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Introduction 5

Introduction

L'av�enement de la th�eorie quantique a chang�e en profondeur nos conceptions de

l'espace vide en nous obligeant �a concevoir le vide comme \rempli" de 
uctuations

quantiques du champ. L'�electrodynamique classique, et en particulier les �equations de

Maxwell, ont d�e�ni l'espace comme le cadre dans lequel s'�ecrivent les lois de propagation

du champ �electromagn�etique. Pour la physique classique, cet espace peut se concevoir

dans la limite id�eale d'un espace vide aussi bien de mati�ere que de champ. Cette

id�ealisation est remise en cause par les travaux de Planck sur le rayonnement du corps

noir. C'est pour expliquer les propri�et�es de ce rayonnement pr�esent dans tout l'espace

et exer�cant une pression sur les bords de toute cavit�e que Planck introduit sa premi�ere

loi quantique en 1900. En termes actuels, cette loi donne l'�energie moyenne par mode

�electromagn�etique comme le produit E de l'�energie d'un photon ~! par un nombre

moyen de photons n par mode du champ [1]

E = n~! ; n =
1

e
~!
kBT � 1

:

Cette loi est valable �a l'�equilibre thermodynamique �a une temp�erature T , kB est la

constante de Boltzmann et ~ la constante de Planck. Le nombre de photons par mode

tend vers z�ero �a la limite de temp�erature nulle, quelle que soit la fr�equence. Il est

donc toujours possible en 1900 de consid�erer un espace vide, d�ebarrass�e par pompage

de toute mati�ere puis de tout rayonnement en abaissant la temp�erature jusqu'au z�ero

absolu.

Cependant, cette d�e�nition est remise en cause par les d�eveloppements ult�erieurs

de la th�eorie quantique naissante. En 1911, Planck reprend son travail et obtient une

expression di��erente avec un terme suppl�ementaire [2]

E =

�
1

2
+ n

�
~!:

La di��erence entre ces deux lois de Planck est justement ce que nous appelons au-

jourd'hui les \
uctuations de point z�ero", ou 
uctuations du vide, qui subsistent �a la
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6 Introduction

limite d'une temp�erature nulle. Cette deuxi�eme loi dit en e�et qu'�a cette limite restent

des 
uctuations de champ qui correspondent �a la moiti�e de l'�energie d'un photon par

mode.

L'histoire des deux lois de Planck et les d�ebats qu'elles ont engendr�es sont discut�es

dans un certain nombre d'articles et d'ouvrages [3, 4, 5, 6]. Il est int�eressant de rappeler

que de nombreux physiciens prirent au s�erieux les travaux de Planck d�es 1912. Parmi

eux, Einstein et Stern remarquent en 1913 que la deuxi�eme loi de Planck, contrairement

�a la premi�ere, donne le comportement correct �a la limite classique [7]�
1

2
+ n

�
~! = kBT +O

�
1

T

�
T !1:

Debye, d�es 1914, a�rme que les 
uctuations de point z�ero des oscillateurs mat�eriels

doivent avoir des e�ets observables. Il pr�evoit de tels e�ets sur les intensit�es de pics

de di�raction [8]. Mulliken fournit en 1924 les premi�eres preuves exp�erimentales de ces


uctuations en �etudiant des spectres vibrationnels de mol�ecules [9].

La plupart des physiciens pr�ef�erent attribuer les 
uctuations quantiques aux oscilla-

teurs mat�eriels plutôt qu'aux champs. Bien sûr, Einstein constitue une exception depuis

son fameux papier de 1905 sur la nature du rayonnement [10] jusqu'�a la d�ecouverte

de la statistique de Bose-Einstein en 1924 [11, 12, 13] en passant par la description

des statistiques de photons [14] ou celle des coe�cients d'�emission ou d'absorption [15]

(voir [16] pour une discussion de ces contributions). Nernst tient �egalement une place

�a part dans cette histoire en �etant le premier en 1916 �a a�rmer clairement que les


uctuations de point z�ero existent aussi pour les modes du champ �electromagn�etique

[17]. Il discute cette cons�equence que l'espace vide, tel que les conceptions classiques

se le repr�esentent, n'existe pas, même �a temp�erature nulle. Il souligne d�es 1916 que la

pr�esence de ces 
uctuations cr�ee un probl�eme vis-�a-vis de la th�eorie de la gravitation

dans la mesure o�u l'on ne voit pas l'e�et gravitationnel de l'�energie du vide.

On peut insister sur le fait que ces discussions ont commenc�e avant même que

l'existence de ces 
uctuations soit con�rm�ee par des calculs quantiques compl�etement

coh�erents [18]. Mais ces calculs, e�ectu�es tr�es rapidement apr�es la naissance de la th�eo-

rie quantique, d�emontrent l'existence des 
uctuations du vide. Dirac [19] montre que

chaque mode du champ peut être quanti��e comme un oscillateur harmonique mat�eriel

[20] et que l'�etat fondamental a donc une �energie 1
2~!. Cette �energie peut aussi se

comprendre comme le r�esultat des relations de Heisenberg sur le champ.

Celui-ci se d�ecompose dans n'importe quel mode comme une somme de deux com-

posantes de quadrature, c'est-�a-dire de composantes en cosinus et sinus de l'onde de
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Introduction 7

fr�equence !

E = E1 cos!t+ E2 sin !t:

Les deux quadratures E1 et E2 ob�eissent �a une in�egalit�e de Heisenberg similaire �a celle

bien connue pour la position et l'impulsion d'un oscillateur mat�eriel [21]. Si on d�e�nit

la variance �x d'une variable statistique x par la relation habituelle

�x =
p
x2 � x2;

alors les variances �E1 et �E2 des deux quadratures ont un produit n�ecessairement

sup�erieur �a une certaine constante E20

�E1�E2 � E20 :

Cette constante E0 est calculable �a partir des constantes fondamentales et de la fr�e-

quence ! et elle caract�erise le niveau des 
uctuations quantiques. En fait, l'�energie E

dans le mode �etant proportionnelle �a E21 + E22 , l'in�egalit�e de Heisenberg implique que

cette �energie est sup�erieure �a un minimum

E � 1

2
~!:

Le vide est alors d�e�ni comme l'�etat o�u l'�energie est minimale, ce qui su�t pour d�e-

terminer toutes les propri�et�es de cet �etat

E =
1

2
~! ; E1 = E2 = 0 ; �E1 = �E2 = E0:

Dans cet �etat, les valeurs moyennes de E1 et de E2 sont nulles et les variances sont �egales
entre elles tout en minimisant leur produit. Ce minimum correspond aux 
uctuations

du vide [22].

Dans ces mêmes ann�ees o�u la coh�erence de la th�eorie quantique se construit, London

[23] donne une interpr�etation quantique des forces d'interaction entre atomes ou mol�e-

cules neutres, connues depuis les travaux de Van der Waals [24]. Ces forces expliquent

un grand nombre de ph�enom�enes. Elles jouent un rôle crucial en chimie des collo��des,

domaine �etudi�e par Overbeek et Verwey et dans lequel l'attraction de type Van der

Waals entre collo��des d�etermine les propri�et�es de stabilit�e [25]. Overbeek, observant

un d�esaccord entre la th�eorie de London et les mesures qu'il e�ectue, remarque que la

th�eorie de London est fond�ee sur des interactions instantan�ees. C'est �a Casimir qu'il

demande d'�etudier l'in
uence �eventuelle de la vitesse �nie de propagation du champ
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8 Introduction

�electromagn�etique sur la force de Van der Waals [26]. Avec Polder, Casimir parvient �a

donner une expression compl�ete de la force de Van der Waals en tenant compte de cette

vitesse �nie [27]. C'est en fait un des premiers exemples d'utilisation des m�ethodes de

l'�electrodynamique quantique. Le papier de Casimir et Polder traite aussi le cas de

l'interaction entre un atome et une paroi parfaitement r�e
�echissante.

Tr�es vite, Casimir r�ealise que ses r�esultats peuvent s'interpr�eter et se red�eriver di-

rectement �a partir de la notion d'�energie du vide [28]. Prolongeant son analyse, Casimir

observe que les 
uctuations du vide se manifestent par des e�ets physiques observables

sur des miroirs macroscopiques. L'�energie du vide calcul�ee en pr�esence de deux miroirs

d�epend de leur distance. Il en r�esulte que les 
uctuations du vide se manifestent par

des forces exerc�ees sur les parois de la cavit�e que forment ces deux miroirs. C'est la

premi�ere pr�ediction d'un e�et m�ecanique macroscopique des 
uctuations du vide [29].

Casimir consid�ere une cavit�e form�ee par deux miroirs parfaitement plans et paral-

l�eles entre eux (�gure 0.1). La surface A des miroirs est suppos�ee beaucoup plus grande

que le carr�e de la distance L a�n de pouvoir n�egliger tout e�et de di�raction sur les

bords des miroirs. En consid�erant le cas de miroirs parfaitement r�e
�echissants, Casimir

calcule la force m�ecanique exerc�ee par les 
uctuations du vide sur ces miroirs. Il obtient

les expressions suivantes pour la force et l'�energie, que nous notons respectivement FCas

et ECas

FCas =
~c�2A

240L4
; ECas =

~c�2A

720L3

�
A� L2

�
: (0-1)

Fig. 0.1 { La con�guration g�eom�etrique �etudi�ee par Casimir.

Cette force est attractive et l'�energie est une �energie de liaison. On utilise des

conventions de signes qui sont les plus courantes dans les travaux sur l'e�et Casimir.

Bien que ce ne soit pas la convention thermodynamique habituelle pour les �energies,

nous la conservons dans toute la suite du travail.

Il est int�eressant de noter que dans ce cas id�eal des miroirs parfaitement r�e
�echis-
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Introduction 9

sants, les expressions de la force et de l'�energie ne d�ependent que de param�etres g�eom�e-

triques et de deux constantes fondamentales : la vitesse de la lumi�ere c et la constante

de Planck ~, cette derni�ere mettant clairement en �evidence le caract�ere essentiellement

quantique de l'e�et Casimir. Ces expressions ne font pas intervenir la charge de l'�elec-

tron, comme c'est le cas pour les forces de Van der Waals. Cette propri�et�e d'universalit�e

de la force et de l'�energie de Casimir entre deux miroirs parfaitement r�e
�echissants cor-

respond, comme l'a montr�e Lifshitz [30], �a la saturation de la r�eponse des miroirs qui

ne peuvent r�e
�echir plus de 100% de la lumi�ere incidente.

La force de Casimir a une amplitude faible : pour des miroirs de surfaces A = 1cm2,

s�epar�es d'une distance L = 1�m, FCas � 0:1�N. Cependant, il est possible d'observer

exp�erimentalement et de mesurer une telle force. Peu apr�es la pr�ediction th�eorique

de Casimir, un certain nombre d'exp�eriences ont permis de mettre l'e�et en �evidence

[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Ces derni�eres ann�ees,

des progr�es consid�erables ont �et�e r�ealis�es sur la mesure de la force entre miroirs m�e-

talliques [48, 49, 50, 51, 52, 53, 54, 55]. Ces exp�eriences atteignent aujourd'hui une

pr�ecision exp�erimentale qui permet de comparer directement et quantitativement les

r�esultats de mesures aux pr�edictions th�eoriques. Nous d�evelopperons plus tard ces as-

pects exp�erimentaux pour donner les d�etails qui nous seront n�ecessaires.

Cette nouvelle g�en�eration d'exp�eriences de haute pr�ecision est pour une tr�es large

part �a l'origine d'un renouveau des �etudes th�eoriques sur l'e�et Casimir. Pour compa-

rer s�erieusement les r�esultats exp�erimentaux aux pr�edictions th�eoriques, il faut tenir

compte des di��erences entre le cas id�eal envisag�e par Casimir et les situations r�eelles

des exp�eriences. Lifshitz a le premier d�evelopp�e une th�eorie de l'e�et Casimir entre

miroirs di�electriques pour commencer �a rendre compte de ces di��erences [30]. Dans

ce travail tout �a fait essentiel, Lifshitz a introduit la prise en compte d�etaill�ee de la

r�eponse optique des miroirs ainsi que celle des 
uctuations.

Des erreurs mineures dans les calculs de Lifshitz ont d�eclench�e une 
oraison de

contributions th�eoriques contradictoires et cette 
oraison a continu�e jusqu'�a nos jours.

En particulier, Schwinger, de Raad, Milton ont repris les calculs de Lifshitz entre deux

miroirs m�etalliques �a temp�erature non nulle [56]. Leur m�ethode, appel�ee depuis la

\prescription de Schwinger", est encore aujourd'hui l'objet de discussions pol�emiques

dans la litt�erature [57] et nous y reviendrons dans ce manuscrit de mani�ere d�etaill�ee.

Il faut �egalement signaler le tr�es grand nombre de papiers th�eoriques sur l'e�et Ca-

simir dans les con�gurations les plus vari�ees. En ce qui concerne ces travaux, nous nous

contentons ici de renvoyer aux articles de revues ou livres dans lesquels sont cit�ees des

centaines de r�ef�erences [58, 59, 60, 61] (voir �egalement les contributions au S�eminaire
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10 Introduction

Poincar�e sur l'�energie du vide [62]).

Dans ce travail, nous nous concentrerons sur les sujets li�es directement aux situa-

tions �etudi�ees exp�erimentalement. Ceci nous restreint �a l'e�et des 
uctuations du vide

�electromagn�etique mais concerne encore plusieurs e�ets importants. Nous discuterons

ces e�ets de mani�ere d�etaill�ee en gardant �a l'esprit notre objectif essentiel, celui d'une

comparaison pr�ecise entre les r�esultats des exp�eriences et les pr�edictions th�eoriques.

Pour illustrer cette id�ee, consid�erons la �gure 0.2 o�u sont repr�esent�es les r�esultats

exp�erimentaux de l'exp�erience men�ee �a l'Universit�e de Riverside en Californie ainsi que

la courbe repr�esentant les pr�edictions th�eoriques.

Fig. 0.2 { Comparaison entre les donn�ees exp�erimentales et les pr�edictions th�eoriques pour

la force de Casimir, report�ee en [51]. Les carr�es et barres repr�esentent les points

exp�erimentaux et les barres d'erreur pour quelques uns d'entre eux ; la ligne conti-

nue repr�esente l'�evaluation th�eorique. Avec l'aimable autorisation de U. Mohideen.

L'accord th�eorie-exp�erience observ�e sur cette courbe n'a pu être obtenu qu'en te-

nant compte de quatre types de corrections entre la situation id�eale de Casimir et celle

des exp�eriences :

- d'abord la correction importante li�ee �a la g�eom�etrie des exp�eriences, pour lesquelles

la force est mesur�ee entre un miroir plan et un miroir sph�erique, et non entre deux

miroirs plans parall�eles, comme dans la con�guration initiale de Casimir,

- ensuite la r�eponse optique des miroirs m�etalliques utilis�es qui, contrairement �a celle

de miroirs parfaits, d�epend de la fr�equence du champ incident,

- puis les e�ets thermiques, qu'il faut n�ecessairement �evaluer sur ces exp�eriences r�eali-

s�ees �a temp�erature ambiante,
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Introduction 11

- et en�n les corrections de rugosit�e de surface des miroirs.

La force de Casimir est la cons�equence exp�erimentale la plus accessible �a l'�echelle

macroscopique des 
uctuations du vide. C'est une pr�ediction fondamentale de la th�eo-

rie quantique des champs qui est directement li�ee �a une des principales di�cult�es de la

physique fondamentale aujourd'hui, �a savoir le probl�eme de l'�energie du vide. Ce pro-

bl�eme, rep�er�e depuis longtemps, n'a toujours pas de solution satisfaisante et il est donc

important de l'�etudier de fa�con approfondie [63]. De plus, ce probl�eme est directement

li�e �a celui de la constante cosmologique [64, 65], en plein renouveau aujourd'hui apr�es

l'observation de l'acc�el�eration de l'expansion cosmologique (voir les contributions de N.

Straumann et M. Turner dans [62]). Toute d�e�nition op�erationnelle du vide n�ecessite la

d�e�nition d'une enceinte d�elimitant un espace vide et la force de Casimir, de ce point

de vue, est pr�ecis�ement la manifestation physique des 
uctuations du vide lorsqu'on

les enferme dans une enceinte.

Il faut �egalement noter que l'analyse des caract�eristiques de la force de Casimir

est largement justi��ee par les mesures tr�es pr�ecises de force qui se d�eveloppent �a des

distances entre le nanom�etre et le microm�etre. L'objectif de ces mesures est de tester la

gravit�e newtonienne �a courte distance [66], en particulier pour la recherche de nouvelles

forces pr�evues par les mod�eles th�eoriques d'uni�cation et ayant des port�ees comprises

entre le nanom�etre et le millim�etre [67, 68, 69]. On peut �egalement citer la recherche

de dimensions suppl�ementaires compactes �eventuelles qui se manifesteraient aussi par

de nouvelles forces [70]. Tous ces tests consistent donc essentiellement �a mettre des

contraintes sur d'�eventuelles d�eviations de la th�eorie standard actuelle, en comparant

les r�esultats exp�erimentaux aux pr�edictions th�eoriques.

On suppose souvent qu'une �eventuelle nouvelle force est d�ecrite par un potentiel

de Yukawa avec une port�ee � et une amplitude � mesur�ee relativement �a la force de

Newton

V (r12) =
Gm1m2

r12

�
1 + �e�

r12
�

�
;

o�u G est la constante newtonienne de gravitation et r12 la distance entre les deux objets

macroscopiques consid�er�es de masses m1 et m2. Une mesure pr�ecise de la force �a une

distance L permet alors d'exclure les amplitudes sup�erieures �a une certaine valeur �

pour une certaine port�ee �. Cet argument est illustr�e sur la �gure 0.3

Aux distances millim�etriques, les mesures sont en fait des tests de la force de gra-

vit�e newtonienne [71]. A des distances inf�erieures �a la centaine de microns, la force

de Casimir est la force dominante entre deux objets neutres non magn�etiques et toute

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



12 Introduction

Fig. 0.3 { Espace des param�etres pour des forces de type Yukawa sur lequel l'amplitude �, re-

lative �a la gravit�e newtonienne, est trac�ee en fonction de la port�ee �. Les fronti�eres

(lignes continues), d�eduites des exp�eriences, d�elimitent pour (�; �) les domaines

exclus au-dessus des fronti�eres. Avec l'aimable autorisation de J. Long.

mesure de nouvelles forces hypoth�etiques est en fait une comparaison de pr�ecision entre

un r�esultat exp�erimental et une pr�ediction th�eorique de la force de Casimir [66, 69].

Ce travail de th�ese s'inscrit dans ce contexte de comparaisons th�eorie-exp�erience

pour lesquelles l'exactitude des calculs th�eoriques devient aussi cruciale que la pr�eci-

sion des exp�eriences. Son but est donc de d�evelopper des m�ethodes th�eoriques �ables

pouvant caract�eriser les situations exp�erimentales r�eelles.

Contrairement aux m�ethodes utilis�ees habituellement en th�eorie des champs, nos

m�ethodes sont bas�ees fondamentalement sur le fait que les 
uctuations du vide ob�eissent

aux lois de l'optique et qu'ainsi les di�useurs peuvent être simplement caract�eris�es par

leurs amplitudes de di�usion, comme on en a l'habitude en optique [72, 73]. Le premier

chapitre de ce m�emoire consistera �a mettre en place les outils n�ecessaires �a la descrip-

tion de ces amplitudes de di�usion. Nous verrons comment construire cette description

de mani�ere syst�ematique �a partir de matrices de transfert T et de matrices de di�usion

S de la th�eorie des r�eseaux [74, 75] en utilisant les sym�etries du di�useur plan. Nous

commencerons par les d�etailler dans le cas simple d'une interface entre deux milieux

di�electriques. Nous verrons comment composer des r�eseaux �el�ementaires pour traiter

des syst�emes compos�es, la lame et le multi-couche di�electriques, puis comment d�ecrire
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Introduction 13

la situation d'une lame di�electrique absorbante en utilisant les propri�et�es d'unitarit�e

de la di�usion.

Une fois les propri�et�es de di�usion des miroirs ainsi d�etaill�ees, nous traiterons dans

le deuxi�eme chapitre la cavit�e form�ee par les deux miroirs comme une simple cavit�e

Fabry-Perot. Nous d�e�nirons une matrice de r�esonance R reliant les champs �a l'int�e-

rieur de la cavit�e aux champs incidents. Nous calculerons la force de Casimir comme

la di��erence des pressions de radiation entre les côt�es externe et interne des miroirs.

Nous verrons que la force peut s'�ecrire comme une int�egrale r�eguli�ere sur les fr�equences

imaginaires grâce aux propri�et�es de causalit�e, de stabilit�e et de transparence �a haute

fr�equence des amplitudes de di�usion [76]. Ces propri�et�es sont v�eri��ees pour tout mi-

roir physique et l'expression obtenue est automatiquement �nie, sans aucune n�ecessit�e

de recourir aux proc�edures de r�egularisation-renormalisation g�en�eralement invoqu�ees

[77, 78, 79]. Nous retrouverons l'expression id�eale de Casimir dans la limite des miroirs

parfaits. Nous verrons �egalement que ce calcul de pression de radiation donne un r�e-

sultat interpr�etable comme une formule des d�ephasages, permettant de relier la force

de Casimir �a la matrice S globale de la cavit�e.

Le troisi�eme chapitre �etendra ces r�esultats au cas des miroirs m�etalliques qui sont

utilis�es dans les exp�eriences r�ecentes. Nous pr�esenterons les di��erences essentielles entre

un mat�eriau di�electrique dans lequel les �electrons sont li�es et un m�etal dont les porteurs

sont libres. Le premier mod�ele de m�etal que nous envisagerons est le mod�ele plasma

qui d�ecrit une dynamique sans friction des �electrons de conduction. Ce mod�ele mettra

clairement en �evidence les caract�eristiques essentielles de la force de Casimir entre mi-

roirs m�etalliques, notamment la correction due pr�ecis�ement �a une conductivit�e �nie du

m�etal. Une description plus �ne du m�etal sera ensuite donn�ee par le mod�ele de Drude

qui rend compte des processus de relaxation des �electrons de conduction. Cet e�et de

la relaxation �etant dominant dans un domaine de fr�equences pour lequel la r�eponse

optique du miroir est d�ej�a presque satur�ee, cette relaxation jouera peu vis-�a-vis de

la force de Casimir. En revanche, les modi�cations de la r�eponse du m�etal dues aux

transitions inter-bandes auront un e�et signi�catif sur la force pour certaines distances.

Nous en tiendrons compte en d�ecrivant le m�etal �a partir des donn�ees optiques r�eelles

tabul�ees. Il apparâ�tra alors clairement qu'une description �ne des propri�et�es optiques

du m�etal est n�ecessaire pour atteindre la pr�ecision du pourcent dans l'�evaluation de la

force de Casimir.

A partir de ces r�esultats donn�es �a temp�erature nulle, nous inclurons l'e�et des 
uc-

tuations thermiques sur l'�evaluation de la force de Casimir dans le quatri�eme chapitre.

Nous d�e�nirons un facteur correctif incluant �a la fois les corrections de conductivit�e
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14 Introduction

et les corrections thermiques. Il sera alors possible de d�egager la notion essentielle de

corr�elation entre ces deux corrections. Nous expliciterons cette corr�elation dans le cadre

du mod�ele plasma et nous en d�egagerons des caract�eristiques int�eressantes permettant

d'atteindre une haute pr�ecision pour l'�evaluation th�eorique de la force de Casimir.

Cette question se pose dans un contexte pol�emique au sein duquel l'inclusion de la

temp�erature en même temps que celle de la dissipation dans les miroirs a engendr�e des

r�esultats contradictoires. Nous discuterons l'origine de ces di�cult�es dans le chapitre 5.

Nous montrerons comment notre formulation fournit des r�esultats d�epourvus de toute

ambigu��t�e et nous discuterons la relation entre ces r�esultats et ceux qui sont disponibles

dans la litt�erature.

Dans le sixi�eme et dernier chapitre, nous proc�ederons �a une revue des exp�eriences

et nous aborderons les probl�emes des e�ets g�eom�etriques sur la force de Casimir. Cette

question de la g�eom�etrie recouvre en même temps le probl�eme de la con�guration plan-

sph�ere utilis�ee dans la plupart des exp�eriences et le probl�eme de la rugosit�e de surface

des miroirs. Ces e�ets sont �evalu�es habituellement �a partir d'une même approximation,

dite approximation de proximit�e. Nous discuterons la validit�e de cette approximation

et mettrons en �evidence que cette question se pr�esente de fa�con bien di��erente pour les

probl�emes de con�guration plan-sph�ere et de rugosit�e.

Ceci nous permettra de conclure en discutant les di��erentes corrections qui inter-

viennent dans les exp�eriences et en proposant une �evaluation de leur degr�e de pr�ecision.

Ce tableau de la situation actuelle nous am�enera �nalement �a indiquer les projets th�eo-

riques et exp�erimentaux qui nous paraissent importants.
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Chapitre 1

Di�usion par un miroir

Les 
uctuations du vide ob�eissent aux lois de l'optique et l'e�et Casimir est dû �a

la di�usion de ces 
uctuations sur les miroirs de la cavit�e. Ces miroirs sont eux-mêmes

caract�eris�es par des amplitudes de di�usion, comme c'est l'usage en optique [72, 73].

Ce premier chapitre a pour but de pr�esenter les m�ethodes g�en�erales pour d�ecrire ces

processus de di�usion en utilisant les sym�etries du probl�eme.

Ici, nous �etudions la di�usion par des miroirs parfaitement plans, parall�eles et im-

mobiles. La di�usion est stationnaire, ce qui se traduit par l'invariance du syst�eme par

translation de temps. A cette sym�etrie correspond la conservation de la fr�equence !

du champ au cours de la di�usion. Les miroirs plans sont pris �egalement in�niment

�etendus dans la dimension transverse (ex; ey). La g�eom�etrie est invariante par transla-

tion de l'espace dans la direction transverse, c'est-�a-dire le long du plan des miroirs.

Cette sym�etrie se traduit par la conservation, au cours du processus de di�usion, du

vecteur d'onde transverse des champs incident, r�efract�e et r�e
�echi k = kxex+kyey. Les

polarisations TE et TM sont elles aussi conserv�ees dans le processus de di�usion. Par

sym�etrie cylindrique, on pourra supposer une incidence dans le plan (ex; ez). Dans un

milieu caract�eris�e par son indice n =
p
", o�u l'on a not�e " la permittivit�e du milieu, la

propagation oblique se d�ecrit par les relations

kx =
!

c
n sin � ; kz =

!

c
n cos � (1-1)

entre la fr�equence !, l'angle de r�efraction � et le vecteur d'onde.

Cette analyse identi�e les param�etres les mieux adapt�es �a la description de la dif-

fusion du champ sur un miroir. Ces param�etres, la fr�equence du champ !, les vecteurs

d'onde transverses associ�es k et la polarisation p sont les quantit�es conserv�ees au cours

du processus et sont utilis�es comme les \bons nombres quantiques" dans la suite.
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16 Chapitre 1. Di�usion par un miroir

Ces sym�etries vont nous permettre d'introduire les matrices de di�usion S et de

transfert T de la th�eorie des r�eseaux �electromagn�etiques [74, 75]. Ces matrices seront

les �el�ements constitutifs de notre description th�eorique de la di�usion et elles seront

utilis�ees dans toute la suite du travail. Nous commen�cons �a expliciter ces outils dans le

cas d'une interface entre deux milieux. En traduisant �egalement dans ce point de vue

la propagation du champ dans un milieu, nous d�ecrivons ensuite une lame di�electrique

et d'autres miroirs compos�es tels que les multicouches di�electriques. Nous insistons

sur le caract�ere syst�ematique de ces descriptions �ecrites sur des lois de composition

construites sur les matrices T .

Ce travail nous permettra �egalement de caract�eriser simplement la di�usion du

champ sur une lame absorbante. En utilisant uniquement la propri�et�e d'unitarit�e dans

la di�usion des champs quantiques, nous montrons que le bruit ajout�e dans une lame

absorbante s'�ecrit en fonction des amplitudes de di�usion d�ej�a calcul�ees. Cette pro-

pri�et�e jouera un rôle important pour le calcul de la force de Casimir dans le prochain

chapitre.

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



A L'interface entre deux milieux 17

A L'interface entre deux milieux

Nous �etudions pour commencer la situation d'une interface parfaitement plane s�epa-

rant deux milieux di�electriques dispersifs d'indices respectifs n1 et n2. Par conservation

du vecteur transverse et de la fr�equence, on d�eduit les lois de la r�efraction

ckx

!
= n1 sin �1 = n2 sin �2:

Le vecteur longitudinal kz, lui, n'est pas conserv�e et c'est pr�ecis�ement en son change-

ment de signe que consiste la r�e
exion. La r�efraction vers le second milieu modi�e kz

de sorte que la relation constitutive (1-1) est v�eri��ee dans les deux milieux.

A.1 Les deux polarisations

Les deux polarisations du champ correspondent aux g�eom�etries pr�esent�ees sur la

�gure 1.1. Nous utilisons les conventions usuelles [80, 81] : la polarisation transverse

�electrique TE correspond �a un vecteur champ �electrique perpendiculaire au plan d'in-

cidence et la polarisation transverse magn�etique TM correspond �a un vecteur champ

�electrique contenu dans ce plan. La sym�etrie des miroirs plans et parall�eles permet de

traiter s�epar�ement ces deux polarisations �a travers tout le processus de di�usion par la

cavit�e.
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εref
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ε tr
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1n n2
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Fig. 1.1 { G�eom�etrie des directions de propagation et des champs �electriques pour les deux

polarisations TM et TE.

On commence par consid�erer une onde incidente en polarisation TM. On a donc

toujours

ETM
y = HTM

x = 0: (1-2)

En notant les champs incident Ein, transmis Etr et r�e
�echi Eref , on obtient

ETM
x;1 =

�ETMin + ETMref
�
cos �1

HTM
y;1 =

�ETMin � ETMref
�
n1
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18 Chapitre 1. Di�usion par un miroir

ETM
x;2 = ETMtr cos �2

HTM
y;2 = ETMtr n2: (1-3)

Pour simpli�er au maximum les expressions, nous �ecrivons les amplitudes des champs E
au voisinage imm�ediat de l'interface. Par ailleurs, l'onde incidente correspond au milieu

1. La situation r�eciproque sera trait�ee plus loin. En�n, il est �a signaler que nous avons

d�e�ni les champs magn�etiques H avec la même dimension que les champs �electriques

E. Dans chaque milieu, l'amplitude du champ H est celle du champ E multipli�ee

par l'indice n correspondant. Les conditions g�en�erales de continuit�e des composantes

tangentielles des champs �a l'interface permettent d'�ecrire les �equations de continuit�e

suivantes �ETMin + ETMref
�
cos �1 = ETMtr cos �2�ETMin � ETMref
�
n1 = ETMtr n2: (1-4)

Il est int�eressant pour la suite de former le rapport entre ces deux �equations

ETMin + ETMref
ETMin � ETMref

=
n1 cos �2
n2 cos �1

(1-5)

et de calculer leur produit

n1 cos �1
��ETMin �2 � �ETMref �2� = n2 cos �2

�ETMtr �2 : (1-6)

Pour une onde polaris�ee TE, la vibration du champ �electrique s'e�ectue normale-

ment au plan d'incidence

ETE
x = HTE

y = 0: (1-7)

Comme pr�ec�edemment, nous �ecrivons les champs dans chaque milieu

ETE
y;1 =

�ETEin + ETEref
�

HTE
x;1 = � �ETEin � ETEref

�
n1 cos �1

ETE
y;2 = ETEtr

HTE
x;2 = �ETEtr n2 cos �2 (1-8)

et nous obtenons les relations de continuit�e

ETEin + ETEref = ETEtr�ETEin � ETEref
�
n1 cos �1 = ETEtr n2 cos �2: (1-9)
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A L'interface entre deux milieux 19

Pour le rapport entre ces deux �equations, on trouve une expression analogue �a (1-5)

avec les facteurs de projection cos �i interchang�es

ETEin + ETEref
ETEin � ETEref

=
n1 cos �1
n2 cos �2

: (1-10)

Par contre, le produit des �equations (1-9) a la même forme qu'en (1-6)

n1 cos �1

��ETEin �2 � �ETEref �2� = n2 cos �2
�ETEtr �2 : (1-11)

A.2 Les amplitudes de di�usion

A ce stade, on d�e�nit l'amplitude de r�e
exion comme le rapport du champ r�e
�echi

au champ incident, pour chaque polarisation,

r1j2 =
Eref
Ein : (1-12)

L'indice 1 j 2 d�esigne la di�usion d'un champ incident par l'interface, du milieu 1 vers

le milieu 2. On d�eduit de (1-5) et (1-10) les expressions explicites de ces amplitudes de

r�e
exion

rTE1j2 =
kz;1 � kz;2

kz;1 + kz;2

rTM1j2 =
"1kz;2 � "2kz;1

"1kz;2 + "2kz;1
: (1-13)

On d�e�nira �egalement et de la même fa�con les coe�cients de transmission comme

le rapport entre l'onde transmise et l'onde incidente

t1j2 =
Etr
Ein : (1-14)

On �etablit �a l'aide des �equations (1-4) et (1-9) les relations entre ces amplitudes de

transmission et les amplitudes de r�e
exion

tTM1j2 =
cos �1
cos �2

�
1 + rTM1j2

�
tTE1j2 = 1 + rTE1j2 : (1-15)

On obtient ainsi les expressions explicites

tTE1j2 =
2kz;1

kz;1 + kz;2

tTM1j2 =
2"2kz;1

"2kz;1 + "1kz;2
: (1-16)
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20 Chapitre 1. Di�usion par un miroir

En utilisant (1-6) et (1-11), on obtient �egalement des relations entre les carr�es des

amplitudes, avec la même forme pour les deux polarisations

kz;1
�
1 � r1j2

2
�
= kz;2 t1j2

2: (1-17)

Nous avons utilis�e la relation (1-1) entre les vecteurs d'onde et les angles.

On peut r�e�ecrire les conditions de continuit�e en termes d'imp�edances. Celles-ci n'ont

pas la même forme pour les deux polarisations parce que les facteurs de projection cos �

n'interviennent pas de la même fa�con

HTM
y =

n

cos �
ETM
x

HTE
x = �n cos �ETE

y : (1-18)

Ces relations s'�ecrivent dans chacun des deux milieux (m = 1; 2) en fonction de facteurs

d'imp�edances

zTMm =
nm

cos �m
zTEm = nm cos �m: (1-19)

Nous avons omis le signe global qui ne se manifeste pas. En utilisant ces imp�edances,

les amplitudes de r�e
exion s'�ecrivent de la même fa�con pour les deux polarisations

r1j2 =
z1 � z2

z1 + z2
: (1-20)

Nous retrouvons avec ces notations les notions d'imp�edances de surface, avec toutefois

des conventions di��erentes des conventions usuelles [82].

A.3 La r�eciprocit�e

On peut d�ecrire simplement la situation o�u la même interface est travers�ee avec

le sens inverse de propagation. Ceci correspond �a la situation r�eciproque de la pr�ec�e-

dente, et elle est obtenue par �echange des deux directions de travers�ee de l'interface.

La situation r�eciproque correspond aussi �a une sym�etrie spatiale par rapport au plan

de l'interface suivie de l'�echange des indices des deux milieux (voir la �gure 1.2).

Les miroirs �etant immobiles, la fr�equence est conserv�ee dans cette sym�etrie. Le

vecteur d'onde et le champ �electrique se transforment comme des vecteurs 1. On d�e�nira

1. Alors que le champ magn�etique se transforme comme un 'pseudo-vecteur' spatial. On suppose

bien sûr qu'il n'y a pas de champ magn�etique ext�erieur appliqu�e.
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A L'interface entre deux milieux 21
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Fig. 1.2 { R�eciprocit�e.

par les notations
�E; r; t� les champs et les amplitudes de di�usion de la situation

r�eciproque

r1j2 =
E ref
E in

; t1j2 =
E tr
E in

: (1-21)

La transformation r�eciproque sur l'amplitude de r�e
exion est donc simplement donn�ee

par �echange des indices

r1j2 = r2j1; (1-22)

c'est-�a-dire comme on le voit directement sur les imp�edances (1-19)

r1j2 = �r1j2: (1-23)

Cette propri�et�e de r�eciprocit�e est vraie pour les deux polarisations.

Pour le coe�cient de transmission, on doit traiter chaque polarisation s�epar�ement

t
TM
1j2 =

cos �2
cos �1

�
1 + rTM1j2

�
= tTM2j1

t
TE
1j2 = 1 + rTE1j2 = tTE2j1 : (1-24)

Mais on constate ensuite, par inspection des formules pr�ec�edentes, que la relation sui-

vante entre les amplitudes de transmission directe et r�eciproque est la même pour les

deux polarisations

t
TM
1j2

tTM1j2
=
t
TE
1j2

tTE1j2
=
n2 cos �2
n1 cos �1

=
kz;2

kz;1
: (1-25)

Il en est de même pour la relation entre les carr�es des amplitudes

1� r1j2
2 = 1� r1j2

2

=
kz;2

kz;1
t1j2

2 =
kz;1

kz;2
t1j2

2

= t1j2t1j2: (1-26)

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



22 Chapitre 1. Di�usion par un miroir

Les raisonnements que nous venons de pr�esenter sont possibles �a condition de sup-

poser que les �equations microscopiques �a la base de la di�usion sont invariantes par

renversement du temps. C'est un th�eorême de micror�eversibilit�e sur lequel nous revien-

drons plus loin.

A.4 Milieux absorbants

La causalit�e de la r�eponse optique du milieu implique [83, 84] que la permittivit�e

" [!] est une fonction analytique de la fr�equence ! sur tout le demi-plan complexe

sup�erieur Im(!) > 0. Cette propri�et�e jouera un rôle important dans ce travail et nous

nous en servirons pour transformer certaines int�egrales sur l'axe des fr�equences r�eelles

en int�egrales sur l'axe des fr�equences imaginaires. Il sera alors commode d'utiliser la

notation

! = i�: (1-27)

Avec cette notation, la propri�et�e de causalit�e correspondra �a l'analyticit�e dans le demi-

plan

Re (�) > 0: (1-28)

La propagation du champ dans le milieu est d�ecrite par une phase eikzz d�etermin�ee

par le vecteur d'onde longitudinal kz. Nous savons qu'�a partir du moment o�u l'indice

du milieu poss�ede une partie imaginaire non-nulle, le champ est att�enu�e au cours de

sa propagation dans le milieu. Autrement dit, le facteur eikzz contient un facteur d'ex-

tinction li�e �a la partie imaginaire du vecteur kz. Il est important de remarquer que ceci

impose de choisir le bon signe quand on d�e�nit le vecteur kz �a partir des relations de

dispersion

k2z = "
!2

c2
� k2: (1-29)

Ce choix est li�e �a la direction de propagation du champ dans le milieu. On pourra noter

kz = i� Re (�) > 0 (1-30)

pour une propagation du champ vers la droite et

kz = �i� Re (�) > 0 (1-31)

pour une propagation du champ vers la gauche.

En utilisant les notations � et �, nous regroupons ces deux cas en une seule �equation

� =

r
"
�2

c2
+ k2 Re (�) > 0 (1-32)
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A L'interface entre deux milieux 23

A.5 Ondes �evanescentes

Toutes les relations ont �et�e �ecrites jusqu'�a pr�esent pour les ondes ordinaires qui

se propagent librement dans le vide. Cependant, un champ se propageant d'un milieu

n1 > 1 vers le vide n0 = 1 devient �evanescent quand son angle d'incidence est sup�erieur

�a l'angle limite de r�e
exion totale n1 sin �1 > 1. L'onde �evanescente dans le vide est

alors caract�eris�ee par les conditions

kz imaginaire ;
!2

c2
� k2; (1-33)

�a comparer pour les ondes ordinaires �a

kz reel ;
!2

c2
� k2: (1-34)

Les r�esultats obtenus pr�ec�edemment pour les ondes ordinaires peuvent être �etendus

aux ondes �evanescentes en utilisant la notion importante de prolongement analytique.

La quantit�e k2z est n�egative pour les ondes �evanescentes, ce qui pose un probl�eme pour

d�e�nir la variable complexe kz.

La condition d'att�enuation lors de la propagation dans le vide permet de choisir le

branchement qui s�electionne la bonne d�etermination de kz conform�ement aux �equations

�ecrites dans la section pr�ec�edente. Les notations qu'on a introduites �a cette occasion

sont bien adapt�ees pour d�ecrire le processus de prolongement aux ondes �evanescentes

et ceci est valable �egalement si le milieu di�electrique est absorbant. Les amplitudes de

r�e
exion et de transmission pour les ondes �evanescentes sont alors simplement donn�ees

comme prolongement analytique des expressions des amplitudes des ondes ordinaires

(1-13,1-16) avec � donn�e par l'�equation (1-32) [85].

Ces modes �evanescents peuvent se caract�eriser du point de vue de la r�eciprocit�e.

Une onde �evanescente correspond �a une propagation d'un milieu r�efringeant vers le

vide. En particulier, les amplitudes de r�e
exion correspondent �a de simples phases, ce

qui correspond au ph�enom�ene bien connu de r�e
exion totale. On obtient alors��r1j2��2 = 1:

Pour autant, les coe�cients de transmission ne s'annulent pas puisqu'il existe une onde

transmise. Ces r�esultats illustrent la propri�et�e bien connue que la discussion des lois

portant sur l'�energie soul�eve des questions d�elicates dans le secteur des ondes �evanes-

centes [86].

On retiendra que les �equations d�eterminant les amplitudes de r�e
exion se prolongent
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24 Chapitre 1. Di�usion par un miroir

au secteur �evanescent, la forme de ces amplitudes restant la même que celle d�emontr�ee

pour les ondes ordinaires. En moyenne, il n'y a pas de transfert d'�energie �a travers l'in-

terface pour les modes �evanescents mais ces modes existent r�eellement et se propagent

tout de même le long de l'interface. Nous verrons qu'ils interviennent dans le calcul de

la force de Casimir.

Dans le prochain chapitre, nous aurons besoin d'�evaluer les amplitudes de r�e
exion

dans le secteur �evanescent et �egalement pour les fr�equences imaginaires. Ces amplitudes

seront obtenues par prolongement analytique de celles que nous aurons calcul�ees pour

les ondes ordinaires.

Dans le secteur �evanescent, la valeur de �1 est imaginaire comme pour les ondes

ordinaires alors que la valeur de �0 est r�eelle, �0 �etant alors exactement l'inverse de la

longueur sur laquelle le champ subsiste au voisinage de la surface. Pour les fr�equences

imaginaires, les permittivit�es " [i�] sont toujours r�eelles, et il en est de même pour �0

et �1. Ces arguments d�etermineront les comportements des amplitudes sur ces deux

secteurs.

B Les miroirs trait�es comme des r�eseaux

Nous voulons maintenant mettre en place un point de vue tr�es syst�ematique des

amplitudes de di�usion inspir�e de la th�eorie des r�eseaux [74, 75]. Par exemple, l'inter-

face �etudi�ee dans la section pr�ec�edente sera consid�er�ee comme un r�eseau �electromagn�e-

tique avec deux ports �a gauche et �a droite. Nous pourrons alors �ecrire des relations de

type entr�ee/sortie (in/out) en consid�erant la superposition lin�eaire des deux situations

�etudi�ees dans la section pr�ec�edente. Nous pourrons aussi �ecrire des relations de type

transfert gauche/droite.

