = −2

3
e2T 2 +

e2T 2

τ
coth(τ)− e2T 2cossech2(τ)

Π̃st
T = −2e2T 2

τ2
+
e2T 2

τ
coth(τ) + e2T 2cossech2(τ) . (3.14)

No limite πθp̄T << 1 ou τ << 1, podemos usar as expansões das funções hiperbólicas dadas no Apêndice

C.3, de forma que obtemos

Πst
L ' −

4

45
e2T 2(πθp̄T )2

Π̃st
T ' −

1

45
e2T 2(πθp̄T )2 . (3.15)

No limite oposto, ou seja, πθp̄T >> 1 ou τ >> 1, podemos usar a forma assintótica das funções hi-

perbólicas

lim
τ→∞

coth(τ) = 1 lim
τ→∞

cossech(τ) = 0

de forma que obtemos

Πst
L ' −

2

3
e2T 2

Π̃st
T ' 0 . (3.16)

Portanto, o tensor de auto-energia no limite estático se comporta de duas maneiras diferentes em ordem

dominante,

Πµν
st ∼

{

e2T 2(πθp̄T )2 (πθp̄T << 1)

e2T 2 (πθp̄T >> 1) .
(3.17)

Vemos que no limite (πθp̄T )2 >> 1 o tensor de auto-energia se comporta como e2T 2, portanto da mesma

ordem da contribuição do loop fermiônico, conforme resultado (1.114). Se o processo ocorrer a uma tem-
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peratura menor, o fator (πθp̄T )2 << 1 vai suprimir o comportamento e2T 2, de forma que só a parte

fermiônica contribui. É interessante notar também que no limite de altı́ssimas temperaturas não há de-

pendência com o parâmetro de não comutatividade para o tensor.

3.3 Blindagem dos campos elétrico e magnético

Da mesma forma que no caso da eletrodinâmica comutativa a temperatura finita estudada na seção

1.2.5, podemos ter também uma contribuição para os raios de blindagem (raio de Debye) dos campos

elétrico e magnético vindos da parte não-comutativa da teoria.

Como já vimos, as massas elétrica e magnética são definidas como os inversos do raio de Debye para

as partes longitudinal e transversal, respectivamente, do propagador. Aqui no caso não-comutativo temos

o aparecimento de três pólos fı́sicos, ao contrário do caso comutativo com dois. Estes pólos fı́sicos estão

presentes no denominador do propagador (3.8), e a eles estão associadas 3 massas diferentes. Para enten-

dermos como se definem essas massas, lembre-se que uma partı́cula relativı́stica de massam deve satisfazer

a equação de energia p2 = p2
0−~p2 = m2. No caso do fóton a temperatura zero, esta massa é nula, o que sig-

nifica que o alcance do campo elétrico é infinito. No entanto, devido a efeitos térmicos e não-comutativos,

o fóton pode adquirir uma massa efetiva dentro de um meio, o que o torna uma partı́cula de alcance finito,

levando ao amortecimento dos campos eletromagnéticos (blindagem). O propagador exato do fóton deve

levar isto em consideração, por isso a presença dos três fatores no denominador da expressão (3.8). Se

algum deles for diferente de zero, significa que os fótons correspondentes (longitudinais ou transversais)

estão adquirindo uma massa efetiva, levando ao amortecimento da respectiva componente do campo.

Para definirmos estas massas, basta substituir p2 = m2 no denominador correspondente. Portanto, aos

três denominadores do propagador (3.8), podemos definir as seguintes massas no limite estático6 (p0 = 0,

~p→ 0):

m2
mag ≡ +Πst

T(0, ~p) (3.18)

m2
el ≡ +Πst

L(0, ~p) (3.19)

m̃2
mag ≡ +Π̃st

T(0, ~p) . (3.20)

A primeira é a massa magnética, associada à parte transversal do propagador, que já apareceu no caso

comutativo, sendo nula naquele caso. A segunda é a massa elétrica, associada à parte longitudinal do

propagador, e também apareceu no caso comutativo, conforme já vimos anteriormente7. A terceira é uma

nova componente, podemos chamá-la de massa magnética não-comutativa, pois ela só aparece aqui na
6Note que ainda existe uma dependência com ~p vinda dos vértices não-comutativos, mas já foi tomado o limite p << k no

cálculo do tensor.
7Lembre-se que estas duas massas se deviam a um loop fermiônico no caso comutativo da seção 1.2.5, sendo que aqui, se elas

existirem, devem-se somente à não-comutatividade da teoria, que dá origem a outros diagramas de 1-loop, que não têm nada a ver
com o fermiônico.
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teoria não-comutativa. Vamos ver quais as contribuições para estas massas devido à não-comutatividade.

Vamos começar pela massa elétrica (3.19), que corresponde ao pólo do segundo termo do propagador

(3.8). A singularidade acontece quando

p2 −ΠL = 0 . (3.21)

No limite estático isto corresponde a

~p2 = −Πst
L(0, ~p) . (3.22)

Observe que esta expressão depende do momento externo ~p do lado direito, portanto a condição (3.21) será

satisfeita quando

~p2 + Πst
L(0, ~p) = 0 . (3.23)

Em geral esta equação não é fácil de se resolver, mesmo que já tenhamos tomado o limite p << k. Ainda

existe uma contribuição de ~p vinda de ~̃p no lado direito, onde cada componente de ~̃p se relaciona a ~p por

p̃i = θijpj . A equação (3.23) então fica, usando (3.10) e a mesma parametrização adotada anteriormente,

onde π|~̃p|T = πθp̄T ,

p̄2 − 2

3
e2T 2 +

e2T

πθp̄
coth(πθp̄T )− e2T 2cossech2(πθp̄T ) = 0 . (3.24)

A pergunta é: para qual valor de temperatura T esta equação tem solução para algum valor real de p̄? A

solução só pode ser obtida numericamente. Uma forma é fazer o gráfico desta equação e ver onde ela

cruza o eixo horizontal. Para este valor de p̄ a temperatura corresponde à temperatura crı́tica que estamos

procurando. Alguns gráficos estão plotados na Figura 3.1, para diversos valores de T e com θ = 10−6.

Percebemos destes gráficos que tanto para T = 1026 como para T = 1033 não há solução para a equação

(3.24). Já para o valor T = 1037 começa a ficar evidente a existência de uma solução, que é óbvia para

T = 1043 e valores superiores. Desta forma a temperatura crı́tica Tc para que exista uma solução da

equação deve estar entre T = 1033 e T = 1037. O valor quase exato de Tc pode ser encontrado da

seguinte maneira. Note que, com os parâmetros utilizados, o momento p̄ para o qual existe solução é da

ordem de 100 (gráfico (c)). Para este valor do momento e da temperatura correspondente, o argumento

das funções hiperbólicas é dado por πθp̄T ' 0, 33, portanto πθp̄T < 1, de forma que podemos expandir

as funções hiperbólicas usando as séries dadas no Apêndice C.3. Obtemos assim para a equação (3.24) a

seguinte expressão:

p̄2 − 4

45
e2π2θ2p̄2T 4 = 0 , (3.25)
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Figura 3.1: Gráficos da função dada no lado esquerdo da eq. (3.24) como função do momento p̄. Adotamos
e = 1 e θ = 10−6. Os valores de T são: (a) T = 1026; (b) T = 1033; (c) T = 1037; (d) T = 1043.

que fornece diretamente o valor da temperatura crı́tica

T 2
c =

3
√

5

2πeθ
, (3.26)

acima da qual existirá uma solução real da equação (3.24), e portanto, uma massa elétrica. Para o valor de

θ dado acima, Tc ' 1033, 27, em perfeito acordo com o que foi discutido acima. No sistema de unidades

onde c = ~ = kB = 1, a dimensão de θ é [eV]−2 e da temperatura é [eV]. Na verdade, estima-se que o

valor do parâmetro θ deva ser da ordem de (10TeV)−2, o que leva a uma temperatura crı́tica da ordem8 de

1017K, portanto uma temperatura muitı́ssimo alta.

Vamos estudar agora a massa magnética não-comutativa, vinda da equação (3.20). Usando o resultado

(3.11) para a contribuição do tensor, a equação que deve ser satisfeita para a existência de um pólo no

denominador do terceiro termo do propagador (3.8) é

p̄2 − 2e2

π2θ2p̄2
+
e2T

πθp̄
coth(πθp̄T ) + e2T 2cossech2(πθp̄T ) = 0 . (3.27)

8Usamos 1GeV∼ 1013K.
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Um gráfico tı́pico desta função está representado na Figura 3.2, onde podemos perceber que esta equação

não tem solução real, ou seja, ela não cruza o eixo horizontal para nenhum valor real de p̄. Isto mostra que

não há a geração de uma massa magnética associada à parte não-comutativa da teoria. Não há blindagem

para os campos magnéticos neste caso.

0

50000

100000

150000

100 200 300 400
p

Figura 3.2: Gráfico da função dada no lado esquerdo de (3.27) como função do momento p̄. Adotamos
e = 1, θ = 10−6 e T = 1000.

Para a massa magnética da equação (3.18), pelo resultado (3.12) fica claro que também não há blinda-

gem associada a este termo, assim como no caso da QED comutativa.

Portanto, o único efeito de blindagem que aparece da parte não-comutativa é a blindagem do campo

elétrico, que de fato já existe no caso comutativo. No entanto somente a altı́ssimas temperaturas este efeito

é significativo.

No que segue estaremos interessados em estudar a ação efetiva em 1-loop desta teoria no limite de altas

temperaturas e no limite estático, e para isso vamos precisar das amplitudes de n-pontos em 1-loop, dadas

nas seções seguintes.

3.4 Amplitude de 3-pontos

No estudo da amplitude de 2 pontos (auto-energia do fóton) obtivemos o resultado geral que Π00
st 6= 0,

Πij
st 6= 0 e Π0i

st = Πi0
st = 0. Esta caracterı́stica também é obtida no caso da amplitude de 3 ou mais

pontos, ou seja, as amplitudes com um número ı́mpar de ı́ndices temporais se anulam, e cálculos explı́citos

mostram isso. Neste caso, para a amplitude de 3-pontos temos

Γ000
st = 0 = Γ0ij

st (3.28)

e precisamos calcular apenas Γ00i
st e Γijkst . Os diagramas de 1-loop que contribuem para a amplitude de 3

pontos da QED não-comutativa estão representados na Figura 3.3.
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Figura 3.3: Diagramas de 1-loop que contribuem para a amplitude de 3-pontos.

Das discussões anteriores vimos que as contribuições dominantes para a amplitude vieram, no limite

estático, dos termos de ordem mais baixa no momento externo. Isto corresponde a tomar os momentos

externos iguais a zero, exceto no fator trigonométrico de vértice, que “carrega” a informação da não-

comutatividade.

Devido à simetria das amplitudes na ordem dominante, concluı́mos que qualquer amplitude com um

número ı́mpar de ı́ndices temporais se anula, o caso mais trivial sendo Π0i
st = 0 obtido anteriormente. Para

a amplitude de três pontos obtemos que

Γ000
st = 0 = Γ0ij

st (3.29)

e precisamos calcular apenas Γ00i
st e Γijkst .

Para o caso da amplitude de 2-pontos temos que o termo dominante da amplitude corresponde a um

termo de grau zero no momento externo no integrando, exceto pelo fator trigonométrico, que é linear no

momento externo. Aqui esta mesma caracterı́stica pode ser observada, pois a contribuição quadrática no

momento externo no fator trigonométrico de vértice pode ser desprezada com relação à contribuição linear,

pois p << k. Desta forma, um fator trigonométrico tı́pico será da forma (ver Figura 3.3(a) por exemplo)

sin

(

k × p1

2

)

sin

(

(k − p3)× p2

2

)

sin

(

k × p3

2

)

≈ sin

(

k × p1

2

)

sin

(

k × p2

2

)

sin

(

k × p3

2

)

(3.30)
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Isto corresponde a usar a aproximação

θp2 << 1 , (3.31)

onde p representa a magnitude tı́pica do momento externo. Como os fatores trigonométricos não dependem

da componente temporal (θ0i = 0), os cálculos das amplitudes de ordens mais altas simplificam-se enor-

memente no limite estático, e podem ser feitos diretamente pela soma sobre as freqüências de Matsubara.

Os cálculos explı́citos mostram que, quando todos os gráficos para uma determinada amplitude são soma-

dos, os fatores trigonométricos correspondentes a uma amplitude de n-pontos podem ser escritos como o

produto de n fatores da forma sin(k × pi/2), com i = 1, 2, · · · , n. Isto está de acordo com a simetria

esperada da amplitude total.

Seguindo esta “receita” para o cálculo da amplitude, é fácil ver que a correspondente amplitude de

3-pontos pode ser escrita como

Γst
µνλ = ie3T

∫

d3k

(2π)3
sin

(

k × p1

2

)

sin

(

k × p2

2

)

sin

(

k × p3

2

)

∑

n

[

128kµkνkλ
[(2πnT )2 + k2]3

− 32

[(2πnT )2 + k2]2

(

δµνkλ + δλµkν + δνλkµ

)

]

. (3.32)

Não vamos fazer aqui os cálculos explı́citos da amplitude de 3-pontos. O que queremos é encontrar as

componentes não nulas Γ00i e Γijk no limite estático. Os detalhes estão no Apêndice E.1. Os resultados

são:

Γst
00i(p1, p2, p3) = ie

[

p̃1, i Π
st
00(p1) + p̃2, i Π

st
00(p2) + p̃3, i Π

st
00(p3)

]

, (3.33)

Γst
ijk(p1, p2, p3) = ie

[

p̃1, k Πst
ij(p1) + p̃2, k Πst

ij(p2) + p̃3, k Πst
ij(p3)

]

, (3.34)

de forma que o conhecimento da auto-energia do fóton Πµν
st é suficiente para calcularmos também a ampli-

tude de 3-pontos no limite estático.

3.5 Amplitude de 4-pontos

De maneira semelhante ao caso da função de 3-pontos, as componentes Γ000i
st e Γ0ijk

st são nulas. Além

disto, assim como Π00
st representa uma componente independente, também temos que Γ0000

st deve ser cal-

culada independentemente, pois ela dará contribuição para a amplitude de 5-pontos, mas vamos nos con-

centrar aqui somente nas componentes espaciais.

Alguns dos diagramas que contribuem para a amplitude de 4-pontos em 1-loop da QED não-comutativa

são mostrados na Figura 3.4. Não estão representados os diagramas que envolvem ghosts.
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Figura 3.4: Alguns diagramas de 1-loop que contribuem para a amplitude de 4-pontos. Não estão repre-
sentados diagramas que envolvem ghosts.

A amplitude de 4-pontos no limite estático será

Γst
µνλρ(p1, p2, p3, p4)

= 32e4
∫

d3k

(2π)3
sin

(

k × p1

2

)

sin

(

k × p2

2

)

sin

(

k × p3

2

)

sin

(

k × p4

2

)

×T
∑

n

[

24kµkνkλkρ
((2πnT )2 + k2)4

− 4

[(2πnT )2 + k2]3

(

δµνkλkρ + δρµkνkλ + δλρkµkν + δνλkρkµ

)

+
2

[(2πnT )2 + k2]2

(

δµνδλρ + δρµδνλ

)

]

(3.35)

Escrita em termos das amplitudes de 3-pontos, a amplitude com componentes puramente espaciais é

(os detalhes desta dedução estão no Apêndice E.2)

Γst
ijkl(p1, p2, p3, p4) = ie

[

p̃1,lΓ
st
ijk(p1 + p4, p2, p3) + p̃2,lΓ

st
ijk(p1, p2 + p4, p3)

+ p̃3,lΓ
st
ijk(p1, p2, p3 + p4)

]

. (3.36)

3.6 Identidades de Ward

Dos resultados apresentados nas seções anteriores vemos que as amplitudes de 3 e 4-pontos satisfazem

a identidades de Ward simples e podem ser completamente determinadas a partir da auto-energia do fóton,

exceto quando todas as componentes das amplitudes são temporais. E para o caso de um número ı́mpar de

ı́ndices temporais, as amplitudes são nulas.
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Para a amplitude de 3-pontos podemos facilmente verificar que

p3, iΓ
st
00i(p1, p2, p3) = ie

[

p3 · p̃1 Πst
00(p1) + p3 · p̃2 Πst

00(p2)
]

p3, kΓ
st
ijk(p1, p2, p3) = ie

[

p3 · p̃1 Πst
ij(p1) + p3 · p̃2 Πst

ij(p2)
]

(3.37)

e para a amplitude de 4-pontos apenas com componentes espaciais temos

p4,lΓ
st
ijkl(p1, p2, p3, p4) = ie

[

(p̃1 · p4)Γ
st
ijk(p1 + p4, p2, p3) + (p̃2 · p4)Γ

st
ijk(p1, p2 + p4, p3)

+ (p̃3 · p4)Γ
st
ijk(p1, p2, p3 + p4)

]

. (3.38)

Fica claro desta discussão que, no limite estático, as amplitudes de 3 e 4-pontos satisfazem a identidades

de Ward, pelo menos quando nem todos os ı́ndices são temporais, e isto segue de uma invariância da teoria

por transformações de gauge no limite estático. Dessa forma, estas amplitudes podem ser relacionadas

recursivamente, todas escritas em termos do tensor de auto-energia. O caso da componente Γst
0000 da

função de 4-pontos é diferente, ela não pode ser expressa por meio da correspondente função de 3-pontos,

pois esta se anula. Desta forma, e no caso geral, uma amplitude com todas as componentes temporais não

pode ser relacionada a uma amplitude de ordem inferior, elas precisam ser calculadas individualmente, e

em geral não se anulam, exceto no caso de um número ı́mpar de componentes. Portanto, para o cálculo da

amplitude Γst
0000i por exemplo, precisarı́amos do conhecimento da correspondente amplitude de 4-pontos.

Desta forma não é possı́vel estabelecer uma ação efetiva que gere todas as amplitudes. Mas isto pode ser

feito para as amplitudes que envolvam apenas ı́ndices espaciais, e é isto que faremos na seção seguinte.

3.7 Ação efetiva

A análise anterior mostrou que todas as componentes não triviais da amplitude de 3-pontos podem ser

determinadas do conhecimento da auto-energia no limite estático. No entanto, para a amplitude de 4-pontos

precisamos calcular explicitamente a componente Γst
0000, pois ela não está relacionada à amplitude de ordem

inferior. Esta componente, entretanto, será importante para o completo conhecimento da amplitude de 5-

pontos. De fato, para toda amplitude de ordem par, teremos uma estrutura independente, que não se

relaciona à de ordem inferior, o que leva a uma impossibilidade de se obter a ação efetiva completa. Por

outro lado, como vimos, as componentes das amplitudes apenas com ı́ndices espaciais são relacionadas

recursivamente a amplitudes de ordem inferior, satisfazendo a identidades de Ward simples. Podemos

então tentar obter a parte da ação efetiva que dependa apenas das componentes espaciais dos campos de

gauge, ou seja, de Ai.

Vamos representar por Γ[Ai] a parte da ação efetiva a altas temperaturas que dependa somente das

componentes espaciais do campo de gauge. A invariância por uma transformação gauge infinitesimal no
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limite estático leva à identidade de Ward

δΓ[Ak]

δω(x)
=

∫

dy
δAi(y)

δω(x)

δΓ[Ak]

δAi(y)
= Di

δΓ[Ak]

δAi(x)
= 0 (3.39)

onde ω(~x) representa o parâmetro infinitesimal da transformação, e depende somente das coordenadas

espaciais. Vista de outra forma, a equação (3.39) pode ser interpretada como a conservação covariante da

corrente

Di j
i[Ak] = 0 . (3.40)

Na aproximação θp2 << 1 que estamos interessados, a derivada covariante (2.52) toma a seguinte forma9

Di = ∂i + e(∂jAi) ∂̃j . (3.41)

Com isto, a conservação da corrente (3.39) fica

∂i
δΓ[Ak]

δAi
+ e(∂jAi) ∂̃j

δΓ[Ak]

δAi
= 0 (3.42)

ou

∂i

(

δΓ[Ak]

δAi
+ eAj ∂̃i

δΓ[Ak]

δAj

)

= 0 . (3.43)

Isto determina que a quantidade entre parênteses representa uma quantidade que se conserva, sendo trans-

versal à derivada ∂i. Podemos representar esta quantidade por

(

δij + eAj ∂̃i

) δΓ[Ak]

δAj
= XT

i , (3.44)

de maneira que

∂iX
T
i = 0 . (3.45)

Tomando a derivada funcional de (3.44) com relação a Aj , obtemos

δ

δAj
XT
i =

δ

δAj

(

δik + eAk∂̃i

) δΓ[Aj ]

δAk

=
δ2Γ[Aj ]

δAiδAj
+ e∂̃i

δΓ[Aj ]

δAj
+ eAk∂̃i

δ2Γ[Aj ]

δAkδAj
. (3.46)

Em primeira ordem (ordem e = 0)

δ

δAj
XT
i ≈

δ2Γ[Aj ]

δAiδAj
≡ Πst

ij , (3.47)

9Basta expandir o produto Moyal e tomar somente o termo linear em θ.
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que como sabemos é a definição para a função de 2-pontos (auto-energia) derivada da ação efetiva Γ[Aj ].

Desta forma, em primeira ordem temos

X
T(0)
i = Πst

ijAj . (3.48)

É claro queXT
i contém termos de ordens mais altas nos campos, como podemos ver de (3.46). No entanto,

pode-se mostrar que tomar derivadas funcionais de ordens mais altas em (3.44) corresponde a fazer uma

simetrização dos ı́ndices das amplitudes de ordens mais altas. Tendo esta simetrização em mente, pode-

mos descartar as contribuições vindas dos termos com ordens mais altas nos campos em XT
i . Podemos

então resolver a equação (3.39) para a corrente, e isto é feito verificando-se que o inverso do termo entre

parênteses em (3.44) é

(

δij + eAj ∂̃i

)−1
= δij − eAj ∂̃i + e2Ak∂̃iAj ∂̃k − e3Ak∂̃iAl∂̃kAj ∂̃l + · · · (3.49)

de maneira que
δΓ[Ak]

δAi
=
(

δij + eAj ∂̃i

)−1
X

T (0)
j (3.50)

Além disso, da definição da derivada covariante (2.52) podemos ver que

∂j

(

δji + eAi∂̃j

)

' Di (3.51)

de maneira que podemos escrever

(

δij + eAj ∂̃i

)−1
' D−1

j ∂i . (3.52)

Usando (3.52), podemos determinar a corrente (3.50) como sendo

ji[Ak] =
δΓ[Ak]

δAi
= D−1

j ∂iΠ
st
jkAk . (3.53)

Esta corrente se conserva covariantemente, pois a auto-energia é transversal, e além disso esta expressão

leva corretamente às amplitudes de n-pontos, como pode ser verificado explicitamente10. Vamos mostrar

brevemente como se obtém as amplitudes de 2 e 3-pontos. A amplitude de 2-pontos é obtida trivialmente

da (3.53) por meio de

δji[Ak]

δAl

∣

∣

∣

∣

A=0

=
δ2Γ[Ak]

δAlδAi

∣

∣

∣

∣

A=0

. (3.54)

Para a amplitude de 3-pontos, sem levar em conta a simetrização dos momentos, devemos tomar a forma

completa de XT
i dada na (3.46). Usando as expressões (3.46) e (3.49-3.53), a amplitude de 3-pontos virá

do termo linear em “e” de

δ2ji[Ak]

δAlδAm

∣

∣

∣

∣

A=0

=
δ2

δAlδAm

(

δij − eAj ∂̃i
)(

Πst
jkAk + eAn∂̃j

δΓ

δAn

)

∣

∣

∣

∣

A=0

. (3.55)

10Para isso deve-se levar em conta a simetrização dos momentos externos pi.
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No espaço dos momentos (escrevendo os campos A’s como transformadas de Fourier), obtemos

δ2ji
δAlδAm

= ie
[

p̃1, i Π
st
lm(p1) + p̃2, i Π

st
lm(p2)− p̃1, i Π

st
lm(−p1 − p2)− p̃2, i Π

st
lm(−p1 − p2)

]

,

(3.56)

que é exatamente a expressão obtida em (3.34), lembrando da conservação de momento p1 + p2 + p3 = 0.

