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ABSTRACT

High-precision measurements of frequencies move humanity forward in fundamental un-
derstanding of nature and technological innovation. We employ various spectroscopic tech-
niques in nuclear, atomic, and mesoscopic systems to predict effects of the weak force, to
bound the magnitude of possible phenomena beyond the Standard Model, and to propose
how to measure the gyrogravitational ratio.

e In nuclear systems, temporal or spatial variation of the fine-structure constant « or the
quark mass mg can cause shifts in the nuclear energy levels. We determine the sensitivity
to such effects in Mossbauer transitions as well as in the nuclear clock transition of
thorium-229. We find that a change in a can be connected to a change in my, such that
we can deduce one change from the other. Further in the nuclear realm, we find the
magnitude of time-reversal-invariance violation in neutron-nucleus scattering, an effect
of the weak force, providing a theoretical validation of ongoing experimental efforts.

e In atomic spectra, should discrepancies arise between the expected transition frequency
and the measured one which cannot be accounted for by known effects or any kind of
uncertainty, they could be explained by novel effects beyond the Standard Model. New
bosons, such as axionlike particles and Z’ bosons, if they exist, can be exchanged
between the constituents of atoms, giving rise to interaction potentials which shift the
electronic energy levels. We compile a list of such potentials, sorting them by type of
coupling. We put bounds on the coupling constants of such interactions in antiprotonic
helium, muonium, positronium, helium, and hydrogen.

« A mesoscopic-sized (102 — 10° nm) ferromagnet is a treasure mine for exploration. The
coupling between the magnetization and the rigid structure of a ferromagnet gives rise
to interesting dynamics. Specifically, in low magnetic fields (below 107! T for a micro-
meter magnet) a magnet is predicted to precess. We explore a levitated ferromagnet’s
behavior as a gyroscope, as a system to test for exotic bosons, and as a setup to test
the gyrogravitational ratio.
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INTRODUCTION

Frequencies can be measured with less uncertainty than any other physical quantities,
therefore playing a central role in precision experiments. In this work we explore phenom-
ena that can affect the spectral lines of nuclear, atomic, and mesoscopic systems. A brief
background of each topic follows, as well as an overview of our contributions.

In nuclear physics, ongoing experimental efforts, such as by the NOPTREX (Neutron
Optics Time Reversal Experiment) collaboration, aim to measure time-reversal violation
in neutron-nucleus scattering. We provide a prediction of such effects, showing that time-
reversal symmetry is large enough to be detected in the experiment. This is covered in the
first chapter.

In the second chapter, we turn to the lowest-energy nuclear transition in thorium-229.
This transition is a promising candidate for a nuclear clock. We predict the sensitivity of this
transition to temporal variation in the fine-structure constant a. That is to say, we find out
how much the transition changes for a given variation in «. This is done for both quadrupole
and octupole deformations of the nuclei. We present the possibility that the volume of the
nucleus is constant in isomeric transitions, and test this assumption for nuclear transitions
in several chemical elements.

Expanding upon variation of fundamental constants, in the third chapter we discuss such
effects in the realm of Mdssbauer spectroscopy. Besides variation in «, we consider variation of
the quark-mass m,. We find a way to link the sensitivities of isomeric transitions to variations
in a and my, drawing from previous results in the literature. We compile an extensive list of
these sensitivities in Mossbauer transitions.

In atomic physics, the exchange of exotic bosons between the constituents of atoms could
affect atomic energy levels, affecting thus the measured spectra. Each exotic boson comes
with its own type of interaction, such as a scalar or pseudovector interaction, which gives
rise to an exchange potential which shifts the atomic energy levels. In the fourth chapter,
we derive these potentials, nine in total, sorted by type of interaction. In each potential, the
terms that contribute the most to each type of interaction are included. We discuss their
properties in the context of previous theoretical results and current experimental efforts.

In the fifth chapter, we focus on the pseudovector and the pseudoscalar interactions.
The former depends inversely on the square of the boson mass. We explain why such an
interaction makes sense (i.e., does not explode when the boson mass goes to zero) and how
to produce bounds on the properties of exotic bosons. Then, we use experimental spectra of
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antiprotonic helium, muonium, positronium, helium, and hydrogen to extract bounds on the
interaction constants of the potentials.

Moving to the sixth chapter, into the realm of mesoscopic systems, we propose an ex-
periment, Gravity Prove Spin, to measure the value of the gyrogravitational ratio for an
electron. This ratio determines the response of the intrinsic spin s to gravity, compared to
the response of orbital angular momentum [ to gravity. In our vision, a ferromagnet pre-
cessing in the presence of a weak magnetic field is sensitive to Lense-Thirring and de Sitter
gravitational effects. We calculate the experimental requirements and the sensitivity needed
for detection of gravitational effects acting on the magnetization. We model the ferromagnet
dynamics within the provided experimental parameters and show the predicted signals in
graphs of power spectral density. Such a setup can be used as a high-precision gyroscope for
technological applications.

In the final, seventh, chapter, we team up with experimentalists from UK and Italy to
envision a proof-of-principle experimental realization of a precessing ferromagnet levitating
above a superconductor. We model such a setup, predicting the resulting precession and
where in the power spectrum it will appear. A negative feedback mechanism shows up in the
dynamics of a levitating magnet. We develop an analytical model that explains the numerical
results and show how to use this setup to provide bounds on the properties of new bosons
discussed in fourth and fifth chapters.

Overall, lines in spectra, be they atomic, nuclear, or power spectra, continue to provide
fertile ground for advances, see Fig. 1 for a graphic summary of the topics in our work. We
help explorers in several disciplines: investigators of weak-force effects in nuclei, detectives
of new particles and variation of constants, mixers of gravitational and quantum properties,
and builders of gyroscopes.

— Effects of the weak force
- -Beyond the SM

------ Dynamics of a ferromagnet

Figure 1: Our work involves nuclear, atomic, and mesoscopic physics. The segments around
the pie chart represent more specific topics. The continuous line above nuclear physics stands
for weak-force effects in meutron-nucleus scattering. Dashed line stands for beyond-the-
Standard-Model effects: wvariation of fundamental constants in nuclear transitions, possible
contributions of exotic-bosons exchange to atomic transitions, and the effects of such bosons
on the dynamics of a magnet, a mesoscopic setup. In mesoscopic systems, the dotted line
stands for dynamics of a ferromagnet in low magnetic-fields, where we look for precession
and nutation behaviour, as well as the coupling of gravity to magnetization.
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Time-symmetry violation in heavy-atoms scattering

A century ago, Emmy Noether linked fundamental symmetries of nature to the corresponding
conserved quantities of a physical system [3]. Nowadays we sort symmetries of nature into
two types: continuous and discrete. Energy and momentum conservation are associated with
the first type, while parity, charge, and time conservation are associated with the second.
Parity is conserved when a physical process is unchanged under spatial inversion, also known
as parity transformation. Time or charge parity is conserved when time reversal or a change
in sign of the electric charge, respectively, does not change the process.

The possibility of spatial parity being violated when the weak force is involved was pro-
posed by Tsung-Dao Lee and Chen-Ning Yang in 1956 [1], and observed in beta decay of
cobalt-60 in the group of Chien-Shiung Wu [2].

Efforts to observe parity violation in gamma-ray spectra of scattering events between
neutrons hitting a target of heavy atoms proved challenging. In 1980, Victor V. Flambaum
and Oleg P. Sushkov predicted that the parity-violations effect would be much larger in this
system than previously thought [1]. A few years later, this prediction was verified in Dubna,
using transmission spectrum of neutron-nuclei scattering [5—7]. Further experiments followed
in US and Japan [8-12].

In scattering experiments of neutrons hitting a stationary target of compound nuclei, the
scattering cross-section depends on the spin of both systems. The neutron-nucleus forward-
scattering amplitude is

f=A+Bo-I+Co-k+Do-(Ixk), (1)

where o is the neutron spin operator, I is the spin operator of the target nuclei, and k is
the neutron momentum. The third and fourth terms violate parity, since k changes sign
under parity transformation while o does not. The fourth term also changes sign under time
reversal, as its three operators change sign in such a transformation. Bombarding nuclei
with neutrons in opposite helicity states, i.e. o parallel or antiparallel to the momentum of
the neutron, gives different cross-sections if the interaction does not conserve parity. This
parity violation is a result of W-bosons exchanged in the weak interaction between neutrons
and compound nuclei. The experimental result is shown in Fig.2. Time-parity violation,
another manifestation of W-boson exchange, has been observed in accelerators, but not yet
in compound systems, since it is smaller than parity-violation effect.

How much smaller? While the magnitude of the parity-violation effect was predicted
and measured, the magnitude of time-symmetry violation in neutron-nucleus scattering ex-
periments system was not well-known theoretically or measured experimentally. Thus, the
NOPTREX collaboration [13], looking for this effect, relied at first on a theoretical estimate
of a three-body interaction in neutron-deuteron scattering [141]. But the NOPTREX experi-
ment uses much heavier nuclei. Our theoretical result for heavy nuclei gives a justification for
the ongoing experimental effort. We estimate the magnitude of the time-reversal invariance
violation effect (T-violation), and conclude that the sensitivity in neutron-reaction experi-
ments may be sufficient to improve the uncertainty limits on measurements of T-violating
interactions. These results are covered in the paper forming the first chapter of the thesis:
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o Time-reversal invariance violation in neutron-nucleus scattering
P. Fadeev and V. V. Flambaum
Phys. Rev. C 100, 015504 (2019).
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Figure 2: Two overlaid neutron-transmission spectra for neutron-nuclei scattering of neut-
rons in opposite helicity states [15]. The effect of parity violation can be seen by eye in the
difference between the two spectra in the region where the neutron enerqgy is around 63.5 eV.
The asymmetry is about 4%, with sufficiently small uncertainties to exclude a null result,
Figure 4 in [15].

Fine-structure-constant variation in the nuclear clock

After exploring violation of time-reversal symmetry, we move to violation of the constancy in
time and space of fundamental constants. Suggested by Paul Dirac in order to keep constant
the ratio between natural constants of cosmology and atomic theory [16], as well as by Brans
and Dicke to incorporate Mach’s principle into general relativity [17], the topic continues to be
relevant. Interest in such a violation surged as it became possible to probe it on cosmological
scales, and as it was realized that dark matter could induce change in the constants, among
other reasons [18-20)].

One way to look for temporal or spatial changes in fundamental constants is to study
their effects on atomic and nuclear spectra. Atomic and nuclear energy levels depend on
the value of the fine-structure constant «; if o changes, the energy levels shift. If such a
change exists, it must be small, otherwise we would have seen it already, so high precision
is needed in the measurement of transition frequencies. The highest precision is achieved
nowadays with atomic clocks, see Fig. 3. Even higher precision is promised when a nuclear
clock is constructed, as the nucleus is screened from external effects by the surrounding
electrons. With an eye to the future, we focus on nuclear transitions. Specifically, we focus
on the nuclear transition having lowest known frequency, the first excited state in thorium-
229. Experimentalists are in hot pursuit of its direct detection, with several recent indirect


https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.015504
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measurements [22, 23]. A direct detection of such a transition has many potential benefits
for fundamental physics [21].
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Figure 3: Fractional uncertainties in frequency of various kinds of atomic clocks over the
past 70 years, from [21]. The fractional uncertainty in the future nuclear clock are expected
to be even lower, around 1020,

The fractional variation in « is linked to to the fractional variation in nuclear-transition
frequency f through the enhancement factor K:
d do
g

fooar
The factor K equals the ratio of AFE¢, the change in Coulomb energy in a nuclear transition,
to f:

K = 2Ec.
f
Smaller f gives larger K. Longer half-life of the nuclear transition corresponds to a more
stable nuclear isomer, which is easier to work with experimentally. Nuclear transitions with
relatively long half-life and low energy (small transition frequency f) are most sensitive to
such variation in «. Our task thus is to derive K.

Using experimental values of the mean-square radius (r?) and the quadrupole moment
Qo, we calculate AFE¢ for the lowest nuclear transition in 22Th. We go further, generalizing
from a spheroid-shaped nucleus to a pear-shaped one, Fig. 4. This way we consider possible
octupole deformation of the nucleus and quantify its effect on AFE¢.

Measurements of octupole and quadruple moments are a source of large uncertainly in
the determination of K from experiment. To avoid this uncertainly, we consider isomeric
transitions in which the volume of the nucleus stays the same. We find a simple relation
between (r?) and Qg when the volume is conserved,

dQO 2<7"2>

=T,
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We quantify the accuracy of this assumption in thorium-229 and successfully test our model
on several other elements. The second chapter presents the details, in the following letter:

o Sensitivity of 222 Th nuclear clock transition to variation of the fine-structure constant
P. Fadeev, J. C. Berengut, and V. V. Flambaum
Phys. Rev. C 102, 052833 (2020).

Figure 4: Octupole deformation of the nucleus shows as a pear shape. The axes are lengths
in femtometers.

Mossbauer spectroscopy as a tool to detect variation in funda-
mental constants

The thorium nucleus is not the only one sensitive to variation of fundamental constants. To
detect experimentally such a variation in other nuclei, an established technique that meas-
ures nuclear transitions with high accuracy is beneficial. One such technique is Mdssbauer
spectroscopy.

Mossbauer spectroscopy is a way to obtain the spectrum of nuclear transitions which
overcomes the frequency shift due to recoil of the nucleus upon emission of a photon. This is
possible when the nucleus is inside a solid—state material, as then the nucleus is incorporated
in the lattice of the material, and the recoil energy thus spreads to the whole lattice instead
of one nucleus recoiling. For recent reviews, see [25, 20].

We propose a new subfield of research: the search for space-time variation of the funda-
mental constants, possibly due to low-mass scalar dark matter, using Mossbauer transitions.


https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.052833
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We compile a comprehensive list of suitable candidate transitions, propose several types of
experiments, and perform necessary nuclear calculations. The work is of interest for nuclear,
particle, and atomic-physics communities.

Similar to the enhancement factor for the variation of the fine-structure constant, the
enhancement factor K, for the variation of the quark mass is

of _

f mq.

(2)

Combining our model with previous results, we arrive at a possible link between the enhance-
ment factors K, and Kg:

K,=145(K,—1). (3)
The full story is presented in the third chapter, based on the paper:

o Effects of variation of the fine structure constant o and quark mass my in Méssbauer
nuclear transitions
P. Fadeev, J. C. Berengut, and V. V. Flambaum
Phys. Rev. C 105, L051303 (2022).

Spin-dependent potentials

The forces of nature are mediated by integer-spin particles called bosons: photons for the
electromagnetic force, gluons for the strong force, Z and W bosons for the weak interaction
— and gravitons, if discovered, will be the carriers of gravity.

Yet-to-be-discovered bosons, such as the paraphoton, axion, and Z’ boson, could solve
decades-old questions. These exotic bosons provide possible explanations for dark matter,
dark energy, and the the CP puzzle (why does quantum chromodynamics seem to preserve
CP-symmetry?).

In 1984, Moody and Wilczek [27] pointed out that some of the forces that exotic bosons
provide can have macroscopic effects, called “new macroscopic forces”. In 2006, a list of them
was compiled by Dobrescu and Mocioiu [28]. Previously, we used these potentials to constrain
the properties of exotic bosons in antiprotonic helium [29].

In 2006, the potentials were compiled and sorted by their spin-momentum form into 16
types; lookalike potentials were gathered in one group, even though they come from different
bosons [28]. We sort them differently: each Lagrangian has one kind of boson in it. As each
boson has two types of couplings, their combinations produce three families of potentials for
each Lagrangian. This makes it easier to track the influence of different kinds of bosons on
the particles, and one can see which spin-momentum terms contribute the most to each kind
of interaction.

We include contact terms () in the potentials. These terms do not appear in the
interaction between macroscopic objects which are not in direct contact with each other.


https://doi.org/10.1103/PhysRevC.105.L051303
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This is why these terms were omitted in a number of previous theoretical and experimental
publications. However, they contribute to the interactions inside atoms and molecules. For
some searches, contact terms can be the main actor — a hyperfine magnetic dipole-dipole
interaction comes to mind as an example. Finally yet importantly, we make order. Over
the years, factors and signs went astray, phantom potentials were searched for, and confusion
over notation arose. We did our best to erase such misconceptions. The result is in the fourth
chapter, following the paper:

e Revisiting spin-dependent forces mediated by new bosons: Potentials in the coordinate-
space representation for macroscopic- and atomic-scale experiments
Pavel Fadeev, Yevgeny V. Stadnik, Filip Ficek, Mikhail G. Kozlov, Victor V. Flam-
baum, and Dmitry Budker.
Phys. Rev. A 99, 022113 (2019).

While revisiting the potentials, we encountered a contribution proportional to the inverse
square of the intermediate spin-one boson mass, 1/M?, originating from the longitudinal spin
polarization. We analyzed this contribution, as well as the way contact terms are calculated
numerically, and obtained new bounds on the corresponding interactions using data from
recent atomic experiments. The results in the fifth chapter are:

1. First limits on the spin-spin interaction with 1/M? term.
2. Explanation and solution for the apparent divergence of the 1/M? term.
3. Use of the contact terms to perform numerical calculations.

4. Based on the previous points, bounds on coupling constants as a function of boson mass
in the systems of antiprotonic helium, muonium, positronium, helium, and hydrogen —
relying on the experimental spectra, theoretical calculations, and our estimate of the
potentials’ contribution.

These results were published in the following letter:

e Pseudovector and pseudoscalar spin-dependent interactions in atoms
Pavel Fadeev, Filip Ficek, Mikhail G. Kozlov, Dmitry Budker, and Victor V. Flambaum
Phys. Rev. A 105, 022812 (2022).

A timely quotation says: “Recent precision atomic-spectroscopy measurements have un-
covered several small discrepancies between experiment and theory” [30]. The effects of novel
bosons in atoms provide possible explanations of such discrepancies, in case they cannot be
explained by conventional means.

Precessing magnet

In the last part of the thesis, we explore the power spectrum of the motion of a rotating
ferromagnet. Under the influence of a weak magnetic field (less than 10 pT for a micrometer
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magnet), the ferromagnet behaves like a spinning top, precessing and nutating. The macro-
scopic magnetization is built from an ensemble of individual electron spins. In this regime,
it should be possible to probe the reaction of quantum spins to general-relativistic effects.

A decade ago, Gravity Probe B, a satellite containing four highly spherical niobium-
coated fused quartz gyroscopes in a cryogenic environment, measured precession of angular
momentum of the gyroscopes due to gravitational effects predicted by general relativity [31].
Experimentally, it is unknown if the intrinsic spin of an electron precesses due to gravitational
effects in the same way as the quartz gyroscopes precessed in Gravity Probe B.

Figure 5: Conceptual schematic diagram of a “Gravity Probe Spin” experiment. A freely
floating spherical ferromagnet located within a superconducting shield is in a circular polar
orbit. The static magnetic field B (from the flux in the superconducting shields) is oriented
along Z, parallel to the direction of FEarth’s rotation axis 2g. The inset shows the initial ori-
entation of the magnetization m along the & axis. The pick-up coil measures the ferromagnet’s
magnetization along . Gravity may couple to the magnetization, causing a modulation of
the measured signal. This geometry is designed for the detection of the Lense-Thirring effect.

Due to the weak coupling, it is infeasible to test general-relativistic precession of intrinsic
spin using a single electron. However, an ensemble of electrons enables new possibilities.
Recently we proposed a space mission similar to Gravity Probe B where instead of spherical
quartz gyroscopes, millimeter-scale ferromagnets are used. In Fig.5 a schematic diagram of
the setup is shown. Modelling the dynamics of such a setup reveals that the experiment would
be sensitive enough to detect the Lense-Thirring effect or the de Sitter effect on intrinsic spin
[32]. The story is told in the following letter:

o Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic
spin using a ferromagnetic gyroscope
Pavel Fadeev, Tao Wang, Y. B. Band, Dmitry Budker, Peter W. Graham, Alexander
O. Sushkov, and Derek F. Jackson Kimball
Phys. Rev. D 103, 044056 (2021).

In order for a ferromagnet to behave like a gyroscope, its angular momentum must be
dominated by the intrinsic spin of the electrons [33]. This condition demands that the ambient
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magnetic field should be low (0.1 — 10 pT). Efforts are ongoing to carry out a proof-of-principle
experiment to observe precession of a ferromagnet in the laboratory [34, 35].

0.50 -

<
=

Peak frequencies (Hz)
o =
wh

005010 050 1 5

Larmor frequency (Hz)

Figure 6: Modelling the dynamics of a ferromagnet. Presented are the frequencies of the
mazxima in the spectrum of ferromagnet dynamics as a function of the Larmor frequency
(as can be measured with a SQUID pick-up loop). The Larmor frequency is proportional to
the applied magnetic field. The red and green curves (top and botton) are the frequencies
corresponding, respectively, to nutation and precession frequencies. For Larmor frequencies
greater than 3 Hz (vertical line), the two spectral lines converge to the frequency plotted in
dashed blue, which corresponds physically to librational motion.

One of the obstacles to carrying out such a proof-of-principle experiment is the problem
of how to levitate the ferromagnet and isolate it from the environment so that it is free to
precess. This problem is far easier to solve if the experiment is performed in a microgravity
environment, such as the International Space Station or a satellite orbiting the Earth. Three
main ingredients are required: a mm- to pm-scale ferromagnet, magnetic shielding and field-
control coils, and a sensitive magnetometer, such as a superconducting quantum interference
device (SQUID), to measure the ferromagnet’s dynamics.

With these ingredients in place, various types of motion of the ferromagnet can be recorded
as changes in the flux through the SQUID pick-up loop. In relatively large magnetic fields,
the ferromagnet librates (wobbles), producing a characteristic frequency. This frequency has
been observed in experiments [36]. In relatively low magnetic fields, we predict the libration
frequency to effectively split into nutation and precession frequencies, the red and green curves
in the Figure 6, enabling a method to tune the magnetic field to values where precession can
be observed.

The precession can be observed in ground-based experiments as well. To this end, we
proposed and modelled precession dynamics in a magnet levitated above a superconductor.
We discovered that in such a system the threshold magnetic field below which precession
occurs is much bigger compared to space environment. However, precession frequency then
is lower. Such a mechanism is similar to a negative feedback. We explained this behaviour
with an analytical model. In addition, we showed that the setup is sensitive to exotic spin-
dependent interactions. The results are in:
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e Ferromagnetic Gyroscopes for Tests of Fundamental Physics
Pavel Fadeev, Chris Timberlake, Tao Wang, Andrea Vinante, Y. B. Band, Dmitry
Budker, Alexander O. Sushkov, Hendrik Ulbricht, and Derek F. Jackson Kimball
Quantum Sci. Technol. 6, 024006 (2021).

In summary, experiments with levitated ferromagnets in a microgravity environment, or
in a levitated system, can open possibilities for new tests of fundamental physics [33, 34],
including on the boundary between quantum physics and general relativity [32].
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scattering
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Parity (P) and time-reversal (T) violating effects are enhanced a million times in neut-
ron reactions near p-wave nuclear compound resonances. Planning and interpretation of
corresponding experiments require values of the matrix elements of the T,P-violating nuc-
lear forces between nuclear compound states. We calculate the root-mean-square values
and the ratio of the matrix elements of the T,P-violating and P-violating interactions
using statistical theory based on the properties of chaotic compound states. We present
the results in terms of the fundamental parameters in five different forms: in terms of
the constants of the contact nuclear interaction, meson exchange constants, QCD #-term,
quark chromo-electric dipole moments d, and cid, and axion interaction constants. Using
current limits on these parameters, we obtain upper bounds on the ratio of the matrix
elements and on the ratio of T,P-violating and P-violating parts of the neutron reaction
cross sections. Our results confirm that the expected sensitivity in neutron-reactions
experiments may be sufficient to improve the limits on the T,P-violating interactions.

1.1 Introduction

A very popular way to search for time-reversal (T) and parity (P) violation and to test
unification theories is based on the measurements of electric dipole moments (EDMs) of ele-
mentary particles and atomic systems. So far this method has produced stringent limits on
EDMs which exclude or bound many models (see reviews in Refs. [I-5]). Studies of T,P-
violating (also known as T,P-odd) effects via EDM also give limits on the axion and relaxion
interactions [0]. An efficient alternative method is measurement of T, P-odd effects in neutron-
nucleus scattering. This method is motivated by the millionfold enhancement of parity vi-
olation in neutron reactions near p-wave nuclear compound resonances, which was predicted
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in Refs. [7-10]. The first confirmation was obtained in experiments performed at the Joint
Institute for Nuclear Research in Dubna [11, 12]; then a very extensive experimental study
was done in several laboratories, including the Joint Institute for Nuclear Research (Dubna),
Petersburg Institute of Nuclear Physics, KEK (Tsukuba), and especially in Los Alamos (see
reviews in Refs. [13, 14]). This activity continues now (see, for example, the recent experi-
mental paper [15] and references therein). A similar mechanism of enhancement should work
for the T,P-odd effects [16—-19]. An unusual statistics of P-violating and T,P-violating ef-
fects, namely random-sign observables not vanishing upon averaging, was demonstrated in
Refs. [20, 21]. Experiments searching for T,P-violating effects are in progress in Japan and
the United States [15, 22-20].

Without any enhancement, the effects of P violation in low-energy nuclear reactions are
extremely small, ~ 10~7 (e.g., in the proton scattering on hydrogen and helium, and neut-
ron radiative capture by protons) [27]. The formula for a P-violation effect near a p-wave
compound resonance may be presented as [7-10] !

In
P~ & —s (1.1)
Es—Ep\ I}

where Wy, is the matrix element of the parity-violating interaction mixing s and p resonances,
Es — E), is the energy interval between these resonances, and I'y, ') are the neutron widths
of these resonances. We see that there are two reasons for the enhancement of P violation
near p-wave compound resonances. First, in a nucleus excited by neutron capture the interval
E, — E, between the chaotic compound states (resonances) of opposite parity is very small,
and this enhances by three orders of magnitude the mixing of these states by the weak P-
violating interaction between nucleons. The second reason is that the admixture of opposite-
parity states allows neutron capture in the s wave to contribute to the p-wave resonance.
At small neutron energies the s-wave amplitude is three orders of magnitude larger than
the p-wave amplitude (,/I'z/I'p ~ 10%). As a result of these two 103 factors, the P-violating

parts reach 1-10% of reactions’ cross sections and become accessible to experimental scrutiny.
T,P-violating effects are also produced by the parity-violating interaction; therefore, Eq. (1.1)
and the enhancement mechanism works for them too [16-19].