Cette m�ethode conduira �a une description syst�ematique de la di�usion. Elle nous

permettra de d�egager tr�es ais�ement les lois de composition qui seront �a la base de la

description de la di�usion par une lame ou un multicouche. Elle fournira les relations

g�en�erales entre les amplitudes qui d�ecoulent de la propri�et�e de r�eciprocit�e.

B.1 Matrice S et r�eciprocit�e

La matrice S est une matrice de type entr�ee-sortie reliant les champs di�us�es aux

champs incidents. Les amplitudes repr�esent�ees sur la �gure 1.3 sont rassembl�ees en vec-

teurs colonnes not�es \in" et \out" qui correspondent respectivement aux amplitudes

entrantes et sortantes.
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B Les miroirs trait�es comme des r�eseaux 25

in
2

εout
2

εout
1

n2n1

εε in
1

Fig. 1.3 { Di�usion sur une interface entre deux milieux.

Ces vecteurs sont reli�es par une matrice de di�usion, ou matrice S 
Eout1

Eout2

!
= S1j2

 
E in1
E in2

!
: (1-35)

Pour faire clairement le lien avec les notations des sections pr�ec�edentes, nous d�e-

taillons ici les d�e�nitions exactes des champs dans le cas particulier d'une interface

s�eparant deux milieux 1 et 2. Les champs incidents sur l'interface, se propageant dans

le milieu 1 ou dans le milieu 2, s'identi�ent aux champs \in"

E in1 � Ein
E in2 � E in: (1-36)

Les champs sortants sont des superpositions lin�eaires des champs transmis et r�e
�echis

calcul�es dans la section pr�ec�edente

Eout1 � Eref + E tr
Eout2 � Etr + Eref: (1-37)

Il est �evident que les �el�ements de la matrice S sont tout simplement les amplitudes de

di�usion discut�ees dans la section pr�ec�edente

Eout1 = r1j2E in1 + t1j2E in2
Eout2 = t1j2E in1 + r1j2E in2 : (1-38)

Par identi�cation avec l'�equation (1-35), ceci d�e�nit la matrice S

S1j2 =

 
r1j2 t1j2

t1j2 r1j2

!
: (1-39)

La r�eciprocit�e est une propri�et�e de sym�etrie du r�eseau d�es lors que les �equations mi-

croscopiques sont invariantes par renversement du temps. C'est l'extension au cas des
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26 Chapitre 1. Di�usion par un miroir

champs, due �a Casimir lui-même [87], des propri�et�es de micro-r�eversibilit�e d�ecouvertes

par Onsager [88]. C'est une cons�equence des �equations de Maxwell que les processus

�electromagn�etiques se d�eroulant dans les milieux di�electriques ob�eissent �a cette pro-

pri�et�e, si toutes les grandeurs �a consid�erer dans la d�e�nition du syst�eme sont bien

invariantes par renversement du temps, ce qui suppose en particulier qu'il n'y ait pas

de champ magn�etique ext�erieur appliqu�e. Nous allons d�emontrer dans la suite de cette

section que, pour un r�eseau �electromagn�etique dont les deux ports L et R sont dans le

vide, le principe de r�eciprocit�e se traduit par le caract�ere sym�etrique de la matrice S.

B.2 Matrice T et lois de composition

La matrice T correspond �a une fa�con di��erente d'envisager le processus de di�usion

sur le même r�eseau. Il ne s'agit plus de relier les champs di�us�es aux champs incidents,

comme le faisait la matrice S, mais de relier les deux ports du di�useur du point de

vue d'un \transfert" de champ du côt�e droit au côt�e gauche. Les champs sont identi��es

par les relations suivantes conform�ement �a la �gure 1.4

E!1 � E in1 E 1 � Eout1

E!2 � Eout2 E 2 � E in2 : (1-40)

2n1

εout
11εε

n

=

ε in
11εε =

ε in
2 2ε=

εout
2 2ε=

Fig. 1.4 { Description de l'interface entre deux milieux dans une approche de transfert.

Les colonnes regroupant les champs �a gauche et �a droite sont reli�es par une matrice T 
E!1
E 1

!
= T1j2

 
E!2
E 2

!
T1j2 =

 
a1j2 b1j2

c1j2 d1j2

!
: (1-41)

Ce point de vue se r�ev�elera tr�es utile pour formuler les lois de composition d'une

mani�ere tr�es syst�ematique. On peut noter que le calcul des multicouches di�electriques

est depuis longtemps fond�e sur de telles techniques [89, 90].

Nous pouvons relier les coe�cients de cette matrice T �a ceux de la matrice S

a1j2 =
1

t1j2
b1j2 = �

r1j2

t1j2
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B Les miroirs trait�es comme des r�eseaux 27

c1j2 =
r1j2

t1j2
d1j2 =

t1j2t1j2 � r1j2r1j2

t1j2
: (1-42)

On note qu'il sera impossible de d�eduire la matrice T de la matrice S dans le cas

d'une transmission nulle : les coe�cients de la matrice T ne sont pas d�e�nis dans ce

cas. Comme nous le verrons plus loin, c'est pr�ecis�ement la situation rencontr�ee dans

la limite d'un milieu d'�epaisseur in�nie, limite souvent consid�er�ee dans l'interpr�etation

des exp�eriences.

Les amplitudes de di�usion peuvent �egalement se d�eduire des amplitudes de trans-

fert en inversant les relations pr�ec�edentes

t1j2 =
1

a1j2
r1j2 = �

b1j2

a1j2

r1j2 =
c1j2

a1j2
t1j2 =

a1j2d1j2 � b1j2c1j2

a1j2
: (1-43)

On remarque la relation g�en�erale entre le d�eterminant de la matrice T et le rapport

des coe�cients non diagonaux de la matrice S

t1j2

t1j2
= a1j2d1j2 � b1j2c1j2 = detT1j2: (1-44)

L'int�erêt principal des matrices de transfert est qu'elles sont bien adapt�ees �a l'�ecri-

ture des lois de composition d'�el�ements optiques. En e�et, l'empilement d'�el�ements

optiques se traduit simplement par le produit des matrices T correspondant �a chaque

�el�ement. Pour deux r�eseaux connect�es dont les ports sont donc respectivement les ports

1j2 et 2j3, nous obtenons pour le syst�eme �equivalent 1j3 la matrice T d�e�nie par le pro-

duit des matrices T de chaque r�eseau

T1j3 = T1j2T2j3: (1-45)

Chaque r�eseau pourra repr�esenter un �el�ement optique �el�ementaire tel que la travers�ee

d'une interface ou la propagation dans un milieu (voir la section suivante). Mais il

pourra tout aussi bien repr�esenter un syst�eme compos�e tel qu'une lame ou un miroir

multicouche.

Dans tous les cas, le produit des matrices T d�ecrira l'empilement de deux �el�ements

optiques A et B pour en fabriquer un troisi�eme, not�e AB

TAB = TATB (1-46)

Il est clair que les d�eterminants sont simplement multipli�es dans un empilement

detTAB = detTA:detTB: (1-47)
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28 Chapitre 1. Di�usion par un miroir

Les amplitudes de transfert sont obtenues en d�eveloppant le produit des matrices 
aAB bAB

cAB dAB

!
=

 
aA bA

cA dA

! 
aB bB

cB dB

!
aAB = aAaB + bAcB

bAB = aAbB + bAdB

cAB = cAaB + dAcB

dAB = cAbB + dAdB: (1-48)

B.3 R�eseaux �electromagn�etiques �el�ementaires

Dans cette section, nous consid�erons deux types de r�eseaux �el�ementaires, la travers�ee

d'une interface et la propagation dans un milieu, qui permettent de construire par

composition tous les miroirs plans qui nous int�eressent dans la suite.

Pour l'interface, nous r�e�ecrivons les amplitudes de r�e
exion (1-20) en fonction des

facteurs d'imp�edances

r1j2 =
z1 � z2

z1 + z2
r1j2 = �r1j2 (1-49)

Nous rappelons �egalement l'�equation (1-17) pour les amplitudes de transmission

t1j2 =

r
�1

�2

q
1� r21j2

t1j2 =

r
�2

�1

q
1� r21j2: (1-50)

Nous d�eduisons de la section pr�ec�edente les amplitudes de transfert

a1j2 = d1j2 =
1

t1j2

b1j2 = c1j2 =
r1j2

t1j2
: (1-51)

Nous introduisons ici une notation qui sera utilis�ee par la suite et qui consiste �a �ecrire

les amplitudes de r�e
exion de l'interface sous forme d'une exponentielle

r1j2 = �e�� ; � = ln

�
z2 + z1

z2 � z1

�
: (1-52)

La propagation du champ sur une distance ` �a l'int�erieur d'un milieu m est ca-

ract�eris�ee par une phase accumul�ee par chaque champ se propageant dans les deux
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B Les miroirs trait�es comme des r�eseaux 29

mn

l

Fig. 1.5 { Propagation dans un milieu.

directions mais sans m�elange entre ces deux champs (voir la �gure 1.5).

Ceci correspond �a une matrice T tr�es simple

T pr
` =

 
e�m 0

0 e��m

!
: (1-53)

�m correspond au param�etre de phase sur l'�epaisseur `

�m = `�m = `

r
"
�2

c2
+ k2: (1-54)

Cette phase est la même pour les deux polarisations et pour les deux directions de

propagation possibles.

B.4 Composition et r�eciprocit�e

Nous avons vu en (1-44) que pour l'interface, le d�eterminant de la matrice T est

simplement donn�e par

detT1j2 =
t1j2

t1j2
=
�2

�1
: (1-55)

Dans le cas de la propagation dans un milieu m, on a

det T pr
m = 1 (1-56)

ce qui correspond simplement, d'apr�es (1-55), �a la conservation au cours de la propa-

gation du vecteur �.

En utilisant le fait que le d�eterminant de la matrice T se multiplie dans la composi-

tion (1-47), on d�eduit que la relation (1-55) est en fait valable pour tout r�eseau �a deux
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30 Chapitre 1. Di�usion par un miroir

ports construit avec la sym�etrie du miroir plan par composition d'un empilement quel-

conque de travers�ees d'interfaces et de propagations. En e�et, cette loi est vraie pour

ces r�eseaux �el�ementaires et elle a son expression pr�eserv�ee par la loi de composition.

En particulier, pour tout r�eseau dont les deux ports correspondent au vide, on aura

�1 = �2, ce qui conduira �a la forme particuli�ere de l'�equation (1-55)

detT = 1: (1-57)

Par suite des relations d�ej�a d�emontr�ees, on d�eduit que la matrice S sera sym�etrique

t = t: (1-58)

Ce r�esultat constitue la d�emonstration de la propri�et�e de r�eciprocit�e avec l'hypoth�ese

de la sym�etrie du miroir plan.

En explicitant la matrice S d'un tel r�eseau

S =

 
r t

t r

!
; (1-59)

on utilise les relations (1-42) pour donner la matrice T associ�ee

T =

 
1
t
� r

t
r

t

t2�rr
t

!
; detT = 1: (1-60)

Inversement, partant de la matrice T d'un r�eseau r�eciproque

T =

 
a b

c d

!
; detT = 1 ; d =

1 + bc

a
; (1-61)

on d�eduit la matrice S

S =

 
c
a

1
a

1
a

� b

a

!
: (1-62)

Comme on l'a d�ej�a dit, ces formes sont li�ees �a la propri�et�e g�en�erale de r�eciprocit�e. Dans

le cas particulier o�u le r�eseau est de plus invariant par sym�etrie par rapport �a son plan

m�edian (ce sera le cas de la lame), les deux coe�cients de r�e
exion sont alors �egaux

(r = r), ce qui implique pour les amplitudes de transfert l'�egalit�e b = �c.
En utilisant la forme g�en�erale d'une matrice S r�eciproque, nous pouvons expliciter
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B Les miroirs trait�es comme des r�eseaux 31

les relations correspondant �a l'empilement de deux �el�ements optiques. En e�et, les

relations (1-48) se r�e�ecrivent

aAB =
1

tAB
=

1

tA

1

tB
� rA

tA

rB

tB

bAB = �rAB
tAB

= � 1

tA

rB

tB
� rA

tA

t2B � rBrB

tB

cAB =
rAB

tAB
=
rA

tA

1

tB
+
t2A � rArA

tA

rB

tB

dAB =
t2AB � rABrAB

tAB

=
�rArB + (t2A � rArA) (t2B � rBrB)

tAtB
: (1-63)

On peut ensuite revenir aux coe�cients de la matrice de di�usion compos�ee SAB

tAB =
tAtB

1� rArB

rAB =
rA + (t2A � rArA) rB

1 � rArB = rA +
t2ArB

1� rArB

rAB =
rB + rA (t2B � rBrB)

1 � rArB
= rB +

rAt
2
B

1 � rArB : (1-64)

Par r�ecurrence, on pourra d�eduire les coe�cients de di�usion pour tout miroir multi-

couche. Nous �etudions ci-dessous la lame et le multicouche di�electrique.

B.5 La lame di�electrique

Une lame di�eletrique est construite par l'empilement d'une interface 0j1 o�u l'indice

0 correspond au vide et l'indice 1 au mat�eriau d'indice n1, d'une propagation sur

l'�epaisseur ` de la lame avec une phase �1 = `�1 et, �nalement, d'une autre interface

1j0. La matrice T de la lame s'�ecrit donc simplement comme

T lame = T int
0j1T

pr
1 T

int
1j0 : (1-65)

La lame est bien sûr un r�eseau r�eciproque, et elle est de plus, par construction, inva-

riante dans la sym�etrie spatiale par rapport �a son plan m�edian. Sa matrice S a donc

la forme suivante

Slame =

 
r t

t r

!
: (1-66)
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32 Chapitre 1. Di�usion par un miroir

Nous calculons ci-dessous les amplitudes r et t.

On utilisera les notations d�ej�a introduites pour d�ecrire l'e�et de propagation du

champ dans la lame

� = `�1 (1-67)

et les amplitudes de r�e
exion sur la lame

e��
TE

= �rTE0j1 =
zTE � 1

zTE + 1

zTE � zTE1
zTE0

=
�1

�0

e��
TM

= �rTM0j1 =
zTM � 1

zTM + 1

zTM � zTM1
zTM0

=
"1�0

�1
; (1-68)

l'indice 0 d�esignant ici le vide pour lequel " � 1. On a not�e conform�ement aux notations

d�ej�a introduites

�0 =

r
�2

c2
+ k2

�1 =

r
"1
�2

c2
+ k2: (1-69)

Les �equations (1-51) pour les amplitudes de transfert pour les interfaces s'�ecrivent alors

T int
0j1 =

r
�1

�0

1p
2 sinh �

 
e
�

2 �e��

2

�e��

2 e
�

2

!

T int
1j0 =

r
�0

�1

1p
2 sinh �

 
e
�

2 e�
�

2

e�
�

2 e
�

2

!
: (1-70)

On v�eri�e que le produit de ces deux matrices redonne bien la matrice identit�e, ce qui

signi�e que les e�ets des deux interfaces se compenseraient s'ils n'�etaient pas s�epar�es

par l'e�et de propagation dans le di�electrique.

On peut donc �ecrire, par composition, la matrice globale de la lame

T lame =
1

2 sinh �

 
e
�

2 �e��

2

�e��

2 e
�

2

! 
e� 0

0 e��

! 
e
�

2 e�
�

2

e�
�

2 e
�

2

!

=

 
alame blame

clame dlame

!
; (1-71)

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



B Les miroirs trait�es comme des r�eseaux 33

avec

alame =
e�e� � e��e��
e� � e��

=
sinh (� + �)

sinh�

dlame =
e�e�� � e��e�

e� � e��
=

sinh (� � �)

sinh �

blame = �clame =
e� � e��

e� � e��
=

sinh�

sinh�
: (1-72)

On d�eduit les amplitudes de di�usion, conform�ement aux relations (1-43)

tlame =
sinh�

sinh (� + �)

rlame = � sinh�

sinh (� + �)
: (1-73)

Il est int�eressant de noter que ces r�esultats ont la même structure que ceux obtenus

pour une cavit�e Fabry-Perot [91, 92]. Nous venons en fait de calculer le Fabry-Perot que

constitue la lame en utilisant la m�ethode de multiplication des matrices T . Le grand

avantage de cette m�ethode est sa g�en�eralit�e que nous allons utiliser pour calculer des

miroirs multicouches.

B.6 Le miroir massif comme cas limite

La plupart des calculs de la force de Casimir consid�erent la con�guration de deux

miroirs massifs, semi-in�nis, se faisant face. Il est clair physiquement que les miroirs

r�eels ont une �epaisseur �nie. La lame est donc une description plus r�ealiste et c'est

�a partir de ce mod�ele de lame que le miroir massif peut être consid�er�e comme le cas

limite

e�� ! 0: (1-74)

Nous avons suppos�e la pr�esence d'une absorption, aussi petite soit elle, qui implique une

extinction totale du coe�cient de transmission sur une grande distance. Nous allons

voir que cette limite pr�esente plusieurs comportements pathologiques et qu'elle doit

donc être trait�ee avec le plus grand soin.

Tout d'abord, il est important de noter que la matrice T n'est pas d�e�nie dans cette

limite. La matrice S d'un milieu semi-in�ni s'�ecrit sous la forme suivante

Smassif =

 
rmassif 0

0 rmassif

!
; rmassif = r0j1: (1-75)
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34 Chapitre 1. Di�usion par un miroir

On voit bien sur les relations (1-42) que les coe�cients de la matrice T ne sont alors

pas d�e�nis puisque tmassif = 0. Les coe�cients de r�e
exion s'identi�ent aux coe�cients

de r�e
exion de la premi�ere interface 0j1 puisque l'extinction totale de la transmission

interdit toute interf�erence dans la lame.

On remarque que la matrice S du miroir massif n'est pas identique �a celle de l'in-

terface

Smassif 6= Sint
0j1

Sint
0j1 =

 
r0j1 t0j1

t0j1 r0j1

!
: (1-76)

Nous avons d�ej�a dit que la limite e�� ! 0 correspond �a une lame d'�epaisseur ` in�nie en

pr�esence d'absorption. Même dans ce cas, il faut noter que la limite ` !1 n'implique

pas de fa�con uniforme e�� ! 0. En e�et, si on a �a la fois "�2 ! 0 et k2 ! 0, alors �

tend vers 0 et � n'est pas forc�ement grand, même quand `� 1. Dans ce cas o�u �! 0,

on a des comportements tr�es di��erents pour la lame et le miroir massif. Pour la lame,

d'apr�es (1-73), cette limite correspond �a

tlame! 1 ; rlame! 0; (1-77)

alors que pour le miroir massif, on obtient les comportements suivants

tmassif ! 0 ; rmassif ! r0j1: (1-78)

On a l�a une caract�eristique importante de la lame par rapport au miroir massif : le

champ est toujours transmis �a travers la lame dans la limite des basses fr�equences. A

cette limite en e�et, la longueur d'onde du champ est beaucoup plus grande que l'�epais-

seur de la lame, de sorte que celle-ci apparâ�t comme une petite modulation spatiale

d'indice plutôt que comme une interface discontinue. Ce r�egime de faible profondeur

optique de la lame correspond �a une pathologie potentielle.

On a ici consid�er�e implicitement un mod�ele de miroir di�electrique pour lequel "

tend vers une constante �a la limite quasistatique � ! 0 [93]. Pour les m�etaux en re-

vanche, l'indice diverge �a cette limite. A temp�erature non-nulle de plus, le nombre de

photons par mode diverge aussi pour ! ! 0. Toutes ces di�cult�es sont �a la source des

pol�emiques qui ont �emaill�e la discussion des forces de Casimir depuis des ann�ees. Nous

les discuterons en d�etail dans le chapitre 5.
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B Les miroirs trait�es comme des r�eseaux 35

B.7 Les miroirs multicouches

Il est int�eressant d'�etudier de la même fa�con le cas du miroir compos�e de deux ou

plusieurs lames accol�ees l'une �a l'autre. Par exemple, un mod�ele souvent utilis�e pour

les calculs de la force de Casimir est celui d'un miroir massif recouvert d'une couche

mince [94].

Partant des r�eseaux �el�ementaires, la double lame, que nous notons ici \dlame", est

construite par empilement de trois interfaces et de deux propagations dans des milieux

di��erents. On distingue alors trois milieux de propagation pour le champ : le vide 0 des

ports externes, le milieu 1 de la premi�ere lame et le milieu 2 de la deuxi�eme. Du point

de vue matriciel, on a donc

T dlame
0j1j2j0 = T int

0j1T
pr
1 T

int
1j2T

pr
2 T

int
2j0 : (1-79)

On rappelle la forme des matrices T pour les interfaces

T int
ijj =

r
�j

�i

1q
1� r2

ijj

 
1 rijj

rijj 1

!
: (1-80)

Pour la propagation dans chaque milieu m on utilise des notations condens�ees

T pr
m =

 
E+
m 0

0 E�m

!
; E+

m = e�m ; E�m = e��m: (1-81)

On �ecrit la matrice T de la double lame

T dlame
0j1j2j0 =

1q
1� r20j1

1q
1� r21j2

1q
1 � r22j0

 ba bbbc bd
!dlame

0j1j2j0

; (1-82)

avec

badlame
0j1j2j0 = E+

1 E
+
2 + E+

1 r1j2E
�
2 r2j0 + r0j1E

�
1 r1j2E

+
2 + r0j1E

�
1 E

�
2 r2j0bbdlame

0j1j2j0 = E+
1 E

+
2 r2j0 + E+

1 r1j2E
�
2 + r0j1E

�
1 r1j2E

+
2 r2j0 + r0j1E

�
1 E

�
2bcdlame

0j1j2j0 = r0j1E
+
1 E

+
2 + r0j1E

+
1 r1j2E

�
2 r2j0 + E�1 r1j2E

+
2 + E�1 E

�
2 r2j0bddlame

0j1j2j0 = r0j1E
+
1 E

+
2 r2j0 + r0j1E

+
1 r1j2E

�
2 + E�1 r1j2E

+
2 r2j0 + E�1 E

�
2 : (1-83)

La relation de r�eciprocit�e pour le d�eterminant de cette matrice

detT dlame
0j1j2j0 = 1; (1-84)
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36 Chapitre 1. Di�usion par un miroir

se traduit par la relation���badlame
0j1j2j0

bddlame
0j1j2j0 � bcdlame

0j1j2j0
bbdlame
0j1j2j0

��� = �1� r20j1
� �
1� r21j2

� �
1 � r22j0

�
: (1-85)

Pour la matrice S, on pourra �ecrire

Sdlame
0j1j2j0 =

 
r t

t r

!dlame

0j1j2j0

: (1-86)

Les relations (1-43), simpli��ees pour le cas d'un r�eseau r�eciproque, d�e�nissent les �el�e-

ments de cette matrice

tdlame
0j1j2j0 =

�
1

a

�dlame

0j1j2j0

=

0@
q
1 � r20j1

q
1 � r21j2

q
1� r22j0ba

1Adlame

0j1j2j0

rdlame
0j1j2j0 =

� c
a

�dlame

0j1j2j0
=

�bcba
�dlame

0j1j2j0

rdlame
0j1j2j0 = �

�
b

a

�dlame

0j1j2j0

= �
 bbba
!dlame

0j1j2j0

: (1-87)

En utilisant les notions d'imp�edances (1-18)

zTEi =
�i

�
; zTMj =

"i�

�i
; (1-88)

les amplitudes de r�e
exion aux interfaces prennent la forme g�en�erale

rijj =
zi � zj

zi + zj
: (1-89)

En rassemblant tous ces r�esultats, on �ecrit les coe�cients ba et bc
ba =

ea
(z0 + z1) (z1 + z2) (z2 + z0)

bc =
ec

(z0 + z1) (z1 + z2) (z2 + z0)
; (1-90)

avec les expressions suivantes pour ea et ec
ea = (z0 + z1) (z1 + z2) (z2 + z0)E

+
1 E

+
2 + (z0 + z1) (z1 � z2) (z2 � z0)E

+
1 E

�
2

+(z0 � z1) (z1 � z2) (z2 + z0)E
�
1 E

+
2 + (z0 � z1) (z1 + z2) (z2 � z0)E

�
1 E

�
2ec = (z0 � z1) (z1 + z2) (z2 + z0)E

+
1 E

+
2 + (z0 � z1) (z1 � z2) (z2 � z0)E

+
1 E

�
2

+(z0 + z1) (z1 � z2) (z2 + z0)E
�
1 E

+
2 + (z0 + z1) (z1 + z2) (z2 � z0)E�1 E�2 :

(1-91)
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B Les miroirs trait�es comme des r�eseaux 37

Le coe�cient de r�e
exion du miroir \double-lame" est �nalement donn�e par

rdlame
0j1j2j0 =

bcba =
ecea: (1-92)

Ces calculs montrent comment la m�ethode de multiplication des matrices T permet

d'obtenir les amplitudes de r�e
exion de miroirs r�ealistes.

Dans le cas o�u les deux lames d'�epaisseur respective `1 et `2 correspondent au même

milieu, l'�egalit�e z1 = z2 su�t �a montrer que le miroir ainsi form�e est une seule lame

d'�epaisseur ` = `1 + `2.

La double lame est souvent �etudi�ee dans le cas limite o�u la deuxi�eme lame a une

�epaisseur tr�es grande. Physiquement, cette lame est consid�er�ee comme un substrat sur

lequel est d�epos�ee une autre lame dont l'�epaisseur est �nie. Nous consid�erons que la

couche mince correspond �a la lame 1 et le miroir massif �a la limite de grande �epaisseur

de la lame 2. Dans les r�esultats de la section pr�ec�edente, nous prenons donc les termes

au premier ordre en
E
�

2

E+
2
et nous obtenons

lim
�2!1

rdlame
0j1j2j0 =

(z0 � z1) (z1 + z2)E
+
1 + (z0 + z1) (z1 � z2)E

�
1

(z0 + z1) (z1 + z2)E
+
1 + (z0 � z1) (z1 � z2)E

�
1

: (1-93)

Du point de vue de la m�ethode du produit des matrices T , cette con�guration d'une

couche d�epos�ee sur un miroir massif est int�eressante. Comme nous l'avons vu, la matrice

T d'un miroir massif n'est pas d�e�nie et l'empilement de la lame sur le miroir massif

ne peut être calcul�e que comme cas limite du produit de matrices T de deux lames

d'�epaisseurs �nies.

En continuant dans la même voie, un miroir multicouches, not�e ici \mc", sera d�e�ni

par l'empilement de n lames. La matrice T d'un tel multicouche peut donc s'�ecrire

Tmc = T lame
1 T lame

2 � � �T lame
n (1-94)

o�u T lame
i correspond �a la lame i. Pour des calculs explicites, il sera en fait beaucoup

mieux adapt�e d'�ecrire la matrice T comme nous venons de le faire pour la double lame

Tmc = T int
0j1T

pr
1 T

int
1j2 : : : T

pr
n T

int
nj0: (1-95)

Les deux calculs sont �equivalents mais le second conduit �a des expressions plus simples

�a manipuler. En e�et, en accolant une succession de lames, on introduit entre deux

lames successives un milieu vide virtuel qui ajoute des termes intercalaires dans le

produit des matrices T . Ces termes alourdissent les expressions et la r�eduction aux

formules simpli��ees devient di�cile �a e�ectuer, surtout quand n augmente.
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38 Chapitre 1. Di�usion par un miroir

C Unitarit�e de la di�usion

C.1 Di�usion quantique

Le cadre d'analyse de la di�usion du champ sur un miroir di�electrique que nous

avons pr�esent�e est un cadre classique. Nous avons en e�et d�e�ni les amplitudes de r�e-


exion et de transmission en consid�erant des champs classiques E incidents, r�e
echis

et transmis par les miroirs. Cette analyse n'est pas compl�etement satisfaisante quand

il s'agit de d�ecrire la di�usion de champs quantiques, qu'on notera de fa�con g�en�e-

rique a, c'est-�a-dire la di�usion des 
uctuations du vide. En particulier, pour un miroir

contenant un milieu absorbant, l'absorption sera traduite, dans l'esprit du th�eorême


uctuations-dissipation, par des 
uctuations ajout�ees correspondant �a des modes de

bruit b suppl�ementaires. Ces lignes de bruit sont di�us�ees par les miroirs comme le

sont les champs dont il a �et�e jusqu'�a pr�esent question.

Ces bruits repr�esentent les 
uctuations quantiques in�evitablement associ�ees aux

pertes par dissipation. On peut pr�eciser cette id�ee en consid�erant des miroirs di�elec-

triques comme constitu�es d'atomes. Ces atomes sont responsables de l'absorption parce

qu'ils di�usent par �emission spontan�ee. R�eciproquement, pr�ecis�ement au sens que nous

avons donn�e �a cette notion, ces modes de bruit di�usent aussi vers les modes de champs

consid�er�es [95, 96, 97, 98, 99]. C'est d'ailleurs dans ce cadre qu'on pourra interpr�eter

les modes �evanescents, aliment�es par les 
uctuations du champ entrant dans le syst�eme

par le biais des lignes de bruit associ�ees �a la dissipation. Ces 
uctuations peuvent se

propager en e�et dans le miroir avec des angles d'incidence sup�erieurs �a l'angle limite

d�e�ni pour ce milieu. A l'ext�erieur du miroir, elles vont correspondre �a une propagation

�evanescente du champ, s'att�enuant rapidement lorsqu'on s'�eloigne de l'interface. Ces

modes, con�n�es au voisinage de la surface des miroirs, sont donc des voies \ferm�ees"

mais ils contribuent n�eanmoins aux e�ets physiques tels que la pression de radiation

et l'e�et Casimir (voir le chapitre suivant).

Nous sommes donc en pr�esence de deux situations di��erentes. Pour un miroir sans

absorption, construit �a partir de milieux d'indices r�eels, la matrice S calcul�ee pr�ec�e-

demment doit être unitaire. Ses coe�cients ob�eissent alors �a des relations particuli�eres

que nous discutons ci-dessous. Pour un miroir absorbant en revanche, la matrice S

calcul�ee pr�ec�edemment ne peut pas être unitaire. Cette matrice doit être vue comme

la restriction aux modes d'int�erêt (les champs di�us�es consid�er�es) d'une matrice de dif-

fusion plus grande qui prend en compte les lignes de bruit. Comme nous allons le voir,

c'est la prise en compte de ces 
uctuations suppl�ementaires qui permettra de garantir
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C Unitarit�e de la di�usion 39

l'unitarit�e de la di�usion globale. Cette unitarit�e est une condition de consistence pour

la description du processus de di�usion [74, 75]. Avec cette condition de principe, on

pourra caract�eriser les 
uctuations ajout�ees, sans se r�ef�erer �a un mod�ele microscopique

particulier pour sp�eci�er leurs propri�et�es.

C.2 La lame non absorbante

La permittivit�e " d'une lame sans absorption est r�eelle. Dans ce cas, les vecteurs �1

et �2 sont purement imaginaires pour les fr�equences r�eelles, de sorte que les rapports

d'imp�edance sont r�eels. Les amplitudes de di�usion �a l'interface sont donc r�eelles et,

d'apr�es l'�equation (1-52), � est r�eel. Pour la propagation, le param�etre de phase �,

proportionnel �a �, est imaginaire pur. On notera donc

� = �r ; � = i�i: (1-96)

On peut alors calculer explicitement les amplitudes de di�usion (1-73) de la lame

tslab =
sinh�r

sinh (�r + i�i)
=

sinh �r
sinh�r cos�i + i cosh�r sin�i

rslab = � sinh (i�i)

sinh (�r + i�i)
= � i sin�i

sinh�r cos�i + i cosh �r sin�i
: (1-97)

On en d�eduit directement les relations suivantes

jtj2 + jrj2 =
sinh2 �r + sin2 �i

sinh2 �r cos2 �i + cosh2 �r sin
2 �i

= 1

tr� + rt� = 0: (1-98)

Cette derni�ere relation montre que les amplitudes de r�e
exion et de transmission sont

en quadrature entre-elles.

Ces relations sont en fait caract�eristiques d'une matrice S unitaire, puisqu'on peut

�ecrire

SyS =

 
jtj2 + jrj2 tr� + rt�

tr� + rt� jtj2 + jrj2
!
= I; (1-99)

o�u I est la matrice unit�e.

C.3 La lame absorbante

Dans le cas g�en�eral d'une lame construite avec un milieu absorbant, on s�epare les

parties r�eelles et imaginaires

� = �r + i�i ; � = �r + i�i: (1-100)

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



40 Chapitre 1. Di�usion par un miroir

Les coe�cients de la lame s'�ecrivent alors

tslab =
sinh �

sinh 

=

sinh�r cos�i + i cosh �r sin �i
sinh 
r cos 
i + i cosh 
r sin 
i

rslab = �sinh�

sinh 

= �sinh�r cos�i + i cosh�r sin�i

sinh 
r cos 
i + i cosh 
r sin 
i
(1-101)


 = � + � = 
r + i
i:

Dans ce cas, la matrice S calcul�ee seulement sur les modes principaux n'est plus

unitaire. Cependant cette matrice doit être consid�er�ee comme la restriction d'une ma-

trice plus grande qui est unitaire et qui d�ecrit les lignes de bruit. La transformation des

champs quantiques incidents en champs quantiques di�us�es par la lame s'�ecrit donc

sous la forme  
aout1

aout2

!
= S

 
ain1

ain2

!
+ U

 
bin1

bin2

!
(1-102)

Les champs a1 et a2 sont les modes principaux coupl�es par la lame et les champs b1

et b2 sont les modes de bruit. La matrice U contient les amplitudes de di�usion de

ces modes vers les modes principaux. La stationnarit�e de la di�usion implique que les

modes de bruit sont des superpositions lin�eaires de modes de même fr�equence et qu'ils

sont ainsi donn�es comme �equivalents �a tous les bruits entrants dans le syst�eme. Les

champs bin et bout sont d�ecorr�el�es entre eux et ils sont �egalement d�ecorr�el�es des modes

ain et aout.

Il est important de noter que les commutateurs canoniques sont les mêmes pour les

champs entrants et les champs sortants. En e�et, les champs sortants sont, comme les

champs entrants, des champs libres. On aura donch
ainm; a

in y
m0

i
=
h
aoutm ; a

out y
m0

i
: (1-103)

Les notations m;m0 repr�esentent les modes des champs tels qu'on va les pr�eciser au

chapitre suivant. Cette �egalit�e est centrale : elle correspond �a une condition d'unitarit�e

globale de la di�usion [74, 75, 100]

SyS + UyU = 1: (1-104)

Cette condition va permettre de d�ecrire les 
uctuations ajout�ees par les lignes de bruits.

Pour la matrice U correspondante, on peut en e�et �ecrire

U =

 
v w

w v

!
(1-105)
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C Unitarit�e de la di�usion 41

et on d�eduit de (1-104)

UyU =

 
jwj2 + jvj2 wv� + vw�

wv� + vw� jwj2 + jvj2
!

1 = jwj2 + jvj2 + jtj2 + jrj2

0 = wv� + vw� + tr� + rt�: (1-106)

Ces relations sont �ecrites pour des fr�equences r�eelles et correspondent aux ondes ordi-

naires. Pour ces modes, la condition d'unitarit�e (1-106) implique que les amplitudes de

di�usion ont un module plus petit que 1

jtj2 < 1

jrj2 < 1: (1-107)

Nous utiliserons au chapitre suivant ces propri�et�es importantes et nous pr�eciserons

comment on doit �etendre la discussion aux modes �evanescents. Remarquons �egalement

que ces propri�et�es peuvent être d�emontr�ees de mani�ere plus g�en�erale pour des r�eseaux

dissipatifs quelconques [101]. Ici, nous nous sommes content�es de la lame que nous

utilisons �a nouveau dans le prochain chapitre.
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Chapitre 2

Force de Casimir entre deux miroirs

di�electriques

Le calcul de la force de Casimir que nous pr�esentons est issu du point de vue local

[77] dans lequel la force s'�ecrit comme la di��erence des pressions de radiation calcul�ees

�a l'ext�erieur et �a l'int�erieur de la cavit�e. Les pressions sont d�e�nies �a partir des tenseurs

de Maxwell �evalu�es par les fonctions de corr�elation des champs calcul�ees dans trois r�e-

gions : les deux r�egions externes des ports gauche (L) et droit (R) de la cavit�e et une

r�egion interne des champs intracavit�e (C). On utilise les outils pr�esent�es au chapitre

pr�ec�edent pour d�etailler le calcul de ces champs. On d�e�nit la matrice S de la cavit�e

qui exprime les champs sortants du Fabry-Perot en fonction des champs incidents.

Pour calculer la pression de radiation sur les faces internes des miroirs, on introduit

aussi une matrice de r�esonance R qui relie les champs intracavit�e aux champs incidents.

Nous montrons que la pression interne est simplement d�etermin�ee par la fonction d'Airy

de la cavit�e, c'est-�a-dire aussi par les coe�cients de r�e
exion des miroirs. Cette pro-

pri�et�e se d�emontre dans le cas g�en�eral des miroirs dissipatifs en utilisant l'unitarit�e des

processus de di�usion [100, 101].

Les techniques de prolongement analytique des fonctions de r�eponse, ainsi que les

propri�et�es physiques de causalit�e et de transparence �a haute fr�equence, nous permettent

ensuite d'�ecrire la force �a temp�erature nulle comme une int�egrale d�e�nie sur l'axe des

fr�equences imaginaires. L'expression de la force obtenue est r�eguli�ere, sans divergence

associ�ee aux in�nis de l'�energie du vide [76]. Cette expression tout �a fait g�en�erale per-

met de traiter n'importe quel type de miroir di�electrique. Elle redonne l'expression

de Lifshitz dans le cas particulier des miroirs di�electriques massifs [30] et l'expression

id�eale de Casimir dans la limite des miroirs parfaits [29].
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44 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

En�n, nous d�e�nissons l'�energie de Casimir comme le potentiel dont d�erive la force.

Nous montrons que cette �energie peut aussi se calculer �a partir des d�ephasages subis

par les champs qui sont d�etermin�es par les valeurs propres de la matrice S de la cavit�e.

Nous discutons aussi l'interpr�etation de la force en termes de temps de Wigner.

A Champs di�us�es par la cavit�e

Dans le chapitre 1, nous avons d�ecrit la di�usion du champ sur un miroir. Nous

avons introduit les \bons nombres quantiques" qui sont bien adapt�es au probl�eme.

Nous allons maintenant d�e�nir plus pr�ecis�ement les modes du champ quantique puis

traiter leur di�usion par la cavit�e.

A.1 Modes du champ libre

La g�eom�etrie �etudi�ee est celle d'une cavit�e form�ee par deux miroirs parfaitement

plans, parall�eles entre eux et de surface in�nie. Ceci correspond �a une sym�etrie de

translation dans le plan transverse, qu'on a not�e plan xy le long de la surface des

miroirs, et donc �egalement �a la conservation des vecteurs d'onde transverses kx et ky

au cours du processus de di�usion. Ces vecteurs transverses seront consid�er�es comme

spectateurs pour le calcul de la force et rassembl�es en un seul vecteur �a deux dimensions

k � (kx; ky). On notera l'int�egration sur ce vecteur

Z
d2k

4�2
�

1Z
�1

dkx
2�

1Z
�1

dky
2�

:

La sym�etrie garantit la sp�ecularit�e parfaite de la r�e
exion et permet donc de traiter

s�epar�ement les deux polarisations TE et TM, puis de sommer sur ces deux polarisationsX
p=TE;TM

:

Nous avons d�ej�a insist�e sur l'invariance par translation dans le temps du probl�eme

de di�usion, c'est-�a-dire la stationnarit�e du processus pour des miroirs immobiles et

donc la conservation de la fr�equence !. Un mode se propageant dans le vide est d�e�ni

par les trois composantes de son vecteur d'onde et sa polarisation. Nous introduisons

un symbole m rassemblant ces nombres quantiques

m � (kz;k; p) (2-1)
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A Champs di�us�es par la cavit�e 45

ainsi qu'un symbole de sommation

X
m

�
X
p

Z
d2k

4�2

1Z
�1

dkz
2�

: (2-2)

Le champ libre est la superposition de deux modes pour k et ! �x�es. Ces deux

modes correspondent �a deux directions de propagation, i.e. aux deux signes possibles

pour kz

kz = �

r
!2

c2
� k2 (2-3)

avec � = +1 pour une propagation vers la droite et � = �1 pour une propagation vers

la gauche. Dans l'�equation (2-2), chaque direction correspond �a une int�egration sur kz

limit�ee au valeurs positives ou n�egatives selon le sens de propagation. Il est important

de noter que ce sont justement les deux modes correspondant aux deux valeurs du signe

� qui seront coupl�es par la di�usion sur un miroir ou sur la cavit�e.

Les champs quantiques E et B s'�ecrivent en un point

E(r; z; t) =
X
m

�[m]
�E[m] + E[m]y

�
B(r; z; t) =

X
m

�[m]
�E[m] + E[m]y

�
: (2-4)

Les amplitudes des modes sont construites sur les op�erateurs cr�eation et annihilation

E[m] = i

r
~!

2
ame

�i(!t�k:r�kz z) ; r = (x; y) : (2-5)

Les vecteurs � et � d�ecrivent la polarisation respectivement pour les champs E et B.

On introduit d'abord les composantes du vecteur d'onde

k =
!

c

0B@ sin � cos'

sin � sin'

cos �

1CA : (2-6)

Les angles � et ' rep�erent la direction d'incidence du champ. Sur la �gure 1.1 du

chapitre 1, on a pris le champ incident dans le plan xz, i.e. pour un angle azimutal

' = 0. Les vecteurs de polarisation sont donn�es de fa�con g�en�erale pour une incidence

quelconque par les expressions suivantes

�TE = �TM =

0B@ � sin'

cos'

0

1CA
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46 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

�TM = ��TE =

0B@ cos � cos'

cos � sin'

� sin �

1CA : (2-7)

Les op�erateurs cr�eation et annihilation ob�eissent �a des relations de commutations

canoniques [102]

[am; am0] = 0;h
aym; a

y
m0

i
= 0;h

am; a
y
m0

i
= �p;p0 (2�)

3
� (k� k0) � (kz � k0z)

= �m;m0: (2-8)

Dans la suite, nous utiliserons �egalement les fonctions de corr�elation de ces op�e-

rateurs pris dans un �etat d'�equilibre thermodynamique. Ces fonctions ont une forme

universelle D
ama

y
m0

E
= (1 + nm) �m;m0D

a
y
m0am

E
= nm�m;m0D

ama
y
m0

E
= 0D

aym0am

E
= 0 (2-9)

o�u nm est le nombre moyen de photons dans le mode m

nm =
1

e
~!
kBT � 1

:

Ces relations expriment les propri�et�es de l'�etat d'�equilibre thermodynamique en termes

de champs quantiques [103, 104] (pour une discussion d�etaill�ee, voir par exemple [74]).