Podemos também derivar uma expressão para a ação efetiva estática, que vai envolver integração fun-

cional da corrente, o que parece ser não trivial. De fato isto acontece, mas em um determinado limite

podemos derivar uma ação efetiva. Para isto tomamos o limite

|pa| ¿ T, |pa| ¿ |θ|−1/2, (3.57)

onde a = 1, 2, . . . indica os ı́ndices dos momentos externos. Neste regime o momento interno k deve ser

da ordem de 1/|p̃|.
Vamos definir a função U(p,A), dada por

U(p,A) =

∫

d4x exp[−ip · x+ iep̃ ·A(x)] , (3.58)

que é uma função do quadrivetor momento p (que pode ser uma combinação de momentos externos pa),

e um funcional com relação às componentes espaciais de A. No limite (3.57), a transformação de gauge

geral (2.56) pode ser aproximada por

δAi(x) = [∂i + ie(∂̃jAi(x))∂j ]ω(x) . (3.59)

Por esta transformação, U definido em (3.58) é invariante de gauge. Podemos provar isto da seguinte

maneira. Note que

δ (p̃ ·A) = [p̃ · ∂ + e(∂̃j p̃ ·A(x))∂j ]ω(x) ,

δ[exp(iep̃ ·A(x))] = i exp(iep̃ ·A)[p̃ · ∂ + e(∂̃j p̃ ·A(x))∂j ]ω(x)

= i exp(iep̃ ·A)p̃ · ∂ω − ∂̃j [exp(iep̃ ·A)∂jω], (3.60)

onde usamos ∂̃ · ∂ = 0.

Substituindo (3.60) em (3.58) e integrando por partes (de maneira que ∂̃j age em e−ip·x), obtemos

δU = i

∫

d4xe−ip·x exp(iep̃ ·A)[p̃ · ∂ω − p̃ · ∂ω] = 0. (3.61)

Agora podemos construir a ação efetiva em termos de U :

Γ =
1

2× (2π)8

∫

d4pf(p̃)U(p,A)U(−p,A) =
1

2× (2π)8

∫

d4pf(p̃)|U(p,A)|2, (3.62)
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onde

f(p̃) =
Π̃st

T(p̃)

e2p̃2
. (3.63)

Esta é a ação efetiva correta no limite (3.57). Ela é invariante de gauge e fornece corretamente as amplitudes

de 2, 3 e 4-pontos, como pode-se verificar.

Uma tarefa muito mais difı́cil é encontrar a ação efetiva no caso quando assumimos apenas o limite

|pa| ¿ T , ao invés dos dois limites em (3.57). Neste caso temos de usar a transformação de gauge exata

(2.55), e não apenas a aproximada (3.59). Mas podemos encontrar uma função generalizada W que seja

invariante pela transformação de gauge (2.55), e ela é dada por

W (p,A) =

∫

d4x exp (−ip · x) ? P exp

[

ie

∫ 1

0
dξ p̃ ·A(x+ ξp̃)

]

, (3.64)

ondeP denota um ordenamento de trajetórias na variedade definida pelo produto não-comutativo ?. W (p,A)

representa a transformada de Fourier de uma linha aberta de Wilson invariante de gauge11, que se estende

ao longo de uma linha reta que vai de x a x+ p̃. Note apenas que se tomarmos o limite (3.57),W se reduz a

U . Mas mesmo com esta generalização, a ação efetiva não pode ser obtida simplesmente pela substituição

de U por W na equação (3.62). A razão é que o momento interno do fóton, k, é esperado ser da ordem

1/(θ|pa|), então, sem o limite (3.57), não podemos fazer a aproximação de altas temperaturas |pa| ¿ |k|.
As amplitudes são, neste caso, muito mais complicadas, e não é evidente que possa ser expressa em termos

de uma função simples f do tipo (3.63). Essa é uma questão que precisa ser melhor estudada.

3.8 Método da amplitude de espalhamento frontal

Vamos apresentar aqui brevemente outro método de cálculo que já fornece diretamente a parte térmica

de um diagrama sem a necessidade de se fazer a soma sobre as freqüências de Matsubara. É o método da

amplitude de espalhamento frontal. Como já foi dito, Frenkel, Taylor e Brandt estudaram extensivamente

este método. Várias aplicações com este método podem ser encontradas nas referências [46, 47, 48], e sua

equivalência com o método tradicional foi demonstrada em [48] para o caso da QCD em um gauge geral

covariante. Vamos apresentar aqui os resultados para as amplitudes de 2 e 3-pontos em 1-loop para a parte

de gauge da NCQED e também o resultado da amplitude de 2-pontos para o caso de 1-loop fermiônico,

todos no limite p << k.

Com este método, o tensor de auto-energia (amplitude de 2-pontos) para a parte de gauge da teoria

(diagramas das Figuras 2.1 (a), (b) e (c)) a altas temperaturas pode ser representado simplesmente por

Πµν
g (p) = − 4e2

(2π)3

∫

d3~k

|~k|
nB(|~k|)(1− cos k × p)

[

ηµν − pµkν + pνkµ

p · k +
p2kµkν

(p · k)2
]
∣

∣

∣

∣

k0=|~k|

. (3.65)

Os cálculos desta expressão estão feitos no Apêndice D.3, para ilustrar a aplicação do método. Note que
11Não vamos nos aprofundar neste tema aqui. Para mais referências neste assunto, ver referências [50, 51].
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esta é somente a parte dependente da temperatura. Da mesma forma que em (3.9), existe uma parte de vácuo

que não estamos considerando aqui, pois queremos analisar apenas a dependência com a temperatura do

tensor.

No entanto esta forma do tensor não é muito conveniente para fazermos a integração em ~k. Observe

que os dois últimos termos proporcionais a 1/(p · k) apresentam uma não-localidade, caracterizada pelo

momento externo p no denominador. Por isso vamos reescrever o tensor de maneira mais apropriada

fazendo uso da identidade

pµkν + pνkµ

p · k − p2kµkν

(p · k)2 = pλ
∂

∂kλ

(

kµkν

p · k

)

. (3.66)

Com um pouco de álgebra e fazendo de uso de uma integração por partes pode-se mostrar que a eq. (3.65)

pode ser escrita como

Πµν
g (p) = − 4e2

(2π)3

∫

d3~k

|~k|
(1− cos k × p)

[

ηµνnB(|~k|)− (ηµ0kν + η0νkµ)
nB(|~k|)
|~k|

+n′B(|~k|)p0
kµkν

~p · ~k
+

(

kµkν

p0k0 − ~p · ~k

)(

~p · ~k
|~k|

n′B(|~k|)− ~p · ~k
|~k|2

nB(|~k|)
)]
∣

∣

∣

∣

∣

k0=|~k|

onde n′B(|~k|) significa a derivada de nB com relação a |~k|, e então podemos perceber que no limite estático

a não-localidade desaparece totalmente, ou seja, fazendo p0 = 0 obtemos finalmente para o tensor

Πµν
g(st)(p) = − 4e2

(2π)3

∫

d3~k

|~k|
(1− cos k × p)

[

ηµνnB(|~k|)− kµkν

|~k|
n′B(|~k|) +

kµkν

|~k|2
nB(|~k|)

−(ηµ0kν + η0νkµ)
nB(|~k|)
|~k|

]
∣

∣

∣

∣

∣

k0=|~k|

.

(3.67)

Pode-se ver facilmente que esta expressão dá exatamente a mesma contribuição que (3.9), que foi calculada

pelo método direto da soma sobre as freqüências.

Para o caso de 1-loop fermiônico, representado pelo diagrama da Figura 2.1 (d), obtemos a seguinte

expressão pelo método da amplitude de espalhamento frontal:

Πµν
f (p) = − 8e2

(2π)3

∫

d3~k

|~k|
nF (|~k|)

[

ηµν − pµkν + pνkµ

p · k +
p2kµkν

(p · k)2
]
∣

∣

∣

∣

k0=|~k|

. (3.68)

Para a amplitude de 3-pontos vinda somente da parte de gauge, representado pelos diagramas da Figura
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3.3, este método fornece

Γg
µνλ = − 4 i e3

(2π)3
sin

(

p1 × p2

2

)
∫

d3k

|~k|
nB(|~k|)

{

[1− cos(p3 × k)] Lg
µνλ(k; p1, p2, p3)

− [1− cos(p2 × k)] Lg
µλν(k; p1, p3, p2) − [1− cos(p1 × k)] Lg

λνµ(k; p3, p2, p1)
}∣

∣

∣

k0=|~k|
,

(3.69)

onde

Lg
µνλ(k; p1, p2, p3) = kµ kν kλ

(

p2
1

(k · p1)2(k · p3)
+

p2
1

(k · p1)2(k · p2)
− p2

3

(k · p3)2(k · p1)

)

+
1

(k · p2)(k · p3)

[

kν kλ (p2 − p3)µ + kµ (kλ p2ν − kν p3λ)
]

+
1

(k · p1)(k · p2)
kµ (kλ p2ν + kν p2λ)− 2

kµ
(k · p1)

ηνλ

−(µ, p1)↔ (ν, p2). (3.70)

Estas expressões serão importantes no capı́tulo 5, onde faremos os cálculos usando o método das

equações de transporte.

3.9 Pressão de um gás de fótons não-comutativos

Antes de terminarmos este capı́tulo, vamos apresentar brevemente uma aplicação interessante dos

métodos da QED não-comutativa para o cálculo da pressão de um gás de fótons não-comutativos. De

acordo com o que foi apresentado na seção 1.2.3 do primeiro capı́tulo, o cálculo da pressão de um gás

de fótons (comutativos) a altas temperaturas pode ser feito por meio da função de partição do sistema, ou

da energia livre de Helmholtz. Da mesma forma podemos estar interessados nas correções a esta pressão

devido a efeitos da não-comutatividade. Isso foi feito primeiramente por Arcioni e Vazquez-Mozo [52],

que estudaram as correções de diagramas de 2-loops vindos apenas da parte de gauge da teoria, ou seja,

sem considerar contribuições vindas da parte fermiônica. Recentemente, Frenkel, Brandt e Muramoto con-

sideraram as correções vindas de 3-loops no caso da QED sem férmions [53], e depois as contribuições

devidas a loops de férmions [54].

Vamos nos restringir a apresentar aqui os resultados do caso de 2-loops da QED sem férmions, que é

o que estamos estudando neste capı́tulo. Os diagramas que contribuem para a energia livre de Helmholtz

nesta ordem são dados na Figura 3.5. Pode-se mostrar que as contribuições dos 3 gráficos se reduzem ao

cálculo da seguinte expressão para a densidade de energia livre F em segunda ordem12 em e,

F (2)(T, θ) = 4e2
∫

d3 q

(2π)3

∫

d3 p

(2π)3
nB(|~q|)
|~q|

nB(|~p|)
|~p| sin2

(

p× q
2

)

, (3.71)

12Não há contribuição de ordem e.
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p

q qp

p

q

Figura 3.5: Diagramas de 2-loops que contribuem para a energia livre de um gás de fótons não-comutativos.

onde q e p são os momentos internos agora. De acordo com as relações (1.41) e (1.43), a pressão aqui é

dada diretamente como o negativo da densidade de energia livre, P = −F . No limite de altas temperaturas,

quando θT 2 À 1, a contribuição para a pressão é

P = −F (2)(θT 2 À 1) ≈ −e
2T 4

72
+
e2T 4

8π2

ln(θT 2)

θT 2
(3.72)

indicando surpreendentemente que a altı́ssimas temperaturas não há dependência com o parâmetro de não-

comutatividade, pois o último termo se anula. Já para o limite θT 2 ¿ 1 a contribuição é dada por

P = −F (2)(θT 2 ¿ 1) ≈ −e
2

2

(

π2

45

)2

θ2T 8 , (3.73)

indicando uma forte dependência com θ. Para mais discussões neste assunto sugerimos a referência [53].

Neste capı́tulo apresentamos a primeira parte dos principais resultados de nosso trabalho. O tensor de

auto-energia do fóton dependente do parâmetro de não-comutatividade foi encontrado no caso do limite

estático a altas temperaturas, que é quando os cálculos se simplificam e podem ser efetuados. Vimos que

a temperatura correspondente para que efeitos de não-comutatividade sejam apreciáveis, por exemplo no

cálculo de uma seção de choque, deve ser muito alta, assim como a temperatura para que uma massa

elétrica se desenvolva no setor não-comutativo. Mostramos que as amplitudes se relacionam por meio

de identidades de Ward, de forma que uma ação efetiva que gere amplitudes somente com componentes

espaciais pode ser obtida no limite estático. Os principais resultados apresentados neste capı́tulo, exceto a

última seção, foram publicados em [70].

Nos capı́tulos que se seguem vamos mostrar que os mesmos resultados para as amplitudes podem ser

obtidos por um método bem mais direto, que é o método das equações de transporte.
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Capı́tulo 4

Equações de Transporte

Veremos agora uma outra formulação que nos permite fazer cálculos em teoria de campos levando em

conta efeitos de temperatura de um sistema. É o método das equações de transporte. Vamos mostrar que

muitos dos resultados obtidos de maneira trabalhosa na formulação tradicional da teoria de campos podem

ser obtidos, pelo menos em alguns limites, por este método muito mais intuitivo, já que a temperatura entra

de forma natural nos cálculos. Toda a construção da teoria das equações de transporte é baseada na teoria

cinética dos gases, formulada por Boltzmann e outros já na segunda metade do século 19. A idéia principal

é de que as propriedades de interesse de um sistema qualquer em equilı́brio podem ser representadas em

termos de uma função, chamada função distribuição. Quando o sistema sofre alguma interação, podemos

caracterizar as mudanças ocorridas no sistema por uma mudança na função distribuição, que deixa de ser

a de equilı́brio. A equação que deve ser satisfeita pela função distribuição é a equação de transporte, que

pode ser obtida basicamente conhecendo-se o tipo da interação que age no sistema, ou seja, suas equações

dinâmicas. A equação de transporte pode ser resolvida iterativamente, de forma que correções à função

distribuição podem ser obtidas, e desta forma as propriedades de interesse do sistema podem ser obtidas

ordem a ordem, como correções às propriedades do sistema em equilı́brio.

O primeiro passo no sentido de se estender a teoria cinética dos gases - conforme desenvolvida por

Bernoulli, Clausius, Maxwell e Boltzmann - para o domı́nio relativı́stico, foi feito por Jüttner em 1911. Ele

derivou uma generalização relativı́stica para a função distribuição de Maxwell, e em 1928 ele estabeleceu

a forma da função distribuição em equilı́brio válida para sistemas de bósons e férmions. O passo seguinte

para o desenvolvimento de uma equação cinética relativı́stica, que é a equação que a função distribuição

deve satisfazer, foi dado por Walker em 1935 para o caso de partı́culas que não sofram colisões entre si.

Foi somente em 1946 que uma generalização relativı́stica da equação de Boltzmann, incluindo efeitos de

colisão, foi publicada por Marrot, e seguiram-se estudos de Chernikov, Clemmow, Willson e Bergmann.

Ao mesmo tempo outros tipos de equações cinéticas relativı́sticas foram consideradas, em particular a

generalização relativı́stica da equação de Vlasov e da equação de Fokker-Planck.

Um dos propósitos da teoria cinética é derivar leis macroscópicas de conservação baseada na equação

cinética adotada. Marrot e Taub foram os primeiros a mostrar que leis macroscópicas de massa, momento

e energia podiam ser obtidas desta maneira. A generalização relativı́stica do teorema H da termodinâmica
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- que garante a positividade da entropia para sistemas fora do equilı́brio - foi derivada por Marrot, Eh-

lers, Tauber, Weinberg e Chernikov. Muitas das fórmulas obtidas nesta época para um sistema gasoso

relativı́stico em equilı́brio ainda estavam em uma forma que não eram manifestamente covariante, e uma

vez que estas equações fossem escritas covariantemente, elas poderiam ser aplicadas para a gravitação.

Isto foi feito primeiramente por Marrot, Weinberg e Chernikov, que colocaram as equações no contexto

da relatividade geral. Formalmente, o que eles fizeram foi considerar derivadas covariantes em lugar das

derivadas ordinárias do espaço-tempo. Isto resultou numa teoria em que a gravidade aparece como uma

força de longo alcance auto-consistente. Como esta força não influencia as propriedades locais do sistema,

que sofrem ação somente de forças de curto alcance, a estrutura formal da teoria permanece essencialmente

a mesma. No inı́cio da década de 60, Israel, Kelly e Chernikov adaptaram, independentemente, os métodos

clássicos de Chapman-Enskog e de Maxwell e Grad ao domı́nio relativı́stico, e por muitos anos vários pes-

quisadores trabalharam e desenvolveram estes métodos. Desta maneira, cada vez mais tornou-se mais fácil

determinar expressões para os coeficientes de transporte de sistemas de partı́culas movendo-se a velocida-

des relativı́sticas, e mesmo para sistemas contendo neutrinos ou fótons. Na década de 70 Weinberg estudou

a formação de galáxias com estes modelos, o que serviu como uma boa motivação para a construção de

uma descrição coerente de fenômenos fora do equilı́brio1.

Como já foi dito na introdução, existem duas maneiras de se obter a função distribuição de um sistema

por meio das equações de transporte. A primeira é a forma clássica, que se baseia nas equações de mo-

vimento clássicas do sistema. A segunda é uma formulação quântica, desenvolvida por Wigner. Vamos

apresentar as duas formulações aqui. Nosso objetivo é estudar as amplitudes de n-pontos em 1-loop da

eletrodinâmica quântica não-comutativa por meio das equações de transporte, que será feito no próximo

capı́tulo. Neste capı́tulo vamos apenas apresentar a teoria.

4.1 Teoria clássica de transporte

As propriedades de um sistema de muitos corpos depende essencialmente das interações entre as

partı́culas que constituem o sistema e das interações devido a ação de alguma força externa. Estaremos

interessados em obter certas propriedades macroscópicas deste sistema, como pressão, energia, entropia,

etc, no equilı́brio. Nosso propósito então é expressar estas quantidades macroscópicas (que são funções do

espaço-tempo) em termos de variáveis de estado macroscópicas, como densidade de partı́cula e tempera-

tura por exemplo, e de parâmetros microscópicos caracterı́sticos do sistema. Na teoria cinética dos gases

isto é feito por meio de descrições estatı́sticas em termos da chamada função distribuição de uma partı́cula.

Esta função pode ser interpretada como sendo a função que fornece o número médio de partı́culas com um

certo momento ~p em cada ponto do espaço-tempo (~x, t). Para encontrar a forma explı́cita desta função,

temos de postular ou derivar equações cinéticas satisfeitas pelas partı́culas, equações estas também chama-

das de equações de transporte. Estas equações estabelecem como a função distribuição muda no espaço e

no tempo devido às interações das partı́culas. Na prática estas equações são difı́ceis de serem resolvidas
1Uma boa lista de referências nestes assuntos estão na introdução de [56].
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exatamente e temos de nos limitar a simplificações, como por exemplo considerar apenas colisões entre

duas partı́culas e considerar sistemas perto do equilı́brio, mas mesmo nestes casos obtemos bons resulta-

dos. Vamos então introduzir algumas quantidades fı́sicas de interesse, onde estaremos trabalhando com a

notação relativı́stica usual x = xµ = (x0, ~x) e p = pµ = (p0, ~p) onde x0 = ct e cp0 =
√

~p2c2 +m2c4 é a

energia relativı́stica de uma partı́cula de massa m e c é a velocidade da luz.

4.1.1 Corrente de partı́culas

Para descrever um sistema não-uniforme, introduzimos uma densidade local n(~x, t), de maneira que

n(~x, t)∆3x nos dá o número médio de partı́culas no elemento de volume ∆3x localizado no ponto ~x

no instante de tempo t. Da mesma maneira definimos o fluxo de partı́culas ~j(~x, t), assim formamos o

quadrivetor corrente ou simplesmente corrente de partı́culas, dado por:

Jµ(x) = (cn(~x, t),~j(~x, t)) . (4.1)

Se o número de partı́culas for grande, então faz sentido introduzirmos uma função f(x, p) que dê a

distribuição do momento p em cada ponto do espaço-tempo. Esta definição é tal que f(x, p)∆3x∆3p

dá o número médio de partı́culas que no instante t estejam localizadas no elemento de volume ∆3x em

torno de ~x e com momento entre ~p e ~p + ∆~p. Esta definição pressupõe que o número de partı́culas con-

tida no volume ∆3x seja grande mas por outro lado que o tamanho ∆3x é pequeno do ponto de vista

macroscópico. Em termos da função distribuição a densidade e o fluxo de partı́culas podem ser escritos

como

n(~x, t) =

∫

d3p f(x, p) , (4.2)

~j(~x, t) =

∫

d3p ~uf(x, p) , (4.3)

onde

~u =
c~p

p0
(4.4)

é a velocidade de uma partı́cula relativı́stica com momento ~p. Como conseqüência de (4.2) e (4.3) podemos

escrever o quadrivetor corrente (4.1) como

Jµ(x) = c

∫

d3p

p0
pµf(x, p) . (4.5)

Esta expressão mostra que a função distribuição f(x, p) deve ser um escalar por transformações de Lorentz.

Usando a identidade

θ(p0)δ(p2 −m2c2) =
1

2p0
δ(p0 −

√

~p2 +m2c2) , (4.6)
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onde θ é a função degrau unitário, δ é a função delta de Dirac e p2 = pµpµ = (p0)2−~p2 = m2c2, podemos

reescrever a corrente (5.88) como

Jµ(x) = 2c

∫

d4p θ(p0)δ(p2 −m2c2)pµf(x, p) . (4.7)

Assumimos aqui, sem uma demonstração rigorosa, que Jµ(x) se transforma como um quadrivetor de

Lorentz, assim como o fato de a função distribuição f(x, p) ser um escalar2.