For the experiments to produce useful results we need theory for their interpretation.
At first glance, it seems impossible, since chaotic compound states are very complicated.
However, chaos allows us to develop a statistical theory, similar to the Maxwell-Boltzmann
theory for macroscopic systems, which actually gives very accurate predictions. We developed
such a theory, including a method to calculate matrix elements between chaotic states in finite
systems (in excited nuclei, atoms, and molecules) [258-341]. We briefly present the ideas below.

An increase in the excitation energy of a nucleus increases the number of its active particles
k and available orbitals p, leads to an exponential increase of the density of energy levels
~ p!/[(p — k)'k!], and brings the system into a state where the residual interaction between
particles exceeds the intervals between the energy levels. The eigenstates |n) = Y, C}" |i)
become chaotic superpositions of thousands or even millions of Hartree-Fock basic states
|i).  All medium and heavy nuclei and atoms with an open f shell have chaotic excited

"We omit the numerical coefficient which depends on the specific process induced by the neutron capture.
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compound states in the discrete spectrum and/or chaotic compound resonances. The idea
of Refs. [28, 29] is to treat the expansion coefficients C}* as Gaussian random variables, with
the average values C]' = 0 and variance

(Cn)Q = ﬁA(FSW’W E" — EZ) , (1.2)

ngr/4

A spr, E" — E;) = (En —E;)2+12 /4°
spr

(1.3)

where N = 7l /2d is the normalization constant found from Y°,(C?)? = 1, d is the average
energy distance between the compound states (resonances) with the same angular momentum
and parity, and I'y,, is the spreading width of the component calculated using the Fermi
golden rule [35]; N is called the number of principal components.”

We have tested this distribution of C}* by the numerical calculations of chaotic compound

states in cerium and protactinium atoms [36—12], in highly charged ions with an open f
shell [13-18], in the two-body random interaction model [19-52] and using an analytical
approach [33, 53].

The function (C)2 = A(Tspr, E™ — E;)/N gives the probability to find the basis compon-
ent |i) in the compound state |n); i.e. it plays the role of the statistical partition function.
The difference from the conventional statistical theory is that the partition function depends
on the total energy of the isolated system E” instead of on the temperature of a system in
a thermostat [recall the Boltzmann factor exp (—E;/T)]. One may compare this with the
microcanonical distribution where the equipartition is assumed within the shell of the states
with fixed energy FE;.

Expectation values of matrix elements of any operator W in a chaotic compound state
are found as |(n| W |n)|? = 32, (C1")?2 |(i] W |i)|*. For example, this formula with W = a; a
(the occupation-number operator) gives the distribution of the orbital occupation numbers
in finite chaotic systems which replaces the Fermi-Dirac (or Bose-Einstein) distribution.?

Average values of the non-diagonal matrix elements are equal to zero, (n| W |m) = 0,
while the average values of the squared matrix elements
W2 = |(n| W |m)|? = > (CPAC)? (6| W )| are reduced to the sum of matrix ele-
ments between the Hartree-Fock basis states |(i| W |5)|%, where W is any perturbation oper-

ator. The distribution of the matrix elements (n| W |m) is Gaussian with the variance given
by the W2.

For the correlator between two different operators (e.g., P-violating and T,P-violating)
we obtain (n| Wp |m) (m| Wrp |n) =3, ; (CZ-”)Q(C’;”)2 (il Wp |j) (J| Wr,p |i) [28-32]. Note
that our theory predicts the results averaged over several compound resonances.

We have done many tests comparing the statistical theory results for electromagnetic
amplitudes [10], electron recombination rates [13—18, 54] and parity-violation effects [28, 29]

*Basis states |i) with shell-model energies E; close to the energy of a compound state E™ (within the
spreading width T'sp,.) have the highest weight (~ 1/N) and dominate in the normalization sum Y (Cr)? =1
The number of such states is V.

3However, numerical calculations [36, 43, 44, 19] give occupation numbers which are close to the Fermi-Dirac
distribution.
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with the experimental data and with numerical simulations. For example, we obtained a
thousandfold enhancement of the electron recombination rate with many highly charged
tungsten ions due to the very dense spectrum of chaotic compound resonances [11-18, 541].
These results agree with all available experimental data and predict recombination rates for
ions with a high ionization degree, where experiments are limited by existing techniques. Our
results are important for thermonuclear reactors which are made from tungsten. Tungsten
ions contaminate plasma and significantly affect the energy output.

Using the theory of chaotic nuclear compound resonances, we calculate in this paper the
ratio w/v of the root-mean-square values of the matrix elements of the T,P-odd (w) and P-
odd (v) matrix elements. We show the results in terms of the fundamental parameters in five
different forms: in terms of the constants of the contact nuclear interaction, meson exchange
constants, QCD 6-term, quark chromo-EDMs d, and dy, and axion interaction constants.
Using latest bounds on 6, d,, and dg, and axion interaction constants we arrive at bounds on
the magnitude of possible T violation. In the Conclusion section the results are compared
with the expected experimental sensitivity to the T,P-violating effects.

1.2 P- and T,P-violating interactions

The ratio of the time-reversal-invariance violating (TRIV) and parity violating (PV) parts
of the neutron nuclear cross sections induced by mixing of s- and p-wave nuclear compound
resonances, Aopr/Aocp, can be expressed as [15, 55, 50]:

Aapr _ (¢pWpr|¢s)
Aop (UplWrlis)

Here the factor k includes amplitudes of the partial neutron widths which depend on spin
channels J = I £+ 1/2, where I is the spin of the target nucleus and J is the spin of the
compound resonance. For example, for J = 0, one obtains x = 1, as in this case x does not
depend on neutron partial widths [16-18].

(1.4)

The ratio Aopr/Acp for the neutron-deuterium scattering was calculated in Ref. [57].
However, experiments are planned for heavier nuclei where we expect a millionfold enhance-
ment of the T,P-odd and P-odd effects.

In the short-range interaction limit, the PV operator Wp and TRIV operator Wpr are

Y GO (1.5

———(aV)p. (1.6)

Here G is the weak-interaction Fermi constant, m is the nucleon mass, p and ¢ are nucleon
momentum and spin respectively, and p is the nucleon density. Nucleon dimensionless con-
stants g, , and 7, characterize the strength of the interactions. Note that in the standard
definition of angular wavefunctions the matrix element of Wp between bound states is ima-
ginary (since the momentum operator p = —iV) and the matrix element of TRIV operator
Wpr is real.
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We define v? to be the average of the absolute value of the squared PV matrix element,
and w? to be the average value of the squared TRIV matrix element between the s and p
compound resonances, such that

r-

v =\ (@ Wplths) (s Wrltp) , (1.7)

/-

w =\ (Up|Wer|ps) (Vs Werlip) - (1.8)

Correlations might exist between the matrix elements of PV and TRIV interactions. The
quantity parametrizing such correlations, the correlator, is defined as

oo [P0 WlWrrldy)| (19)

vw

The correlator, which takes values between zero and one, can be useful to deduce the values
and signs of TRIV effects, since much is already known about the PV effects. The correlator
C was calculated by the same technique as the mean-square matrix element and was found
to be [32]:

|C|~0.1. (1.10)

This result tells us that the correlations between the matrix elements are relatively small so
we may neglect them.

1.2.1 Rough estimate of w/v

Naively one would expect from Eqs. (1.5) and (1.6) the following relation: w/v ~ n/g.
However, this ratio is actually A'/3 times smaller than the ratio of interaction constants [31],
where A is the number of nucleons. Indeed, for Vp in Eq. (1.6),

R W 9 (1.11)

where 7 is the internucleon distance, and Ry = ToAl/ 3 is the nuclear radius. The momentum
in Eq. (1.5) is approximated as p ~ pg ~ h/rop. Thus, the ratio of matrix elements is smaller
than the ratio of interaction constants in Eqs. (1.5) and (1.6) by a factor of A/3:

w n

For elements with the number of nucleons in the range 100-250, AY? ~ 5. A detailed
discussion of this suppression factor including many-body effects can be found in Ref. [31].

1.2.2 Dependence of matrix elements on nucleon interaction constants

A general expression for the root-mean-square value of the matrix element v the PV operator
(and the matrix element w of the TRIV operator) was derived in Ref. [29]:
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N

1
v = = {Z Vg (1 - Vb) Ve (1 - Vd) 1 |Vab,cd - Vad,cb|2 A (Fspr, €q — €p + € — 6d)}
abed

=k

(1.13)

Here v are the orbital occupation numbers given by the Fermi-Dirac distribution in an
excited nucleus, numerical values of the matrix elements of the two-nucleon interaction Vj g
(see Fig. 1.1) are presented in Refs. [29, 32], and A (I'spr, €q — €5 + €c — €4) is the “spread’
0 function [Eq. (1.3)] of the change in energy e, — €, + ¢ — €4. Equation (1.13) has a
clear interpretation. The A function means in fact an approximate energy conservation
with an accuracy up to the spreading width I'y,, (since the single-particle states are not
stationary states in this problem). In the case I'sp, — 0 we have A (I'gpy, €4 — €5 + €. — €4) —
(mlpr/2)6(€q — € + €. — €4). To have a transition, initial states must be occupied (this gives
v, and v,.) and final states empty (this gives 1 — 13 and 1 — vy).

The dependence of v and w on the nucleon interaction constants g and 7 [which appear
in Egs. (1.5) and (1.6)] can be presented in the following form [29, 32]:

v= \/%\/(zgﬁ)gpf + (E%ﬁ)gn)Q + (250 9pm) (1.14)
w = \/%\/ (Ez(éfmnpf + (E%T)nn)Q + (St npin) (1.15)

where g, and g, are proton and neutron weak constants — they characterize the strength of
the P-odd weak potential; 7,,n, are constants that characterize the strength of the T,P-odd
potential, and ¥ are sums of the weighted squared matrix elements of the weak interaction
between nucleon orbitals defined in Eq. (1.13). Contributions of the cross terms Eéi)gpgn
and Zé,IZT)npnn are small compared to the other terms since they contain products of different
matrix elements which have random signs, while in the terms containing squared interaction
constants all contributions are positive.

Therefore, we can present v and w in the following form:

v=Kpy\/g2 + kg3, (1.16)
w:KPT\/n%‘f'km%- (1.17)

The coefficient k should be slightly smaller than 1 since in heavy nuclei the number of neutrons
N = 1.5Z, where Z is the number of protons. To make a simple estimate of the sensitivity
of v and w to changes in the interaction constants, we assume in the next step that > from
Egs. (1.14) and (1.15) are proportional to the number of interaction terms in the nucleus.
There are Z%/2 interaction terms between protons, N2/2 such terms between neutrons, and
Z N terms between a proton and a neutron (Fig. 1.1). Thus we can write

724+ 27N

=== —0.76. 1.1
N2 +2ZN 0.76 (1.18)



1.2 P- and T,P-violating interactions 21

(a) — (b) —
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Figure 1.1: Possible configurations of weak interactions Vgpcq [29] within the nucleus
between protons (p) and neutrons (n). In each diagram, the upper vertex is P-violating.
Constants g, and g, characterize the strength of the interactions. (a) Interactions between
two protons; (b) interactions between two neutrons; (c¢) and (d) interactions between pro-
tons and neutrons, which contribute to the squared PV matriz element v? by (Vpp + Vpn)? =
Vn2p + Vp2n +2V,pVin. When summing matriz elements in (c) and (d), the terms Vy,pVp, have
random signs and the result is much smaller than the sums of pr and Vp2n

Numerical calculations of v and w have been done in Refs. [20-32] for specific values of
the interaction constants gy, gn, 7, and 7,. The values of these constants have been updated
since those calculations. Therefore, we would like to find updated values of these constants
to insert into Eqgs. (1.16) and (1.17). The general expressions for g, and g, are [28, 58-60]

W
gp =2 x10°W, [176Wpfﬂ —19.5h0 — 4.7h), + 1.3h2 — 11.3(hY, + h})| , (1.19)
=2x10°W, 118—W7r 18.970 + 8.4h! —1.3h%2 — 12.8(h° + Kl 1.20
gn = a4 X Pl Wpfﬂ'_ : p+ SR T LIy '(w+ w) ) ( )

where f and h are the weak N/N-meson couplings, and W, and W, are constants which
account for the repulsion between nucleons at small distances as well as for the finite range
of the interaction potential. We take W, = 0.4 and W, = 0.16 as in Refs. [58, 60].

For the choice of constants g, = 4, g, = 1 [61], numerical calculations give [29]
v =Kp\V/1+ 16k = 2.08meV . (1.21)
We calculate updated values for g, and g,, using the best values of the constants h from
Desplanques, Donoghue, and Holstein (DDH) [59] with an updated f, = hl, which was
recently derived by lattice QCD methods [62, 63]. Such calculations give g, = 2.6, g, = 1.5

(Table 4.1). Using these values with Eq. (1.21), we have

V1.5 + 2.6k
V1+ 16k

where in the last step we used k = 0.76.* This theoretical estimate is in excellent agreement
with the experimental value 1.3979:32 meV [64, 65].

Uupdated = 2-08 meV = 1.56 meV , (1.22)

“For k = 1 we would get 1.51 meV. Thus we see that our result is not very sensitive to the value of k.
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Numerical calculations were done for 7, = 1, and gave w = 0.2|n,| meV [32]. Using this
result and Eq. (1.17) we obtain

Wypdated =0.15meV /02 + 0.76n2 . (1.23)

Reference Ip Jn
DDH (1980) [59, (0] 15 | 0.2
ND (1986) [29, 61] 4] 1

DZ (1986) [66] 24 | 1.1
FCDH (1991) [67] 2.7 | —0.1
Wasem (2012) [63] 26 | 1.5
NPDGamma (2018) [68] | 3.4 | 0.9

Table 1.1: Values of g, and g, based on the meson exchange constants from different pub-
lications (left-hand column): Desplanques, Donoghue, and Holstein (DDH) [59, (0]; Noguera
and Desplanques (ND) [01]; Dubovik and Zenkin (DZ) [00]; Feldman, Crawford, Dubach, and
Holstein (FCDH) [07]. In the line of Wasem [03] we use the best DDH values for all the val-
ues of h except fr = hL, which was recently derived by the lattice QCD methods [62, (5] to be
hl =1.1-107". Recent experiment measuring P-violation in the neutron radiative capture by
proton [65] gave hl = [2.6 & 1.2(stat.) & 0.2(sys.)] x 10~7 which is larger than the theoretical
estimate h: = 1.1-1077. Using this experimental value, and the rest from DDH, gives slightly
larger g, = 3.4 £ 0.8 and smaller g, = 0.9 £ 0.6 which are close to the values g, = 4 and
gn = 1 used in the numerical calculation of P-violation in Ref. [29]. Corresponding value of
the matriz element v = 1.8 £ 0.4 meV is consistent with both Eq. (1.21) and Eq. (1.22).

1.2.3 The ratio w/v expressed via meson exchange constants, QCD 0-term,
quark chromo-EDMs d, and d;, and axion exchange constants

Now we can express the ratio w/v in five different ways: as a function of n,,n,, by 7o meson-

exchange coupling constants with the nuclei, by QCD CP-violation parameter 6, by quark
chromo-EDMs, and finally by axion exchange constants.

First, to express the ratio w/v as a function of 7, we use Eqgs. (1.22) and (1.23) to obtain

% = 0.10,/72 + 0.7612 (1.24)

If, following Refs. [32, (9], we take |n,| = |7y, the ratio in Eq. (1.24) becomes

% = 0.13]17,] - (1.25)

Second, the T,P-odd nuclear forces are dominated by my meson exchange. Such an ex-
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change is described by the interaction [70-72]

W(ri—rz) =— g [Vl (e_mﬂu)] Ao —02)

8mmpy 712

X [goT1 -T2+ g2 (T1 -T2 — 3T1272.)] + g1 (T1201 — T2202)} (1.26)

where g = 13.6 is the strong-force T,P-conserving 7NN coupling constant, gg, g1, and gs, are
the strengths of the isoscalar, isovector, and isotensor T,P-violating couplings, respectively,
my is the nucleon mass, m, is the pion mass, o is the nucleon spin, 7 is the nucleon Pauli
isospin matrix in vector form, and 712 is the separation between nucleons. The coupling
constants 7 can be expressed in terms of g [69]:

—np =1 =5 x 10%G (g1 + 0.4g2 — 0.2g0) . (1.27)

Then we have
% = 0.13|9,] = [6.5 x 10°g (g1 + 0.4 — 0.240) | . (1.28)
Third, using the previous results ggo = —0.370 [73] ,where 6 is the QCD CP-violation

parameter, and gg = gge = 0, we can write the ratio w/v as a function of 6:

w

— =4.8 x10%9]. (1.29)
v
Using updated results [1, 71]
3o = —0.21080, (1.30)
gg1 = 46.24 x 10730, (1.31)
we can write, still with ggs = 0,
Y57 %1049
v
Using the current limit on 6, obtained from constraints on neutron EDM, |8 < 1071 [4], we
obtain
w/v <1077, (1.32)

Fourth, we can connect our result to the quark chromo-EDM d [2]:
g1 = 4 x 10 (cZu — Jd) Jem, (1.33)
990 = 0.8 x 10" (dy + dg) fem. (1.34)
Then

w

—=165x10% (4(du = da) = 0.16 (du +da) ) | /em. (1.35)
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Using the current limits (Table IV in [75]; see also Ref. [70])

~u—~d< x 107" cm, .
dy —dg| < 6x 10727 1.36
1 - -
—dy +dg| < 3x10"%cm, 1.37
2
we obtain
w/v <2 X . .
2% 107° 1.38

Finally, a T,P-violating interaction, similar to the pion-exchange-induced Eq. (1.26),
may be due to exchange by any scalar particle which has both scalar (with the interaction
constant ¢°) and pseudoscalar (with the interaction constant g”) couplings to nucleons. The
most popular examples are the dark-matter candidates axion [77, 78] and relaxion [79-81],
which have very small masses.” A numerical estimate shows that due to the long range of
the interaction the matrix elements in the small-mass case (e™™" & 1) are ~ 1.5 times larger
than the pion exchange matrix elements; i.e., we have instead of Eq. (1.28) the following
estimate:

% ~ |1 x 105¢°¢?|. (1.39)

The limit on g°g? may be obtained from the proton EDM calculation,’
g°g’e

d, = : 1.40
P 8n2m, (1.40)
and measurement [76], |d,| < 2 x 107%%e cm, |g°¢g?| < 1 x 107%. Using limits from the proton
EDM and the %Hg nuclear-Schiff-moment measurements in Ref. [75], the authors of Ref.

[52] concluded that the limit on |g°¢”| is between 1072 and 10~!!. This gives a rather weak
limit on w/v induced by axion exchange:

w/v <1072 —107°. (1.41)

1.3 Conclusion

Using the bound in Eq. (1.38), and assuming x =~ 1 in Eq (1.4) (which is reasonable [55] and
matches experimental results [15, 20]), we arrive at

Aopr

<2x107°. (1.42)
op ~

The limit based on the axion exchange in Eq. (1.41) is weaker. The vurrent expected exper-
imental sensitivity is [20, 83]

Aopr

P (1.43)
A0P exp. sensitivity

Thus we confirm that the expected experimental sensitivity in neutron reactions may be
sufficient to improve the limits on the TRIV interactions, or possibly to detect them.

5The limits on the T,P-violating electron-nucleon interactions mediated by the axion or relaxion exchange
from EDM measurements were obtained in Ref. [6], where more references may be found.
®The calculation is similar to that for electron EDM [6].
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Peik and Tamm [Europhys. Lett. 61, 181 (2003)] proposed a nuclear clock based on
the isomeric transition between the ground state and the first excited state of thorium-
229. This transition was recognized as a potentially sensitive probe of possible temporal
variation of the fine-structure constant, . The sensitivity to such a variation can be
determined from measurements of the mean-square charge radius and quadrupole moment
of the different isomers. However, current measurements of the quadrupole moment are
yet to achieve an accuracy high enough to resolve non-zero sensitivity. Here we determine
this sensitivity using existing measurements of the change in the mean-square charge
radius, coupled with the ansatz of constant nuclear density. The enhancement factor for
«a variation is K = —(0.8240.25) x 10%. For the current experimental limit, dor/av < 10717
per year, the corresponding frequency shift is ~200 Hz per year. This shift is six orders
of magnitude larger than the projected accuracy of the nuclear clock, paving the way for
increased accuracy of the determination of da and interaction strength with low-mass
scalar dark matter. We verify that the constant-nuclear-density ansatz is supported by
nuclear theory and propose how to verify it experimentally. We also consider a possible
effect of the octupole deformation on the sensitivity to « variation, and calculate the
effects of « variation in a number of Mdssbauer transitions.

2.1 Introduction

The first excited isomeric state of thorium-229, 22™Th, is a candidate for the first nuclear
optical clock [1]. This is due to the state’s low excitation energy of several electron-volts [2-5]
(the lowest of all known isomeric states) and long radiative lifetime of up to 10* seconds [0, 7].
Several theoretical and experimental groups are making rapid progress toward using 2™ Th as
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a reference for a clock with unprecedented accuracy [8—16]. These papers proposed specific
experimental schemes for the nuclear clocks and performed detailed studies of systematic
effects such as the black body radiation shifts, effects of the ion trapping fields in ion traps,
and effects of the stray fields. The advantage of the nuclear clock in comparison with atomic
clocks is that, due to the very small size of the nucleus and its shielding by the atomic
electrons, it is insensitive to many systematic effects. For example, the nuclear polarizability
and its contribution to the major systematic effect, the black body radiation shift, are 15
orders of magnitude smaller than in atomic transitions. Nuclear clocks may perform at a
level of accuracy of 10719 [9], 1-2 orders of magnitude higher than the accuracy of the best
existing atomic clocks.

In a recent crucial step towards this goal, the transition was measured using spectroscopy
of the internal conversion electrons emitted in flight during the decay of neutral 2?™Th
atoms [17], yielding an excitation energy FEis = 8.28 (17)eV. Another approach, using -
ray spectroscopy at 29.2 keV, obtained Ejs = 8.30(92)eV [18, 19]. More recently, Ejs =
8.10(17) eV was reported [20].

The 22™Th nuclear clock is expected to be a sensitive probe for time variation of the
fundamental constants of nature [21]. To avoid dependence on units we consider the effect
of variation of the dimensionless fine-structure constant, «, related to the electromagnetic
interaction [21-26]. Another dimensionless parameter, my,/Agcp, where my, is the quark
mass and Agcp is the QCD scale, is related to the strong interaction. The effect of my,/Agcp
variation on the 22Th transition has been estimated in Refs. [21, 27, 28]. The high sensitivity
to a comes about because the change in Coulomb energy between the isomers, which depends
linearly on «, is almost entirely cancelled by the nuclear force contribution which has only
weak a-dependence. This cancellation makes the energy of the transition Fix = 8 eV low
compared to typical nuclear transitions, so any change in  and the Coulomb energy leads to
a relative change several orders of magnitude larger in the energy of the transition AFis/Ejs.

We also should note that the measurements of the variation of the fundamental constants
does not require absolute frequency measurement. All that is required is high stability of the
ratio of two frequencies with a different dependence on the fundamental constants [29, 30].
For example, it may be the ratio of the 8-eV nuclear transition frequency to that of an atomic
clock transition in the Th ion, as considered in Ref. [31].

The change in the nuclear transition frequency, f, between the isomeric state and the
ground state, 0 f, for a given change in the fine-structure constant, da, is [21]

hof = AEC%, (2.1)

where AEg is the difference in Coulomb energy between the two isomers. The enhancement
factor K is defined by

0 )
of _ o (2.2)
f «
where K = AEc/FEi. Therefore, to find the sensitivity of 22™Th transition to variation in
a, one needs to know AFE¢.
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The Coulomb energy Ec depends on the shape of the nucleus. Unlike atomic systems,
which are spherical due to the 1/r potential from the pointlike nucleus (r is the distance
from the nucleus), nuclear systems can have deformed shapes as the potential originates from
the nucleons themselves. Reference [25] showed that, by modeling the nucleus as a prolate
spheroid [32], AE¢ can be deduced from measurements of the change in nuclear charge radius
and quadrupole moment between the isomeric and the ground states. Using this model with
measurements of nuclear parameters, the authors of [33] give a value of

AE¢ = —0.29 (43) MeV , (2.3)

where the dominant source of error is the uncertainty in measured quadrupole moments of the
ground and the exited states. Such a AFE is consistent with a K value anywhere between 0
and 10°. This can be compared to a K of about 0.1-6 for current atomic clocks [29, 30, 34-37].

In this paper we use the fact that the change in quadrupole moment is related to the change
in charge radius to arrive at AFqg with errors consistent with a nonzero value, consequently
giving a nonzero value for K. This relationship can be understood from the assumption of
a constant charge density between isomers. We verify that this assumption gives a relation
that is consistent with previous results from nuclear theory [23]. We also test this assumption
in several Mossbauer transitions, which we find have much lower sensitivities to a variation
than the 2?Th transition. Finally, following models that suggest the existence of an octupole
deformation in 22Th, we use a more general treatment of a deformed nuclei. The results of
the two models coincide within uncertainties.

2.2 Prolate spheroid model

We start by modeling the nucleus as a prolate spheroid with semiminor and semimajor axes
a and c. The volume (47/3) R} depends on a and c by

a’c = R% . (2.4)
The eccentricity e is defined by
2
9 a
=1-— 2.5
¢ =L (2.5)

while the mean-square radius (r?) and the quadrupole moment Qg are

(r?) = % (2@2 + 02) , (2.6)
Q0:§(02—a2) .