Alors que le commutateur des champs est ind�ependant de l'�etat du champ, les

fonctions de corr�elation d�ependent de cet �etat. Ici, ils d�ependent de la temp�erature.

Autrement dit, c'est l'anticommutateur des champs qui caract�erise les 
uctuations du

champ. On l'�ecrira ici D
am:a

y
m0

E
� 1

2

D
ama

y
m0 + aym0am

E
=

�
1

2
+ nm

�h
am; a

y
m0

i
: (2-10)
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A Champs di�us�es par la cavit�e 47

Dans un premier temps, nous allons analyser la situation �a temp�erature nulle. On

a alors nm = 0 et on retrouve la d�e�nition de l'�etat vide avec une �energie �equivalente

�a la moiti�e d'un photon par modeD
am:a

y
m0

E
=

1

2

h
am; a

y
m0

i
: (2-11)

L'analyse de la situation �a temp�erature non nulle sera trait�ee dans le chapitre 4.

A.2 Matrice S de la cavit�e

On �etudie �a pr�esent la di�usion du champ sur la cavit�e form�ee par deux lames

planes se faisant face, s�epar�ees d'une distance L. On a repr�esent�e une telle cavit�e sur la

�gure 2.1. De mani�ere plus pr�ecise, on suppose que les faces internes des deux miroirs

sont plac�ees en z = 0 et z = L. La zone intracavit�e 0 < z < L se distingue donc des

deux zones externes �a gauche et �a droite de la cavit�e. Les 
�eches repr�esentent les deux

sens de propagation associ�es aux modes a di�us�es.

C21

0 L
z

RL C

Fig. 2.1 { Deux miroirs formant la cavit�e.

Nous utilisons les outils mis en place au chapitre pr�ec�edent pour d�ecrire la di�usion

du champ. Nous d�e�nissons donc des matrices S1 et S2 pour chacun des miroirs. On a

au niveau du premier miroir 
aoutL

a!C1

!
= S1

 
ainL

a C1

!
; S1 =

 
r1 t1

t1 r1

!
: (2-12)

La matrice S1 a �et�e calcul�ee au chapitre pr�ec�edent pour une lame. Pour simpli�er,

nous supposons ici que le miroir est sym�etrique par r�e
exion par rapport �a son plan

m�edian. Tous les champs sont d�e�nis au voisinage imm�ediat de la face correspondante

du miroir.

Nous proc�edons de la même fa�con pour le deuxi�eme miroir 
a C2

aoutR

!
= S2

 
a!C2

ainR

!
; S2 =

 
r2 t2

t2 r2

!
: (2-13)
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48 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

Les champs intracavit�e aC1 et aC2 sont reli�es l'un �a l'autre par la propagation libre

dans le vide sur une distance L, ce qui s'�ecrit

a C2 = a C1e
�ikzL

a!C2 = a!C1e
ikzL: (2-14)

En r�esolvant l'ensemble des �equations lin�eaires (2-12,2-13,2-14), on obtient comme dans

[76] la matrice S globale de la cavit�e 
aoutL

aoutR

!
= Scav

 
ainL

ainR

!
(2-15)

avec

Scav =
1

d

 
r1 + (t21 � r21) r2e

2ikzL t1t2e
ikzL

t1t2e
ikzL r2 + (t22 � r22) r1e

2ikzL

!
(2-16)

en ayant pos�e

d � 1 � r1r2e
2ikzL: (2-17)

Les di��erences dans les expressions avec celles de [76] sont dues �a des choix de conven-

tion di��erents, d'une part pour la valeur z de r�ef�erence pour chaque champ, d'autre

part pour l'ordre des composantes dans les vecteurs.

Le choix adopt�e ici correspond �a la m�ethode syst�ematique de traitement des r�e-

seaux pr�esent�ee dans le chapitre 1. Il est �a ce titre int�eressant de noter que la cavit�e de

Fabry-Perot peut ais�ement être analys�ee en terme de produit de matrices T . On peut

en e�et �ecrire la matrice Tcav de la cavit�e

Tcav = T1T
prT2 (2-18)

o�u T1 et T2 repr�esentent les miroirs 1 et 2 
ainL

aoutL

!
= T1

 
a!C1

a C1

!
;

 
a!C2

a C2

!
= T2

 
aoutR

ainR

!
; (2-19)

alors que T pr repr�esente la propagation intracavit�e sur une longueur L dans le vide 
a!C1

a C1

!
= T pr

 
a!C2

a C2

!
: (2-20)

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



A Champs di�us�es par la cavit�e 49

On calcule alors comme dans le chapitre pr�ec�edent

Tcav =

 
a1 b1

c1 d1

! 
e�ikzL 0

0 eikzL

! 
a2 b2

c2 d2

!
: (2-21)

avec pour i = 1; 2

ai =
1

ti
; bi = �ri

ti

ci =
ri

ti
; di =

t2i � riri

ti
: (2-22)

Cette matrice de transfert relie les champs �a gauche et �a droitre de la cavit�e et on sait

�a partir d'elle trouver la matrice Scav correspondante. On d�eduit les coe�cients qui

apparaissent dans (2-16)

Scav =

 
rcav tcav

tcav rcav

!
: (2-23)

On obtient bien sûr une matrice sym�etrique comme une cons�equence du th�eorême de

r�eciprocit�e. Si de plus les miroirs 1 et 2 sont identiques, ce qui est souvent suppos�e dans

les calculs de la force de Casimir, on voit que rcav = rcav. Ceci correspond au fait que la

cavit�e est alors invariante dans une sym�etrie spatiale par rapport �a son plan m�edian.

A.3 Matrice R de la cavit�e

A�n de calculer la pression de radiation des champs sur les deux faces d'un miroir

de la cavit�e, il est �egalement n�ecessaire d'exprimer les champs intracavit�e. C'est ce que

fait la matrice de r�esonance Rcav que nous �etudions maintenant.

La matrice Rcav exprime les champs �a l'int�erieur de la cavit�e �a partir des champs

incidents sur cette cavit�e. A partir des relations issues des matrices S1 et S2

a!C1 = t1a
in
L + r1a

 
C1

a C2 = r2a
!
C2 + t2a

in
L (2-24)

et des propagations (2-14)

a!C1 = t1a
in
L + r1e

ikzLa C2

a C2 = r2e
ikzLa!C1 + t2a

in
L ; (2-25)

on d�eduit la forme de la matrice Rcav 
a!C1

a C2

!
= Rcav

 
ainL

ainR

!
; Rcav =

1

d

 
t1 r1t2e

ikzL

r2t1e
ikzL t2

!
: (2-26)

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



50 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

A.4 Prise en compte des modes de bruit

Jusqu'�a pr�esent dans ce chapitre, nous avons trait�e la di�usion par la cavit�e de

champs classiques. Cette di�usion est d�ecrite par les amplitudes de di�usion et de

r�esonance contenues dans les matrices S et R. Dans le cas de miroirs non-absorbants,

ces amplitudes su�sent pour �evaluer la force de Casimir et obtenir la formule �ecrite dans

[76]. Quand les miroirs sont absorbants, il faut tenir compte �egalement des 
uctuations

entrant par les modes du bruit discut�es dans le chapitre pr�ec�edent.

En tenant compte des modes de bruit au niveau de chaque miroir, on peut montrer

que les commutateurs canoniques des champs quantiques dans la cavit�e sont simplement

donn�es par les commutateurs des champs libres incidents multipli�es par la fonction

d'Airy de la cavit�e [100]

�
a!C m; a

!
C m0

y
�

=
�
a C m; a

 
C m0

y
�
= gm�m;m0

gm =

�
1� r2r

�
2r1r

�
1

jdj2
�
m

: (2-27)

La fonction gm est la fonction d'Airy de la cavit�e construite sur les amplitudes de

r�e
exion des miroirs. Nous �ecrivons ici le cas de miroirs sym�etriques. Dans un cas plus

g�en�eral, il faudrait prendre les amplitudes de r�e
exion des miroirs vues de l'int�erieur

de la cavit�e [101].

Les commutateurs canoniques pour les champs intracavit�e correspondent �a une

densit�e spectrale di��erente de celle du vide puisqu'elle est multipli�ee par la fonction

d'Airy. C'est la base des e�ets d'\Electrodynamique Quantique en Cavit�e" avec des

modi�cations des propri�et�es de couplage radiatif entre atomes et photons [105] ou

par exemple dans un autre domaine, de modi�cation de la propagation en Th�eorie

Quantique des Champs [106].

B Pression de radiation du vide

Pour calculer les e�ets de pression de radiation, nous �etudions maintenant le tenseur

des contraintes de Maxwell (stress-tensor) d'abord pour des champs libres, puis en

pr�esence d'un miroir et en�n dans la con�guration de la cavit�e.
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B Pression de radiation du vide 51

B.1 Tenseur de Maxwell pour des champs libres

La pression sur un miroir plan selon le plan xy est donn�ee par la composante Tzz

du tenseur de Maxwell. On �ecrit pour les champs libres [102, 107]

Tzz =
1

2

�
E2
x + E2

y � E2
z +B2

x +B2
y �B2

z

�
=

1

2

�
ET�E +BT�B

�
: (2-28)

Nous faisons des choix de normalisation qui �xent la dimension de E et B dans le vide ;

� est la matrice d�ecrivant une r�e
exion math�ematique par rapport au plan xy

� =

0B@ 1 0 0

0 1 0

0 0 �1

1CA : (2-29)

En �evaluant les champs en un point donn�e, on obtient ainsi

Tzz(r; z; t) =
X
m

X
m0

�[m;m0]
�E[m] + E[m]y

� �E[m0] + E[m0]y� : (2-30)

Le produit
�E[m] + E[m]y

� �E[m0] + E[m0]y� repr�esente les formes quadratiques des am-

plitudes des modes. Les facteurs g�eom�etriques � rassemblent les �el�ements vectoriels

� [m;m0] =
�T [m]�� [m0] + �T [m] �� [m0]

2
: (2-31)

Dans la suite, nous nous contenterons d'�etudier les e�ets statiques de la pression de

radiation du vide (les e�ets dynamiques sont �etudi�es par exemple dans [108, 109, 110,

111, 112]). Nous �etudierons donc seulement la valeur moyenne de la composante Tzz.

Cette valeur moyenne est �a la fois une valeur moyenne dans l'espace et le temps qui

s�electionne la composante de Fourier de Tzz correspondant �a une fr�equence et un vecteur

d'onde nuls. Elle est en même temps la valeur moyenne dans l'�etat quantique particulier

qu'est le vide. Quelle que soit l'interpr�etation, cette valeur moyenne s�electionne les

termes contenant un champ am et son conjugu�e aym et elle op�ere donc une contraction

�m;m0.

Le facteur g�eom�etrique se simpli�e alors consid�erablement

� [m;m] =

�
cos2 '+ sin2 '

�
+
�
cos2 � � sin2 �

�
2

= cos2 �: (2-32)

Ce terme correspond au facteur de projection bien connu depuis la th�eorie de Maxwell

de la pression de radiation. On peut le d�ecomposer en deux facteurs

{ la composante longitudinale de l'impulsion du champ, sous incidence oblique, est

proportionnelle �a cos � o�u � correspond �a l'angle d'incidence,
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52 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

{ la force calcul�ee par unit�e de surface du miroir doit tenir compte d'un deuxi�eme

facteur de projection cos � repr�esentant un rapport de surface sous incidence

oblique.

Ce facteur cos2 � intervient dans le rapport entre la composante longitudinale Tzz

du tenseur de Maxwell et la densit�e d'�energie

hTzzi =
X
m

cos2 �m
~!m

2
: (2-33)

Cette composante est bien sûr in�nie dans le vide.

B.2 Di�usion sur un miroir

Pour traiter le cas d'un miroir, on doit �etudier l'e�et de la di�usion. On doit aussi

sommer la contribution des pressions de radiation de part et d'autre du miroir. On

obtient ainsi une pression moyenne

hP i = 
T L !
zz + T L  

zz � �TR !
zz + TR  

zz

��
: (2-34)

C'est simplement une loi de conservation de l'impulsion de part et d'autre du miroir

[113].

Pour prendre en compte l'e�et de la di�usion, nous notons d'abord que les vecteurs

de polarisation sont transform�es de la fa�con suivante par r�e
exion sur le miroir

k ! �k

�! ��

� !���: (2-35)

Ceci signi�e que les vecteurs d'onde et le champ �electrique se comportent comme des

vecteurs sous la r�e
exion tandis que le champ magn�etique se comporte comme un

pseudo-vecteur. Notons �egalement l'absence de termes crois�es en polarisation dans (2-

28). Cette s�eparation des polarisations reste valable apr�es r�e
exion sur des miroirs

plans. Plus g�en�eralement, les facteurs � donn�es en (2-31) sont des invariants dans la

di�usion du champ sur le miroir. On a en e�et explicitement, avec �T = �

�T [m] �� [m0]! �T [m] �T��� [m0] = �T [m]�� [m0]

�T [m]�� [m0]! �T [m]�T��� [m0] = �T [m]�� [m0] :
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B Pression de radiation du vide 53

Si on calcule le cas d'un miroir seul dans le vide, on trouve bien sûr une condition

d'�equilibrage des pressions de radiation de part et d'autre du miroir. Autrement dit,

on a des pressions de radiation �egales de part et d'autre du miroir. Ceci n'est plus vrai

dans le calcul de la cavit�e puisque les deux côt�es d'un miroir ne jouent plus des rôles

�equivalents.

B.3 Di�usion sur la cavit�e

Dans le cas de la cavit�e, nous calculons la di��erence des pressions de radiation

exerc�ees sur les deux faces du miroir 1 et du miroir 2. Nous obtenons comme l'illustre

la �gure 2.2

hP1i =


T L !
zz + T L  

zz � �TC !
zz + TC  

zz

��
hP2i =



TC !
zz + TC  

zz � �TR  
zz + TR !

zz

��
: (2-36)

C21

0 L
z

RL C

Fig. 2.2 { Pressions de radiation sur les miroirs de la cavit�e.

Pour �evaluer ces quantit�es, nous utilisons les matrices S et R pour r�eexprimer tous

les champs en fonction des champs entrants. On utilisera les �equations (2-16,2-26).

Nous calculons ensuite les valeurs moyennes des formes quadratiques de ces champs.

Nous constatons alors qu'il n'est pas n�ecessaire de reprendre ce calcul qui a d�ej�a �et�e

fait. En e�et, tous les champs incidents sont suppos�es correspondre au vide de rayon-

nement. Le calcul des fonctions de corr�elation se d�eduit donc imm�ediatement de celui

des commutateurs. Or nous avons d�ej�a rappel�e que ces commutateurs prennent une

forme simple. D'abord pour les champs externes aoutL et aoutR , ils sont identiques aux

commutateurs canoniques par suite de l'unitarit�e des processus de di�usion. Ensuite,

pour les champs intracavit�e, on a vu en (2-27) que leurs commutateurs sont les com-

mutateurs canoniques simplement multipli�es par la fonction d'Airy gm de la cavit�e.

Nous d�eduisons donc

hP1i =
X
m

cos2 �m~!m (1� gm)
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54 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

hP2i =
X
m

cos2 �m~!m (gm � 1)

= �hP1i : (2-37)

La sommation sur les deux directions �etant d�ej�a e�ectu�ee, l'int�egration symbolis�ee par

la notation
P

m
est restreinte aux valeurs positives de kz.

Nous avons ainsi obtenu une formule dont l'interpr�etation est assez simple [76]. La

force est la di��erence des pressions de radiation �a l'ext�erieur et �a l'int�erieur de la cavit�e.

A l'ext�erieur de la cavit�e, la pression correspond simplement �a l'expression (2-33) de

la pression de radiation du vide. A l'int�erieur de la cavit�e par contre, cette pression est

modul�ee par la fonction d'Airy, d�ecrivant justement la densit�e spectrale de la cavit�e.

Les 
uctuations sont ainsi augment�ees ou r�eduites selon que leur fr�equence correspond

ou pas �a un mode de la cavit�e. C'est en fait le bilan de ces augmentations et r�eductions

qui, lorsqu'il est somm�e sur tous les modes m, donne la force de Casimir. Le point de

vue local permet ainsi de calculer la force de Casimir �a partir de conceptions issues de

l'optique classique.

On a montr�e ici que hP2i = �hP1i, ce que l'on peut interpr�eter par le fait que la

force globale sur la cavit�e est nulle par suite de l'invariance du vide par translation

globale

hP2i+ hP1i = 0: (2-38)

La formule (2-37) n'est pas d�e�nitive puisqu'il nous faut encore tenir compte de l'e�et

des ondes �evanescentes.

B.4 E�et des ondes �evanescentes

Nous venons de d�emontrer que la force de Casimir est d�etermin�ee par la fonction

d'Airy de la cavit�e

gp
k
[!] =

1� jrp
k 1 [!] r

p

k 2 [!]j2
j1� r

p

k 1 [!] r
p

k 2 [!] e
2ikzLj2 : (2-39)

Cette fonction gp
k
[!] se construit sur les fonctions de r�eponse rp

k 1 [!] et r
p

k 2 [!] des

miroirs. La forme explicite de ces coe�cients est donn�ee dans le chapitre pr�ec�edent,

pour une lame par exemple. Il est �a noter que cette formule s'applique �egalement �a des

miroirs non sym�etriques. Il faut alors prendre l'amplitude de r�e
exion telle qu'elle est

vue par les champs �a l'int�erieur de la cavit�e [101].

Cette fonction gp
k
[!] est la fonction d'Airy d'une cavit�e telle qu'elle est d�ecrite dans
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B Pression de radiation du vide 55

la th�eorie usuelle du Fabry-Perot. Construite sur les coe�cients de r�e
exion associ�es �a

chacun des deux miroirs, cette fonction fait aussi intervenir le facteur de propagation

e2ikzL correspondant �a la phase accumul�ee par le champ au cours de sa propagation

dans la cavit�e sur une longueur aller-retour 2L. Il est int�eressant de relier cette fonction

d'Airy �a la fonction de r�eponse du Fabry-Perot qui a la forme d'une fonction de \boucle"

et qui repr�esente l'avantage d'être directement adapt�ee �a l'utilisation des propri�et�es de

causalit�e. Dans ce but, nous �ecrivons

g
p

k
[!] = 1 + f

p

k
[!] + f

p

k
[!]� (2-40)

o�u fp
k
[!] est la fonction retard�ee caract�erisant la r�eponse optique de la cavit�e

fp
k
[!] =

�p
k
[!]

1� �p
k
[!]

; �p
k
[!] = rp

k 1 [!] r
p

k 2 [!] e
2ikzL: (2-41)

Cette fonction est la r�eponse caract�eristique d'une boucle de contre-r�eaction dans la-

quelle le gain en boucle ouverte est �p
k
[!]. C'est aussi la fonction typique du ph�enom�ene

d'interf�erences multiples

fp
k
[!] = �p

k
[!] + [�p

k
[!]]2 + [�p

k
[!]]3 + : : : (2-42)

Pour les modes se propageant librement dans le vide, kz est r�eel ce qui correspond

au domaine

!

c
� jkj : (2-43)

Nous consid�erons aussi le secteur des ondes �evanescentes

!

c
� jkj : (2-44)

Comme on l'a d�ej�a discut�e, ces modes �evanescents sont aliment�es par les 
uctuations

du champ entrant dans le syst�eme par les lignes de bruit associ�ees �a la dissipation dans

le mat�eriau. Ces modes sont con�n�es au voisinage de la surface des miroirs de la cavit�e

mais ceci ne les empêche pas de contribuer �a la pression de radiation sur les miroirs.

Pour ces modes �egalement, il y a une di��erence entre les deux côt�es d'un miroir li�ee �a

la pr�esence du deuxi�eme miroir.

Nous avons vu au chapitre 1 comment les amplitudes de di�usion pour un miroir,

donn�ees initialement pour les modes libres, pouvaient se d�e�nir sur le secteur �evanescent

par prolongement analytique. Le même raisonnement s'applique ici pour la fonction

retard�ee fp
k
[!] aussi bien que pour la fonction avanc�ee fp

k
[!]� avec les modi�cations
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56 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

n�ecessaires. Ce prolongement pose le probl�eme de \branchement" au niveau des racines

qui sera r�egl�e suivant les proc�edures d�ej�a discut�ees.

On revient tout d'abord aux notations d�e�nies dans le chapitre pr�ec�edent

! = i� ; Re(�) > 0

kz = i�� ; Re (�) > 0 (2-45)

avec � = �1 suivant le sens de propagation.
Les fonctions de r�eponse sont construites sur les amplitudes de r�e
exion de chaque

miroir. On rappelle les propri�et�es essentielles v�eri��ees par les amplitudes d'un miroir

di�electrique, pour k et p �x�es

{ la di�usion est causale

r
p

k
[i�] analytique sur Re (�) > 0; (2-46)

{ le miroir di�electrique est transparent �a haute fr�equence

jrp
k
[i�]j ! 0 pour j�j ! 1; (2-47)

{ les conditions d'unitarit�e globale de la di�usion ont montr�e

jrp
k
j < 1 pour les ondes ordinaires: (2-48)

Dans un premier temps, nous continuons ce raisonnement en faisant une hypoth�ese

simple, raisonnable pour les miroirs di�electriques [30, 76]. Nous supposons ici que la

condition (2-48) est �egalement v�eri��ee sur le secteur �evanescent et les fr�equences ima-

ginaires. Dans ce cas, on peut alors montrer [83] que les amplitudes de r�e
exion sont

telles que jrp
k
j < 1 sur le demi-plan Re (�) > 0. On en d�eduit alors que la fonction de

boucle fp
k
[i�] est certainement analytique sur le demi-plan Re (�) > 0.

On voit alors par inspection directe que les formules �ecrites pour la pression de

radiation des ondes ordinaires se prolongent naturellement sur le secteur �evanescent.

Ceci permettra d'�ecrire l'expression �nale de la force de Casimir comme une int�egrale

sur toutes les fr�equences r�eelles puis, en utilisant �a nouveau les propri�et�es d'analyticit�e,

comme une int�egrale sur les fr�equences imaginaires [30, 76] (voir section suivante C.2).

Il nous faut maintenant revenir sur les hypoth�eses que nous venons de faire pour

les miroirs di�electriques. Ces hypoth�eses ont des statuts bien di��erents sur les deux

secteurs concern�es.
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C Expression de la force de Casimir 57

Pour les fr�equences imaginaires, les modules des amplitudes de r�e
exion sont des

r�eels compris entre 0 et 1 pour tous les mod�eles de miroirs �etudi�es dans ce travail. On

le voit directement sur les expressions (1-73) de la lame

rlame = � sinh�

sinh (�+ �)
; e�� =

z � 1

z + 1
(2-49)

puisque � et z, tels qu'ils sont d�e�nis par exemple en (1-67) et (1-68) au chapitre pr�e-

c�edent, sont des r�eels positifs avec � � 0 et z � 1. Ceci est vrai pour tout mod�ele d�e�ni

par une permittivit�e di�electrique ", sachant que cette fonction est r�eelle et d�ecroissante

vers 1 sur l'axe imaginaire [81]. Comme �, � est donc r�eel positif.

Dans le secteur �evanescent par contre, les amplitudes de r�e
exion n'ont pas toujours

un module inf�erieur �a 1. On discutera ce probl�eme de mani�ere plus d�etaill�ee dans le

prochain chapitre puisqu'il se pose de fa�con particuli�erement aig�ue pour les miroirs

m�etalliques. Il nous faudra alors reprendre le raisonnement que nous sommes en train

de faire. Toutefois, nous utiliserons encore la condition de \stabilit�e", �a savoir le fait

que fp
k
[i�] est analytique dans le demi-plan Re (�) > 0.

On peut noter �egalement que les ondes �evanescentes n'existent pas quand on �etudie

le cas d'un mod�ele d'espace �a une dimension. Le probl�eme discut�e ci-dessus ne se pose

donc pas dans ce cas [91].

C Expression de la force de Casimir

Nous rassemblons les r�esultats �ecrits jusqu'�a pr�esent pour donner l'expression �nale

de la force de Casimir entre deux miroirs di�electriques. En fait, nous allons �ecrire

deux expressions �equivalentes pour cette force, la premi�ere comme une int�egrale sur les

fr�equences r�eelles, la seconde comme une int�egrale sur les fr�equences imaginaires. La

premi�ere est plus proche de l'intuition d�evelopp�ee depuis le d�ebut de ce m�emoire alors

que la seconde est mieux adapt�ee aux calculs explicites qui seront faits dans la suite.

C.1 Int�egration sur les fr�equences r�eelles

Pour �ecrire la premi�ere expression, nous appelons F la force obtenue en multipliant

la pression hP1i sur le miroir 1 par la surface A du miroir et en ajoutant la contribution

des ondes �evanescentes �a celles des ondes ordinaires. Pour ces derni�eres, nous partons

des expressions (2-37) et nous explicitons la sommation sur les modes en proc�edant au
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58 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

changement de variable

k2z =
!2

c2
� k2 ) kzdkz =

!d!

c2
: (2-50)

Nous obtenons ainsi la contribution Ford des ondes ordinaires �a la force de Casimir

comme l'int�egrale

Ford = A
~

2�

X
p

Z
d2k

4�2

Z 1
cjkj

d! kz (�fp
k
[!]� fp

k
[!]�) : (2-51)

Comme nous l'avons d�ej�a discut�e, les ondes �evanescentes correspondent aux fr�e-

quences comprises dans le segment

0 � ! � c jkj : (2-52)

De plus, la contribution Feva des ondes �evanescentes �a la pression de radiation est

l'expression obtenue par prolongement analytique �a partir de celle des ondes ordinaires

Feva = A
~

2�

X
p

Z
d2k

4�2

Z cjkj

0

d! kz (�fp
k
[!]� fp

k
[!]�) : (2-53)

En ajoutant ces deux r�esultats, on obtient donc l'expression �nale de la force comme

une int�egrale sur toutes les fr�equences r�eelles

F =
~A

2�

X
p

Z
d2k

4�2

1Z
0

d! kz (�fp
k
[!]� fp

k
[!]�) : (2-54)

On rappelle que les expressions de fp
k
pour les ondes �evanescentes sont obtenues par

prolongement analytique de celles valables pour les ondes ordinaires. On pr�ecise �egale-

ment que les mêmes raisonnements s'appliquent aux fonctions avanc�ees fp
k
[!]� et aux

fonctions retard�ees fp
k
[!]. En utilisant la r�ealit�e de la r�eponse, le passage des unes aux

autres est d�ecrit par les conjugaisons

� ! �� ; �! �� (2-55)

qui respectent les conditions

Re (�) > 0 ; Re (�) > 0: (2-56)

L'�equation (2-54) donne l'expression �nale de la force de Casimir pour des miroirs

di�electriques plans dans le vide du champ �electromagn�etique. Les miroirs sont d�ecrits
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C Expression de la force de Casimir 59

par des amplitudes de r�e
exion qui ob�eissent aux propri�et�es physiques g�en�erales que

nous avons discut�ees. L'expression s'applique aux miroirs absorbants, et nous devons

utiliser l'unitarit�e du processus de di�usion pour le d�emontrer. Elle contient la contri-

bution des ondes �evanescentes qui a �et�e obtenue par prolongement analytique de la

contribution des ondes ordinaires. La prise en compte de cette contribution est abso-

lument n�ecessaire pour obtenir l'expression correcte de la force [30, 76].

C.2 Int�egration sur les fr�equences imaginaires

L'expression (2-54) de la force de Casimir est une int�egrale sur l'axe des fr�equences

r�eelles. On peut la transformer en une int�egrale sur l'axe des fr�equences imaginaires.

Cette deuxi�eme expression sera beaucoup plus commode �a utiliser dans les calculs

explicites faits dans la suite de ce travail.

Ce passage de l'axe des fr�equences r�eelles �a l'axe des fr�equences imaginaires est une

op�eration bien connue en analyse complexe [114]. Consid�erons d'abord la fonction de

r�eponse retard�ee fp
k
[!] de la cavit�e. En invoquant les propri�et�es d�ej�a discut�ees, on sait

que fp
k
[!] n'admet aucun pôle sur le demi-plan Re (�) > 0 et est en fait une fonction

analytique sur ce demi-plan. En consid�erant le contour C repr�esent�e sur la �gure 2.3,

on d�eduit alors du th�eorême de CauchyZ
d2k

4�2

Z
C

dz fp
k
[z] = 0: (2-57)

ω Re ξ=

Re ω Im ξ-=

Im

8

C

C r

C i

C

Fig. 2.3 { Contour d'int�egration dans le plan complexe pour l'application du th�eorême de

Cauchy �a la fonction de r�eponse retard�ee f
p
k
[i�].

On �ecrira ce contour (voir la �gure 2.3)

C = Cr + C1 + Ci (2-58)

o�u Cr correspond aux fr�equences r�eelles, C1 au quart de cercle de rayon tendant vers

l'in�ni et Ci �a l'axe des fr�equences imaginaires parcouru de ! = +i1 vers ! = 0.
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60 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

En faisant appel �a la transparence �a haute fr�equence (2-47) de tout miroir physique,

nous voyons que la contribution de l'arc de cercle C1 s'annule dans la limite d'un rayon

in�ni. La propri�et�e (2-57) se traduit donc comme une relation entre l'int�egrale sur l'axe

r�eel et l'int�egrale sur l'axe imaginaire. En tenant compte des sens de parcours, nous

d�emontrons doncZ
d2k

4�2

1Z
0

d! kz (�fpk [!]) =
Z

d2k

4�2

1Z
0

d� � (fp
k
[i�]) : (2-59)

Pour la partie avanc�ee, on utilise les mêmes arguments sur le contour C� obtenu

par conjugaison � ! �� �a partir du pr�ec�edent (voir la �gure 2.4). On obtient alors

Z
d2k

4�2

1Z
0

d! kz (�fpk [!]�) =
Z

d2k

4�2

1Z
0

d� � (fp
k
[i�]�) : (2-60)

Re ω Im ξ-=

Im ω Re ξ=

C*

Fig. 2.4 { Contour d'int�egration dans le plan complexe pour l'application du th�eorême de

Cauchy �a la fonction de r�eponse avanc�ee f
p

k
[i�]�.

En utilisant la r�ealit�e de la r�eponse [76], on voit que cette �equation est en fait identique

�a la pr�ec�edente (2-59). On obtient la même int�egrale sur l'axe imaginaire pour la partie

avanc�ee de la fonction de r�eponse que pour la partie retard�ee. Le r�esultat �nal est alors

donn�e comme la somme de ces deux termes qui sont en fait �egaux

F (L) =
~A

2�

X
p

Z
d2k

4�2

1Z
0

d� 2 � fp
k
[i�] ;

f
p

k
[i�] =

�
p

k
[i�]

1� �
p

k
[i�]

�
p

k
[i�] = r

p

k 1 [i�] r
p

k 2 [i�] e
�2�L

� �
r
�2

c2
+ k2: (2-61)
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C Expression de la force de Casimir 61

Cette expression est une int�egrale convergente et r�eguli�ere pour n'importe quel

type de miroir d�ecrit par des coe�cients de r�e
exion caract�eris�es par les propri�et�es de

causalit�e, de stabilit�e et de transparence �a haute fr�equence. La force ainsi calcul�ee est

libre de toute divergence habituellement associ�ee au caract�ere in�ni de l'�energie du vide.

De telles divergences apparâ�ssent dans la plupart des calculs de l'e�et Casimir. Elles

sont li�ees �a l'hypoth�ese habituelle de r�e
ecteurs parfaits et obligent alors �a utiliser

des m�ethodes diverses de renormalisations-r�egularisations. Ici, ce sont les propri�et�es

physiques des miroirs r�eels qui garantissent leur d�ecouplage vis-�a-vis des 
uctuations

de haute fr�equence et constituent ainsi une proc�edure de r�egularisation naturelle de la

force [76].

On a utilis�e ici la propri�et�e importante que les amplitudes de r�e
exion sont plus

petites que 1 pour les fr�equences imaginaires

jrp
k
[i�]j < 1 pour � reel: (2-62)

On l'a d�ej�a dit, cette propri�et�e est toujours v�eri��ee (y compris pour les miroirs m�e-

talliques discut�es dans le chapitre 3). Bien sûr, l'expression de la force entre miroirs

parfaits s'obtient comme la limite sur (2-61) de la r�e
exion parfaite pour chacun des

miroirs

rp
k
[i�] ! �1: (2-63)

Cette limite est prise sur tout le spectre de fr�equence, et pour les deux polarisations.

En e�ectuant le changement de variableZ
d2k

4�2

1Z
0

d� � �
1Z
0

d� �2

2�

�cZ
0

d�; (2-64)

on r�e�ecrit la force sous la forme suivante, somm�ee sur les deux polarisations,

F =
2~A

2�

1Z
0

d� �2

2�

�cZ
0

d�
2

e2�L � 1
=

~A

�2

1Z
0

d�
�3c

e2�L � 1

=
~cA

16�2L4

1Z
0

du
u3

eu � 1

=
~cA�2

240L4
: (2-65)

On retrouve bien le r�esultat que Casimir a d�eriv�e pour deux miroirs parfaits. L'e�et de

coupure de l'exponentielle e2�L fait jouer un rôle pr�epond�erant aux valeurs de � telles
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62 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

que

�L

c
. 1: (2-66)

On voit alors que la limite des miroirs parfaits doit se comprendre par rapport aux

valeurs des amplitudes de r�e
exion dans ce domaine de fr�equence. Cet argument jouera

un rôle essentiel dans la discussion des miroirs m�etalliques.

C.3 Comparaison avec la formule de Lifshitz

Comme nous l'avons d�ej�a rappel�e, Lifshitz a �et�e le premier �a aborder la question

du calcul de la force de Casimir entre des miroirs r�eels [30]. Son approche �etait bas�ee

sur la r�esolution des conditions de bord et des �equations de continuit�e pour le champ

�electromagn�etique dans le vide enferm�e entre deux di�electriques plans semi-in�nis. Lif-

shitz avait introduit un champ 
uctuant dont les propri�et�es spectrales �etaient d�e�nies

par la partie imaginaire de la permittivit�e du milieu.

Il avait ensuite calcul�e la force de Casimir en introduisant la plupart des techniques

que nous avons utilis�ees dans notre d�erivation. Il faut noter toutefois que son r�esultat

ne s'appliquait qu'au cas du miroir di�electrique semi-in�ni. Lifshitz n'avait pas �ecrit

son r�esultat en ces termes et, �a notre connaissance, c'est Katz [115] qui a le premier

exprim�e la formule de Lifshitz en utilisant les coe�cients de r�e
exion du miroir massif.

Ce travail de Katz �etait une simple r�e�ecriture de la formule de Lifshitz, limit�ee au cas

particulier �etudi�e par celui-ci.

Le traitement par amplitudes de r�e
exion que nous avons pr�esent�e permet de calcu-

ler la force pour n'importe quel type de miroir. Notre formulation par matrice S a pour

avantage d'avoir une signi�cation physique claire tout en �etant tr�es g�en�erale. Elle s'ap-

plique �a tous les miroirs d�ecrits par des amplitudes physiques. Elle a d'abord �et�e �ecrite

pour des miroirs non absorbants [76] mais, comme nous l'avons indiqu�e ici, elle s'ap-

plique sans modi�cation majeure au cas des miroirs absorbants [116, 117, 118]. A titre

de parenth�ese, elle est �egalement parfaitement adapt�ee �a l'�etude des e�ets dynamiques

de la pression de radiation du vide [108, 109, 110, 111].
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D La formule des d�ephasages 63

D La formule des d�ephasages

D.1 L'�energie de Casimir

La force de Casimir, telle que nous l'avons donn�ee en (2-61) d�erive d'un potentiel

que nous pouvons d�e�nir comme l'�energie de Casimir entre deux miroirs plans r�eels �a

temp�erature nulle

F (L) = �dE (L)

dL
: (2-67)

L'�energie est simplement la primitive de la force en supposant par convention qu'elle

s'annule �a distance in�nie

E (L) =

1Z
L

dx F (x) : (2-68)

On a ici utilis�e des conventions de signes pour lesquelles la force d'attraction et l'�energie

de liaison entre les miroirs sont donn�ees comme des quantit�es positives. Ces conventions

ne sont pas habituelles pour l'�energie et il faut faire attention �a ce point dans toute

discussion impliquant des consid�erations thermodynamiques.

L'�energie peut alors s'�ecrire soit comme une int�egrale sur les fr�equences r�eelles �a

partir de (2-54)

E (L) = �~A

2�

X
p

Z
d2k

4�2

1Z
0

d!
1

2i
ln

�
1� �

p

k
[!]

1� �p
k
[!]�

�
; (2-69)

soit comme une int�egrale sur les fr�equences imaginaires �a partir de (2-61)

E (L) = �~A

2�

X
p

Z
d2k

4�2

1Z
0

d� ln [1 � �p
k
[i�]] : (2-70)

Les conditions de causalit�e et de stabilit�e garantissent que l'int�egrande

ln [1� �p
k
[i�]] (2-71)

est analytique dans le demi-plan complexe Re (�) > 0. Il est donc clair que ces deux

expressions sont �equivalentes au même titre que les deux expressions de la force �a partir

desquelles elles ont �et�e obtenues.

Ces expressions peuvent s'interpr�eter comme l'�energie stock�ee par la cavit�e au cours
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64 Chapitre 2. Force de Casimir entre deux miroirs di�electriques

de la di�usion. Elle se calcule par exemple �a partir des d�ephasages subis par les champs

di�us�es

�p

k
[i�] = ln [1 � �

p

k
[i�]] : (2-72)

Ces d�ephasages peuvent être d�eduits de la matrice Scav. Cette propri�et�e a �et�e d�emontr�ee

de mani�ere d�etaill�ee pour les miroirs non absorbants [76]. Nous la rappelons ici pour

m�emoire mais ne la discutons pas plus puisque nous ne l'utilisons pas dans la suite.

D.2 La formule des temps de Wigner

On peut donner encore une interpr�etation di��erente de cette formule. Pour cela, on

commence par int�egrer l'expression (2-70) par parties. Avec les conditions d�ej�a utilis�ees

pour en d�emontrer l'analyticit�e, on voit que le terme de bord correspondant s'annule

(� ln [1� �p
k
[i�]])10 = 0: (2-73)

On en d�eduit que l'�energie de Casimir peut s'�ecrire sous la forme

E (L) = �~A

2�

X
p

Z
d2k

4�2

1Z
0

d� � @� (�
p

k
[i�]) : (2-74)

En isolant dans l'int�egrande la densit�e spectrale ~� des 
uctuations du vide, il nous

reste un temps de Wigner d�e�ni en d�erivant le d�ephasage par rapport �a la fr�equence

�k [i�] = @� (�
p

k
[i�]) : (2-75)

Dans ce point de vue, l'�energie de Casimir est due au fait que les 
uctuations qui

arrivent en permanence sur la cavit�e sont stock�ees pendant un certain temps [76].

Dans cette interpr�etation dynamique [113], une �energie de liaison signi�e que ce sont

les temps de Wigner n�egatifs qui en d�eterminent le signe. Autrement dit, ce sont les

modes hors r�esonance, ceux pour lesquels le temps de Wigner est n�egatif, qui d�e�nissent

le caract�ere liant de l'�energie de Casimir. Cette interpr�etation est coh�erente avec la

discussion analogue de la force de Casimir [91].

En e�et, les parties r�esonnantes du spectre correspondent �a une �energie plus grande

dans la cavit�e qu'�a l'ext�erieur (gm > 1 dans l'�equation (2-37)). Elles contribuent donc

�a une force r�epulsive pour les deux miroirs. Par contre, les parties anti-r�esonnantes

du spectre correspondent �a une �energie moins grande dans la cavit�e qu'�a l'ext�erieur

(gm < 1) et contribuent donc �a une force attractive. Le fait que la force soit �nalement

attractive montre que ce sont les parties anti-r�esonnantes du spectre qui imposent leur

signe [91].
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65

Chapitre 3

Cas des miroirs m�etalliques

Comme nous l'avons bri�evement pr�esent�e dans l'introduction, les exp�eriences r�e-

centes de mesure de la force de Casimir s'e�ectuent entre des miroirs m�etalliques.

Comme il sera clair �a la �n de ce chapitre, ce choix est en grande partie justi��e par

les bonnes r�e
ectivit�es qu'on peut atteindre avec les m�etaux. Dans le chapitre 2, nous

avons montr�e comment calculer la force de Casimir �a partir des amplitudes de r�e
exion

pour des miroirs di�electriques. Ces amplitudes introduisent tout naturellement l'e�et

de la r�eponse optique dans l'�evaluation de la force et cette formulation est donc parti-

culi�erement adapt�ee �a l'�etude des corrections li�ees �a la conductivit�e des m�etaux [118].

Les miroirs m�etalliques, comme n'importe quel type de miroirs physiques, ne sont

pas parfaitement r�e
�echissants �a toutes les fr�equences du champ incident. Nous ex-

plicitons en premier lieu di��erents mod�eles de r�eponse optique utiles pour discuter ce

probl�eme, le mod�ele plasma et le mod�ele de Drude. En�n, nous traitons le cas des

m�etaux r�eels �a partir des donn�ees optiques tabul�ees [119].

Nous discuterons plusieurs probl�emes li�es �a la description par un mod�ele plasma.

Nous verrons comment retrouver, en les g�en�eralisant, des r�esultats ant�erieurs bas�es

sur la prise en compte explicite des modes plasmons caract�eristiques d'un m�etal. Nous

ferons le lien entre notre formulation et ce point de vue. Nous devrons pr�esenter les

di�cult�es analytiques que la r�eponse m�etallique peut induire, en particulier au niveau

du prolongement aux ondes �evanescentes. Nous discuterons en�n de l'approximation

qui consiste �a n�egliger les e�ets de la dispersion spatiale dans le calcul de la force de

Casimir. Nous montrerons comment tous ces probl�emes se r�esolvent en conduisant �a

une expression de la force formellement identique �a celle obtenue dans le chapitre pr�e-

c�edent pour les miroirs di�electriques.

Ceci nous permettra �nalement de discuter de mani�ere explicite les corrections in-
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66 Chapitre 3. Cas des miroirs m�etalliques

duites sur la force de Casimir par la conductivit�e �nie des miroirs m�etalliques. Nous

d�e�nirons des facteurs correctifs adapt�es �a l'analyse de ces e�ets et les calculerons pour

les di��erents types de r�eponses consid�er�es. La temp�erature sera prise nulle dans tout ce

chapitre. Nous verrons au chapitre suivant comment prendre en compte la correction

suppl�ementaire engendr�ee par la pression de radiation des 
uctuations thermiques du

champ.

A R�eponse optique des m�etaux

Par rapport aux di�electriques, les m�etaux sont caract�eris�es par la pr�esence de

charges libres, les �electrons de conduction. Il y a donc au sein du m�etal une conduc-

tivit�e � non nulle qui g�en�ere une r�eponse au champ incident d�elocalis�ee sur le m�etal.

Il est pourtant possible de d�ecrire la r�eponse optique d'un m�etal par une permittivit�e

" comme pour un di�electrique [120]. On a alors les mêmes formes pour les amplitudes

de di�usion d'un miroir m�etallique que celles que nous avons pr�esent�ees au chapitre 1

pour les di�electriques.