4.1.2 Tensor de energia-momento

Vamos considerar agora a densidade de energia. Desde que a energia por partı́cula é cp0, podemos

escrever a densidade de energia macroscópica T 00 como sendo:

T 00(x) = c

∫

d3p p0f(x, p) . (4.8)

De maneira semelhante definimos o fluxo de energia cT 0j como

cT 0j(x) = c

∫

d3p p0ujf(x, p) , j = 1, 2, 3 (4.9)

e a densidade de momento T i0/c, que é o valor médio do momento ~p da partı́cula, como sendo

T i0(x)/c =

∫

d3p pif(x, p) . i = 1, 2, 3 (4.10)

Finalmente, definimos o fluxo de momento T ij (ou tensor de pressão) que é o fluxo na direção j do mo-

mento na direção i

T ij(x) =

∫

d3p piujf(x, p) . (4.11)

Estas quantidades podem ser expressas por meio de um tensor, chamado tensor de energia-momento, que

é dado pela forma covariante

Tµν(x) = 2c

∫

d4pθ(p0)δ(p
2 −m2c2)pµpνf(x, p) . (4.12)

É importante notar aqui que esta definição do tensor momento-energia leva em conta apenas a ener-

gia de repouso das partı́culas e suas energias cinéticas. Estamos assumindo que as possı́veis energias de

interação entre as partı́culas são pequenas comparadas com suas energias cinéticas. Se não fosse assim, o

tensor energia-momento deveria conter também uma contribuição devido a energia potencial.

Veremos agora como obter a função distribuição do sistema, ou melhor, que equação deve ser satisfeita

por f para que possamos determiná-lo. É a equação de transporte.
2Mais detalhes sobre esta discussão estão na referência [56].
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4.1.3 Equação de transporte para f(~x, ~p, t)

O principal objeto de estudo na teoria de transporte é a chamada função distribuição f(~x, ~p, t), que

representa a densidade de partı́culas com momento ~p em um ponto ~x do espaço num instante de tempo t.

Na mecânica estatı́stica isto é conhecido como densidade do espaço de fases. Por exemplo, para uma única

partı́cula no ponto x1 com momento p1, no espaço unidimensional terı́amos f(x, p, t) = δ(x−x1(t))δ(p−
p1(t)). Para um sistema com N partı́culas, um gás ou um plasma por exemplo, a generalização é imediata

f(~x, ~p, t) =
N
∑

i=1

δ(~x− ~xi(t))δ(~p− ~pi(t)) (4.13)

sendo ~xi(t) e ~pi(t) os vetores posição e momento da i-ésima partı́cula do sistema no instante t. As equações

de movimento satisfeitas por ~xi(t) e ~pi(t) são

~̇xi =
~pi
m

~̇pi = ~F (~xi(t)) (4.14)

sendo ~F (~xi(t)) a soma de todas as forças que agem na partı́cula localizada em ~xi. Se, por simplicidade,

pensarmos que este nosso sistema é composto por moléculas de um gás e que as colisões entre elas são des-

prezı́veis, temos então que cada molécula forma um subsistema independente, assim a função distribuição

das moléculas deve obedecer ao teorema de Liouville, que nos diz que ela deve ser constante no espaço de

fases, caracterizando um estado de equilı́brio do sistema,

d

dt
f(~x, ~p, t) = 0 (4.15)

sendo a derivada total correspondente a uma diferenciação ao longo do espaço de fases da molécula, deter-

minado pelas equações do movimento (4.14). Na ausência de uma força externa temos

d

dt
f =

∂

∂t
f + ~v · ~∇f . (4.16)

Se, por outro lado, a molécula estiver sob a influência de uma força externa ~F , então

d

dt
f =

∂

∂t
f +

~p

m
· ~∇f + ~F · ∂f

∂~p
. (4.17)

onde usamos ~v = ~p/m. Se a colisão entre as moléculas for levada em conta, então a equação (4.15) não é

mais válida, e a função distribuição não é mais constante ao longo do espaço de fases. Devemos ter então

d

dt
f = C(f) , (4.18)

onde C(f) é chamado integral de colisão e caracteriza a taxa de mudança da função distribuição devido às

colisões. Obtemos então a chamada equação de transporte para uma partı́cula clássica sujeita às equações
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de movimento (4.14),
(

∂

∂t
+

~p

m
· ~∇+ ~F · ∂

∂~p

)

f = C(f) . (4.19)

Em geral é bastante complicado encontrar a integral de colisão C(f), e em muitas aplicações a primeira

aproximação é tomá-la igual a zero. Desta forma, conhecida a forma da força que age na partı́cula, por

mais complicada que ela seja, podemos resolver a equação acima iterativamente e obter a expressão para f

ordem a ordem. Isto fica mais claro se tomarmos o caso da força eletromagnética. Em notação relativı́stica,

tomando c = 1 por simplicidade, as coordenadas do espaço-tempo serão representadas por xµ = (t, ~x) e

o momento pµ = (p0, ~p), com p0 =
√

~p2 +m2. O vetor velocidade é dado por ~v = ~p/p0, e o operador

gradiente ∂µ ≡ ∂/∂xµ = (∂t, ~∇). Desta forma, tomando C(f) = 0, a equação (4.19) pode ser escrita

como

pµ∂µf(x, p) = −epνFµν
∂f

∂pµ
, (4.20)

onde F µν = ∂µAν − ∂νAµ é o tensor eletromagnético. Esta é a equação de Vlasov, que pode ser resolvida

da seguinte maneira. Veja que o lado esquerdo é de ordem zero no acoplamento e, enquanto que o lado

direito é de primeira ordem. Portanto, expandindo f em potências de e,

f = f (0) + ef (1) + e2f (2) + · · · (4.21)

e conhecendo-se o termo de ordem zero, f (0), que é simplesmente a solução do problema sem interação,

obtém-se, com a equação (4.20), o termo f (1). Repetindo o processo obtém-se o termo f (2), e assim por

diante, de forma que todas as quantidades fı́sicas de interesse, por exemplo a corrente (4.7) e o tensor de

energia-momento (4.12), podem ser obtidos com precisão cada vez maior, desde que as correções à função

distribuição do sistema sejam obtidas. Esta é a idéia básica por trás do método das equações de transporte.

4.2 Teoria quântica de transporte

Nesta seção vamos apresentar outro método de se trabalhar com as equações de transporte, que é a

formulação quântica inicialmente desenvolvida por Wigner [57], e posteriormente estudada por vários ou-

tros autores em diferentes contextos. Vale citar em especial os trabalhos de Elze, Heinz, Vasak e Gyulassy

[58, 59, 60], entre outros, que deram uma atenção especial a este assunto com o objetivo de aplicar os

métodos cinéticos existentes na época para estudar sistemas de quarks e glúons da QCD. O problema

maior era que, como as interações entre quarks e glúons devem ser descritas por uma teoria de gauge não-

abeliana, a teoria cinética correspondente deveria fornecer resultados invariantes de gauge, e portanto ser

formulada de uma forma covariante de gauge desde o inı́cio. Para isto era necessária uma modificação

na definição da função distribuição para o espaço de fases com relação às definições existentes. Além

disso, uma função distribuição quântica para campos de gauge ainda não existia, até o advento dos estudos

em fı́sica de plasmas de quarks e glúons, e era necessária uma formulação covariante de gauge para tais
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sistemas.

A breve discussão que se segue é baseada nos trabalhos daqueles autores para uma formulação consis-

tente da teoria de transporte para quarks e glúons, conforme [60].

4.2.1 Operador de Wigner não-relativı́stico

Vamos ver agora qual o equivalente da função distribuição clássica f(~x, ~p, t) no caso da mecânica

quântica. Sabemos que, para uma função de onda ψ(x) que seja solução da equação de Schrödinger

[

− i~ ∂
∂t
− ~

2

2m
∇2 + V (x)

]

ψ(x) = 0 , (4.22)

a quantidade ψ†(x)ψ(x) representa a densidade de partı́culas no espaço das coordenadas, onde x agora diz

respeito tanto ao trivetor ~x quanto ao tempo t. Para o momento p devemos levar em consideração que ele

age como um operador p̂ no espaço das coordenadas. Assim, em analogia com a equação (4.13) do caso

clássico, obtemos o análogo quântico da densidade no espaço de fases, a chamada função de Wigner [57]

W (x, p) = ψ†(x)δ(p− p̂)ψ(x) . (4.23)

A função delta age como um projetor no espaço dos momentos e é melhor definida como uma transformada

de Fourier. Desta maneira a equação (4.23) fica

W (x, p) =

∫

d3y

(2π~)3
ψ†(x) eiy(p−p̂)/~ψ(x) .

A fim de queW seja hermiteano, faremos com que o operador p̂ aja tanto em ψ quanto em ψ†, substituindo

p̂→ −1
2 i~(
−→
∂x −

←−
∂x), de maneira que obtemos

W (x, p) =

∫

d3y

(2π~)3
eiyp/~ψ†(x) e−

1
2
y(
−→
∂x−
←−
∂x)ψ(x) . (4.24)

Para finalizar, observe que o operador exp(−y∂x) gera uma translação por uma quantidade −y quando

agindo à direita,

e−y∂xf(x) = f(x− y) , (4.25)

que pode ser facilmente demonstrado expandindo-se a exponencial e tomando a expansão de Taylor de uma

função. Desta maneira obtemos uma expressão mais familiar para a função de Wigner,

W (x, p) =

∫

d3y

(2π~)3
eiyp/~ψ†(x+

1

2
y)ψ(x− 1

2
y) . (4.26)

A equação de transporte a ser satisfeita por W deve seguir da equação de Schrödinger (4.22). Vamos
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começar calculando a quantidade ~p · ~∇W . Ela é dada por

~p · ~∇W (x, p) = m

∫

d3y

(2π~)3
eiyp/~

(

− ∂t +
i

~

[

V (x+
y

2
)− V (x− y

2
)
]

)

ψ†(x+
y

2
)ψ(x− y

2
)

= m

∫

d3y

(2π~)3
eiyp/~

(

− ∂t +
i

~

(

e−y∇x/2 − ey∇x/2
)

V (x)

)

ψ†(x+
y

2
)ψ(x− y

2
)

= m

(

− ∂t +
2

h
sin
(~

2
~∇x · ~∇p

)

V (x)

)

W (x, p) (4.27)

onde ~∇x age somente em V (x) e ~∇p age em W . Para obter esta expressão note que, dentro da integral,

fizemos ~p→ i~~∇y após uma integração por partes. Depois escrevemos

~∇y · ~∇x =
1

2
(∇2

x+y/2 −∇2
x−y/2) , (4.28)

e usamos a equação de Schrödinger (4.22) para substituir ∇2. Na segunda linha usamos o operador de

translação (4.25), e para obter a última linha trocamos y → −i~∇p, de forma que a exponencial pode ser

colocada fora da integração. Desta forma, obtemos a equação de transporte não-relativı́stica para W ,

(

m∂t + ~p · ~∇x − ~∇xV · ~∇p
)

W (x, p) =

(

2

~
sin
(~

2
~∇x · ~∇p

)

− ~∇x · ~∇p
)

V (x)W (x, p)

' − 1

24
~

2(~∇x · ~∇p)3V (x)W (x, p) , (4.29)

onde usamos a expansão da função seno (C.9) na última linha para ficar mais claro o resultado. Em primeiro

lugar note que esta expressão é exatamente análoga a (4.19). No limite ~→ 0 obtemos a equação clássica

de Vlasov com ~F = −~∇V . Esta é, portanto, a equação de transporte que fornece as correções quânticas

(proporcionais a ~) à função distribuição de Wigner. O lado esquerdo é independente de ~, enquanto que

o lado direito depende do “acoplamento” quântico ~. Podemos então obter ordem a ordem as correções a

W , e com isto calcular correções quânticas a sistemas clássicos.

4.2.2 Operador de Wigner relativı́stico

Para trabalharmos com a teoria de campos relativı́stica e sermos capazes de passar de uma descrição de

uma única partı́cula para uma teoria de muitos corpos, precisamos fazer a segunda quantização na função

de Wigner e escrevê-la como um operador Ŵ . Para isto basta trocar ψ(x) pelo operador de campo de

Heisenberg ψ̂(x). Uma média apropriada de Ŵ irá corresponder à densidade no espaço de fases clássico.

O operador de Wigner relativı́stico Ŵ é definido como

Ŵ (x, p) =

∫

d4y

(2π~)4
eiyp/~ψ̂†(x+

1

2
y)ψ̂(x− 1

2
y) , (4.30)
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e a equação de transporte deve ser obtida usando-se as equações satisfeitas pelos campos ψ̂(x), e isto vai

depender de a partı́cula ser um bóson ou um férmion.

4.2.3 Operador de Wigner para férmions

Vamos brevemente apresentar aqui o operador de Wigner para o caso de partı́culas de spin 1
2 , quarks

por exemplo, representadas por um espinor de quatro componentes ψ(x), que satisfaz a equação de Dirac

(i~γµDµ(x)−mc)ψ̂(x) = 0 . (4.31)

Dµ é a derivada covariante, quando agindo em um operador de campo fermiônico tem a forma

Dµ(x) =
∂

∂xµ
− ig

~c
Aµ(x) , (4.32)

e quando agindo em um operador de campo de gauge tem a forma

Dµ(x) =
∂

∂xµ
− ig

~c
[Aµ(x) , ] . (4.33)

Queremos discutir a covariância de gauge do operador de Wigner. É imediato supormos que o operador

tenha a forma

Ŵ (x, p) =

∫

d4y

(2π~)4
eiyp/~ ˆ̄ψ(x+

1

2
y)⊗ ψ̂(x− 1

2
y)

=

∫

d4y

(2π~)4
eiyp/~ e

1
2
y·∂x ˆ̄ψ(x)⊗ e−

1
2
y·∂xψ̂(x)

onde o produto tensorial ⊗ implica que Ŵ é uma matriz 4 × 4 nos ı́ndices espinoriais e ψ̄ = ψ†γ0.

Mas esta definição ainda não está correta, pelo menos para uma teoria de gauge sabemos que ela não se

transforma covariantemente. Podemos encontrar uma definição que seja covariante por transformações de

gauge se fizermos a substituição da derivada usual pela derivada covariante (4.32), de maneira que obtemos

o operador de Wigner para partı́culas de spin 1
2 ,

Ŵ (x, p) =

∫

d4y

(2π~)4
eiyp/~ e

1
2
y·D†(x) ˆ̄ψ(x)⊗ e−

1
2
y·D(x)ψ̂(x) . (4.34)

Por uma transformação de gauge local, S(x) = exp iθa(x)ta, temos ψ̂(x) → S(x)ψ̂(x) e Dµ →
S DµS−1, e o operador de Wigner se transforma covariantemente

Ŵ (x, p)→ S(x)Ŵ (x, p)S−1(x) . (4.35)

O procedimento para se obter a equação de transporte correspondente é o mesmo adotado no exem-

plo da equação de Schrödinger. Calcula-se a quantidade pµDµ(x)Ŵ (x, p), que é o análogo relativı́stico

quadridimensional de ~p · ~∇W , e em algum momento usa-se a equação de Dirac (4.31). Os detalhes são
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complicados e o cálculo exato bastante trabalhoso. Vamos apenas apresentar o resultado para a ordem

dominante, a fim de ilustrar a forma da equação de transporte. Para o leitor interessado sugerimos a re-

ferência [58], onde a equação completa está feita em detalhes, inclusive com a adição de efeitos de spin. A

expressão que se obtém para ordem dominante da equação de transporte para Ŵ no caso de férmions é

pµDµ(x)Ŵ (x, p) = − g

2c
pµ∂νp

∫ 1

0
ds

{

[

e−s∆Fµν(x)
]

Ŵ (x, p) + Ŵ (x, p)
[

es∆Fµν(x)
]

}

+
ig

4c
~ ∂νp

∫ 1

0
ds s

{

[

e−s∆Fµν(x)
]

Dµ(x)Ŵ (x, p)−Dµ(x)Ŵ (x, p)
[

es∆Fµν(x)
]

}

,

(4.36)

onde ∆ ≡ 1
2 i~∂p ·D(x).

4.2.4 Operador de Wigner para campos de gauge

Para campos de gauge que se transformam covariantemente pelo grupo de gauge SU(N), o tensor de

campo que representa a partı́cula é dado por Fµν = F aµνta, onde

F aµν = ∂µA
a
ν − ∂νAaµ +

g

c
fabcA

b
µA

c
ν , (4.37)

e ta são os geradores do grupo SU(N) que satisfazem

[ta , tb] = i~fabctc . (4.38)

e a equação de movimento para o campo é

Dµ(x)F
µν(x) = [Dµ(x) , F

µν(x)] = −g
c
jν(x) . (4.39)

Em analogia com o operador de Wigner definido para férmions anteriormente, o correspondente ope-

rador de Wigner para campos de gauge não-abelianos (glúons por exemplo) em termos dos operadores de

campo F µν(x) é

Γ̂µν(x, p) =

∫

d4y

(2π~)4
e−iyp/~[ e

1
2
y·D(x)F λµ (x)]⊗ [ e−

1
2
y·D(x)Fλν(x)] , (4.40)

e o produto tensorial aqui significa que Γ̂ é uma matriz N × N nos ı́ndices de cor. Usando o análogo

covariante do operador de translação (4.25) agindo em um operador O(x),

e−y·D(x)O(x) = U(x, x− y)O(x− y)U(x− y, x) , (4.41)
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obtemos uma forma mais conveniente para o operador de Wigner (4.40),

Γ̂µν(x, p) =

∫

d4y

(2π~)4
e−iyp/~U(x, x2)F

λ
µ (x2)U(x2, x)⊗ U(x, x1)Fλν(x1)U(x1, x) , (4.42)

onde x1 = x− y
2 , x2 = x+ y

2 e o operador

U(a, b) = P exp

(

ig

~c

∫ a

b
dzµAµ(z)

)

(4.43)

é o chamado “operador de link”. Aqui, P indica um ordenamento do caminho de integração entre os pontos

a e b, que deve ser tomado com sendo uma linha reta

z(s) = a+ s(b− a) , 0 ≤ s ≤ 1 (4.44)

para que a propriedade (4.41) seja satisfeita.

A equação de transporte satisfeita pela função distribuição de Wigner para este caso é, em ordem

dominante

p ·D(x)Γ̂µν(x, p) = − g

2c
pσ∂τp

∫ 1

0
ds

[

( e−s∆Fστ )Γ̂µν + Γ̂µν( es∆Fστ )
]

+
ig

4c
~ ∂τp

∫ 1

0
ds s

[

( e−s∆Fτσ)DσΓ̂µν −DσΓ̂µν( es∆Fτσ)
]

−g
c

[

( e−∆Fµλ)Γ̂λν − Γ̂λµ( e∆Fλν)
]

, (4.45)

onde ∆ ≡ 1
2 i~∂p ·D(x). Os detalhes desta dedução podem ser encontrados em [59].

A conexão com observáveis fı́sicos do campo de gauge pode ser feito por meio da definição do tensor

de energia-momento em termos da função de Wigner, ele é dado por

T̂µν(x) = Tr
∫

d4p
[

Γ̂µν(x, p)−
1

4
ηµνΓ̂

λ
λ(x, p)

]

, (4.46)

onde o traço se refere aos ı́ndices de cor.

Da mesma forma que no caso quântico anterior, as equações de transporte (4.36) para quarks e (4.45)

para glúons devem ser resolvidas ordem a ordem no acoplamento g. Note que elas são explicitamente de

ordem g do lado direito, enquanto que o lado esquerdo contém um termo independente do acoplamento, o

que permite um tratamento recursivo. O procedimento ficará mais claro no próximo capı́tulo, onde vamos

considerar o caso da NCQED.

Mais recentemente tem havido grande interesse no estudo de soluções das equações de transporte para

quarks e glúos apresentadas aqui, com aplicações diversas. Citamos os trabalhos de Litim, Manuel e

Mrowczynski [61, 62] com estudos de plasmas quentes fracamente acoplados da QCD e ação efetiva,

supercondutividade em quarks não-massivos e sistemas densos de quarks. Prozorkevich, Smolyansky e
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Ilyin [63] estudaram a criação de um plasma de quarks-antiquarks pela ação de campos intensos de glúons

quase-clássicos, usando o formalismo de Wigner. Elze [64] estudou o comportamento dinâmico de po-

eira relativı́stica quântica resolvendo equações de transporte quânticas com condições iniciais arbitrárias.

Muitos outros trabalhos podem ser encontrados atualmente aplicando as equações de transporte a sistemas

antes descritos apenas pela teoria de campos tradicional.
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Capı́tulo 5

Equações de Transporte na QED
Não-Comutativa

Agora já temos tudo que precisamos para começar a fazer cálculos da QED não-comutativa usando

ferramentas da teoria de transporte.

Conforme discutido no capı́tulo anterior, as equações de transporte se mostraram muito úteis para des-

crever o comportamento de plasmas da QCD no regime de altas temperaturas, ou limite HTL como vamos

chamar aqui várias vezes por simplicidade de notação, que é o limite definido pela relação p << k ∼ T ,

onde p representa um momento externo caracterı́stico, k denota o momento interno ao loop do diagrama e T

representa a temperatura do plasma. Neste limite sabemos que as amplitudes, ou funções de n-pontos, em

1-loop apresentam um comportamento dominante proporcional a T 2 e são todas independentes de gauge.

No entanto, para levar em conta corretamente todos os termos dominantes que dão contribuição do tipo

T 2 e que sejam invariantes de gauge, é necessário realizar um processo de “ressomação” das contribuições

a altas temperaturas. Na QCD convencional este procedimento é tecnicamente complicado, e um método

alternativo mais simples significaria um avanço considerável. Este método existe, é o método das equações

de transportes clássicas, que fornecem resultados mais transparentes e mais diretos, pelo menos no limite

HTL. Isto nos leva a perguntar se os mesmos métodos podem ser aplicados à QED não-comutativa, já que

ela tem a mesma estrutura da QCD. A resposta não é óbvia, pois embora os resultados para os termos

dominantes sejam corretos quando aplicados à QCD, sabemos que para os termos subdominantes isto não

acontece. Talvez isto seja reflexo do fato de os termos subdominantes serem dependentes de gauge, e as

equações de transportes serem manifestamente covariantes por transformações de gauge.

O comportamento de plasmas quentes em uma teoria não-comutativa tem suas peculiaridades, con-

forme descrito no capı́tulo 3. Vimos que, devido à presença do parâmetro de não-comutatividade, a

aproximação de altas temperaturas tem duas regiões distintas onde os cálculos podem ser feitos analiti-

camente, que são as regiões πθpT >> 1 e πθpT << 1, conforme discutido no final da seção 3.2.1. Vimos

lá que a auto-energia do fóton na região πθpT >> 1 é simplesmente proporcional a T 2, não havendo

nenhuma dependência com o parâmetro de não-comutatividade, ou seja, o plasma se comporta como sendo

livre de auto-interações. Já no limite πθpT << 1 o comportamento dominante é proporcional a θ, da
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forma T 2(πθpT )2, ou seja, o fator T 2 é suprimido pelo fator entre parênteses. Mesmo para uma teoria

não-abeliana, como a teoria de Yang-Mills, definida no espaço não-comutativo, este comportamento se

repete, e isso foi extensivamente estudado por Frenkel e colaboradores [46] no formalismo tradicional de

diagramas de Feynman. O que vamos mostrar aqui é que estes resultados podem ser obtidos pelo método

das equações de transporte, e mostrar que há concordância com os resultados obtidos no capı́tulo 3. Na pri-

meira seção vamos apresentar a formulação clássica do problema, e discutir porque um tratamento quântico

é necessário na discussão de campos de gauge (ou fótons). Este tratamento quântico é apresentado na se-

gunda seção, onde é derivada uma equação de transporte apropriada para o caso dos fótons. Algumas

dificuldades ainda persistem devido à não-comutatividade da teoria, e a solução é discutida na terceira

seção, junto com uma equação de transporte simplificada que fornece corretamente os termos dominantes

que estamos interessados.