The Coulomb energy can be written as a product of EQ, the Coulomb energy of an undeformed
nucleus, and an anisotropy factor due to the deformation, B¢ [38],

Ec = E% Bc, (27)
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Figure 2.1: Mean-square charge radius (r?) as a function of intrinsic quadrupole moment
Qo under the constant-volume ansatz for three volumes. The dashed lower curve corresponds
to Ry deduced from Hartree-Fock-Bogoliubov calculations using the SEM* functional, while the
upper dotted curve is based on SIII functional (see Table 2.1). The middle curve, including
errors, corresponds to Ry = 7.3615(16) fm deduced from the measurements by which (2.15)
is obtained. The red line corresponds to the 1o experimental range of Qo [79].

where
3q¢22°
Bl =% 2.8
(1—e2)/? <1—|—e>
Be = 1 . 2.
© 2e t 1—e (2.9)
Here g, is the electron charge and Z is the number of protons.
In previous works [25], Qo and (r?) were treated as independent parameters. As such,
calculation of AFE¢ involved derivatives of Ec both by Qg and by (r?):
OEc A(r?) OFEc AQg
AEc = (r? +Q . 2.10
"aw v T80 Qo (210)

With current experimental values (r?) = (5.76 fm)? and Qg = 9.8(1) fm? [39], Egs. (3.8) and
(3.6) give

A(r?) AQo
AFEc = —485 MeV + 11.6 MeV ——. 2.11
) Q 210
Substitution of measured changes in mean-square radius and quadrupole moment [33], A(r?) =

0.012(2) fm? and AQy/Qo = —0.01(4), gives the limit (2.3).

Let us now consider the ansatz of constant charge density between isomers, equivalent to
the ansatz of constant volume. That is, Ry and hence Eg are kept constant in the isomeric
transition. Therefore, changes in (r?) and Qg are coupled by (2.4) using (2.6). We show this
dependence graphically in Fig. 2.1, and we can express it as

dQo 2(7“2)
aw? =T,

— 78, (2.12)
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Table 2.1: Theoretical values of root-mean-square radius rrms, Qo, AQo, and Arpms calcu-
lated using Hartree-Fock-Bogoliubov approach with two energy functionals, SEM* and SIII. In
the fifth row we deduce the relationship between AQqy and A(r?), which may be compared to
the result of the constant density ansatz, dQo/d(r?®) = 7.8. In the last two rows we show the
change in Coulomb energy from direct calculation and using (2.14) with calculated values of
charge radii.

SkM* SIII
n p n p
Trms (fm)? 5.8716 5.7078  5.8923  5.7769
Qo (fm?)? 9.2608 9.3717  9.0711  9.1643
AQop (fm?)®  0.2647 0.2756 —0.0516 —0.0495
Arpps (fm)®  0.0036  0.0039 —0.0005 —0.0005

AQo/A(?) 626 619 876 8.57
AEc (MeV)P ~0.307 0.001
AEq (MeV)? —0.287 0.036
@ From Ref. [23], Table II and Eq. (2.14) for AEc.
> From Ref. [23], Table I.

where 7.8 corresponds to the experimental values. Substitution of (3.12) into (2.11) gives us
the following result:
Ar?)

AFEc = —180MeV . 2.13

c v (213)

The relation between changes in (r?) and Qg can also be obtained from nuclear calculations

where the constant-density ansatz is not assumed. Results of the Hartree-Fock-Bogoliubov

calculations of [23] are summarized in Table 2.1. We extract AQo/A(r?) for two different

energy functionals, SkM* and SIII, and for both protons and neutrons (for details see [23]).
In all cases the derivative is close to that predicted by the constant-density ansatz.

In addition to the results reproduced in Table 2.1, Ref. [23] presents Hartree-Fock calcula-
tions (which do not include pairing) using the same functionals. For SkM*, the Hartree-Fock
calculations give the wrong sign for (r?), while for SIII the change between isomers is very
small and susceptible to numerical noise. Nevertheless in both cases the Hartree-Fock calcu-
lations give reasonably close values for the derivative.

For the Hartree-Fock-Bogoliubov calculations, the SkM* better reproduces the measured
energy interval and change in the nuclear radius between the isomers. We take the average of
the SkKM* value dQo/d(r?) for protons and the experimental value from (3.12) as our estimate
of the derivative, and their difference as an estimate of the derivative’s uncertainty, giving
dQo/d(r?*) = 7.0(1.6). * With this we write the change in Coulomb energy AE¢ in terms of
the change in mean-square radius at the physical point as

AE¢ = —210 (60) MeV A<7<“Zj> . (2.14)

! Alternatively, we could use the average value between SkM* and SITT numbers for the derivatives AQo/Ar?
but the change in the result would be within the error bars.
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The last row in Table 2.1 lists the results of application of this formula to the nuclear

calculations of Aryys from [23]. Filling in the measured A(r?) = 0.0105 (13) fm? [10] and
(r?) = (5.76 fm)? [11], we obtain

AE¢ = —0.067 (19) MeV, (2.15)

K = —0.82(25) x 10*. (2.16)

Since our model does not rely on the measured AQg, which gives the biggest error in (2.3),
the result of (2.15) has smaller error than (2.3). We also predict AQy/Qo = 0.0075 (20) fm?
which is within the experimental error of AQy/Qo = —0.01 (4) fm? presented in Ref. [33].

2.3 Effect of octupole deformation

Nuclear calculations of N. Minkov and A. Palffy suggest that the ?2Th nucleus has an oc-
tupole deformation [7, 12] (see also a recent experiment [13]). They therefore describe the
nucleus using a quadrupole-octupole model, obtaining a fair comparison to experimental res-
ults [7, 42]. This prompts us to include an octupole deformation in addition to the quadrupole
deformation.

To facilitate this we describe the nucleus shape by its radius vector in axially symmetric
spherical harmonics [14, 15],

r(0) = Rs

N
n=1

where the coefficients 3, are called deformation parameters and N = 3 for the quadrupole-
octupole model (pear shape). The length R is defined by normalization of the volume to
that of the undeformed nucleus,

2 [T
3 Jo

4 R}

r3(0)sinf df = 3

(2.18)

The parameter (1 is set such that the center of mass of the shape is at the origin of the
coordinate system.

The mean-square radius and the intrinsic quadrupole moment of the nucleus are related
to the deformation parameters Sy and f3 through r(6) by

(r?) = / r2(0)p(r) d°r (2.19)
Qo = 2/7"2(9)P2(cos 0)p(r) dr (2.20)
where p(r) is the charge density divided by the total charge. The factor 2 in (2.20) is a matter

of definition [16], and fits with the special case of Qg in (2.6).

To determine 9 for the pear shape, we solve (2.19) and (2.20) using the experimental
values of Qo and (r?). As the octupole moment of 22 Th has not yet been measured, we take
ps = 0.115 from nuclear calculations [7]. We arrive at Sy = 0.22 and R; = 7.3 fm. This
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Figure 2.2: Deformation parameter By derived using (2.19) and (2.20) with experimental
values of Qo = 9.8 fm? and (r?) = (5.76 fm)?, as a function of Bs.

value of 3, is fairly close to the theoretical prediction of [7], f2 = 0.24, and is not particularly
sensitive to the chosen value of f3 (see Fig. 2.2).

In this model the anisotropy factor is [32]

Boo1-25 2= Lae o). (2.21)
dm = 2n + 1 " "

Higher-order terms do not change our results within stated errors. With the aforementioned
values for 3, and (3, we obtain for the constant-density ansatz (i.e., constant Eg),

AFEc = —76MeV AB3 — 108 MeV AJ2 (2.22)
2 2
~ —190 MeV A<g ) 0.42Mev A—ﬁj’ . (2.23)
(r?) B3

Equation (2.23) is obtained by substituting (2.25), and is in good agreement with (2.13). We
see that the sensitivity of the nuclear clock to a-variation does not depend strongly on the
octupole moment.

2.4 Discussion

The constant-volume ansatz used in the present work may be tested in experiments. This
ansatz allows one to relate the change in nuclear quadrupole moment to the change in nuclear
charge radius. Therefore, determination of A(r?) by measuring the field isotope shift of atomic
transitions, and extraction of AQg from the hyperfine structure or nuclear rotational bands,
gives a measure of the change in the nuclear charge density.

A specific procedure can be encoded in the change in mean-square radius [17, 18]
A<T2> = A<7'2>sph + A<7a2>o‘lef . (2.24)

Here the spherical part A(T2)Sph describes the change in nuclear volume, i.e., volume contri-
bution, and A(r?)4es describes the deformation part assuming a constant volume, i.e., shape
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Table 2.2: Sensitivity of Mdssbauer transitions to variation of the fine structure constant.
Coulomb energy shifts AE¢c and enhancement factors K are calculated using data from quad-
rupole moments [55] and isomeric shift measurements [59]. In columns 2 and 4 we use the
constant density ansatz, where we have assumed a 25% error from the ansatz, Eq. (3.12),
and 50% error in the values of A(r?) from Mdéssbauer isomer shifts [50]. The Eu isomers
have more accurate values of A{r?) taken from muonic a-ray and Mdéssbauer data [60-072].
Columns 8 and 5 use experimental values of AQq from [58] in the general formula (3.6).
The ground-state (r?) values are taken from [/1]. ?**Th results are shown for comparison
(discussed in the main text).

AEq (MeV) K|

constant density general constant density general
BlEu 22 keV —0.099 (51) —0.099 (85) 4.6 (2.4) 4.6 (4.0)
153Bu 103 keV 0.32(18) 0.02 (15) 3.1(1.8) 0.2 (1.5)
155Gd 105 keV 0.030 (22) 0.08 (32) 0.28 (21) 0.8(3.1)
17Gd 64 keV —0.055 (41) —0.06 (21) 0.86 (63) 0.9 (3.3)
161Dy 75 keV —0.031 (23) 0.29 (55) 0.42 (31) 3.8(7.4)
81T 6 keV 0.19(13) 0.20 (26) 30 (21) 32 (41)
3 Am 84 keV 0.23 (17) 0.45 (75) 2.8(2.0) 5.4(9.0)
29Th 8 eV —0.067 (19) —0.26 (39) 0.82(25)10*  3.1(4.8)10*

contribution. The latter can be expressed by deformation parameters [17-50]

5
A(r?) = A )spn + (%) spi (283 + 283+, (2.25)
where (r2>sph is the mean-square charge radius of the nucleus assuming a spherical distribu-
tion. Equation (2.25) can be used in the future to test the volume-conservation hypothesis
in isomers, once the AS is determined to higher accuracy.

Using existing experimental data [33] we may conclude that the relative change in volume
between 229Th isomers is less than a few parts per thousand, while the calculations in [23]
imply a fractional volume change of about 5 x 10~4. This gives a quantitative evaluation of
the constant-volume ansatz, which at times is used in the literature (see, e.g., [51-53]).

The sensitivity to potential variation of «, i.e., the enhancement factor K, is three orders
of magnitude larger than that of the most sensitive atomic clocks. For the present experi-
mental bound da/a < 10717 per year, the frequency shift is up to ~200 Hz per year. Since
such a frequency shift is six orders of magnitude larger than the projected accuracy of the
nuclear clock [9], an unexplored range of da may be tested. As discussed in Refs. [51-50],
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the interaction between low-mass scalar dark matter and the electromagnetic field leads to
oscillatory variation of a. Therefore, the improvement in the sensitivity to « variation by six
orders of magnitude afforded by such a clock should also lead to improved sensitivity in the
search for low-mass scalar dark matter.

We should note a certain similarity between the research on ??Th isomeric transition
and the very extensive experimental and theoretical studies of isomeric (chemical) shifts in
Mossbauer spectroscopy, which also involve effects of the change in the nuclear charge radius
and electric quadrupole moment between the ground and excited nuclear states connected by
a -y transition. X-ray studies of muonic atoms are also able to deduce these nuclear properties.
Using the same technique as in 2?Th we calculated the Coulomb energy difference AEq and
the relative sensitivity to a variation K for nuclei where we have found sufficient experimental
data. The results are presented in Table 3.1. The enhancement factors K for Mdssbauer
transitions (K = AFE¢/Eis ~ 1 — 30) are much smaller than K for 2?*Th since the energy
of Mossbauer transitions is much larger, £ ~ 5 — 100 KeV. However, they are comparable
or even bigger than K ~ 0.1 — 6 in atomic clocks. The energy resolution in Mdssbauer
transitions may be as good as 10718, see, e.g., the measurement of the gravitational redshift

in Ref. [57] where such a resolution was achieved after 5 days of measurements. This is even
higher than that achieved recently in optical transitions, 1077 — 10718, However, the authors
of Ref. [57] noted a problem with solid state effects which are difficult to control.

The results in Table 3.1 serve as a test of the constant density ansatz. The predictions
for AEc using the constant-density model and using the more general formula, (3.6), with
experimental data for both A(r?) and AQy, agree within error bars. In these examples, using
one of the values of A(r?) or AQo, the constant density ansatz reproduces the other value
within error bars. This provides a check on the validity of the ansatz.
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CHAPTER 3

Effects of variation of the fine structure constant a and quark
mass m, in Mossbauer nuclear transitions

Phys. Rev. C 105, L051303 (2022)
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High accuracy measurements in Mdéssbauer transitions open up the possibility to use
them in the search for temporal and spatial variation of the fine-structure constant «,
quark mass mg, and dark matter field which may lead to the variation of a and my.
We calculate the sensitivity of nuclear transitions to variation of « and m,. Mé&ssbauer
transitions have high sensitivity to variation of quark mass m, and the strong interaction
scale Agcp, to which atomic optical clocks are not sensitive. The enhancement factors

K, defined by % = Ka%“ and % = K, 6::" where f is the transition energy, may be
q
large in some transitions. The 8 eV nuclear clock transition in ?*Th (K, ~ 10*) and

76 eV transition in 2%°U (K, ~ K, ~ 10%) may be investigated using laser spectroscopy
methods.

3.1 Introduction

Mossbauer spectroscopy has been used for diverse purposes ranging from gravitational redshift
of light [1] to determinations of solids, atomic, and nuclear properties. The sensitivity of
Mossbauer transitions can reach the 107'® level, see e.g. [2]. Moreover, a recent paper
[3] claims that for a variable perturbation the sensitivity may reach AE ~ 1071 — 1077
eV which corresponds to a 1072° — 10722 relative sensitivity to the frequency shift. For
comparison, the best atomic clock limit on relative changes of o is 1.0(1.1) x 10718 per year
[1] (atomic transition frequencies depend on « due to the relativistic effects [7—7]) while the
limit on variation of my is 0.71(44) x 10~ per year [3] (here sensitivity to m, comes from the
nuclear magnetic moments in Cs and Rb hyperfine transitions [9]). High sensitivity motivates
the study of nuclear transitions for topics of fundamental physics, such as variation of the
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fundamental constants [10, 11], search for new particles and interactions [3, 11], and search
for dark matter (see below). Different possibilities to produce a nucleus in upper state of
Méssbauer transition are discussed e.g. in Ref. [3].

3.1.1 Variation of the fine structure constant o

The search for temporal and spatial variation of the fine structure constant « is an ongoing
interdisciplinary endeavour spanning the fields of astrophysics, molecular, atomic, nuclear,
and solid state physics [12, 13]. We elucidate the usage of high precision Mdssbauer spectro-
scopy in the search for variation of a. The sensitivity to the change of « is encoded in the
enhancement factor K, defined as

of (Yel

— =Kyq—. 3.1

f (6% a ( )
A nuclear transition energy f would change by df due to a change of a by da. Values of K,
for current atomic clocks are of the order 0.1-10 [5-7, 141-16]. In nuclei K, may be found
from the following relation [10]:

Ko =AEc/f, (3.2)
where AE( is the change in Coulomb energy in this transition. In the ??Th 8 eV nuclear
clock transition studied e.g. in Refs. [17-36] and expected to be a highly sensitive probe for
time variation in a [10, 37-12], our recent analysis [11] gives K, of 10%.

3.1.2 Variation of the quark mass and strong interaction

To avoid dependence on the human units which also may vary (e.g. hyperfine transition
frequency in Cs, used to define the second and Hz, which has a complicated dependence on
the fundamental constants [9]), we consider variations of dimensionless parameters like the
fine structure constant «. Another dimensionless parameter which affects nuclear transition
energies is X, = mq/Agcp, where mg = (my + mgq)/2 is the quark mass and Agep is the
QCD scale. We do not make any assumptions about their independent variation since in this
case we must specify the units in which we measure them. Here we measure m, in units of
Agcp, i.e. in the calculations we may keep Agcp constant.

The energy of a nuclear transition may be presented as
f=AEc+ Eg, (3.3)

where Ejg is the difference in bulk binding energies of the excited and ground states (including
kinetic and strong potential energy but excluding the Coulomb interaction energy). Thus,
using experimental value of the transition energy f and calculated value of the Coulomb
energy difference AE¢q, we can find Fg = f — AFEc. The dependence of Eg on quark mass
was calculated in Ref. [37]:

0Fg dmy

— = —1.45—=. 4
Eg g my (3-4)
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Using Egs. (3.2 — 3.4), we obtain
omy

5
];f =Kot K= 1.45(Kq —1). (3.5)

3.2 Possible physical origins of o and m, variation in Moss-
bauer transitions

There are several possible physical origins of o and m, variation in Mdssbauer transitions,
some of which we illuminate here. Many popular theories extending the Standard Model
contain scalar fields ¢ which interact with quarks ¢ as —(¢/A,)m,qq. Here A, is the interac-
tion constant. This interaction may be added to the mass term in the Lagrangian —mgq¢qq
and presented as a dependence of the effective quark mass my(¢) = mq(1 + (¢/A,)) on the
field ¢ (see e.g. [13, 44]). Another possibility is that an interaction (¢/4A,)F,, F" between
the scalar field and electromagnetic field F*¥ may be added to the electromagnetic term in
the Lagrangian F*F),, /4. This will manifest as a dependence of the fine structure constant
a(¢) = a(1+(¢/A,)) on the field ¢ (see e.g. [13-15]). Assuming that the source and absorber
of the Méssbauer radiation are separated by some distance r, the values of o and my can be
different at these points, if the field ¢ varies in space (see below).

3.2.1 Yukawa field ¢

The field ¢ may vary since the interaction between the field ¢ and Standard Model particles
leads to the Yukawa field ¢ = C'exp(—mr)/r produced by any massive body. The coefficient
C has been calculated in Ref. [11]. In this way the presence of a massive body affects the
fundamental constants.

For example, in the experiment [14] variation of the field ¢ and «(¢) was produced by
moving a 300 kg lead mass back and forth, affecting the ratio of the transition frequencies in
Dy and Cs atoms. These have different dependence on «, since in Dy K|, is strongly enhanced
[5—7]. In the case of Mossbauer transitions, a mass may perform oscillating motion toward
emitter (or absorber) of the radiation, producing a difference in the transition frequencies
between the emitter and absorber 0 f = f(Kyda/a + K,0mq/m,) which oscillates with the
frequency of the mass motion.

Alternatively, the Yukawa field ¢ may be generated on a microscopic scale. In a recent
paper [3] a technique to search for new scalar and tensor interactions at the submicrometer
scale is presented. They suggest to place the optically flat “attractor" (source of Yukawa field
¢), which perturbs the Mdssbauer absorber frequency, on a micropositioner. This arrange-
ment will provide a high sensitivity to the field ¢ with mass corresponding to the submicron
Compton wavelength. Importantly, the paper [3] provides estimates of the systematic effects
produced by the electromagnetic interactions and concludes that they are very small: the
estimated sensitivity is AE ~ 10715 — 10717 eV which corresponds to §f/f ~ 10720 — 10722,
Based on these estimates and using 6 f = f(K,da/a + K dmg/m,) with values of K from
Table 3.1, we obtain sensitivity to the variations da/a ~ dmy/mg ~ 10720 — 10723, This
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estimate may be optimistic but we should compare it with the current limits from atomic
transitions da/a ~ 10717 — 1071 and dm,/m, ~ 10714

A gradient of ¢ may also be due to the Yukawa field produced by a nearby mountain
or by the whole Earth if this field has a large range (a small mass). Here the situation is
somewhat similar to the measurements of the gradients of the gravitational field.

3.2.2 Dark matter field ¢

If we identify the scalar field with dark matter, a gradient of the field ¢ = ¢y cos(k - r — wt)
appears due to the non-zero wave vector k ~ muv/h, where v is the speed of Earth in the
reference frame of the Galaxy and w ~ mc?/h, ¢q is determined by the dark matter mass
density (see e.g. [43, 45]). In this case we have oscillating mq(¢) = mg(1 + (¢/A4)) and
a(¢) = a(l + (¢/Ay)), which depend on the position r. Here A, is the constant of the
interaction between the scalar field ¢ and photon. Therefore, the dark matter field ¢ induces
oscillations in the difference of the transition energies between separated emitter and absorber
of the Mdssbauer radiation.

A gradient of the field ¢ may exist in the transient field of passing clumps of dark matter,
Bose stars, domain walls, etc. A gradient of ¢ may also exist in the field of scalar particles
captured by Earth (see e.g. reviews [13, 46] and references therein).

3.2.3 Comparison of transition frequencies which have different depend-
ence on fundamental constants

Search for variation of the fundamental constants in atomic experiments has been done using
time dependence measurement of the ratio of two transition frequencies which have different
dependence on the fundamental constants. A Mdssbauer transition might be compared with a
transition of approximately the same frequency in a highly charged ion. It may be challenging
to find such ion transition, but they may be sought in the spectra of ions with open f-shell,
which are very dense.

In the case of the 8 eV nuclear clock transition in 22Th, laser optical spectroscopy meth-
ods, such as frequency comb, may be used for comparison with other transitions. High
frequency sources of coherent radiation, based on the multiplication of the frequencies of the
laser field, should allow one to extend this approach to 76 €V transition in 23°U.

3.3 Calculation of the sensitivity to a and m, variation in nuc-
lear transitions

To deduce K, for a particular transition, AFEc must be calculated. This can be done using
measurements of the changes in the mean square charge radius A(r?) and intrinsic quadrupole
moment AQp between the ground and excited states [11, 47]:

OEc Alr?) OEc AQo
o(r?) (r?) Qo Qo

AEc = (r?) + Qo (3.6)
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To extract values of intrinsic electric quadrupole moments @y from experimental data for the
electric quadrupole moments ;4 we use the following relation for rotating deformed nuclei:

121 - 1)

Qlab = ZQOW-

(3.7)

The use of this formula in nuclei with a small or zero deformation is not justified, however
the electric quadrupole in such nuclei is small and has little effect on the final result.

To calculate derivatives gg% and ‘g% we model the nucleus as a spheroid [11, 47]. In
such a model
Eq = E¢ Be, (3.8)
3q22?
Eg =2 3.9

where ¢ is the electron charge, Z is the number of protons, and for a prolate spheroid (Q > 0):

Bo = (162)1/3111(1“) , (3.10)

2e 1—e

with e being the eccentricity. For an oblate spheroid (@ < 0), with the eccentricity defined
such that it stays positive:

2\1/3
B¢ = (1+g) arctan (e) . (3.11)

If one of the AQy or A(r?) measurements is missing, one way to estimate the result is
by using the ansatz of constant charge density between isomers, which is equivalent to the

ansatz of constant volume [ 1]. In such a case, for a spheroid,
dQo 2(r?)
=1+ 3.12
W (312
Note that in Refs. [11, 17] we tested the accuracy of Eq. (3.6) and constant density anzats

Eq. (3.12) using results of Hartree-Fock-Bogolyubov calculations [39] of AEx, AQy and
A(r?) for the 22Th nuclear transition. We estimated the error in the constant density ansatz

of ~ 25%.

In Table 3.1 we compile an extensive list of AE¢ and enhancement factors K for Moss-
bauer transitions. The measured values of A(r?) and @, which we use as an input, are
presented in the Appendix. The accuracy of the electric quadrupole moments measurements
at the moment is insufficient for extraction of reliable values AQg. Therefore, we base our res-
ults on the measured values of A(r?) (which in any case gives the main contribution to AE¢)
and constant density ansatz Eq. eq:dQdr2 to find AQq. Note that if we neglect AQq, the
value of AE¢ would increase. Therefore, the constant density ansatz gives us a conservative
estimate of AFs and K.

For some elements A(r?) is absent in the literature, to the best of our knowledge. For
an estimate, we could use the constant density ansatz Eq. (3.12) to find A(r?) using known
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Table 3.1:

Sensitivity of Méssbauer transitions to variation of the fine structure constant and of

the quark mass. Coulomb energy shifts AE¢ and enhancement factors K calculated using data which

we list in the Appendix. We present in the Table the “experimental” errors which are determined from

the errors in A(r?) values. Our estimate for the constant density ansatz “theoretical” error is 25 %.

Ty /o g AE¢ (keV) K, K,

excited state gr ex  const. density const. density = const. density
Fe 14.4 keV 98 ns 1/2— 3/2— 39(9%) 2.7(9%) 2.4(14%)
677Zn  93.3 keV 9.07 s 5/2— 1/2—  —35(27%) —0.37(27%) —1.99(7%)
8Kr 9.3 keV 147 ns 9/2+ T7/2+  —15(25%) —1.6 (25%) —3.8(15%)
PRu 90 keV 20.5 ns 5/2+ 3/2+4  —59(26%) —0.66 (26%) —2.40(10%)
11990 23.9 keV 17.8 ns 1/2+ 3/2+  —25.1(3%) —1.053(3%) —2.98(1%)
121Gh  37.2 keV 3.5 ns 5/2+ T7/2+ 183(4%) 4.91(4%) 5.67(5%)
125Te  35.5 keV 1.48 ns 1/2+ 3/2+ —13.3(17%) —0.37(17%) —1.99(5%)
1277 57.6 keV 1.95 ns 5/2+ 7/24+  56.1(10%) 0.97(10%) —0.04(400%)
1297 27.8 keV 16.8 ns 7/2+ 5/24+  —69.7(10%) —2.51(10%) —5.08(7%)
1498m  22.5 keV 7.6 ns 7/2— 5/2—  —5.3(29%) —0.24 (29%) —1.79(6%)
BlEn 22 keV 9.5 ns 5/2+ T7/2+  —99(29%) —4.6 (29%) —8.1(24%)
153Fu  83.4 keV 0.80 ns 5/2+ T/2+  10.2(25%) 0.12 (25%) —1.27(3%)
153Eu 103 keV 3.9 ns 5/2+ 3/24+  321(15%) 3.1(15%) 3.1(23%)
155Gd  86.5 keV 6.35 ns 3/2— 5/2+ 22 (25%) 0.25 (25%) —1.09(8%)
155Gd 105 keV 1.18 ns 3/2— 3/2+ 30 (25%) 0.28 (25%) —1.04(10%)
157Gd 64 keV 0.46 ms 3/2— 5/2+  —55(25%) —0.86 (25%) —2.69(12%)
161Dy 25.7 keV 29 ns 5/2+ 5/2— = —29(25%) —1.14 (25%) —3.10(13%)
161Dy 43.8 keV 0.78 ns 5/2+ T7/2+ 6.3 (25%) 0.14 (25%) —1.24(4%)
161Dy 75 keV 3.2 ns 5/2+ 3/2—  —31(25%) —0.42 (25%) —2.06(7%)
81T 6 keV 6.05 ms 7/2+ 9/2— 191 (25%) 30 (25%) 43 (26%)
YTAu  77.3 keV 1.91 ns /24 1/24+  —42(29%) —0.54(29%) —2.24(10%)
29Th 8 eV 10% s 5/24+ 3/2+  —67(13%)  —0.8210%(13%) —1.1910*(13%)
57U 76 eV 26 m 7/2— 1/2+ ~ 100 103 103
23 Am 84 keV 2.3 ns 5/2— 5/2+ 235 (25%) 2.8 (25%) 2.6 (39%)
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values of the electric quadrupole moments @ in 23U 46keV, 233U 40keV, '"Hf 123 keV,
165Ho 95 keV, 109Ho 60 keV, and °8Ho 67.2keV. However, the errors in AQq and K, are too
large in these cases, so we can not make definite predictions.