Il est important de noter une propri�et�e g�en�erique des permittivit�es m�etalliques [123]

directement li�ee �a la pr�esence d'�electrons libres

" [!] � �0

�i! !1 pour ! ! 0: (3-1)

Dans cette �equation, �0 repr�esente la conductivit�e quasistatique, c'est-�a-dire la limite de

� �a fr�equence nulle. A cette même limite quasistatique, la permittivit�e d'un di�electrique

est �nie. Nous verrons dans la suite les cons�equences importantes de la pr�esence d'un

tel pôle �a fr�equence nulle pour les m�etaux.

A haute fr�equence, les miroirs sont transparents et l'intensit�e de la force est r�eduite

en cons�equence. Nous analyserons en d�etail dans ce chapitre ces comportements. Il est

important cependant de noter tout de suite que l'e�et de �ltrage de la cavit�e s�electionne

les domaines de fr�equence par la condition !L

c
. 1. En d'autres termes, les grandes

distances entre miroirs correspondent typiquement aux basses fr�equences et les courtes

distances aux hautes fr�equences.

Dans le cas des m�etaux, les longueurs de cavit�e seront rapport�ees �a une longueur

caract�eristique, la longueur plasma �P, qui d�epend explicitement des propri�et�es des

�electrons de conduction. Cette longueur est �equivalente �a une fr�equence plasma

!P =
2�c

�P
(3-2)
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A R�eponse optique des m�etaux 67

d�e�nie �a partir des propri�et�es du milieu. On a ainsi

!2P =
4�Ne2

m�
=

Nq2

"0m�

N = ZNa; (3-3)

o�u N est le nombre d'�electrons de conduction par unit�e de volume, c'est-�a-dire �egale-

ment le produit du nombre Z d'�electrons par atome et de la densit�e atomique Na ; q

repr�esente la charge �el�ementaire et m� est la masse e�ective d'un �electron de conduc-

tion. Cette masse est di��erente de la masse d'un �electron libre en raison des interactions

avec les ions constituant le r�eseau m�etallique, les autres �electrons...

Les longueurs de cavit�e tr�es grandes devant la longueur plasma correspondront au

r�egime de saturation de la r�eponse des miroirs pour lequel les miroirs tendent �a se

comporter comme des r�e
ecteurs parfaits et la force de Casimir tend vers la formule

id�eale. En revanche, pour des fr�equences plus �elev�ees que !P, les miroirs deviennent

de mauvais r�e
ecteurs. Cet argument est important puisqu'il conduit au fait que la

force est une quantit�e naturellement convergente. Ceci implique aussi que la force est

inf�erieure �a la force id�eale pour des distances entre miroirs inf�erieures �a la longueur

d'onde plasma ou du même ordre. Typiquement pour les m�etaux, la valeur de �P est

de l'ordre du dixi�eme de microm�etre (�P � 0:1�m). Nous reviendrons sur ce point plus

en d�etail dans la suite de ce chapitre.

A.1 Le mod�ele plasma

Nous consid�erons en premier lieu une r�eponse optique mod�elis�ee par un plasma

d'�electrons libres de conduction sans aucune dissipation. Avec ce mod�ele plasma, les

permittivit�es sur les fr�equences r�eelles et imaginaires sont donn�ees respectivement par

" [!] = 1� !2P
!2

" [i�] = 1 +
!2P
�2
: (3-4)

Ce mod�ele simple nous permettra d'e�ectuer la plupart des calculs �a venir analytique-

ment. Ce mod�ele joue un rôle privil�egi�e dans le cadre g�en�eral de la th�eorie de l'optique

des solides. Nous discuterons plus loin le lien explicite tr�es bien connu en optique des

solides entre le mod�ele plasma et les plasmons de surface des m�etaux [121]. Par ailleurs,

ce mod�ele soul�eve des di�cult�es particuli�eres vis-�a-vis du calcul de la force de Casimir

et nous allons montrer comment r�esoudre ces di�cult�es.
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68 Chapitre 3. Cas des miroirs m�etalliques

A.2 Le mod�ele de Drude

Le mod�ele plasma ne peut pas correspondre �a une description r�ealiste de la r�e-

ponse optique du m�etal puisque, par construction, ce mod�ele ignore les processus de

relaxation des �electrons responsables de cette r�eponse. La permittivit�e d�e�nie pour un

mod�ele plasma est en e�et r�eelle pour toute fr�equence r�eelle. Notons que ce mod�ele

n'ob�eit �evidemment pas aux relations de Kramers-Kronig, qui seront discut�ees plus

loin, puisqu'il est �a la fois dispersif et non dissipatif !

Une meilleure repr�esentation des propri�et�es optiques des �electrons de conduction

est donn�ee par le mod�ele de Drude [122] qui d�e�nit une permittivit�e complexe

" [!] = 1� !2P
! (! + i�)

" [i�] = 1 +
!2P

� (� + �)
: (3-5)

Ce mod�ele simple permet de pr�edire, qualitativement au moins, le comportement des

�electrons d'un m�etal [123]. Dans ce mod�ele, la relaxation est cr�e�ee par les processus

de di�usion des �electrons sur les ions du m�etal, les impuret�es ou les d�efauts du cristal.

Elle est d�ecrite de mani�ere e�ective par un param�etre de relaxation � d�e�ni comme

l'inverse du temps moyen de relaxation. Le param�etre de relaxation est beaucoup plus

petit que la fr�equence plasma, et ce pour la grande majorit�e des m�etaux. Pour Al, Au

et Cu en particulier, nous avons comme valeurs typiques

�

!P
� 4� 10�3: (3-6)

Puisque ce rapport est bien plus petit que l'unit�e, le param�etre de relaxation n'induit

sur " [i�] un e�et signi�catif qu'aux fr�equences pour lesquelles cette permittivit�e est tr�es

sup�erieure �a l'unit�e, c'est-�a-dire lorsque les miroirs m�etalliques se comportent quasiment

comme des r�e
ecteurs parfaits. L'in
uence de la relaxation sera donc faible sur la valeur

de la force de Casimir, comme on le verra par la suite.

A.3 Les transitions inter-bandes

Le mod�ele de Drude ne permet pas d'expliquer le comportement optique d'un m�etal

r�eel sur tout le spectre de fr�equence. Pour les fr�equences optiques, typiquement avec

une �energie de l'ordre de quelques eV, la lumi�ere excite des transitions inter-bandes

et la seule contribution des �electrons de conduction n'est plus su�sante pour d�ecrire

les propri�et�es optiques du milieu [123]. Il existe bien sûr des approches th�eoriques qui
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A R�eponse optique des m�etaux 69

permettent de d�e�nir des permittivit�es m�etalliques plus r�ealistes [124]. Nous ne nous

engagerons pas dans la discussion de ces m�ethodes et nous contentons de d�ecrire la r�e-

ponse optique des m�etaux directement �a partir des donn�ees optiques tabul�ees [125, 126].

Ces donn�ees permettent de \reconstruire" une permittivit�e r�ealiste d�ecrivant la r�eponse

optique des m�etaux de mani�ere r�ealiste.

La fonction de r�eponse " [!] donn�ee sur l'axe des fr�equences r�eelles peut se d�ecompo-

ser en une partie r�eelle "0 et une partie imaginaire "00. Ces deux parties sont directement

connect�ees par des relations de Kramers-Kronig [93]

" [!] = "0 [!] + "00 [!]

"0 [!]� 1 =
2

�
P
1Z
0

dx
x"00 [x]

x2 � !2
; (3-7)

P d�esignant la valeur principale au sens de Cauchy. Ces relations expriment la causa-

lit�e de la r�eponse, autrement dit le fait d�ej�a discut�e que la fonction " [!] est analytique

dans le demi-plan Im(!) > 0.

Il est important de remarquer que ces relations ne sont pas absolument g�en�erales.

Par exemple, le mod�ele plasma ne v�eri�e certainement pas cette relation puisque la

partie dissipative de " est nulle alors que la partie dispersive ne se r�eduit pas �a 1.

Dans ce cas, il faut �ecrire des relations de dispersion avec \soustractions" qui, elles,

sont tout �a fait g�en�erales [83, 127]. Pour les m�etaux r�eels toutefois, les relations de

Kramers-Kronig sont e�ectivement v�eri��ees, pourvu que la dissipation soit trait�ee de

mani�ere correcte. Ceci signi�e en particulier que la fr�equence plasma est alors li�ee �a la

partie dissipative de la permittivit�e par des r�egles de somme [123, 124].

On d�eduit alors une expression de la permittivit�e " [i�] pour les fr�equences imagi-

naires en fonction de la partie dissipative de la permittivit�e "00 [!] pour les fr�equences

r�eelles

" [i�]� 1 =
2

�

1Z
0

dx
x"00 [x]

x2 + �2
: (3-8)

Comme on l'a d�ej�a dit, " [i�] est alors r�eel et positif pour tout � r�eel, c'est aussi une

fonction qui d�ecroit de la valeur 1 pour � = 0 jusqu'�a la valeur 1 pour � = 1 (voir

[93]).

Comme toujours quand il s'agit de discuter des propri�et�es optiques, les fr�equences

seront mesur�ees comme des pulsations, en rad:s�1, mais les discussions seront exprim�ees

en eV, avec la relation de conversion

1eV � 1:537 � 1015rad:s�1:
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70 Chapitre 3. Cas des miroirs m�etalliques

Dans la pratique, on commence par �evaluer la fonction "00 [!] pour les fr�equences r�eelles

�a partir des donn�ees tabul�ees [118]. Ce travail doit être men�e de fa�con tr�es soign�ee, faute

de quoi des r�esultats peu �ables peuvent être obtenus [50, 128, 129].
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Fig. 3.1 { Partie imaginaire "00 [!] de la permittivit�e en fonction de la fr�equence r�eelle pour

les trois m�etaux Al, Cu et Au.

On remonte ensuite �a " [i�] �a l'aide de (3-8). L�a encore, ce travail demande du soin,

�a la fois pour extrapoler les donn�ees optiques au domaine des basses fr�equences, d'autre

part pour mâ�triser les probl�emes de pr�ecision num�erique. Ici, nous suivons exactement

la proc�edure propos�ee en [118], proc�edure qui fonde d'ailleurs le traitement actuel et

syst�ematique des corrections de conductivit�e sur la force de Casimir [52, 53, 54, 55].

Pour la �gure 3.1, les donn�ees sont issues de [119] sur une largeur de spectre de

0:04 - 1000 eV pour Al et de 0:1 - 1000 eV pour Au et Cu. Si l'interpolation ne pose

aucun probl�eme, la densit�e des points de donn�ees �etant su�sante, il faut en revanche

extrapoler ces donn�ees �a basse fr�equence pour augmenter le domaine sur lequel les int�e-

grations seront e�ectu�ees. Cette extrapolation est faite par ajustement avec un mod�ele

de Drude. Les param�etres ajustables du mod�ele, i.e. la fr�equence plasma et le para-

m�etre de relaxation, se d�eduisent des donn�ees dans le cas de l'aluminium directement

depuis les points de donn�ees. On trouve ainsi pour Al !P = 11:5 eV et � = 50 � 10�3

eV. Pour Au et Cu en revanche, ces param�etres ne peuvent être d�etermin�es s�eparement

�a partir des donn�ees optiques, en trop petit nombre. On utilise alors les connaissances

de la physique du solide [123] pour d�eterminer la fr�equence plasma.

On a vu, dans l'introduction de ce chapitre, que cette quantit�e se calcule en fonction

de la masse e�ective m� des �electrons de conduction. Nous choisissons pour la masse

e�ective des �electrons de conduction les valeurs m�

m
' 1 pour Au et m�

m
' 1:45 pour

Cu [125, 126]. On obtient alors quasiment la même fr�equence plasma pour Au et Cu,
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B Discussion des mod�eles 71

!P = 0:9 eV, ce qui correspond �a une longueur plasma �P = 136 nm. Cette simili-

tude des longueurs plasma pour Au et Cu expliquent une identit�e des valeurs pour la

force et l'�energie de Casimir entre miroirs d'or et de cuivre initialement non comprise

[50, 118]. Les donn�ees optiques nous permettent alors de d�eduire le param�etre � du

mod�ele de Drude �a choisir pour l'extrapolation. Nous obtenons ainsi � = 35 meV pour

Au et � = 30 meV pour Cu. Ces valeurs correspondent respectivement aux rapports
�
!P

= 3:8 � 10�3 et �
!P

= 3:3 � 10�3. Ils sont du même ordre de grandeur que celui

pour Al : �
!P

= 4:4�10�3. La permittivit�e �evalu�ee sur l'axe imaginaire " [i�] est ensuite

obtenue par l'int�egration (3-8) et le r�esultat est pr�esent�e sur la �gure 3.2.
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Fig. 3.2 { Permittivit�e compl�ete " [i�] �evalu�ee sur les fr�equences imaginaires pour les trois

m�etaux Al, Cu et Au.

Notons que les longueurs de cavit�e typiquement �etudi�ees dans les exp�eriences sont

comprises entre 0:1 et 10 �m, et correspondent donc essentiellement �a des fr�equences

dans un domaine spectral s'�etendant de 0:1 �a 10 eV. Pour obtenir des valeurs �ables

de la force, il faut disposer des valeurs de " [i�] sur un intervalle largement sup�erieur,

typiquement de 10�4 �a 103 eV. Ceci n�ecessite de partir de valeurs de "00 [!] sur un

intervalle encore plus grand, de l'ordre de 10�5 �a 104 eV. Il est clair que ces contraintes

peuvent entrâ�ner des impr�ecisions dans le calcul de la force, d'autant plus qu'une

grande exactitude sera vis�ee. Nous y reviendrons.

B Discussion des mod�eles

Comme nous l'avons d�ej�a dit, le mod�ele plasma soul�eve des di�cult�es sp�eci�ques

que nous discutons maintenant. Nous montrons que ces di�cult�es se r�esolvent et que la
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72 Chapitre 3. Cas des miroirs m�etalliques

force de Casimir garde en fait une expression formellement identique �a celle d�emontr�ee

dans le chapitre 2 dans le cadre des hypoth�eses pour les miroirs di�electriques.

B.1 Mod�ele plasma et plasmons

Un premier probl�eme est associ�e au lien �etroit qui existe entre le mod�ele plasma

et les plasmons de surface. Ceux-ci sont des excitations qui se propagent librement en

l'absence de relaxation, �a l'interface videjm�etal. Dans notre point de vue, on les obtient

imm�ediatement en �etudiant l'amplitude de r�e
exion sur une interface videjm�etal en

polarisation TM

rTM
k

[i�] =
1� zTM

1 + zTM
; zTM =

" [i�]
q

�2

c2
+ k2q

" [i�] �
2

c2
+ k2

: (3-9)

On voit imm�ediatement que cette amplitude diverge quand zTM = �1, ce qui cor-

respond �a la d�e�nition des plasmons de surface. On note �egalement qu'elle s'annule

pour zTM = +1, ce qui correspond �a l'angle de Brewster. Les deux situations sont

rassembl�ees dans l'�equation �
zTM

�2
= 1: (3-10)

Pour le mod�ele plasma, c'est une �equation du second degr�e pour !2

!4 � !2
�
!2P + 2c2k2

�
+ !2Pc

2k2 = 0: (3-11)

On obtient ais�ement la racine correspondant �a zTM = �1

!2 =
!2P + 2c2k2 �

p
!4P + 4c4k4

2
(3-12)

et celle correspondant �a l'angle de Brewster

!2 =
!2P + 2c2k2 +

p
!4P + 4c4k4

2
: (3-13)

La condition (3-12) est la relation de dispersion bien connue pour les plasmons de

surface (voir �equation (2:46) dans [121]). Cette relation est souvent �ecrite dans la limite

des incidences rasantes

k2 � !2P: (3-14)
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B Discussion des mod�eles 73

Elle prend alors une forme plus simple

!2s =
!2P
2
: (3-15)

Par suite des deux relations pr�ec�edentes, cette solution tombe �evidemmment dans

le secteur �evanescent, ce qui correspond �a une propri�et�e bien connue des plasmons

de surface. Ces r�esultats signi�ent que des excitations collectives existent pour des

fr�equences r�eelles. Comme c'est toujours le cas dans la th�eorie de la di�usion, ces

excitations correspondent �a des divergences des amplitudes de di�usion quand on ne

prend pas en compte les ph�enom�enes de relaxation, ce qui est le cas pour le mod�ele

plasma. Si on inclut l'e�et de la relaxation, le pôle de rp
k
est d�eplac�e de l'axe r�eel dans

le demi-plan Im(!) < 0 et la divergence devient une r�esonance.

Cette discussion montre de fa�con �evidente que le module de rp
k
ne peut certainement

pas rester plus petit que 1 pour les miroirs m�etalliques. En fait, il diverge pour le mod�ele

plasma et cette divergence est r�egularis�ee par la prise en compte de la relaxation.

Comme ce param�etre ob�eit �a la relation (3-6), cette r�esonance va toujours d�epasser

la valeur 1 pour le module de rp
k
. C'est donc une di�cult�e vis-�a-vis de l'hypoth�ese

qu'on a faite au chapitre pr�ec�edent sur le module de rp
k
. Il est int�eressant de remarquer

que pour tout type de miroir, la structure des amplitudes de r�e
exion aux interfaces

(voir (1-68) au chapitre 1), garantit que la condition (2-48) du chapitre 2 est toujours

vraie en polarisation TE quelque soit le mod�ele de " consid�er�e. C'est uniquement en

polarisation TM que se posent les probl�emes. Ceci correspond au fait bien connu que

les plasmons n'existent que polaris�es TM.

Malgr�e cette di�cult�e, on pourra encore obtenir l'expression de la force de Casimir

et celle-ci sera en fait formellement identique �a celle que nous avons �ecrite dans le cadre

de notre hypoth�ese. Pour le voir, reprenons la d�emonstration faite en section C.2 au

chapitre 2, en nous interdisant de supposer que le module de rp
k
soit plus petit que 1.

Nous rappelons la forme de la fonction de r�eponse �a partir de laquelle nous avons

pu calculer la force de Casimir

fk [!] =
X

p=TE;TM

�p
k
[!]

1 � �p
k
[!]

avec �
p

k
[!] � r

p

k 1 [!] r
p

k 2 [!] e
2ikzL: (3-16)

C'est exactement la fonction de r�eponse d'une boucle de contre-r�eaction construite

avec un gain en boucle ouverte mesur�e par l'amplitude �p
k
[!]. La condition j�p

k
[!]j < 1

implique certainement que la boucle de contre-r�eaction ne peut jamais se mettre �a

osciller ; autrement dit, il n'y a pas de pôle de fk [!] dans le demi-plan Im(!) > 0.

Mais on sait aussi que cette condition j�p
k
[!]j < 1, si elle est su�sante, n'est pas
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74 Chapitre 3. Cas des miroirs m�etalliques

n�ecessaire : on peut d�epasser j�p
k
[!]j = 1 sans atteindre le seuil d'oscillation pourvu

que ce soit avec une phase non adapt�ee �a l'oscillation.

La condition qui est indispensable dans notre raisonnement est la \stabilit�e" du

syst�eme form�e par la cavit�e et le champ. Elle s'exprime par le fait que fk [!] n'a pas

de pôle dans le demi-plan Im(!) > 0 et est en fait une fonction analytique dans

ce domaine. Sous cette seule condition, on d�emontre que la contribution des ondes

�evanescentes est donn�ee par le prolongement analytique de la fonction fk [!] sur le

secteur �evanescent.

Pour pr�eciser ces id�ees, consid�erons le mod�ele plasma dans le r�egime particulier o�u

les fr�equences ! sont inf�erieures ou de l'ordre de la fr�equence plasma ! � !P, alors

que le vecteur d'onde transverse est suppos�e beaucoup plus grand. Dans ce r�egime,

les �equations g�en�erales pour les amplitudes de r�e
exion sur l'interface se simpli�ent

beaucoup

rTE
k

[!] = 0

rTM
k

[!] =
1� " [!]

1 + " [!]
=

!2P
2!2 � !2P

: (3-17)

Non seulement rTM
k

a alors un module plus grand que 1 pour 0 � ! � !P mais, de

plus, il diverge pour !2 = !2s =
!2P
2
. Ceci correspond e�ectivement �a la fr�equence !s

des plasmons de surface, dans la limite des incidences rasantes (3-14,3-15).

Dans ce cas particulier, il est ais�e d'�ecrire que la fonction de boucle fk [!] a des

pôles correspondant �a l'�equation

�TM
k

[!] = 1: (3-18)

Pour des fr�equences r�eelles dans le secteur �evanescent, deux pôles sont identi��es

!2� = !2s
�
1� e��L

�
; � = jkj : (3-19)

Cette �equation a une interpr�etation physique simple. Elle signi�e que les plasmons

de surface correspondant aux deux miroirs sont coupl�es par les ondes �evanescentes se

trouvant dans la cavit�e ; le facteur e��L repr�esente l'amplitude relative de ce couplage

et l'�equation (3-19) d�ecrit le d�eplacement des fr�equences plasmon dû �a ce couplage.

Le raisonnement a �et�e fait pour le moment avec le mod�ele plasma, c'est-�a-dire en

n�egligeant toute dissipation. Si on tient compte de la dissipation, les deux pôles !� vont

être d�eplac�es de l'axe r�eel vers le demi-plan Im(!) < 0. Les pôles qui se trouvaient sur

la fronti�ere du domaine d'analyticit�e Im(!) > 0 vont donc être repouss�es au-del�a de
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B Discussion des mod�eles 75

cette fronti�ere, ce qui garantit la stabilit�e de la cavit�e. Par exemple, pour le mod�ele de

Drude, le même calcul montre que les pôles sont d�eplac�es en

!� =

r
!2s (1� e��L)� �2

4
� i

�

2
: (3-20)

A contrario, l'instabilit�e, c'est-�a-dire le d�eclenchement d'une oscillation spontan�ee

du syst�eme, correspondrait au d�eplacement d'un pôle de l'axe r�eel Im(!) = 0 vers le

domaine Im(!) > 0. Ceci est bien sûr impossible physiquement en l'absence de tout

m�ecanisme susceptible de fournir l'�energie n�ecessaire �a cette oscillation.

Dans ces conditions, les raisonnements faits dans le chapitre pr�ec�edent pour les

miroirs di�electriques peuvent maintenant être �etendus au cas des miroirs m�etalliques,

la fonction fk [!] �etant analytique dans le demi-plan Im(!) > 0. On trouve alors le

même r�esultat que dans le chapitre 2

F (L) =
~A

4�3

X
p

Z
d2k

1Z
0

d� �
�p
k
[i�]

1 � �
p

k
[i�]

�
p

k
[i�] = r

p

k 1 [i�] r
p

k 2 [i�] e
�2�L: (3-21)

Comme on l'a d�ej�a vu, les amplitudes de r�e
exion �evalu�ees sur l'axe imaginaire sont

toujours plus petites que l'unit�e

� reel ! jrp
k
[i�]j < 1: (3-22)

Ceci assure que la force est une expression r�eguli�ere pour tous les miroirs v�eri�ant les

propri�et�es physiques que nous avons utilis�ees : causalit�e, stabilit�e, transparence �a haute

fr�equence.

Remarquons que, dans le cas particulier du mod�ele plasma, les pôles de fk [!] se

trouvent sur la fronti�ere du domaine Im(!) > 0. Pour valider notre raisonnement, il

faudra donc contourner ces pôles pour rester dans le domaine d'analyticit�e de fk [!].

C'est ce que repr�esente le contour dessin�e sur la �gure 3.3.

Cette subtilit�e n'est pas n�ecessaire d�es que la dissipation est prise en compte.

Nous allons voir plus loin que la force de Casimir peut �egalement se comprendre

comme une interaction de Van der Waals entre les excitations �el�ementaires dans les

miroirs. Ceci est tout �a fait analogue �a l'interaction de Van der Waals entre deux

atomes [27] qui peut se comprendre en �etudiant les amplitudes des di�usions sur le

syst�eme �a deux atomes [130, 131] ou, alternativement, l'interaction entre les 
uctuations

�el�ementaires dans les deux atomes [132, 133]. Nous ferons ce calcul dans le cas du
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76 Chapitre 3. Cas des miroirs m�etalliques

+ + k ||c

Re ξIm ω =

Im ξω Re

ondes evanescentes

ω = −

Fig. 3.3 { Prolongement analytique pour la fonction de r�eponse retard�ee en tenant compte des

singularit�es dans le secteur �evanescent, pour le cas particulier du mod�ele plasma.

mod�ele plasma �a la limite d'une distance courte pour laquelle on peut se contenter de

l'interaction instantan�ee de Coulomb. Nous verrons alors que le calcul de type Van der

Waals donne le même r�esultat que la formule �ecrite ci-dessus [134].

B.2 Plasmons et dispersion spatiale

Les r�esultats que nous venons de pr�esenter sont en fait des cas limites d'une th�eo-

rie plus g�en�erale [121, 135] qui permet d'analyser l'interaction des modes plasmons

au-del�a du r�egime de Coulomb. Une telle th�eorie permet �egalement de discuter l'hypo-

th�ese, sous-jacente dans le raisonnement fait jusqu'ici, d'absence de dispersion spatiale

au niveau de la r�eponse du m�etal au champ.

La description de la r�eponse optique d'un m�etal distingue typiquement deux r�e-

gimes, d�e�nis par le rapport entre la longueur d'onde � du champ �electromagn�etique

et le libre parcours moyen ` des porteurs �electroniques. Ce libre parcours moyen est

donn�e par la dynamique de ces porteurs, ` = vF� , o�u la vitesse de Fermi vF mesure la

vitesse typique des �electrons dans le m�etal alors que � est le temps caract�eristique du

processus consid�er�e.

Pour des longueurs d'onde �� `, la r�eponse optique du m�etal pourra être consid�e-

r�ee comme locale : les grandeurs de courant et de densit�e mesur�ees en un point seront

li�ees au champ �electromagn�etique �evalu�e en ce même point et la description du m�etal

sera donn�ee par une fonction di�electrique " [!] ne d�ependant que de la fr�equence du

champ. Dans le cas g�en�eral en revanche, les e�ets de non-localit�e spatiale pourront de-

venir importants et il faudra alors d�ecrire la r�eponse optique par un " [!;k] d�ependant

non seulement de la fr�equence mais aussi du vecteur d'onde k.

Les m�etaux sont �egalement caract�eris�es par l'existence d'excitations collectives de
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B Discussion des mod�eles 77

surface se propageant le long de l'interface m�etaljvide. On a parl�e dans la section pr�e-

c�edente des plasmons de surface. En tenant compte plus pr�ecis�ement des relations de

dispersions de ces modes plasmons, Heinrichs [135] (voir aussi [121]) a mis en �evi-

dence de mani�ere claire le changement de comportement correspondant �a la longueur

caract�eristique

`P = 2�
vFp
3!P

: (3-23)

Cette longueur peut s'interpr�eter comme la longueur sur laquelle les charges s'�eloignent

de l'interface. Elle correspond �a la discussion du d�ebut de cette section avec � de l'ordre

de la p�eriode plasma 2�
!P
. Heinrichs a montr�e qu'il est possible de d�e�nir trois r�egimes

de distances L di��erents entre les miroirs formant la cavit�e

{ i) L � `P correspond �a l'e�ondrement de l'hypoth�ese locale. Pour des miroirs

s�epar�es d'une distance plus petite que la longueur typique `P, on ne peut plus

d�ecrire la r�eponse des m�etaux par une permittivit�e simple et il faut red�e�nir une

r�eponse optique r�ealiste dans ce r�egime ;

{ ii) `P � L � �P correspond �a une interaction instantan�ee trait�ee en bonne

approximation dans le cadre de l'�electrostatique avec, de plus, la r�eponse optique

des miroirs d�ecrite par une permittivit�e " [!] sans dispersion spatiale ;

{ iii) �P � L correspond au r�egime retard�e, o�u les e�ets de retard doivent être

pris en compte tout en n�egligeant tout e�et de la dispersion spatiale.

Dans la suite de ce travail, on consid�ere que le r�egime i) est exclu. A nouveau, ceci

peut être discut�e par analogie avec la discussion des forces de Van der Waals entre

atomes. Le r�egime i) que nous excluons correspond au cas o�u la force de Van der Waals

devient une force mol�eculaire. Les r�egimes ii) et iii) correspondent �a une force �a longue

port�ee qui peut être calcul�ee �a partir des amplitudes de di�usion �evalu�ees s�epar�ement

pour les deux di�useurs [27, 130, 131].

On peut donner un ordre de grandeur pour `P. On trouve conventionnellement [123]

vF � 106m/s pour un m�etal, de sorte que `P � 2 � 10�3�P est de l'ordre de quelques

angstr�oms. Pour les trois m�etaux que nous consid�erons, on a : Al vF = 2:03 � 106m/s,

Au vF = 1:40 � 106m/s, Cu vF = 1:57 � 106m/s.

Ceci implique que toutes les exp�eriences r�ecentes sur la force de Casimir sont dans

les r�egimes ii) ou iii) mais n'approchent jamais le r�egime i). Il est donc inutile de

prendre en compte les corrections �a la force de Casimir calcul�ees par Heinrichs [135]

par une �etude d�etaill�ee des contributions d'�echanges entre les modes plasmons.
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78 Chapitre 3. Cas des miroirs m�etalliques

C Corrections de conductivit�e

Les e�ets induits par la conductivit�e �nie des miroirs seront �evalu�es relativement �a

la pr�ediction de Casimir, �etablie entre deux miroirs parfaitement r�e
�echissants. L'outil

essentiel des discussions �a venir sera donc d�e�ni par le facteur correctif, c'est-�a-dire le

rapport de la force de Casimir entre miroirs r�eels et la force de Casimir calcul�ee dans

la situation \id�eale" des miroirs parfaits

�F =
F

FCas
:

On proc�edera de la même fa�con pour l'�energie

�E =
E

ECas
:

Les grandeurs F et E correspondent respectivement �a la force et l'�energie de Casimir,

telle qu'elles sont donn�ees en (2-61) et (2-70) au chapitre pr�ec�edent. On rappelle les

expressions de la force et de l'�energie dans la situation id�eale

FCas =
~cA�2

240L4
; ECas =

~cA�2

720L3
:

Pour le moment, ces facteurs correctifs rendront compte des corrections de conducti-

vit�e. Dans le prochain chapitre, nous �etendrons leur d�e�nition au cas des corrections

de temp�erature.

Notre formulation de la force ou de l'�energie ne repose sur aucun mod�ele microsco-

pique particulier de r�eponse optique. Elle suppose seulement que cette r�eponse engendre

des amplitudes de di�usion satisfaisant des propri�et�es de causalit�e, de stabilit�e et de

transparence �a haute fr�equence. Toutefois, elle repose de fa�con essentielle sur le carac-

t�ere sp�eculaire de la r�e
exion du champ �a la surface des miroirs et ne peut donc rendre

compte des e�ets de rugosit�e de surface des miroirs en l'�etat actuel. Nous aborderons

cette question de la rugosit�e de surface dans le dernier chapitre de ce travail.

On peut donner la forme g�en�erale de ces facteurs correctifs en partant des r�esultats

du chapitre pr�ec�edent

�F =
60L4

c�5

X
p

Z
d2k

1Z
0

d� �
�
p

k
[i�]

1� �
p

k
[i�]

�E = �90L3

c�5

X
p

Z
d2k

1Z
0

d� ln [1� �
p

k
[i�]] :

�
p

k
[i�] = r

p

k 1 [i�] r
p

k 2 [i�] e
�2�L (3-24)
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C Corrections de conductivit�e 79

A la limite des miroirs parfaits rp
k
[i�] � 1, on retrouve les r�esultats id�eaux, c'est-�a-dire

ici �F = 1 et �E = 1. Comme jrp
k
j est plus petit que 1 pour les fr�equences imaginaires,

on voit que l'e�et de la conductivit�e est toujours un e�et de r�eduction de la force

F = �PFFCas; �PF < 1: (3-25)

Nous avons �egalement vu que la force tend vers l'expression id�eale pour des miroirs

m�etalliques lorsque la distance est beaucoup plus grande que la longueur plasma

�PF ! 1 pour
L

�P
� 1: (3-26)

Il nous reste maintenant �a analyser quantitativement le cas d'une distance quelconque.

C.1 Le mod�ele plasma

C'est ce que nous faisons d'abord avec le mod�ele plasma. Dans ce cas, on peut d�eriver

analytiquement les expressions pour les facteurs correctifs �F et �E. Nous rappelons

d'abord les r�esultats obtenus dans le chapitre 1 pour l'amplitude de r�e
exion sur une

lame

rlame = � sinh�

sinh (� + �)
= � e� � e��

e�e� � e��e��
: (3-27)

Les notations sont les mêmes que dans le chapitre 1 : e�� repr�esente l'amplitude de

r�e
exion sur la premi�ere interface alors que

� = �` = `

r
"1
�2

c2
+ k2 (3-28)

repr�esente la propagation sur l'�epaisseur physique ` de la lame. A la di��erence du

chapitre 1 cependant, ces quantit�es sont maintenant �evalu�ees pour des fr�equences ima-

ginaires et on voit que � et � sont des r�eels positifs. Pour un m�etal, � est toujours

minor�e par une borne qui ne d�epend que de l'�epaisseur ` et de la longueur plasma

� >
!P`

c
= 2�

`

�P
: (3-29)

Si on suppose que l'�epaisseur de la lame est plus grande que la longueur plasma, ce

qui est le cas dans les exp�eriences, le facteur e�� pourra toujours être consid�er�e comme

tr�es petit devant 1. L'amplitude de r�e
exion sera donc la même que pour le miroir

d'�epaisseur in�nie

rTE
k

[i�] =
1� zTE

1 + zTE
; rTM

k
[i�] =

1� zTM

1 + zTM
; (3-30)
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80 Chapitre 3. Cas des miroirs m�etalliques

avec

zTE =

q
" [i�] �

2

c2
+ k2q

�2

c2
+ k2

; zTM =
" [i�]

q
�2

c2
+ k2q

" [i�] �
2

c2
+ k2

: (3-31)

On remarque que cette simpli�cation est vraie même pour les milieux non absorbants,

tels ceux d�ecrits par le mod�ele plasma, alors que e�� serait rest�e un nombre de module

1 sur les fr�equences r�eelles, et ceci quelque soit l'�epaisseur de la lame.

Le calcul technique de la force de Casimir pour le mod�ele plasma [118, 136] est re-

pouss�e dans l'appendice A. Ici, nous donnons le r�esultat de ce calcul et nous discutons

les deux cas limites.

Le facteur sans dimension �PF d�e�ni par (3-25) ne d�epend que du rapport de distance
L

�P
dans le cas du mod�ele plasma. C'est donc une fonction universelle, dans le cadre de

ce mod�ele, qui est repr�esent�ee sur la �gure 3.4.
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1
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L/λP
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ηF
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L << λP

Fig. 3.4 { Facteur correctif de la force en fonction de la longueur de la cavit�e, normalis�ee sur

la longueur plasma. La droite en tirets correspond au comportement asymptotique

des courtes distances.

A la limite des grandes distances, on retrouve le comportement qualitatif d�ej�a dis-

cut�e : la force de Casimir tend vers la formule id�eale pour des distances grandes devant

la longueur plasma

L� �P ) �PF � 1: (3-32)

Les calculs de l'appendice conduisent �a la loi asymptotique suivante, discut�ee dans de

nombreux articles [56, 137, 138]

L� �P ) �PF = 1� 8

3�

�P

L
+O

 �
�P

L

�2
!
: (3-33)
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C Corrections de conductivit�e 81

Nous reviendrons de mani�ere plus d�etaill�ee dans le chapitre 5 sur ce lien direct entre les

grandes distances et la limite des r�e
ecteurs parfaits : il soul�eve en e�et des questions

d�elicates �a temp�erature non nulle.

La limite des courtes distances est particuli�erement int�eressante �a �etudier dans

le cadre du mod�ele plasma. Pour des longueurs de cavit�e L � �P, la r�eduction est

signi�cative par rapport �a la force id�eale. Nous voyons en e�et sur la �gure 3.4 que �PF
est proportionnel �a la longueur L pour les courtes distances

L� �P ) �PF ' �
L

�P
: (3-34)

Le coe�cient � est calcul�e par la m�ethode analytique d�ecrite dans l'appendice A (voir

aussi [118, 136]) et nous allons en donner ci-dessous une expression math�ematique et

une interpr�etation physique.

Nous pouvons remarquer ici que le r�egime de courte distance correspond �a un

changement d'exposant dans la loi de puissance �a laquelle ob�eit la force. A grandes

distances L � �P, la force d�epend comme L�4 de la distance entre les miroirs. A

courtes distances L� �P, la d�ependance est en L�3. On observe donc un changement

d'exposant quand la longueur de la cavit�e croise la longueur plasma des miroirs, comme

on le voit clairement sur la �gure 3.4. Cette variation de loi de puissance est analogue

au changement de r�egime d�ecouvert par Casimir et Polder [27] pour la variation de la

force de Van der Waals entre deux atomes en fonction de la distance interatomique.

Pour interpr�eter le r�esultat (3-34) et �ecrire une expression pour �, nous �ecrivons les

amplitudes de r�e
exion sur un miroir d�ecrit par un mod�ele plasma avec une �epaisseur

grande devant la longueur plasma. Nous obtenons donc les formes (3-31). Le facteur

exponentiel dans l'int�egrale donnant la force de Casimir d�etermine les valeurs de �

pr�edominantes

�L . 1: (3-35)

Par ailleurs, la n�ecessit�e d'une bonne r�e
ectivit�e conduit �a une condition sur la fr�e-

quence

� . !P: (3-36)

Comme L� �P, ces deux conditions impliquent que la fr�equence est petite en compa-

raison avec le vecteur d'onde transverse

� � c jkj : (3-37)
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82 Chapitre 3. Cas des miroirs m�etalliques

Autrement dit, ces conditions s�electionnent le r�egime d'incidence \rasante" o�u le vec-

teur d'onde transverse est grand en comparaison aux autres quantit�es

c jkj � �; !P

�1 ' �0 ' jkj : (3-38)

On peut alors donner une expression simple pour les amplitudes de r�e
exion, d�ej�a

discut�ee au niveau de l'�equation (3-17). Nous trouvons ainsi un point important : �a

courtes distances, seule la polarisation TM contribue �a la force de Casimir.

Il est alors possible d'expliciter le comportement du facteur correctif pour la force.

On a en e�et partant de (3-21)

L� �P �F =
60L4

c�5

Z
d2k

1Z
0

d� jkj �TM
k

[i�]

1 � �TM
k

[i�]
(3-39)

avec

�TM
k

[i�] =

�
1� " [i�]

1 + " [i�]

�2

e�2jkjL

=

�
!2s

!2s + �2

�2

e�2jkjL: (3-40)

On peut alors d�evelopper la fraction comme une s�erie g�eom�etrique

�F =
60L4

c�5

Z
d2k

1Z
0

d� jkj
1X
n=1

�
�TM
k

[i�]
�n

(3-41)

c'est-�a-dire

�F =
15L

c�4

1Z
0

du u2
1Z
0

d�
1X
n=1

�
!2s

!2s + �2

�2n

e�nu avec u = 2 jkjL: (3-42)

La forme lorentzienne des amplitudes de r�e
exion permet d'exprimer analytiquement

l'int�egrale sur � [139] Z 1
0

d�

�
!2s

!2s + �2

�2n

=
�

2
!s
(4n � 3)!!

(4n � 2)!!
(3-43)

avec

(2n + 1)!! = 1:3:5 : : : (2n + 1)

(2n)!! = 2:4:6 : : : (2n) : (3-44)
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C Corrections de conductivit�e 83

On trouve alors (3-34) avec

� =
1X
n=1

30p
2�2

1

n3
(4n� 3)!!

(4n� 2)!!
: (3-45)

On peut �ecrire explicitement les premiers termes de cette s�erie

� =
15p
2�2

�
1 +

5

64
+

7

384
+ : : :

�
(3-46)

ainsi qu'une expression num�erique approch�ee du r�esultat

� ' 1:1933: (3-47)

Cette formule contient un certain nombre de r�esultats existants. Le premier terme

de ce d�eveloppement correspond �a l'approximation qu'on trouve dans Lifshitz (�equation

(3:1) dans [30]). Lifshitz avait donc d�ej�a le bon comportement pour la loi de puissance

et sa bonne interpr�etation de l'exposant. Le coe�cient qu'il donnait �etait cependant

faux et Heinrichs a corrig�e l'expression en introduisant le second terme (�equation (75)

dans [135] avec 1 + 5
64 =

69
64). Le r�esultat exact est celui que nous venons de donner en

(3-45).

On peut �egalement interpr�eter ce r�esultat comme l'interaction instantan�ee entre

les modes plasmons de surface [134, 135]. Nous avons en e�et donn�e en (3-19) les

fr�equences !+ et !� des plasmons de surface d�eplac�ees par leur couplage par interaction

de Coulomb. Il est alors tout �a fait naturel de d�ecrire l'interaction de Van der Waals

entre ces plasmons comme le d�eplacement de l'�energie de l'�etat fondamental de ce

syst�eme

E = �A
Z

d2k

4�2

�
~!+

2
+
~!�

2
� 2

~!s

2

�
: (3-48)

Dans cette formule,A
R

d2k
4�2 est un simple comptage des modes et le terme entre crochet

d�ecrit le d�eplacement de l'�energie de l'�etat fondamental du au couplage. On peut noter

que le signe global correspond �a la convention sur le signe de l'�energie que nous avons

adopt�ee et qui est l'oppos�ee de la convention habituelle. En utilisant (3-19), on obtient

aussi

E = A

Z
d2k

4�2
~!s

"
1�

p
1 + e�jkjL +

p
1� e�jkjL

2

#
: (3-49)

En d�eveloppant alors en s�eries enti�eres les racines et en d�erivant par rapport �a L, on

v�eri�e que l'expression obtenue pour F est identique �a celle que nous avons d�ej�a �ecrite
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84 Chapitre 3. Cas des miroirs m�etalliques

en (3-39).

On a ainsi d�emontr�e l'identit�e entre le r�esultat donn�e par notre formulation de la

force donn�ee sur l'axe imaginaire (3-21) et le calcul directement bas�e sur les interactions

entre plasmons [121]. Il faut noter que cette analyse se g�en�eralise dans le cas retard�e,

c'est-�a-dire pour une longueur de cavit�e quelconque vis-�a-vis de �P [140, 141].

C.2 Le mod�ele de Drude

Nous discutons rapidement le mod�ele de Drude en notant simplement que la prise

en compte de la relaxation n'a qu'une in
uence marginale sur la force de Casimir. Cette

propri�et�e se voit clairement sur la �gure 3.5 qui montre les corrections induites par un

mod�ele de Drude par comparaison avec un mod�ele plasma sans dissipation.
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ηF

plasma
Drude

Fig. 3.5 { Facteur de r�eduction de la force de Casimir quand la r�eponse optique des miroirs

est mod�elis�ee par un mod�ele plasma (ligne pleine) ou par un mod�ele de Drude

(ligne pointill�ee). Nous avons pris un rapport �
!P

�egal �a 4� 10�3 qui correspond �a

la valeur typique pour les trois m�etaux consid�er�es Al, Cu et Au.