5.1 Tratamento clássico

A idéia principal aqui é imaginar que as partı́culas do sistema são partı́culas clássicas que estão imersas

em um banho térmico, formando um plasma quente cuja dinâmica é governada pelas equações de trans-

porte clássicas. Isto vale também para as partı́culas movendo-se em um loop interno, que embora sejam

partı́culas puramente quânticas, aqui elas serão tratadas como partı́culas clássicas cujas equações dinâmicas

são aquelas de uma partı́cula na presença de um campo eletromagnético de fundo.

Sejam as equações de movimento clássicas de uma partı́cula sujeita a um campo eletromagnético dadas

por

m
dxµ

dτ
= kµ

m
dkµ

dτ
= eF µ (5.1)

onde τ se refere ao tempo próprio da partı́cula e F µ representa a força que ela sente na presença de um

campo eletromagnético. A forma explı́cita de F µ irá depender de ela ser carregada ou neutra, e os dois

casos serão analisados separadamente. Em geral, a forma de F µ deve ser tal que

k2 = kµkµ = m2

Fµkµ = 0 (5.2)

a primeira condição indicando que a partı́cula deve estar na camada de massa e a segunda que a força é per-

pendicular ao seu movimento. Além disso a evolução temporal de kµ deve se transformar covariantemente

por uma transformação de gauge. Para um elétron por exemplo na presença de um campo eletromagnético

usual, a forma explı́cita para a força é

Fµ = F µνkν . (5.3)
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Portanto, dadas as equações de movimento (5.1), podemos derivar a equação de transporte para a função

distribuição f(x, k) em analogia ao que foi feito no caso clássico da seção 4.1.

Assumindo por enquanto a natureza covariante da função distribuição, o análogo da equação de trans-

porte (4.18) será da seguinte forma:

Dτf(x, k) = C (5.4)

onde Dτ é a derivada covariante ao longo da trajetória da partı́cula e C, em geral, é um termo de colisão,

em total analogia com (4.18). A forma explı́cita de Dτ é, no caso não-comutativo,

Dτ ≡
d

dτ
− iedx

µ

dτ
[Aµ , ]MB , (5.5)

e usando as equações de movimento (5.1) e a relação

df

dτ
=

∂f

∂xµ
dxµ

dτ
+

∂f

∂kµ
dkµ

dτ
, (5.6)

podemos escrever a equação de transporte (5.4) para f(x, k) como

kµDµf(x, k) + eF µ ?
∂f

∂kµ
= m C . (5.7)

Esta é uma generalização natural para uma teoria não-comutativa da equação de transporte para a função

distribuição f . Note que no limite comutativo usual a eletrodinâmica de Maxwell é recuperada e a equação

de transporte para o caso de um plasma na ausência de termos de colisão se reduz, como esperado, à

equação de Vlasov (4.20).

Em analogia com (4.7), vamos definir a corrente associada à partı́cula por

jµ(x) = e
∑

∫

dK kµf(x, k) (5.8)

onde o sinal de somatório se refere a soma sobre as helicidades no caso de férmions e também sobre

diferentes espécies de partı́culas se for o caso. A função distribuição é representada por f(x, k) e a medida

de integração é definida como

dK =
d4k

(2π)3
2θ(k0) δ(k

2 −m2) , (5.9)

onde a função θ(k0) garante que a partı́cula tem energia positiva e a função δ garante que ela está na camada

de massa. Note que em relação à (4.7) estamos adotando c = 1 e o fator 1/(2π)3 foi introduzido apenas por

simplicidade nos cálculos posteriores. Como veremos adiante esta corrente se conserva covariantemente

como conseqüência do fato de que ela pertence à representação adjunta do grupo de gauge U(1),

Dµj
µ = ∂µj

µ − ie [Aµ, j
µ]MB = 0 , (5.10)

de maneira que a função distribuição também deve se transformar covariantemente. Mas a forma (5.7) para

a equação de transporte é válida apenas no limite πθpT >> 1, onde a força que age no sistema é dada
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efetivamente por (5.3) e o termo de colisão C é nulo. É somente neste limite que a conservação da corrente

(5.10) é identicamente satisfeita.

Estamos interessados aqui no caso em que o parâmetro θ possa assumir qualquer valor, de maneira que

um termo de colisão deve estar presente, mesmo na ordem mais baixa dos cálculos. Isto se deve ao fato de

a teoria não-comutativa ser auto-interagente, então devemos ter uma forma mais complicada para a força

na equação de movimento (5.1), de maneira a levar em conta a não-comutatividade. Isso deve dar origem

inevitavelmente a um termo de colisão. Baseado nisso, é fácil verificar que um termo de colisão do tipo

C = − e

m

∂Fµ

∂kµ
? f(x, k) (5.11)

leva corretamente à conservação da corrente (5.10). Antes de demonstrarmos isto, note que a equação de

transporte (5.7) com este termo de colisão pode finalmente ser escrita como

kµDµf(x, k) +
∂(eF µ ? f(x, k))

∂kµ
= 0 . (5.12)

A conservação da corrente pode ser demonstrada como segue. Aplicando a derivada covariante à

corrente e usando a equação de transporte (5.12) obtemos

Dµjµ = e
∑

∫

dKkµD
µf(x, k)

= −e2
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)
∂(F µ ? f(x, k))

∂kµ

= e2
∑

∫

d4k

(2π)3
2θ(k0)2kµF

µ ? f(x, k)δ′(k2 −m2)

= 0 (5.13)

onde na penúltima igualdade fizemos uma integração por partes e δ′ significa a derivada da função δ com

relação ao seu argumento. Na última linha usamos a condição (5.2) que a força deve satisfazer.

Para continuarmos os cálculos devemos agora supor uma forma explı́cita para a força agindo na partı́cula.

Isto vai depender dela ser carregada (elétrons) ou neutra (fótons).

5.1.1 Partı́culas carregadas - elétrons

Para partı́culas carregadas, como o elétron por exemplo, a forma usual de se escrever a equação de

força em termos do tensor eletromagnético F µν é

Fµ = F µνkν (5.14)

de maneira que obtemos C = 0 da equação (5.11), pois F µµ = 0, o que significa que estamos falando de um

plasma livre de colisões. No entanto, se a força tiver uma dependência um pouco mais complicada em kµ,

como parece ser o caso quando tratamos da QED não-comutativa, haverá inevitavelmente uma contribuição

devida ao termo de colisão, e esta contribuição deve estar presente se quisermos tratar de maneira correta
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um plasma não-comutativo a altas temperaturas. De fato, como sabemos, a teoria não-comutativa tem uma

estrutura caracterı́stica de dipolos, de maneira que é natural generalizar a expressão da força para incluir

além do termo (5.14), um termo de dipolo. A proposta dos autores1 foi então uma força da forma

Fµ = (1 + sin k × iD)F µνkν , (5.15)

onde k × iD = ikjθ
jlDl. O primeiro termo é a força de Lorentz usual para uma partı́cula pontual carre-

gada. O segundo termo pode ser pensado como uma interação de dipolo, sendo uma generalização natural,

considerando-se que partı́culas não-comutativas apresentam uma caracterı́stica de dipolos. Além do mais,

este termo se anula quando θµν → 0, reduzindo naturalmente à teoria convencional para uma partı́cula

carregada. A presença deste termo de dipolo dará uma contribuição não-trivial vinda de C, mas já sabemos

dos resultados do capı́tulo 3 que uma contribuição deste tipo não está presente nas amplitudes em ordem

dominante a altas temperaturas. Portanto, no limite que estamos interessados, é suficiente tomar apenas o

primeiro termo da força, de maneira que a equação de transporte que temos de resolver é da forma

kµDµf(x, k) +
∂(ekνF

µν ? f(x, k))

∂kµ
= 0 (5.16)

onde, no limite HTL, temos efetivamente,

Fµ = F µνkν , (5.17)

e vemos que a equação (5.16) tem a forma parecida com a da equação de transporte para a QED usual,

sendo a única diferença o produto Moyal que leva em conta a não-comutatividade espacial.

Vamos então demonstrar brevemente que a equação de transporte acima é a correta para obtermos as

amplitudes de n-pontos em 1-loop no limite de altas temperaturas. Em primeiro lugar escrevemos a função

distribuição expandida em potências do acoplamento e,

f(x, k) = f (0)(x, k) + ef (1)(x, k) + e2f (2)(x, k) + · · · (5.18)

onde só conhecemos f (0), dado pela função distribuição de Fermi-Dirac,

f (0)(x, k) ∼ nF (k0) =
1

ek0/T + 1
. (5.19)

Então substituı́mos a função distribuição expandida na equação de transporte (5.16), e obtemos para

f (1)(x, k)

k · ∂f (1)(x, k) =
∂

∂kν

(

(k · ∂Aν − ∂νk ·A) ? f (0)(x, k)

)

. (5.20)

Escrevemos f (1)(x, k) e Aµ(x) como transformadas de Fourier,

f (1)(x, k) =

∫

d4pf (1)(p, k) eip·x (5.21)

1Frenkel, Das e Brandt, conforme eq. (29) da ref. [68].
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Aµ(x) =

∫

d4pAµ(p) eip·x (5.22)

substituı́mos em (5.20) e obtemos f (1)(p, k),

f (1)(p, k) =
1

k · p
∂

∂kν

(

(

k · pAν(p)− pνk ·A(p)
)

f (0)

)

. (5.23)

Note que f (0) não depende de x, por isso não é mais necessário usar o produto Moyal. Usando a expansão

(5.18) para f , a corrente fica

jµ(x) = e
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)kµ

[

f (0)(x, k) + ef (1)(x, k) + e2f (2)(x, k) + · · ·
]

(5.24)

de maneira que, calculando cada termo de f por meio da equação de transporte, a corrente fica comple-

tamente determinada também ordem a ordem no parâmetro e. Por exemplo, a corrente em ordem e2, que

dará contribuição para a amplitude de 2-pontos, é dada em termos de f (1) por

j(2)µ (x) = e2
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)kµf
(1)(x, k) . (5.25)

Escrevemos então a corrente como transformada de Fourier

j(2)µ (x) =

∫

d4pj(2)µ (p) eip·x (5.26)

de maneira que, usando (5.21) e (5.23) obtemos

j(2)µ (p) = e2
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)
kµ
k · p

∂

∂kν

(

(

k · pAν(p)− pνk ·A(p)
)

f (0)

)

.

(5.27)

Integrando por partes obtemos

j(2)µ (p) = −e2
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)
∂

∂kν

[

kµ
k · p

]

(

k · pAν(p)− pνk ·A(p)
)

f (0)

= −e2
∑

∫

d4k

(2π)3
2θ(k0)δ(k

2 −m2)

[

ηνµAν(p)−
pµ
k · pk ·A(p)− kµ

k · pp ·A(p)

+
kµ

(k · p)2 p
2k ·A(p)

]

f (0) , (5.28)

onde f (0) é dado por (5.19). No limite de altas temperaturas podemos desprezar a massa da partı́cula, e a
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medida de integração fica

d4k

(2π)3
2θ(k0)δ(k

2) =
d3k

(2π)3
1

|~k|
. (5.29)

A somatória é sobre os spins, (2s+1), portanto fornece um fator 2. Desta forma a função de 2-pontos para

o loop fermiônico pode ser determinada por meio de

Π(fermion)
µν (p) =

δjµ(p)

δAν(−p)

∣

∣

∣

∣

Aµ=0

=
δj

(2)
µ (p)

δAν(−p)

= − 8 e2

(2π)3

∫

d3k

|~k|
nF (|~k|)

[

ηµν −
pµkν + kµpν

k · p +
kµkνp

2

(k · p)2
]
∣

∣

∣

∣

k0=|~k|

, (5.30)

que é exatamente o mesmo resultado obtido em (3.68) no capı́tulo 3, pelo método da amplitude de espa-

lhamento frontal.

Como demonstramos acima, a equação de transporte (5.16) fornece corretamente a primeira correção

à função distribuição f (0) no equilı́brio. Com ela a corrente até ordem e2 pode ser calculada e a função

de 2-pontos fica completamente determinada para um loop fermiônico no limite de altas temperaturas. Da

mesma forma, utilizando a equação de transporte (5.16), podemos determinar a correção f (2) à função

distribuição e por meio dela determinar a corrente até ordem e3 e assim obter a função de 3-pontos, con-

forme demonstrado em [68].

5.1.2 Partı́culas neutras - fótons

Vamos agora tratar do caso de partı́culas neutras, como o fóton por exemplo, que como vimos no

capı́tulo 3 tem sua auto-energia modificada devido exclusivamente à não-comutatividade das coordenadas.

O caso das equações de transporte para partı́culas neutras é muito mais interessante, pois como sabemos,

uma partı́cula neutra usual não sofre nenhum tipo de força eletromagnética. Mas no caso não-comutativo

não é bem assim por causa da estrutura “estendida” das partı́culas devido à não-comutatividade. Desta

forma, mesmo uma partı́cula neutra pode ter uma natureza do tipo dipolo, e assim sentir alguma força de-

vido a algum campo eletromagnético externo. Mas também sabemos que, como visto na seção anterior, a

natureza dipolar devido ao parâmetro de não-comutatividade θ não está presente no cálculo de termos do-

minantes. Então, já que a estrutura de dipolo não dá qualquer contribuição na ordem dominante, podemos

pensar que uma estrutura do tipo quadrupolo possa dar alguma contribuição. De fato é isto que acontece.

A forma da força para o caso de partı́culas neutras proposta pelos mesmos autores da discussão anterior se

reduz à uma interação do tipo quadrupolo no limite de baixos momentos. Ela é dada por2

Xµ
(neutra) = 2

{

1− cos k ×
(

iD + e

[

1

k ·D F,

]

MB

)}

Fµνkν (5.31)

2Ver eq. (38) da ref. [68].
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Vemos que no limite θ → 0 a força se anula, como deve ser para uma partı́cula neutra. Substituindo esta

força na equação de transporte (5.12) e usando os mesmos passos da seção anterior, obtemos a correção

f (1) à função distribuição, dada por

f (1) =
2

k · ∂
∂

∂kµ

(

(1− cos k × i∂)(k · ∂Aµ − ∂µk ·A)f (0)(x, k)
)

(5.32)

onde agora

f (0)(x, k) ∼ nB(k0) =
1

ek0/T − 1
(5.33)

é a função distribuição de Bose-Einstein. Com isto calculamos a corrente em ordem e2 e finalmente a

função de 2-pontos, ou auto-energia do fóton, dada por

Π(gauge)
µν (p) =

δjµ(p)

δAν(−p)

∣

∣

∣

∣

∣

Aµ=0

= − 4 e2

(2π)3

∫

d3k

|~k|
nB(|~k|)(1− cos p× k)

[

ηµν −
pµkν + kµpν

k · p +
kµkνp

2

(k · p)2
]

.

(5.34)

Os cálculos são exatamente semelhantes ao do caso anterior, a única diferença sendo a presença do fator tri-

gonométrico que caracteriza a não-comutatividade. Este resultado é o mesmo obtido em (3.65) no capı́tulo

3. Da mesma forma, pode-se obter a correção f (2) à função distribuição, e com ela a função de 3-pontos

no limite de altas temperaturas. Isto está feito em [68], demonstrando que a equação de transporte para

uma partı́cula neutra está de fato correta, assim como a forma da força (5.31) para uma partı́cula neutra na

NCQED.

Olhando para a equação de transporte (5.12), vemos que, para o caso da força (5.31), ela pode ser

escrita como

kµDµf(x, k) = −e∂(Xµ ? f(x, k))

∂kµ
, (5.35)

e a força é, em primeira aproximação, dada por

Xµ
(neutra) ' 2

[

1− cos k × i∂
]

Fµνkν . (5.36)

5.2 Tratamento quântico - O operador de Wigner para os fótons

Na dificuldade em se justificar a forma explı́cita para a força que age em uma partı́cula neutra com o

tratamento clássico da seção anterior, os autores procuraram por uma nova formulação para o problema,

seguindo o método quântico apresentado no capı́tulo anterior, que diz respeito ao método de Wigner de

se formular as equações de transporte. O objetivo é formular a função distribuição quântica do problema,

que é a função de Wigner, cuja equação de evolução segue diretamente das equações satisfeitas pelos

campos correspondentes. Portanto não é necessário conhecer a forma da força que age na partı́cula, como

acontece no tratamento clássico. No entanto, no caso de campos auto-interagentes, como é o caso da QED
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não-comutativa, devemos tomar cuidado com duas coisas. A primeira é que a função de Wigner deve ser

formulada de uma maneira covariante de gauge, e a segunda é que devemos usar aproximações de campo

médio apropriadas para extrair o conteúdo fı́sico do sistema.

Apresentaremos aqui brevemente as principais idéias para se chegar a uma equação de transporte con-

veniente para a NCQED. Estes resultados foram apresentados por Frenkel, Brandt e Das em [69], em

estreita analogia com a formulação apresentada na seção 4.2.4 para campos de gauge não-abelianos. Os

cálculos explı́citos das amplitudes de 2 e 3-pontos serão feitos na seção seguinte, utilizando-se uma forma

mais simples para a equação de transporte que a apresentada aqui, derivada posteriormente.

Já que o campo para o fóton não-comutativo apresenta a mesma estrutura auto-interagente dos glúons

da QCD usual, define-se, para os fótons não-comutativos, um operador de Wigner3 covariante de gauge

análogo a (4.42),

Wµν(x, k) =

∫

d4y

(2π~)4
e−

i
~
y·kG

(+)
µλ (x) ? Gλ (−)

ν (x) (5.37)

onde definimos também

G(±)
µν (x) = U(x, x±) ? Fµν(x±) ? U(x±, x) (5.38)

eU representa o operador de link para a teoria não-comutativa, definido ao longo de uma trajetória retilı́nea,

U(x, x±) = P (e
∓ ie

~c

R 1
0 dt

y
2
·A(x±(1−t) y

2
)

? ) (5.39)

e P indica ordenamento da esquerda para a direita, e pode-se checar que por uma transformação de gauge

do tipo (2.55) o operador de link (5.39) se transforma covariantemente,

U(x, x±)→ Ω−1(x) ? U(x, x±) ? Ω(x±) . (5.40)

Note que, com o operador de link definido desta maneira, podemos também escrever

G(±)
µν (x) =

(

e
± y

2
·D

? Fµν(x)
)

(5.41)

onde a derivada covariante deve ser definida na representação adjunta. Também é fácil checar que

W †µν(x, k) = Wνµ(x, k) . (5.42)

A derivação da equação de transporte para a função de Wigner (5.37) se faz da seguinte maneira.

Precisamos calcular a quantidade k ·DWµν(x, k), e para isto precisaremos das relações abaixo:

D(x)
µ U(x, x±) = ∂(x)

µ U(x, x±)− ie

~c
(Aµ(x) ? U(x, x±)− U(x, x±) ? Aµ(x±))

= ∓ ie

2~c
yν
(
∫ 1

0
dt

(

e
± ty

2
·D

? Fµν(x)

))

? U(x, x±)

3Por simplicidade de notação, vamos omitir o sı́mbolo operatorial daqui para frente, de forma que Ŵ → W , etc.
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D(x)
µ U(x±, x) = ∂(x)

µ U(x±, x)−
ie

~c
(Aµ(x±) ? U(x±, x)− U(x±, x) ? Aµ(x))

= ± ie

2~c
yνU(x±, x) ?

(
∫ 1

0
dt

(

e
± ty

2
·D

? Fµν(x)

))

(5.43)

D(x)
ρ G(±)

µν (x) =
(

D(x)
ρ U(x, x±)

)

? Fµν(x±) ? U(x±, x)

+U(x, x±) ? (D(x)
ρ Fµν(x±)) ? U(x±, x)

+U(x, x±) ? Fµν(x±) ?
(

D(x)
ρ U(x±, x)

)

Com isto pode-se mostrar que a função de Wigner na QED não-comutativa deve satisfazer a seguinte

equação de transporte:

k ·DWµν(x, k) =

=
e

2c

∂

∂kσ
kρ

[(

∫ 1

0
dt

(

e
i~ t
2
∂k·D

? Fρσ(x)

)

)

? Wµν +Wµν ?

(

∫ 1

0
dt

(

e
− i~ t

2
∂k·D

? Fρσ(x)

)

)

−
∫

d4y

(2π~)4
e−

i
~
y·kG

(+)
µλ (x) ?

(

∫ 1

0
dt

[(

e
ty
2
·D

? Fρσ(x)

)

+

(

e
− ty

2
·D

? Fρσ(x)

)]

)

? Gλ (−)
ν (x)

]

+ kρ
∫

d4y

(2π~)4
e−

i
~
y·k

[

U(x, x+) ?
(

D(x+)
ρ Fµλ

)

(x+) ? U(x+, x) ? G
λ (−)
ν (x)

+G
(+)
µλ (x) ? U(x, x−) ?

(

D(x−)
ρ F λν

)

(x−) ? U(x−, x)

]

(5.44)

onde ∂k representa a derivada com relação a k. Esta equação representa a equação de transporte completa

para a função de Wigner dos fótons da QED não-comutativa e sua solução geral é muito difı́cil de ser

obtida. No entanto, como estamos interessados apenas no limite de altas temperaturas, ou limite HTL,

pode-se mostrar que neste limite a equação de transporte assume a forma mais simples,

k ·DWµν(x, k) =
e

2c

∂

∂kσ
kρ
[

Fρσ(x) ? Wµν(x, k) +Wµν(x, k) ? Fρσ(x)

−2

∫

d4y

(2π~)4
e−

i
~
y·kG

(+)
µλ (x) ? Fρσ(x) ? G

λ (−)
ν (x)

]

(5.45)

conforme discutido em [69].

Sendo a QED não-comutativa uma teoria auto-interagente devemos, da mesma forma que na QCD, se-

parar os campos em uma parte quântica aµ, e outra parte em campo de fundo Āµ, fazendo uma decomposição

da forma

Aµ(x) = Āµ(x) + aµ(x) (5.46)

onde

aµ(x) =
∑

s

∫

d3k

(2π)32k0
εµ
(

a e−ik·x + a† eik·x
)

, (5.47)

é a solução de ondas planas para o campo de gauge quântico. Assumimos que na aproximação de campo
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médio valem as relações

〈Aµ(x)〉 = Āµ(x), 〈aµ(x)〉 = 0 (5.48)

de maneira que por uma transformação de gauge os campos se transformam como

Āµ(x) → Ω−1(x) ? Āµ(x) ? Ω(x) +
i~c

e
Ω−1(x) ? ∂µΩ(x) , (5.49a)

aµ(x)→ Ω−1(x) ? aµ(x) ? Ω(x) . (5.49b)

Além disto, nesta decomposição temos

Fµν(x) = F̄µν(x) + D̄µaν(x)− D̄νaµ(x)−
ie

~c
[aµ(x), aν(x)]MB (5.50)

onde

D̄µaν = ∂µaν −
ie

~c

[

Āµ, aν
]

MB
, (5.51a)

F̄µν = ∂µĀν − ∂νĀµ −
ie

~c

[

Āµ, Āν
]

MB
. (5.51b)

Definindo então

Gµν(x, k) = 〈Wµν(x, k)〉 − W̄µν(x, k) (5.52)

onde W̄µν(x, k) representa a função de Wigner associada com o campo de fundo Āµ, podemos escrever a

equação de transporte para Gµν(x, k) na aproximação de altas temperaturas como

k · D̄Gµν(x, k) =
e

2c

∂

∂kσ
kρ

{

F̄ρσ(x) ? Gµν(x, k) + Gµν(x, k) ? F̄ρσ(x)

−2

∫

d4y

(2π~)4
e−

i
~
y·k

[

〈

G
(+)
µλ (x) ? F̄ρσ(x) ? G

λ (−)
ν (x)

〉

−
(

Ḡ
(+)
µλ (x) ? F̄ρσ(x) ? Ḡ

λ (−)
ν (x)

)

]

}

.