We see in Table 3.1 that the average value of |A E¢| in medium and heavy deformed nuclei
is ~ 70 keV. Therefore, we may assume AEqc ~ 70 keV and |K,| ~ 70 keV/ f in all medium
and heavy deformed nuclei where accurate data for A(r?) are not available. In light nuclei
and spherical nuclei |AE¢| ~ 30 keV .

Two exceptional transitions presented in Table 3.1 are the 8 eV nuclear clock transition
in 22Th and the 76 eV transition in 23*U. Investigation of the ??*Th transition using laser
spectroscopy methods has long been discussed in the literature, however new sources of
coherent radiation cover the range up to 100 eV (see e.g. [15]), so 76 eV transition in 23°U
may be investigated using high precision spectroscopy too. The probability of the photon
emission in the bare 23°U nucleus is very small but it is significantly enhanced by the electronic
bridge mechanism in many-electron ions [19] (see also [50]). To avoid discharge of the 76 eV
nuclear excited state by electron emission, ionization potential of the uranium ion should
exceed 76 eV. This condition is satisfied in ions with charge bigger than 6. The values of
the enhancement factors for 76 €V transition in 23°U, Ky~ K, ~ 103, are estimated in the
Appendix.

3.4 Summary

In summary, we show that nuclear transitions are a sensitive tool in the search for the variation
of the fine structure constant o and especially variation of the strong interaction parameter
mg/Agcp to which atomic optical transitions are not sensitive. We calculate the sensitivity
to these parameters, presented as the enhancement factors K, and K, for a number of
Méssbauer transitions, 8 eV transition in ??Th, and 76 eV transition in 23°U .
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3.5 Nilsson model calculations for 76 eV 2%U transition

Two low-lying energy transitions are of particular interest due to their high K values and
possibility to use high precision atomic spectroscopy methods: the 8 eV ??2Th and the 76 eV
235, If these cases are realized with Massbauer spectroscopy, they might bring the method
into the UV laser range, in recoil-free resonance. We recently calculated K, for ?2Th in
[11]. Sensitivity to the quark mass for 22Th is calculated in the present work using K, =
1.45(K4 — 1). Let us now focus on the case of the 76 eV transition in 23°U.
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The mean square root charge radius (r2)'/2 of 23U is 5.8337(41) fm [51]. As far as we
know, the charge radius for the excited state has not been measured, so we estimate the
difference of the charge radii between excited and ground states using the Nilsson deformed
oscillator model [52]. Within the Nilsson model excited and ground states of 235U differ by
the z axis quantum numbers n, of external neutron: n, . = 3 and n, 4 = 4. For the harmonic
oscillator

I (nz+1), (3.13)

mywyz 2

where my = 940 MeV is the nucleon mass and w, is the harmonic oscillator frequency on
the symmetry axis of the deformed nucleus. Substitution of n. . = 3 and n. 4 = 4 gives

1

(r§) — (rf) = — :
MNW,

(3.14)

The value of (r?) is calculated for the total density of all nucleons, therefore, we should divide
the result by the number of nucleons A.
1 (hc)? 1 1972

Alr?) = — = R — —0.035fm?. 1
(=) Amnw. 235000 x5~ 035im (3.15)

The quadrupole moment of 235U ground state was measured to be Qqy = 4.936(6) b in the
laboratory frame [53]. To calculate the intrinsic quadrupole moment @y we use Eq. (3.7)
with the nuclear spin I = 7/2.

As the quadrupole moment of the excited state has not been measured, we estimate the
difference of @)y for the excited and ground states using the Nilsson model. Quadrupole
moment for external neutron is given by

1 2 1 2
P L4+ =] = N-—-—n,+1)|, 3.16
@o A [mez (n + 2) meZ( n+1) ( )

where N is the principle quantum number, which is 6 for the exited state and 7 for the ground
state. Equation (3.16) is a result of using Eq. (3.13) in the quadrupole moment defined as

Qo = 2(z*) — (& + 7). (3.17)
Inserting numerical values, the change in the intrinsic quadrupole moment of the distribution
of A nucleons between the excited and ground states is

11
- Ampyw,

AQo (6 —8) = —0.064 fm?. (3.18)
Using these values we obtain AE-=434 keV for the prolate spheroid model and AFE-=191
keV for the constant density model. These values are few times bigger than AEc ~ 100 keV
in other heavy deformed nuclei. Therefore, we assume that our Nilsson model calculations
overestimate AE¢ few times. A conservative estimate is K, ~ K, ~ 100 keV /76 eV ~ 103.

Note that the E3 (76 €V) transition in the uranium ion occurs with the active participation
of the electron shell in the electron bridge process. In fact, this is a re-emission of a photon by
the electron shell with a change in the multipolarity and sometime with a change in the energy
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of the initial gamma quantum. For example, the energy of the second electronic transition
(at which the photon is emitted) depends on the variation of the fine structure constant «.
However, we do not see any enhancement of the sensitivity to a in the electron part of the
process while sensitivity of the nuclear transition frequency is very strongly enhanced. This
means that the electronic effects can not significantly affect the estimate K ~ 103.

3.6 Inputs for derivation of K,

In Table 3.2 we present the inputs we used for each isomeric transition to arrive at the values
of K, and K, in the main text. For 5"Fe, we take the average of three values in [54] for d(r?).
For d(r?) of 23°U we take the value derived in the Appendix 3.5. In 2!Sb, 1271 and 2°I the
error on d(r?) is unknown.
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The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macro-
scopic objects gives rise to various spin-dependent potentials. We derive the coordinate-
space non-relativistic potentials induced by the exchange of such bosons, including contact
terms that can play an important role in atomic-scale phenomena, and correct for errors
and omissions in the literature. We summarise the properties of the potentials and their
relevance for various types of experiments. These potentials underpin the interpretation
of experiments that search for new bosons, including spectroscopy, torsion-pendulum
measurements, magnetometry, parity nonconservation and electric dipole moment exper-
iments.

4.1 Introduction

There are four known types of interactions in nature — electromagnetic, strong, weak and
gravitational. Still, additional interactions may exist. For example, the exchange of a new
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spin-0 or spin-1 boson between two fermions produces a plethora of “exotic” interaction
potentials [1]. Yet-to-be-discovered bosons may solve several outstanding puzzles. The axion
(a spin-0 boson) may explain the apparent absence of CP violation in strong interactions
[2-9]. The observed dark matter [10] and dark energy [l 1] may also be explained by the
existence of new bosonic particles. The possibility to solve such central questions motivates
numerous searches for new bosons. Recent examples of searches for new forces mediated by
such bosons can be found in Refs. [12-52].

In Ref. [53] (see also the earlier papers [54, 55]), the three distinct non-relativistic poten-
tials arising from the exchange of a spin-0 boson between spin-polarised and spin-unpolarised
bodies were presented. Later, Ref. [1] expanded this list to include additional long-range non-
relativistic potentials arising from the exchange of spin-0 bosons and spin-1 bosons (such as Z’
bosons and paraphotons). These potentials were presented in Ref. [1] in a mixed momentum-
and coordinate-space representation, which is convenient when the relative velocity between
two bodies can be described by a classical vector, such as in the macroscopic-scale experi-
ments of Refs. [28, 35, 12, 52]. However, in phenomena that arise on the (sub)atomic scale,
the relative velocity between two particles can no longer be described by a classical vector,
but must instead be described by a quantum vector operator (see, for example, [11, 44, 51]).

Furthermore, the potentials induced by the exchange of bosons in general contain not only
long-range terms, but also short-range (contact) terms, which can play an important role in
atomic-scale experiments. For example, the usual magnetic dipole-dipole interaction between
atomic electrons and the nucleus (mediated by the exchange of photons) contains both long-
range and contact terms. For atomic states with zero electron orbital angular momentum
(which are described by spherically symmetric wavefunctions), the expectation value of the
long-range part of the magnetic dipole-dipole interaction vanishes and the entire contribution
to the hyperfine energy shift comes from the contact part of the magnetic interaction [50].

In the present paper, we derive the coordinate-space non-relativistic potentials, including
contact terms. These potentials are particularly important in searches for new spin-dependent
forces based on atomic-scale experiments (such as in [11, 19]) and on macroscopic-scale ex-
periments [13, 16, 28, 35, 42, 52]. In atomic systems that satisfy Za < 1, where Z is the
nuclear charge and o =~ 1/137 is the fine-structure constant at zero momentum transfer, the
velocities of the particles are small. For example, in atomic hydrogen, the expectation value
of the square of the velocity of the electron orbiting the nucleus (in natural relativistic units,
h=c=1)is <v2> ~ o2 ~ 107*. In macroscopic-scale experiments that search for velocity-
dependent effects due to the relative motion of Earth and the Sun, the square of the relative
velocity is v ~ 1078,

The structure of this paper is as follows. In Sec. 4.2, we derive the coordinate-space non-
relativistic potentials induced by the exchange of spin-0 and spin-1 bosons. In Sec. 4.3, we
discuss the properties and nuances of these potentials, and point out several erroneous results
and omissions in the earlier literature. Some of the more technical details are presented in
the Appendices.
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Figure 4.1: Elastic scattering of two fermions with masses mi1 and mo and spins s1 and
89, respectively, mediated by a boson of mass M with four-momentum ¢" that is transferred
from fermion 2 to fermion 1.

4.2 Coordinate-space potentials

Consider the elastic scattering of two fermions with masses m; and meo and spins s; and
89, respectively, mediated by a boson of mass M with four-momentum ¢* that is transferred
from fermion 2 to fermion 1 (Fig. 4.1). We focus on three types of bosons in the present work
— a spin-0 boson ¢ (which can be either massive or massless), a massive spin-1 boson Z’ and
a massless spin-1 boson 7/. Each boson has its own set of local Lorentz-invariant interactions
with the standard-model fermions ¢ [1, 57]:

Lo=0> 0 (g5 + i) ¥, (4.1)

%
Ly =2, y" (gf{ - 759&‘) ¥, (4.2)

»

Up, T .
Ly = me,Zipa“ [Re(Cy) + iysIm(Cy)] ¥ . (4.3)
P

Here 1 denotes the fermion field (for instance, ¥» = e for an electron, and ¢ = N for
a nucleon), P,, = 0,4, — 0,A,, is the field strength tensor of the massless paraphoton

field Ay, o = %[y“,v”], and v*, v5 = i7%9y'y2+3 are Dirac matrices. The dimensionless

interaction constants gy, gi, gfp/ , 91‘2, Re(Cy), Im(Cy) parametrise the scalar, pseudoscalar,
vector, pseudovector, tensor and pseudotensor interaction strengths, respectively. The Higgs
vacuum expectation value is denoted by vy, and A is the ultraviolet energy cutoff scale for
Lagrangian (4.3).

We have chosen the interactions in Eqgs. (4.1) — (4.3), since this set of interactions spans
the full space of Lorentz-invariant Dirac operators. The case of a massive spin-1 boson is
distinguished from the case of a massless spin-1 boson by the presence of a longitudinal
polarisation, and so we treat the massless and massive cases separately.

We derive the coordinate-space non-relativistic potentials associated with the interactions
in Egs. (4.1) — (4.3) by applying the Feynman diagrammatic technique, which is described
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in detail in standard textbooks [58, 59]. We summarise our conventions, along with useful
identities and Fourier transforms in Appendices 4.4 — 4.6. We present the detailed derivations
of three potentials in Appendix 4.7.

Each of the Lagrangians in Eqgs. (4.1) — (4.3) contains a sum of two terms, which corres-
pond to two types of vertices. There are three distinct combinations of these two vertices
for the scattering of two fermions, and so each Lagrangian can give rise to three distinct
potentials. In total, the following nine non-relativistic potentials result:

—Mr
Vss(r) = —9195 1o (4.4)
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(1 M\ e M
Vt) = ~gfgon - (540 ) S 4
V9,10
p_p 1 M Ar 3 3M | M? e M
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(4.6)
yoye M
V p—
vv(r) =91 95 An
Vi
VvV 2 g M
91 92 1 M M 8m 'y gy |24 30 M :
s = (o B |5+ 5 +—
+= lal el e e 5 0 Bl CEREVACERE VA b et e | [t
Vo+V3

—Mr AV —Mr
e (1 M\ e
VAV(I")ZgiAQXUr{pl e }_91 92 (o1 ><02)'1"( +> , (4.8)

miy  ma 8mr 2 2 " ) drmg
V12,13 V11
Vaa(r) = —gitgst o ae_MT
AA =—9192 0102 e
Vs
A A 2 —Mr
g1 ga mims 1 M  A4r . 13 3IM M e
_ . STy | _ ) . e Rl
M? [61 72 {T?’ * r2 + 3 ()] = (o1-5) (o2 - ) r3 + r2 + r drmime

(4.9)



4.2 Coordinate-space potentials 61

4v2Re(C1)Re(Coy)mim 1 8 R 3 1
V() = SR (o1 [ - Fhotn] — o000 ]
Va2+V3
(4.10)
402Tm(C7)Re(Co)myms P py, 1 Arm 1
Vi () ==L (o1 xon) (B2 ]
V14
47),2LIIn(Cl)Re(CQ)m1m2 D1 2 3 (0’1 . f‘) (0’2 X f‘)z
+ A4 my  my i STmimear3
Vis
B 202Im(C)Re(Co)mims oy - [V(r)] (4.11)
At mym3 '
—_———
V9,10
402Im(C))Im(Cy)mim 1 4 N 3 1
V3

(4.12)

In these expressions, o1 and o5 denote the Pauli spin-matrix vectors of the two fermions,
 is the unit vector directed from fermion 2 to fermion 1, r is the distance between the two
fermions, and {A, B} = AB + BA is the anticommutator of two operators A and B. The
momenta p; = —iV1 and p, = —i V3 are vector differential operators in coordinate space.

For the sake of comparison with previous literature, we matched the individual terms
in Egs. (4.4) — (4.12) onto the V; potential terms of Ref. [1]. In the momentum-space rep-
resentation, the spin-momentum structures of V, in Eq. (4.7), Vo 10 in Eq. (4.11), and Vi4
in Eq. (4.11) are multiplied by g2, the square of the spatial components of the transferred
momentum. Thus, although Vg 10 has different forms in Eqgs. (4.5) and (4.11), the underlying
spin-momentum structure of these potential terms in the momentum-space representation is
the same up to a factor of 2.

The potentials in Eqgs. (4.5), (4.8), and (4.11) are written in an abbreviated form lacking
symmetry under the permutation of particle indices 1 <+ 2. In the case of these potentials,
we must add the terms obtained by permuting the particle indices 1 <> 2.

Once the above terms are added, the potentials in Eqgs. (4.4) — (4.12) are symmetric with
respect to the permutation of particle indices 1 <+ 2, and hence do not vanish for identical
particles. In order to determine whether or not specific matrix elements of the potentials in
Eqgs. (4.4) — (4.12) vanish for identical particles, one needs to take into account the fact that
the overall wavefunction of indistinguishable fermions is antisymmetric under permutation of
fermions.

We note that Eqgs. (4.4) — (4.12) contain fewer than the 16 terms presented in Ref. [1],
since we are interested in the non-relativistic limit. For example, the Vs term of Ref. [1] arises
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as an O(v?) relativistic correction to the V5 term in Eq. (5.1) and hence can be neglected in
non-relativistic systems.

We have chosen to sort the potentials in Eqgs. (4.4) — (4.12) by their types of physical
couplings, in contrast to sorting them into 16 groups by their mathematical spin-momentum
structure as in [1]. We believe that our classification is more useful from a physicist’s point
of view, since one is ultimately interested in the physical coupling constants of a particular
model.

Other representations of these coordinate-space potentials are possible. In Appendix 4.8,
we present these potentials in a semi-relativistic form that is convenient for numerical atomic
calculations using Dirac-Hartree-Fock wavefunctions.

4.3 Discussion

We first point out a number of erroneous results and omissions in the earlier literature:

(1) Regarding the overall sign of the pseudoscalar-pseudoscalar potential in Eq. (5.3), we
agree with the calculations of Refs. [1, 60], correcting the earlier sign error in Ref. [53].

(2) The overall signs of the tensor-type potentials in Eqgs. (4.10), (4.11) and (4.12) are
opposite to those in Ref. [1].

(3) The M?/r term in Vs + V3 of the vector-vector potential in Eq. (4.7), which arises
together with a contact term, was omitted in Ref. [1].

(4) The V5 term (omitted in Ref. [1]) in the pseudovector-pseudovector potential in
Eq. (5.1) arises from a longitudinal polarisation mode for a massive spin-1 boson and noncon-
servation of the axial-vector current. Here we agree with the recent calculation of Ref. [(1].
This term seems to tend to infinity in the limit of the boson mass M — 0 and so it looks like
the assumptions of perturbation theory are no longer justified (formally speaking, there is a
violation of the perturbative unitarity bound), similarly to the violation of the perturbative
unitarity bound in the high-energy scattering of longitudinal W and Z bosons in the standard
model without a Higgs boson.

It is instructive to consider what occurs in a renormalisable theory, such as the standard
model. In this case, the combination of parameters g{'g4'/M? remains finite as M — 0.
As an example, let us consider the case of Z boson exchange between two fermions, where
the Z boson has purely pseudovector interactions and does not mix with the photon (i.e.,
sin(fy) = 0, where Oy is the weak mixing angle). In this case, the Z boson mass is given
by M = gv/2, where v is the Higgs vacuum expectation value and g is the (universal)
electroweak interaction constant [62]. In order for the fermion masses, given by ms = fv/v/2
(f is a species-dependent interaction constant), to remain finite as M — 0, v must also
remain finite. Hence g?/M? = 4/v? is independent of M and remains finite as M — 0.
In such a regime, when the V3 term in Eq. (5.1) gives the dominant contribution, it is
appropriate to place constraints on the combination of parameters gf‘gé4 /M?. The relation
to the renormalisability of the theory makes such a case especially interesting to study.

In the special case of a massless vector boson, M = 0, Eq. (5.1) simplifies to solely the
Vo term. In contrast to a massive vector boson, a massless vector boson does not have a



4.3 Discussion 63

Table 4.1: Properties of non-relativistic potentials induced by the exchange of spin-0 and
spin-1 bosons.

Property Vi | Vo | V3 | Vot Vs [ Voro | Vir [ Vi2as | Viu | Vis
Parity, + + + + — — —_ _ _
Time-reversal symmetry + + + + — + 4 — —
Velocity dependence — — — — — _ + ¥ ¥
First-order energy shift + + + + — — — — —
Mediated by spin-0 boson + — + — + — — _ _
Mediated by massive spin-1 | + + + + — + 4 _ _
Mediated by paraphoton — — + + + _ — i ¥

longitudinal polarisation mode, and hence there is no Vs term in Eq. (5.1) for the special case
M =0.

In light of the above, we believe it is worthwhile to reanalyse some earlier experiments
(see, for example, [33, 35, 12, 18]) using the corrected potentials presented in the present
paper and also to note the results of our paper for future experiments.

Additionally, we note that it is possible to write certain potentials in a form where some
of their constituent “bare” terms, namely with the interaction constants (which also contain
particle indices) removed, are antisymmetric with respect to the permutation of particle
indices 1 «» 2. For example, instead of writing the scalar-pseudoscalar potential in Eq. (4.5)
in the form V)4(r) = Co1 -1+ Ca0 -, where Cy and Cs can be identified from Eq. (4.5), the
authors of [1] choose to write the same expression in the form Cy (o1 + 69)-#4Ch (677 — 079 T,
where O] = Cy + Cy and Cy = Cy — Cs. Here, one of the bare terms is symmetric under
permutation of fermions, while the other is antisymmetric. The authors of [] note that only
one combination of o1 £ o5 survives for identical fermions. One should take this into account
when searching for effects of spin-dependent forces between identical fermions. For instance,
the authors of [33] present constraints on the antisymmetric potentials V7, Vi5 and Vig for
electrons, even though such potentials vanish for two identical fermions.

We summarise the properties of the non-relativistic potentials induced by the exchange
of spin-0 and spin-1 bosons in Table 4.1. Several nuances of these potentials are also worth
discussing. In macroscopic-scale experiments, the momentum and radial vectors appearing
in Egs. (4.4) — (4.12) may be treated as classical vectors, and symmetrised expressions such
as {p, f(r)} may be replaced by their classical value, {p, f(r)} — 2pf(r). In atomic-scale
experiments, however, the momentum and radial vectors need to be treated as quantum
operators, and explicit symmetrisation in expressions such as {p, f(r)} must be retained.

Another difference between macroscopic-scale and atomic-scale experiments in relation to
spin-dependent potentials is the manifestation of the parity- and/or time-reversal-invariance-
violating nature of these potentials. Consider the P, T-violating correlation o - in the term
V.10 in Eq. (4.5). In macroscopic-scale experiments, t is a classical vector directed between
macroscopically-separated bodies, and the interaction o -t causes the fermion spins to precess
about the vector ¥ [12, 15, 25, 39, 43, 47]. In this sense, the macroscopic interaction o - ¥ is
reminiscent of the interaction of a fermion magnetic moment with a magnetic field. In atomic-
scale experiments, T is a radial operator directed between atomic electrons and nucleons, and
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so the correlation o - T mixes atomic states of opposite parity and gives rise to atomic electric
dipole moments [16, 51, 51]. Specific details of how electric dipole moments are induced in
atoms and molecules as a result of the P,T-violating potential term Vg 19 can be found in
Refs. [16, 51]. Electric dipole moments in atoms and molecules can also be similarly induced
as a result of the P, T-violating potential terms V14 and V;5. Both atomic- and macroscopic-
scale measurements involve spin precession. However, the spin precession takes place about
different sets of vectors. In macroscopic-scale experiments, spin precession takes place about
the vectors B and 1, while in atomic-scale experiments, spin precession takes place about the
vectors B and FE.

Finally, some of the potentials in Egs. (4.4) — (5.1) may not be practical for numerical
atomic calculations in their presented form for boson masses M > mi, mo. For example, in
the case of a hydrogenlike system in a state with zero electron orbital angular momentum,
the expectation value of the operator in Eq. (5.3) vanishes in the limit M — co. In this limit,
we have e=M7" /r — 4x§(r)/M?. This 6(r) term cancels the §(r) term inside the leftmost
brackets in Eq. (5.3), after integrating over the angular coordinates (likewise, the other terms
in Eq. (5.3) cancel for an arbitrary boson mass, after integrating over angular coordinates).

Numerically, this cancellation is hard to achieve. Finite numerical precision becomes
insufficient at arbitrarily large boson masses, leading to problems in numerical calculations.
To circumvent such issues, one can instead write Eq. (5.3) in the following equivalent form
[which appears in an intermediate step of the derivation of the potential via Eq. (4.24)]:

Vip(r) = 9% (61-V)(o2-V) <6_Mr> : (4.13)

- 16mmyimae T
and use integration by parts when calculating matrix elements of this operator. A similar
situation occurs in Eq. (5.1).

Note that as M — oo, matrix elements of Eq. (5.6) scale as oc 1/M?2. This is a general
property of the potentials in Eqs. (4.4) — (5.1), whose terms scale as oc 1/M? (or faster) in
the limit M — co. One can see this property more clearly in the semi-relativistic form of the
potentials presented in Appendix 4.8.

In Eq. (4.7), in addition to V3 of Eq. (5.3) there is a contribution of Vs which is equivalent

in form to: . u

— T

9192 G gA [ © . (4.14)
16mmime T

This expression results in two terms, by Eq. (4.23) in Appendix 4.6, which cancel as M — oo
in a similar manner as above. Likewise, Eq. (4.5) can be written as:

Vp(r) = 9 (5, ) (M) | (4.15)

8mmy r

thus highlighting its scaling oc 1/M? as M — co.

To summarise, we have derived the coordinate-space non-relativistic potentials induced by
the exchange of spin-0 and spin-1 bosons, including contact terms that can play an important
role in atomic-scale experiments. In the process, we have corrected for various errors and
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omissions in the earlier literature. These potentials are important for the interpretation
of numerous experiments, including spectroscopy, torsion-pendulum, magnetometry, parity-
nonconservation and electric-dipole-moment experiments, in the search for new bosons.
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4.4 Units and conventions

We employ the natural relativistic units & = ¢ = 1 and the metric signature (+———). We la-
bel space-time and spatial coordinates with Greek and Latin indices, respectively. We employ
the Einstein summation convention for repeated indices. We use the following representation
of the Dirac matrices:

1 0 ; 0 o 01
0 _ T _ ? —

where o; is the i*" Pauli matrix.