L'interpr�etation de cette propri�et�e a d�ej�a �et�e donn�ee : comme � � !P, le mod�ele de

Drude ne modi�e la permittivit�e que dans un domaine de fr�equence o�u la r�e
ection est

presque parfaite. Ce mod�ele ne change donc pratiquement pas la valeur de la force de

Casimir. Toutefois, pour une estimation de haute pr�ecision, il est bien sûr pr�ef�erable

de prendre en compte la premittivit�e r�eelle [118].
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C Corrections de conductivit�e 85

C.3 Les m�etaux r�eels

Nous en venons �nalement au cas des m�etaux r�eels pour lesquels les donn�ees op-

tiques de la litt�erature permettent de reconstruire la r�eponse optique et donc de calculer

les facteurs correctifs pour la force et l'�energie. C'est ce que nous pr�esentons sur la �-

gure 3.6 o�u est repr�esent�e le facteur correctif pour la force �F, pour des miroirs massifs

en aluminium (Al), en cuivre (Cu) et en or (Au).

10
-7

10
-6

10
-5

L [m]

0.4

0.5

0.6

0.7

0.8

0.9

1

ηF

Al
Au
Cu

Fig. 3.6 { Facteur de r�eduction pour la force de Casimir entre miroirs r�eels en fonction de

la distance L entre les miroirs. Les trois courbes correspondent au cas de miroirs

en aluminium (Al, courbe pleine), en or (Au, courbe pointill�ee) et en cuivre (Cu,

courbe en tirets).

On remarque tout de suite les comportements typiques qu'on vient de d�ecrire de part et

d'autre de la longueur plasma correspondante. On remarque �egalement que les courbes

de r�eduction pour Au et Cu sont quasiment confondues, ce qui re
�ete bien au niveau

du facteur correctif la propri�et�e observ�ee pour " [i�] (voir la �gure 3.2).

La �gure 3.7 repr�esente le facteur correctif �E en �energie pour les mêmes miroirs,

avec les mêmes comportements typiques observ�es pour �F dans les r�egimes de grande

et courte distances.

On peut noter que le facteur de r�eduction sur l'�energie est plus grand que celui pour

la force. Autrement dit, l'e�et de r�eduction li�e �a la conductivit�e �nie des miroirs est

moindre sur l'�energie que sur la force. De plus, les valeurs de la force et l'�energie

sont r�eduites quand on passe, �a longueur de cavit�e �x�ee, de l'aluminium �a l'or ou au

cuivre. Ceci est coh�erent avec le fait que les longueurs plasma de l'or et du cuivre sont

sup�erieures �a celle de l'aluminium et que par cons�equent l'aluminium est un meilleur
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86 Chapitre 3. Cas des miroirs m�etalliques
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Fig. 3.7 { Facteur de r�eduction pour l'�energie de Casimir entre miroirs r�eels en fonction de

la distance L entre les miroirs. Les trois courbes correspondent au cas de miroirs

en aluminium (Al, courbe pleine), en or (Au, courbe pointill�ee) et en cuivre (Cu,

courbe en tirets).

r�e
ecteur que les autres m�etaux. On notera �nalement qu'on observe un changement

de la loi de puissance pour la force et l'�energie �a courtes distances, c'est-�a-dire pour

des distances inf�erieures �a la longueur plasma correspondant aux miroirs utilis�es.

On donne ici quelques valeurs num�eriques pour ces facteurs de r�eduction �F et �E

pour les trois m�etaux et pour des distances typiques

Al Au Cu

�F [0:1 �m] 0:55 0:48 0:48

�E [0:1 �m] 0:63 0:55 0:55

�F [0:5 �m] 0:85 0:81 0:81

�E [0:5 �m] 0:88 0:85 0:85

�F [3:0 �m] 0:96 0:96 0:96

�E [3:0 �m] 0:97 0:97 0:97

(3-50)

On voit clairement sur ces chi�res que l'e�et de la conductivit�e �nie des miroirs m�e-

talliques est tr�es important quantitativement sur la force de Casimir, puisqu'il peut

atteindre une r�eduction de 50% de la force pour une distance d'environ 0:1�m.

Remarquons que, de par sa simplicit�e, le mod�ele plasma est abondamment utilis�e

pour les �evaluations des facteurs correctifs. Il est donc particuli�erement int�eressant

d'�etudier les �ecarts entre les facteurs correctifs calcul�es avec ce mod�ele et ceux obtenus

en utilisant les donn�ees optiques tabul�ees. La �gure 3.8 montre ces di��erences.
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C Corrections de conductivit�e 87
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donnees optiques

Fig. 3.8 { Comparaison des facteurs de r�eduction pour la force �F entre deux miroirs d'or

(Au, �P = 136nm) en fonction de la distance intracavit�e L, quand la r�eponse

optique de ces miroirs est mod�elis�ee par un mod�ele plasma (ligne en tirets) ou

d�e�nie par les donn�ees optiques tabul�ees (ligne pleine).

Cette �gure met clairement en �evidence qu'une description d�etaill�ee des propri�et�es

optiques des m�etaux est absolument n�ecessaire pour obtenir une estimation pr�ecise

de la force. En particulier, les transitions inter-bandes �a haute fr�equence doivent être

prises en compte. Cette �gure montre que le mod�ele plasma reste un bon mod�ele

typiquement pour les longueurs de cavit�e sup�erieures �a 0:5�m. Cette remarque jouera

un rôle important dans le prochain chapitre.
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Chapitre 4

Force de Casimir �a temp�erature non nulle

Dans le chapitre 2, nous avons pr�esent�e le calcul de la force de Casimir �a temp�erature

nulle et dans le chapitre 3, nous avons �etendu ce calcul au cas des miroirs m�etalliques.

Nous avons d�e�ni des facteurs correctifs adapt�es pour l'analyse de r�esultats exp�erimen-

taux que nous pr�esenterons plus loin. Comme toutes les exp�eriences sont e�ectu�ees �a

temp�erature ambiante, nous devons maintenant �evaluer l'e�et de temp�erature sur la

force de Casimir.

Ce chapitre a pour but de donner une �evaluation th�eorique pr�ecise des contributions

thermiques �a l'e�et Casimir, en calculant la pression de radiation du rayonnement du

corps noir comme nous avons calcul�e celle des 
uctuations du vide dans le chapitre

2. Ce calcul nous fournira simultan�ement les termes de correction li�es �a la r�eponse

optique des miroirs, en particulier des miroirs m�etalliques, et les termes de correction

thermique. Nous insisterons sur un point essentiel pour atteindre une haute pr�ecision

dans l'�evaluation th�eorique de la force : les corrections de conductivit�e �nie des miroirs

et les corrections thermiques ne peuvent se d�e�nir ind�ependamment les unes des autres,

elles sont en fait corr�el�ees l'une �a l'autre. Nous caract�eriserons cette corr�elation pour

des miroirs d�ecrits par un mod�ele plasma.

Comme nous l'avons annonc�e dans l'introduction, le traitement simultan�e de la

temp�erature et de la dissipation dans les miroirs m�etalliques a engendr�e un d�ebat tr�es

pol�emique. Nous discutons les di�cult�es �a l'origine de ce d�ebat dans le chapitre 5.

Pour le moment, dans ce chapitre 4, nous oublions ce contexte et pr�esentons l'e�et de

la temp�erature en suivant la m�ethode d�evelopp�ee dans les chapitres pr�ec�edents.
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90 Chapitre 4. Force de Casimir �a temp�erature non nulle

A L'e�et de temp�erature

Il est en principe simple de prendre en compte l'e�et des 
uctuations thermiques du

champ. A temp�erature non nulle, celles-ci sont superpos�ees aux 
uctuations du vide. Il

nous faut donc maintenant ajouter la pression de radiation des 
uctuations thermiques

�a celle que nous avons d�ej�a calcul�ee pour les 
uctuations du vide.

A.1 Estimations et longueur d'onde thermique

A temp�erature nulle, l'�energie du champ se r�eduisait simplement �a la contribution

du vide 1
2
~! par mode de fr�equence !. A temp�erature non nulle, l'�energie du champ

est la somme de cette contribution du vide et de l'�energie du nombre moyen n! de

photons par mode donn�e par la loi de Planck

1

2
~! �!

�
1

2
+ n!

�
~! avec n! =

1

e
~!
kBT � 1

: (4-1)

La contribution d'un mode de fr�equence ! �a la force de Casimir telle qu'elle est d�eriv�ee

�a temp�erature nulle dans le chapitre 2 (voir (2-54)) doit donc être multipli�ee par le

facteur

1 + 2n! = coth

�
~!

2kBT

�
: (4-2)

Malgr�e son apparente simplicit�e, la prise en compte de ce facteur (4-2) va introduire

des points d�elicats qui doivent être analys�es tr�es rigoureusement. En particulier, quand

nous allons exprimer la force comme une int�egrale sur l'axe des fr�equences imaginaires,

il s'agira de traiter avec le plus grand soin le facteur (1 + 2ni�) pr�esent dans l'int�e-

grande �a temp�erature non nulle. Ce facteur pr�esente en e�et sur l'axe des fr�equences

imaginaires, c'est-�a-dire pour � r�eel, des pôles r�eguli�erement espac�es aux fr�equences

dites de Matsubara [57]

�n = n
2�kBT

~
pour n entier: (4-3)

Cette r�epartition discr�ete des modes d'excitation thermique sur l'axe imaginaire est

typique de la th�eorie des champs en temp�erature non nulle. La limite de temp�erature

nulle doit en fait être comprise comme [30, 56, 77, 142]

!T =
2�kBT

~
! 0: (4-4)
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A L'e�et de temp�erature 91

La fr�equence !T est donc l'�echelle naturelle des e�ets thermiques.

Qualitativement, il est clair que les corrections thermiques doivent commencer �a

être importantes pour un mode de fr�equence ! quand kBT devient de l'ordre de 1
2
~!.

En d'autres termes, la correction thermique �a la force de Casimir devient sensible,

relativement �a la force calcul�ee �a temp�erature nulle, pour des longueurs grandes. Ce

point sera trait�e de fa�con quantitative dans la suite mais nous pouvons d�ej�a caract�eriser

ce r�egime en introduisant une distance typique, la longueur d'onde thermique, au-del�a

de laquelle les corrections thermiques seront dominantes

�T =
2�c

!T
=

~c

kBT
: (4-5)

La longueur �T est directement li�ee au param�etre � utilis�e habituellement en physique

statistique

�T = ~c� ; � =
1

kBT
: (4-6)

A temp�erature ambiante T = 300K, cette longueur est de l'ordre de � 7�m. Ceci im-

plique que la correction thermique et la correction m�etallique sont a priori importantes

dans des domaines distincts.

A.2 Pression de radiation �a temp�erature non nulle

A temp�erature nulle, on a vu comment le calcul des fonctions de corr�elation des

champs pouvait se ramener au calcul des commutateurs de ces champs. Ces commuta-

teurs �etaient canoniques pour les champs �a l'ext�erieur de la cavit�e et modul�es par la

fonction d'Airy pour les champs intracavit�e.

A temp�erature non nulle, cette propri�et�e est encore vraie. Les anti-commutateurs

des champs sont d�etermin�es par les commutateurs et par le nombre moyen de photons

par mode m D
am:a

y
m0

E
=

�
1

2
+ nm

�h
am; a

y
m0

i
: (4-7)

Ceci est une cons�equence de l'hypoth�ese d'�equilibre thermodynamique que nous faisons

ici, y compris en pr�esence d'absorption dans les miroirs. Nous consid�erons donc que

les 
uctuations entrant dans tous les modes, y compris les modes de bruit, ob�eissent �a

la relation (4-7). Nous en d�eduisons que c'est encore vrai pour les champs sortants et

les champs intracavit�e �etudi�es au chapitre 2. Si nous ne faisions pas cette hypoth�ese

d'�equilibre thermodynamique, nous ne pourrions pas obtenir la force simplement �a

partir de la fonction d'Airy.
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92 Chapitre 4. Force de Casimir �a temp�erature non nulle

A.3 Calcul de la force

Grâce �a cette condition d'�equilibre thermodynamique, les r�esultats du chapitre 2

sur les pressions de radiation du vide sont g�en�eralis�es en incluant simplement le facteur

(4-2)

F (L) =
~A

2�

X
p

Z
d2k

4�2

Z 1
0

d! kz coth

�
~!

2kBT

�
(�fp

k
[!]� fp

k
[!]�) ; (4-8)

o�u fp
k
[!] est la fonction \boucle" d�ecrivant la r�eponse optique de la cavit�e.

Sur l'axe des fr�equences r�eelles, nous pouvons d�evelopper la fonction coth en s�erie

d'exponentielles. Nous �ecrivons

1 + 2n! = coth
�!

!T
= 1 + 2

1X
n=1

e
�
2n�(!+�)

!T : (4-9)

Nous avons introduit un facteur de convergence � qui est un nombre r�eel positif tendant

vers 0. Ce facteur permet d'assurer la convergence de cette s�erie sur tout le demi-axe

positif, la borne ! = 0 faisant encore partie du domaine de convergence puisque � > 0

strictement. Ce facteur de convergence permet �egalement de rendre le d�eveloppement

(4-9) uniform�ement convergent sur tout le quart de plan complexe qui joue un rôle

dans les arguments d'analyticit�e discut�es ci-apr�es. Sans ce facteur de convergence, on

aurait un probl�eme de d�e�nition de la s�erie (4-9) en ! = 0, mais �egalement pour toutes

les fr�equences de Matsubara (4-3). La limite � ! 0 devra être prise seulement �a la �n

du calcul.

Conform�ement �a l'usage �etabli depuis Lifshitz [30], nous introduisons la notation

suivante pour le type de somme apparaissant dans (4-9)

0X
n

' (n) =
1

2
' (0) +

1X
n=1

' (n)

=
1

2

+1X
n=�1

' (jnj) : (4-10)

En utilisant cette notation, on obtient l'expression suivante de la force

F (L) = lim
�!0+

~A

�

0X
n

X
p

Z
d2k

4�2

1Z
0

d! e
�
2n�(!+�)

!T kz (�fp
k
[!]� f

p

k
[!]�) : (4-11)

Insistons sur le fait que le facteur de convergence permet de justi�er sur (4-11) l'inver-

sion formelle du signe somme
P0

n et des int�egrales
R
d! et

R
d2k.
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A L'e�et de temp�erature 93

Nous utilisons maintenant les mêmes conditions de causalit�e, de stabilit�e et de

transparence �a haute fr�equence que dans le chapitre 2 avec les pr�ecisions apport�ees

pour le cas m�etallique dans le chapitre 3. Ceci nous permet de prolonger fp
k
[i�] sur le

domaine complexe correspondant aux conditions d'analyticit�e

Im(!) = Re (�) > 0

Re (!) = �Im(�) > 0: (4-12)

Comme dans le chapitre 2, nous utilisons le th�eorême de Cauchy pour obtenir une

identit�e entre l'int�egrale sur les fr�equences r�eelles et une int�egrale sur les fr�equences

imaginaires. Plus pr�ecis�ement, la pr�esence du facteur de convergence � fait que la partie

Ci du contour correspond maintenant �a l'axe z = i� + � dans le plan complexe avec �

r�eel positif et � r�eel positif proche de 0 (voir la �gure 4.1). Ceci montre l'importance

de ce facteur � alors que la fonction coth �z

!T
pr�esente des pôles sur l'axe imaginaire aux

fr�equences Matsubara zn = in!T.

ξ n

Im ω

Re ω

C8C i

C r

i

η

Fig. 4.1 { Le contour dans le plan complexe pour l'application du th�eorême de Cauchy �a

temp�erature non nulle.

Nous proc�edons de mani�ere analogue pour la fonction de r�eponse avanc�ee fp
k
[i�]�

avec un contour qui se trouve dans le quart de plan Im(!) > 0;Re (!) < 0 (voir

la �gure 2.4 dans le chapitre 2). Nous obtenons �nalement l'expression suivante de

l'int�egrale

F (L) = lim
�!0+

~A

�

0X
n

X
p

Z
d2k

4�2

1Z
0

d� e
�2n� �

!T �

�
e
�2in� !

!T fp
k
[i� + �] + e

2in� !
!T fp

k
[i� � �]

�
: (4-13)

Quand fp
k
[i�] ne pr�esente pas de singularit�e sur l'axe des fr�equences imaginaires,

on peut imm�ediatement oublier les � dans fp
k
[i� + �] et fp

k
[i� � �]. Dans le cas des
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94 Chapitre 4. Force de Casimir �a temp�erature non nulle

m�etaux, les fonctions de r�eponse peuvent pr�esenter des pathologies au voisinage de

! = 0. Les probl�emes associ�es et les nombreuses discussions pol�emiques qu'ils ont

suscit�e sont discut�es de mani�ere plus d�etaill�ee dans le chapitre 5. Ici, nous discutons

une m�ethode de calcul qui n'est pas a�ect�ee par ces probl�emes.

Nous �ecrivons la force en s�eparant les contributions correspondant �a des n di��erents

F (L) = lim
�!0+

~A

2�3

0X
n

e
�2�n �

!T eF (n) ; (4-14)

avec

eF (n) =X
p

Z
d2k

1Z
0

d� cos

�
2�n�

!T

�
�

r
p

k
[i�] e�2�L

1� rp
k
[i�] e�2�L

: (4-15)

Nous avons omis la r�ef�erence �a � dans les facteurs rp
k
[i� + �] mais il est sous-entendu

que l'expression doit être r�e�ecrite comme dans (4-13) en cas de probl�eme.

Il est important de noter que cette formulation permet de s�eparer les di��erentes

contributions des 
uctuations du vide et des 
uctuations thermiques. En e�et, le terme

n = 0 donn�e dans (4-14)

~A

2�3
1

2
eF (0) = ~A

2�3
1

2

X
p

Z
d2k

1Z
0

d� �
r
p

k
[i�] e�2�L

1� r
p

k
[i�] e�2�L

; (4-16)

correspond exactement �a l'expression (2-61) de la force de Casimir donn�ee �a temp�e-

rature nulle. Les termes suivants n � 1 rassemblent donc les e�ets thermiques. On

reviendra plus loin sur cette fa�con e�cace de s�eparer les di��erents termes correctifs.

La d�e�nition de l'�energie correspond �a une int�egration sur la distance relative entre

les miroirs

E (L) =

1Z
L

dx F (x) (4-17)

et cette proc�edure est e�ectu�ee �a temp�erature constante. En termes de potentiels ther-

modynamiques, l'�energie ainsi calcul�ee correspond en fait �a l'�energie libre du syst�eme.

Conform�ement �a l'usage, on abr�egera par \�energie de Casimir".

B Corrections thermiques

Au d�ebut de ce chapitre, nous avons introduit une distance typique �T �a partir

de laquelle les e�ets thermiques sont sensibles. A temp�erature ambiante (T = 300K),
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B Corrections thermiques 95

nous avons vu que cette longueur �etait de l'ordre de � 7�m. Par contraste, nous

avons vu dans le chapitre 3 que les corrections de conductivit�e �etaient caract�eris�ees

par la longueur d'onde plasma �P dont la valeur typique est de 0:1�m. Les deux types

de corrections, thermique et de conductivit�e, correspondent donc �a des domaines de

longueur de cavit�e bien s�epar�es.

Le but de cette section est de donner une �evaluation pr�ecise de la force de Casimir

quand sont prises en compte simultan�ement les corrections optiques et thermiques. A

cette �n, nous caract�eriserons l'e�et combin�e de ces deux corrections par le facteur

correctif suivant

�F =
F

FCas
: (4-18)

Comme pr�ec�edemment, F est la force calcul�ee en incluant les deux corrections et FCas

repr�esente la situation id�eale. Nous pouvons introduire �egalement des facteurs correctifs

associ�es s�epar�ement �a chaque type de correction de conductivit�e et thermique

�PF =
FP

FCas
; ; �TF =

FT

FCas
: (4-19)

FP est la force calcul�ee en ne tenant compte que des corrections de conductivit�e �nie

des miroirs et FT en incluant uniquement les corrections thermiques. Dans le cas du

mod�ele du plasma, �PF est exactement le facteur correctif qui a �et�e discut�e dans la

section C du chapitre pr�ec�edent. Ce facteur ne d�epend que du rapport L

�P
et, comme

on l'a vu, il ne di��ere de 1 que pour L

�P
plus petit que ou du même ordre que 1. Par

contre, �TF ne d�ependra que du rapport L

�T
et il ne di��erera de 1 que pour L

�T
plus grand

que ou du même ordre de 1. On discutera les cons�equences de cette situation dans cette

section et dans la suivante.

B.1 Formulation de la force et de l'�energie entre deux

miroirs m�etalliques et �a temp�erature non nulle

Nous avons vu que pour des miroirs r�eels caract�eris�es par des coe�cients de di�usion

d�ependant de la fr�equence, la force de Casimir est d�e�nie comme une int�egrale sur

les fr�equences et les vecteurs d'onde transverses associ�es au vide et aux 
uctuations

thermiques. On rappelle ici l'expression obtenue pour la force

F (L) =
~A

2�3

0X
n

X
p

Z
d2k

1Z
0

d� cos

�
2�n�

!T

�
�

�p
k
[i�]

1 � �p
k
[i�]

�
p

k
[i�] = r

p

k 1 [i�] r
p

k 2 [i�] e
�2�L: (4-20)
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96 Chapitre 4. Force de Casimir �a temp�erature non nulle

Le facteur correctif pour la force entre deux miroirs identiques s'�ecrit donc

�F =
120L4

c�5

0X
n

X
p

Z
d2k

1Z
0

d� cos

�
2�n�

!T

�
�

�
p

k
[i�]

1 � �
p

k
[i�]

�
p

k
[i�] = (rp

k
[i�])2 e�2�L: (4-21)

Cette formule inclut les e�ets simultan�es de temp�erature et de conductivit�e que nous

cherchons �a caract�eriser. Les amplitudes de r�e
exion d�ecrivent en e�et la d�ependance

en fr�equence de la r�eponse optique des miroirs, comme nous l'avons d�ej�a analys�e. La

pr�esence du facteur cos
h
2�n�
!T

i
correspond �a la prise en compte des 
uctuations ther-

miques. L'�evaluation num�erique de cette expression fournira bien le facteur correctif

global. Nous la pr�esentons maintenant en utilisant le mod�ele plasma pour caract�eriser

la r�eponse optique des miroirs. En principe cependant, on peut utiliser les donn�ees

optiques pour d�e�nir cette r�eponse, comme on l'a fait au chapitre pr�ec�edent, et donner

ainsi un r�esultat plus g�en�eral.

B.2 Evaluations num�eriques des facteurs correctifs

Nous pr�esentons ici l'�evaluation du facteur correctif pour la force obtenue par l'int�e-

gration num�erique de l'expression (4-21) en utilisant un mod�ele plasma et en choisissant

une temp�erature de 300K, ce qui est typiquement le cas pour les exp�eriences r�ecentes.

Comme auparavant, les facteurs correctifs sont calcul�es pour les longueurs de cavit�e

int�eressantes exp�erimentalement, c'est-�a-dire sur le domaine 0:1-10�m. La pr�esence du

facteur cos, fortement oscillant �a haute fr�equence, demande une grande attention dans

le calcul num�erique.

Les r�esultats pour �F sont pr�esent�es sur la �gure 4.2 en trait continu [136]. Ils sont

compar�es directement avec le facteur de r�eduction de la force li�e aux corrections de

conductivit�e et avec le facteur d'augmentation de la force li�e �a la temp�erature. Ces

deux corrections sont calcul�ees comme le �F mais en faisant une hypoth�ese simpli�ca-

trice : pour le premier, le calcul est fait �a temp�erature nulle alors que, pour le second,

le calcul est fait pour des miroirs parfaits.

La �gure 4.3 montre les r�esultats similaires obtenus sur l'�energie cette fois. Par

rapport �a celles obtenues pour la force, il y a un e�et \d'�echange" int�eressant : si les

corrections de conductivit�e �etaient plus importantes pour la force, en revanche les cor-

rections thermiques sont plus marqu�ees pour l'�energie.
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B Corrections thermiques 97
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Fig. 4.2 { Facteurs correctifs pour la force calcul�es pour des miroirs d'aluminium (Al, �gure

du haut), d'or et de cuivre (Cu-Au, �gure du bas) en fonction de la longueur de

la cavit�e L : en traits pleins, facteur correctif global ; en tirets, facteur correctif de

conductivit�e ; en traits tiret�es, facteur correctif thermique.

B.3 Facteur de corr�elation

La lecture des �gures 4.2 et 4.3 montre clairement que les corrections thermiques

sont importantes dans la limite des grandes distances alors que c'est �a courtes distances

que les corrections de conductivit�e �nie dominent. On a donc les deux r�egimes d�ej�a

discut�es qualitativement

L� �T ) �TF � 1

L� �P ) �PF � 1: (4-22)

Nous menons ici les discussions pour le calcul de la force mais ces discussions s'ap-

pliquent aussi bien aux facteurs �E; �TE et �PE corrigeant l'expression de l'�energie.
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98 Chapitre 4. Force de Casimir �a temp�erature non nulle
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Fig. 4.3 { Facteurs correctifs pour l'�energie pour des miroirs d'aluminium (Al, �gure du

haut), d'or et de cuivre (Cu-Au, �gure du bas) en fonction de la longueur de

la cavit�e L : en traits pleins, facteur correctif global ; en tirets, facteur correctif de

conductivit�e ; en traits tiret�es, facteur correctif thermique.

Puisque les valeurs typiques de �P � 100nm et �T � 7�m sont bien distinctes, le

facteur correctif global �F se comporte approximativement comme le simple produit

des facteurs correctifs de conductivit�e et thermique, �evalu�es s�eparement

�F � �PF � �TF : (4-23)

C'est avec cette approximation que sont �evalu�ees usuellement les corrections de conduc-

tivit�e et de temp�erature dans les exp�eriences.

Dans une analyse plus �ne des �gures 4.2 et 4.3, on voit que les deux facteurs correc-

tifs �PF et �TF sont appr�eciables dans le domaine de distance entre 1 et 4�m, c'est-�a-dire

entre les deux cas limites (4-22). Dans ce domaine, l'approximation peut être discu-
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B Corrections thermiques 99

table. Ce point est d'autant plus important que ce domaine de distances interm�ediaires

est exp�erimentalement explor�e. Du point de vue de la comparaison th�eorie-exp�erience,

il est donc essentiel de pr�eciser les calculs sur ce domaine, a�n d'atteindre une pr�eci-

sion �elev�ee et de pouvoir discuter de fa�con tr�es pr�ecise la validit�e de l'approximation

habituelle de d�ecorr�elation.

Pour r�epondre �a cette question, nous d�e�nissons la quantit�e �F qui va mesurer le

degr�e de validit�e de l'approximation en tant que facteur de corr�elation

�F = �PF �
T
F (1 + �F) : (4-24)

Par d�e�nition même de �F, l'�egalit�e (4-24) est ici exacte. Sur la �gure 4.4 sont trac�es

le facteur �F et le facteur �E, introduit de la même fa�con pour l'�energie, en fonction

de la distance entre les miroirs. On a calcul�e ces facteurs pour les longueurs plasmas

correspondant �a Al d'une part, Au-Cu d'autre part, ainsi que pour deux autres lon-

gueurs plasma. Ceci va nous permettre de d�egager les comportements remarquables de

ces facteurs.

Par rapport �a l'approximation (4-23), une valeur non nulle de �F constitue une

signature de la corr�elation existante entre les corrections de conductivit�e et de temp�e-

rature. On voit sur la �gure 4.4 que ces facteurs sont de l'ordre de 1% pour Al et Au-Cu

�a temp�erature ambiante. A un niveau de pr�ecision moins bon, le calcul s�epar�e de �PF
et de �TF et l'�evaluation du facteur global �F �a partir du simple produit des corrections

s�epar�ees est donc une m�ethode utilisable. En revanche, si une pr�ecision de 1% ou mieux

est vis�ee, l'approximation (4-23) est insu�sante et on doit utiliser le facteur correctif

global.

Il faut noter que ces facteurs de corr�elation augmentent avec la temp�erature ou la

longueur plasma. Le signe obtenu sur �F signi�e que l'approximation de d�ecorr�elation

donne des valeurs sous-estim�ees pour la force.

A�n de rendre la discussion plus pr�ecise, nous donnons des valeurs num�eriques des

facteurs correctifs pour deux distances exp�erimentalement signi�catives : 0:5�m et 3�m.

La premi�ere correspond �a la distance minimale pour laquelle le mod�ele plasma peut

être utilis�e pour une comparaison pr�ecise avec l'exp�erience (voir section C du chapitre
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100 Chapitre 4. Force de Casimir �a temp�erature non nulle
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Fig. 4.4 { Corr�elations �F (courbe du haut) et �E (courbe du bas) en fonction de la longueur

de cavit�e pour les trois m�etaux Al, Au et Cu et pour deux longueurs plasma (�P =

0:3� 0:5�m) suppl�ementaires.

3).

L = 0:5�m

Al Cu �Au

�PF 0:843 0:808

�F 0:843 0:808

�PE 0:879 0:851

�E 0:883 0:855

A cette distance L = 0:5�m, la contribution thermique contribue pour moins que un

pour mille �a la force et �a quelques pour mille seulement �a l'�energie de Casimir

L = 0:5�m ) �TF = 1:000
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B Corrections thermiques 101

�TE = 1:004:

Au niveau du pourcent, il n'est donc pas n�ecessaire de tenir compte de la correction

thermique.

A des distances encore plus courtes, nous savons qu'il faut tenir compte pr�ecis�e-

ment de la r�eponse optique du miroir en utilisant les donn�ees optiques, comme nous

l'avons d�etaill�e au chapitre 3. A ces courtes distances, nous pourrons ignorer la correc-

tion thermique compl�etement. On sera alors simplement ramen�e pour les corrections

de conductivit�e �a la section C du chapitre pr�ec�edent.

Pour des distances plus grandes, telles que L = 3�m, la situation est invers�ee

puisque les corrections thermiques deviennent dominantes. La correction de conducti-

vit�e joue certes un rôle mais le recours au mod�ele plasma ne pose aucun probl�eme en

terme de pr�ecision. Nous reportons ci-dessous les corrections thermiques

L = 3�m ) �TF = 1:117

�TE = 1:470;

et les autres facteurs

L = 3�m

Al Cu �Au

�PF 0:971 0:963

�PF�
T
F 1:084 1:076

�F 1:090 1:083

�PE 0:978 0:972

�PE�
T
E 1:437 1:429

�E 1:449 1:444

Ici, toutes les corrections doivent être prises en compte : les corrections thermiques sont

importantes, les miroirs ne peuvent pas être consid�er�es comme parfaits et c'est l�a que

le facteur de corr�elation est le plus important.

On remarque que l'e�et de corr�elation des corrections peut toujours être analys�e en

utilisant le mod�ele plasma. Les distances L pour lesquelles les facteurs de corr�elation

sont non nuls correspondent en e�et au r�egimeL� �P o�u le mod�ele plasma est su�sant

pour d�ecrire la r�eponse optique des m�etaux.

Nous retiendrons que les facteurs de corr�elation entre les deux corrections doivent

être pris en compte s'il s'agit d'atteindre une haute pr�ecision dans la comparaison

th�eorie-exp�erience.

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



102 Chapitre 4. Force de Casimir �a temp�erature non nulle

B.4 Loi d'�echelle

On remarque sur les courbes de la �gure 4.4 que les facteurs de corr�elation corres-

pondant �a di��erentes longueurs plasma pr�esentent tous une même d�ependance fonc-

tionnelle vis-�a-vis de la distance. Leurs maximums respectifs sont atteints pour la même

distance typique entre les miroirs et les amplitudes de ces maximums varient lin�eaire-

ment avec la longueur plasma. Ces caract�eristiques semblent indiquer l'existence d'une

loi d'�echelle pour les corr�elations

�F =
�P

�T
�F: (4-25)

Ceci signi�e que le terme de corr�elation est alors proportionnel, d'une part, au

rapport �P
�T

des longueurs d'onde qui caract�erisent respectivement les e�ets plasma et

thermique et, d'autre part, �a la fonction �F qui ne d�epend plus que de L
�T
. Cette loi

d'�echelle est con�rm�ee sur la �gure 4.5 o�u nous avons trac�e

�F =
�T

�P
�F: (4-26)

La superposition quasiment parfaite des di��erentes courbes d�emontre l'existence d'une

telle loi d'�echelle. Nous interpr�eterons l'existence de cette loi dans la prochaine section

et nous montrerons que les facteurs �F et �E peuvent être obtenus analytiquement.

Avant même cette interpr�etation analytique, nous pouvons remarquer que nous

disposons d�esormais d'une m�ethode simple pour atteindre une tr�es haute pr�ecision dans

l'�evaluation th�eorique de la force et de l'�energie de Casimir en pr�esence de corrections

de conductivit�e et de temp�erature. Le facteur correctif global est simplement donn�e

par l'expression

�F = �PF�
T
F

�
1 +

�P

�T
�F

�
�E = �PE�

T
E

�
1 +

�P

�T
�E

�
: (4-27)

Cette m�ethode est moins directe que le recours aux int�egrations num�eriques com-

pl�etes. Mais elle requiert des calculs plus simples sans pour autant sacri�er la pr�ecision

�a cette simplicit�e. En e�et, les facteurs �P et �T sont calcul�es par un calcul beaucoup

plus simple dans lequel soit l'e�et de la temp�erature, soit l'e�et de r�e
ection imparfaite

est ignor�e. Ensuite, l'e�et de corr�elation entre ces deux corrections est estim�e par le

terme �P
�T
� o�u � est d�eduit de la �gure 4.5 utilis�ee comme une abaque. Typiquement,

un facteur de corr�elation � de l'ordre du pourcent pourra ainsi être estim�e avec une
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C Expressions analytiques 103

pr�ecision bien meilleure. Une alternative �a cette m�ethode graphique est d'utiliser les

expressions analytiques que nous allons pr�esenter dans la prochaine section.

C Expressions analytiques

Dans cette section, nous donnons des r�esultats analytiques qui peuvent être utiles

en compl�ement des r�esultats num�eriques d�ej�a pr�esent�es. L'id�ee g�en�erale consistera �a

utiliser la d�ecomposition des e�ets du vide et des e�ets thermiques que nous avons

d�emontr�es pr�ec�edemment.

En e�et, dans l'�equation (4-21), la contribution m = 0 correspond �a l'e�et du vide

et s'identi�e donc �a la correction de conductivit�e seule

�PF =
60L4

c�5

Z
d2k

1Z
0

d� �

�
�TM
k

[i�]

1 � �TM
k

[i�]
+

�TE
k

[i�]

1 � �TE
k

[i�]

�
: (4-28)

Les autres contributions m � 1 s'identi�ent donc aux e�ets thermiques et nous les

d�ecomposerons ici en deux parties correspondant, d'une part, aux e�ets thermiques

pour des miroirs parfaits

�
�TF � 1

�
=

240L4

c�5

1X
m=1

Z
d2k

1Z
0

d� cos

�
2�m�

!T

�
�

2e�2�L

1 � e�2�L
(4-29)

et, d'autre part, �a un r�esidu ��F qui est une mani�ere alternative de repr�esenter le

m�elange des corrections de conductivit�e et de temp�erature

��F =
240L4

c�5

1X
m=1

Z
d2k

1Z
0

d� cos

�
2�m�

!T

�
� �f

�f =
�TM
k

[i�]

1� �TM
k

[i�]
+

�TE
k

[i�]

1� �TE
k

[i�]
� 2e�2�L

1 � e�2�L
: (4-30)

Ces trois termes composent ensemble le facteur correctif

�F = �PF +
�
�TF � 1

�
+��F: (4-31)

La correction de conductivit�e seule, �PF , a d�ej�a �et�e discut�ee longuement dans la

partie C du chapitre 3. Nous voulons ici discuter �egalement la correction thermique

�TF �evalu�ee pour des miroirs parfaits ainsi que la correction suppl�ementaire ��F. Ceci

nous permettra de d�eriver analytiquement les expressions obtenues dans la section

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



104 Chapitre 4. Force de Casimir �a temp�erature non nulle

pr�ec�edente pour le facteur de corr�elation. Nous utiliserons alors la condition �P � �T

dont nous avons vu qu'elle est valable dans toutes les exp�eriences faites avec des m�etaux

usuels (�P � 0:1�m) �a temp�erature ordinaire (�T � 7�m).

Nous donnerons ici aussi les facteurs calcul�es pour l'�energie

�E = �PE +
�
�TE � 1

�
+��E: (4-32)

mais repoussons en appendice les d�etails des calculs.

C.1 Correction thermique pour des miroirs parfaits

Nous d�etaillons ici le terme
�
�TF � 1

�
. En int�egrant sur les fr�equences �, on montre

dans l'appendice B que (4-29) se r�e�ecrit sous forme d'une s�erie

�
�TF � 1

�
= 30

1X
m=1

�
1

(�m)4
� cosh [�m]

�m sinh3 [�m]

�
: (4-33)

Ce r�esultat est identique �a celui donn�e par des calculs ant�erieurs [56, 77, 142]. Le

param�etre � = ��T
2L est encore une autre mani�ere de repr�esenter une �echelle naturelle

de temp�erature

Te� =
~c

2kBL
; � =

�Te�

T
=
��T

2L
: (4-34)

La temp�erature e�ective Te� d�epend de la distance entre les miroirs.

Pour le terme correspondant en �energie, �a partir de l'int�egration

E (L)� ECas =

1Z
L

dx
�
�TF � 1

�
FCas; (4-35)

on obtient apr�es normalisation par l'�energie id�eale de Casimir

�
�TE � 1

�
= 45

1X
m=1

�
� 2

(�m)4
+

1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

�
: (4-36)

C.2 Correction suppl�ementaire

Les discussions men�ees plus haut sugg�erent que le terme ��F doit correspondre

�a un domaine de longueur de cavit�e dans lequel existent �a la fois les corrections de

conductivit�e et les corrections thermiques. Typiquement comme on l'a vu, avec �P �
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C Expressions analytiques 105

0:1�m et �T � 7�m, ces distances sont centr�ees autour de 1�m. On est donc dans un

r�egime

�P � L� �T (4-37)

dans lequel un d�eveloppement perturbatif en puissances de �P est possible. Au premier

ordre, d'apr�es l'appendice B, nous trouvons

�f � � e2�L

(e2�L � 1)2

�
1� �rTM

k

�2
+ 1� �rTE

k

�2�
� � e2�L

(e2�L � 1)2
2��P
�

�
1 +

�2

�2

�
: (4-38)

Report�e dans (4-30), ce d�eveloppement permet de d�e�nir une fonction �F qui apparâ�t

multipli�ee par le facteur a-dimensionn�e �P
L

dans l'expression de ��F

��F ' �P

L
�F: (4-39)

Cette fonction est ind�ependante de �P, i.e. des caract�eristiques optiques des miroirs et

elle sera dite universelle. Des calculs assez directs conduisent �a son expression

�F =
15

�

1X
m=1

�
1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

+
4cosh [�m]

�m sinh3 [�m]
� 2 + 4cosh2 [�m]

sinh4 [�m]

�
: (4-40)

On proc�ede de même pour l'�energie

��EECas =

1Z
L

dx ��FFCas: (4-41)

Le r�esultat sur ce facteur correctif prend alors la forme

��E =
�P

L
�E

�E = �45
1X

m=1

�
� 1

(�m)3 tanh [�m]
� 1

(�m)2 sinh2 [�m]

� 2cosh [�m]

�m sinh3 [�m]
+

4

(�m)4

�
: (4-42)
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106 Chapitre 4. Force de Casimir �a temp�erature non nulle

C.3 Expression analytique des facteurs de corr�elation

Nous pouvons maintenant donner une d�erivation analytique de la loi d'�echelle que

nous avons pr�esent�ee dans la section pr�ec�edente. Cette loi sera valable dans le r�egime

de grande distance L� �P. On rappele d'abord les d�eveloppements obtenus pour les

corrections de conductivit�e �PF et �PE dans ce r�egime

�PF = 1� 8

3�

�P

L
+O

 �
�P

L

�2
!

�PE = 1� 2

�

�P

L
+O

 �
�P

L

�2
!
: (4-43)

En partant des expressions (4-31,4-32) des facteurs correctifs, on peut regrouper les

r�esultats obtenus pour les di��erents facteurs et obtenir ainsi respectivement pour la

force et l'�energie,

�F = �PF�
T
F +

�
1� �PF

� �
�TF � 1

�
+��F

' �PF�
T
F +

8

3�

�P

L

�
�TF � 1

�
+
�P

L
�F

�E = �PE�
T
E +

�
1� �PE

� �
�TE � 1

�
+��E

' �PE�
T
E +

2

�

�P

L

�
�TE � 1

�
+
�P

L
�E: (4-44)

Nous avons d�evelopp�e les termes correctifs �P et �P au premier ordre en �P
L
. Nous en

d�eduisons �nalement la loi d'�echelle (4-27) avec

�F =
8

3�

�T

L

�
�TF � 1

�
�TF

+
�T

L

�F

�TF

�E =
2

�

�T

L

�
�TE � 1

�
�TE

+
�T

L

�E

�TE
: (4-45)

Ces fonctions ne d�ependent plus de �P : on a d�ej�a insist�e sur leur caract�ere universel.

Elles sont trac�ees sur la �gure 4.5 o�u l'on voit qu'elles co��ncident �a mieux que 1% avec

les r�esultats des calculs num�eriques de la section pr�ec�edente.

C.4 Comportements asymptotiques

Ces r�esultats analytiques montrent que l'in
uence des contributions thermiques se

d�e�nie �a l'aide du param�etre �, c'est-�a-dire en termes de temp�erature e�ective, que

ce soient pour des miroirs parfaits ou des miroirs plasma. Nous donnons �a pr�esent les

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



C Expressions analytiques 107

comportements asymptotiques basse et haute temp�eratures quand ces limites corres-

pondent respectivement aux r�egimes

�� 1 $ T � Te�

�� 1 $ T � Te�: (4-46)

Nous commencerons par d�etailler la limite�� 1. Cette limite implique en termes de

longueur de cavit�e L� �T. Nous supposerons par ailleurs que le traitement perturbatif

en �P
L
est toujours possible, i.e. que

�P � L� �T: (4-47)

Dans ce secteur (4-47), les formules que nous venons de d�eriver se traitent naturellement

en s�eries de perturbation en 1
�
. Nous retiendrons uniquement les termes de contribu-

tion dominante sur les expressions de chaque facteur correctif. Ainsi on obtient pour�
�TF � 1

�
donn�e en (4-33)

�� 1 ) �
�TF � 1

�
= 30

1X
m=1

1

(�m)4
+O

�
1

�
e�2�

�
=

30

�4
� (4) +O

�
1

�
e�2�

�
=

1

3

�
T

Te�

�4

+O
�
1

�
e�2�

�
: (4-48)

En utilisant le même argument pour ��F, on obtient

�F =
15

�

1X
m=1

1

(�m)3
+O

�
1

�
e�2�

�
=

15

�

1

�3
� (3) +O

�
1

�
e�2�

�
=

15

�4

�
T

Te�

�3

� (3) +O
�
1

�
e�2�

�
: (4-49)

En rappelant (4-43), on peut donner le comportement du facteur correctif global quand

(4-47) est v�eri��ee

�F = 1 +
1

3

�
T

Te�

�4

� 8

3�

�P

L

"
1 � 45

8�3
� (3)

�
T

Te�

�3
#
+O

 �
�P

L

�2

;
1

�
e�2�

!
:(4-50)

Ce r�esultat est retrouv�e chez [56, 143].