(5.53)

Se definirmos então a quantidade

F(x, k) =
1

k2
ηµνGµν(x, k) , (5.54)

ela deve satisfazer a seguinte equação:

k · D̄Fµν(x, k) =
e

2c

∂

∂kσ
kρ

{

F̄ρσ(x) ? Fµν(x, k) + Fµν(x, k) ? F̄ρσ(x)

−2

∫

d4y

(2π~)4
e−

i
~
y·k 1

k2

[

〈

G
(+)
µλ (x) ? F̄ρσ(x) ? G

λ (−)
ν (x)

〉

−
(

Ḡ
(+)
µλ (x) ? F̄ρσ(x) ? Ḡ

λ (−)
ν (x)

)

]

}

,

(5.55)

que é manifestamente covariante por transformações de gauge e pode ser resolvida ordem a ordem no
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parâmetro e para dar o valor médio da função de Wigner. Se definirmos a corrente como

Jµ(x) =
e

2

∫

d4k θ(k0)
kµ
k2
ηλρ (Gλρ(x, k)− Gρλ(x,−k))

=
e

2

∫

d4k θ(k0) kµ (F(x, k)−F(x,−k)) (5.56)

é fácil verificar que esta corrente se transforma corretamente por uma transformação de gauge e é covari-

antemente conservada

D̄µJ
µ(x) = ∂µJ

µ − ie

~c
[Āµ , J

µ]MB = 0 . (5.57)

Da mesma forma que no tratamento da equação de Schrödinger da seção 4.2.1, podemos ver que o lado

direito já é explicitamente de ordem e, enquanto que o lado esquerdo contém um termo independente, de

forma que F pode ser obtida ordem a ordem no parâmetro e, e então a corrente (5.56) também pode ser

obtida ordem a ordem, e as funções de n-pontos podem ser determinadas por meio de

Γµ1µ2···µn(p1, · · · , pn) =
δn−1Jµ1(−p1)

δĀµ2(p2) · · · δĀµn(pn)

∣

∣

∣

∣

∣

Ā=0

. (5.58)

A equação de transporte (5.55) é o principal resultado. Junto com a corrente (5.56) podemos obter todas

as funções de n-pontos da mesma forma que no caso clássico anterior. Não faremos esta demonstração aqui

porque queremos ainda ir um pouco além e apresentar uma forma mais simples para função de Wigner e

para a equação de transporte, com a qual calcularemos as funções de n-pontos. Vamos terminar dizendo

o que nos motivou a procurar uma forma mais simples para a função de Wigner. Em primeiro lugar note

que a definição (5.54) é singular, pois a princı́pio k2 = 0 deve estar na camada de massa. Este termo

vai se cancelar apenas posteriormente, quando aparecer no numerador um termo proporcional a k2, mas

até então ela não faz muito sentido. Outra coisa que se percebeu depois é que para obter corretamente as

contribuições para as amplitudes de 3 e 4-pontos era necessário incluir uma contribuição de ordem e vinda

da quantização correta do campo aµ(x) dado em (5.47), pois para o caso não-comutativo aquela não é a

expressão correta, como se percebeu depois. Isto foi chamado de covariantização em [69], pois ainda não

estava claro que a solução viria desta quantização. Isto foi feito no trabalho posterior, o qual apresentamos

na sessão seguinte.

5.3 Forma simplificada da função de Wigner para fótons

Nesta última parte vamos ver em detalhes como uma forma mais simples para a função de Wigner

leva corretamente às amplitudes de 2 e 3-pontos em 1-loop da QED não-comutativa a altas temperaturas.

Devido a algumas dificuldades já citadas com a formulação anterior, propomos a seguinte forma para a
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função de Wigner wµν(x, k), válida para a aproximação de altas temperaturas, ou aproximação HTL:

wµν(x, k) =

∫

d4y

(2π)4
e−iy·kG(+)

µ (x) ? G(−)
ν (x) , (5.59)

onde

G(±)
µ (x) = U (Ā)(x, x±) ? aµ(x±) ? U (Ā)(x±, x) . (5.60)

com x± = x± y
2 e os operadores de link U são dados por

U (Ā)(x, x±) = P e∓
ie
~c

R 1
0 ds

y
2
·Ā(x±(1−s) y

2
) , (5.61)

U (Ā)(x±, x) = P e±
ie
~c

R 1
0 ds

y
2
·Ā(x±s y

2
) . (5.62)

A função distribuição é dada por

F(x, k) = ηµν〈wµν(x, k)〉 , (5.63)

evitando assim o problema do fator 1/k2 presente na (5.54). A equação de transporte a ser satisfeita por F
é dada simplesmente por

k · D̄F(x, k) =
e

2

∂

∂kσ
kρ
[

F̄ρσ ? F + F ? F̄ρσ − 2

∫

d4y

(2π)4
e−iy·k 〈G(+)

µ ? F̄ρσ ? G
µ(−)〉

]

, (5.64)

com a derivada covariante D̄µ = ∂µ − ie[Ā , ]MB . Resolvendo iterativamente esta equação para F
expandido em potências da constante de acoplamento e,

F(x, k) = F (0)(x, k) + eF (1)(x, k) + e2F (2)(x, k) + · · · (5.65)

vamos obter uma corrente

Jµ(x) = −e
∫

d4k kµ
[

F(x, k)−F(x,−k)
]

, (5.66)

para todas as ordens em e, com a qual calculamos as funções de n-pontos

Γµ1µ2···µn(p1, · · · , pn) =
δn−1Jµ1(−p1)

δĀµ2(p2) · · · δĀµn(pn)

∣

∣

∣

∣

∣

Ā=0

(5.67)

No que segue, vamos calcular explicitamente estes termos.

5.3.1 Cálculo de F(x, k)

O primeiro termo da função distribuição, F (0), que é de ordem “zero” em e, deve ser obtido dire-

tamente da definição (5.63), tomando a função de Wigner wµν(x, k) em ordem “zero” no acoplamento.

Mas as únicas contribuições de ordem e para wµν vêm de G(±)
µ através dos operadores de U (Ā), que na
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aproximação até ordem e são dados apenas por

U (Ā)(x, x±) ' 1∓ ie

~c

∫ 1

0
ds
y

2
· Ā(x± (1− s)y

2
) (5.68)

U (Ā)(x±, x) ' 1± ie

~c

∫ 1

0
ds
y

2
· Ā(x± sy

2
) (5.69)

Portanto, em ordem “zero” em e, devemos tomar U (Ā) ' 1, de maneira que F (0) pode ser escrito como

F (0)(x, k) = ηµν〈w(0)
µν (x, k)〉 =

∫

d4y

(2π)4
e−iy·k 〈aµ(x+) ? aµ(x−)〉 . (5.70)

O cálculo de F (0) pode ser feito sem dificuldades. Os detalhes estão no Apêndice F.1. Vamos precisar da

solução de ondas planas para o campo quântico aµ(x),

aµ(x) =
∑

s1

∫

d3k1

(2π)32k0
1

εµ1

(

a1 e−ik1·x + a†1 eik1·x
)

, (5.71)

onde a1 ≡ a(k1, s1) e a†1 ≡ a†(k1, s1). Eles possuem “médias térmicas” dadas por4

〈a1a
†
2〉 = (2π)32k0

1δs1s2δ
3(k1 − k2)(1 + nB(|k0

1|)) (5.72)

〈a†1a2〉 = (2π)32k0
1δs1s2δ

3(k1 − k2)nB(|k0
1|) (5.73)

e satisfazem a relação de comutação usual

[a1 , a
†
2] = (2π)32k0

1δs1s2δ
3(k1 − k2) . (5.74)

O vetor de polarização εµ1 ≡ ε
µ
1 (k1, s1) é real e transversal ao vetor de onda kµ1 , satisfazendo

k1 · ε1(k1, s1) = 0
∑

s1=1,2

ε1µ(k1, s1)ε
µ
1 (k1, s1) = −2 . (5.75)

Estas são as principais propriedades que precisamos para obter

F (0)(x, k) = − 4

(2π)3
nB(|k0|)θ(k0)δ(k2) . (5.76)

Tendo sido obtida a expressão para F (0), vamos agora obter a expressão para F (1), que deve vir dos

termos de ordem e na equação de transporte (5.64) quando substituı́da nela a expansão (5.65). Obtemos
4Ver pags. 124-125 de [1].
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assim

kµ(∂µ − ie[Āµ , ]MB)(F (0) + F (1))

=
e

2

∂

∂kσ
kρ
[

f̄ρσ ? F (0) + F (0) ? f̄ρσ − 2

∫

d4y

(2π)4
e−iy·k 〈aµ(x+) ? f̄ρσ ? a

µ(x−)〉
]

,

(5.77)

onde f̄ρσ é a parte de F̄ρσ independente de e, ou seja

f̄ρσ(x) = ∂ρĀσ(x)− ∂σĀρ(x) . (5.78)

Note que o lado esquerdo vai dar apenas uma contribuição de ordem e, vinda de k·∂F (1), pois−ie[Āµ ,F (0)]MB =

0, já que F (0) não depende das coordenadas. Desta forma, a equação de transporte para F (1) é dada por

k · ∂F (1)(x, k) =
e

2

∂

∂kσ
kρ
[

2f̄ρσF (0) − 2

∫

d4y

(2π)4
e−iy·k 〈aµ(x+) ? f̄ρσ ? a

µ(x−)〉
]

.

(5.79)

Precisamos calcular apenas a integral do lado direito, pois F (0) já foi calculado. O cálculo de F (1) está

feito no Apêndice F.2. O resultado que obtemos é:

F (1)(x, k) = − 4e

(2π)3
1

k · ∂
∂

∂kσ
kρ
[

nB(|k0|)θ(k0)δ(k2)
(

f̄ρσ(x)− f̄ρσ(x+ θk)
)

]

.

(5.80)

O cálculo de F (2), que é de ordem e2, deve vir da seguinte expressão para a equação de transporte

(5.64)

kµ(∂µ − ie[Āµ , ])(F (1) + F (2))

=
e

2

∂

∂kσ
kρ
[

f̄ρσ(x) ? F (1)(x, k) + F (1)(x, k) ? f̄ρσ(x)

− ie[Āρ(x) , Āσ(x)]MB ? F (0) − ieF (0) ? [Āρ(x) , Āσ(x)]MB

−2

∫

d4y

(2π)4
e−iy·k 〈Gµ(x+) ? (−ie[Āρ , Āσ]MB) ? Gµ(x−)〉

−2

∫

d4y

(2π)4
e−iy·k 〈Gµ(x+) ? f̄ρσ(x) ? G

µ(x−)〉
]

. (5.81)

As contribuições da primeira e segunda linhas do lado direito da igualdade são explicitamente de ordem

e2, lembrando que F (1) é de ordem e, e são fáceis de serem calculadas, pois F (0) e F (1) já estão deter-

minados. A terceira linha também é fácil de ser calculada, visto que o termo já é de ordem e2, portanto

Gµ(x±) = aµ(x±) nesta ordem, e assim podemos usar diretamente o resultado da integral (F.11), simples-
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mente trocando f̄ρσ → −ie[Āρ , Āσ]MB, de maneira que obtemos para a integral da terceira linha

∫

d4y

(2π)4
e−iy·k〈aµ(x+) ? (−ie[Āρ(x) , Āσ(x)]MB) ? aµ(x−)〉 = −ieF (0)[Āρ(x+ θk) , Āσ(x+ θk)]MB .

(5.82)

O cálculo da contribuição vinda da última linha é um pouco mais elaborado, mas pode ser feito sem grandes

dificuldades. Note que ela parece ser de ordem e, mas lembre-se que existe ainda uma possı́vel contribuição

de ordem e vinda de Gµ, e olhando para sua forma em (5.60), esta contribuição poderá vir tanto dos U (Ā)’s

quanto de aµ, que neste caso será a solução quântica covariante, ou seja, a solução de ondas planas que se

transforma covariantemente, conforme discutido no Apêndice G.

Em primeiro lugar note que as possı́veis contribuições vindas dos U (Ā)’s, quando vistos na forma ex-

pandida (5.69), serão proporcionais a y, mas visto no espaço dos momentos, y corresponde a uma derivação

com relação ao momento k,

yµ → i~
∂

∂kµ

e portanto dará uma contribuição de k no denominador, portanto subdominante na aproximação de altas

temperaturas p << k. As únicas contribuições virão, portanto, de aµ covariante, dado por

aµ(x) =
∑

s1

∫

d3k1

(2π)32k0
1

εµ1

(

a1 e−ik1·X + a†1 eik1·X
)

(5.83)

onde Xµ = xµ + eθµνÃν(x) é a coordenada covariante e Ãν(x) = Āν(x) + 1
k·D̄

F̄να(x)kα. Os detalhes

dos cálculos estão no Apêndice F.3. A expressão final para F (2) é

F (2)(x, k) = ie
1

k · ∂
[

k · Ā(x),F (1)(x, k)
]

MB

− 4ie2

(2π)3
1

k · ∂
∂

∂kσ
kρδ(k2)nB(|k0|)

{

[

Āρ(x), Āσ(x)
]

MB −
[

Āρ(x+ θ k), Āσ(x+ θ k)
]

MB

+
[ 1

k · ∂ k ·
(

Ā(x)− Ā(x+ θ k)
)

, f̄ρσ(x+ θ k)
]

MB

}

(5.84)

de maneira que já podemos calcular as amplitudes de 2 e 3-pontos em 1-loop.

5.3.2 Amplitude de 2-pontos

Para o cálculo da amplitude de 2-pontos, precisamos obter a expressão para a corrente (5.66) até a

ordem e2. Usando a definição (5.66), em primeira ordem em e a corrente será

J (1)
µ (x) = −e

∫

d4k kµ
[

F (0)(x, k)−F (0)(x,−k)
]

= 0 , (5.85)
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como esperado. Para a ordem seguinte temos

J (2)
µ (x) = −e

∫

d4k kµ
[

F (1)(x, k)−F (1)(x,−k)
]

=
4e2

(2π)3

∫

d4k kµ
1

k · ∂
∂

∂kσ
kρ
[

nB(|k0|)θ(k0)δ(k2)

×
[

f̄ρσ(x)− f̄ρσ(x+ θk) + f̄ρσ(x)− f̄ρσ(x− θk)
]

]

(5.86)

Escrevendo os campos Āρ(x) e Āρ(x+ θk) como transformada de Fourier

Āσ(x) =

∫

d4pĀσ(p) eip·x ,

Āσ(x+ θk) =

∫

d4pĀσ(p) eip·(x+θk) , (5.87)

e substituindo em (5.86), obtemos

J (2)
µ (x) =

4e2

(2π)3

∫

d4k kµ
1

k · p
∂

∂kσ
kρnB(|k0|)θ(k0)δ(k2)

[

2pρĀσ(p)− 2pσĀρ(p)

−pρĀσ(p) eipθk − pρĀσ(p) e−ipθk + pσĀρ(p) eipθk + pσĀρ(p) e−ipθk
]

=
4e2

(2π)3

∫

d4k kµ
1

k · p
∂

∂kσ
kρnB(|k0|)θ(k0)δ(k2)

[

2
(

1− cos(p× k)
)(

pρĀσ(p)− pσĀρ(p)
)

]

.

(5.88)

Integrando por partes obtemos

J (2)
µ (p) = − 8e2

(2π)3

∫

d4k nB(|k0|)θ(k0)δ(k2)(1− cos p× k)
[

ηµν −
pµkν + kµpν

k · p +
kµkνp

2

(k · p)2
]

Āν(p)

(5.89)

Com isto, usando a (5.67), obtemos a função de 2-pontos a altas temperaturas

Πµν(p) =
δJ

(2)
µ (−p)
δĀν(p)

∣

∣

∣

∣

Ā=0

=
8e2

(2π)3

∫

d4k nB(|k0|)θ(k0)δ(k2)(1− cos p× k)
[

ηµν −
pµkν + kµpν

k · p +
kµkνp

2

(k · p)2
]

=
4e2

(2π)3

∫

d3k
nB(|~k|)
|~k|

(1− cos p× k)
[

ηµν −
pµkν + kµpν

k · p +
kµkνp

2

(k · p)2
]

,

(5.90)

que é exatamente igual ao resultado obtido no capı́tulo 3 pelo método da amplitude de espalhamento frontal,

conforme (3.65).
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5.3.3 Amplitude de 3-pontos

Para calcularmos a função de três pontos, devemos primeiro obter a corrente até terceira ordem em e.

Usando (5.84) e a expansão (F.19) para o último termo, a corrente é dada por

J (3)
µ (p1) =

16ie3

(2π)3

∫

d4p2d
4p3d

4k θ(k0)δ(k2)nB(k0)δ(p1 + p2 + p3) sin
(p1 × p2

2

)

×
[

(1− cos(p3 × k))
(

Lµσ(p1, k)
kν
p1 · k

+ Lνσ(p3, k)
kµ
p1 · k

)

Āν(p2)L
λσ(p3, k)Āλ(p3)

+ (1− cos(p1 × k))
k · Ā(p3)

p1 · k
Lµσ(p1, k)L

νσ(p1, k)Āν(p2)

+ (cos(p1 × k)− cos(p3 × k))
p3 · k
p1 · k

k · Ā(p2)

p2 · k
Lµσ(p1, k)L

λσ(p3, k)Āλ(p3)

]

(5.91)

onde

Lµν(p, k) = ηµν −
kµpν
p · k . (5.92)

Isto nos fornece a função de 3-pontos

Γgµνλ(p1, p2, p3) =
δ2J

(3)
µ (−p1)

δĀν(p2)δĀλ(p3)

∣

∣

∣

∣

Āµ=0

=
8 i e3

(2π)3
sin

(

p1 × p2

2

)
∫

d3k

|~k|
nB(|~k|) 1

k · p1

[

[1− cos(k × p1)] kλGµν(k; p1)

+ [1− cos(k × p3)] [kµGνλ(k; p3) + kν Gµσ(k; p1)G
σ
λ(k; p3)]

+ [cos(k × p1)− cos(k × p3)]
k · p3

k · p2
kν Gµσ(k; p1)G

σ
λ(k; p3)

−(p2 ↔ p3; ν ↔ λ)

]

, (5.93)

onde

Gµν(k; p) = ηµν −
kµ pν + kν pµ

(k · p) +
p2 kµ kν
(k · p)2 . (5.94)

Com um pouco de manipulação algébrica pode-se mostrar que este resultado é exatamente igual ao resul-

tado obtido pelo método FSA, conforme equação (3.69).

5.3.4 Força para partı́culas neutras

Vamos agora mostrar, pelo menos qualitativamente, que com os resultados anteriores conseguimos

obter a forma da força agindo em uma partı́cula neutra não-comutativa, conforme equação (5.36). Para
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isto, note que a equação de transporte (5.64) pode ser escrita como

k · D̄F(x, k) =
e

2

∂

∂kσ

∫

d4y

(2π)4
e−iy·k

[

〈F̄ρσkρ ? G(+)
µ ? Gµ(−) +G(+)

µ ? Gµ(−) ? F̄ρσk
ρ

−2G(+)
µ ? F̄ρσ ? G

µ(−)〉
]

=
e

2

∂

∂kσ

∫

d4y

(2π)4
e−iy·k

[

2 cos

(

1

2
θαβ(∂αF̄ρσk

ρ)(∂β〈G(+)
µ ? Gµ(−)〉)

)

−2〈G(+)
µ ? F̄ρσ ? G

µ(−)〉
]

, (5.95)

onde usamos (5.63), (5.59) e a propriedade (2.45). Olhando para a forma (5.60) de G(±)
µ , vemos que ela

depende essencialmente de aµ em ordem dominante, pois como já discutimos, os termos U (Ā) contribuem

somente com termos subdominantes. Também vemos que (5.95) é quadrática em G, portanto quadrática

em aµ, de forma que o termo contendo a derivada ∂β vai contribuir com ∂β〈G(+)
µ ? Gµ(−)〉 ∼ −2ikβ , pois

k representa o momento do campo quântico aµ no espaço dos momentos. Além disto, pelos resultados

(5.70), (F.11), (5.82) e (F.15) podemos concluir que

∫

d4y

(2π)4
e−iy·k 〈G(+)

µ ? Gµ(−)〉 ∼ F (0) ∼ nB(|~k|)

∫

d4y

(2π)4
e−iy·k 〈G(+)

µ ? F̄ρσ ? G
µ(−)〉 ∼ F (0)F̄ρσ ∼ nB(|~k|)F̄ρσ , (5.96)

de forma que (5.95) pode ser escrita como

k · D̄F(x, k) = −e ∂

∂kσ

(

nB(|~k|)
[

1− cos k × i∂
]

F̄ρσk
ρ

)

. (5.97)

Comparando a expressão (5.97) com (5.35), vemos que a força neste caso é dada por

Xσ ∼
[

1− cos k × i∂
]

F̄ρσk
ρ , (5.98)

portanto tem a mesma forma de (5.36), o que justifica a forma (5.31) para a força no caso clássico.

5.3.5 Pressão na NCQED

Da mesma forma que no caso do campo de gauge da seção 4.2.4, podemos definir um tensor de energia

momento para a NCQED em termos da função de Wigner (5.37), dado por

T̂µν(x) = 〈
∫

d4k
[

Wµν(x, k)−
1

4
ηµνW

λ
λ (x, k)

]

〉 , (5.99)

onde o traço foi trocado pela média térmica dos campos. Em ordem mais baixa, podemos calcular W

facilmente. Fazendo os campos de fundo iguais a zero, Āµ = 0, resta apenas a média térmica dos campos
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quânticos. Usando (5.38), (G.3) e as relações (5.71-5.75), obtemos

〈W (0)
µν (x, k)〉 =

∫

d4y

(2π)4
e−iy·k〈

(

∂µa
λ(x+)− ∂λaµ(x+)

)

?
(

∂λaν(x−)− ∂λaν(x−)
)

〉

=
4

(2π)3
kµkνθ(k0)δ(k

2)nB(k0) , (5.100)

onde desprezamos um termo independente da temperatura. O tensor de energia-momento em ordem mais

baixa é dado então por

T̂ (0)
µν (x) = 〈

∫

d4k
[

W (0)
µν (x, k)− 1

4
ηµνW

(0)λ
λ (x, k)

]

〉

=
4

(2π)3

∫

d4k θ(k0)δ(k
2)nB(k0)

(

kµkν −
1

4
ηµνk

2

)

=
4

(2π)3

∫

d4k θ(k0)δ(k
2)nB(k0)kµkν , (5.101)

pois k2 = 0. Com isto calculamos a componente temporal do tensor, que corresponde à densidade de

energia do campo

E ≡ T̂ (0)
00 (x) =

4

(2π)3

∫

d4k θ(k0)δ(k
2)nB(k0)k0k0

=
2

(2π)3

∫

d3k
|~k|

e|~k|/T − 1

=
8π

(2π)3

∫ ∞

0
dk

k3

ek/T − 1

=
π2

15
T 4 . (5.102)

Para um gás relativı́stico, como vimos em (1.91), a pressão é dada por E/3, de forma que

P (0) =
1

3
E =

π2

45
T 4 , (5.103)

exatamente os mesmos resultados obtidos em (1.88) e (1.90) para o gás de fótons livres.