4.5 Useful identities

[O’i, Uj] = 2i5ijk0'lc s (4.17)
{oi,0;} =245, (4.18)
gijre™" = 8676 — 87 oF" (4.19)
(AxB) - (CxD)=(A-C)(B-D)—(B-C)(A-D). (4.20)
4.6 Fourier transforms
3 iqr —Mr
/dq S — (4.21)
(2m)3 M2 + |q| 47y

/(d3q (o0-q)er” eV (eM’“> 7 (4.22)

2m)3 M2 + |q|* dmr
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Pyl e )
/(27-‘-)3 M2 4 |q|2 = 5(7‘) - m € ) (423)

/ d’q (01-q)(02-q) " _
2  M?+|qf?

or-ox[1 M A4r _Mr
47 [7’3 r2 3 6(7')} €
(o1:7) (02 #) [3 301 0] o,
4 sttt e (4.24)
d3q eiq-r 1
93792 A 4.2
/(27r)3 \q*  Anr’ (4.25)
Pq g
/ anp’ 0 (4.26)
d*q qrqe?” 1 [o L rer | A
/(27()3|q’2 = I Lg =35 T3 wmd(r)) (4.27)
a? g :
/(27:)13‘16“1 = —1Vi(r), (4.28)
dsq 2 g
/(%)3 lq|” "t = —Ad(r). (4.29)

4.7 Calculating coordinate-space potentials — Three examples

1 — Pseudoscalar-scalar potential

Applying the Feynman rules to the tree-level process in Fig. 4.1 with vertex 1 being of
the pseudoscalar type and vertex 2 being of the scalar type in Lagrangian (4.1), gives the
amplitude:

M(q) =i [*a(py, p)rsgtu(pr)| [i(ps ) g5u(py,)]

X [MQ_ZQZ} , (4.30)

where ¢ = p1 y — p1,i = p2,; — P2,y is the 4-momentum associated with the virtual boson.

In the non-relativistic limit, ¢> = ¢& — ]q]2 R — |q|2, and the spinor products in (4.30)
simplify to:

E(Pl,f)%u(lh,z‘) ~—-01-4, (4.31)

u(py, f)u(ps,;) = 2ma, (4.32)

where p; = (py; + p1f)/2 and py = (py; + P2 f)/2 are the momenta of the two fermions,
averaged over their respective initial and final states.
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The resulting non-relativistic momentum-space potential reads:

_ Mg _iglgs o1-q
dmimg  2my M2+ |q|?

V(q) (4.33)

The non-relativistic coordinate-space potential is related to the momentum-space potential
via the three-dimensional Fourier transform:

3 . ~
v = [ (5733 1T (). (4.34)

Using the Fourier transform (4.22), we arrive at the coordinate-space potential in Eq. (4.5).

We note that, apart from the non-derivative form of the pseudoscalar interaction in (4.1),
the derivative form of the pseudoscalar interaction is also commonly used in the literature

(see, e.g., [63-65]): ,
Laerv. = ~(000) 3 50 07# 950 (435)
P

The form of the non-relativistic potential in Eq. (4.5) does not depend on whether the non-
derivative or derivative form of the pseudoscalar interaction is used. To see this explicitly,
we note that, instead of the spinor product in (4.31), we have the following spinor product
for the derivative form of the pseudoscalar interaction:

0'1 . 1

P g9 —01-qg. (4.36)

q. _
ﬁ“(?l,fﬂ”%u(?u) ~

In the non-relativistic limit, |go| < |g| and |p;| /m1 < 1, and so the spinor product in (4.36)
reduces to (4.31). Likewise, the form of the non-relativistic potential in Eq. (5.3) also does
not depend on whether the non-derivative or derivative form of the pseudoscalar interaction
is used.

2 — Vector-vector potential

Applying the Feynman rules to the tree-level process in Fig. 4.1 with both vertices being of
the vector type in Lagrangian (4.2), gives the amplitude:

M(q) =i [iﬂ(pl,f>7ugi‘t/u(pl,i)} [m(pzf)’YVggu(Pzi)}
i) v

M2_q2

In the non-relativistic limit, ¢? ~ — \q\Q, and the spinor products in (4.37) simplify to:
E(PLf)’YOU(pu) A 2my, (4.38)

ﬂ(ﬁQ,f)WOU(Pz,i) A 2mg, (4.39)
u(py, p)yu(p: ;) = 2p; —ig x o1, (4.40)
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U(Py,f)yu(pa;) ~ 2Py +iq X 0. (4.41)

The quq.,/M 2 term in the propagator does not contribute to the amplitude, because of
the conservation of the vector current in both vertices. Retaining the leading-order spin-
independent term and the leading-order spin-dependent term, yields the non-relativistic
momentum-space potential:

T M2 ]q]Q Amima

f/(q)N 9¥9§/ 1 (arl)'(qXUQ)' (4.42)

Performing the Fourier transform, Eq. (4.34), with the aid of the identity (4.20) and the
Fourier transforms (4.21), (4.23) and (4.24), we arrive at the coordinate-space potential in
Eq. (4.7).

3 — Pseudovector-vector potential
Applying the Feynman rules to the tree-level process in Fig. 4.1 with vertex 1 being of

the pseudovector type and vertex 2 being of the vector type in Lagrangian (4.2), gives the
amplitude:

M(g) =i [i(py )V 591 u(y,1)] [i(Pa. )7 95 u(ps,)]
y [Z (g — quu/MQ)] . (4.43)

M2_q2

In the non-relativistic limit, ¢% ~ — ]q[Q, and the spinor products in (4.43) simplify to:

u(py )7 ysu(py ;) ~ 201 - py (4.44)
u(py, )7 u(py,) ~ 2ms (4.45)
u(py p)yy5u(py ;) = 2mioy, (4.46)
u(py f)yu(ps,;) = 2ps +iq x o2. (4.47)

Again, the g,,q, /M 2 term in the propagator does not contribute to the amplitude, because
of the conservation of the vector current in the second vertex. We hence find the following
non-relativistic momentum-space potential:

o1 - (pl - p2> +z‘("1x"2)’q] . (4.48)

mi mao 2m2

T M2+ |qP?

Performing the Fourier transform, Eq. (4.34), with the aid of the Fourier transforms (4.21) and
(4.22), and then performing the symmetrisation (p;/m; — py/m2) (e_MT/r> — Hp/my —

py/ma, e M7 /r} we arrive at the coordinate-space potential in Eq. (4.8).
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4.8 Coordinate-space potentials in semi-relativistic form

In a form convenient for numerical atomic calculations using relativistic Dirac-Hartree-Fock
wavefunctions, the potentials in Egs. (4.4) — (5.1), including Dirac spinors, can be written in
the following general form:

—Mr

Vss(r) = — (1/;2951#2) (@Zlgf%) 647, (4.49)

_ _ e—Mr
Vps(r) = — (¢29§¢2) (1/11i759]f¢1) p— (4.50)
Vip(r) = — @21'7595@02) (1/;1i759}10¢1) 647J:f , (4.51)
Vv (r) = (&2’7“951&2) (&1%9}/%) 647]: : (4.52)
Vav(r) = (927”95 ¥2) (919759141 ) ijf : (4.53)
Vaa(r) = (1/_127“7595‘1/12) @1%75914%) e;‘j" , (4.54)

where we have made use of the static approximation for the boson propagators, and in
Eq. (4.54), we have dropped additional terms arising from the longitudinal polarisation mode
of the massive spin-1 boson. In practical applications, often one of the fermions can be
treated non-relativistically, in which case the potentials in Eqgs. (4.49) — (4.54) reduce to a
mixed relativistic/non-relativistic form (see, e.g., Refs. [14, 16, 51] for more details).
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Hitherto unknown elementary particles can be searched for with atomic spectroscopy.
We conduct such a search using a potential that results from the longitudinal polariza-
tion of a pseudovector particle. We show that such a potential, inversely proportional
to the boson’s mass squared, V o< 1/M?, can stay finite at M — 0 if the theory is
renormalizable. We also look for a pseudoscalar boson, which induces a contact spin-
dependent potential that does not contribute to new forces searched for in experiments
with macroscopic objects, but may be seen in atomic spectroscopy. We extract limits on
the interaction constants of these potentials from the experimental spectra of antiprotonic
helium, muonium, positronium, helium, and hydrogen.

5.1 Introduction

A possible explanation for various outstanding puzzles in physics, such as the origins of dark
matter [1] and dark-energy [2, 3], the strong-CP puzzle [1], and the hierarchy puzzle [7] is
the existence of beyond-the-standard-model (exotic) bosons. The exchange of such virtual
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bosons gives rise to an interaction potential. This motivates experimental searches for such
potentials in nuclear, atomic, and molecular phenomena [(—].

Recent work [9] derived a list of these potentials, sorted by types of interactions (as
opposed to [10], which classified the potentials by their spin-momentum structure). These
are nonrelativistic potentials in coordinate space, induced by the exchange of spin-zero or
spin-one exotic bosons between fermions. Reference [9] lists two types of potentials that were
omitted in [10]:

(a) A potential proportional to the inverse square of the intermediate spin-one boson
mass, originating from its longitudinal polarization.

(b) Potentials that include the contact term §(r), with r being the distance between the
interacting fermions.

Point (a) is important for the study of exotic bosons with pseudovector-pseudovector in-
teractions. Point (b) is of concern when an experimental search for new bosons is conducted
in atomic systems, where a contact interaction can play a vital role. Next, we discuss each of
these potentials and the methodology of using them to obtain constraints on the properties
of new bosons. Then, in section III we use these potentials to obtain novel limits on boson
mass and coupling strength in various atomic systems. We conclude in Section IV.

5.2 Properties of pseudovector and pseudoscalar potentials

5.2.1 Potential proportional to 1/M?

Among the nine potentials derived in [9] which describe the exchange of an exotic boson
between two fermions or macroscopic objects, the pseudovector-pseudovector potential is the
only velocity-independent one with a term inversely proportional to the boson mass squared:

Vaa(r) =— Aoy o e
AA =—9192 01 2
Va
A A 2
g1 g5 mims 1 M A4r R |3 3M M
—W[Ul'02{r3+r2+35(r) —(o1-7) (o2 7) e e i

(5.1)

Here, g# are dimensionless interaction constants that parametrize the pseudovector inter-
action strength, o1 and o5 denote the Pauli spin-matrix vectors of the two fermions, m; and
mo are the masses of the fermions, M is the mass of the boson, # is the unit vector directed
from fermion 2 to fermion 1, and r is the distance between the two fermions. We work in
natural relativistic units, h = ¢ = 1. Parts of the potentials defined as V5 and V3 link these
terms to the definitions of the potentials described in [10]. While deriving V44(r) we have
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Figure 5.1: Constraints for the interaction between an electron and an antiproton at 90%
confidence level on the coupling constants as a function of boson mass. We are using states
in the (n,l) = (37,35) manifold of antiprotonic helium pHe™. The plots are based on the
experimental data from [20], theoretical calculations from [27], and our numerical estimate
of the spin-dependent contribution. (a) Using the V,, potential of Eq. (5.6) in numerical
integration. For M < 102 eV the limit is at 0.0025. (b) Using Vaa in Eq.(5.1). In the range
M < 10? eV the bound is gfg;,f‘/M2 < 1.3x 10718 eV=2. In the vicinity of M = 5 x 10* eV
the bound is at 4.7 x 1071 eV=2. This and other bounds are summarized in Table 5.1.

retained the leading order spin-dependent terms; that is why operators such as Vg in [10] do
not show up in Eq. (5.1).

To find the interaction for composite systems, one should sum the interaction (5.1) over
all fermion constituents (electrons, protons, and neutrons), each with its own interaction
constants. The result will be proportional to the nuclear or atomic spins, similar to the usual
magnetic interaction between atoms in a crystal. Examples of composite systems used in
experimental searches for spin-dependent potentials can be found in Refs. [0, 11-14].

The V5 term in Eq. (5.1) arises from a longitudinal polarization mode for a massive spin-1
boson (which gives the term g,q, /M 2 in the massive vector boson propagator, ¢, being the
four-momentum transferred between the fermions) and nonconservation of the axial-vector
current (g, J% # 0) [9, 15, 16]. This term appears to have a singularity in the limit of the bo-
son mass M — 0. However, there should be no divergence in a renormalizable theory. Let us
reflect on the following scenario based on the standard-model Lagrangian. We will see that as
M — 0, the combination of parameters gi'g4' /M? remains finite. Consider Z-boson exchange
between two fermions, where, in this case, the Z boson has purely pseudovector interactions
and does not mix with the photon [sin(fy ) = 0, where Oy is the weak mixing angle|. Then,
the Z-boson mass is given by M = gv/2, where v is the Higgs vacuum expectation value and
g is the (universal) electroweak interaction constant [17]. The ratio g2/M? = 4/v? remains
finite as M — 0, since the right-hand side is a constant. For v to be nonzero the fermion
mass ms = fv/v/2 (f is a species-dependent interaction constant) should be nonzero. Thus,
it is appropriate to place constraints on g{lgs'/M? of the V3 term in Eq. (5.1). The associ-
ation with renormalizability (with the Higgs mechanisms of mass generation) makes this case
worthy of experimental study.
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Figure 5.2: Constraints for the electron-positron interaction at 90% confidence level on
the coupling constants as a function of boson mass. (a) The plot is based on experimental
[3/-36] and theoretical [77] values for the 13Sy — 11Sy ground state transition in positronium
[93] and our numerical estimate of the spin-dependent contribution. (b) The plot is based on
experimental [75] and theoretical [59, /0] values for the 1381 — 238 transition in positronium
[52] and our numerical estimates of the spin-dependent contribution. The bound is based on
Vpp potential of Eq. (5.6). (¢) Using Vaa in Eq. (5.1). Same transition as in (b).
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In the special case of a massless vector boson, M = 0, only the V5 term remains in
Eq. (5.1) because a massless vector boson does not have a longitudinal polarization mode,
and so the V3 term does not appear in this case.

5.2.2 Bounds on contact terms

Searches for exotic spin-dependent forces have been conducted both in atomic-scale experi-

ments and in macroscopic-scale experiments [11, 14, 18-22]. To search for new bosons, one
may look for the difference between observations and theoretical predictions in the spec-
trum of an atomic, molecular, or nuclear system [23-25]. Such difference can be due to an

exotic-boson exchange between the system’s constituents.

Unlike in macroscopic searches for new bosons, a contact term in a potential is of signific-
ance in atomic systems. Let us focus on determining a bound on the properties of spin-zero
or spin-one exotic bosons by using a potential that includes the contact term d(r), such as
the one appearing in Eq. (5.1) and other potentials in [9]. Contact terms were omitted in
Ref. [10], but appeared in Refs. [1, 15].

As in [23], we compare experimental results for the hyperfine structure of the antiprotonic
helium [26] with theoretical QED-based calculations for this system [27]. The difference
between experiment and theory AFE at 90% confidence level determined from

AE
L et g (5.2)

—AE 2o

where p is the mean difference between theoretical and experimental transition energies and
o is the total uncertainty, o2 = O'tzh + agl,p. To avoid misunderstanding, note that here theory
uncertainty means uncertainty in the results of the calculations of the transition frequencies
within the standard model.

We focus on a transition with the antiproton in the (n, 1) = (37, 35) state and the
electron in the (1, 0) state (where the first number is the principal quantum number, and the
second one is the orbital angular momentum). Let us consider the pseudoscalar-pseudoscalar
potential, which appears in [23] and contains a contact term:

p_p 2 —Mr
_ 992 1 M  Ar N |3 3M M e
V},p(’l“>—— 4 [UIU2|:73+ﬂ+35(T> —(0'1-7“)<0'2-’I") 7“73_'_?—’_7 W

(5.3)

We deduce the contribution of this potential to the transition energies of the antiproton
in antiprotonic helium. The difference between the expectation values of V},, in the two states
gives an estimate of the energy shift between the states caused by V,,. The contact term
contribution is of the form ¢/¢5C where C' is a constant. Other terms in the expectation
value of V), vary with boson mass. We denote such terms by gf¢gbAU(M). Assuming the
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From muonium 138;-11S,

001 1 100 10* 10° 10°
M (eV)

Figure 5.3: Constraints for the interaction between an antimuon and an electron, at 90%
confidence level on the coupling constants as a function of boson mass, using Vaa in Eq. (5.1).
The plot is based on experimental [/ 1] and theoretical [/2, /3] values for the hyperfine ground
state transition in muonium [32] and our numerical estimate of the spin-dependent contribu-
tion.

From helium 2°P,-2%P,
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Figure 5.4: Constraints for the interaction between electrons, at 90% confidence level on
the coupling constants as a function of boson mass, using Vaa in Eq.(5.1). The plot is based
on experimental [//] and theoretical [/5] values for the 23 Py — 23 Py transition in helium [2/]
and our numerical estimate of the spin-dependent contribution.

difference between theory and experiment AE at 90% confidence level [Eq. (5.2)] is due to
Vpp, We may write
|9795 (C+ AU(M)) | < |AE], (5-4)

which results in

AL ] . (5.5)

PP <
The left-hand side in this expression is the ordinate in Fig. 5.1(a). In the regime C' > AU (M)
the right-hand side would be a constant independent of M. However, in the limit of large M
we obtain AU(M) — —C and nearly cancel it. This may lead to a numerical instability at
large M, discussed in Appendix 5.5.

The solution we propose is to use a different form of the potential in numerical calculations,
a form which appeared during the derivation of the potentials and contains the operator V.



5.2 Properties of pseudovector and pseudoscalar potentials 79

10—6,
1010
<o
ke
107"
From hydrogen 8 Ep(2s)- Ens(18)
10—18 . et et R R
10 100 1000  10* 10°

M (eV)

Figure 5.5: Constraints for the electron-proton interaction, at 90% confidence level on
the coupling constants as a function of boson mass, using Vaa in Eq.(5.1). The plot is
based on experimental [,5, /0-55] and theoretical [50] values for the 8En(25) — Engs(1ls)
difference between hyperfine transitions in hydrogen [57] and our numerical estimate of their
spin-dependent contributions. Such a difference cancels the contribution of the contact terms,
since the electron density on the proton in the 2s state is eight times smaller than in the 1s
state. The vertical asymptote at 1450 eV is due to a cancellation in the denominator of Fq.
(5.8) for this plot.

Such a form for Eq. (5.3) is

V) = % (5 ) (). 9) <M> . (5.6)
16mmims r

Then, calculating expectation values with Eq. (5.6), we use integration by parts to avoid
possible numerical issues of the contact term. From integration by parts of Eq. (5.6) we see
that there is no physical problem, only a numerical one.

In Eq.(5.3) the correct large-M asymptotic is achieved due to delicate cancellation of
different terms. This is hard to achieve in a numerical calculation. However, in Eq. (5.6) there
is only one term, so no cancellation is required and the correct asymptotic is immediately
seen (e M7 /r — §(r) 4w /M?). Using Eq. (5.6) instead of Eq. (5.3) and integrating by parts,
we arrive at Fig.5.1(a) — a bound on the | gf _ gg | coupling constants as a function of boson

mass. Note that in [23] the bound was placed on the coefficient f3, which relates to the
gégpme
4mp

pseudoscalar coupling constants in the following way [10]: f3 = — , where m. is the

mass of the electron and my is the mass of the antiproton.

We sort the potentials according to the type of mediating particle (scalar, vector, etc.)
and place limits on their coupling constants [9]. In this form the limits may be compared
with the astrophysical, dark matter search and particle accelerator limits.
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Transition Bound In the range In Figure
Antiprotonic helium gggg < 0.0025 M < 102 eV 5.1(a)
(35.5,35,34) — (34.5,34, 34) g9tgs < 1.3 x 10718(M/eV)? M < 10% eV 5.1(b)
Positronium gg,gs+ <7.9x1076 M < 10% eV 5.7
138 — 115 gl gl. <1.0x107°M/eV M > 10° eV 5.7
gL g <75 x10718(M/eV)? M < 10% eV 5.2(a)
g g <2.5x10718(M/eV)? M > 10° eV 5.2(a)
Positronium gr_gb, <72x107° M < 10% eV 5.2(b)
135; — 235, 9P g” < 9.6 x 1079M/eV M > 10° eV 5.2(b)
gL g <6.9x10717(M/eV)? M <102 eV 5.2(c)
gL g <23 x10717(M/eV)? M > 105 eV 5.2(c)
Muonium gf_gZJr <21x10°8 M < 10% eV 5.8
138, — 115, gf,gz+ <1.4x1072M/eV M > 10° eV 5.8
gl gl < 9.5 x 1072 (M/eV)? M < 10% eV 5.3
gl gl <3.2x107%(M/eV)? M > 10° eV 5.3
Helium grgb <44x1078 M <10% eV 5.9
23P, — 23P gt gt <3.5x10720(M/eV)? M < 10% eV 5.4
Hydrogen gr_gh < 2.1(M/eV)~? M < 10 eV 5.10
8 Ents(25) — Engs(1s) gl_gh < 1.8 x 10712(M/eV)? M > 105 eV 5.10
gt gt <53 x 10716 M < 10% eV 5.5
gt gft < 4.5 x 1073 (M /eV)* M > 105 eV 5.5

Table 5.1: Summary of the bounds obtained on properties of hypothetical bosons using vari-
ous atomic systems.

5.3 Results

5.3.1 New bound using 1/M? term

We use the properties discussed above to obtain a bound based on Eq. (5.1) for electron—
antiproton interaction in antiprotonic helium. In order to avoid numerical issues as M — oo,
the form of Eq.(5.6) can be used in calculating expectation values for the exclusion plot.
Thus we construct Fig.5.1(b). To our knowledge, this is the first bound produced by the
term proportional to 1/M 2 in V44. Bounds on V44 of this type may be obtained using the
results in [24, 28-32], or using any other scheme that is able to constrain V3. Note further
that the bound in Fig. 5.1(b) is for a semileptonic spin-dependent interaction between matter
(electron) and antimatter (antiproton).

The bound in Fig. 5.1(b), as well as bounds on figures below which use V44 are derived
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in the following way. The equivalent of Eq. (5.4) for V44 is
A A 1 7
oftost (AU + AT ) | < AE, (57)

where AU3(M) = AU3(M)/M?; AUy(M) and AU3(M) are related to Vs and V3 per Eq. (5.1).
The bound in Fig.5.1(b) is from

gf‘gé“‘ ‘ AE ’
M2 1= (MQAUQ(M)JrAUg(M)) '

(5.8)

The term AUz(M) dictates the shape of the plot for small mass M, while M2AUs(M)
dictates the shape for large mass M. The ordinates differ between Fig.5.1(a) and 5.1(b) since
Egs. (5.5) and (5.8) are used, respectively. The scale of each figure is chosen to highlight the
shape of each bound.

5.3.2 Positronium, muonium, helium, and hydrogen

We obtain a bound on the potential in Eq. (5.1) using the ground-state 1357 —1'Sy transition
in positronium. As in [33], we take | AE| < 5 MHz [11]. The result appears in Fig.5.2(a)
and its bound is described in Table 5.1. The shape of the bound line is explained by the
fact that V3 dominates for small masses M, while Vs dominates for large masses M where
M?AUy(M) results in a constant (see Appendix 5.6).

We can get a bound on g g7} from Eq. (5.7), instead of a bound on g’' g% /M?2. Then
we can compare the bound with the result in [33] and see that we have a more stringent
bound in the regime of M < AUg/AUQ. This is due to the fact that, in contrast to Ref. [33],
we use a potential containing the 1/M? term.

In Figs.5.2(b) and 5.2(c) we present bounds on pseudoscalar and pseudovector electron-
positron interaction based on the 135; — 23S transition in positronium. We take AE =
10 MHz for this transition [32]. In Appendix 5.6 we give general analytical results for the
potentials’ expectation values in 1s and 2s states.

The ground-state hyperfine transition is measured accurately also in the atomic system
of muonium. Using this transition, we obtain a bound on the potential in Eq. (5.1). As in
[32], we take | AE'| < 5 x 10~* MHz. The result appears in Fig. 5.3.

In Fig. 5.4 we obtain a bound on pseudovector coupling constants and boson mass from
the 23 P, — 23 P} transition of helium, using the results in [24], where | AF | < 3.7 kHz.

Finally, in Fig. 5.5 we use spectroscopic transitions in hydrogen to obtain a bound on

electron-proton pseudovector interaction. Following [57] we take the difference (at 90% con-
fidence level) between theoretical and experimental results | AE | < 0.102 kHz for 8 Fy,55(2s) —
Engs(1s), where Eypg stands for the energy of the hyperfine transition in a particular state.
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5.4 Conclusion

One can search for new elementary particles using atomic spectroscopy. For the first time,
we conduct such a search using a potential that results from the longitudinal polarization of
a pseudovector particle. We also consider the pseudoscalar potential that includes a contact
spin-dependent term, which does not contribute to new forces searched for in experiments
with macroscopic objects, but does contribute in atomic spectroscopy. We extract limits on
the interaction constants of pseudovector and pseudoscalar particles from the experimental
spectra of antiprotonic helium, muonium, positronium, helium, and hydrogen. The results
are summarized in Table 5.1.
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5.5 Exclusion Plot with Contact Term

Direct application of Eq. (3) in the main text leads to Fig. 5.6, where apparently we obtained
a bound on the coupling constants for any boson mass M, as the bound edge is horizontal on
the right side of the plot. Nonetheless, this bound plot is incorrect for boson masses much
larger than the fermion masses, due to numerical reasons. The problem is that the calculation
for large masses M is affected by absence of the proper cancellation between different terms
in Eq. (3) of the main text. Therefore in Fig. 5.6 we colored in white the bound where the
result is inaccurate.

By focusing on M < mj, ms (where m; and mg are fermion masses) we avoided the issue
of finite numerical precision at large boson masses in the exclusion plot of Fig. 3 (b) in [23].
This ensured that the plot in [23], which includes the contribution of the contact term, is
correct in the range considered.

5.6 Analytical Derivation of Expectation Values

Consider the potentials without their coupling constants coeflicients

—Mr M?2 3M 3
—+ =+

r 72 rd

Vo = (01:02) .

= [ (M b ) e
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Figure 5.6: Constraints for the interaction between an electron and an antiproton at 90%
confidence level on the coupling constants as a function of boson mass, using the V, potential
with the contact term [Eq.(3) in the main text] in numerical integration. The bound for large
masses M is affected by absence of the proper cancellation between different terms in Eq. (3)
of the main text. The affected region on the top right is shown in white above a dashed line.
The shaded area is associated with the shaded area in Fig. 1(a) in the main text. See Fig.
1(a) for the accurate bound.