On fait les mêmes comparaisons au niveau des facteurs correctifs en �energie, en ne
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108 Chapitre 4. Force de Casimir �a temp�erature non nulle

conservant que les termes pr�edominants dans la limite�� 1. On peut ainsi approximer

�
�TE � 1

�
= 45

1X
m=1

1

(�m)3
+O

�
1

�2
e�2�

�

=
45

�3

�
T

Te�

�3

� (3) +O
�

1

�2
e�2�

�
: (4-51)

De la même fa�con pour le terme ��E, la contribution dominante est identi��ee

�E =
45

�

1X
m=1

1

(�m)3
+O

�
1

�2
e�2�

�

=
45

�4

�
T

Te�

�3

� (3) +O
�

1

�2
e�2�

�
: (4-52)

En utilisant (4-43), on obtient le comportement �a �� 1 du facteur correctif en �energie

�E =
45

�3

�
T

Te�

�3

� (3)� 2

�

�P

L

"
1 � 45

2�3

�
T

Te�

�3

� (3)

#

+O
 �

�P

L

�2

;
1

�2
e�2�

!
: (4-53)

Dans la limite du miroir parfait �P ! 0, on retrouve le r�esultat connu pour les correc-

tions thermiques [77].

Le r�egime oppos�e � � 1 d�e�ni en (4-46) correspond �a la limite des hautes tem-

p�eratures T � Te�. En termes de longueur de cavit�e, il conduit n�ecessairement aux

in�egalit�es

�P � �T � L: (4-54)

Dans cette limite, les expressions (4-29), (4-30) que nous venons de d�eriver ne sont pas

adapt�ees : il n'est pas possible de d�evelopper perturbativement en �� 1. Ce probl�eme

rappelle celui rencontr�e pour les corrections de conductivit�e o�u les deux r�egimes �P
L
� 1

et �P
L
� 1 ne sont pas uniform�ement connect�es. Pour e�ectuer ces d�eveloppements dans

la limite �� 1, il est indispensable de recourir �a la propri�et�e remarquable de sym�etrie

d'inversion en temp�erature des contributions thermiques pour la force et l'�energie de

Casimir. Cette sym�etrie a �et�e remarqu�ee initialement par Brown et Maclay [77] et est

souvent utilis�ee dans un contexte plus large de th�eorie des champs [144]. Elle s'exprime

symboliquement par des relations du type

f

�
T

Te�

�
+ f

�
Te�

T

�
� 0 f (�) + f

�
1

�

�
� 0; (4-55)
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C Expressions analytiques 109

qui permettent de passer d'une forme en temp�erature �a sa forme duale. Ainsi s'�etablit

la connexion entre f (�) d�eveloppable pour �� 1 et f
�
1
�

�
d�eveloppable pour �� 1.

Nous d�etaillons les calculs correspondants dans l'appendice B. Ici, nous nous conten-

tons de donner les r�esultats obtenus �a la �n de ce calcul pour �F

�F =
15

�2�
� (3)

�
2 � 3

�

�P

L

�
+O

 �
�P

L

�2

;
1

�2
e�2

�2

�

!
(4-56)

et pour �E

�E =
45

�2�
� (3)

�
1� 1

�

�P

L

�
+O

�
1

�2
e�2

�
2

�

�
; (4-57)

en accord avec [143]. Ces facteurs vont donc d�e�nir respectivement une force et une

�energie de Casimir ind�ependantes de ~ : on parle �a ce titre de limite classique.
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110 Chapitre 4. Force de Casimir �a temp�erature non nulle
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Fig. 4.5 { Les facteurs de corr�elation repr�esent�es pour la force (courbes du haut) et pour

l'�energie (courbes du bas) apr�es le r�e�echelonnement d�ecrit par l'�equation (4-26).

Di��erentes longueurs plasma correspondent �a des courbes quasiment identiques,

repr�esent�ees en traits plein, tiret et pointill�es. Ces courbes co��ncident presque par-

faitement avec les expressions analytiques d�eriv�ees en (4-45) et repr�esent�ees ici

par les courbes en trait gras.
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Chapitre 5

La pol�emique sur les miroirs dissipatifs �a

temp�erature non nulle

Nous avons pr�esent�e au chapitre pr�ec�edent la fa�con dont nous d�erivons l'expression

de la force �a temp�erature non nulle. Comme nous l'avons expliqu�e, cette expression est

valable pour tous les miroirs, qu'ils soient di�electriques ou m�etalliques, dissipatifs ou

non dissipatifs. Cette formulation est bas�ee sur la d�ecomposition en s�erie d'exponen-

tielles de la fonction coth qui repr�esente les 
uctuations thermiques.

Il existe une formulation alternative, qui a �et�e d�eriv�ee par Lifshitz [30] et qui est

tr�es largement utilis�ee dans la litt�erature. Cette formulation est donn�ee, comme nous

allons le voir dans ce chapitre, �a partir d'une d�ecomposition du coth sur ses pôles.

Cette formulation alternative est �equivalente �a celle que nous avons utilis�ee quand les

amplitudes de r�e
exion ob�eissent �a des conditions de r�egularit�e que nous sp�eci�erons

plus loin. Malheureusement, ce n'est pas le cas pour les mod�eles de miroirs m�etalliques

prenant en compte la dissipation alors que ce sont justement ces mod�eles qui d�ecrivent

les exp�eriences r�ecentes. A partir de cette di�cult�e purement math�ematique s'est d�e-

velopp�ee une discussion pol�emique qui a pris des proportions consid�erables r�ecemment

[145, 146, 147, 148, 149, 150, 151, 152].

Dans le pr�esent chapitre, nous d�ecrivons la formulation dite de Lifshitz, nous dis-

cutons les di�cult�es de cette formulation et nous montrons comment les r�esoudre. Les

r�esultats de cette analyse ne modi�ent en rien les conclusions du chapitre pr�ec�edent.

Les d�etails les plus techniques sont renvoy�es dans l'appendice C.
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112 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

A La formulation dite de Lifshitz

A.1 D�ecomposition sur les pôles du coth

Nous partons de l'expression initiale de la force �ecrite sur l'axe r�eel, �a temp�erature

non nulle

F (L) =
~A

2�

X
p

Z
d2k

4�2

Z 1
0

d! kzcoth

�
�

!T
!

�
(�fk [!]� fk [!]

�) ; (5-1)

o�u fp
k
[!] est toujours ici la fonction \boucle" d�ecrivant la r�eponse optique de la cavit�e.

Avec les conditions d�etaill�ees au chapitre 2, nous utilisons �a nouveau le th�eor�eme

de Cauchy pour �ecrire l'expression de la force sur l'axe imaginaire. Nous d�e�nissons le

contour d'int�egration de telle sorte que les pôles du coth restent exclus de l'int�erieur

de ce contour. Autrement dit, la partie Ci du contour utilis�e pour la partie retard�ee

est d�ecal�ee �a l'aide d'un r�egulateur � par rapport �a l'axe z = i� (voir le chapitre 2 et

en particulier la �gure 2.3). On proc�ede de même pour la partie avanc�ee de la fonction

de r�eponse (voir la �gure 2.4 du chapitre 2). On obtient ainsi l'expression de la force

sur l'axe imaginaire

F (L) = lim
�!0+

~A

2�

X
p

Z
d2k

4�2

1Z
0

d� �

�
coth

�
�

!T
(i� + �)

�
fp
k
[i� + �]

+coth

�
� �

!T
(i� � �)

�
f
p

k
[i� � �]

�
: (5-2)

On peut alors d�ecomposer le coth sur ses pôles

coth

�
�

!T
(i� + �)

�
=

+1X
n=�1

!T

�

1

� + i� � in!T
(5-3)

puis introduire les relations habituelles dans l'espace des distributions

lim
�!0+

1

ix� �
= P 1

ix
� �� (x) : (5-4)

P d�esigne la valeur principale au sens de Cauchy.

Si nous supposons que la fonction fp
k
[i�] est su�samment r�eguli�ere (nous allons

pr�eciser la signi�cation de cette hypoth�ese plus loin), alors nous d�eduisons que la force

est d�etermin�ee par l'expression

F (L) = 2kBTA
X
p

Z
d2k

4�2

+1Z
0

d�

+1X
n=�1

�f
p

k
[i�] � (� � n!T) : (5-5)
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A La formulation dite de Lifshitz 113

On obtient alors l'expression donn�ee par Lifshitz [30] que nous pr�esentons sous la forme

F (L) =
kBTA

2�2

0X
n

X
p

Z
d2k �nf

p

k
[i�n] : (5-6)

La notation
P0

n
a �et�e introduite au chapitre pr�ec�edent (voir l'�equation 4-10 de ce

chapitre). Les fr�equences et vecteurs d'onde ont leurs expressions usuelles, prises sur

les pôles du coth

�n = n!T =
2n�kBT

~

�n =

r
�2n
c2

+ k2: (5-7)

Nous avons maintenant deux formulations alternatives pour la force de Casimir.

Celle que nous venons de d�eriver sera appel�ee \formulation de Lifshitz"

F (L) =
kBTA

2�2

0X
n

F (n)

F (n) =
X
p

Z
d2k �n

�p
k
[i�n]

1 � �p
k
[i�n]

�
p

k
[i�] = r

p

k
[i�] e�2�L: (5-8)

C'est une somme sur les pôles du coth, c'est-�a-dire aussi sur les fr�equences de Mat-

subara. Par contre, la formulation que nous avons pr�esent�ee au chapitre pr�ec�edent

consiste en une d�ecomposistion de Fourier du coth

F (L) =
~A

2�3

0X
n

eF (n)
eF (n) =

X
p

Z
d2k

1Z
0

d� cos

�
2�n�

!T

�
�

�
p

k
[i�]

1 � �p
k
[i�]

: (5-9)

Dans la d�erivation que nous avons pr�esent�ee de la formule de Lifshitz, nous avons

suppos�e au niveau de (5-2) que fp
k
[i�] ne pr�esente pas de singularit�e sur l'axe des fr�e-

quences imaginaires et qu'on pouvait imm�ediatement omettre les � dans fp
k
[i� � �] et

factoriser l'expression par fp
k
[i�]. Quand ce n'est pas le cas, cette d�erivation n'est plus

valable. Autrement dit, la d�ecomposition du coth sur ses pôles introduit des distribu-

tions � (� � n!T) qui g�en�erent la somme apparâ�ssant en (5-8). Du point de vue de la

th�eorie des distributions, �fp
k
[i�] joue alors le rôle d'une fonction test [153]. On sait
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114 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

bien que la th�eorie des distributions a besoin d'hypoth�eses fortes sur la r�egularit�e des

fonctions tests. En particulier, ces hypoth�eses requi�erent n�ecessairement la continuit�e

de �fp
k
[i�] en � = 0.

C'est ce point qui va se r�ev�eler critique dans les discussions qui suivent. La fonction

de r�eponse fp
k
[i�] �etant construite �a partir des amplitudes de r�e
exion, les conditions

de validit�e de la formule (5-8) d�ependront crucialement du comportement de ces am-

plitudes autour de � = 0.

A.2 Lien entre les deux formulations

Dans notre formulation en revanche, une non analyticit�e ou une discontinuit�e ponc-

tuelle est sans e�et sur le calcul de la force ou de l'�energie. L'expression int�egr�ee

1Z
0

d� cos

�
2�n�

!T

�
�fp

k
[i�] (5-10)

est en e�et d�e�nie �a partir du moment o�u fp
k
[i�] est r�egl�ee, c'est-�a-dire discontinue au

plus sur un ensemble d�enombrable de points du domaine d'int�egration avec des limites

�nies �a gauche et �a droite des points de discontinuit�e. La structure de la fonction de

r�eponse fp
k
[i�] comme fonction \boucle" garantit son caract�ere r�egl�e. En e�et, il est clair

qu'une singularit�e sur l'amplitude de r�e
exion rp
k
[i�] n'induira pas de divergence pour

f
p

k
[i�]. Autrement dit, la fonction de transfert peut être discontinue si les amplitudes

de r�e
exion le sont, mais elle sera toujours born�ee. La contribution des discontinuit�es

sur un ensemble d�enombrable de points sera de mesure nulle et donc sans cons�equence

sur la valeur de l'int�egrale. Cet argument permet de comprendre qu'une discontinuit�e

de fp
k
[i�] n'a pas d'in
uence sur la formule (5-10), alors qu'elle s'av�ere critique dans la

formulation de Lifshitz.

Ces deux formulations sont souvent pr�esent�ees comme �equivalentes par application

de la formule sommatoire de Poisson. Bien sûr, une analyse pr�ecise, du même type que

celle que nous venons de faire, va montrer que cette formule de Poisson est valable

seulement sous certaines conditions de r�egularit�e.

La formule sommatoire de Poisson [153] est une �egalit�e �etablie entre des sommes

d�e�nies sur une fonction et sa transform�ee de Fourier. Pour la pr�esenter, r�e�ecrivons la

fonction F d�e�nie en (5-8)

F (x) =
X
p

Z
d2k �(x) fp

k
[i�(x)] ; (5-11)
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B Limite haute temp�erature 115

ainsi que sa transform�ee de Fourier

eF (t) =X
p

Z
d2k

1Z
0

d� cos

�
�t�

!T

�
� f

p

k
[i�] (5-12)

qui n'est autre que la fonction apparâ�ssant en (5-9).

La formule sommatoire de Poisson consiste en l'�egalit�e

0X
n

F (x+ n) =
2

!T

0X
m

eF (m) e2i�mx: (5-13)

Cette �egalit�e est vraie \presque partout" �etant donn�e le caract�ere r�egl�e de F (x). Quand

f
p

k
[i�] est continue en � = 0, elle est vraie �egalement au point � = 0

0X
n

F (n) =
2

!T

0X
m

eF (m) : (5-14)

Quand ce prolongement est possible, il �etablit l'�equivalence entre notre formulation et

celle de Lifshitz. Mais le point essentiel est que l'�egalit�e (5-14) n'est pas v�eri��ee quand

fp
k
[i�] n'est pas continue en � = 0. Les deux formules ne sont plus �equivalentes : la

formule dite de Lifshitz donne alors un r�esultat incorrect alors que la formule pr�esent�ee

au chapitre 4 donne encore le bon r�esultat.

Nous allons maintenant pr�esenter quelques pr�edictions engendr�ees par la formule

de Lifshitz dans la litt�erature.

B Limite haute temp�erature

Le r�egime de haute temp�erature apparâ�t comme un r�egime critique pour la formu-

lation de Lifshitz. En pr�esentant les pr�edictions que cette formulation implique, nous

retrouverons les principaux �el�ements de la pol�emique qui s'est d�evelopp�ee �a ce sujet

dans la litt�erature. En utilisant la notion de temp�erature e�ective, d�e�nie en 4 C, ce

r�egime se caract�erise par la condition

T � Te� =
~c

2kBL
: (5-15)

A cette limite, le terme quasistatique n = 0 est pr�edominant dans (5-8). Les expo-

nentielles e�2�nL jouent en e�et le rôle de facteurs de coupures pour les termes n � 1

puisque

2�nL � 2�n
T

Te�
� 1; n � 1: (5-16)
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116 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

On pourra alors �ecrire �a cette limite

T � Te� ! FLifshitz ' kBTA

4�2
F (n = 0) : (5-17)

Ce sont donc les amplitudes de r�e
exion calcul�ee �a la limite quasistatique, en n = 0,

qui d�etermineront le comportement haute temp�erature de la force. Des expressions

di��erentes pour celles-ci engendreront des comportements di��erents. C'est ce point

que nous abordons �a pr�esent, en le d�etaillant pour les miroirs parfaits ou d�ecrits par

un mod�ele plasma ou un mod�ele de Drude.

B.1 Cas des miroirs parfaits

Pour des miroirs parfaitement r�e
�echissants, on a pour les amplitudes de r�e
exion

rTE
k

[i�n] = �1 et rTM
k

[i�n] = �1; (5-18)

uniform�ement pour tout n. On peut alors directement �evaluer la contribution qua-

sistatique et donner le comportement haute temp�erature de la force par l'expression

suivante

T � Te� ! Fparfait ' kBTA

4�L3
� (3) : (5-19)

On parle pour cette limite haute temp�erature de la limite \classique" de la force de

Casimir, l'expression �etant ind�ependante de ~.

B.2 Le mod�ele plasma

Dans le cadre du mod�ele plasma, les amplitudes de r�e
exion en polarisation TM et

TE sont, �a la limite quasistatique,

rTE
k

[0] =
jkj �

q
!2P
c2

+ k2

jkj+
q

!2P
c2

+ k2
et rTM

k
[0] = �1: (5-20)

A partir de ces expressions, nous donnons en appendice l'expression du terme n = 0.

Pour le comportement �a grandes distances, on pourra consid�erer la limite jkj ! 0 de

la formule pr�ec�edente pour lequel

rTE
k

[0] = �1 et rTM
k

[0] = �1: (5-21)

Nous d�eduisons alors que la limite haute temp�erature co��ncide avec le r�esultat (5-19)

obtenu dans la limite du miroir parfait.
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B Limite haute temp�erature 117

B.3 Le mod�ele de Drude

Le mod�ele de Drude, en revanche, ne permet pas de retrouver cette limite du miroir

parfait �a partir de la limite haute temp�erature. A la limite quasistatique n = 0, les

amplitudes de r�e
exion sont en e�et donn�ees par

rTE
k

[0] = 0 et rTM
k

[0] = �1: (5-22)

Ceci est dicut�e en d�etail dans l'appendice C.

Cette perte de la contribution des modes TE a pour cons�equence imm�ediate de

r�eduire d'un facteur 2 l'expression du terme quasistatique. On obtient alors �a haute

temp�erature

T � Te� ) FDrude ' kBTA

8�L3
� (3) ; (5-23)

Cette limite ne co��ncide pas avec celle d�e�nie pour les miroirs parfaits ou les miroirs de

type plasma. De plus, on ne retrouve pas le r�esultat correspondant au mod�ele plasma,

dans la limite de dissipation nulle � ! 0. A cette limite pourtant, la permittivit�e du

mod�ele de Drude tend bien vers celle du mod�ele plasma. Pour ces raisons, le mod�ele

de Drude a souvent �et�e consid�er�e comme probl�ematique [151]. Il est pourtant clair

que ce mod�ele, qui prend en compte la relaxation des �electrons de conduction, est une

description de la r�eponse m�etallique plus r�ealiste que le mod�ele plasma (voir la section

C.1).

Autrement dit, avec le mod�ele de Drude, les limites haute temp�erature et miroirs

parfaits ne commutent pas alors qu'elle commutent si l'on utilise un mod�ele plasma.

Schwinger [56] est le premier �a avoir remarqu�e cette non-commutativit�e. Pour r�ecup�e-

rer le comportement (5-19), Schwinger a impos�e la prescription consistant �a prendre la

limite des miroirs parfaits avant de consid�erer la limite haute temp�erature. Cette pres-

cription permet �evidemment de retrouver (5-19) pour tous mod�eles de m�etaux. Mais

n'expliquant rien, elle ne dit pas pourquoi un certain ordre est impos�e pour prendre

les limites. En�n, en prenant d'abord la limite du miroir parfait, la prescription de

Schwinger renonce au probl�eme le plus important. Il est clair en e�et que si la limite

du miroir parfait est prise en premier lieu, il n'est plus question de discuter de l'e�et

sur la force de la prise en compte des propri�et�es r�eelles des miroirs utilis�es dans les

exp�eriences !
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118 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

C La pol�emique r�ecente

Les discussions que nous venons de pr�esenter ont �et�e d�evelopp�ees r�ecemment [145,

146]. Elles insistent toutes sur la di��erence de traitement entre le mod�ele plasma et

le mod�ele de Drude. Elles se heurtent �a des r�esultats contradictoires (5-19,5-23) qui

auraient des implications physiques consid�erables s'ils �etaient vrais.

Ainsi, Bostr�om conclut �a la disparition dans la limite quasistatique de la contri-

bution des modes polaris�es TE pour la force et l'�energie de Casimir calcul�ees par un

mod�ele de Drude [145]. Une manifestation spectaculaire de cette perte de contribution

est le comportement (5-23) de la force et de l'�energie, r�eduites d'un facteur 2 par rap-

port aux force et �energie calcul�ees entre des miroirs d�ecrits par un mod�ele plasma. Ce

r�esultat engendre dans le même temps des pr�edictions thermodynamiques suspectes,

comme par exemple l'existence d'une gamme de longueur de cavit�e sur laquelle l'en-

tropie du syst�eme est n�egative [151].

Alors que le calcul de Bostr�om est celui auquel on aboutit si l'on suit �d�element,

comme en B.3, les �etapes du calcul depuis la formule initiale de Lifshitz, un autre point

de vue a �et�e parall�element d�evelopp�e [146]. Math�ematiquement, cette \version" est

encore plus probl�ematique : elle engendre en e�et une contribution lin�eaire en temp�era-

ture �a courte distance, alors que nous avons d�emontr�e que les corrections thermiques �a

courtes distances sont �echelonn�ees en O
��

T

Te�

�3�
. En fait, ces r�esultats reposent sur

des erreurs de calculs identi�ables.

Analysant ces r�esultats probl�ematiques, Klimchitskaya et al. ont introduit une pres-

cription de type Schwinger \g�en�eralis�ee" au sens o�u elle s�electionne les termes du calcul

de Lifshitz �a conserver pour retrouver dans le cadre du mod�ele de Drude des r�esultats

de même forme que ceux donn�es par le mod�ele plasma [151, 152]. L�a encore, cette

prescription n'explique rien vis-�a-vis des probl�emes prescrits. Elle joue le rôle d'un ar-

gument ad hoc dans le contexte pol�emique qui ne conduit �a aucune conclusion pr�ecise

hors de ce contexte. Par ailleurs, le mod�ele plasma prend un statut privil�egi�e dans cette

prescription puisqu'il ne pose pas de probl�eme. Les auteurs d�eduisent de leur analyse

que la description de l'e�et Casimir �a temp�erature non nulle est mal d�e�nie pour les

syst�emes dissipatifs. Cette conclusion, d�ej�a formul�ee par Bostr�om, est bas�ee sur le fait

qu'il n'est pas possible de retrouver la situation du mod�ele plasma �a partir de la for-

mule de Lifshitz donn�ee pour un mod�ele de Drude dans la limite de dissipation nulle.

Cette conclusion est pouss�ee encore plus loin en [151, 152] et devient une critique du

point de vue de la th�eorie de la di�usion en pr�esence de dissipation [57].
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C La pol�emique r�ecente 119

Dans la suite de cette section, nous montrons que ces a�rmations sont tout �a fait

exag�er�ees. Le point de vue d�evelopp�e dans le pr�esent m�emoire permet de r�esoudre

toutes ces di�cult�es sans n�ecessiter la moindre hypoth�ese ad hoc.

Nous remarquons que le mod�ele de Drude a pour cons�equence de d�e�nir un coef-

�cient de r�e
exion TE discontinu. Cette discontinuit�e a des cons�equences importantes

sur la possibilit�e même d'utiliser la formulation de Lifshitz. Les cons�equences aber-

rantes de la formule de Lifshitz sont ainsi directement li�ees �a des d�efauts d'analyticit�e

des amplitudes de r�e
exion TE dans le secteur quasistatique � ! 0.

Nous montrons en�n que notre formulation r�esiste au probl�eme pos�e par ces discon-

tinuit�es. Nous explicitons le r�esultat pr�evu par notre m�ethode pour le mod�ele de Drude

et montrons qu'il est similaire �a celui obtenu pour un mod�ele plasma. La dissipation

n'induit aucune \catastrophe" et la limite de faible dissipation est tout �a fait r�eguli�ere

quand on la discute sur l'expression �nale de la force.

C.1 Amplitudes de r�e
exion

Nous commen�cons par discuter les amplitudes de r�e
exion calcul�ees �a partir d'un

mod�ele plasma ou d'un mod�ele de Drude. Par rapport �a [145] dont les pr�edictions

sont d�etermin�ees ponctuellement en � = 0, nous analysons ici les comportements des

amplitudes de r�e
exion dans tout le voisinage de ce point. Seule une telle analyse

permet de bien comprendre les di��erences math�ematiques entre les deux mod�eles.

On garde les mêmes notations que dans le chapitre 1. On calcule les amplitudes

r
p

k
[i�] pour une polarisation p dans le cas particulier du miroir massif. Nous donnons

les comportements respectifs dans les deux cas limites suivants :

{ cas a) : le champ est pris sous incidence normale, i.e. k = 0 �x�e. On �etudie alors la

limite quasistatique ! ! 0 pour les deux polarisations. Sous incidence normale,

les amplitudes sont d�eg�en�er�ees. Les enchâ�nements sont d�etaill�es dans l'appendice

C. Pour le mod�ele plasma on a donc

rTE
k=0 [0] = rTM

k=0 [0] = �1: (5-24)

Pour le mod�ele de Drude, on trouve le même r�esultat

rTE
k=0 [0] = rTM

k=0 [0] = �1: (5-25)

{ cas b) : cette fois-ci on se place �a la limite quasistatique � = 0 et l'on s'approche

de l'incidence normale k! 0. Pour le mod�ele plasma, on trouve

rTE
k=0 [0] = rTM

k=0 [0] = �1: (5-26)
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120 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

Pour le mod�ele de Drude, on trouve maintenant un r�esultat di��erent

rTE
k=0 [0] = 0; rTM

k=0 [0] = �1: (5-27)

Pour un miroir massif dont les propri�et�es optiques sont d�ecrites par un mod�ele de

Drude, les deux limites � ! 0 (quasistatique) et k ! 0 (incidence normale) ne com-

mutent pas pour la polarisation TE. Math�ematiquement, l'approche du point � = 0 ne

se fait pas de fa�con uniforme dans le plan (�;k), ce qui r�ev�ele la pr�esence d'une discon-

tinuit�e pour ce coe�cient de r�e
exion rTE
k

[�]. Cette discontinuit�e n'est pas observ�ee

pour la polarisation TM.

D'une fa�con g�en�erale, c'est la structure de la r�eponse optique " [i�] qui conditionne

les propri�et�es de continuit�e des amplitudes de r�e
exion d�e�nis pour un miroir massif.

Le coe�cient de r�e
exion des modes polaris�es TE sera discontinu d�es que la r�eponse

optique est telle que

lim
�!0

�2" [i�] = 0: (5-28)

C'est le cas du mod�ele de Drude. Le mod�ele plasma est un cas particulier pour lequel

lim
�!0

�2"plasma [i�] = !2p; (5-29)

ce qui induit des amplitudes de r�e
exion continues. Insistons encore une fois sur le fait

que le mod�ele de Drude, bien qu'il conduise �a un probl�eme math�ematique en raison

de la discontinuit�e de l'amplitude TE, est une description physique plus r�ealiste de la

r�eponse optique des m�etaux.

C.2 Comparaison des deux formulations

En partant de notre formulation, nous montrons maintenant comment la formu-

lation de Lifshitz peut aboutir aux comportements erron�es pr�ec�edents. On commence

par s�eparer sur notre formulation la contribution du vide des contributions thermiques

F (L) =
~A

2�3

0X
n

eF (n) = ~A

4�3
eF (0) + ~A

2�3

X
n�1

eF (n) : (5-30)

On analyse ensuite la validit�e des enchâ�nements n�ecessaires pour retrouver la for-

mule de Lifshitz. Nous renvoyons �a l'appendice C pour une �ecriture explicite de ces
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C La pol�emique r�ecente 121

d�erivations. Nous ne donnons ici que le r�esultat, qui consiste �a pouvoir se ramener �a

l'expression suivante

F = �kBTA
4�2

Z
d2k

1Z
0

d� @� (� fk [i�]) +
kBTA

2�2

X
n�1

Z
d2k �nfk [i�n] : (5-31)

On rappelle que la somme sur les polarisations est toujours incluse

fk [i�] =
X
p

f
p

k
[i�] : (5-32)

C'est sur le terme @� (� fk [i�]) que va porter la discussion. Dans le cas d'une fonction

fk [i�] continue, on peut int�egrer ce terme. On est alors exactement ramen�e �a la formule

de Lifshitz. Autrement dit, les deux formules sont �equivalentes, comme le d�emontrait

la formule sommatoire de Poisson, applicable pour ces fonctions fk [i�] continues.

Dans le cas du mod�ele de Drude, fTE
k

[i�] est discontinue en � = 0. On devra donc

conserver tous les termes dans l'expression suivante

F =
~A

4�3
eF [0] + ~A

2�3

X
n�1

eF [n]
=

kBTA

4�2

Z
d2k jkjfTM

k
[0]� kBTA

4�2

Z
d2k

1Z
0

d� @�
�
� fTE

k
[i�]
�

+
kBTA

2�2

X
n�1

Z
d2k �nfk [i�n] : (5-33)

Le deuxi�eme terme contient en fait le terme de di��erence qui explique les �ecarts des

pr�edictions obtenues en utilisant chaque formulation. C'est sur ce terme que porte

explicitement la prescription de Klimchitskaya et al. [151] qui consiste �a le choisir tel

que les pr�edictions ne soient pas contradictoires.

C.3 Limite de dissipation nulle

Le mod�ele de Drude consiste en une permittivit�e

"Drude [i�] = 1 +
!P

� (� + �)
(5-34)

et il tend pour �! 0 vers le mod�ele plasma.

Exactement comme pour le mod�ele plasma, la limite de grande distance se d�e�nie
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122 Chapitre 5. La pol�emique sur les miroirs dissipatifs �a temp�erature non nulle

sans ambigu��t�e comme correspondant au r�egime de distances L� �P. Quand on calcule

le facteur correctif �F dans ce r�egime, on montre que (voir l'appendice C)

�DrudeF ! �
plasma
F pour �! 0: (5-35)

Ceci r�esoud les questions qui avaient �et�e pos�ees dans la section B.3. L'expression �nale

de la force est bien d�e�nie pour le mod�ele de Drude et elle tend vers le r�esultat du

mod�ele plasma lorsque � ! 0. Ce n'�etait pas le cas pour les r�esultats d�eduits sans

pr�ecaution de la formule de Lifshitz, dans des conditions o�u celle-ci n'est pas valable.
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Chapitre 6

Description des exp�eriences et e�ets de la

g�eom�etrie

Nous avons d�ecrit dans les chapitres pr�ec�edents comment �evaluer la force de Casi-

mir en tenant compte des e�ets de conductivit�e des miroirs m�etalliques et des e�ets

des 
uctuations thermiques. Nous avons consid�er�e la con�guration g�eom�etrique de Ca-

simir avec deux miroirs plans et parall�eles entre-eux. En fait, la plus grande partie des

exp�eriences de mesure de la force de Casimir est e�ectu�ee avec une g�eom�etrie plan-

sph�ere et il faudra bien entendu en tenir compte. Par ailleurs, les miroirs ne sont pas

parfaitement plans car tout miroir r�eel pr�esente une rugosit�e de surface.

Nous allons discuter ces e�ets dans ce chapitre, continuant ainsi de nous rapprocher

de notre objectif, �a savoir une description th�eorique pr�ecise de la r�ealit�e exp�erimentale

des mesures.

A Les exp�eriences

Nous commen�cons par d�ecrire le contexte exp�erimental des mesures de la force

de Casimir. Nous ne serons pas exhaustifs et renvoyons �a d'autres articles pour une

introduction historique [26, 59, 154] ou technique [57] de ce contexte. Notre but est de

bien montrer comment les pr�edictions th�eoriques se situent par rapport aux exp�eriences.

Nous distinguerons deux g�en�erations d'exp�eriences s�epar�ees �a la fois par la chronologie

et par leur degr�e de pr�ecision.
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124 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

A.1 Exp�eriences avant 1997

Les premi�eres exp�eriences qui mettent en �evidence une force d'attraction entre deux

miroirs sont r�ealis�ees assez rapidement apr�es la pr�ediction de Casimir.

Overbeek et Spaarnay [31] commencent �a mesurer une telle force entre miroirs di-

�electriques en consid�erant deux miroirs plans parall�eles en verre. Pour la mesure, ils

utilisent une balance �electro-m�ecanique �a ressort. La valeur de l'�elongation du ressort

sous la contrainte de l'attraction entre les plaques est donn�ee par variation de capacit�e.

Elle permet, apr�es �etalonnage, la mesure de l'intensit�e de la force. L'exp�erience n'est

pas quantitativement concluante, mais elle est d�ej�a un mod�ele pour les exp�eriences

futures.

Derjaguin et Abrikosova [33] observent en 1957 une attraction entre deux miroirs

di�electriques, tous deux en silice, une plaque faisant face �a une lentille sph�erique mont�ee

�a l'extr�emit�e d'une balance �a couteau. La force est mesur�ee grâce �a un circuit �electrique

contre-agissant sur le d�es�equilibre de la balance dû �a l'attraction. Le recours �a une len-

tille sph�erique �a la place d'une deuxi�eme plaque simpli�e le contrôle de la g�eom�etrie

en �eliminant le probl�eme du parall�elisme rencontr�e chez Overbeek et Sparnaay. C'est

�a cette occasion qu'est introduite une approximation d�evelopp�ee par Derjaguin [155]

pour �evaluer la force de Casimir entre une lentille sph�erique et une plaque. Nous allons

discuter plus loin en d�etail cette approximation qui joue un rôle central dans l'analyse

des exp�eriences plan-sph�ere.

En 1957, Sparnaay [34] ra�ne son premier syst�eme de mesure pour d�eterminer la

force pour la premi�ere fois, entre deux miroirs m�etalliques neutres. Il utilise tour �a

tour des miroirs en aluminium (Al-Al), chrome (Cr-Cr) ou acier (Cr-acier) et consid�ere

des distances de s�eparation entre les miroirs allant de 0:5 �a 2�m. Sparnaay discute

en d�etail les di�cult�es exp�erimentales principales, en particulier le contrôle d�elicat du

parall�elisme entre les plaques, la d�etermination pr�ecise de la distance et le contrôle

de neutralit�e, point d�elicat �etant donn�e que la force de Casimir peut facilement être

masqu�ee par des forces �electrostatiques. Avec une barre d'erreur qu'on peut a poste-

riori estimer aujourd'hui de 100%, Sparnaay conclut prudemment que \les attractions

observ�ees ne contredisent pas la pr�ediction th�eorique de Casimir".

Une meilleure mesure de la force de Casimir entre des surfaces m�etalliques est r�eali-

s�ee par Blokland et Overbeek en 1978 [44]. La force est mesur�ee �a l'aide d'une balance

�a ressort entre une lentille sph�erique et une plaque, toutes deux recouvertes de couches

minces d'�epaisseur 50�100nm de chrome, pour des s�eparations allant de 132 �a 670nm.

La mesure est r�ealis�ee, comme chez Overbeek et Spaarnay, en d�eterminant la capacit�e
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A Les exp�eriences 125

du syst�eme. La même g�eom�etrie permet d'utiliser l'approximation de Derjaguin pour

�evaluer la force. Il faut noter que les auteurs comparent pour la premi�ere fois leurs

r�esultats aux �evaluations th�eoriques utilisant la th�eorie de Lifshitz pour le chrome. Ils

peuvent ainsi conclure �a un accord de l'ordre de 25% entre leurs mesures et les valeurs

calcul�ees pour la force. On peut ainsi consid�erer qu'ils inaugurent le programme de

comparaison th�eorie-exp�erience qui se poursuit encore aujourd'hui.

La force de Casimir a pu être mise en �evidence et mesur�ee dans un certain nombre

d'autres exp�eriences, en particulier [37, 38, 42]. Nous renvoyons pour plus de d�etails

aux revues cit�ees plus haut.

A.2 Exp�eriences apr�es 1997

R�ecemment, de nouvelles techniques de mesures ont permis d'atteindre une bien

meilleure pr�ecision. Nous d�ecrivons ici celles d'entre-elles qui semblent être les plus

int�eressantes vis-�a-vis de nos objectifs.

En 1997, Steve Lamoreaux mesure la force de Casimir �a l'aide d'un pendule de

torsion �a l'universit�e de Washington [48]. La force est mesur�ee entre une sph�ere m�etal-

lis�ee et une plaque m�etallique, port�ees �a des potentiels �electrostatiques di��erents mais

contrôl�es. Etant donn�e que les forces �electrostatiques et de Casimir agissent simulta-

n�ement, il est n�ecessaire de soustraire l'e�et de la force �electrostatique a�n de d�eduire

la valeur de la force de Casimir. Cette mesure est faite pour des distances entre les

miroirs comprises entre 0:6 et 6�m. La comparaison de ces r�esultats de mesure �a la

th�eorie est rapport�ee par Lamoreaux comme con�rmant un accord au niveau de 5%.

Il est �a souligner toutefois que cette exp�erience n'a pas vu la correction thermique qui

doit pourtant être importante aux plus longues distances �etudi�ees.

Peu apr�es, les r�esultats d'une deuxi�eme exp�erience sont publi�es par UmarMohideen,

de l'universit�e de Californie, �a Riverside [49]. Alors que l'exp�erience de Lamoreaux a

�et�e arrêt�ee assez vite, celle de Mohideen a fait l'objet de nombreuses publications cor-

respondant �a des progr�es sensibles dans la pr�ecision et le contrôle (voir par exemple

[51, 52]). Cette exp�erience est bas�ee sur l'utilisation d'un microscope �a force atomique

(AFM). Une sph�ere m�etallis�ee est �x�ee �a l'extr�emit�e du levier du microscope et plac�ee

pr�es d'une plaque m�etallique plane, �a des distances de 0:1 �a 0:9�m. Les deux surfaces

sont au même potentiel �electrostatique. La force de Casimir est mesur�ee par lecture op-

tique en analysant la d�eviation d'un faisceau laser r�e
�echi �a l'extr�emit�e du levier courb�e

sous l'e�et de la contrainte m�ecanique induite par la force d'attraction entre les deux

miroirs. La comparaison entre les r�esultats exp�erimentaux obtenus et les pr�edictions
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126 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

th�eoriques a �et�e e�ectu�ee pour des miroirs recouverts de couches d'aluminium (Al-Al

[49, 51]) et d'or (Au-Au [52]). Une pr�ecision exp�erimentale de l'ordre du pourcent est

typiquement obtenue, et l'accord avec la th�eorie est �egalement annonc�e au niveau de

1%. Le même groupe �etudie �egalement �a l'heure actuelle les e�ets de surfaces modul�ees

sinuso��dalement sur les propri�et�es de la force de Casimir [156].

Une exp�erience ind�ependante utilisant �egalement un microscope �a force atomique a

�et�e publi�ee en 2000 par Thomas Ederth de l'Institut de Chimie des Surfaces de Stock-

holm [53]. Le principe est le même que celui des exp�eriences de Mohideen mais la force

est mesur�ee entre deux cylindres m�etalliques neutres, de courbure 10mm, plac�es avec

leurs axes �a angle droit. Le domaine de distances explor�ees entre ces miroirs s'�etend de

20 �a 100nm. Ederth utilise des surfaces dont la rugosit�e est beaucoup mieux contrô-

l�ee que dans les autres exp�eriences. Apr�es une analyse soign�ee des sources d'erreurs,

Ederth conclut �a une pr�ecision de l'ordre de quelques pourcents.

Il faut aussi mentionner les exp�eriences spectaculaires du groupe de Federico Ca-

passo �a Lucent Technology, qui observent l'e�et Casimir au niveau de syst�emes micro-

�electrom�ecaniques (MEMS) [54]. Ces syst�emes sont des structures mobiles usin�ees sur

une tranche de semiconducteur par techniques de type circuits int�egr�es. Ils sont au-

jourd'hui utilis�es comme nouvelle g�en�eration de d�etecteurs et d'actionneurs travaillant

dans le domaine de dimensions micro ou submicrom�etriques [157]. La force de Casimir

est mesur�ee entre une sph�ere en polystyr�ene et une plaque microconductrice de polysi-

licium, toutes deux recouvertes de couches m�etalliques. La plaque tourne autour d'un

axe de torsion. La variation de l'angle de rotation, quand la sph�ere est approch�ee vers

la plaque pour des distances comprises entre 100nm et 1�m, met en �evidence la force

de Casimir. L'accord avec la pr�ediction th�eorique est au niveau du pourcent.

Ces syt�emes ont permis �egalement d'�etudier des comportements dynamiques. En

appliquant un courant d'excitation sur des �electrodes situ�ees sous la plaque m�etal-

lique, on peut imposer �a celle-ci un mouvement oscillatoire. L'exp�erience met alors

en �evidence d'int�eressants e�ets dynamiques typiques des syst�emes m�ecaniques non

lin�eaires, tels des d�ecalages des fr�equences de r�esonance de l'oscillateur en fonction de

la distance d'approche de la sph�ere vers la plaque, des comportements hyst�er�etiques

et bistables [158]. A nouveau, toutes ces observations sont en accord avec la force de

Casimir pr�edite par la th�eorie. L'int�erêt principal de ces exp�eriences est de montrer

que la force de Casimir joue un rôle central dans des syst�emes d'int�erêt technologique

comme les MEMS. Ce qui ne doit pas surprendre �etant donn�e que la force de Casimir

est la force dominante dans le domaine microm�etrique. Ces exp�eriences montrent que

les e�ets m�ecaniques des 
uctuations du vide doivent être consid�er�es pour les micro- ou
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B G�eom�etrie plan-sph�ere 127

nano-technologies, ce qui, bien avant l'av�enement de ce domaine technologique, �etait

d�ej�a discut�e par Casimir lui-même [26].

Les exp�eriences d�ecrites jusqu'�a pr�esent sont men�ees en g�eom�etrie plan-sph�ere ou

dans la g�eom�etrie �equivalente d�e�nie par deux cylindres crois�es. Elles ont toutes re-

cours �a l'approximation de Derjaguin pour analyser leurs r�esultats. Par cons�equent, la

question du degr�e de pr�ecision de l'approximation de Derjaguin est un enjeu crucial.

Nous allons dans ce chapitre discuter ce point en d�etail.

Une exp�erience r�ecente a �et�e e�ectu�ee dans la con�guration initiale de la pr�ediction

de Casimir en mesurant la force entre deux miroirs plans parall�eles. Cette exp�erience a

�et�e r�ealis�ee �a Padoue, dans un laboratoire de l'INFN, par Bressi, Carugno, Onofrio et

Ruoso [55]. La force est mesur�ee entre deux plaques planes parall�eles recouvertes d'une

couche de chromium. L'une de ces plaques est �x�ee sur un levier alors que celle lui

faisant face est tenue par une cale pi�ezo�electrique rigide. Cette plaque est mise en mou-

vement oscillatoire via la cale pi�ezo�electrique. Une force de Casimir variable est alors

induite sur la plaque mont�ee sur le levier. Le mouvement de cette premi�ere plaque est

analys�e �a l'aide d'un transducteur �electrom�ecanique �a e�et tunnel. Les mesures ont �et�e

r�ealis�ees pour des distances de 0:5 �a 3�m. Les r�esultats sont en accord avec la th�eorie

avec une pr�ecision de l'ordre de 15%. Cette pr�ecision m�ediocre par rapport aux autres

exp�eriences r�ecentes est due aux di�cult�es exp�erimentales particuli�eres de la g�eom�etrie

�a deux plans.