Como sabemos da seção 3.8, a próxima correção à pressão de um gás de fótons não-comutativos é de

ordem e2, conforme expressão (3.71) para a energia livre de Helmholtz. Portanto, devemos olhar para o

tensor de energia-momento em segunda ordem em e. A função de Wigner em segunda ordem é

〈W (2)
µν (x, k)〉 =

∫

d4y

(2π)4
e−iy·k(−ie)2〈[aµ(x+), aλ(x+)]MB ? [aλ(x−), aν(x−)]MB〉 . (5.104)

O cálculo desta expressão é bastante trabalhoso, mas pode ser feito sem dificuldades. Isto foi feito, e o resul-
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tado é que, quando colocado no tensor de energia-momento, fornece exatamente o resultado para a pressão

em segunda ordem vinda de (3.71). É fácil entender a estrutura desta expressão. Ela contém o produto de

quatro campos quânticos, de forma que, pelas relações (5.71)-(5.75), teremos no resultado final o produto

de duas funções de Bose, nB , exatamente conforme encontrado na expressão (3.71). Além disso, cada

comutador Moyal presente na expressão (5.104) dará origem a uma função seno envolvendo o parâmetro

não-comutativo, portanto o resultado final ser proporcional a seno ao quadrado. O que é interessante é que

a expressão obtida é exatamente igual, o que não é óbvio, pois outras contribuições proporcionais a e2 de-

vem vir da quantização do campo aµ. Estes termos dariam contribuição à outra parte da função de Wigner

W (2), por exemplo na parte contendo (∂A − ∂A)2, como em (5.100). Mas estas contribuições devem se

cancelar de maneira não-trivial, pois o cálculo de (5.104) já fornece o resultado correto. Este cancelamento

exato da parte vinda da covariantização do campo quântico deve ter um significado mais profundo que

precisa ser melhor estudado.

Os principais resultados apresentados nesta seção, equações (5.59)-(5.64), assim como a quantização

do campo quântico pelo método do campo de fundo apresentado no Apêndice G, foram publicados em

[71].
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Conclusão

Neste trabalho abordamos dois tópicos de grande interesse na teoria de campos atualmente. O primeiro

foi a teoria de campos a temperatura finita, generalização direta da teoria de campos usual, necessária para

incluir efeitos de altas temperaturas e densidades no estudo de sistemas fı́sicos, visto que são muitos os

cenários do universo onde estas caracterı́sticas se apresentam. O exemplo mais próximo do nosso cotidiano

são os plasmas produzidos em laboratório, indo mais longe temos interiores de estrelas, núcleos galácticos

e fenômenos intrı́nsecos ao universo primordial. O outro tópico abordado neste trabalho foi o estudo

de teorias definidas em espaços não-comutativos, visto que um dos limites de baixa energia da teoria

de cordas pode ser descrito efetivamente por estas teorias não-comutativas. Na falta de uma teoria que

descreva de maneira correta as interações em escalas de energia muito alta, ou distâncias muito pequenas,

que é quando efeitos quânticos e gravitacionais se misturam, temos de utilizar teorias que, pelo menos

efetivamente, possam responder a perguntas que o modelo padrão não descreva satisfatoriamente. A teoria

não-comutativa nasceu da tentativa de se entender as divergências que cercam a QED e a QCD. Neste

trabalho tentamos dar uma idéia de como tratar sistemas onde estes dois tópicos aparecem juntos. Para isso

tomamos como referência a eletrodinâmica quântica usual, que é uma teoria muito bem fundamentada e

bem estabelecida já há quase um século.

O método dos diagramas de Feynman para tratar da QED, tanto a temperatura zero quanto a tempera-

tura finita, já foi extensivamente utilizado, obtendo-se resultados muito bons. No tratamento de sistemas a

temperatura finita os cálculos são bastante complicados devido à necessidade de se fazer somatórias sobre

freqüências, e na maioria das vezes estes cálculos não são óbvios. Além disso, às vezes diagramas de ordens

diferentes dão contribuições de mesma ordem, portanto deve-se adotar um procedimento de “ressomação”,

de forma a se considerar todos os possı́veis diagramas que contribuem para um dado termo, e isto pode

tornar o cálculo muito complicado. Entretanto na maioria das vezes o limite de altas temperaturas de um

sistema pode ser visto como uma média estatı́stica de um sistema em equilı́brio térmico, e então outros

métodos podem ser utilizados. Sem dúvida o método de Feynman é muito eficaz, porém muito compli-

cado em alguns casos. Desta forma, dependendo da quantidade fı́sica que estamos querendo calcular, ou

dependendo do limite em que o cálculo deve ser feito, podemos utilizar algum outro método que forneça

exatamente os mesmos resultados. Esta foi exatamente uma das propostas do nosso projeto: mostrar que

o método das equações de transporte clássicas de Boltzmann pode ser aplicado à QED não-comutativa a

altas temperaturas. De fato é intuitivo pensar que um plasma a altas temperaturas deva se comportar, na

média, como um conjunto de partı́culas clássicas em equilı́brio térmico.
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No primeiro capı́tulo fizemos uma breve exposição da teoria quântica de campos, tanto a temperatura

nula quanto a temperatura finita. No segundo capı́tulo discutimos uma generalização para campos não-

uniformes ao problema de um elétron movendo-se em um plano, sujeito a um campo magnético intenso,

conhecido como problema de Landau, onde a não-comutatividade das coordenadas aparece naturalmente.

Apresentamos em seguida a formulação não-comutativa da QED a temperatura nula. No terceiro capı́tulo

estudamos a formulação da QED em espaços não-comutativos a temperatura finita, e apresentamos os re-

sultados obtidos para o cálculo das amplitudes de 2, 3 e 4-pontos no limite estático a altas temperaturas pelo

método de Feynman. Mostramos que as amplitudes com ı́ndices puramente espaciais estão relacionadas

por meio de identidades de Ward, de forma que a ação efetiva no limite estático a altas temperaturas pôde

ser obtida. No quarto capı́tulo fizemos uma breve revisão da teoria das equações de transporte, método que

é muito útil para o cálculo de propriedades fı́sicas de sistemas em equilı́brio térmico a altas temperaturas.

Aplicamos este método ao caso da QED não-comutativa a altas temperaturas e mostramos que os mesmos

resultados em 1-loop do terceiro capı́tulo podem ser obtidos de maneira muito mais direta. Uma carac-

terı́stica comum aos dois métodos é a presença da não-comutatividade, que torna os cálculos extremamente

complexos. Os cálculos realizados utilizando-se as equações de transporte dependem basicamente do co-

nhecimento das forças que agem na partı́cula, ou seja, das suas equações dinâmicas. Para uma partı́cula

carregada, mesmo no espaço não-comutativo, é intuitivo propor uma forma para a força conforme a eq.

(5.15), devido ao comportamento parecido com o de dipolos da estrutura da teoria. Já para uma partı́cula

neutra a forma desta força não é trivial, e diante disso tornou-se necessária uma formulação que pudesse dar

uma idéia de como se justificar a forma da força (5.31) a ser utilizada nas equações de transporte clássicas.

O método de Wigner, utilizado para tratar sistemas quânticos pelas equações de transporte, forneceu a res-

posta que querı́amos. Em analogia com o tratamento existente para a QCD, desenvolvido por Elze, Heinz e

colaboradores, foi possı́vel propor uma equação de transporte a ser satisfeita pelos fótons não-comutativos,

e então a forma da força pôde ser derivada naturalmente. Isto mostra que este método pode ser muito útil

quando não temos nenhuma informação sobre a força que age no sistema.

Paralelo a esta linha principal do projeto, que era demonstrar, em altas temperaturas, a equivalência dos

métodos de equações de transporte com o método tradicional de Feynman, desenvolvemos vários outros

tópicos relacionados. Com respeito a efeitos de temperatura finita, estudamos as massas de blindagem

dos campos elétrico e magnético devido a efeitos puramente não-comutativos, e vimos que uma correção

à massa elétrica deve existir devido à presença da não-comutatividade, embora ela se desenvolva apenas

acima de uma temperatura muito alta, o que caracteriza uma transição de fases de primeira ordem. Já para

a parte magnética não há nenhuma contribuição. Outro resultado interessante é que, a altı́ssimas tempera-

turas, o tensor de auto-energia do fóton não depende do parâmetro de não-comutatividade, conforme eq.

(3.17), e a contribuição é da mesma ordem que aquela vinda da QED comutativa a temperatura finita.

Com relação ao aspecto da não-comutatividade, o principal resultado que obtivemos foi a quantização

correta do campo de gauge aµ pelo método do campo de fundo, no limite em que o campo de fundo

varia fracamente com relação ao campo quântico. Isto se fez necessário quando se percebeu que faltavam

termos de ordem e3 para que as contribuições às amplitudes de 3-pontos em 1-loop fornecessem o resultado
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correto. O único lugar de onde estes termos poderiam vir era do próprio campo quântico, que no caso

geral apresenta uma estrutura bem complexa, dependente do campo de fundo Āµ. Levar em conta de forma

correta estas contribuições é, sem dúvida, a parte mais trabalhosa, mas isto é inerente à não-comutatividade,

e não ao método das equações de transporte. Por último citamos a tentativa em se obter a pressão de

um gás de fótons não-comutativos através do tensor de energia-momento. Como foi discutido na última

seção do capı́tulo 5, o primeiro termo que contribui à pressão é fácil de se calcular, depende basicamente

do conhecimento da função distribuição em ordem mais baixa, e não tem dependência com o parâmetro

de não-comutatividade. Já para a primeira correção não-nula os cálculos são mais trabalhosos, e ainda

assim não foi demonstrado porque as outras possı́veis correções vindas do campo quântico se cancelam

exatamente. Deve haver um motivo mais geral para explicar porque estas contribuições se cancelam, mas

este é um assunto que precisa ser melhor estudado.

Um dos interesses no cálculo de correções à pressão de um gás de férmions ou bósons vem da as-

trofı́sica. Sabemos que o produto final da evolução de uma estrela pode ser uma anã branca, uma estrela

de nêutrons ou um buraco negro, dependendo basicamente de sua massa inicial. Em uma anã branca, o

colapso gravitacional é contrabalançado pela pressão de degenerescência dos elétrons, enquanto que em

uma estrela de nêutrons é a pressão dos nêutrons que impede que ela colapse para um buraco negro. A

determinação correta do limite de massa para o qual uma estrela vai evoluir para o colapso é uma questão

importante em astrofı́sica, e é conhecido como limite de Chandrasekhar, dado por M ' 1, 4MS onde MS

corresponde a uma massa solar. Anãs brancas com massa maior que o limite de Chandrasekhar não podem

existir, e uma maneira de se entender este limite é considerar que os elétrons estão a uma densidade tão

alta que eles se tornam relativı́sticos, aı́ podemos usar os resultados da teoria de campos a temperatura e

densidade finitas. Correções de primeira ordem na pressão de degenerescência dos elétrons devem mudar

o valor do limite de Chandrasekhar. Para uma estrela de nêutrons os cálculos são muito mais complicados,

pois o equilı́brio se dá entre a pressão dos nêutrons e a pressão gravitacional. Só que um gás de nêutrons

relativı́sticos deve ser tratado por meio da QCD a altas temperaturas e densidade, conforme indicado no

diagrama de fases T ×µ da introdução. Ainda não é claro qual a contribuição devida a correções à pressão

de um gás de nêutrons ao limite de Chandrasekhar, no entanto observa-se estrelas de nêutrons com mas-

sas que variam de 1, 4 a 1, 6MS , portanto um valor maior que o limite anterior, indicando que efeitos da

interação nuclear forte devem desempenhar um papel fundamental. Outra aplicação onde cálculos a densi-

dade e temperatura finita são importantes é na perda de energia por estrelas devido a emissão de partı́culas

fracamente interagentes, como os neutrinos por exemplo. Esta é uma questão muito importante na as-

trofı́sica. Os principais sistemas onde esses processos ocorrem são nos núcleos de supernovas do tipo II,

com temperaturas da ordem de 50MeV e potencial quı́mico da ordem de 350MeV. Também podem ocorrer

em núcleos de estrelas gigantes vermelhas ou anãs brancas. O processo dominante que envolve a emissão

de neutrinos em estrelas é chamado “decaimento plasmon”, que nada mais é que o decaimento dos fótons

transversais e longitudinais em pares de neutrinos. Com relação a efeitos da não-comutatividade, como

vimos, a altas temperaturas seus efeitos podem ser mais notáveis, pois a presença comum de um termo

do tipo θT mostra que a altı́ssimas temperaturas a não-comutatividade pode se tornar mais evidente em
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determinados processos. A época da inflação do universo é, sem dúvida, um dos melhores “laboratórios”

para se testar seus efeitos.

Estas e outras questões ainda em aberto da astrofı́sica e da cosmologia necessitam, sem dúvida, de um

tratamento da teoria de campos a temperatura finita, e muitas vezes cálculos por meio de equações de trans-

porte podem fornecer resultados tão bons quanto os obtidos pelo método de Feynman, como demonstramos

aqui.

Os principais resultados apresentados e discutidos nesta tese foram publicados, conforme referências

[70, 71, 72, 73].
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Apêndice A

A.1 Revisão de conceitos de mecânica

Seja uma lagrangeana L(q, q̇), função das coordenadas generalizadas qi(t) e das velocidades corres-

pondentes q̇i(t). As equações de movimento de Euler-Lagrange deste sistema são dadas por

∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)
= 0 . (A.1)

Os momentos canonicamente conjugados de qi são obtidos por

pi =
∂L

∂q̇i
(A.2)

e a hamiltoniana do sistema pode ser construı́da por meio de uma transformação de Legendre

H(q, p) =
∑

i

piq̇i(p, q)− L[q, q̇(p, q)] , (A.3)

onde a soma é sobre todas as coordenadas e momentos do sistema.

As equações de Hamilton que seguem da hamiltoniana (A.3) são

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (A.4)

O parênteses de Poisson ou comutador de Poisson de duas quantidades f, g é definido por

{f , g} =
∑

i

(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

, (A.5)

e seguem diretamente as propriedades

{qi, qj} = 0 = {pi, pj} , {qi, pj} = δij . (A.6)
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Apêndice B

B.1 Algumas propriedades do teorema dos resı́duos

Para o cálculo de alguns somatórios algumas vezes é mais conveniente usarmos integrais no plano

complexo e aplicarmos algumas propriedades do teorema dos resı́duos. As propriedades abaixo podem ser

encontradas nas págs. 84-86 da ref. [66]:

1. Seja g(z) uma função analı́tica no interior de um contorno fechado e sobre C, exceto em um número

finito de singularidades isoladas em z = a1, a2, · · · , an, todas situadas no interior de C. Então

∮

C
g(z)dz = 2πi

n
∑

j=1

Res[g(aj)] , (B.1)

onde Res[g(aj)] é o resı́duo de g no ponto aj . O caminho C está orientado no sentido anti-horário.

2. Para uma singularidade (ou pólo) de ordem m em z = a, vale a fórmula seguinte para calcular o

resı́duo:

Res[g(a)] =
1

(m− 1)!
lim
z→a

dm−1

dzm−1

[

(z − a)mg(z)
]

. (B.2)

3. Outra maneira de calcular o resı́duo é a seguinte: Se g for da forma

g(z) =
ϕ(z)

ψ(z)
(B.3)

tal que ψ(z) tem um pólo simples em z = a e ϕ(a) 6= 0, então:

Res[g(a)] =
ϕ(a)

ψ′(a)
. (B.4)
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B.2 Soma de freqüências para bósons

Queremos mostrar a seguinte relação:

T
∞
∑

n=−∞

f(k0 = iωn) =
1

2πi

∫ +i∞

−i∞
dk0

1

2

[

f(k0) + f(−k0)
]

+
1

2πi

∫ +i∞+ε

−i∞+ε
dk0

[

f(k0) + f(−k0)
] 1

eβk0 − 1
, (B.5)

onde f(k0) é uma função que não possui singularidades ao longo do eixo imaginário de k0 e ωn = 2πn
β ,

onde β = 1/T .

Vamos começar mostrando a seguinte relação:

T
∞
∑

n=−∞

f(k0 = iωn) =
T

2πi

∮

C
dk0f(k0)

1

2
β coth(

1

2
βk0) , (B.6)

sendo o contorno C no plano complexo de k0 da forma indicada na Figura B.1.

Im k0

n

C

Re k0

Figura B.1: Contorno de integração da equação (B.6).

Primeiro note que a função cotangente hiperbólico pode ser escrita de diversas formas:

1

2
β coth(

1

2
βk0) =

1

2
β

(

1 + e−βk0

1− e−βk0

)

=
1

2
β

(

− 1− 2

e−βk0 − 1

)

=
1

2
β

(

1 +
2

eβk0 − 1

)

(B.7)

e tem pólos em k0 = 2πin
β ≡ an e é analı́tica e limitada em todos os outros pontos. Aplicando a propriedade

(B.1) ao lado direito de (B.6) temos

T

2πi

∮

C
dzf(z)

1

2
β coth(

1

2
βz) = T

∑

n

Res[f(an)
1

2
β coth(

1

2
βan)] . (B.8)
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Agora os resı́duos podem ser calculados usando-se a propriedade (B.4), fazendo

ϕ(an) = f(an)(1 + e−βan) , ψ(an) = (1− e−βan) , (B.9)

onde usamos (B.7), de forma que ψ′(an) = β e−βan , e então

Res[f(an)
1

2
β coth(

1

2
βan)] =

ϕ(an)

ψ′(an)

=
f(2πin

β )1
2β(1 + e−2πin)

β e−2πin

= f(
2πin

β
)

= f(k0 = iωn) (B.10)

pois e−2πin = 1 para qualquer n inteiro. Substituindo finalmente em (B.8) obtemos a relação que

querı́amos demonstrar:

T

2πi

∮

C
dk0f(k0)

1

2
β coth(

1

2
βk0) = T

∞
∑

n=−∞

f(k0 = iωn) . (B.11)

Agora vamos mostrar a relação (B.5). Em primeiro lugar note que o contorno da Figura B.1 pode ser

deformado da seguinte forma, representado na Figura B.2.

Im k0

C

Re k0

Figura B.2: Contorno de integração equivalente ao da Fig. B.1.

A integral de contorno no lado esquerdo de (B.11) pode ser escrita em termos do contorno da Figura
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B.2 como

T

2πi

∮

C
dk0f(k0)

1

2
β coth(

1

2
βk0) =

1

2πi

∫ −i∞−ε

i∞−ε
dk0f(k0)

(

− 1

2
− 1

e−βk0 − 1

)

+
1

2πi

∫ +i∞+ε

−i∞+ε
dk0f(k0)

(

1

2
+

1

eβk0 − 1

)

(B.12)

onde usamos (B.7) para reescrever o cotangente hiperbólico de uma forma apropriada. Como o parâmetro ε

deve ser tomado como zero no final, não estamos incluindo as integrais nas extremidades superior e inferior

do contorno, elas não contribuem. Agora, fazendo k0 → −k0 na primeira integral, podemos escrever tudo

em termos do caminho do lado direito da figura, de forma que obtemos finalmente

T

2πi

∮

C
dk0f(k0)

1

2
β coth(

1

2
βk0) =

1

2πi

∫ +i∞

−i∞
dk0

1

2

[

f(k0) + f(−k0)
]

+
1

2πi

∫ +i∞+ε

−i∞+ε
dk0

[

f(k0) + f(−k0)
] 1

eβk0 − 1
,

(B.13)

onde fizemos ε→ 0 na primeira integral porque f(k0) não é singular em nenhum ponto do eixo imaginário,

ao contrário da segunda integral, que ainda contém uma dependência singular no denominador. Com isto

demonstramos a relação (B.5).

Vamos aplicar os resultados anteriores para um caso especı́fico, que é quando f é da forma

f(k0) =
−1

k2
0 − ω2

. (B.14)

Substituindo em (B.5), obtemos:

T
∞
∑

n=−∞

−1

k2
0 − ω2

=
1

2πi

∫ +i∞

−i∞
dk0

[ −1

k2
0 − ω2

]

+
1

2πi

∫ +i∞+ε

−i∞+ε
dk0

[ −2

k2
0 − ω2

] 1

eβk0 − 1
,

(B.15)

onde k0 = iωn = 2πin
β . Na primeira integral fazemos a mudança de variáveis

ik0 = k4 , dk0 = −idk4 , (B.16)

que corresponde a uma rotação para o eixo imaginário dos momentos. A segunda integral deve ser feita

ao longo do caminho l1, e uma maneira de fazer isso é usar mais uma vez o teorema dos resı́duos. Vamos

fechar o caminho l1 com um semicı́rculo l2 ao longo do plano do lado direito do eixo k0, da forma mostrada

na Figura B.3. Desta forma temos um caminho fechado C = l1 + l2, e vale a propriedade (B.1), escrita
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formalmente como:

∫

l1

+

∫

l2

=

∮

C
= −2πi

∑

j

Res[g(aj)] . (B.17)

O sinal negativo é porque neste caso a curva C está orientada no sentido horário. No entanto, o único pólo

que existe no semiplano direito é o ponto k0 = ω, de segunda ordem.

Im k0

Re k0

l

l2

1

Figura B.3: Contorno C = l1 + l2.

Estamos interessados na integral ao longo de l1. Portanto, tomando

g(z) =
−2

2πi

1

(z2 − ω2)

1

( eβz − 1)
, (B.18)

obtemos

∫

l1

g(z)dz = −
∫

l2

g(z)dz − 2πiRes[g(z = ω)] . (B.19)

A integral ao longo de l2 é nula, pois neste caminho devemos tomar |k0| → ∞, portanto a integral se anula

devido ao denominador. Ficamos portanto com

−2

2πi

∫ +i∞+ε

−i∞+ε
dz

1

(z2 − ω2)

1

( eβz − 1)
= −2πiRes

[−2

2πi

1

(z2 − ω2)

1

( eβz − 1)

]

= −2πi lim
z→ω

d

dz

[

(z − ω)2
−2

2πi

1

(z2 − ω2)

1

( eβz − 1)

]

=
1

ω

1

eβω − 1
, (B.20)

onde usamos a propriedade (B.2) para calcular o resı́duo no ponto z = ω. Substituindo este resultado de
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volta na (B.15) e fazendo a mudança de variáveis (B.16) na primeira integral, obtemos finalmente:

T
∞
∑

n=−∞

−1

k2
0 − ω2

=
1

2πi

∫ +∞

−∞

1

k2
4 + ω2

dk4 +
1

ω

1

eβω − 1
, (B.21)

que é o resultado final desejado. A soma sobre as freqüências foi feita, o que restou foi um termo indepen-

dente da temperatura e outro dependente.