We need the impact of these potentials on the energy difference between the 135 and 235,

states in hydrogen, muonium and positronium, which are spherically symmetric. This allows
us to average the V3 potential over angles, using (7;7y) = %(L-k. Note also that (o1 - 02) =1
for the total spin S = 1 states. As a result we only need integration of the potentials

—Mr
W)=, (W) = % (4775(7“) _ Af) e—Mr

with the squared hydrogen-like wave functions for 1s and 2s orbitals

(5.9)

3 ,—2kr 3 _—kr 2
1 (r)? = he : o (r)]* = e (1 a k”") ;
™ 8 2

where k = 1/a for hydrogen and muonium and k = 1/2a for positronium, where a is the
Bohr radius. For hydrogen-like ions k = Z/a. The results are

4k3
(1| Valyr) = @k + M)
k3 (k? +2M2
(2| Valih2) = 4((k—:_M)4)’ (5.10)
16k (k + M)
(1| Vslapr) = B2k M2
3 1372012 2
PNELY, MR 4 20) (5.11)

6 12(k + M)?



84 Pseudovector and pseudoscalar spin-dependent interactions in atoms

5.7 Additional plots of bounds on pseudoscalar interactions

In Figures 5.7, 5.8, 5.9, and 5.10 we show several plots referred to in Table I of the main text.
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Q'm1X10 ‘
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1x105 01 1 100 104
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Figure 5.7: Constraints for the electron-positron interaction at 90% confidence level on the
coupling constants as a function of boson mass using Eq.(3) in the main text. The plot is
based on experimental [7/-306] and theoretical [77] values for the 13S; — 118y ground state
transition in positronium [55] and our numerical estimate of the spin-dependent contribution.

From muonium 1381—1180
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Figure 5.8: Constraints for the interaction between an antimuon and an electron, at 90%
confidence level on the coupling constants as a function of boson mass, using Vp, in Eq. (3)
of the main text. The plot is based on experimental [/1] and theoretical [/2, /3] values for

the hyperfine ground state transition in muonium [72] and our numerical estimate of the
spin-dependent contribution.
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Figure 5.9: Constraints for the interaction between electrons, at 90% confidence level on the
coupling constants as a function of boson mass, using Vpy, in Eq.(3) of the main text. The
plot is based on experimental [//] and theoretical [/5] values for the 23 Py — 23 Py transition
in helium [2/] and our numerical estimate of the spin-dependent contribution.
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Figure 5.10: Constraints for the electron-proton interaction, at 90% confidence level on the
coupling constants as a function of boson mass, using Vyp in Eq.(3) of the main text. The
plot is based on experimental [/ 3, /0] and theoretical [50] values for the 8 Engs(28) — Engs(1s)
difference between hyperfine transitions in hydrogen [57] and our numerical estimate of their
spin-dependent contributions.
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An experimental test at the intersection of quantum physics and general relativity is
proposed: measurement of relativistic frame dragging and geodetic precession using in-
trinsic spin of electrons. The behavior of intrinsic spin in spacetime dragged and warped
by a massive rotating body is an experimentally open question, hence the results of such
a measurement could have important theoretical consequences. Such a measurement is
possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth. Under
conditions where the rotational angular momentum of a ferromagnet is sufficiently small,
a ferromagnet’s angular momentum is dominated by atomic electron spins and is pre-
dicted to exhibit macroscopic gyroscopic behavior. If such a ferromagnetic gyroscope is
sufficiently isolated from the environment, rapid averaging of quantum uncertainty via
the spin-lattice interaction enables readout of the ferromagnetic gyroscope dynamics with
sufficient sensitivity to measure both the Lense-Thirring (frame dragging) and de Sitter
(geodetic precession) effects due to the Earth.

One of the most perplexing problems in theoretical physics is devising a framework en-
compassing Einstein’s theory of general relativity (GR) and quantum mechanics (QM) [1-3].


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.044056

90 Gravity Probe Spin

Experimentally addressing this subject likely requires probing distances at the Planck scale,
far too short to be reached in the near future [1]. Even at longer distances, there has been a
dearth of experiments probing regimes where both GR and QM are essential to understand
observations [5, 6]. While quantum systems have been used in measurements of gravitational
phenomena, for most such experiments the measured phenomena are either not inherently
quantum mechanical (e.g., atomic measurements of the gravitational redshift [7—9], where
clocks are tools to observe time dilation) or the gravitational phenomena are not inherently
relativistic (e.g., observations of the quantum behavior of neutrons in Earth’s gravitational
field [10, 11], understandable with Newtonian gravity).

We propose an experiment testing phenomena that involve both GR and QM: meas-
urement of gravitational frame dragging [12] and geodetic precession [I3], which are funda-
mentally general-relativistic effects, with intrinsic spin, which is a fundamentally quantum
phenomenon. It is crucial to emphasize that whether or not intrinsic spins undergo gen-
eral relativistic precession is an experimentally open question: to date there has been no
viable way to reach the required sensitivity for direct observation of frame dragging or geo-
detic precession of intrinsic spins. The significance of such a test is evident from the fact
that GR incorporates only classical angular momentum arising from the rotation of finite-
size, massive bodies [14—-16]. The key point is that GR explicitly describes effects related
to angular momentum arising from the motion of mass-energy through spacetime, but does
not explicitly consider effects related to spin, where the angular momentum arises from an
intrinsic quantum property of point-like particles.

Heuristically, it can be argued based on Einstein’s equivalence principle that intrinsic spin
should behave in the same way as the angular momentum of a classical gyroscope [17-19].
Thus a reasonable theoretical approach is to use standard quantum field theory for the locally
flat spacetime and treat frame dragging and geodetic precession as small perturbations to the
Lorentz metric [17-22]. However, whether or not this theoretical approach is correct remains
to be proven experimentally [23]; in this sense, the proposed experiment can be envisioned as
an equivalence principle test in a new regime. The proposed experiment is based on electron
spins; meanwhile, frame-dragging also causes light polarization to rotate [24], a measurement
of which would probe the analogous effect on photon spins [25, 20].

Indeed, without guidance from experimental measurements, there are a number of open
theoretical possibilities. Even at an early stage it was realized that extending GR to include
effects related to intrinsic spin (as, for example, in Cartan’s theory [27]) could change the
microscopic structure of GR in fundamental ways, such as introducing torsion [28, 29]. In
Einstein’s GR, mass-energy generates and interacts with curvature of spacetime but the tor-
sion is zero, and so vectors curve along geodesics via parallel transport but do not twist.
In Cartan’s extension, intrinsic spin generates and interacts with nonzero torsion, and so
frames transported along geodesics curve due to the effect of mass-energy and twist due to
the effect of intrinsic spin (see, for example, the review by Hehl et al. [30]). Thus warping
of spacetime described by GR with torsion does not affect intrinsic spin in the same way as
classical angular momentum, leading to order unity differences between general-relativistic
precession observed with intrinsic spin and that observed with a classical gyroscope [31].
Furthermore, spin-gravity interactions deviating from the predictions of GR are common fea-
tures of theories attempting to go beyond standard physics [32—35]. Thus the results of an
experiment measuring general-relativistic precession with intrinsic spins would have import-
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ant consequences regardless of the outcome, distinguishing between a number of different
theoretical possibilities.

A measurement of general-relativistic precession effects using intrinsic spin can be viewed
as a “g — 1”7 test for gravity, in analogy to the g — 2 experiments that test quantum electro-
dynamics [30], where g is the electron gyromagnetic ratio. In the proposed experiment, the
parameter g is the gyrogravitational ratio: the ratio between intrinsic spin and angular mo-
mentum coeflicients in the theoretical description of relativistic precession. If gravity affects
intrinsic spin identically to orbital angular momentum, then g = 1, as expected based on
Einstein’s equivalence principle applied to intrinsic spin [19, 37—40]. In other approaches g
differs from unity: for example, g = 2 in certain classes of Yang-Mills gravity theories [11, 12]
and g = 3 in the torsion gravity theory described in Ref. [31].

Such an experiment only recently became possible, even in principle, based on a proposal
for a ferromagnetic gyroscope (FG) with unprecedented sensitivity [13]. An ideal FG is
a freely floating ferromagnet whose intrinsic spin S has far greater magnitude than any
rotational angular momentum L associated with precession of the ferromagnet,

S~ Nh>L~IQ, (6.1)

where N is the number of polarized spins in the ferromagnet, & is Planck’s constant, I is the
moment of inertia of the ferromagnet, and € is the precession frequency. The inequality (6.1)
translates to a certain range of background magnetic fields at the position of the FG; the upper
limit on the magnitude is denoted the threshold field B* and is defined in Table 6.1. Under
these conditions, in the absence of external torques, angular momentum conservation keeps
the expectation value of the total angular momentum J = S + L fixed with respect to the local
space coordinates. The spin-lattice interaction keeps S oriented along the easy magnetic axis
7 and rapidly averages components of S transverse to fi. This rapid averaging of transverse
spin components without inducing a random walk of J significantly reduces quantum noise for
measurement times longer than the characteristic time scale of the spin-lattice interaction,
which is < 107 s in most cases. This enables exquisitely precise measurements of spin
precession, as discussed in detail in Refs. [13, 11]. A number of groups are actively working on
developing the requisite experimental tools to construct an FG [15—19], opening the possibility
of observing relativistic frame dragging of S as we describe below.

Specifically, we investigate measurement of both the Lense-Thirring effect [12, 50] (frame
dragging) and the de Sitter (geodetic precession) effect [13, 51, 52]. Both effects cause preces-
sion of a gyroscope orbiting a massive body such as the Earth: Lense-Thirring precession is
caused by spacetime being dragged by the rotation of a massive body whereas de Sitter pre-
cession is caused by the motion of a gyroscope through spacetime curved by a mass (present
also for a non-rotating massive body). The Lense-Thirring precession is characterized by the
angular velocity vector [50],

QLT%gg%:ﬂQE'Rﬁ*QE , (6.2)
where g is the gyrogravitational ratio, G is Newton’s gravitational constant, M is the mass
of the Earth, R = RR is the position of the satellite relative to the center of the Earth, c
is speed of light, and Qg is Earth’s angular velocity (Qp ~ 27 x 11.6 pHz). For a satellite
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Table 6.1: Proposed characteristics of the orbiting ferromagnetic gyroscope (FG) system
for a measurement of general-relativistic spin precession. The FG is assumed to be a fully
magnetized cobalt sphere in vacuum with superconducting shielding as described in the text.

Characteristic Notation Approximate Value
Radius r 1 mm

Mass density p 8.86 g/cm3

Mass M = 4mpr3/3 4x107%¢g
Moment of inertia I ~2Mr?/5 1.6 x 107 g - cm?
Number of polarized spins N 4 x 10%°
Ferromagnetic resonance frequency wo 10t 571
Gyroscopic threshold field B* = Nh?/(gugl) 3x 10719 G
Gyroscopic threshold frequency Q= Nh/I 3x1073 st
Operating magnetic field B 1071 G

Larmor precession frequency Qp 1074 st
Temperature T 0.1 K
Background gas density n 103 cm ™3

instantaneously above the North pole at R ~ Rg ~ 6.5 x 106 m (where R is Earth’s radius),
Qrr ~ 4 x 1071 57! for g = 1. The de Sitter precession in a near-Earth orbit is [50, 53]

3GM .
st ~ giﬁR XU, (63)
where v is the satellite velocity. For the same satellite at R &~ Ry one obtains Qgg ~ 10712 71
for g = 1. Note that depending on the particular nature of the nonstandard theory of gravity,
it may be the case that g could take on different values for the Lense-Thirring and de Sitter

effects [25, 29].

Lense-Thirring and de Sitter precession of classical angular momentum have been meas-
ured by satellite experiments, and observed in astrophysical settings [54, 55]. Gravity Probe
B (GP-B), a satellite containing four highly spherical niobium-coated fused quartz gyroscopes
in a cryogenic environment, measured the de Sitter precession of the rotational angular mo-
mentum of the gyroscopes to a 0.3% precision and the Lense-Thirring precession of the
gyroscopes to 20% [56, 57]. A different approach was to use the satellite laser-ranging net-
work [58] to precisely track the precession of the angular momentum associated with the
orbital motion of satellites, rather than gyroscopes [59-(2]. Efforts are ongoing to observe
these effects by interferometry methods [63, (4].

Our proposed experiment is modeled on GP-B, where the rotating niobium-coated fused
quartz spheres are replaced by FGs. To evaluate the sensitivity, we assume that the FG is
housed within a satellite similar to that used in the GP-B experiment [50] and referenced
via a telescope to a remote star. For our sensitivity estimates, we assume an FG with
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characteristics as listed in Table 6.1: a spherical cobalt ferromagnet of radius » =~ 1 mm
with remanent magnetization along n. The direction of the magnetic moment of the FG can
be measured using a Superconducting QUantum Interference Device (SQUID) to detect the
magnetic flux through a pick-up loop. A pick-up loop placed at a distance d ~ 1 mm away
from the tip of the ferromagnet with loop radius dsin 6, =~ 0.8 mm, where 0,, ~ 54.74° is
the magic angle, maximizes the flux capture and would measure a changing magnetic flux
of amplitude ® ~ 100 G - cm? as the FG precesses. The sensitivity of a low-temperature
SQUID to flux change is 6® < 107 G - cm?/v/Hz [65-68], which gives a detector-limited
angular resolution for the FG of 664, ~ d®/® < 107" rad/v/Hz. This translates to a
detection-limited spin-precession resolution:

AQqe ~ 107 0¢[s] 32 g1 (6.4)

Estimates show that the fundamental quantum noise limit for an FG is far below AQges [13].

We estimate that the dominant source of statistical uncertainty in a satellite experiment
using an FG to measure GR effects is not from the detector noise of the SQUID but rather
from background gas collisions that impart angular momentum to the FG, causing random
walk of its spin S. Based on analysis of Ref. [13], and accounting for the spherical geometry
of the FG, we find that the spin-precession resolution is limited to

mr2 ng
AQgus ~ —th 6.5
g 6Nﬁ\/ 7t (6.5)

where m is the mass of the background gas (assumed to be He in our case since the system
is under cryogenic conditions), vy, is the average thermal velocity of the background gas,
and other relevant parameters are listed in Table 6.1, assuming a background-gas density
corresponding to cryogenic ultrahigh vacuum [36]. The effects of other sources of noise are
estimated to be negligible compared to the effects of background gas (see Ref. [13] and
Appendix 6.1). Indeed, recent experiments studying micron-scale ferromagnets levitated
above superconductors have found that gas collisions are the dominant dissipation mechanism

[49].

Using a ferromagnet as a gyroscope requires exquisite shielding and control of magnetic
fields in order to avoid systematic errors due to magnetic torques. We propose to use a
multi-layer superconducting Pb shielding system based on the GP-B design as described in
Refs. [69, 70] combined with a conventional multi-layer p-metal shielding and magnetic-field-
control coil system as described, for example, in Ref. [71]. To achieve ultralow magnetic fields,
the p-metal/coil system, with feedback provided by internal SQUID magnetometers, is used
to achieve an ambient magnetic field less than 107! G, close to the noise limit of SQUID
magnetometers for integration times of one second. Nested collapsed Pb foil shields are
inserted within the pu-metal/coil system and subsequently cooled below the superconducting
phase transition. The collapsed Pb foil shields are folded in such a manner as to minimize
their internal volume. Once the temperature of the Pb is below the superconducting phase
transition, the shields are expanded by unfolding them so that they have a considerably
larger internal volume. Persistent currents in the superconducting shields keep the flux
constant and thus the field within the expanded Pb shields is reduced by the ratio between
the effective areas of the expanded and collapsed Pb foil shield. In practice, the residual field
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can be reduced by a factor of more than a hundred per layer, with practical limitations due to
thermoelectric currents generated in the Pb shield. For such a superconducting shield system,
the magnetic field within the shield will be determined by the frozen flux. These techniques
can be used to achieve a magnetic field at the position of the FG, i.e. a background magnetic
field B, much smaller than the required threshold field for operation (B* ~ 3 x 1070 G, see
Table 6.1 and Ref. [13]).

The proposed size and geometry for the FG (a mm-diameter sphere) is motivated by the
need to minimize perturbations from background gas collisions (Afges o 1/N and minimized
for a spherical shape), achieve the best possible detector-limited sensitivity (AQge; o< 1/N
[13]), and maintain a reasonable requirement for the threshold field B*.

Undoubtedly, some residual magnetic field B within the shields will persist, and so the
questions now become whether the FG precession frequency €2p due to this field is sufficiently
stable and whether {25 can be reliably distinguished from the sought-after effects, 7 and
Q45. Superconductors can achieve remarkable stability: drifts at the level of a part in 10!
per hour have been measured [72]. Assuming the residual trapped field in which the FG
operates is B ~ 107!1 G, this leads to a magnetic field drift of ~ 3 x 10726 G/s, which
corresponds to a drift of the magnetic precession frequency of dQ2p/dt ~ 2 x 10719 s72. For
the purposes of these estimates, we assume the worst-case scenario of a linear magnetic field
drift at this rate (although on long time scales the drift will likely be a random walk of B
and Qp).

The stability of Qp is crucial for distinguishing magnetic precession from the Lense-
Thirring and de Sitter effects. For a residual field with B ~ 107! G, Qp ~ 10~* s~!, which
is much larger than the Lense-Thirring and de Sitter effects [Egs. (6.2) and (6.3)], and thus
it is important to find a way to distinguish 25 from Q77 and Q4g. In the case of the Lense-
Thirring effect, €277 periodically varies in time in a predictable way because R changes in
time with respect to Qg as the FG orbits the Earth. If the FG is placed in an elliptical orbit,
both Q77 and €45 could be modulated by order unity as R changes. Thus it would become
possible to search for the predictable periodic variation of €277 and €245 on top of the stable
background magnetic-field precession. An example of how this can be done is modelled in
Appendix 6.3.

Further discrimination of €277 and €245 from €25 can be obtained by using an array of FGs
and taking advantage of the vectorial nature of the general-relativistic spin-precession. Con-
sider, for example, the Lense-Thirring effect (similar arguments can be made for the de Sitter
effect). If Qp is parallel with Qr7, the effects add linearly to the measured spin-precession
frequency: Q =~ Qp + Qrr. However, if Qp is perpendicular to Qrp, the contribution of
the Lense-Thirring effect is quadratically suppressed: Q ~ Qp + Q%,/2Qp. An array of
FGs in separate shields can be employed with magnetic fields oriented in different direc-
tions, such that the various FGs have different predictable periodic patterns of sensitivity to
general-relativistic spin-precession effects. This will enable coherent averaging and suppress
systematic errors due to field drift and local perturbations.

Additionally, it may be possible to rotate or modulate B at a frequency much faster than
the orbital frequency in order to further discriminate ;7 and Q49 from p. This may be
achieved by rotating the magnetic shielding relative to the FG since the residual magnetic field
will be dominated by frozen flux rather than the finite shielding factor. Further mechanisms
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Figure 6.1: Sensitivity to general relativistic spin-precession effects in the proposed “Grav-
ity Probe Spin” experiment. The vertical scale on the right is in units of milliarcseconds
(mas) per year. The black curve shows the projected uncertainty AQ in the measurement
of the precession frequency 2 using a 1-mm radius spherical FG under conditions listed in
Table 6.1. This curve results from two contributions summed in quadrature. First, the short-
term statistical uncertainty is dominated by background gas collisions [Eq. (6.5), dashed gray
line]. Second, the long-term uncertainty in the measurement is expected to be dominated by
magnetic field drift within the superconducting magnetic shields, here assumed to be linear
with rate 3 x 10726 G/s (dotted gray line). The blue line and light blue shaded area indicate
the level beyond which the measurements are sensitive to the de Sitter effect [13, 51, 52] and
the red line and pink shaded area indicate the level beyond which the measurements are sens-
itive to the Lense-Thirring effect [12, 50], calculated for the GP-B orbit and gyrogravitational
ratio g = 1 [Eqgs. (6.2) and (6.3)]. The green line and light green shaded area show existing
experimental constraints on anomalous gravity-induced spin-precession [51-83].

to improve signal detection are possible: if two types of ferromagnetic materials are used,
such that the materials’ gyromagnetic ratios are opposite, their magnetic precession is in
opposite directions but the relativistic precession are in the same direction. For control of
systematic errors, it may also be interesting to consider experiments with materials having
high net spin polarization but negligible magnetization, high magnetization but negligible
spin polarization, and varying ratios of quantum orbital angular momentum to intrinsic spin,
such as used in torsion pendulum experiments measuring exotic spin-dependent interactions
[73-75].

Relative motion between the SQUID pick-up loop and the freely floating FG is another
source of noise and systematic error that will require precise control. Errors due to this rel-
ative motion will ultimately be limited by the satellite position/orientation feedback control
system referenced to the star-tracking telescope. We assume a star-tracking telescope and
position/orientation feedback control similar to that used by GP-B, which had a long-term
accuracy corresponding to 5 x 10710 rad [76-78], which would provide sufficient stability for
measurement of the g = 1 de Sitter and Lense-Thirring effects. Related technical issues are
the trapping and release of the FG once the satellite is in orbit, damping of rotational motion
of the FG such that L <« S, vibrations of the pick-up coil, and the effect of electrostatic
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and magnetic forces on the FG that might accelerate the FG relative to the satellite housing.
Protocols for measurement and control of the FG and pick-up coil motion will need to be
designed and could, for example, involve damping of FG motion using eddy currents [15]
induced in a retractable conductor or various trapping and cooling techniques that have been
developed to control the motion of macroscopic objects [79, 80]. The effects of stray electric
fields and patch potentials, important issues for GP-B [56], are considered in Appendix 6.1.2.
Overall, we expect that the ultimate accuracy of an FG-based measurement of general re-
lativistic spin precession will be determined by the SQUID sensitivity, collisions of residual
gas molecules with the FG, and magnetic field drift.

Figure 6.1 shows the scaling of uncertainty in the measurement of the spin precession
frequency €) as a function of time considering the aforementioned effects. In principle, the
projected measurement sensitivity of such a “Gravity Probe Spin” experiment is sufficient
to measure the de Sitter and Lense-Thirring effects for g = 1. Consequently, stringent
bounds will result on parametrized post-Newtonian (PPN) physics, scalar-tensor theories,
and other standard-model extensions [37]. By comparing the sensitivity of Gravity Probe
Spin to existing experimental bounds on anomalous gravity-induced spin-precession [$1-83]
as shown in Fig. 6.1, the proposed experiment has the potential to explore many decades of
unconstrained parameter space.

In conclusion, we have described a satellite experiment using mm-scale ferromagnetic
gyroscopes that has the potential to perform the first measurement of gravitational frame-
dragging of electrons’ intrinsic spins. This experiment, building on the technology of Gravity
Probe B, would be a unique test at the intersection of quantum mechanics and general
relativity.
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6.1 Experimental requirements

6.1.1 Magnetic torque noise

An additional source of error affecting an FG, not considered in Ref. [13], was pointed out
in Ref. [11] (see also Appendix 6.2). As noted in Ref. [13], the spin-lattice coupling gen-
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erates stochastic fluctuations of the FG’s magnetic moment p described by the fluctuation-
dissipation theorem. In the presence of a nonzero magnetic field B, this leads to a stochastic
1 X B torque acting on the FG, which in turn causes a random walk of the FG’s spin axis
J. This coupling of the FG to the external environment through B generates noise in a
measurement of the precession frequency:

0% |4akgT
AQp~ B 6.6
B= oo\ ANt (6.6)

where kp is Boltzmann’s constant and « is the Gilbert damping constant, taken as 0.01.
Under the conditions of our proposed experiment, AQp is significantly smaller than other
sources of error.

6.1.2 Electric field requirements

A precessing FG located in a spatial region with non-vanishing electric field may experience
an electric-field-induced torque. In this section we estimate the requirements on the electric
field and its gradient, in order to keep the FG precession rate due to this torque below the
expected signal level.

A conducting sphere in a uniform electric field experiences no torque, since the induced
electric dipole moment is parallel to the electric field. However a slight deviation from a
spherical shape breaks the symmetry of the polarizability tensor, and, in general, causes the
induced dipole moment to be at an angle to the electric field. Assuming the FG is shaped
as a prolate spheroid (with semi-axes a, b, and ¢, where a > b = ¢) with small eccentricity
e = /1 —b%/a2, the correction to the depolarization factors is of order €2 [34]. The torque
on such a slightly non-spherical FG of radius r in a uniform electric field £ can be estimated
(in cgs units) as N~ 232 /5. The resulting precession rate is given by ol = 7V /(NR).
The requirement to keep this rate below Qpr with g =1, le) <4 x 107" s~ imposes the
following condition on the product between the eccentricity and the magnitude of the electric
field:

eE| <3 x107°V/cm. (6.7)

It should be noted that, in practice, the requirement on |¢E| may be significantly reduced
since orbital modulation can be used to distinguish general relativistic precession effects from
nominally constant background torques, as discussed in Sec. 6.3.

An electric field gradient E’ will exert a force on the FG, which must balance with all
the other forces in the FG at its equilibrium point. Since there are certainly other forces,
there may be a non-vanishing electric field gradient, which exerts a torque on the FG even if
it is a perfect sphere. The magnitude of this torque can be estimated as 7'6(2) ~ r*EFE’'. The
resulting precession rate is given by 99 = 75(2) /(NR). The requirement to keep this rate
below Q7 with g =1, (222) <4 x 107 571 imposes the following condition on the product
between the electric field and the gradient:

|EE'| < 107" VZ/cm?®. (6.8)
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(2)

A procedure to reduce systematic error due to 7¢~’, often employed in precision measurement
protocols, is to apply a large electric field £ and use a measurement of Q((f) to minimize
E’, then apply a large electric field gradient E’, and use a measurement of (2&2) to minimize
E. Performed iteratively, this procedure can enable cancellation of residual E and E’ to
relatively high precision, and will also help reduce systematic error due to nonsphericity of

the FG [Eq. (6.7)].

The electric field at the equilibrium position of the FG is created by potentials on proximal
surfaces. To control electric fields these surfaces have to be coated with a high-conductivity
material, such as gold. Nonetheless, surface-potential patches of order 10 mV are still likely to
be present [35]. The electric field from such patches falls off exponentially with distance to the
surface. We estimate that 10 mV patches with spatial scale of < 1 mm create electric fields
that satisfy requirements described by Egs. (6.7) and (6.8) provided the FG is > 1 cm away
from the surface. These estimates give the requirements on the surface preparation necessary
to ensure that electrostatic precession remains below the GR signal. Again, FG precession
due to GR effects can be distinguished from le) and Q£2) through orbital modulation as
described in Sec. 6.3.