B G�eom�etrie plan-sph�ere

Nous avons pr�esent�e les �evaluations th�eoriques li�ees aux corrections de conductivit�e

et aux corrections thermiques dans une g�eom�etrie de miroirs plans et parall�eles entre-

eux. Apr�es le descriptif des exp�eriences, il est clair que l'in
uence de la g�eom�etrie doit

être analys�ee du point de vue th�eorique pour arriver �a une description pr�ecise de la

r�ealit�e exp�erimentale.

Le premier e�et g�eom�etrique est �evidemment induit par le choix de la majorit�e des

exp�eriences de mesurer la force de Casimir entre un miroir sph�erique et un miroir plan.

Ce recours �a une g�eom�etrie plan-sph�ere est motiv�e par la simplicit�e du contrôle d'une

telle con�guration, reposant seulement sur deux param�etres : le rayon de courbure R de

la sph�ere et la distance L de plus courte approche. Il est beaucoup plus d�elicat de main-

tenir constant un strict parall�elisme entre deux miroirs plans tout en les approchant

l'un de l'autre. Ce point a �et�e �etudi�e historiquement par Sparnaay [34] et il explique
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128 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

�egalement que la seule exp�erience r�ealis�ee r�ecemment dans la g�eom�etrie des deux plans

[55] ait une pr�ecision moins bonne que celles r�ealis�ees en g�eom�etrie plan-sph�ere.

Il faut bien voir cependant que la g�eom�etrie plan-sph�ere, plus commode du point

de vue exp�erimental, conduit �a un probl�eme th�eorique s�erieux : avec cette g�eom�etrie,

on perd les sym�etries de la con�guration initiale de Casimir, avec une densit�e de mode

du champ �a l'int�erieur de la cavit�e correspondant �a des modes propres parfaitements

connus. Pour un r�esonateur plan-sph�ere, la perte de ces sym�etries ne permet pas une

d�etermination simple des modes propres du r�esonateur. Ceci rend plus di�cile le calcul

de la force �a partir des premiers principes. Ceci oblige �a d�evelopper des m�ethodes d'ap-

proximation. Nous nous int�eressons en particulier dans ce chapitre �a l'approximation

de Derjaguin, la seule utilis�ee �a ce jour pour l'analyse des exp�eriences.

Parmi ces m�ethodes d'approximation, citons les travaux bas�es sur la notion di�u-

sion multiple du champ [159, 160, 161, 162] ou les approches semi-classiques [163, 164].

Ces travaux ont pu r�eanalyser ce probl�eme de la g�eom�etrie. En particulier, ces e�orts

se r�ev�elent adapt�es pour r�esoudre le probl�eme de la propagation du champ dans des

con�gurations o�u les variables ne peuvent être s�epar�ees. Cette derni�ere voie est en

fait invoqu�ee pour v�eri�er les pr�edictions des r�esultats d�etermin�es dans la veine de

l'approximation de Derjaguin.

B.1 L'approximation de Derjaguin

Les approximations usuelles pour d�ecrire la situation en con�guration plan-sph�ere

sont issues d'une m�ethode initialement d�evelopp�ee par Derjaguin [155], dans le cadre

explicite de mesure concernant des suspensions collo��dales, et reprise dans un contexte

de physique nucl�eaire par Blocki [165]. Plus tardivement, une analyse bas�ee sur l'additi-

vit�e de forces terme �a terme, assortie d'une proc�edure de renormalisation [166, 167, 168]

a �et�e introduite. Ces deux voies d'approximation se basent fondamentalement sur les

mêmes hypoth�eses que nous discuterons donc seulement du point de vue de l'approxi-

mation de Derjaguin.

L'approximation de Derjaguin, reformul�ee par Blocki, est une approximation sur

le calcul de la force FD d'interaction entre deux corps solides, de formes quelconques,

dont la s�eparation peut être mesur�ee par L \lentement" variable, dans un sens que

nous allons pr�eciser. Dans cette situation, on peut d�ecomposer la force FD sous la

forme suivante

FD =

Z
d2r

A
Fp�p (L (r)) + : : : (6-1)
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B G�eom�etrie plan-sph�ere 129

Fp�p

A
est la force d'interaction par unit�e de surface entre deux plans parall�eles d�e�nis

localement le long de la surface des corps et donc s�epar�es par la distance correspon-

dante L. On parle alors d'approximation de proximit�e.

Dans notre cas, cette force s'identi�e �a la force connue de Casimir entre deux miroirs

plans parall�eles s�epar�es par L. L'int�egration surfacique est d�e�nie sur un plan de r�ef�e-

rence m�edian et elle peut se restreindre �a l'une des deux surfaces des corps d�elimitant

la s�eparation. Les points r�esiduels sur cette expression symbolisent les termes d'ordres

sup�erieurs, i.e. les corrections induites par les e�ets du non-parall�elisme. L'approxima-

tion consiste �a n�egliger ces termes r�esiduels sur (6-1). Elle ne peut être raisonnable que

dans le cas o�u la g�eom�etrie des corps s'�eloigne relativement peu d'une g�eom�etrie plan-

plan (c'est le \L lentement variable") c'est-�a-dire quand les contributions dominantes

sont limit�ees au strict voisinage de la zone de plus courtes distances.

Dans le cas de la g�eom�etrie plan-sph�ere, l'approximation devient valable dans la

limite o�u le rayon de courbure R devient tr�es grand devant la distance de plus courte

approche L. Nous discutons le r�esultat de cette approximation dans la prochaine section

avant d'ajouter des commentaires suppl�ementaires sur les conditions de validit�e.

B.2 Force de Casimir en con�guration plan-sph�ere

Consid�erons la con�guration typique d'une sph�ere de rayon R et d'un plan, s�epar�es

d'une distance minimale L (voir la �gure 6.1).

y

x

z

Fig. 6.1 { Con�guration plan-sph�ere.

La distance L entre les deux surfaces est alors donn�ee par l'approximation suivante

L = L+
r2

2R
; r2 = x2 + y2 (6-2)

d�e�nie quand L � R. Cette approximation est valable dans le voisinage imm�ediat de

l'axe de sym�etrie

x; y� R: (6-3)
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130 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

On peut alors transformer l'int�egrale sur la surface en une int�egrale sur la distance LZ
d2r

A
Fp�p (L (r)) =

Z
2� jrjd jrj

A
Fp�p (L (r))

=
2�R

A

1Z
L

dLFp�p (L)

=
2�R

A
Ep�p: (6-4)

L'int�egration a �et�e ici �etendue �a l'in�ni, ce qui est possible si l'on suppose que Fp�p

tende vers 0 su�samment vite avec L.
On peut d�es lors calculer la force entre le plan et la sph�ere, exprim�ee dans le cadre

de cette approximation. On aura l'expression

Fp�s (L) =
2�R

A
Ep�p (L) : (6-5)

Cette expression est de premi�ere importance dans le contexte de la comparaison ac-

tuelle entre th�eorie et exp�erience. Jusqu'�a pr�esent, nous avons pu d�e�nir les facteurs

correctifs tenant compte simultan�ement des corrections de conductivit�e et des correc-

tions thermiques pour la force �F et pour l'�energie �E dans la con�guration de deux

miroirs plans. Les exp�eriences �etant e�ectu�ees en g�eom�etrie plan-sph�ere, l'approxima-

tion de Derjaguin nous permet de prendre en compte cette nouvelle g�eom�etrie. A partir

du facteur correctif �E que nous avons d�ej�a d�etaill�e, la force entre un miroir plan et un

miroir sph�erique s'�ecrit donc sous la forme

Fp�s (L) = 2�R
~c�2

720L3
�E (L)

=
~c�3R

360L3
�E (L) : (6-6)

Cette expression inclut donc les e�ets de g�eom�etrie dans le cadre de l'approximation

de Derjaguin, de conductivit�e �nie et de temp�erature, tels qu'on les a explicit�es. C'est

elle qui est utilis�ee pour comparer les pr�edictions th�eoriques avec les r�esultats exp�eri-

mentaux r�ecents. Comme nous l'avons d�ej�a dit, cette comparaison conduit �a un tr�es

bon accord, au niveau du pourcent.

B.3 Validit�e de l'approximation

La di��erence entre la con�guration �a deux plans et la con�guration plan-sph�ere est

tr�es importante du point de vue de la g�eom�etrie. Cette di��erence se re
�ete dans l'�equa-

tion (6-5) qui ne peut manifestement pas être consid�er�ee comme une petite correction

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



B G�eom�etrie plan-sph�ere 131

de la formule id�eale de Casimir. A ce titre, l'analyse des conditions de validit�e de cette

approximation est importante.

Nous pouvons formuler cette question de deux fa�cons di��erentes. Dans un premier

temps, nous pouvons consid�erer que l'approximation est correcte si

lim
t!0

AFp�s (L)

2�REp�p (L)
= 1 avec t =

L

R
: (6-7)

Comme nous allons le voir dans la suite de cette section, la propri�et�e (6-7) est vraie et

l'approximation de proximit�e a donc une certaine validit�e. C'est en ce sens qu'elle est

souvent appel�ee \th�eorême de proximit�e".

Dans une seconde analyse, nous pouvons nous demander quelle est la pr�ecision avec

laquelle cette limite est r�ealis�ee pour une valeur r�eelle, �evidemment �nie, du param�etre

t. Sur cette question, nous verrons que les informations disponibles sont beaucoup plus

fragmentaires.

C'est dans le cadre des miroirs parfaits que les e�ets de g�eom�etrie sont g�en�eralement

trait�es. On peut citer les travaux de Balian et Duplantier [161, 162] bas�es sur le d�eve-

loppement des fonctions de Green en di�usion multiple. Les m�ethodes semi-classiques

d�evelopp�ees par Schaden et Spruch permettent de calculer la force entre une sph�ere et

un plan, non seulement dans le r�egime L

R
� 1 [163] mais plus g�en�eralement pour toute

valeur du rapport L

R
, en tenant compte des e�ets de la di�raction [164]. Cette approche

est construite sur la notion de propagation de photons virtuels le long d'orbites p�erio-

diques �etablies entre les corps se faisant face. La densit�e spectrale �a l'int�erieur de la

cavit�e est alors d�e�nie en sommant sur ces orbites p�eriodiques et permet de calculer la

force de Casimir correspondante. Dans le cas de deux sph�eres proches dans le même

r�egime L

R
� 1, ces calculs permettent de con�rmer le r�esultat (6-5) fourni par l'ap-

proximation de Derjaguin [163].

Pour des miroirs r�eels, il est important de savoir si l'approximation de Derjaguin

continue �a être valable. Barton [134] a �etudi�e cette question dans le cadre de l'interac-

tion de Van der Waals entre modes plasmons (voir la section C du chapitre 3). Dans

le r�egime des courtes distances L � �P, les modes plasmons de surface d�eterminent

l'interaction entre les miroirs [121]. L'hamiltonien construit sur les plasmons en inter-

action se propageant respectivement le long d'une surface sph�erique et d'une surface

plane permet de rendre compte des interactions. En d�eveloppant la th�eorie des pertur-

bations, Barton est parvenu �a v�eri�er que la propri�et�e (6-7) restait valable jusqu'au

quatri�eme ordre, au moins.

Langbein [159, 160] a �etudi�e ce même r�egime non-retard�e. Il a consid�er�e un ensemble
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132 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

de mol�ecules, caract�eris�ees par leurs polarisabilit�es respectives. En sommant sur tous

les diagrammes ferm�es d'interaction, c'est-�a-dire sur les interactions mutuelles entre

les dipôles formant l'ensemble, il a pu montrer que la force de Casimir Fp�s entre une

sph�ere de rayon R et un plan �etait donn�ee par l'�equation (6-7), �a tous les ordres dans

l'interaction, dans la limite L

R
! 0.

Seul un calcul exact permet cependant de contrôler quantitativement le degr�e de

pr�ecision de l'approximation de Derjaguin. Un tel calcul est en principe faisable en

utilisant les m�ethodes exactes de di�usion [161] ou les m�ethodes semi-classiques [164].

Malheureusement, peu de r�esultats explicites sont disponibles. Une exception est four-

nie par le calcul r�ecemment d�evelopp�e par Johansson et al. [169] pour �etudier la force

entre une sph�ere et un plan m�etalliques. En utilisant un mod�ele plasma et dans le r�e-

gime non retard�e L� �P, ces auteurs ont donn�e une expression de la force de Casimir

utilisant les coordonn�ees bi-sph�eriques adapt�ees �a la g�eom�etrie en question. La force

alors calcul�ee num�eriquement peut être compar�ee �a l'approximation de Derjaguin en

pr�ecisant (6-7). Pour les dimensions typiques des exp�eriences du groupe de Mohideen

(sph�ere de rayon � 100�m et distances explor�ees 0:1 � 0:9�m) qui d�e�nissent un rap-

port L
R
� 10�2, l'�ecart entre l'approximation de Derjaguin et le calcul e�ectu�e dans ce

travail reste inf�erieur au pourcent.

C Corrections de rugosit�e

Nous discutons maintenant la prise en compte de l'e�et de rugosit�e des miroirs.

Dans l'analyse des exp�eriences, cet e�et est pris en compte en utilisant l'approxima-

tion de Derjaguin, comme nous allons le d�ecrire ci-dessous. Typiquement, l'e�et trouv�e

est une fraction du pourcent et il est int�egr�e dans la comparaison th�eorie-exp�erience

[52]. Nous verrons ci-dessous qu'une telle analyse peut être insu�sante parce qu'elle ne

tient pas compte des propri�et�es spectrales de la rugosit�e. Nous discuterons les premiers

r�esultats obtenus avec une telle analyse spectrale dans le cas particulier des miroirs

parfaits.

Pour illustrer cette discussion, nous reproduisons ci-dessous l'image de la surface

d'un miroir utilis�e dans les exp�eriences de Mohideen.
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C Corrections de rugosit�e 133

Fig. 6.2 { Image AFM de la surface d'un miroir utilis�e dans les exp�eriences de Mohideen.

Avec l'aimable autorisation de U. Mohideen.

C.1 L'approximation de rugosit�e

Habituellement, l'e�et de la rugosit�e est pris en compte par l'approximation de

Derjaguin, aussi appel�ee approximation de proximit�e. L'�energie y est alors obtenue en

additionnant les contributions des diverses distances e�ectives

ED (L) =

Z
d2r

A
E (L (r)) : (6-8)

Nous consid�erons �a nouveau la g�eom�etrie plane et notons L (r) la distance e�ective

entre les deux points correspondant �a une position transverse r = (x; y)

L (r) = L+ h1 (r) + h2 (r) : (6-9)

L (r) est la distance entre deux points se faisant face, c'est aussi la somme de la longueur

moyenne L de la cavit�e et des pro�ls hi=1;2 d�ecrivant la rugosit�e des surfaces sur les

deux miroirs i = 1; 2. Les d�eplacements respectifs moyens hi sont nuls de sorte que

L = L. Par ailleurs, les pro�ls sont suppos�es statiques.

Dans la limite de faibles amplitudes de rugosit�e, on peut d�evelopper l'expression

(6-8) au deuxi�eme ordre dans le param�etre petit h

L

ED (L) = E (L) + �E (L)

�E (L) =
E00 (L)

2

�
h21 + h22

�
+ : : : (6-10)

L'�energie E est alors simplement la somme de l'�energie E entre deux miroirs parfaite-

ment plans et s�epar�es de la distance L et d'une correction �E de rugosit�e proportionnelle

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



134 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

�a la variance des d�eplacements hi

h2i =

Z
d2r

A
hi (r)

2
: (6-11)

Le coe�cient apparaissant dans �E est bien sûr la d�eriv�ee seconde de E par rapport �a

L

E00 (L) =
d2

dL2
E (L) : (6-12)

Nous supposons que les d�eformations sur chaque miroir ne sont pas corr�el�ees entre-elles

h1h2 = 0; (6-13)

ce qui explique l'absence de terme crois�e. Par ailleurs, �etant donn�e que hi = 0, les

termes de premier ordre n'interviennent pas.

Les �evaluations th�eoriques de la rugosit�e de surface [166, 167, 168, 170, 171] partent

toutes habituellement de ce type de d�eveloppement, en tenant compte �eventuellement

de corr�elations [156] ou en poussant le d�eveloppement aux ordres sup�erieurs [166].

Evalu�ee de cette mani�ere, la correction �E ne d�epend que de l'amplitude de la ru-

gosit�e et pas des caract�eristiques spectrales de la rugosit�e. Or tout traitement r�ealiste

de la rugosit�e doit pouvoir rendre compte de ces caract�eristiques : l'e�et d'une d�efor-

mation doit en principe d�ependre de la longueur d'onde de cette d�eformation.

Le but de cette section est de mettre en �evidence l'importance de ce dernier point

et de discuter les conditions de validit�e de (6-10). Anticipant sur ce qui suit, cette d�e-

pendance vis-�a-vis du spectre sera repr�esent�ee par une fonction � d�ependant du vecteur

d'onde de d�eformation de la surface du miroir. Ce facteur permettra de caract�eriser

une �eventuelle d�eviation par rapport �a l'approximation de Derjaguin. Nous retrouverons

cette approximation dans la limite o�u la longueur d'onde � associ�ee �a la d�eformation

sera plus grande que la distance moyenne L entre les miroirs. Par contre, pour les lon-

gueurs d'onde � � L, il faudra en principe �evaluer la fonction �. Des r�esultats r�ecents

[172] permettront de calculer cette fonction pour les miroirs parfaits.

C.2 Fonctions de r�eponse de rugosit�e

Pour expliciter ce que nous venons de pr�esenter, nous commen�cons par d�ecomposer

les variances h2i comme des int�egrales sur les vecteurs d'onde transverses k d'un spectre

de rugosit�e �i [k]

h2i =

Z
d2k

4�2
�i [k] : (6-14)
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C Corrections de rugosit�e 135

Un tel spectre de rugosit�e est d�e�ni comme la transform�ee de Fourier de la fonction de

corr�elation du pro�l de surface

� [k] =

Z
d2r

4�2
� (r) e�ik:r

� (r� r0) = h (r)h (r0): (6-15)

Pour tenir compte du spectre de rugosit�e dans l'expression de l'�energie de Casimir,

nous rempla�cons ensuite dans l'�equation (6-10) les variances h2i par leur d�ecomposition

spectrale en introduisant un facteur de sensibilit�e �i [k]

�E (L) = E00 (L)

2

Z
d2k

4�2
(�1 [k]�1 [k] + �2 [k]�2 [k]) + : : : (6-16)

Les points de suspension rappellent que ce d�eveloppement est une �evaluation �a l'ordre

le plus bas seulement de l'e�et de rugosit�e. L'�energie de Casimir est ainsi donn�ee �a

partir d'une int�egrale sur les vecteurs d'onde k dans le spectre ou de fa�con �equivalente,

par la longueur d'onde � caract�eristique de la d�eformation de surface

jkj = 2�

�
: (6-17)

L'isotropie de la con�guration non perturb�ee de deux miroirs plans entrâ�ne que

la fonction �i [k] d�epend simplement du module de k. Dans le cas de deux miroirs

identiques, cette fonction est la même pour les deux miroirs et on obtient l'expression

�E (L) =
E00 (L)

2

�
h21 + h22

�
�+ : : :

� =

R
d2k
4�2 � [k]� [k]R

d2k
4�2 � [k]

: (6-18)

Cette �ecriture permet une analyse directe de la situation que nous avons d�ecrite. A la

limite jkj ! 0, on se trouve dans une situation quasistatique et on s'attend �a ce que

� soit �egal �a 1. On retrouve en fait l'approximation de Derjaguin (6-10) quand tous

les k contribuant de mani�ere dominante au spectre �i se trouvent dans le secteur pour

lequel � [k] ' 1.

On peut �egalement donner ces �equations en termes de force et non plus simplement

d'�energie de Casimir. Nous aurons

F (L) = F (L) +
F 00 (L)

2

�
h21 + h22

�
�F + : : : (6-19)

�F = �+
E00 (L)

F 00 (L)
@L�

= �+
E00 (L)

LF 00 (L)
jkj @jkj�: (6-20)
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136 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

C.3 Cas des miroirs parfaits

En r�eanalysant des travaux r�ecents [172] qui �evaluent l'�energie de Casimir entre un

miroir corrugu�e et un miroir plan, nous allons pouvoir �etudier ces e�ets de rugosit�e.

Cette �etude est en fait limit�ee aux miroirs parfaits. Toutefois, elle nous permettra de

d�ecrire la situation d'une cavit�e de longueur L entre deux miroirs m�etalliques corres-

pondant �a une longueur plasma �P pourvu que L� �P. Les r�esultats de [172] ont �et�e

obtenus pour des surfaces corrugu�ees mais nous pourrons extraire l'expression de la

fonction � [k] d�ecrivant la sensibilit�e au spectre.

La corrugation est une d�eformation d'un des miroirs, caract�eris�ee par un pro�l

p�eriodique de longueur d'onde �

h (r) = a cos

�
2�

�
x

�
: (6-21)

Ce pro�l correspond �a une variance

h2 =

Z
d2r

A
a2 cos2

�
2�

�
x

�
=
a2

2
:

La variance s'�ecrit �egalement comme une int�egrale sur le spectre

h2 = h (r)h (r) = � (0) =

Z
d2k

4�2
� [k] : (6-22)

En rappelant les relations g�en�erales suivantes

h [k1]h� [k1] =

Z
d2r1

Z
d2r2e

ik1:r1eik2:r2h (r1) h (r2)

=

Z
d2r� (r) eik1:r

Z
d2r2e

i(k1�k2):r2

= 4�2� (k1 � k2)� [k1] (6-23)

et en explicitant la transform�ee de Fourier du pro�l de corrugation

h [k] =

Z
d2r a cos

�
2�

�
x

�
eik:r

=
a

2

Z
dx eikxx

�
ei

2�
�
x + e�i

2�
�
x
�Z

dy eikyy

= 2�2a �

�
jkxj � 2�

�

�
� (ky) ; (6-24)

nous obtenons le spectre de rugosit�e correspondant

� [k] = h22�2�

�
jkxj � 2�

�

�
� (ky) : (6-25)
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C Corrections de rugosit�e 137

La correction �a l'�energie de Casimir est alors donn�ee par la valeur de � [k] commune

aux deux vecteurs d'onde
�
kx = �2�

�
; ky = 0

�
�E (L) =

E00 (L)

2

Z
d2k

4�2
� [k]� [k]

=
E00 (L)

2
h2� [k] : (6-26)

Pour des miroirs parfaits, nous savons que

E (L) =
~c�2A

720L3

E00 (L) =
12E (L)

L2
: (6-27)

Nous r�e�ecrivons l'�equation (7) de [172]

�E (L) = ~cA

L5
a2G [s] ; avec s =

L

�
=
jkjL
2�

: (6-28)

En identi�ant sur (6-26), nous obtenons la forme de la fonction � [k]

� [k] =
240

�2
G [s] : (6-29)

Comme nous pouvions le supposer a priori, cette fonction ne d�epend que du param�etre

sans dimension jkjL.
La fonction G [s], correspond �a la somme des contributions des modes TE et TM,

telles que d�etaill�ees dans l'�equation (8) de [172]. Nous la r�e�ecrivons ici en adaptant les

notations. En particulier, nous introduisons des fonctions �n (u), directement reli�ees

aux fonctions � (u; v; n) de [173]. Ces fonctions sont directement construites sur les

d�ephasages accumul�es par le champ dans la cavit�e et prennent la forme suivante

�n (u) �
1X
�=1

u�

�n
; (6-30)

'n (z) = �n

�
e�z
� � 1X

�=1

e�z�

�n
: (6-31)

En utilisant les relations suivantes

'0n (z) =
d'n

dz
(z) = �'n�1 (z) n � 2;

'n (0) = �n (1) =
1X
�=1

1

�n
= � (n) n � 2 (6-32)
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138 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

et les valeurs particuli�eres de la fonction Zeta de Riemann � (n) [174]

� (2) =
�2

6
� (4) =

�4

90
� (6) =

�6

945
�6

135
= �2� (4)� 7

2
� (6) ; (6-33)

nous r�e�ecrivons les r�esultats de [172] sous la forme condens�ee

G (s) =
�

960s
�2

�
1 � e�4�s�+ �3s

360
+
�2s4

15
'1 (4�s)� �s

48
'2 (4�s) +

s2

16
'3 (4�s)

+
7s

64�
'4 (4�s)� 1

256�s
('4 (4�s)� '4 (0)� 4�s'04 (4�s))

+
9

512�3s
('6 (4�s)� '6 (0)� 4�s'06 (4�s)) : (6-34)

Nous la traduisons ensuite comme une fonction de sensibilit�e �a la rugosit�e sous la forme

� [K] =
1

2K
�2

�
1 � e�2K

�
+
K

3
+
K4

�4
'1 (2K) � 5K

2�2
'2 (2K) +

15K2

4�4
'3 (2K)

+
105K

8�4
'4 (2K)� 15

4�2
'4 (2K)� '4 (0)� 2K'04 (2K)

2K

+
135

8�4
'6 (2K) � '6 (0) � 2K'06 (2K)

2K
; (6-35)

avec la notation

K = 2�s = jkjL: (6-36)

C'est le r�esultat central que nous pouvons d�eduire de [172] et qui est repr�esent�e sur

la �gure 6.3.

A partir de l�a, nous �etudions le comportement de � [K] dans les limites de grande

et petite longueur d'onde.

C.4 R�egimes limites

Pour les grandes longueurs d'onde, nous e�ectuons les d�eveloppements de Taylor

au deuxi�eme ordre en K = jkjL. En particulier, nous utilisons

�2

�
1� e�2K

�
=

�
1� e�2K

�
+

�
1 � e�2K

�2
4

+

�
1� e�2K

�3
9

+O �K4
�

�2

�
1� e�2K

�
2K

= 1� K

2
+
K2

9
+O �K3

�
; (6-37)
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C Corrections de rugosit�e 139

0.0 5.0 10.0 15.0 20.0
K

0.0

2.0

4.0

6.0

8.0

ρ

Fig. 6.3 { Fonction � [K] en fonction de K = jkjL, caract�erisant la sensibilit�e de l'�energie

de Casimir vis-�a-vis de la longueur d'onde du spectre de rugosit�e de surface. On

distingue clairement deux r�egimes de comportement �a petit et grand K.

ainsi que les d�eveloppements suivant sur 'n (z)

'2 (z) = � (2)� z (1 � ln z) +O �z3�
'3 (z) = � (3)� z� (2) +

z2

2
( (3) �  (1) � ln z) +O �z3�

'4 (z) = � (4)� z� (3) + � (2)
z2

2

�z
3

6
( (4)�  (1)� ln z) +O �z4� (6-38)

et en�n les relations

'4 (z)� '4 (0)� z'04 (z)

z
= �z

2
� (2)� z2

6

�
1 +

1

2
+
1

3
� ln z

�
+
z2

2

�
1 +

1

2
� ln z

�
+O �z3� (6-39)

'6 (z)� '6 (0)� z'06 (z)

z
= �z

2
� (4) +

z2

3
� (3) +O �z3� : (6-40)

En rassemblant ces r�esultats, nous obtenons l'expression suivante de la fonction � [K]

� [K] = 1� K

2
+
K2

9
+
K

3
� 5K

2�2
(� (2) � 2K (1 � ln (2K)))

+
15K2

4�4
� (3) +

105K

8�4
(� (4)� 2K� (3))� 15

4�2

�
�(2K)

2
� (2)

�(2K)2

6

�
1 +

1

2
+
1

3
� ln (2K)

�
+
(2K)2

2

�
1 +

1

2
� ln (2K)

�!
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140 Chapitre 6. Description des exp�eriences et e�ets de la g�eom�etrie

+
135

8�4

 
�(2K)

2
� (4) +

(2K)2

3
� (3)

!
+O �K3

�
; (6-41)

soit, apr�es simpli�cation

� [K] = 1 +
K2

9
� 5K2

3�2
+O �K3

�
: (6-42)

Nous obtenons en particulier un r�esultat important : � [K] ' 1 pour K � 1. C'est dans

ce domaine que l'approximation de Derjaguin est v�eri��ee.

Pour la limite oppos�ee K � 1, les d�eveloppements sont obtenus de fa�con plus

directe. On peut �ecrire

�2

�
1� e�2K

�
=

1X
�=1

�
1� e�2K

��
�n

' � (2)

'n (2K) ' ln
�
1� e�2K

� ' e�2K: (6-43)

En n�egligeant les termes exponentiellement petits de type Kne�2K � 1, dont le plus

grand est donn�e par n = 4, nous obtenons

� [K] =
� (2)

2K
+
K

3
� 15

4�2
�� (4)
2K

+
135

8�4
�� (6)
2K

+O �K4e�2K
�

=
K

3
+

2�2

21K
+O �K4e�2K

�
: (6-44)

Dans ce r�egime de rugosit�e, le facteur de sensibilit�e � varie lin�eairement avec K, avec

une pente de 1
3
. Pour des d�eformations de courte longueur d'onde, on met en �evidence

que l'approximation de Derjaguin perd toute validit�e.

C.5 Discussion

Les calculs que nous venons de pr�esenter supposent de pouvoir traiter en perturba-

tion l'amplitude h de la rugosit�e. Par contre, ils sont valables pour toutes les longueurs

d'onde entre les r�egimes K � 1 et K � 1. Dans le r�egimeK � 1, nous avons retrouv�e

l'approximation de Derjaguin. Autrement dit, c'est dans ce r�egime seulement que cette

approximation est valable. L'�energie est alors la valeur moyenne de l'�energie calcul�ee

dans la con�guration plan-plan non d�eform�ee, moyenne portant sur les di��erentes dis-

tances r�ealis�ees dans la cavit�e. Le calcul plus g�en�eral incluant le facteur de sensibilit�e

� [K] permet de caract�eriser la sortie de ce r�egime.

Pour la discussion de la g�eom�etrie plan-sph�ere, il est moins facile de s�eparer l'am-

plitude de la d�eformation et son vecteur d'onde. En e�et, ces deux caract�eristiques,
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C Corrections de rugosit�e 141

clairement distinctes pour le probl�eme de la rugosit�e, sont maintenant d�etermin�ees par

un seul param�etre, le rayon R de la sph�ere. Toutefois, �a la limite o�u R devient tr�es

grand devant L, on voit que l'amplitude relative de la d�eformation h

L
et son vecteur

d'onde relatif deviennent tous les deux petits devant 1. On se retrouve alors dans les

conditions de validit�e de l'approximation de Derjaguin, dite aussi de proximit�e. C'est

ce qui explique que celle-ci permet de donner des r�esultats corrects pour la g�eom�etrie

plan-sph�ere �a la limite R� L.
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Conclusion 143

Conclusion

Comme nous l'avons expliqu�e dans l'introduction, il y a plusieurs bonnes raisons

de tester l'accord entre les mesures de la force de Casimir et les pr�edictions th�eoriques.

Etant donn�e la bonne pr�ecision atteinte par les exp�eriences, au niveau du pourcent,

ce test suppose �egalement de disposer de pr�edictions th�eoriques �ables ayant au moins

le même niveau de pr�ecision. Et, dans ce but, il est indispensable de prendre en compte

les importantes di��erences qui existent entre la situation id�eale calcul�ee par Casimir et

la situation des exp�eriences r�eelles.

Nous reprenons ici l'essentiel de ce qui a �et�e fait dans ce travail. Tout d'abord, les

exp�eriences sont r�ealis�ees dans une con�guration plan-sph�ere plutôt qu'en g�eom�etrie

plan-plan. L'approximation de Derjaguin est utilis�ee pour exprimer la force de Casimir

dans cette con�guration plan-sph�ere en fonction de l'�energie de Casimir dans la con�-

guration �a deux plans parall�eles. Cette �energie de Casimir entre deux plans est alors

calcul�ee de la mani�ere la plus exacte possible. Au terme de ces calculs, la force entre

un plan et une sph�ere est donn�ee par l'�equation

Fp�s (L) =
~c�3R

360L3
�E (L) ; (6-45)

o�u �E est le facteur correctif calcul�e pour l'�energie dans la con�guration �a deux plans. Il

reste ensuite �a prendre en compte �egalement la correction due �a la rugosit�e des surfaces.

Nous donnons ci-dessous des estimations de la pr�ecision et de la �abilit�e des m�ethodes

utilis�ees.

Pour ce qui concerne le probl�eme de la g�eom�etrie plan-sph�ere, nous avons vu que

les exp�eriences sont faites dans la limite R� L o�u R est le rayon de la sph�ere et L la

distance de plus courte approche. Dans cette limite, l'approximation de proximit�e est

certainement valable. Toutefois, il serait souhaitable de disposer d'�evaluations �ables

des termes suivants dans le d�eveloppement. Ceci permettrait d'a�rmer que cette ap-

proximation ne limite pas la pr�ecision.

Il existe bien sûr une alternative exp�erimentale, consistant �a se placer dans la con�-

guration �a deux plans. Dans ce cas, on est compl�etement d�ebarrass�e du probl�eme de
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144 Conclusion

g�eom�etrie plan-sph�ere. Malheureusement, l'exp�erience est beaucoup plus di�cile dans

cette con�guration et la pr�ecision de la seule exp�erience r�ecente de ce type [55] atteint

seulement 15%.

La correction li�ee �a la r�e
exion imparfaite des miroirs devient tr�es importante �a

courte distance. Pour rappeler un chi�re, elle est de l'ordre de 50% aux distances les

plus courtes. Elle est observ�ee de fa�con non ambig�ue dans les exp�eriences et peut être

�evalu�ee de fa�con tr�es �able, pourvu que l'on utilise les m�ethodes pr�esent�ees dans les

chapitre 2 et 3 de ce m�emoire. En�n, l'excellent accord th�eorie-exp�erience, obtenu seule-

ment en prenant en compte cette correction, est un indice d'une bonne compr�ehension

de ce probl�eme.

Les exp�eriences se d�eroulent �a temp�erature ambiante et il est alors n�ecessaire d'�eva-

luer th�eoriquement les corrections li�ees aux 
uctuations thermiques. Cet e�et ther-

mique est signi�catif �a grande distance. Pour la plupart des exp�eriences, les distances

explor�ees sont inf�erieures �a 1�m et la contribution thermique compte pour moins d'un

pourcent au niveau de la force. Elles sont prises en compte dans la formule th�eorique

utilis�ee par exemple par Mohideen [156]. Toutefois, �etant donn�e leur relativement faible

contribution, on ne peut pas dire qu'elles aient �et�e observ�ees sans ambigu��t�e. Par contre,

l'exp�erience de Lamoreaux [48] aurait dû voir cette correction thermique. En e�et, pour

une longueur de cavit�e de 6�m et �a temp�erature ambiante, on trouve une augmenta-

tion de la force de 76% par rapport �a la force �evalu�ee �a temp�erature nulle. Lamoreaux

n'a pas vu cette correction, ce qui signi�e tr�es probablement que les barres d'erreur

sur la mesure �etaient plus grandes que celles pr�esent�ees, au moins pour les distances

explor�ees au-del�a du microm�etre. L'e�et des 
uctuations thermiques reste donc un e�et

int�eressant �a observer.

Par ailleurs, ainsi que nous l'avons montr�e, les mesures faites avec une pr�ecision

au niveau du pourcent dans la zone de distances interm�ediaires, typiquement � 3�m,

devraient être sensibles �a l'e�et de corr�elation entre corrections de temp�erature et de

conductivit�e. Nous avons donn�e dans le chapitre 4 des moyens simples de calculer cet

e�et quand ce sera n�ecessaire.

En�n, la rugosit�e de surface des miroirs peut avoir une in
uence dans les mesures

e�ectu�ees aux plus courtes distances. Mohideen [52] a e�ectu�e des analyses exp�erimen-

tales de rugosit�e des surfaces qu'il a utilis�ees. Avec l'approximation de proximit�e, il a

estim�e un e�et inf�erieur au pourcent.

L�a encore, cet e�et a �et�e pris en compte dans la formule th�eorique mais on ne peut

pas consid�erer qu'il ait r�eellement �et�e test�e, vu sa faible contribution au r�esultat �nal.

Par ailleurs, comme nous l'avons montr�e dans le chapitre 6, l'utilisation du th�eorême
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Conclusion 145

de proximit�e peut sous-estimer la correction de rugosit�e pour des longueurs d'onde

de rugosit�e importantes. Il est donc n�ecessaire de mesurer de fa�con syst�ematique les

spectres de rugosit�e et, en même temps, de calculer la fonction d�ecrivant la sensibilit�e

�a la rugosit�e en fonction de la longueur d'onde. Ceci n'a �et�e fait pour le moment que

dans le cas particulier des miroirs parfaits. Une alternative exp�erimentale serait bien

sûr d'utiliser des miroirs ayant des �etats de surface bien meilleurs que ceux utilis�es dans

les exp�eriences actuelles.

La pr�ecision des mesures r�ecentes les plus soign�ees et le progr�es simultan�e des cal-

culs th�eoriques permettent un accord entre th�eorie et exp�erience qui peut être estim�e

aujourd'hui au niveau de quelques pourcents. A ce titre, on peut e�ectivement a�rmer

que la force de Casimir est un e�et m�ecanique des 
uctuations du vide mis en �evidence

de mani�ere indiscutable.
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Annexe 147

Annexe

A Corrections de conductivit�e : comportements

asymptotiques pour le mod�ele plasma

Nous d�etaillons dans cet appendice le point de vue analytique qui permet de d�e-

duire les comportements �a grande (L � �P) et courte (L � �P) distances pour le

facteur correctif li�e aux corrections de conductivit�e des miroirs mod�elis�ees par un mo-

d�ele plasma. Ces comportements sont repris dans la section C du chapitre 3. A�n

de mener le plus simplement possible les d�erivations analytiques, nous e�ectuons le

changement de variable

�2 =
�2

c2
+ k2Z

d2k

4�2

1Z
0

d� � 1

2�

1Z
0

d� �

c�Z
0

d�: (A-1)

Ce changement r�eexprime le jeu de variables naturelles, au sens des bons nombres

quantiques (�;k), en les variables (�; �), o�u � est le vecteur d'onde longitudinal. On

peut alors introduire des variables sans dimension, normalis�ees par la longueur de la

cavit�e

K � �L ; 
 � �
L

c
: (A-2)

On a donc pour le facteur correctif

�F =
120

�4

X
p

1Z
0

dK K3Gp [iK]

Gp [iK] =

KZ
0

d


K

�p [i
; iK]

1 � �p [i
; iK]

�p [i
; iK] = (rp [i
; iK])2 e�2K (A-3)
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148 Annexe

en ayant pris deux miroirs identiques, dont les amplitudes de r�e
exion sont donn�es par

les formes

rTE [i
; iK] =
1� zTE

1 + zTE
; rTM [i
; iK] =

1� zTM

1 + zTM
(A-4)

zTE =

p
K2 + 
2 (" [i
]� 1)

K
; zTE =

K" [i
]p
K2 + 
2 (" [i
]� 1)

: (A-5)

Dans le cas particulier du mod�ele plasma on peut �ecrire

(� [i
]� 1)
2 = 
2
P;

avec la fr�equence plasma normalis�ee


P = !P
L

c
= 2�

L

�P
:

Il est alors possible d'e�ectuer l'int�egration sur 
 analytiquement. On posera pour

cela

� =

p
K2 + 
2

P

K
� =

� � 1

� + 1
y =




K
: (A-6)

Il s'agira �egalement de d�e�nir

E = eK��1: (A-7)

Avec ces notations, on aura simplement pour chaque polarisation

rTE [i
; iK] = ��
rTM [i
; iK] = �

y2 � (� + 1)

y2 + (� � 1)
; (A-8)

de sorte que pour l'int�egration elle-même, on aura

GTE [iK] =

KZ
0

d


K

�TE [i
; iK]

1� �TE [i
; iK]

=
1

E2 � 1

GTM [iK] =

KZ
0

d


K

�TM [i
; iK]

1� �TM [i
; iK]

=

1Z
0

dy
(y2 � � � 1)

2

E2 (y2 + � + 1)2 � (y2 � � � 1)2
: (A-9)

Ces expressions permettent ais�ement de d�egager les di��erents comportements asymp-

totiques �a grandes et courtes distances.
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A Corrections de conductivit�e : comportements asymptotiques pour le mod�ele plasma 149

A.1 Grandes distances

Dans le r�egime de grandes distances L� �P, les miroirs sont presque parfaitement

r�e
�echissants rp [i
; iK] � 1 et on peut d�evelopper sur les amplitudes de r�e
exion

perturbativement en cette limiteX
p

�p

1� �p
�

X
p

�
�p

1� �p

�
(rp)2=1

+
X
p

�
(rp)2 � 1

�
@(rp)2

�
�p

1 � �p

�
(rp)2=1

� 2
1

e2K � 1

+
��
rTE [i
; iK]

�2
+
�
rTM [i
; iK]

�2 � 2
� e2K

(e2K � 1)2
: (A-10)

En utilisant les d�ecompositions (A-8), on d�eveloppe les amplitudes de r�e
exion au

premier ordre en 
�1P = �P
2�L sachant que le facteur exponentiel e2K

(e2K�1)2
s�electionne les

valeurs de K � 1�
rTE [i
; iK]

�2 � 1 = � 4�

(� + 1)2

= �4

�
+O

�
1


P

�
�
rTM [i
; iK]

�2 � 1 =
(y2 (� � 1)� (�2 � 1))

2

(y2 (� + 1) + (�2 � 1))2
= � 4y2 (� � 1) (�2 � 1)

(y2 (� + 1) + (�2 � 1))2

= �4y2

�
+O

�
1


P

�
: (A-11)

On obtient alors pour la fonction G somm�ee sur les deux polarisations

G [iK] =
X
p

Gp [iK]

= 2
1

e2K � 1
� 4

�

e2K

(e2K � 1)2

1Z
0

dy
�
1 + y2

�
; (A-12)

et pour le facteur correctif 1

�PF =
120

�4

1Z
0

dK

�
2K3

e2K � 1
� 16

3
P

K4e2K

(e2K � 1)2

�
+O

 �
�P

L

�2
!