B.3 Soma de freqüências para férmions

Para o caso de férmions a relação análoga de (B.5) é:

T
∞
∑

n=−∞

h(p0 = iωn) =
1

2πi

∫ +i∞

−i∞
dp0

1

2

[

h(p0) + h(−p0)
]

− 1

2πi

∫ +i∞+ε

−i∞+ε
dp0

[

h(p0) + h(−p0)
] 1

eβp0 + 1
, (B.22)

onde h(p0) é uma função que não possui singularidades ao longo do eixo imaginário de p0 e ωn = (2n+1)π
β .

A demonstração pode ser feita seguindo os mesmos passos do caso dos bósons. O análogo de (B.6) será:

T
∞
∑

n=−∞

h(p0 = iωn) =
T

2πi

∮

C
dp0h(p0)

1

2
β tanh(

1

2
βp0) , (B.23)

pois agora é a função tanh que possui pólos em p0 = (2n+1)πi
β .

Para o caso especı́fico em que h é da forma

h(p0) =
−1

p2
0 − ω2

, (B.24)

obtemos

T
∞
∑

n=−∞

−1

p2
0 − ω2

=
1

2πi

∫ +∞

−∞

1

p2
4 + ω2

dp4 −
1

ω

1

eβω + 1
. (B.25)
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Apêndice C

C.1 Integrais úteis

As integrais seguintes podem ser obtidas na ref. [65]:

∫ ∞

0
dx

x

e
x
T − 1

=
π2T 2

6
(C.1)

∫ ∞

0
dx

sinxy

e
x
T − 1

=
πT

2

(

cothπyT − 1

πyT

)

(C.2)

∫ ∞

0
dx

x cosxy

e
x
T − 1

=
1

2y2
− π2T 2

2
cosech2πyT (C.3)

C.2 Somas sobre freqüências

A primeira destas relações foi deduzida no Apêndice B.2, equações (B.14)-(B.21). As demais seguem

por derivação dos dois lados com relação a k.

T
∑

n

1

(2πnT )2 + k2
=
nB(k)

k
+ (termo T = 0) (C.4)

T
∑

n

1

((2πnT )2 + k2)2
= − 1

2k

(

nB(k)

k

)′

+ (termo T = 0) (C.5)

T
∑

n

1

((2πnT )2 + k2)3
=

1

4k

[

1

2k

(

nB(k)

k

)′]′

+ (termo T = 0) (C.6)

T
∑

n

1

((2πnT )2 + k2)4
= − 1

6k

[

1

4k

[

1

2k

(

nB(k)

k

)′]′
]′

+ (termo T = 0) (C.7)

onde k = |~k| e o sı́mbolo (′) significa derivada com relação a k.
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C.3 Expansões em série e identidades trigonométricas

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · (C.8)

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · (C.9)

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · (C.10)

coth(x) ' 1

x
+

1

3
x− 1

45
x3 +

2

945
x5 + · · · (C.11)

cossech2(x) ' 1

x2
− 1

3
+

1

15
x2 − 2

189
x4 + · · · (C.12)

sin2A =
1

2
(1− cos 2A) (C.13)

C.4 Integral de auto-energia do fóton

O cálculo desta integral pode ser encontrado na referência [7], pag. 460.

f(x) ≡ 6

∫ 1

0
z(1− z) ln(1 + xz(1− z))dz

=

[

− 5

3
+

1

ρ
+

(

1− 1

2ρ

)
√

1 +
1

ρ
ln

√

1 + (1/ρ) + 1
√

1 + (1/ρ)− 1

]

, (C.14)

onde ρ = x/4. Alguns limites importantes são:

f(x) ≈
{

x/5 , x << 1

lnx , x >> 1
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Apêndice D

D.1 Método da soma sobre freqüências para a auto-energia do fóton

Vamos calcular separadamente cada uma das contribuições para o tensor de auto-energia do fóton

usando diretamente o método da soma sobre as freqüências de Matsubara. Começamos com o tensor Πµν
a

dado em (2.66), representado pela Figura 2.2:

Πµν
a (p) = 4e2

∫

d4k

(2π)4
sin2

(k × p
2

)(kµ + pµ)kν

k2(k + p)2
. (D.1)

Em primeiro lugar, temos de ir para o espaço euclidiano, fazendo a substituição kµ = (k0,~k) → (iωn,~k)

de maneira que k2 = (k2
0 − ~k2) → −(ω2

n + ~k2), onde ωn = 2nπ/β, e da mesma forma pµ = (p0, ~p)→
(ip0, ~p). A parte trigonométrica do tensor não muda, pois ela só depende das componentes espaciais. Assim

temos

Πµν
a (p) = 4e2

∫

d4k

(2π)4
sin2

(k × p
2

) (k + p)µkν

(−ω2
n − ~k2)[−(ωn + p0)2 − (~k + ~p)2]

, (D.2)

e fazemos a substituição

∫

d4k

(2π)4
→ 1

β

∞
∑

n=−∞

∫

d3k

(2π)3
(D.3)

obtendo

Πµν
a (p) = 4e2

1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

(k + p)µkν

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

, (D.4)

de maneira que podemos fazer os cálculos sobre a soma das freqüências ωn. Note que o numerador do

integrando ainda contém uma dependência nas freqüências, por exemplo se quisermos calcular a compo-

nente Π00 do tensor. Mas esta dependência no numerador pode ser facilmente simplificada, como veremos
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adiante. Vamos começar calculando a parte espacial do tensor,

Πij
a (p) = 4e2

1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

kikj + pikj

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

= 4e2
∫

d3k

(2π)3
sin2

(k × p
2

)

(kikj + pikj)
1

β

∑

n

1

((2πn/β)2 + ~k2)[(2πn/β + p0)2 + (~k + ~p)2]
.

(D.5)

Esta somatória será feita no chamado limite estático, que corresponde a fazer p0 = 0 e em seguida ~p→ 0.

O caso inverso, ~p = 0 , p0 → 0 fornece um outro limite1, caracterizando a não-analiticidade de cálculos a

temperatura finita. Para o nosso caso, o limite estático corresponde a tomar p0 = ~p = 0 no numerador de

(D.5) e fazer a soma. Mas isto se reduz à expressão (C.5) do Apêndice C.2, de forma que obtemos

Πij
a (p0 = 0, ~p→ 0) = 2e2

∫

d3k

(2π)3
sin2

(k × p
2

)kikj

|~k|3
[1

2
+ nB(|~k|)− |~k|n′B(|~k|)

]

. (D.6)

O fator 1/2 representa a parte independente da temperatura, que dará contribuição para a parte de vácuo.

Portanto, desconsiderando a parte independente da temperatura obtemos, para as componentes espaciais,

Πij
a st(p) = 2e2

∫

d3k

(2π)3
sin2

(k × p
2

)kikj

|~k|3
[nB(|~k|)− |~k|n′B(|~k|)] , (D.7)

lembrando que a única dependência com o momento externo está agora dentro do fator trigonométrico,

pois queremos ter alguma informação sobre a não-comutatividade no resultado final.

Vejamos agora a parte temporal do tensor dado em (D.4). Ela pode ser escrita como

Π00
a (p) = 4e2

1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

k0k0 + p0k0

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

= 4e2
1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

−ω2
n − p0ωn

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

(D.8)

mas é fácil ver que a soma sobre o segundo termo, linear em ωn no numerador, é nula, pois o denominador

é uma função par em ωn enquanto o numerador é uma função ı́mpar, então a soma que vai de −∞ até +∞
se anula. Para o primeiro termo é mais conveniente escrevermos

Π00
a (p) = 4e2

1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

−ω2
n − ~k2 + ~k2

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

= 4e2
1

β

∫

d3k

(2π)3
sin2

(k × p
2

)

∑

n

[ −1

[(ωn + p0)2 + (~k + ~p)2]

+
~k2

(ω2
n + ~k2)[(ωn + p0)2 + (~k + ~p)2]

]

. (D.9)

No limite estático as somas se reduzem àquelas do Apêndice C.2. Desconsiderando a parte independente
1Conforme discutido na seção 3.2.

129



da temperatura temos,

Π00
a st(p) = 2e2

∫

d3k

(2π)3
sin2

(k × p
2

) |~k|2

|~k|3
[nB(|~k|)− |~k|n′B(|~k|)− 2nB(|~k|)] . (D.10)

Ficou faltando calcularmos as componentes do tipo Π0j , mas é fácil ver que todas as componentes

se anulam, pois o denominador é uma função par em ωn enquanto o numerador é uma função ı́mpar.

Além disto, no limite de altas temperaturas, que corresponde a fazer p << k, toda dependência em p no

numerador pode ser desconsiderada.

Dessa maneira, olhando atentamente para (D.7) e (D.10), percebemos que o tensor do diagrama (a) no

limite estático pode ser escrito compactamente como

Πµν
a st(p) = 2e2

∫

d3k

(2π)3
sin2

(k × p
2

)[nB(|~k|)
|~k|3

kµkν − n
′
B(|~k|)
|~k|2

kµkν − 2
nB(|~k|)
|~k|

ηµ0ην0

]

∣

∣

∣

∣

∣

k0=|~k|

. (D.11)

onde k0 = |~k|, ou seja, está na camada de massa. Note que o último termo só contribui para a componente

Π00 do tensor.

Para o gráfico da Figura 2.4(b), o tensor a temperatura nula é dado pela equação (2.67). Fazendo as

mesmas substituições e usando as mesmas técnicas do exemplo anterior, obtemos, a temperatura finita e no

limite estático,

Πµν
b st(p) = −12e2

∫

d3k

(2π)3
sin2

(k × p
2

)nB(|~k|)
|~k|

ηµν (D.12)

Para calcular a contribuição do diagrama da Figura 2.1(c), dado pela equação (2.68), vamos usar desde

o inı́cio que estamos interessados no limite p << k, de maneira que toda dependência em p no numerador

pode ser desconsiderada. Desta maneira o ponto de partida é a expressão

Πµν
c (p) = −2e2

∫

d4k

(2π)4
sin2

(k × p
2

)[ 2ηµν

(k + p)2
+

10kµkν

k2(k + p)2

]

(D.13)

Agora fazemos as mesmas substituições que nos casos anteriores e vamos obter, no limite estático,

Πµν
c st(p) = 2e2

∫

d3k

(2π)3
sin2

(k × p
2

)[

2
nB(|~k|)
|~k|

ηµν − 5
nB(|~k|)
|~k|3

kµkν + 5
n′B(|~k|)
|~k|2

kµkν

+10
nB(|~k|)
|~k|

ηµ0ην0

]

∣

∣

∣

∣

∣

k0=|~k|

. (D.14)

Portanto, a contribuição total para o tensor de auto-energia do fóton no limite estático é dada finalmente
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por

Πµν
st (p) = Πµν

a st(p) + Πµν
b st(p) + Πµν

c st(p)

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

) 1

|~k|

[

nB(|~k|)ηµν +
nB(|~k|)
|~k|2

kµkν − n′B(|~k|)
|~k|

kµkν

−2nB(|~k|)ηµ0ην0

]

∣

∣

∣

∣

∣

k0=|~k|

. (D.15)

D.2 Integrais da auto-energia do fóton

Vamos calcular os fatores de forma Πst
L, Π̃st

T e Πst
T da seção 3.2. O vetor momento ~p é perpendicular a

~̃p, e o momento a ser integrado é ~k. Portanto, um sistema de coordenadas conveniente para fazermos os

cálculos é representado na Figura D.1.

p~

p pp~φ

ψ

k

x

Figura D.1: Sistema de coordenadas usado para fazer a integração no momento interno k.
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Πst
L = uµuνΠ

µν
St

= 8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

n′B(|~k|)

=
4e2

(2π)3

∫

d3k (1− cos~k · ~̃p) d

d|~k|
nB(|~k|)

=
4e2

(2π)3

∫

d3k (1− cos~k · ~̃p)β d

dβ

nB(|~k|)
|~k|

=
4e2

(2π)3
β

d

dβ

∫ ∞

0

∫ π

0

∫ 2π

0
dk dψ dφk2 sinψ

nB(k)

k

[

1− cos(|~̃p|k cosψ)
]

=
8e2

(2π)2
β

d

dβ

∫ ∞

0

dk k

eβk − 1

(

1− sin k|~̃p|
k|~̃p|

)

=
8e2

(2π)2
β

d

dβ

[

π2

6β2
− π

2|~̃p|β
coth

(

π|~̃p|
β

)

+
1

2|~̃p|2

]

= −2

3
e2T 2 +

e2T

π|~̃p|
coth(π|~̃p|T )− e2T 2cossech2(π|~̃p|T ) (D.16)

Π̃st
T =

p̃µp̃ν
p̃2

Πµν
St

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

[

nB(|~k|)
|~k|

+
(p̃ · k)2
p̃2

nB(|~k|)
|~k|3

− (p̃ · k)2
p̃2

n′B(|~k|)
|~k|2

]

= − 2e2

π2|~̃p|2
+
e2T

π|~̃p|
coth(π|~̃p|T ) + e2T 2cossech2(π|~̃p|T ) (D.17)

Πst
T =

(

ηµν −
pµpν
p2

)

Πµν
st −Πst

L − Π̃st
T

= −8e2
∫

d3k

(2π)3
sin2

(k × p
2

)

[

n′B(|~k|) +
((p̃ · k)2

p̃2
+

(p · k)2
p2

)(n′B(|~k|)
|~k|2

− nB(|~k|)
|~k|3

)

]

= 0 . (D.18)

onde k = |~k|, β = 1/T e usamos os resultados das integrais dada no Apêndice C.1.
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k−p

(ci) (cii)

Figura D.2: Contribuição para o espalhamento frontal

D.3 Método da amplitude de espalhamento frontal

Neste método, a função de dois pontos para a auto-energia do fóton pode ser escrita como

Πµν(p) = − 1

2i(2π)3

∫

d3~k

|~k|
nB(|~k|)Pαβ(k)Aµναβ(k,−k, p)

∣

∣

k0=|~k|
(D.19)

onde Pαβ(k) é um operador que leva em conta a dependência de gauge e é dado por

Pαβ(k) ≡ ηαβ − 1− ξ
2

d

dk0

kαkβ

k0
(D.20)

e Aµναβ(k,−k, p) é a amplitude de espalhamento frontal, que é obtida dos correspondentes gráficos que

representam estes espalhamentos calculados na camada de massa (k0 = |~k|). Para os diagramas da Figura

2.1, os correspondentes gráficos que representam o espalhamento frontal estão indicados na Figura D.2.

Os diagramas (ai) e (aii) representam os gráficos de espalhamento frontal que contribuem para o loop

de ghost da Figura 2.1(a). Além deles devemos levar em conta também os mesmos diagramas fazendo

k → −k, por isso o fator −k presente no argumento da amplitude Aµναβ . O diagrama (b) representa o

espalhameto frontal da Figura 2.1(b) e os diagramas (ci) e (cii) são os correspondentes para o diagrama da

Figura 2.1(c). Devemos ainda considerar os fatores combinatoriais presentes nos gráficos da Figura 2.1. O

fator (-1) do loop de ghost não se trata de um fator combinatorial, e já está levado em conta no sentido da

seta nos diagramas (ai) e (aii) da Figura D.2. Vamos agora calcular explicitamente estas amplitudes.

Começando pelo diagrama mais simples, a contribuição do diagrama (b) para a amplitude é dada por,

usando as regras de Feynman

PαβAµναβ(b)(k, p) = −4e2 sin2
(k × p

2

)

(6ηµν) (D.21)
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onde estamos trabalhando no gauge de Feynman, ξ = 1 e por simplicidade já foi feita a contração com o

operador Pαβ .

Os diagramas (ci) e (cii) darão contribuições do tipo

PαβAµναβ(ci)(k, p)

= −4e2 sin2
(k × p

2

)(−5p2 − 2k · p− 2k2)ηµν + 2pµpν − 5(kµpν + pµkν)− 10kµkν

(k + p)2

PαβAµναβ(cii)(k, p)

= −4e2 sin2
(k × p

2

)(−5p2 + 2k · p− 2k2)ηµν + 2pµpν + 5(kµpν + pµkν)− 10kµkν

(k − p)2
(D.22)

Para os diagramas (ai) e (aii) que descrevem a propagação de um ghost, é mais conveniente redefinir a

amplitude Aµναβ(k, p) como

Aµναβ(k, p) ≡
ηαβ

3 + ξ
Aµνghost(k, p) (D.23)

onde Aµνghost(k, p) é amplitude de espalhamento frontal de um ghost pelo campo do fóton. Desta maneira,

os diagramas (ai) e (aii) fornecem, no gauge de Feynman,

PαβAµναβ(ai)(k, p) = −4e2 sin2
(k × p

2

)kµ(k − p)ν
(k − p)2

PαβAµναβ(aii)(k, p) = −4e2 sin2
(k × p

2

)kν(k + p)µ

(k + p)2
(D.24)

Lembrando que a contribuição total ainda tem de levar em conta os diagramas obtidos da Figura D.2

fazendo k → −k, a amplitude total de cada diagrama é obtida por meio de

PαβAµναβ(k,−k, p) = PαβAµναβ(k, p) + PαβAµναβ(−k, p) . (D.25)

Portanto, levando isto em consideração e também os fatores combinatorias de cada gráfico, a contribuição

total para a auto-energia do fóton obtido por meio de (D.19) é, no gauge de Feynman e na camada de massa

k2 = 0,

Πµν(p) =
4e2

(2π)3

∫

d3~k

2|~k|
nB(|~k|) sin2

(k × p
2

)

[

− 6ηµν

+
(5p2 + 2k · p)ηµν − 2pµpν + 4(kµpν + pµkν) + 8kµkν

p2 + 2k · p

+
(5p2 − 2k · p)ηµν − 2pµpν − 4(kµpν + pµkν) + 8kµkν

p2 − 2k · p

]
∣

∣

∣

∣

∣

k0=|~k|

(D.26)
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Para continuarmos nossos cálculos vamos agora tomar o limite de altas temperaturas ou limite HTL

onde p¿ k ∼ T , de maneira que vale a seguinte expansão para o denominador

1

p2 ± 2k · p = ± 1

2k · p −
p2

(2k · p)2 + · · · (D.27)

Usando isto na (D.26), o tensor de auto-energia do fóton a altas temperaturas pode ser escrito como

Πµν(p) = − 4e2

(2π)3

∫

d3~k

|~k|
nB(|~k|)(1− cos k × p)

[

ηµν − pµkν + pνkµ

p · k +
p2kµkν

(p · k)2
]
∣

∣

∣

∣

k0=|~k|

(D.28)
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Apêndice E

E.1 Amplitude de 3-pontos

Nosso objetivo é demonstrar as relações (3.33) e (3.34) satisfeita pela amplitude de 3-pontos. Partimos

da expressão (3.32):

Γst
µνλ = ie3T

∫

d3k

(2π)3
sin

(

p̃1 · k
2

)

sin

(

p̃2 · k
2

)

sin

(

p̃3 · k
2

)

∑

n

[

128kµkνkλ
[(2πnT )2 + k2]3

− 32

[(2πnT )2 + k2]2

(

δµνkλ + δλµkν + δνλkµ

)

]

. (E.1)

Fazendo uso da identidade trigonométrica

sin

(

p̃1 · k
2

)

sin

(

p̃2 · k
2

)

sin

(

p̃3 · k
2

)

= −1

4
(sin p̃1 · k + sin p̃2 · k + sin p̃3 · k) , (E.2)

podemos reescrever (E.1) como

Γst
µνλ = −8ie3T

∫

d3k

(2π)3
(sin p̃1 · k + sin p̃2 · k + sin p̃3 · k)

∑

n

[

4kµkνkλ
[(2πnT )2 + k2]3

− 1

[(2πnT )2 + k2]2

(

δµνkλ + δλµkν + δνλkµ

)

]

. (E.3)

Podemos ver desta expressão que quando houver um número ı́mpar de ı́ndices temporais a amplitude se

anula, pois a soma sobre as freqüências será antissimétrica, sendo uma função par no denominador e ı́mpar

no numerador, de forma que se anula para n variando no intervalo −∞ < n < +∞. As somas explı́citas

sobre as freqüências podem ser feitas usando-se os resultados do Apêndice D.2. No entanto, note que a

expressão (E.3) pode ser escrita como derivadas de uma função logarı́tmica, na forma

Γst
µνλ = −2ie3T

∫

d3k

(2π)3
(sin p̃1 · k + sin p̃2 · k + sin p̃3 · k)

∂3

∂kµ∂kν∂kλ

∑

n

ln[(2πnT )2 + k2] .