6.1.3 Summary

Considerable development of FG technology is required before a Gravity-Probe-Spin-type ex-
periment will become feasible. First and foremost, the gyroscopic precession of a ferromagnet

as predicted in Ref. [13] has to be experimentally observed and studied. Several groups are
working on ground-based laboratory experiments studying the behavior of micron-scale levit-
ated ferromagnets [15—19]. To provide an overall sense of the target parameters for a Gravity

Spin experiment, Table 6.2 shows the benchmarks required to achieve the estimated sensit-
ivity plotted in Fig. 6.1. These benchmarks are derived from the requirements to achieve the
estimated best experimental sensitivity to precession, A, ~ 10~% rad/s, achieved after
an integration time of Ty, ~ 6 x 10% s.

Although, as discussed in the text, many of these benchmark experimental parameter val-
ues have been achieved in laboratory settings, the achievable experimental parameters have
yet to be studied in the context of FG precession. Furthermore, achieving these benchmarks
in a satellite presents a host of additional challenges. Detailed studies of these sources of
noise and systematic errors in experiments with FGs in both laboratory and microgravity
environments will be required on the way toward a Gravity Probe Spin experiment. Non-
etheless, based on the estimates presented here and the modeling presented in Appendices 6.2
and 6.3, achieving these milestones appears possible in principle. We reiterate that the main
purpose of our manuscript is to highlight the potential payoff of developing FG devices for
fundamental physics experiments and to motivate further experimental efforts.

6.2 Model of a ferromagnetic gyroscope

We model the FG dynamics using the formulation described in Ref. [14]. The FG is taken to
be a single-domain spherical magnet with body-fixed moments of inertia Ty =7y =77 = 7.
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Table 6.2: Summary of benchmark experimental parameters necessary to achieve the sens-
itivity plotted in Fig. 6.1. Electric-field-related estimates assume the nearly spherical FG has
an eccentricity of ~ 0.01.

Parameter Benchmark
Magnetic flux sensitivity dd <5x 1078 Gcflfln;
Magnetic field B<1071 G
Magnetic field drift |IB| <3x 10726 G/s
Magnetic field gradient B' <1073 G/cm
Electric field E <5%x107° V/em
Electric field gradient E'<6x 1072 V/cm?
Electric patch potentials oV <001V
Background gas density n <103 cm™3
Temperature T<01K

Angular stability AG <6 x 107 rad

It is subject to a uniform magnetic field B and general-relativistic precession described by
the angular velocity vector €2,.. The Hamiltonian describing this system is given by:

~ 1 . N ~ N
H=_—L*—(wo/h)(S-0)*—fx-B+Q,-(L+gS). (6.9)
21- N—_—— N—————
H'R Ha Hp Hq

In the rotational Hamiltonian Hpg, L is the orbital angular momentum operator; in the
anisotropy Hamiltonian H 4 [30], S is the spin operator, 1 is the operator for the unit vector in
the direction of the easy magnetization axis, and wy is the ferromagnetic resonance frequency;
in the Zeeman Hamiltonian term Hp, 1 = g,ugg is the magnetic moment operator (up
is the Bohr magneton and ¢ is the Landé factor); and Hq is the Hamiltonian accounting
for the angular velocity vector €2, related to general-relativistic precession, where g is the
gyrogravitational ratio (if g = 1 the GR effects for intrinsic spin S and orbital angular
momentum L are the same).

The dynamics are treated semiclassically since the FG has large spin expectation value S,
as done in Ref. [11]. We write the Heisenberg equations of motion in reduced units, defining
dimensionless vectors: the unit spin m = S/S, the orbital angular momentum £ = L/S, the
total angular momentum, j = m + £ and the unit vector in the direction of the magnetic field
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b =B/B:
m=wpm X b+ wy(m X n)(m-n)
—am x (m— N xm)+ g, xm, (6.10)
£ =—wy(m xn)(m-n)
+amx (m—Qxm)+Q, x4, (6.11)
n=(Q+Q)xn, (6.12)

where the angular velocity vector €2 is given by
Q=wifl=wi(j—m). (6.13)

Here wp = gup|B| is the Larmor frequency and w; = S/Z is the nutation frequency. The
terms containing the Gilbert damping coefficient a account for Gilbert dissipation of spin
components perpendicular to the easy magnetization axis. The Gilbert damping is due to
interactions of the spin with internal degrees of freedom such as lattice vibrations (phonons),

spin waves (magnons), thermal electric currents, etc. [27, 88]. The Gilbert damping tends
to lock the spin to the easy axis because the components of the spin orthogonal to the easy
axis quickly decay [11]. Hence we take m(t) = n(t), which also simplifies the numerical

calculations. Adding the spin and rotational angular-momentum in Eqgs. (6.10) and (6.11),
we obtain

j=m+L=wpmxb+Q, x£+gm, (6.14)

=wpm xb+Q, xj+g—1m. (6.15)

Using Eq. (6.13) and our approximation that m = n (hence m x n = 0), Eq. (6.12) can be
rewritten in the form

m = (wj+Q)xm. (6.16)

We can solve Egs. (6.15) and (6.16) for a given satellite trajectory that specifies €,.(t) =
Qﬁz(t) + Qéls) (t) to obtain the dynamics of the FG. The upper index (1) in the expression for
Q,(t) sets g =1 in Egs. (2) and (3) of the main text, since in the modelling g is present in
the dynamical equations such that it distinguishes between the effect of general-relativistic
precession of intrinsic spin as compared to that of angular momentum, as seen in Eq. (6.9).
The results of the modeling for illustrative cases are discussed in the next section.

6.3 Orbital dynamics of ferromagnetic gyroscope

In order to use an FG to measure GR-induced spin precession, it is crucial to have a distinct
signature that can be differentiated from background effects. As noted in the main text,
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periodic motion of an FG at harmonics of the orbital frequency arise due to the modulation
of Q7 and Q49 as the FG orbits the Earth. This offers a method to distinguish GR-induced
spin precession from Larmor precession and nutation, whose frequencies are constant in time

for fixed B.

To illustrate the use of orbital modulation in a “Gravity Probe Spin” experiment, we model
the behavior of an FG in a circular polar orbit around the Earth with radius R ~ 7,000 km
(Fig. 6.2). The FG operates in an external magnetic field B oriented along Earth’s rotation
axis 2p, chosen to be the z-axis of our coordinate system. As discussed in Sec. 6.2, the
spin is locked along the direction of its easy magnetization axis by Gilbert damping, and is
initially prepared to be perpendicular to B, along x. In this geometry, precession due to the
de Sitter effect [Eq. (3) in the main text] is both constant in time, since R is constant, and
quadratically suppressed, since (4g is perpendicular to Qp and Q49 < Qp. On the other
hand, the Lense-Thirring precession Qpp(t) is parallel to Qp when the FG is at the north
and south poles and as such is modulated at twice the orbital frequency [Eq. (2) in the main
text]. The orbital modulation of Q7 7(¢) can be understood based on the fact that the Lense-
Thirring effect generated by the rotation of the Earth is the gravito-magnetic equivalent of a
dipole field, and possesses axial symmetry about z.

Figure 6.2: Conceptual schematic diagram of a “Gravity Probe Spin” experiment. A freely
floating spherical FG located within a superconducting shield is in a circular polar orbit. The
magnetic field B (from the frozen fluz in the superconducting shields) is oriented parallel to
the direction of Earth’s rotation axis Qg, both designated to point along z. The insert shows
the initial orientation of the FG’s magnetic moment and spin m along the x axis. The pick-up
cotl measures the FG’s magnetization along x. This geometry is designed for the detection of
the Lense-Thirring effect.

The results of a numerical solution of Egs. (6.15) and (6.16) for the FG dynamics, m(t),
under the conditions described above are shown in Figs. 6.3 and 6.4. The figures show power
spectral densities (PSDs) of the estimated flux ® through a pick-up coil in the geometry
described in the text [see discussion surrounding Eq. (4) in the main text] as the FG orbits
the Earth as shown in Fig. 6.2. In order to clearly discern the Lense-Thirring effect in
Figs. 6.3 and 6.4, we choose g = 107, just below the present experimental constraints on the
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Figure 6.3: FEstimated power spectral density (PSD) of the time-dependent flux signal ®
due to a precessing FG that would be measured by a SQUID pick-up coil as in Fig. 0.2.
The plot shows the PSD of a time-domain signal of duration T = 3 x 107 s obtained by
numerical solution of differential equations based on the model discussed in Sec. 6.2. The
parameters of the model match those listed in Table 6.1. The gray dotted line marks the
Larmor frequency, Qp/(2m), the gray dot-dashed line marks the nutation frequency, Q1/(2m),
and the red dashed line marks the second harmonic of the orbital frequency, v/(wR). In order
to enhance visualization, for this plot we choose g = 107 for the Lense-Thirring effect, just
below the present experimental constraints (Fig. 1 in the main text).
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Figure 6.4: The black curve shows the PSD of the time-dependent flux signal ® under
the same conditions and assumptions as in Fig. 6.3. The blue curve, vertically offset for
easier comparison, shows the PSD of the time-dependent flux signal ® for the case where the
gyrogravitational ratio g = 0. The dashed red line marks the second harmonic of the orbital
frequency, v/(wR), and prominent signals at sidebands shifted by the Larmor frequency are
indicated by the red arrows at v/(nR) £ Qp/(27). Note also sidebands at v/(7R) £ Qp/m.

Lense-Thirring effect (Fig. 1 in the main text). The PSD shown in Fig. 6.3 demonstrates, as
expected, that the dominant signal is at the Larmor frequency (2p) and prominent signals
due to nutation appear at )y with sidebands at 0y = Qp. There is a noticeable signal due
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to the Lense-Thirring effect (with g = 107) at the second harmonic of the orbital frequency,
271 x v/(mR) (in rad/s, note the frequency units in the figures are Hz). In Fig. 6.4, the signal
with g = 107 is compared to the signal for g = 0 near the second harmonic of the orbital
frequency, 2v/R. Figure 6.5 shows A®2, the PSD of the difference between the measured
flux from two FGs situated in magnetic fields with equal magnitudes but opposite directions
(£2) for the case where g = 1. The g = 1 case would correspond to the case of particular
interest where intrinsic spin and orbital angular momentum behave identically in general
relativity. As in the case where g = 107, there are noticeable signals arising from modulation
of FG precession at twice the orbital frequency due to the Lense-Thirring effect, seen at
the sideband frequencies 2v/R + Qp. The results of the modeling demonstrate that the
Lense-Thirring effect indeed modulates FG precession at the second harmonic of the orbital
frequency, offering a signature of GR effects distinguishable from effects that do not vary
periodically with the orbit. The asymmetric shapes of the peaks in Figs. 6.3, 6.4, 6.5, and
subsequent plots are described by Fano line shapes [39] that result from the interference of
the background and the resonances in the PSD.

For reference, the expected measurement noise floor due to collisions with residual back-
ground gas, based on Eq. (5) in the main text, is estimated to be

1079
VT
Comparing 6(®?),4s to the signals plotted in Fig. 6.5 show that for a measurement times

T > 10* s the Lense-Thirring precession for g = 1 should be resolvable, consistent with the
sensitivity estimates shown in Fig. 1 of the main text.

§(D?) s ~ G%cm*/Hz . (6.17)

10711 J
g r
<
g
NQ
© o2}
&
<
10-13 v Op v v QOp
TR 27 TR TR 27w
3.1x1074 3.3x1074 3.5x1074 3.7x107*

Frequency (Hz)

Figure 6.5: PSD of the difference in time-dependent flux signal with g = 1 between two
gyroscopes. The gyroscopes situated in opposite external magnetic fields along the z axis.
The conditions and assumptions are the same as in Fig. 6.3. The dashed red line marks the
second harmonic of the orbital frequency, v/(mR), and prominent signals at sidebands shifted
by the Larmor frequency are indicated by the red arrows at v/(mR) £ Qp/(27).

Employing a different geometry for the FG, namely orienting B parallel to g, gives
linear sensitivity to 245 (in which case sensitivity to Qpp is quadratically suppressed). By
putting the satellite into an elliptical orbit (Fig. 6.6), R and v are modulated and a distinct
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signature in the PSD of ® can be obtained for the de Sitter effect, as demonstrated in
Fig. 6.7. Figure 6.7 gives the result of modeling the FG dynamics for a polar elliptical
orbit with eccentricity of 0.3: the PSD shows the difference between the measured flux from
two FGs situated in magnetic fields with equal magnitudes but opposite directions (£7)
assuming g = 1. Signals due to the de Sitter effect are observed at sidebands around the
orbital frequency wg,p,

GM
a3’

(6.18)

Worb =

where a is the semi-major axis of the ellipse. This is expected since Q4g(t) is periodic with
the modulation of R and v as the FG orbits, leading to a signal at the first harmonic of wyp.

Figure 6.6: Conceptual schematic diagram of a “Gravity Probe Spin” experiment similar to
that shown in Fig. 6.2 except that the orbit is elliptical and the magnetic field B is directed
along the y-axis, perpendicular to the orbital plane. This geometry is designed for the detection
of the de Sitter effect.

In conclusion, the numerical modeling demonstrates that, in principle, for particular ex-
perimental geometries there exist potentially measurable signatures of general relativistic
precession of an FG at harmonics of the orbital frequency.
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A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dom-
inated by electron spin polarization and that will precess under the action of an external
torque, such as that due to a magnetic field. Here we model and analyze FG dynamics
and sensitivity, focusing on practical schemes for experimental realization. In the case
of a freely floating FG, we model the transition from dynamics dominated by libration
in relatively high externally applied magnetic fields, to those dominated by precession at
relatively low applied fields. Measurement of the libration frequency enables in situ de-
termination of the magnetic field and a technique to reduce the field below the threshold
for which precession dominates the FG dynamics. We note that evidence of gyroscopic
behavior is present even at magnetic fields much larger than the threshold field below
which precession dominates. We also model the dynamics of an FG levitated above a
type-1 superconductor via the Meissner effect, and find that for FGs with dimensions
larger than about 100 nm the observed precession frequency is reduced compared to that


https://doi.org/10.1088/2058-9565/abd892

112 Ferromagnetic Gyroscopes for Tests of Fundamental Physics

of a freely floating FG. This is due to an effect akin to negative feedback that arises
from the distortion of the field from the FG by the superconductor. Finally we assess
the sensitivity of an FG levitated above a type-I superconductor to exotic spin-dependent
interactions under practical experimental conditions, demonstrating the potential of FGs
for tests of fundamental physics.

7.1 Introduction

Gyroscopes are valuable tools for metrology and navigation due to their sensitivity to rota-
tions. For example, the Gravity Probe B space mission contained several spinning spheres
made of fused quartz and coated with a layer of niobium [I]. Changes in the direction of
angular momentum and rate of rotation of these spheres were detected by a Superconducting
QUantum Interference Device (SQUID). In a different technique, ring laser interferometers
(optical gyroscopes based on the Sagnac effect) have been used for continuous measurement
of the Earth rotation and tilt [2]. Yet another approach observes gyroscopic motion due to
precession of molecules, atoms and nuclei [3]. In the present work, we investigate how the
intrinsic spin of electrons can play the role of a gyroscope.

Atoms, molecules, and nuclei, that can possess angular momentum due to their rotational
motion as well as due to intrinsic spin, can act as gyroscopes [1—3]. Atomic, molecular, and
nuclear gyroscopes have proven to be particularly useful for precision tests of fundamental
physics [9], including tests of Lorentz symmetry [10-12], searches for exotic spin-dependent
interactions [13-16], dark matter experiments [17—20], and measurements of electric dipole
moments [21-23] and gravitational dipole moments [21-26]. It has recently been proposed
that a ferromagnet can act as a new type of gyroscope that may be particularly useful
for precision tests of fundamental physics [27]. However, in order to realize the potential
sensitivity of a ferromagnetic gyroscope (FG), it is essential to decouple the ferromagnet
from the environment, e.g., by requiring either microgravity or some method of frictionless
suspension. A promising platform for FG-based fundamental physics experiments involves
levitating an FG above a superconducting surface by taking advantage of the Meissner effect
[28—32]. In the present work we model the dynamics of a freely floating FG and the dynamics
of an FG levitated above a perfect type-I superconductor (SC). We find that the response
of an FG to external torques is considerably modified in the case of an FG levitated above
an SC: the precession frequency can be reduced by orders of magnitude as compared to that
for a freely floating FG. Taking this effect into account, we analyze the sensitivity of an FG
levitated above an SC to torques from exotic fields [9].

Under conditions where the angular momentum of a ferromagnet is dominated by the
intrinsic spin of the polarized electrons, an applied torque is predicted to cause gyroscopic
precession of the ferromagnet [27]. If such a ferromagnetic gyroscope (FG) can be suffi-
ciently isolated from the environment, a measurement of the precession can yield sensitivity
to torques far beyond that of other systems (such as atomic magnetometers [33] and con-
ventional gyroscopes [341]). The high sensitivity of an FG is a result of the rapid averaging
of quantum noise [27, 35]. A key enabling technology for practical realization of an FG is
a method of near frictionless suspension. One approach is to levitate a ferromagnet above
an SC [28]. Recently, there has been considerable interest and progress in development of
sensors based on ferromagnets levitated above SCs [28-32, 30].
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Magnetization dynamics of ferromagnets, including precession and nutation motions, have
been observed in thin films using ferromagnetic resonance [37, 38]. Such dynamics occur on
characteristic time scales of a picosecond, related to the time it takes for the electron spins
to relax to their equilibrium state. The FG concept concerns dynamics on time scales much
longer than the aforementioned relaxation time, involving macroscopic motion of the whole
ferromagnet.

In the present work, we propose a strategy for a proof-of-principle experiment aimed at
observing FG precession, and analyze a concrete example of such an experiment involving a
levitating sphere above a type-I SC. We model the behavior of an FG levitated above an SC
and compare to the behavior of a freely floating FG. Qualitative and quantitative differences
are observed in the precession dynamics of the FG in the two cases. In relation to tests of
fundamental physics, FGs have recently been proposed as tools to measure general-relativistic
precession [39]; here we extend this discussion to show how FGs can be used in other searches
for new physics.

As discussed in Ref. [27], in order for a ferromagnet to exhibit spin precession in an applied
magnetic field, it should be in the regime where the intrinsic spin S due to the magnetization
exceeds the classical rotational angular momentum L associated with the physical rotation
of the ferromagnet, S > L. In the opposite case, where the orbital angular momentum
associated with precession exceeds that of the spin along the axis, the ferromagnet “tips
over” or, in the undamped case, oscillates or librates about its equilibrium orientation along
the applied magnetic field. These two regimes can be identified as the precessing regime and
the tipping regime. Ferromagnetic compass needles operate in the tipping regime — they
tip along the direction of the external magnetic field. Atomic and nuclear spins are in the
precessing regime — they precess around the direction of the external magnetic field.

Let us reformulate the criterion L < S for a ferromagnet to be in the precessing regime
in the following way: the product of the moment of inertia I and the precession frequency {2
(that represents the classical rotational angular momentum of the system) should be smaller
than the spin content of the ferromagnet

h
IQ< Ny, (7.1)

where NV is the number of polarized spins and £ is Planck’s constant, such that each electron
has an intrinsic spin of /2. Rephrasing (7.1) as a bound on frequency, we have

Nk
Q< Q= 2
< 5T (7.2)

or as a bound on the external magnetic field B applied on the ferromagnet,

RO
|B| < B = ‘
g

(7.3)

Here g is the Landé g-factor and pup is the Bohr magneton. If the applied magnetic field B
is smaller than B*, we expect the ferromagnet to be in the precessing regime.

One of the key features of an FG is the fact that a torque on the electron spins generates
macroscopic rotation of the ferromagnet. This behavior of an FG is closely related to the
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Barnett [10] and Einstein-de Haas [11, 12] effects. In contrast to nuclear spins, whose preces-
sion is largely decoupled from the crystal lattice as observed in solid-state nuclear magnetic
resonance (NMR) experiments, in a ferromagnet there is strong coupling between electron
spins and the crystal lattice via the exchange interaction. These internal dynamics governing
an FG are well-described by the Landau-Lifshitz-Gilbert model [13, 41]. Thus, when the
electron spins within the ferromagnet are made to precess, the entire ferromagnet rotates.

Constructing an FG by creating suitable conditions for a magnet to precess instead of
tipping opens the possibility of a sensitive measurement device. For instance, by bringing
a SQUID near the FG and measuring the change in magnetic flux as the FG precesses, the
torques acting on the FG can be precisely measured [27].

B=10""T B=10""T B=10""T B=10"°T B=10""T
Magnetic brick

Figure 7.1: Precession and nutation motions of a ferromagnet in an external magnetic field
B whose direction is perpendicular to the plane. The modelled ferromagnet has a radius of
30 um and contains 7 x 10'° electron spins. Depicted is the spin vector i of initial position
along the x axis, whose projection onto the x-y plane is shown in the upper row. The lower row
shows the motion in three dimensions. As B grows the precession interweaves with nutation
such that the latter dominates, resulting eventually in a librational mode around the direction
of B. For the depicted ferromagnet, the threshold magnetic field B* [Eq. (7.3)] below which
precession motion is dominant compared to libration, is 7 x 10712 T. The last column depicts
the case of a “magnetic brick”, a hypothetical ferromagnet with zero spin polarization but
equivalent magnetization.

7.2 Model of a freely floating ferromagnetic gyroscope

To better understand the dynamics of an FG, we model a freely floating FG in space subjected

to a constant magnetic field B, similar to the modelling in Ref. [39]. A weak magnetic field
causes precession of the FG with Larmor frequency
wy =28 B, (7.4)

h
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where g, is the electron g—factor, and v is the gyromagnetic ratio. We consider a spherical
FG with radius of 30 gm and 7 x 10'5 electron spins, identical to the microsphere used in the
experiment described in Ref. [30]. Note that the threshold precession frequency * described
in Eq. (7.2) is equal to the Einstein-de Haas frequency

Wy = === ——, (7.5)

where I = 2mr?/5 is the moment of inertia for a sphere of mass m and radius r. The
frequency wy plays the role of the nutation frequency in the zero magnetic field limit for the
FG dynamics.

The equations of motion for the ferromagnet are

95 A

E = Wy (n X B) s (76)
0 .

S =wrixmn) (7.7)

where we defined the following dimensionless vectors: the unit spin n = S/S, the rotational
angular momentum £ = L/S, and the total angular momentum j = n + £. Equations (7.6)
and (7.7) are derived from Landau-Lifshitz-Gilbert equations under the assumption that the
spin vector is locked to the easy axis, as was done in the modelling of the FG in [35, 39].

Solving for j(t) and n(t), Fig. 7.1 shows the different kinds of motions of a freely floating
FG in an external magnetic field. For magnetic fields below the threshold in Eq. (7.3) the
precession motion is prominent. In the intermediate regime B ~ B* both precession and
nutation manifest. At fields much larger than B* the amplitude of the nutation grows so
large that it manifests as oscillation, i.e. libration, of the ferromagnet about the direction of
the applied magnetic field. Note that even in the case where libration is the dominant motion,
precession of the plane of libration can still be observed. The frequencies observed in the
periodic FG dynamics in each regime can be obtained by analytical approximate solutions of
the equations of motion [15].

7.3 Experimental strategy

To observe precession of a ferromagnetic gyroscope, we propose to work at an external mag-
netic field weaker than the threshold, below which precession dominates (at sufficiently low
magnetic fields, the amplitude of nutation becomes relatively small so that the dynamics of
the FG are dominated by the precession). Generally, in experiments, this will require both
shielding and careful control of the external magnetic field. Fortunately, the ferromagnet
itself can be used as a magnetometer even for fields larger than the threshold field for pre-
cession by measuring the libration frequency w;. Oscillation of a ferromagnet at the libration
frequency w; was observed in soft ferromagnetic levitating particles [32] (denoted there as
wy) and with ferromagnets levitating above type-1 SC [30]. For a hard ferromagnet, w; is the
geometrical average of the Larmor frequency wy, and the Einstein—de Haas frequency wy [29]

w? = wrwr . (7.8)
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Since the libration frequency w; depends on the magnetic field, it can be used to measure
and reduce the magnetic field until precession dominates the dynamics. For a freely floating
FG, as one reduces the magnetic field below the threshold field defined in Eq. (7.3), the
frequencies will split on the logarithmic scale (Fig. 7.2) such that they can be resolved in the
magnetic flux spectrum measured by a SQUID pick-up loop.

Peak frequencies (Hz)

Peak frequencies (Hz)

0.05 0.10 0.50 1 5
Larmor frequency (Hz)

Figure 7.2: Modelling the dynamics of an FG by Eqs. (7.6) and (7.7). In linear and logar-
ithmic scales, presented are the frequencies of the maxima in the spectrum of FG dynamics
as can be measured with a SQUID pick-up loop, as a function of the Larmor frequency wry,.
The external magnetic field direction is perpendicular to the precession plane, as in Fig. 7.1.
The SQUID pick-up loop measures the flux from the FG in the horizontal direction x. The
middle line (dashed blue) is the sole frequency appearing in the spectrum of a “magnetic
brick" (hypothetical ferromagnet with zero spin polarization but equivalent magnetization, see
main text) with a radius of 30 um in an external magnetic field. The red and green curves
are the frequencies of a fully spin-polarized ferromagnet with the same radius, corresponding
respectively to nutation and precession frequencies. As might be expected from Eq. (7.8), the
blue line is the geometric average of the red and green lines, above the threshold frequency.
The orange vertical line is the threshold frequency Q*. The dashed pink line is the Larmor
frequency of Eq. (7.4). The dashed black line, wy, corresponds to the nutation frequency in
the zero magnetic field limit.

Quantitatively, solving Eqgs. (7.6) and (7.7) for j(t) and n(t) for various wr,, the model of
the dynamics of a freely floating FG shows signals at two distinct frequencies in the magnetic
flux observed along the z-direction (perpendicular to the magnetic field applied along z).
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These frequencies are fractionally split in low magnetic fields, that is, the difference between
the frequencies, normalized by their geometric average, becomes bigger at lower frequencies,
as shown in Fig. 7.2, where the fractional behaviour is emphasized on the logarithmic scale.
The apparent splitting of the nutation and precession curves on the logarithmic scale in
Fig. 7.2 (the red and green curves) points to the transition from the librational behaviour
above the threshold (the vertical line) into the precession and nutation motion below the
threshold. The two frequencies can be viewed as a modulation of a central frequency (dashed
blue line in Fig. 7.2) which appears in the case of a “magnetic brick”, a hypothetical ferro-
magnet with zero spin polarization (j = 0 n + £) but equivalent magnetization. The concept
of a magnetic brick is introduced to separate, in the model, effects due to magnetic torques
from effects related to the gyroscopic nature of the ferromagnet.