1. en utilisant les valeurs donn�ees dans [175]

1Z

0

dK
K

3

e2K � 1
=

1

2

1Z

0

dK
K

4
e
2K

(e2K � 1)2
=

�
4

240
(A-13)
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= 1 � 8

3�

�P

L
+O

 �
�P

L

�2
!
: (A-14)

A.2 Courtes distances

Pour la limite oppos�ee des courtes distances, on d�ecompose la fraction donn�ee en

(A-9) en �el�ements simples

(y2 � � � 1)
2

E2 (y2 + � + 1)2 � (y2 � � � 1)2
=

1

E2 � 1

�
1 +

E�

� +H+ (y2 � 1)
� E�

� +H� (y2 � 1)

�
; (A-15)

en ayant pos�e

H� =
E � 1

E � 1
: (A-16)

On obtient alors pour l'int�egration (A-9)

GTM [iK] =
1

E2 � 1

0@1 + E�H�
1Z

0

dy
1

y2 +A2
�

� E�H+

1Z
0

dy
1

y2 +A2
+

1A
A2
� = H�� � 1

A2
+ = H+� � 1: (A-17)

Etant donn�e que

1Z
0

dy
1

y2 +A2
�

=
1

A�
arctan

1

A�
; (A-18)

on arrive alors �a l'expression du facteur correctif int�egr�ee en 


�PF =
120

�4

1Z
0

dK K3G [iK]

G [iK] =
X
p

Gp [iK] =

=
1

E2 � 1

�
2 + E�H� 1

A�
arctan

1

A�
� E�H+

1

A+
arctan

1

A+

�
: (A-19)

Le facteur 2 r�esulte du terme de polarisation TE et du premier membre du terme de

polarisation TM. Pour obtenir la limite courte distance 
P � 1, on d�eveloppe (A-19)
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au premier ordre en 
P. Pour all�eger les notations, on note x =
�

P
K

�2
, o�u encore

une fois les facteurs exponentiels s�electionnent K � 1. On pourra alors d�evelopper au

premier ordre en x

� = 1 +
1

2
x+O �x2�

��1 =
4

x
+ 2� x

4
+O �x2�

H� = 1� 1

2
e�Kx+O �x2�

E =
4eK

x
+ 2eK � eK

4
x+O �x2�

1

E2 � 1
=

1

16
e�2Kx2 +O �x3� : (A-20)

On en d�eduit

E�H� =
4eK

x
+O �x0�

1

E2 � 1
E�H� =

e�K

4
x+O �x2�

A2
� =

1

2

�
1� e�K

�
x+O �x2�

= e�
K
2 x sinh

K

2
+O �x2� � 1

A2
+ =

1

2

�
1 + e�K

�
x+O �x2�

= e�
K
2 x cosh

K

2
+O �x2� � 1: (A-21)

En utilisant le d�eveloppement suivant pour u� 1

arctan [u] =
�

2
� 1

u
+

1

3u3
+O

�
1

u4

�
; (A-22)

on peut donner l'approximation suivante pour la fonction G

G [iK] =
�

8
e�Kx

�
1

A�
� 1

A+

�
+O

�
x
3
2

�
=

�

8
e�

3K
4

�

P

K

�0@ 1q
sinhK

2

� 1q
coshK

2

1A+O
 �


P

K

�3
!
: (A-23)

On peut alors num�eriquement e�ectuer l'int�egration et obtenir le coe�cient lin�eaire du

changement de r�egime de la force �a courtes distances

�PF = �
L

�P
+O

 �
L

�P

�3
!
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� =
30

�2

Z 1
0

dK e�
3K
4

0@ K2q
sinh K

2

� K2q
cosh K

2

1A
' 1:193: (A-24)

C'est exactement le même r�esultat que nous avons d�eduit par les d�eveloppements pr�e-

sent�es dans le chapitre 3 dans la section C.1.
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B Corrections thermiques 153

B Corrections thermiques

Les expressions analytiques des corrections thermiques et les comportements asymp-

totiques pr�esent�es dans la section C du chapitre 4 sont ici explicit�es dans les deux

r�egimes caract�eristiques des hautes et basses temp�eratures. On redonne les d�e�nitions

des fr�equence et longueur d'onde thermiques

!T =
2�kBT

~
=

2�c

�T
: (B-1)

B.1 Limite basse temp�erature

A titre de formulaire, nous rappelons tout d'abord ici un ensemble de relations sur

les fonctions \usuelles" des calculs e�ectu�es. Les fonctions hyperboliques impliqu�ees

peuvent se d�ecomposer sur leurs pôles

1

tanh [x]
=

1

�

1X
k=�1

1
x

�
+ ik

(B-2)

� d

dx

�
1

tanh [x]

�
= � d

dx

 
1X

k=�1

1
x

�
+ ik

!
=

1

�2

1X
k=�1

1�
x

�
+ ik

�2
=

1

sinh2 [x]
(B-3)

�1

2

d

dx

�
1

sinh2 [x]

�
= �1

2

d

dx

 
1

�2

1X
k=�1

1�
x

�
+ ik

�2
!
=

1

�3

1X
k=�1

1�
x

�
+ ik

�3
=

cosh [x]

sinh3 [x]
(B-4)

�1

3

d

dx

�
cosh [x]

sinh3 [x]

�
= �1

3

d

dx

 
1

�3

1X
k=�1

1�
x

�
+ ik

�3
!
=

1

�4

1X
k=�1

1�
x

�
+ ik

�4
=

1

3

�
1 + 2cosh2 [x]

�
sinh4 [x]

: (B-5)

Les int�egrations rencontr�ees pourront se d�eduire pour la plupart du noyau [176]

1Z
0

du
1

eu � 1
sin [xu] =

�

2
coth [�x]� 1

2x
; (B-6)
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On obtient en e�et par d�erivation partielle par rapport �a x du membre de droite et/ou

par int�egrations par parties les formules suivantes

1Z
0

du
u

eu � 1
cos [xu] = @x

1Z
0

du
1

eu � 1
sin [xu] (B-7)

1Z
0

du
u2

eu � 1
sin [xu] = �@2x

1Z
0

du
1

eu � 1
sin [xu] (B-8)

1Z
0

du
ueu

(eu � 1)2
sin [xu] = @x

1Z
0

du
1

eu � 1
sin [xu] (B-9)

1Z
0

du
u2eu

(eu � 1)2
cos [xu] = �@x

1Z
0

du
1

eu � 1
sin [xu] (B-10)

1Z
0

du
u3eu

(eu � 1)2
sin [xu] = @2x

1Z
0

du
1

eu � 1
sin [xu] : (B-11)

Pour faciliter les d�eveloppements analytiques, nous exprimerons ici les int�egrations

Z
d2k

1Z
0

d�

sur les vecteurs longitudinaux

�2 =
�2

c2
+ k2:

Ce changement de variables r�egulier nous donne la formule �equivalente pour les facteurs

correctifs en force et en �energie libre, en supposant les miroirs identiques

�F =
240L4

c�4

0X
n

1Z
0

d� �2
c�Z
0

d� cos

�
�Tn�

c

�
�p [i�; i�]

1 � �p [i�; i�]

�p [i�; i�] = (rp [i�; i�])2 e�2�L: (B-12)

Par ce changement de variables, les coe�cients de r�e
exion sont d�etermin�es par les

expressions (3-31) de la section C du chapitre 3.
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B Corrections thermiques 155

B.1.1 Correction thermique pour des miroirs parfaits

En utilisant (B-4,B-6,B-8) nous obtenons l'expression du terme correctif d�e�ni en

(4-29) dans le texte

�
�TF � 1

�
=

480L4

�4

1X
n=1

1Z
0

d�
�2

e2�L � 1

sin [n�T�]

n�T

= 30
1X

m=1

�
1

(�m)4
� cosh [�m]

�m sinh3 [�m]

�
� =

��T

2L
: (B-13)

Pour les termes en �energie correspondants, on a par int�egration directe

E (L)� ECas =

1Z
L

dx
�
�TF � 1

�
FCas

=
2~cA

�2

1X
n=1

1Z
L

dx

1Z
0

d�
�2

e2�x � 1

sin [n�T�]

n�T

=
2~cA

�2

1X
n=1

1

n�T

1Z
0

dK
K2

e2K � 1

0@ 1Z
L

dx
sin
�
n�TK

x

�
x3

1A
=

2~cA

�2

1X
n=1

1

n�T

1Z
0

dK
K2

e2K � 1

 
sin
�
n�TK

L

�
(n�TK)2

� 1

L

cos
�
n�TK

L

�
n�TK

!
; (B-14)

avec K = �L. En utilisant (B-6,B-7) on d�eduit l'expression

E (L)� ECas =
2~cA

�2

1X
n=1

1

n�T

"
+

1

(n�T)
2

 
�

4

1

tanh
�
��Tn

2L

� � 1

4

1

n�T

!

� 1

L

1

n�T

 
��

2

8

1

sinh2
�
��Tn

2L

� + 1

8

1�
�Tn

2L

�2
!#

=
~cA�2

16L3

1X
m=1

�
� 2

(�m)4
+

1

(�m)2 sinh2 [�m]
+

1

(�m)3 tanh [�m]

�
:

On normalisera par l'�energie de Casimir id�eale pour obtenir l'�equation (4-36) du cha-

pitre 4.
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156 Annexe

B.1.2 Correction suppl�ementaire

Pour calculer cette correction d�e�nie dans la section C du chapitre 4, on commence

par rappeler le d�eveloppement �a grande distance e�ectu�e sur les amplitudes de r�e
exion

tel qu'il est d�evelopp�e en (A-10). On a alors au premier ordre en �P
L

�f =
�TM
k

[i�]

1 � �TM
k

[i�]
+

�TE
k

[i�]

1 � �TE
k

[i�]
� 2

e�2�L

1 � e�2�L

' � e2�L

(e2�L � 1)2

�
1� �rTM

k

�2
+ 1� �rTE

k

�2�
' � e2�L

(e2�L � 1)2
2��P
�

 
1 �

�2

c2

�2

!
: (B-15)

A partir de ce d�eveloppement, on a donc

��F = �240L4

c�4

1X
m=1

1Z
0

d� �2
c�Z
0

d� cos

�
�Tn�

c

�
e2�L

(e2�L � 1)2
2��P
�

 
1 +

�
�

c�

�2
!

+O
 �

�P

L

�2
!
: (B-16)

On e�ectue alors l'int�egrale sur � pour obtenir
c�Z
0

d� cos

�
�Tn�

c

� 
1 +

�
�

c�

�2
!
= �

�
sin [�Tn�]

n�T�
+
cos [�Tn�]

(n�T�)
2 � sin [�Tn�]

(n�T�)
3

�
:(B-17)

Les relations (B-9,B-10,B-11) permettent d'obtenir exactement la forme (4-40)

�F =
15

�

1X
m=1

�
1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

+
4cosh [�m]

�m sinh3 [�m]
� 2 + 4cosh2 [�m]

sinh4 [�m]

�
: (B-18)

De la même fa�con, pour l'�energie

��EECas =

1Z
L

dx ��FFCas

= �4~cA�P
�2

1X
n=1

1Z
0

dK K4 e2K

(e2K � 1)2

0@ 1

K�Tn

1Z
L

dx
1

x4
sin

�
K�Tn

x

�

+
1

(K�Tn)
2

1Z
L

dx
1

x3
cos

�
K�Tn

x

�
� 1

(K�Tn)
3

1Z
L

dx
1

x2
sin

�
K�Tn

x

�1A :
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B Corrections thermiques 157

On posera ` � K�Tn pour �ecrire ce terme sous la forme d'une somme de trois �el�ements

��EECas = �4~cA�P
�2

1X
n=1

1Z
0

dK K4 e2K

(e2K � 1)2
(I (`) + J (`) +K (`)) ; (B-19)

avec

K (`) =
1

`4
� 1

`4
cos

�
`

L

�
J (`) = @`K (`)

I (`) = �@`J (`) : (B-20)

On peut d�eduire le facteur correctif qui s'�ecrit en fonction de trois int�egrations

��EECas = �4~cA�P
�2

1X
n=1

(I1 + I2 + I3)

I1 =

1Z
0

dK K4 e2K

(e2K � 1)2
4

`4

�
cos

�
`

L

�
� 1

�

I2 =

1Z
0

dK K4 e2K

(e2K � 1)2
3

`3L
sin

�
`

L

�

I3 =

1Z
0

dK K4 e2K

(e2K � 1)2
1

`2L2
cos

�
`

L

�
: (B-21)

Les deux derni�eres int�egrations ont d�ej�a �et�e abord�ees en (B-17). On aura donc pour

elles deux

I2 =
3

(n�T)
3

1

L

1Z
0

dK K
e2K

(e2K � 1)2
sin

�
Kn�T

L

�

=
3

(n�T)
3

1

L

 
�

8

1

tanh
�
�n�T
2L

� � �

8

�n�T

2L

1

sinh2
�
�n�T
2L

�!

I3 =
1

(n�T)
2

1

L2

1Z
0

dK K2 e2K

(e2K � 1)2
cos

�
Kn�T

L

�

=
1

(n�T)
2

1

L2

 
�2

8

�n�T

2L

cosh
�
�n�T
2L

�
sinh3

�
�n�T
2L

� � �2

8

1

sinh2
�
�n�T
2L

�! : (B-22)

Pour la premi�ere int�egration, notre formulaire n'est d'aucun recours, �etant donn�e que

I1 ne converge pas pour la borne inf�erieure d'int�egration 0. La technique d'int�egration
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est di��erente et consiste en la d�ecomposition en s�erie enti�ere du cos. On a donc

I1 =
4

(n�T)
4

1Z
0

dK
e2K

(e2K � 1)2

�
cos

�
`

L

�
� 1

�

=
4

(n�T)
4

1X
m=1

(�1)m
2m!

(n�T)
2m

L2m

1Z
0

dK K2m e2K

(e2K � 1)2

=
4

(n�T)
4

1X
m=1

(�1)m
2m!

(n�T)
2m

L2m

1

22m+1
� (2m+ 1) � (2m)

=
4

(n�T)
4

1X
m=1

(�1)m
22m+1

� (2m)
(n�T)

2m

L2m
; (B-23)

l'int�egration sur K �etant standard pour m > 0 [175]. En utilisant la d�e�nition des

nombres B2m de Bernouilli en termes de fonction Zeta, on peut �ecrire [174]

1X
m=1

(�1)m
22m+1

� (2m)
(n�T)

2m

L2m
= �1

4

�n�T

2L

1X
m=1

22mB2m

2m!

�
�n�T

2L

�2m�1

= �1

4

�n�T

2L

 
1

tanh
�
�n�T
2L

� � 1
�n�T
2L

!
: (B-24)

On peut donc �nalement rassembler ces trois int�egrales. En utilisant la relation entre

� et �T, on obtient

��EECas = �4~cA

�2
�P

L4

1X
n=1

�
��

4

64

1

(�n)3 tanh [�n]
� �4

64

1

(�n)2 sinh2 [�n]

��
4

32

cosh [�n]

(�n) sinh3 [�n]
+
�4

16

1

(�n)4

�
: (B-25)

En normalisant par l'�energie id�eale de Casimir ECas =
~cA�2

720L3 , le facteur correctif de

m�elange ��E prend alors la forme (4-42) donn�ee dans le texte.

B.2 Limite haute temp�erature

Comme nous l'avons vu, la limite haute temp�erature se d�erive �a partir des formes

duales des fonctions d�e�nies dans un cadre adapt�e au d�eveloppement basse temp�era-

ture. La transformation de dualit�e, telle que symbolis�ee en (4-55) dans le texte, pourra

être e�ectu�ee avec simplicit�e depuis les d�ecompositions sur les pôles des fonctions hy-

perboliques. Nous commen�cons donc ici par donner les formules �a cette �n utile.

te
l-0

00
01

74
9,

 v
er

si
on

 1
 - 

27
 S

ep
 2

00
2



B Corrections thermiques 159

On explicite tout d'abord les relations duales en a et b suivantes

1

a (a� b)3
=

1

b

1

(a� b)3
� 1

b2
1

(a� b)2
+

1

b3
1

a� b �
1

b3a
(B-26)

1

a2 (a� b)2
=

1

b2
1

(a� b)2
� 2

1

b3
1

a� b
+ 2

1

b3a
+

1

b2a2
(B-27)

1

a3 (a� b)
=

1

b3
1

a� b
� 1

b3a
� 1

b2a2
� 1

ba3
: (B-28)

A l'aide de ces relations, on donne imm�ediatement les transformations sur les d�ecom-

positions sur les pôles

1

�m (�m� ik�)3
=

1

ik�

1

(�m� ik�)3
� 1

(ik�)2
1

(�m� ik�)2

+
1

(ik�)3
1

�m� ik� �
1

(ik�)3
1

�m

= � 1

k��3
�
k�

�
+ im

�3 � 1

(k�)2 �2
�
k�

�
+ im

�2
� 1

(k�)3 �
�
k�

�
+ im

� � 1

(ik�)3
1

�m
(B-29)

1

(�m)3 (�m� ik�)
+

1

(�m)2 (�m� ik�)2
=

1

(ik�)2 (�m� ik�)2
� 1

(ik�)3 (�m� ik�)
+

1

(ik�)3
1

�m
� 1

ik�

1

(�m)3

=
1

(k��)2
1�

k�
�
+ im

�2 + 1

(k�)3 �

1
k�

�
+ im

+
1

(ik�)3
1

�m
� 1

ik�

1

(�m)3
(B-30)

1

(�m� ik�)4
=

1

�4
�
k�

�
+ im

�4 : (B-31)

On peut alors donner �a l'aide de ces formules les transform�ees duales des facteurs

correctifs.
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160 Annexe

B.2.1 Correction thermique pour des miroirs parfaits

Nous pouvons �ecrire les contributions thermiques �a la force de la fa�con suivante, en

utilisant la parit�e sur m et les relations (B-4,B-13)�
�TF � 1

�
= 30

1X
m=1

�
1

(�m)4
� cosh [�m]

�m sinh3 [�m]

�

= 15

1X
m=�1

�

�
1

(�m)4
� cosh [�m]

�m sinh3 [�m]

�

= 15
1X

m=�1

�

 
1

(�m)4
� 1

�3

1X
k=�1

1

�m
�
�m
�
� ik

�3
!

= �15
1X

m=�1

�

1X
k=�1

� 1

�m (�m� ik�)3
; (B-32)

o�u on a introduit la notation
1X

m=�1

� =
1X

m=�1

� [m = 0] : (B-33)

En utilisant les relations duales (B-26,B-29), on obtient pour �TF�
�TF � 1

�
= 15

1X
k=�1

�

 
1X

m=�1

� 1

k��3
�
k�

�
+ im

�3
+

1

(k�)2 �2
�
k�

�
+ im

�2 + 1

(k�)3 �
�
k�

�
+ im

�! : (B-34)

Le dernier terme de (B-29) ne contribue pas par imparit�e surm. Le terme 1 de
�
�TF � 1

�
peut être inclu dans les sommes comme terme m = 0 correspondant �a la force de

Casimir id�eale FCas. La correction thermique s'�ecrit �nalement �a l'aide des relations

(B-2,B-3,B-4)

�TF = 15

1X
k=�1

�

 
1X

m=�1

1

k��3
�
k�
�
+ im

�3
+

1

(k�)2 �2
�
k�
�
+ im

�2 + 1

(k�)3 �
�
k�

�
+ im

�!

= 30
1X
k=1

0@ 1

k��3

�3 cosh
h
k�2

�

i
sinh3

�
k�2

�

�
+

1

(k�)2 �2
�2

sinh2
�
k�2

�

� + 1

(k�)3 �

�

tanh
�
k�2

�

�! : (B-35)
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B Corrections thermiques 161

Pour la correction thermique en �energie, on d�ecompose selon (B-2, B-3)�
�TE � 1

�
= 45

1X
m=1

�
� 2

(�m)4
+

1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

�

=
45

2

1X
m=�1

�

�
� 2

(�m)4
+

1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

�

=
45

2

1X
m=�1

�

 
� 2

(�m)4
+

1

�

1X
k=�1

1

(�m)3
�
�m

�
� ik

�!

=
45

2

1X
m=�1

�

1X
k=�1

�

�
1

(�m)3 (�m� ik�) +
1

(�m)2 (�m � ik�)2
�
:

En utilisant la relation (B-30) et en suivant les mêmes �etapes qu'auparavant

�TE =
45

2

1X
m=�1

1X
k=�1

�

 
1

(k�)2 �2
1�

k�

�
+ im

�2 + 1

(k�)3 �

1
k�

�
+ im

!
: (B-36)

A l'aide de (B-29,B-30) on trouve �nalement l'expression

�TE = 45
1X
k=1

 
1

(k�)2 �2
�2

sinh2
�
k�
�

� + 1

(k�)3 �

�

tanh
�
k�

�

�! : (B-37)

B.2.2 Correction suppl�ementaire

Pour le terme �F nous commen�cons, partant de (B-18), �a �ecrire par parit�e sur m

�F =
15

2�

1X
m=�1

�

�
1

(�m)3 tanh [�m]
+

1

(�m)2 sinh2 [�m]

+
4cosh [�m]

�m sinh3 [�m]
� 2 + 4cosh2 [�m]

sinh4 [�m]

�
: (B-38)

Avec les relations (B-2,B-3,B-4,B-5) nous pouvons transformer cette expression pour

obtenir

�F =
15

2�

1X
m=�1

�

 
1

�

1X
k=�1

1

(�m)3
�
�m

�
� ik

� + 1

�2

1X
k=�1

1

(�m)2
�
�m

�
� ik

�2
+

4

�3

1X
k=�1

1

�m
�
�m

�
� ik�3 � 6

�4

1X
k=�1

1�
�m

�
� ik

�4
!

=
15

2�

1X
m=�1

�
1X

k=�1

�

�
1

(�m)3 (�m� ik�) +
1

(�m)2 (�m� ik�)2

+
4

�m (�m� ik�)3 �
6

(�m� ik�)4

�
: (B-39)
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162 Annexe

Les termes 1
�m

correspondant �a k = 0 se compensent. Les relations (B-29,B-30,B-31)

donnent alors l'expression suivante sur laquelle le terme m = 0 est isol�e

�F =
15

2�

1X
k=�1

�

 
1X

m=�1

�

 
� 3

(k��)2
1�

k�

�
+ im

�2 � 3

(k�)3 �

1
k�

�
+ im

� 4

k��3
1�

k�

�
+ im

�3 � 6

�4
�
k�

�
+ im

�4
!!

: (B-40)

Puisque nous pouvons calculer la somme compl�ete sur m explicitement, nous s�eparons

le terme m = 0 qui se calcule de la fa�con suivante

� 15

2�

16

�4

1X
k=�1

� 1

k4
= �240

�5
� (4) = � 8

3�
: (B-41)

En r�einvoquant les relations (B-2,B-3,B-4,B-5) on obtient

�F =
15

�

1X
k=1

0@� 4

k��3

�3cosh
h
k�2

�

i
sinh3

�
k�2

�

� � 3

(k�)2 �2
�2

sinh2
�
k�2

�

�+
� 3

(k�)3 �

�

tanh
�
k�2

�

� � 1

�4

�4
�
2 + 4cosh

h
k�2

�

i�
sinh4

�
k�2

�

�
1A+

8

3�
: (B-42)

La correction thermique d�e�nie par �E peut s'�ecrire suivant les mêmes relations de

d�epart et les mêmes enchâ�nements que ceux impliqu�es pour �E, c'est-�a-dire

�E = 45

1X
m=1

 
� 4

(�m)4
+

1X
k=�1

�
1

(�m)3
1

�m� ik�

+
1

(�m)2
1

(�m� ik�)2 +
2

�m

1

(�m� ik�)3

��
=

45

2�

1X
m=�1

�

 
� 4

(�m)4
+

1X
k=�1

�
1

(�m)3
1

�m� ik�

+
1

(�m)2
1

(�m� ik�)2 +
2

�m

1

(�m� ik�)3

��
=

45

2�

1X
m=�1

�
1X

k=�1

�

�
1

(�m)3
1

�m� ik�
+

1

(�m)2
1

(�m� ik�)2

+
2

�m

1

(�m� ik�)3

�
: (B-43)
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B Corrections thermiques 163

Par transformations duales (B-29,B-30)

�E =
45

2�

1X
m=�1

�

1X
k=�1

�

 
� 1

(k��)2
1�

k�

�
+ im

�2 � 1

(k�)3 �

1
k�

�
+ im

� 2

k��3
1�

k�

�
+ im

�3
!
: (B-44)

Encore une fois, nous isolons le terme m = 0 que nous calculons �a part

� 45

2�

1X
k=�1

� 4

�4k4
= � 2

�
: (B-45)

L'expression pour �E est donc �nalement donn�ee par la forme

�E =
45

�

1X
k=1

 
� 1

(k�)2 �2
�2

sinh2
�
k�2

�

� � 1

(k�)3 �

�

tanh
�
k�2

�

�
� 2

k��3

�3 cosh
h
k�2

�

i
sinh3

�
k�2

�

�
1A+

2

�
: (B-46)

B.2.3 Comportements asymptotiques

On peut donner les comportements caract�eristiques pour �F et �E �a la limite de

haute temp�erature. Par croissances compar�ees sur les formes que nous venons d'obtenir,

comme dans la section C du chapitre 4 mais pour le r�egime �� 1, nous avons

�TF = 30
1X
k=1

�

(k�)3 �
+O

�
1

�2
e�2

�2

�

�
=

30

�2�
� (3) +O

�
1

�2
e�2

�2

�

�
(B-47)

et

�F = �15

�

1X
k=1

3�

(k�)3 �
+

8

3�
+O

�
1

�2
e�2

�2

�

�
= � 45

�2�
� (3) +

8

3�
+O

�
1

�2
e�2

�2

�

�
: (B-48)

En rassemblant les termes, nous trouvons

�F = �PF +
�
�TF � 1

�
+��F
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164 Annexe

= 1 � 8

3�

�P

L
+

�
30

�2�
� (3) � 1

�
+
�P

L

�
� 45

�3�
� (3) +

8

3�

�
+O

 �
�P

L

�2

;
1

�2
e�2

�
2

�

!

=
15

�2�
� (3)

�
2 � 3

�

�P

L

�
+O

 �
�P

L

�2

;
1

�2
e�2

�2

�

!
: (B-49)

De même pour l'�energie, on obtient

�TE = 45
1

�2�

1X
k=1

1

k3

=
45

�2�
� (3) + O

�
1

�2
e�2

�2

�

�
�E =

45

�

1

�2�

1X
k=1

1

k3
+

2

�
+O

�
1

�2
e�2

�2

�

�
=

45

�3�
� (3) +

2

�
+O

�
1

�2
e�2

�2

�

�
(B-50)

et donc pour le facteur correctif

�E = �PE +
�
�TE � 1

�
+��E

=
45

�2�
� (3)

�
1� 1

�

�P

L

�
+O

�
1

�2
e�2

�2

�

�
: (B-51)
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C Miroirs dissipatifs �a temp�erature non nulle 165

C Miroirs dissipatifs �a temp�erature non nulle

Dans cet appendice, nous d�etaillons les discussions du chapitre 5. Nous rappelons

tout d'abord la structure des amplitudes de r�e
exion, pour les deux polarisations

rTE
k

[i�] =
1� zTE

1 + zTE
; rTM

k
[i�] =

1� zTM

1 + zTM
;

avec les imp�edances

zTE =

q
�2

c2
" [i�] + k2q
�2

c2
+ k2

; zTM =
" [i�]

q
�2

c2
+ k2q

�2

c2
" [i�] + k2

: (C-1)

C.1 Limite haute temp�erature

Nous pr�ecisons ici le calcul du terme quasistatique de la formulation de Lifshitz,

donn�e en (5-17) dans le corps du texte

kBTA

4�2
F (n = 0) =

kBTA

4�2

Z
d2k jkj

h�
rTE
k

[0]�2 e2jkjL � 1
��1

+
�
rTM
k

[0]�2 e2jkjL � 1
��1i

: (C-2)

C.1.1 Cas des miroirs parfaits

Pour des miroirs parfaitement r�e
�echissants, la permittivit�e � [i�] est in�nie � = +1
sur tout le spectre de fr�equence. En termes de coe�cients de r�e
exion, on a donc

rTE
k

[0] = �1 et rTM
k

[0] = �1. Par cons�equent

kBTA

4�2
F (n = 0) =

kBTA

4�2

Z
d2k jkj

h�
1:e2jkjL � 1

��1
+
�
1:e2jkjL � 1

��1i
; (C-3)

qui se calcule explicitement puisqueZ
d2k jkj 1

e2jkjL � 1
=

�

2L3
� (3) : (C-4)

La limite haute temp�erature (C-2) pour des miroirs parfaits est donc donn�ee par l'ex-

pression suivante

Fparfait (T � Te�) ' kBTA

4�L3
� (3) : (C-5)
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166 Annexe

C.1.2 Le mod�ele plasma

Dans le cadre du mod�ele plasma avec

" [i�] = 1 +
!2P
�2
; (C-6)

nous avons des amplitudes de r�e
exion

rTE
k

[0] =
jkj �

q
!2P
c2
+ k2

jkj+
q

!2P
c2

+ k2
; rTM

k
[0] = �1: (C-7)

On a donc

kBTA

4�2
F (n = 0) =

kBTA

4�2

Z
d2k jkj

2664
0B@
0@ jkj �

q
!2P
c2
+ k2

jkj+
q

!2P
c2

+ k2

1A�2 e2jkjL � 1

1CA
�1

+
�
1:e2jkjL � 1

��1i
=

kBTA

32�2L3

Z
d2k jkj

24 �jkj � p
P + k2

jkj+p
P + k2

��2
ejkj � 1

!�1
+
�
1:ejkj � 1

��1i
; (C-8)


P =
2L

c
!P:

Dans la limite des grandes distances L � �P, ou bien 
P ! 1, on a alors rTM
k

[0] =

rTE
k

[0] = �1. La force de Casimir correspond alors �a la force id�eale entre deux miroirs

parfaitement r�e
�echissants

Fplasma (L� �P) ' kBTA

4�L3
� (3) : (C-9)

C.1.3 Le mod�ele de Drude

Pour le mod�ele de Drude, avec

" [i�] = 1 +
!P

� (� + �)
(C-10)

on a des amplitudes de r�e
exion telles que

rTE
k

[0] = 0 ; rTM
k

[0] = �1: (C-11)

Cette perte de la contribution des modes polaris�es TE induit directement sur (C-9) un

facteur 1
2 , c'est-�a-dire le comportement (5-23) dans le corps du texte.
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C Miroirs dissipatifs �a temp�erature non nulle 167

C.2 Continuit�e des amplitudes de r�e
exion

On d�etaille ici l'�etude du comportement des amplitudes de r�e
exion dans le voisi-

nage de la limite quasistatique � = 0, pour un miroir m�etallique massif, c'est-�a-dire

dont les amplitudes sont donn�ees par les expressions (C-1). Comme pr�ecis�e dans le

texte, on �etudie, pour un mod�ele plasma et pour un mod�ele de Drude, les deux cas

limites suivants :

{ cas a) : le champ est pris sous incidence normale, i.e. k = 0 �x�e. On �etudie alors la

limite quasi-statique ! ! 0 pour les deux polarisations. Pour le mod�ele plasma,

on a donc les enchâ�nements suivants

rTE
k=0 [i�] = rTM

k=0 [i�] =
1 �p"plasma [i�]

1 +
p
"plasma [i�]

�! rTE
k=0 [0] = rTM

k=0 [0] = �1:

Pour le mod�ele de Drude maintenant, la même situation implique

rTE
k=0 [i�] = rTM

k=0 [i�] =
1 �

p
"Drude [i�]

1 +
p
"Drude [i�]

�! rTE
k=0 [0] = rTM

k=0 [0] = �1:

{ cas b) : cette fois-ci on se place �a la limite quasi-statique � = 0 et l'on s'approche

de l'incidence normale k! 0. Pour le mod�ele plasma, on a donc l'enchâ�nement

rTE
k

[0] =
jkj �

q
!2P
c2

+ k2

jkj+
q

!2P
c2
+ k2

; rTM
k

[0] = �1 �! rTE
k=0 [0] = rTM

k=0 [0] = �1;

et pour le mod�ele de Drude

rTE
k

[0] = 0; rTM
k

[0] = �1 �! rTE
k=0 [0] = 0; rTM

k=0 [0] = �1:

Ce sont dans les deux cas a) et b) les comportements d�ecrits en section C.1 dans le

corps du texte du chapitre 5.

C.3 Comparaison des deux formulations

On donne ici la di��erence entre notre formule, qui est toujours vraie, et la formule

de Lifshitz dont les conditions de validit�e sont plus restreintes. Avec les notations du

texte, on calcule ici explicitement

�F =
~A

2�3

0X
n

eF (n)� kBTA

2�2

0X
n

F (n) ; (C-12)
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168 Annexe

en rappelant

eF (n) =
X
p

Z
d2k

1Z
0

d� cos

�
2�n�

!T

�
�

�
p

k
[i�]

1� �
p

k
[i�]

avec !T =
2�kBT

~

F (n) =
X
p

Z
d2k �n

�
p

k
[i�n]

1� �
p

k
[i�n]

: (C-13)

On commence par int�egrer par parties

~A

2�3

X
n�1

eF (n) = � ~A

2�3

X
p

Z
d2k

1Z
0

d�
X
n�1

sin
h
2�n�
!T

i
2�n
!T

@�

�
�

�
p

k
[i�]

1� �p
k
[i�]

�
; (C-14)

le terme de bord �etant nul. On utilise la d�ecomposition [177]

1X
l=1

sin [lx]

l
=
� � x

2
pour 0 < x < 2�; (C-15)

pour obtenir

~A

2�3

X
n�1

eF (n) = � ~A

2�3

X
p

Z
d2k

1Z
0

d�
!T

2�

�
�

2
� ��

!T

�
@�

�
�

�p
k
[i�]

1 � �p
k
[i�]

�

� ~A

2�3

X
p

Z
d2k

1Z
0

d�
!T

2
E

�
�

!T

�
@�

�
�

�
p

k
[i�]

1� �
p

k
[i�]

�
; (C-16)

en notant E (: : :) la fonction partie-enti�ere. R�e�ecrivant

1Z
0

d� E

�
�

!T

�
g(�) =

1X
n=1

1Z
n!T

d� g(�); (C-17)

on obtient

~A

2�3

X
n�1

eF (n) = � ~A

2�3

X
p

Z
d2k

1Z
0

d�
!T

2�

�
�

2
� ��

!T

�
@�

�
�

�
p

k
[i�]

1 � �
p

k
[i�]

�

�~!TA

4�3

X
p

Z
d2k

1Z
n!T

d� @�

�
�

�p
k
[i�]

1 � �p
k
[i�]

�
: (C-18)
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C Miroirs dissipatifs �a temp�erature non nulle 169

Pour n � 1, les bornes d'int�egrations sont toujours parfaitement d�e�nies vis-�a-vis de

�
p

k
[i�], auquel cas on peut �ecrire

~A

2�3

X
n�1

eF (n) = � ~A

2�3

X
p

Z
d2k

1Z
0

d�
!T

2�

�
�

2
� ��

!T

�
@�

�
�

�p
k
[i�]

1 � �
p

k
[i�]

�

+
kBTA

2�2

X
n�1

X
p

Z
d2k �n

�p
k
[i�n]

1� �
p

k
[i�n]

: (C-19)

Sur le dernier terme du membre de droite de cette �equation, on reconnâ�t exactement

les contribution n � 1 de la formule de Lifshitz. Par ailleurs

� ~A

2�3

X
p

Z
d2k

1Z
0

d�
!T

2�

�
�

2
� ��

!T

�
@�

�
�

�
p

k
[i�]

1 � �p
k
[i�]

�
=

�~!TA

8�3

X
p

Z
d2k

1Z
0

d� @�

�
�

�p
k
[i�]

1� �
p

k
[i�]

�

+
~A

4�3

X
p

Z
d2k

1Z
0

d� �@�

�
�

�
p

k
[i�]

1 � �p
k
[i�]

�
: (C-20)

Le dernier terme est int�egr�e par parties, le terme de bord �etant nul. On a donc

~A

4�3

X
p

Z
d2k

1Z
0

d� �@�

�
�

�
p

k
[i�]

1� �
p

k
[i�]

�
= � ~A

4�3

X
p

Z
d2k

1Z
0

d� �
�
p

k
[i�]

1 � �
p

k
[i�]

:(C-21)

On reconnâ�t le terme ~A

4�3
eF (0) de notre formulation. On a donc pour la di��erence entre

notre formulation et celle de Lifshitz

�F = �~!TA

8�3

X
p

Z
d2k

1Z
0

d� @�

�
�

�p
k
[i�]

1� �p
k
[i�]

�
� kBTA

4�2
F (0) : (C-22)

Si une int�egration directe du premier terme de cette di��erence est possible, alors on a

simplement

�F = 0: (C-23)

Si en revanche
�
p

k
[i�]

1��p
k
[i�]

n'est pas d�etermin�e �a la limite quasistatique, alors l'int�egration

n'est pas autoris�ee et on reste avec un terme de di��erence non nul.

C'est typiquement le cas pour le mod�ele de Drude o�u l'on a

F (0) =
X
p

Z
d2k jkj �TM

k
[0]

1� �TM
k

[0]
: (C-24)
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170 Annexe

�TM
k

[i�]

1��TM
k

[i�]
est partout continu mais

�TE
k

[i�]

1��TE
k

[i�]
est discontinu au point quasistatique � = 0.

On a donc

�F = �~!TA

8�3

X
p

Z
d2k

1Z
0

d� @�

�
�

�TE
k

[i�]

1 � �TE
k

[i�]

�
: (C-25)

C'est ce terme qui est �a l'origine des pr�edictions divergentes que nous discutons dans

le corps du chapitre 5.

C.4 Limite de dissipation nulle

Nous rappelons, sous une forme adapt�ee pour cette discussion, la structure des

amplitudes de r�e
exion quand on utilise (C-10). On peut �ecrire

rTE
k

[i�] =
1 � zTE
1 + zTE

rTM
k

[i�] =
1� zTM

1 + zTM

avec les imp�edances donn�ees sous la forme

zTE =

q
�2

c2
+ k2 +

!2P
c2
(1��)q

�2

c2
+ k2

zTM =

�
1 +

!2P
�2
(1 ��)

�q
�2

c2
+ k2q

�2

c2
+ k2 +

!2P
c2
(1��)

: (C-26)

On a not�e et isol�e le terme

� =
�

� + �
; (C-27)

tel que �! 0 pour � ! 0. On a donc bien sûr pour les amplitudes de r�e
exion, �a la

limite �! 0�
rTE
k

[i�]Drude ; rTM
k

[i�]Drude
�

!
�
rTE
k

[i�]plasma
; rTM

k
[i�]plasma

�
: (C-28)

Notre formulation s�epare naturellement les facteurs correspondant aux di��erentes

corrections

�F = �DrudeF +
�
�TF � 1

�
+��DrudeF : (C-29)

Les termes �DrudeF et �TF ont d�ej�a �et�e explicit�es, �DrudeF;E num�eriquement au chapitre 3. Le

terme �TF , explicit�e au chapitre 4, est un terme de correction thermique, ind�ependant

de la r�eponse optique du miroir. Pour le terme de m�elange des corrections ��DrudeF ,

d'apr�es la section C du chapitre 4

��DrudeF =
240L4

c�5

1X
m=1

Z
d2k

1Z
0

d� cos

�
2�m�

!T

�
� �fDrude; (C-30)
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o�u l'on a not�e

�fDrude =
X
p

�
p

k
[i�]Drude

1 � �p
k
[i�]Drude

� 2e�2�L

1 � e�2�L
: (C-31)

Etant donn�e la structure (C-26) des amplitudes de r�e
exion pour le mod�ele de Drude,

on peut �evaluer le terme �fDrude au premier ordre en �P
L
, comme nous l'avons d�ej�a

pr�esent�e en (A-10), et obtenir

�fDrude � � e2�L

(e2�L � 1)2

�
1 �

�
rTE
k

[i�]Drude
�2

+ 1 �
�
rTM
k

[i�]Drude
�2�

� � e2�L

(e2�L � 1)2
2��P
�

�
1 +

�2

c2�2

�
�

� �fplasma� avec � =
1p

1��
: (C-32)

Ce facteur � =
q
1 + �

�
est un facteur multiplicatif contenant �a lui seul l'e�et de la

dissipation non nulle sur le calcul du terme correctif de m�elange. On a imm�ediatement

�! 1 pour �! 0: (C-33)

La d�ecomposition (C-29) d�emontre alors l'identit�e des comportements pour le mod�ele

plasma et pour le mod�ele de Drude dans la limite �! 0.
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R�esum�e

Nous �etudions la force de Casimir entre deux miroirs m�etalliques �a temp�erature non nulle. Nous

d�eveloppons les outils th�eoriques n�ecessaires �a une �evaluation pr�ecise de cette force et qui permettent

une comparaison de haute pr�ecision avec les mesures exp�erimentales r�ecentes.

A partir de la notion de r�eseau optique, nous caract�erisons la di�usion des 
uctuations du vide

�electromagn�etique sur une cavit�e Fabry-Perot et calculons la force de Casimir comme la di��erence

des pressions de radiation exerc�ees par ces 
uctuations �a l'int�erieur et �a l'ext�erieur de la cavit�e.

L'e�et de r�e
exion imparfaite des miroirs est pris en compte en �etudiant leur r�eponse optique,

d'abord pour des miroirs di�electriques puis pour des miroirs m�etalliques. Nous d�etaillons le rôle des

propri�et�es de causalit�e, de stabilit�e et de transparence �a haute fr�equence des amplitudes de di�usion.

Nous calculons �egalement la force de Casimir �a temp�erature ambiante en �evaluant l'e�et induit

par les 
uctuations thermiques du champ. En tenant compte simultan�ement de cet e�et et de

l'e�et de r�e
exion imparfaite des miroirs, nous montrons que ces deux e�ets sont corr�el�es et que

cette corr�elation doit être consid�er�ee pour une �evaluation de haute pr�ecision. Dans le cadre de

notre formulation, nous r�esolvons la pol�emique li�ee au calcul de la force entre miroirs dissipatifs �a

temp�erature non nulle.

Finalement, nous analysons les probl�emes de g�eom�etrie et de rugosit�e li�es aux exp�eriences. En

particulier pour la question de la rugosit�e de surface des miroirs, nous montrons pour des miroirs

parfaits que l'approximation de proximit�e n'est pas toujours valable. Nous insistons sur les e�ets de

sensibilit�e li�es �a la d�ependance spectrale de la rugosit�e.

Mots-cl�es : force de Casimir, 
uctuations du vide et thermiques, r�eseaux optiques, amplitudes

de di�usion, pression de radiation, miroirs dissipatifs, plasmons de surface, th�eorême de proximit�e,

spectre de rugosit�e.

Abstract

We study the Casimir force between two metallic mirrors at non zero temperature. We develop

theoretical methods for a high precision evaluation of the force in order to compare with recent

measurements.

From the theory of optical networks, we characterise the scattering of the electromagnetic vacuum


uctuations on a Fabry-Perot cavity and we calculate the Casimir force as the di�erence of radiation

pressures exerted by these 
uctuations inside and outside the cavity.

The e�ect of imperfect re
ection of the mirrors is considered by studying the optical response of

dielectric mirrors and metallic mirrors. We detail the role of causality, stability and high frequency

transparency properties of scattering amplitudes.

We calculate also the Casimir force at room temperature evaluating the e�ect induced by the

thermal 
uctuations of the �eld. A simultaneous calculation of thermal corrections and the e�ect

of imperfect re
ection shows that both e�ects are correlated. This correlation has to be considered

in a high precision evaluation. In the framework of our formulation, we explain the problem of the

evaluation of the force between dissipative mirrors at non zero temperature, subject of a polemical

debate.

Finally, we analyse problems of geometry and mirrors surface roughness connected to the exper-

iments. In particular for the problem of surface roughness, we show for perfect mirrors that the

proximity force approximation is not always valid. We show the importance of sensibility e�ects

related to the roughness spectrum.

Keywords : Casimir force, vacuum and thermal 
uctuations, optical networks, scattering ampli-

tudes, radiation pressure, dissipative mirrors, surface plasmons, Proximity Force Theorem, roughness

spectrum.
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