(E.4)
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Agora fazemos duas integrações a direita, agindo na função logarı́tmica, e para a última derivada fazemos

uma integração por partes, de forma que obtemos

Γst
µνλ = 2ie3T

∫

d3k

(2π)3
(p̃1,µ cos p̃1 · k + p̃2,µ cos p̃2 · k + p̃3,µ cos p̃3 · k)

×
[

∑

n

−4kνkλ
[(2πnT )2 + k2]2

+
∑

n

2ηνλ
[(2πnT )2 + k2]

]

. (E.5)

Usando a relação

− (p̃1,µ cos p̃1 · k + p̃2,µ cos p̃2 · k + p̃3,µ cos p̃3 · k)

= p̃1,µ(1− cos p̃1 · k) + p̃2,µ(1− cos p̃2 · k) + p̃3,µ(1− cos p̃3 · k) ,

(E.6)

que pode ser demonstrada usando-se a conservação de momento p1 + p2 + p3 = 0, vemos que a amplitude

de 3-pontos pode ser escrita em termos da auto-energia do fóton no limite estático, na forma

Γst
µνλ(p1, p2, p3) = ie

[

p̃1,µ Πst
νλ(p1) + p̃2,µ Πst

νλ(p2) + p̃3,µ Πst
νλ(p3)

]

. (E.7)

Desta forma, as componentes não-nulas na ordem dominante que estamos procurando podem ser represen-

tadas por:

Γstatic
00i (p1, p2, p3) = ie

[

p̃1, i Π
static
00 (p1) + p̃2, i Π

static
00 (p2) + p̃3, i Π

static
00 (p3)

]

, (E.8)

Γstatic
ijk (p1, p2, p3) = ie

[

p̃1, k Πstatic
ij (p1) + p̃2, k Πstatic

ij (p2) + p̃3, k Πstatic
ij (p3)

]

. (E.9)

E.2 Amplitude de 4-pontos

Nosso objetivo é demonstrar a relação (3.36) satisfeita pela amplitude de 4-pontos. Partimos da relação

Γst
µνλρ(p1, p2, p3, p4)

= 32e4
∫

d3k

(2π)3
sin

(

p̃1 · k
2

)

sin

(

p̃2 · k
2

)

sin

(

p̃3 · k
2

)

sin

(

p̃4 · k
2

)

T
∑

n

[

24kµkνkλkρ
((2πnT )2 + k2)4

− 4

[(2πnT )2 + k2]3

(

δµνkλkρ + δρµkνkλ + δλρkµkν + δνλkρkµ

)

+
2

[(2πnT )2 + k2]2

(

δµνδλρ + δρµδνλ

)

]

. (E.10)
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Esta relação também pode ser escrita em termos de derivadas agindo em uma função logarı́tmica, da forma

Γst
µνλρ(p1, p2, p3, p4) = 32e4T

∫

d3k

(2π)3
sin

(

p̃1 · k
2

)

sin

(

p̃2 · k
2

)

sin

(

p̃3 · k
2

)

sin

(

p̃4 · k
2

)

× ∂4

∂kµ∂kν∂kλ∂kρ

∑

n

ln[(2πnT )2 + k2] . (E.11)

O fator trigonométrico do vértice pode ser escrito como

8 sin

(

p̃1 · k
2

)

sin

(

p̃2 · k
2

)

sin

(

p̃3 · k
2

)

sin

(

p̃4 · k
2

)

= C(p1, k) + C(p2, k) + C(p3, k) + C(p4, k)− C(p1 + p4, k)− C(p2 + p4, k)− C(p3 + p4, k)

(E.12)

onde definimos

C(p, k) = 1− cos p̃ · k (E.13)

Agindo com duas derivadas a direita e fazendo duas integrações por partes, pode-se mostrar que obtemos

Γst
µνλρ(p1, p2, p3, p4)

= iep̃1,ρΓ
st
µνλ(p1 + p4, p2, p3) + p̃2,ρΓ

st
µνλ(p1, p2 + p4, p3) + p̃3,ρΓ

st
µνλ(p1, p2, p3 + p4) ,

(E.14)

de onde segue a relação (3.36).
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Apêndice F

F.1 Cálculo de F (0)(x, k)

F (0)(x, k) = ηµν〈w(0)
µν (x, k)〉

=

∫

d4y

(2π)4
e−iy·k 〈aµ(x+) ? aµ(x−)〉

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

× 〈[a1 e−ik1·x+ + a†1 eik1·x+ ] ? [a2 e−ik2·x− + a†2 eik2·x− ]〉

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

×
[

〈a1a
†
2〉 e−ik1·x+ ? eik2·x− + 〈a†1a2〉 eik1·x+ ? e−ik2·x−

]

=

∫

d4y

(2π)4
e−iy·k

∫

d3k1

(2π)32k0
1

∫

d3k2

(2π)32k0
2

∑

s1

∑

s2

εµ1 ε2µ

×
[

(2π)32k0
1δs1s2δ

3(k1 − k2)(1 + nB(|k0
1|)) e−ik1·x+ ? eik2·x−

+ (2π)32k0
1δs1s2δ

3(k1 − k2)nB(|k0
1|) eik1·x+ ? e−ik2·x−

]

=

∫

d4y

(2π)4
e−iy·k

∫

d3k1

(2π)32k0
1

(−2)
[

(1 + nB(|k0
1|)) e−ik1·y + nB(|k0

1|) eik1·y
]

= −2

∫

d4k1

(2π)3
δ(k2

1)θ(k
0
1)
[

(1 + nB(|k0
1|))δ(k + k1) + nB(|k0

1|)δ(k − k1)
]

= − 2

(2π)3
δ(k2)

[

nB(| − k0|)θ(−k0) + nB(|k0|)θ(k0)
]

= − 4

(2π)3
nB(|k0|)θ(k0)δ(k2) (F.1)
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onde utilizamos a solução de ondas planas para o campo quântico aµ(x),

aµ(x) =
∑

s1

∫

d3k1

(2π)32k0
1

εµ1

(

a1 e−ik1·x + a†1 eik1·x
)

, (F.2)

onde a1 ≡ a(k1, s1) e a†1 ≡ a†(k1, s1) possuem “médias térmicas” dadas por

〈a1a
†
2〉 = (2π)32k0

1δs1s2δ
3(k1 − k2)(1 + nB(|k0

1|)) (F.3)

〈a†1a2〉 = (2π)32k0
1δs1s2δ

3(k1 − k2)nB(|k0
1|) (F.4)

e satisfazem a relação de comutação usual

[a1 , a
†
2] = (2π)32k0

1δs1s2δ
3(k1 − k2) (F.5)

e εµ1 ≡ ε
µ
1 (k1, s1) é o vetor de polarização real que é transversal ao vetor de onda kµ1 , satisfazendo

k1 · ε1(k1, s1) = 0
∑

s1=1,2

ε1µ(k1, s1)ε
µ
1 (k1, s1) = −2 . (F.6)

Também utilizamos a representação integral em 4 dimensões da função delta de Dirac,

∫

d4y

(2π)4
e−iy·(k−k

′) = δ4(k − k′) (F.7)

e por último escrevemos a integral em d3k1 na forma

∫

d3k1

(2π)32k0
1

=

∫

d4k1

(2π)4
(2π)δ(k2

1)θ(k
1
0) . (F.8)

O produto Moyal entre as exponenciais pode ser facilmente feita usando a propriedade (2.50), de maneira

que temos

e−ik1·x+ ? eik1·x− = e−ik1·(x+y/2) ? eik1·(x−y/2)

= e−ik1·y e−ik1·x ? eik1·x

= e−ik1·y (F.9)

lembrando que a não-comutatividade se dá apenas com a coordenada x, mas não com y.

F.2 Cálculo de F (1)(x, k)

F (1)(x, k) =
e

2

1

k · ∂
∂

∂kσ
kρ
[

2f̄ρσF (0) − 2

∫

d4y

(2π)4
e−iy·k 〈aµ(x+) ? f̄ρσ ? a

µ(x−)〉
]

.

(F.10)
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Vamos começar calculando a integral do segundo termo do lado direito,

∫

d4y

(2π)4
e−iy·k〈aµ(x+) ? f̄ρσ(x) ? a

µ(x−)〉 =

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

×〈[a1 e−ik1·x+ + a†1 eik1·x+ ] ? f̄ρσ(x) ? [a2 e−ik2·x− + a†2 eik2·x− ]〉

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

×
[

〈a1a
†
2〉 e−ik1·x+ ? f̄ρσ(x) ? eik2·x− + 〈a†1a2〉 eik1·x+ ? f̄ρσ(x) ? e−ik2·x−

]

=

∫

d4y

(2π)4
e−iy·k

∫

d3k1

(2π)32k0
1

(−2)
[

(1 + nB(|k0
1|))f̄ρσ(x− θk1) e−ik1·y

+ nB(|k0
1|)f̄ρσ(x+ θk1) eik1·y

]

= − 4

(2π)3
nB(|k0|)θ(k0)δ(k2)f̄ρσ(x+ θk)

= F (0)f̄ρσ(x+ θk) (F.11)

onde usamos a propriedade (2.50) para fazer o produto Moyal,

e−ik1·x+ ? f̄ρσ(x) ? eik1·x− = e−ik1·(x+y/2) ? f̄ρσ(x) ? eik1·(x−y/2)

= e−ik1·y e−ik1·x ? f̄ρσ(x) ? eik1·x

= e−ik1·yf̄ρσ(x− θk1) (F.12)

Desta forma, F (1) pode ser escrito como

F (1)(x, k) = − 4e

(2π)3
1

k · ∂
∂

∂kσ
kρ
[

nB(|k0|)θ(k0)δ(k2)
(

f̄ρσ(x)− f̄ρσ(x+ θk)
)

]

.

(F.13)

141



F.3 Cálculo de F (2)(x, k)

F (2)(x, k) =
1

k · ∂

{

ie[k · Ā(x) ,F (1)]MB

+
e

2

∂

∂kσ
kρ
[

f̄ρσ(x) ? F (1)(x, k) + F (1)(x, k) ? f̄ρσ(x)

− ie[Āρ(x) , Āσ(x)]MB ? F (0) − ieF (0) ? [Āρ(x) , Āσ(x)]MB

−2

∫

d4y

(2π)4
e−iy·k 〈Gµ(x+) ? (−ie[Āρ , Āσ]MB) ? Gµ(x−)〉

−2

∫

d4y

(2π)4
e−iy·k 〈Gµ(x+) ? f̄ρσ(x) ? G

µ(x−)〉
]

}

. (F.14)

As contribuições da primeira, segunda e terceira linhas podem ser obtidas diretamente, pois F (0) e F (1) já

estão determinados. A quarta linha está calculada em (5.82). O cálculo da última linha pode ser feito como

segue:

∫

d4y

(2π)4
e−iy·k 〈Gµ(x+) ? f̄ρσ(x) ? G

µ(x−)〉 =

=

∫

d4y

(2π)4
e−iy·k〈aµ(x+) ? f̄ρσ(x) ? a

µ(x−)〉

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

×〈[a1 e−ik1·X+ + a†1 eik1·X+ ] ? f̄ρσ(x) ? [a2 e−ik2·X− + a†2 eik2·X− ]〉

=

∫

d4y

(2π)4
e−iy·k

∑

s1

∫

d3k1

(2π)32k0
1

εµ1
∑

s2

∫

d3k2

(2π)32k0
2

ε2µ

×
[

〈a1a
†
2〉 e−ik1·X+ ? f̄ρσ(x) ? eik2·X− + 〈a†1a2〉 eik1·X+ ? f̄ρσ(x) ? e−ik2·X−

]

=

∫

d4y

(2π)4
e−iy·k

∫

d3k1

(2π)32k0
1

(−2)

[

(1 + nB(|k0
1|)) e−ik1·y e−ik1·X ? f̄ρσ(x) ? eik1·X

+nB(|k0
1|) eik1·y eik1·X ? f̄ρσ(x) ? e−ik1·X

]

=

∫

d4y

(2π)4
e−iy·k

∫

d3k1

(2π)32k0
1

(−2)

[

(1 + nB(|k0
1|)) e−ik1·y

(

e−k̃1·D̃∗ f̄ρσ(x)

)
∣

∣

∣

∣

(e)

+nB(|k0
1|) eik1·y

(

ek̃1·D̃∗ f̄ρσ(x)

)
∣

∣

∣

∣

(e)]

= − 4

(2π)3
nB(|k0|)θ(k0)δ(k2)

(

ek̃·D̃∗ f̄ρσ(x)

)∣

∣

∣

∣

(e)

(F.15)
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onde usamos a definição Xµ
± = xµ± + eθµνÃν(x) e a propriedade,

e−ik·X ? f̄ρσ(x) ? eik·X = e−i(k·x+ek×Ã) ? f̄ρσ(x) ? ei(k·x+ek×Ã)

= e−k̃·D̃∗ f̄ρσ(x) , (F.16)

que pode ser obtida expandindo-se o produto Moyal e reagrupando-se os termos do lado esquerdo. O so-

brescrito |(e) significa que devemos tomar termos lineares em e desta expressão. Para concluir, precisamos

da propriedade

ei(k·x+ek×Ã) ? f̄ρσ(x) ? e−i(k·x+ek×Ã)
∣

∣

∣

(e)
=
(

ek̃·D̃f̄ρσ(x)
)∣

∣

∣

(e)

= −ie
∞
∑

n=1

1

n!

[{

(k̃ · ∂)n−1(k̃ · Ã) + (k̃ · ∂)n−2(k̃ · Ã)(k̃ · ∂) + · · ·+ (k̃ · Ã)(k̃ · ∂)n−1
}

, f̄ρσ

]

MB

(F.17)

Feitas estas considerações, a expressão para F (2) será

F (2)(x, k) = ie
1

k · ∂
[

k · Ā(x),F (1)(x, k)
]

MB

− 4ie2

(2π)3
1

k · ∂
∂

∂kσ
kρδ(k2)nB(|k0|)

{

[

Āρ(x), Āσ(x)
]

MB −
[

Āρ(x+ θ k), Āσ(x+ θ k)
]

MB

+
[ 1

k · ∂ k · (Ā(x)− Ā(x+ θ k)), f̄ρσ(x+ θ k)
]

MB

}

(F.18)

No cálculo explı́cito de J (3)
µ é mais conveniente calcular o termo (F.17) no espaço dos momentos. Embora

um pouco trabalhoso, pode-se mostrar que o lado direito de (F.17) pode ser escrito como

−ie
∫

d4p2d
4p3δ(p1 + p2 + p3)(−2i) sin

(

p2 × p3

2

)

(k̃ · Ã(p2))f̄ρσ(k3)

×
∞
∑

n=1

1

n!

{

(ik̃ · p1)
n−1 + (ik̃ · p1)

n−2(−ik̃ · p3) + · · ·+ (−ik̃ · p3)
n−1
}

= −2e

∫

d4p2d
4p3δ(p1 + p2 + p3) sin

(

p1 × p2

2

)

(k̃ · Ã(p2))f̄ρσ(p3)

×
∞
∑

n=1

1

n!

(ik̃ · p1)
n − (−ik̃ · p3)

n

(ik̃ · p1)− (−ik̃ · p3)

= −2ie

∫

d4p2d
4p3δ(p1 + p2 + p3) sin

(

p1 × p2

2

)

k̃ · Ã(p2)

k̃ · p2

f̄ρσ(p3)
(

eik̃·p1 − e−ik̃·p3
)

,

(F.19)

onde f̄ρσ(p3) = −i(p3ρĀσ(p3)− p3σĀρ(p3)).
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Apêndice G

G.1 Quantização da QED não-comutativa em um campo de fundo

Sabemos que a quantização canônica de teorias de gauge não-abelianas é altamente não trivial [67],

por isso outros métodos foram desenvolvidos, como por exemplo a quantização por integrais de trajetória

e mais recentemente a quantização estocástica. A dificuldade está no fato de que não é fácil encontrar

uma base completa para as equações do campo quântico, que são equações não-lineares. Um caso onde a

quantização canônica pode ser feita com sucesso é quando o campo de fundo é constante [67]. Entretanto,

existem situações fı́sicas onde o campo de fundo pode ser considerado como sendo fraco e com variações

mais lentas que o campo quântico, de forma que o método da quantização canônica em um campo de

fundo pode ser realizado com sucesso. Vamos então aplicar este método à QED não-comutativa. Isto se

justifica na aproximação de altas temperaturas (limite HTL) que estamos adotando aqui, pois no nosso caso

o plasma quente que estamos estudando é um exemplo onde os campos externos (campos de fundo) são

fracos com relação aos campos que descrevem as partı́culas em um loop interno (campos quânticos), de

forma que é satisfeita a relação p << k ∼ T , onde p representa um momento externo tı́pico e k representa

o momento interno ao loop.

A quantização não é afetada pela presença de campos de férmions, de maneira que vamos nos restringir

ao caso da teoria de gauge U(1) não-comutaiva1. A ação da teoria é descrita por

S[A] =

∫

d4x

(

−1

4
Fµν ? F

µν

)

, (G.1)

onde

Fµν(A) = ∂µAν − ∂νAµ − ie [Aµ, Aν ]MB . (G.2)

Fazemos então a decomposição do campo de gauge em uma parte de campo de fundo Āµ, e uma parte

quântica aµ,

Aµ = Āµ + aµ , 〈aµ〉 = 0 , (G.3)

onde 〈aµ〉 representa o valor esperado do campo quântico em um dado estado e Āµ satisfaz

Dµ(Ā)F µν(Ā) ≡ D̄µF̄
µν = ∂µF̄

µν − ie
[

Āµ, F̄
µν
]

MB = 0 . (G.4)

1Que chamamos anteriormente de QED pura não-comutativa, ou ainda teoria de Maxwell não-comutativa.
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Segue então que podemos escrever F µν como

Fµν = F̄µν + D̄µaν − D̄νaµ − ie [aµ, aν ]MB , (G.5)

e a ação (G.1) pode ser expandida como

S[Ā+ a] =

∫

d4x

[

−1

4
F̄µν ? F̄

µν − 1

2
(D̄µaν − D̄νaµ) ? D̄µaν + ieF̄µν ? aµ ? aν

+ie(D̄µaν − D̄νaµ) ? aµ ? aν +
e2

2
[aµ, aν ]MB ? aµ ? aν

]

. (G.6)

A vantagem do método do campo de fundo é que a invariância de gauge original da teoria pela

transformação

δAµ(x) = ∂µε(x)− ie [Aµ(x), ε(x)]MB (G.7)

pode ser vista de duas maneiras. Podemos pensá-la como uma invariância de gauge quântica pela transformação

δĀµ(x) = 0 ,

δaµ(x) = ∂µε(x)− ie
[

Āµ(x) + aµ(x), ε(x)
]

MB , (G.8)

ou podemos pensá-la como uma invariância de gauge do campo de fundo por

δĀµ(x) = ∂µε(x)− ie
[

Āµ(x), ε(x)
]

MB ,

δaµ(x) = −ie [aµ(x), ε(x)]MB . (G.9)

Ou seja, por uma transformação de gauge quântica, o campo de fundo permanece inerte enquanto o campo

quântico se transforma como um campo de gauge. Por outro lado, por uma transformação de gauge do

campo de fundo, o campo quântico se transforma na sua representação adjunta. Podemos então tirar van-

tagem disso e adicionar à ação um termo fixador de gauge e um termo de ghost (fantasma)

SGF + Sghost =

∫

d4x

[

− 1

2ξ
(D̄ · a) ? (D̄ · a) + D̄µc̄ ? (∂µc− ie

[

Āµ + aµ, c
]

MB)

]

, (G.10)

que quebra a invariância de gauge quântica (G.8), mas permanece invariante pela transformação de gauge

do campo de fundo (G.9), com os campos de ghosts transformando-se na representação adjunta. Desta

forma, cálculos realizados com este termo fixador de gauge leva a resultados manifestamente invariantes

por transformações de gauge do campo de fundo.

A parte da ação total que é responsável pelos resultados em 1-loop é aquela que é quadrática nos

campos quânticos, de forma que podemos nos restringir a

Sq =

∫

d4x

[

−1

2
(D̄µaν − D̄νaµ) ? D̄µaν + ieF̄µν ? aµ ? aν

− 1

2ξ
(D̄ · a) ? (D̄ · a) + D̄µc̄ ? D̄µc

]

. (G.11)
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Aqui ξ representa o parâmetro fixador de gauge e no limite ξ → 0 devemos ter a seguinte condição de

gauge:

D̄ · a = D̄µa
µ = ∂µa

µ − ie
[

Āµ, a
µ
]

MB = 0 . (G.12)

Neste gauge, a equação de movimento que segue de

∂Lq

∂aµ
− D̄ν

∂Lq

∂D̄νaµ
= 0 (G.13)

para o campo quântico é

D̄2aµ = D̄νD̄µaν + ie[F̄µν , aν ]MB . (G.14)

Usando a propriedade

(D̄µD̄ν − D̄νD̄µ)aν = −ie[F̄µν , aν ]MB , (G.15)

podemos reescrever a equação de movimento (G.14) simplesmente como

D̄2aµ = 2ie
[

F̄µν , aν
]

MB . (G.16)

A solução desta equação é muito difı́cil, mas no limite de altas temperaturas em que estamos interes-

sados ela pode ser resolvida. Em primeiro lugar lembre-se que o momento externo p está associado ao

campo de fundo Ā e o momento interno ao loop, representado por k, está associado ao campo quântico

a. Desta forma, uma derivada agindo em Ā é proporcional a p, ou seja ∂Ā ∼ pĀ, e quando agindo em

a é proporcional a k, ou seja ∂a ∼ ka. É fácil ver então que todos os termos do lado direito de (G.16)

são proporcionais a epĀa e e2Ā2a, enquanto que do lado esquerdo temos termos proporcionais a Āka. O

lado direito representa a variação do campo de fundo Ā, enquanto o lado esquerdo representa a variação

do campo quântico a. Como dissemos anteriormente, o método da quantização em um campo de fundo se

aplica no caso em que o campo de fundo é fraco ou varia lentamente com relação ao campo quântico, que

é o nosso caso, pois temos p << k. Por isso podemos fazer a aproximação pĀa << Āka, e despresar

os termos de ordem e2Ā2, de forma que o lado direito de (G.16) não contribui para nossa aproximação, e

ficamos com

D̄2aµ = 0 , (G.17)

onde o operador D’Alembertiano na aproximação considerada é dado simplesmente por

D̄2 ' ∂2 − 2ie[Āσ, ∂
σ ]MB . (G.18)

Agora vamos encontrar uma base que seja solução da equação (G.17). Sabemos que, na ausência de

qualquer campo de fundo, uma solução para o operador D’Alembertiano são as ondas planas, da forma
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eikx. Vamos então mostrar que, no nosso caso não-comutativo na presença de um campo de fundo Ā e nas

aproximações acima, a solução até ordem e da equação2

D̄2b = 0 (G.19)

é da forma

b = eik·X , (G.20)

onde

Xµ = xµ + eθµνÃν(x) , Ãν(x) = Āν(x) +
1

k · D̄ F̄ναk
α . (G.21)

Nossa demonstração será feita em primeira ordem para o parâmetro θ, mas pode-se mostrar que o resultado

é válido para o caso geral, conforme [71].

Em primeiro lugar, vamos expandir Ãµ(x) em potências de e, e tomar somente o primeiro termo, de

ordem zero em e,

Ãµ(x) = Āµ +
1

k · D̄ F̄µαk
α

= Āµ +
1

k · D̄
(

∂µÃα − ∂αÃµ − ie[Ãµ, Ãα]MB
)

kα

= Āµ −
1

k · D̄
(

D̄αÃµ
)

kα +
∂µÃα
k · D̄ kα

=
∂µ(Ã · k)
k · D̄

' ∂µ(Ã · k)
k · ∂ . (G.22)

Para ordem mais baixa em θ, podemos escrever3

eik·X ' eik·x eiekαθαβÃβ , (G.23)

de forma que, até termos lineares em θ, temos

∂2 eik·X ' −2ekαθ
αβ∂β(k · Ã) eik·X + iekαθ

αβ ∂2

k · ∂ ∂β(k · Ã) eik·X +O(θ2) , (G.24)

onde usamos o resultado (G.22) e o fato que k2 = 0. Mas o segundo termo do lado direito contém um fator

do tipo ∂2/k · ∂ ∼ p2/k · p com relação ao primeiro, e no limite p << k temos p2/k · p << 1, portanto

2Lembre-se que estamos interessados nas contribuições de ordem e vindas do campo quântico aµ.
3No caso geral, devido à não-comutatividade dos dois expoentes, a decomposição deve ser feita usando-se a fórmula de Baker-

Campbell-Hausdorff eA eB = eA+B+1/2[A,B]+1/12[A,[A,B]]−1/12[B,[B,A]]+···.
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este termo pode ser despresado com relação ao primeiro. Portanto

∂2 eik·X ' −2ekαθ
αβ∂β(k · Ã) eik·X +O(θ2) . (G.25)

Temos também que, até ordem θ,

−2ie[Ãσ, ∂
σ eik·X ]MB = −2ie(2i) sin

(

1

2
θαβ(∂αÃσ)(∂β∂

σ eik·X)

)

' 2ekαθ
αβ∂β(k · Ã) eik·X +O(θ2) , (G.26)

onde usamos a propriedade (2.44) para o comutador Moyal entre duas funções e tomamos apenas o primeiro

termo da expansão da função seno, que já é linear em θ. Portanto temos

D̄2 eik·X ' ∂2 eik·X − 2ie[Āσ, ∂
σ eik·X ]MB

= 0 +O(θ2) , (G.27)

e assim fica demonstrado que até termos de ordem θ a solução de (G.19) é dada por (G.20).

Portanto, a solução quântica para o campo aµ que satisfaça (G.17) deve ser da forma

aµ(x) =
∑

s

∫

d3k

(2π)32k0
εµ
(

a e−ik·X + a† eik·X
)

, (G.28)

que chamamos anteriormente de solução quântica covariantizada, já que ela se transforma covariantemente

por transformações de gauge.
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