As for the precession frequency, green curve in Fig. 7.2, it deviates from the Larmor fre-
quency in Eq. (7.4), as expected from the interplay between nutation and precession motions
[16]. The Larmor frequency is a dashed pink line with a unit slope on the linear scale of
Fig. 7.2. The parameters used in the model match those for the experimental setup discussed
in the next section, which result in w; = 1.193 rad/s [30]. This wy is plotted as a dashed
black horizontal line in Fig. 7.2.

Above the threshold, the librational-mode frequency w; can be observed and used to
measure and control the magnetic field. Using this technique the magnetic field can be tuned
below the threshold field where the FG dynamics clearly display precession and nutation,
demonstrating the gyroscopic behavior of a ferromagnet and confirming experimentally the
prediction of precession. In the next section we examine this experimental strategy in the
context of a ferromagnetic microsphere levitating above a type-I SC.

Figure 7.3: Schematic setup for an FG levitated above a type-I superconductor. The sphere
and arrow labeled n represent the FG, the gray plane represents the surface of the SC, the
blue arrow labeled n represents the image dipole, the red arrow indicates the external magnetic
field applied along the vertical direction, r is the vector pointing to the location of the center
of the sphere and rinqqe is the vector pointing to the location of the image dipole.
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7.4 Ferromagnetic gyroscope levitated above a type-1 super-
conductor

A promising avenue for experimental realization of an FG are optomechanical and mag-
netomechanical systems, for instance: a ferromagnet levitated by magnetic or electric fields.
In particular, the motion, dynamics and stability of a magnetically levitated ferromagnet
have been studied [15] and are in agreement with expectations regarding the precessing and
tipping regimes. Here we consider a ferromagnetic microsphere levitating above a type-1 SC
(Fig. 7.3). In this case, the expulsion of the magnetic field from the superconductor by the
Meissner effect creates a field in the region above the superconductor mathematically equi-
valent to that from image dipole. The image—dipole magnetic field pushes the microsphere
up while gravity pulls it down. To investigate the effect of the superconductor on the FG
dynamics, we include the field from the image dipole in the modelling.

The image field 9B is a magnetic field emanating from the image dipole located at a
vertical distance 2z (center to center) below the levitating FG, where z is the height of the
FG above the SC plane. In SI units,

:_g%{gf(f.ﬁ)_ﬁfQ} , (7.9)

where pg is the permeability of free space, 7 is relative to the position of the image dipole
r=r— Timage »
r=(z,y,2)
Timage - (JU, Y, _Z) ) (710)

pn is the magnetic moment of the image dipole and pun is the magnetic moment of the
levitating ferromanget

n = (nxynyv +nz) )
n = (ng,ny, —nz) . (7.11)
Here we take the origin of the coordinate system to be on the SC plane. The image dipole

has the same horizontal component of the magnetic moment as the FG, and opposite vertical
component.

To include % into the equations of motion in Sec. 7.2, we derive the Larmor frequency
associated with this image dipole field

wp =78, (7.12)
so that Eq. (7.6) contains the term
wes (n X %) . (7.13)
Moreover, we include the ferromagnet center-of-mass equations of motion
aa—f = %V(%-n)+mg , (7.14)
% =2, (7.15)
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where p is the FG center-of-mass momentum, g is the gravitational acceleration, and the
factor 1/2 is a consequence of the image dipole being not frozen in type-1 SC, i.e., following
the levitating dipole [17-19].

y Ny 1y
1.0
0.5 0.5 0.5
-10 -05 05 10 -10 -05 0.5
-05 -0.5+
10 -1.0

Figure 7.4: Precession of an FG levitating above an SC. The modelled ferromagnet has a
radius of 30 um and consists of 7 x 10 electron spins. Depicted is the spin vector 11, whose
projection onto the xy plane is shown in the upper row. The lower row shows the motion in
three dimensions. The columns, from left to right, are for tilt angles [Eq. (7.17)] of 1, 2, and
3 degrees, respectively. In the modelling time runs for = 75 seconds, which is a quarter of a
period for the leftmost column, according to Eq. (7.16).

Modelling the levitating FG dynamics of the spin vector n and the center-of-mass motion,
we recover the frequencies w, and wg experimentally observed in Ref. [30], which describe
oscillation of the center-of-mass in the vertical direction and libration of the magnetic moment
about the vertical axis, respectively. Libration of the levitated ferromagnet at the frequency
wg is predominantly caused by the image dipole field. Before introducing an additional
external magnetic field to observe the effects of Larmor precession, let us note the precession
motion that exists even without the introduction of an external magnetic field. We observe
in the modelling a precession in the horizontal plane, with a frequency of

Wyy = WrNzo , (716)

where n,g is the initial vertical component of the FG magnetic moment, which is linked to
the tilt angle

sin 3 = 120 , (7.17)
no
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where ng is the unit spin vector and n, is the length of its vertical component, at the initial
moment of the modelling. Such a vertical component of the magnetic moment and spin
translates to a vertical component of the total angular momentum, since j = n + £. The
librational mode wg corresponds to an oscillation between n, and £.. The image field does
not change j, = n, + £,, thus as long as the mean value of £, is not zero, precession occurs
around the vertical axis, i.e. rotation of n in the horizontal plane ensues. In Fig. 7.4 we
present examples of such a precession in the modelling. We also observe in the modelling
that setting the FG’s initial angular momentum to £, = —sin  counteracts the effect of the
tilt, as expected from conservation of angular momentum.

We can explain the appearance of w,, in terms of the image dipole. The image dipole
precesses with the FG so the component of the image field in the horizontal xy plane acting
on the FG is constant in the rotating frame. On the other hand, the tilt of the FG with
respect to the vertical axis changes the field acting on the FG due to the image dipole — the
librational oscillation causes an oscillating field along z that induces FG precession. Since the
librational oscillation frequency is fast compared to the precession frequency, effectively the
FG is sensitive to the average field, such that bigger librational oscillation results in a bigger
effective field and faster precession. Note that the vertical component of the field appears
due to the initial tilt angle of the FG magnetization axis out of the horizontal plane.

Such a precession was not observed in previous experiments as the ferromagnetic micro-
sphere was not free to rotate in the horizontal plane, either because of the SC’s tilt out of
the horizontal plane in Ref. [30] or because of frozen flux in Ref. [28]. This tilt (or frozen
flux) introduces a preferred direction for the magnetic moment of the levitating microsphere,
so that it is situated in an energetic minimum; thus the ferromagnet oscillates around this
direction (with frequency w, [30]) instead of precessing in the horizontal plane.

The above precession occurs due to the image field, while to use an FG to measure
external torques we seek to observe the effect due to, for example, an external magnetic field.
Therefore we introduce an external magnetic field Bey, consequently adding uV (Beyt - 1)
to the right-hand-side of Eq (7.14); Eq. (7.6) is modified to read

Z

E = wy, (fn, X Be:{:t) + wxy (n X %) . (718)

Since j, is a constant of motion, if the tilt angle 3 is initially zero (horizontal FG with
respect to the SC surface), so that j,(¢ = 0) = 0, then the angular momentum associated
with precession £, = I€) must be equal and opposite to s, = Nhsin 5. Thus we have

10
inB=—. 1
sin 3 N7 (7.19)

The magnitude of the image dipole field a distance zy above the SC surface is

HHo
B|=——= 7.20
B = (7.20)

and its z-component is

B, =VBsinf . (7.21)
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The effective magnetic field that the FG experiences is the vector sum of the external magnetic
field B¢yt (taken to be along the z-axis) and B, so the precession frequency §) is now given
by

190
Q=7 (Bext — %z) =7 (Bext — %]Vh> . (7.22)

Solving for € we find

_ Y Bext
14+~+B/wr’

. Y Bext

- 14+ yepol

3
2mzgNh

(7.23)

Thus an FG levitated above an SC possesses an effectively reduced gyromagnetic ratio com-
pared to the freely floating FG. The suppression of the effective gyromagnetic ratio due to the
image field can be explained by a mechanism analogous to negative feedback [50]. Requiring
Q <« QF for the FG to be in the precession regime gives

&m<%+%%%. (7.24)

The image field is typically much larger than B*; hence precession can be observed in higher
magnetic fields for an FG levitated over an SC compared to a freely floating FG. However,
the corresponding precession frequency is smaller compared to a free FG. For a spherical FG
with 30 micron radius, matching the experimental conditions of Ref. [30], the ratio of a free
FG precession frequency to that for an FG levitated above an SC is ~ 4 x 10%. For 1 micron
radius, this ratio is & 340, so the suppression of precession frequency is reduced in the case of
a smaller-radius FG. Based on Eq. (7.23), in Fig. 7.5 we plot as a function of the FG radius
the ratio of the precession rate for a levitating FG above an SC to that for a freely floating
FG.

This constraint on Beyt can be viewed as an effective threshold field for a levitated FG
above an SC due to the image field. Modelling such a system for the conditions of the levitated
ferromagnet from [30], but with 1 micron radius instead of 30 microns, we observe gyroscopic
behaviour in the time domain, as shown in Fig. 7.6, consistently 340 times slower than that
in the case of precession of a freely floating FG. As another check of the negative feedback
explanation, we have varied the magnitude of the image field 8 (by varying the gravitational
field magnitude) and observed in the modelling suppressed precession rates (compared to
freely floating FG) matching the expected rates from Eq. (7.23). In Fig. 7.6 we decoupled the
motion of the center of mass from that of the spin vector 1, for clarity. In the presence of both
Bext and a finite initial tilt angle 8 [that of Eq. (7.17)], the resulting precession frequency is
the difference between the precession frequency in the case of initial tilt angle with null Beyt,
and that with By and null initial tilt angle [in accordance with Eq. (7.22)].

To observe w;, and then precession, an external magnetic field should be introduced, and
several modifications should be made to the experimental apparatus used in [30]. One chal-
lenge is that external torques can effectively lock the ferromagnet’s orientation and prevent
precession. In a previous study of a ferromagnet levitated above a type-II SC, the ferro-
magnet’s orientation was locked by the magnetic field due to trapped flux in the SC [25].



122 Ferromagnetic Gyroscopes for Tests of Fundamental Physics

1
0.100:
0.010:

Qsc 0.001

10°  100°° 107 10 10

radius (m)

Figure 7.5: The ratio of the precession frequency of an FG levitating above an SC [Eq. (7.23)]
to that of a freely floating FG [Eq. (7.4)], as a function of the FG’s radius. At radii below
10~7 m the ratio saturates to 1, i.e., the gyromagnetic ratio is the same as in free fall.
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Figure 7.6: (a) Spin component in the horizontal direction, n,, as a function of time for an
FG above a type-1 SC, for several external magnetic fields. The precession rates are slower
from that of a freely floating FG by an amount predicted in Eq. (7.23). (b) A freely floating
FG situated in an external magnetic field of 10711 T. Note the time scale — the precession
frequency is about 340 times greater than for an FG above an SC for the same magnetic field
in part (a).

In Type-I SC, however, flux trapping can be eliminated. Yet in a recent experiment with a
levitating microsphere the ferromagnet was not free to rotate in the horizontal plane because
of locking due to a relative tilt of the surface of the cylindrical “bowl-shaped” trap in the
SC [30]. In order to allow the microsphere to nutate and precess in the horizontal plane,
a spherical “bowl-shaped” trap, instead of a cylindrical one, could be used. Following an
observation of the horizontal precession due to the image field, an external magnetic field
B, can be introduced in the z direction, much like was done in [28]. This field is expected
to cause a librational motion of the FG around it, with a frequency w; which can be detected
with a sufficiently sensitive magnetic field sensor, such as a SQUID. Reducing Beyxt below the
threshold in Eq. (7.24), nutational motion will appear. Further reducing the magnetic field
will reveal wy. Note that the threshold in Eq. (7.24) is larger relative to Eq. (7.3), and thus
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is easier to control technically.

7.5 Sensitivity to new physics

An FG is a correlated system of N electron spins that acts as a gyroscope with total spin
~ Nh/2. Spin projections transverse to the FG’s magnetization axis fluctuate rapidly due
to interaction with the crystalline lattice while, unless acted upon by an external torque,
the expectation value of the total spin vector S remains fixed due to angular momentum
conservation. This behavior enables rapid averaging of quantum uncertainty, opening the
possibility of measuring torques on electron spins with a sensitivity many orders of magnitude
beyond the present state-of-the-art [27, 39]. For this reason, FGs can be powerful tools to
search for physics beyond the Standard Model [9].

Sensitivity estimates carried out in Refs. [27, 39] assume a freely floating FG in ultrahigh
cryogenic vacuum at temperatures ~ 0.1 K (residual He vapor density ~ 10 atoms/cm?).
Here we carry out sensitivity estimates for an FG levitated above a type-I SC under the
vacuum conditions achieved in the experiment of Ref. [30] (residual helium pressure =
10~° mbar, corresponding to a He vapor density of n ~ 3 x 10'? atoms / cm3) at a temperature
of ~ 4 K. We assume a spherical FG with radius ~ 1 gm. Therefore the conditions assumed
in the following discussion are practically realizable with relatively minor modifications to
existing experimental apparatuses.

In Ref. [30], the dominant source of noise comes from collisions of He atoms with the FG.
These collisions transfer angular momentum to the FG and cause a random walk of precession
angle ¢ [27, 39]. For a spherical freely floating FG, the uncertainty in the precession frequency

caused by gas collisions is given by [39]

m 7‘2 m)3
AQy ~ s K[ ; Wih , (7.25)

where vy, is the mean thermal velocity of the residual gas atoms and mg is their mass.
However, in the case of an FG levitated above an SC, “negative feedback” from the image
dipole field B affects the FG’s response to random torques caused by gas collisions in much
the same way as it affects the Larmor precession frequency as described by Eq. (7.23). In
general, the effect of any external torque 7.4 acting on the FG is modified by this “negative
feedback” mechanism. The equation, analogous to Eq. (7.18), describing the rate of change
of total angular momentum J is

J = Tep + W (S X ‘%) . (7.26)

The external torques from gas collisions generate stochastic (random) variation in the pre-
cession frequency, and, because of nutation, a correlated stochastic variation in the tilt angle
£ and thus B. Just as Eq. (7.25) was derived using Eq. (7.6) as a starting point [27, 39], we
can start from Eq. (7.26) and, following the same logic used to derive Eq. (7.23), show that
the uncertainty in the precession frequency due to gas collisions for an FG levitated above
an SC is given by

AQ/ ~ AQcol

N — 7.27
col 1+ 'Y%/WI ( )
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Therefore, under the conditions considered here, the effects of gas collisions on FG dynamics
are smaller (compared to a freely floating FG) by 340 times. This results in an uncertainty
in the measured FG precession frequency of

Aq, ~ 107 rad

~ 7.28
col \/E s ( )

Other potential noise sources, such as thermal currents and blackbody radiation, were
considered in Refs. [27, 39] and are also found to be negligible under the experimental con-
ditions of Ref. [30]. Furthermore, the experimental results in Ref. [30] for a 30-micron-radius
levitated ferromagnet showed that eddy current damping was negligible, and eddy current
damping contributes even less for smaller FG radii: the eddy current power dissipation in a
conducting sphere is o< 7°. A one-micron radius ferromagnet can be single domain, in which
case direct (hysteresis-based) magnetic losses should be largely suppressed as well.

The precession of the FG can be measured with a SQUID. For a SQUID with pick-up
loop radius of ~ 1 pum situated about a micron from an FG (such that the flux capture
is maximal), the amplitude of the time-varying magnetic flux is ® ~ 107'2 T-m?2. Low-
temperature SQUIDs have a flux sensitivity of & < 1072 T -m?/vHz [51-54], which
yields a corresponding sensitivity to the precession angle of 6¢ ~ §®/® ~ 10~ rad/v/Hz.
Thus the detection-limited uncertainty in a measurement of the FG precession frequency
Q = d¢/dt integrating over a time ¢ is AQger ~ 10-9¢=3/2 rad/s. Since the uncertainty in the
measurement of precession due to gas collisions is far larger than AQg.;, requirements on the
pick-up loop geometry and SQUID sensitivity are correspondingly relaxed. For example, a
pick-up loop radius of R &~ 1 mm positioned ~ 1 mm from the FG would achieve a detection-
limited sensitivity in 1 s of integration time better than the gas collision limit,

1 rad

/ -6 _~- -
AQ,, ~ 10 5 (7.29)

Vibrations were another important source of technical noise in the experiment described
in Ref. [30]. Relative motion between the position of the FG and the SQUID pick-up loop lead
to variations in the flux through the loop and consequently generate noise in the precession
measurement. Commercial vibration isolation systems used, for example, in atomic force
microscopy experiments can reduce vibration amplitudes to dz < 107° mm at frequencies
< 1 Hz [55]. The fractional flux noise in the pick-up loop d®/® ~ dz/z, where  ~ R =~ 1 mm
is the distance between the FG and the pick-up loop. This corresponds to an uncertainty in
the precession measurement similar to the gas-collision limit,

10~° rad

AQuip ~ —— — . 7.30
p e (7.30

It is notable that AQ4.; appears to surpass the “standard quantum noise limit" [27, 50].
While the energy resolution per bandwidth (Er) for existing magnetometers is at or above the
quantum limit A, an FG can in principle achieve Er < h, under conditions where external
sources of error are controlled so that the FG sensitivity is limited by detector noise [33].
Such accuracy arises because the quantum uncertainty is rapidly averaged by the internal
ferromagnetic spin-lattice interaction, while the FG maintains gyroscopic stability due to
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the conservation of the total angular momentum (dominated by the intrinsic spin). Another
way to understand the sensitivity of an FG is to note that the ferromagnetic spin-lattice
interaction spreads the quantum fluctuations over a broad frequency band (2 1 — 100 GHz).
Due to the gyroscopic stability, one can still measure slow changes of the average direction
of the FG spin. Integrating over long periods of time averages the quantum fluctuations,
acting as a “low-pass filter” for the quantum noise. Thus a high sensitivity to comparatively
low-frequency spin precession can be achieved.

As an example of the potential of FGs as tools for testing fundamental physics, we con-
sider an experimental search for yet-to-be-discovered (exotic) spin-dependent interactions

mediated by new bosons [57-59]. In particular, axions and axionlike particles (ALPs) medi-
ate a pseudoscalar (P) interaction between electrons described by the potential
( g% )2 h3
Verp(R) =
rr(R) dmhe dm2c

2.2

mpc 1 AT 5 . . mic 3mye 3
'{51'52<m2+m+35 (R)) - (51 R) (Sz'R)<ﬁzR TR TR ) (€

(7.31)

where (gfg)Q /4mhe is the dimensionless pseudoscalar coupling constant between electrons,

me is the electron mass, S12 are the electron spins, m; is the mass of the hypothetical
pseudoscalar boson, c¢ is the speed of light, and R = RR is the separation between the
electrons.

One could search for spin precession induced by the pseudoscalar-mediated dipole-dipole
interaction, Eq. (7.31), by modulating the distance between a polarized spin source and
a levitated FG. Some of the most stringent laboratory constraints on such exotic dipole-
dipole interactions have been achieved using spin-polarized torsion balances [60, (1] with
SmCos as a polarized spin source. In SmCos, the orbital magnetic moment of the Sm3™
electrons nearly cancels their spin moment, and so SmCos possesses a high spin polarization
while having a relatively small magnetic moment, thus reducing magnetic-field-related effects.
The spin—polarized source in such an experiment could be positioned underneath the SC to
further shield the FG from the magnetic field due to the spin source. Although the SC
will shield the FG from the magnetic field of the SmCos spin source, it turns out that the
pseudoscalar interaction (7.31) is unshielded by the SC [62]. This is a consequence of the fact
that SC shielding relies on the coupling of magnetic fields to currents rather than to electron
spins. Thus, since the Meissner effect is unrelated to interactions with the electron spins, the
SC shield has no effect on the pseudoscalar-mediated dipole-dipole interaction described by
Eq. (7.31) [61, 62]. Note that effects due to exotic interactions manifest as external torques
Text as described by Eq. (7.26), and therefore their influence on the precession frequency is
suppressed by the same factor appearing in Eqs. (7.23) and (7.27).

An experiment using a one-micron-radius FG levitated above an SC would be sensitive to
the region of parameter space bound from below by the dotted red line in Fig. 7.7. We assume
that the SmCos spin source is a one-mm radius sphere positioned one mm away to the FG to
allow space for the SC. A one-mm-radius SmCos sphere would contain ~ 5 x 10! polarized
electron spins. The FG sensitivity to spin precession is given by Eq. (7.28). For comparison,
Fig. 7.7 shows the most stringent laboratory constraints in this region of parameter space,
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which are based on spin-polarized torsion-balance measurements [60] and He spectroscopy
[63, 64]; related experiments are discussed in the review [9] and Refs. [65-72]. Compared to
these existing constraints, our proposed experiment with a levitated FG can explore many
decades of unconstrained parameter space. This illustrates the potential of FGs as tools
to search for exotic spin-dependent interactions, which could open a window to beyond-
the-Standard-Model physics. We also note that new bosons such as axions and ALPs are
candidates to explain the nature of dark matter [9], and much like other types of precision
mechanical sensors [73], FGs can be useful tools for the potential detection of bosonic, wavelike
dark matter.

10°°
Ficek et al. (2017)
1079
2 10712
S
NS
S 10715}
®q
>
10-18[F
1021+ 1 micron radius FG levitated over SC
1076 1075 1074 0.001

Boson mass (eV)

Figure 7.7: Comparison between the existing experimental constraints (solid lines and shaded
regions) on a pseudoscalar-mediated dipole-dipole interaction between electron spins and the
projected sensitivity of an experiment using a one micron radius spherical FG levitated above
a type-1 SC (dotted red line). The projected sensitivity is based on the gas-collision limit
[Eq. (7.28), comparable to the expected technical limit due to vibrations and microphonic
noise, Eq. (7.30)]. Constraints shown with the black line and dark blue shaded region are
based on He spectroscopy [05]; constraints shown with the blue line and light blue shaded
region are from an experiment using a spin-polarized torsion pendulum [60]. The proposed
experiment with the levitated F'G assumes as a polarized spin source a 1-mm radius SmCos
sphere positioned 1 mm away from the FG and an integration time of t = 10° s.

7.6 Conclusion

In summary, we present a roadmap for experimental realization of a ferromagnetic gyroscope
(FG). In essence, an FG is a ferromagnet that precesses under the influence of external
torques. A ferromagnetic gyroscope is a new type of sensor that can be particularly useful
as a tool for precision tests of fundamental physics.

We model and explain the dynamics of an FG freely floating in space and propose a
strategy to experimentally realize an FG. The librational mode in the magnetization dynamics
serves as a calibration tool for the applied magnetic field. This enables the magnetic field to
be tuned to sufficiently small magnitudes so that the FG precession mode can be observed.

We also compare the dynamics of a freely floating FG to that of an FG levitated above
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a type-1 superconductor. The effect of the SC is modelled using an image dipole field. We
find that the SC has a significant effect on the FG dynamics: the image dipole field generates
a “negative feedback” that effectively suppresses the response of an FG to external torques
as compared to the case of a freely floating FG. The effective magnetic field threshold below
which precession is dominant is thus higher in the case of an FG levitated above an SC as
compared to a freely floating FG [Eq. (7.24)] while the observed precession frequency for a
given field strength is lower [Eq. (7.23)].
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CONCLUSION

The projects completed in this thesis represent progress in theoretical understanding and
experimental efforts in several disciplines:

o In nuclear physics, the magnitude of time-reversal-invariance violation in neutron-
nucleus scattering provides the theoretical validation to ongoing experimental efforts to
detect P and T-violation in nuclear systems (like those of the NOPTREX collaboration).
In the future our calculations will continue to guide the search for this effect. If the
effect is detected, our results can be used to relate the observations to the fundamental
parameters of the T-violating interaction.

Searches for temporal or spatial variation of the fine-structure constant « serve as
further motivation to build a nuclear clock based on the lowest nuclear transition of
thorium-229 and use such a clock to explore fundamental physics. The possibility of dis-
covering variation of constants in Mdssbauer transitions in particular might invigorate
the technique of Mdéssbauer spectroscopy. The link we uncovered between the enhance-
ment of o and quark-mass m, variation is interesting by itself as a bridge between
enhancements of different constants — it will be used and improved upon.

e In the search for new bosons, our results help to constrain the mass and coupling
strength of the particles that could one day provide an explanation for dark matter. We
collaborated with researchers from China to search for these hypothetical particles using
a spin-based amplifier [I, 2]. In this type of search, macroscopic polarized masses are
probed, with the effect of exotic-boson exchange being able to manifest as an effective
magnetic field that may act on the mass.

Moving forward, the bounds on spin-dependent one-boson exchange potentials will con-
tinue to improve, reflecting the improvement in measurement devices and novel ways of
detection. Newer bounds and theoretical predictions will be compared to our bounds.
Our list of potentials will continue to be used as a source where these general spin-
dependent potentials, and their properties, appear. The search for new bosons will go
on until the day they are found, or the need for them diminishes in case the motivation
for their existence subsides. An example of such a scenario is the possibility of dark
matter originating as modified Newtonian dynamics or sterile neutrinos.

e Our proposal to detect a magnet’s precession due to gravity, followed by exploring the
dynamics of a levitated magnet above a superconductor, led to a new international team
effort. Prior to detecting gravitational effects acting on the magnetization of a ferro-
magnet situated on a satellite, a proof-of-principle setup should be built on Earth. To
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this end, we formed a collaboration, LEvitated MAgnets for QUantum MEtrology, to
build a prototype system — LEMAQUME is a European Union QuantERA project [3].
Moreover, our idea for a test of the gyrogravitatonal ratio motivates developments in
metric-affine gravity [1], quantum hydrodynamics of spinning particles [5], and found-
ations tests of quantum physics in space [0].

We predicted, discussed, proposed, and analyzed novel effects in the spectra of nuclear,
atomic, and mesoscopic systems. In this way we explored hills and valleys (in the spectra),
charting the terrain for further exciting developments.
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