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Introduction 5

Introduction

L’avenement de la théorie quantique a changé en profondeur nos conceptions de
I’espace vide en nous obligeant a concevoir le vide comme “rempli” de fluctuations
quantiques du champ. L’électrodynamique classique, et en particulier les équations de
Maxwell, ont défini I’espace comme le cadre dans lequel s’écrivent les lois de propagation
du champ électromagnétique. Pour la physique classique, cet espace peut se concevoir
dans la limite idéale d’'un espace vide aussi bien de matiere que de champ. Cette
idéalisation est remise en cause par les travaux de Planck sur le rayonnement du corps
noir. C’est pour expliquer les propriétés de ce rayonnement présent dans tout ’espace
et exercant une pression sur les bords de toute cavité que Planck introduit sa premiere
loi quantique en 1900. En termes actuels, cette loi donne 1’énergie moyenne par mode
électromagnétique comme le produit F de I’énergie d’un photon Aw par un nombre
moyen de photons 7 par mode du champ [1]

F = nhw n =
Cette loi est valable a 1’équilibre thermodynamique a une température T', kg est la
constante de Boltzmann et A la constante de Planck. Le nombre de photons par mode
tend vers zéro a la limite de température nulle, quelle que soit la fréquence. Il est
donc toujours possible en 1900 de considérer un espace vide, débarrassé par pompage
de toute matiere puis de tout rayonnement en abaissant la température jusqu’au zéro
absolu.

Cependant, cette définition est remise en cause par les développements ultérieurs
de la théorie quantique naissante. En 1911, Planck reprend son travail et obtient une

expression différente avec un terme supplémentaire [2]

— 1

La différence entre ces deux lois de Planck est justement ce que nous appelons au-

jourd’hui les “fluctuations de point zéro”, ou fluctuations du vide, qui subsistent a la
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limite d’une température nulle. Cette deuxieme loi dit en effet qu’a cette limite restent
des fluctuations de champ qui correspondent a la moitié de I’énergie d’un photon par
mode.

L’histoire des deux lois de Planck et les débats qu’elles ont engendrés sont discutés
dans un certain nombre d’articles et d’ouvrages [3, 4, 5, 6]. 1l est intéressant de rappeler
que de nombreux physiciens prirent au sérieux les travaux de Planck des 1912. Parmi
eux, Finstein et Stern remarquent en 1913 que la deuxieme loi de Planck, contrairement

a la premiere, donne le comportement correct a la limite classique [7]

1 1

Debye, des 1914, affirme que les fluctuations de point zéro des oscillateurs matériels
doivent avoir des effets observables. Il prévoit de tels effets sur les intensités de pics
de diffraction [8]. Mulliken fournit en 1924 les premieres preuves expérimentales de ces
fluctuations en étudiant des spectres vibrationnels de molécules [9].

La plupart des physiciens préferent attribuer les fluctuations quantiques aux oscilla-
teurs matériels plutot qu’aux champs. Bien str, Einstein constitue une exception depuis
son fameux papier de 1905 sur la nature du rayonnement [10] jusqu’a la découverte
de la statistique de Bose-Einstein en 1924 [11, 12, 13] en passant par la description
des statistiques de photons [14] ou celle des coefficients d’émission ou d’absorption [15]
(voir [16] pour une discussion de ces contributions). Nernst tient également une place
a part dans cette histoire en étant le premier en 1916 a affirmer clairement que les
fluctuations de point zéro existent aussi pour les modes du champ électromagnétique
[17]. I discute cette conséquence que 'espace vide, tel que les conceptions classiques
se le représentent, n’existe pas, méme a température nulle. Il souligne des 1916 que la
présence de ces fluctuations crée un probleme vis-a-vis de la théorie de la gravitation
dans la mesure ou 'on ne voit pas 'effet gravitationnel de ’énergie du vide.

On peut insister sur le fait que ces discussions ont commencé avant méme que
I’existence de ces fluctuations soit confirmée par des calculs quantiques completement
cohérents [18]. Mais ces calculs, effectués tres rapidement apres la naissance de la théo-
rie quantique, démontrent I'existence des fluctuations du vide. Dirac [19] montre que
chaque mode du champ peut étre quantifié comme un oscillateur harmonique matériel
[20] et que I'état fondamental a donc une énergie thw. Cette énergie peut aussi se
comprendre comme le résultat des relations de Heisenberg sur le champ.

Celui-ci se décompose dans n’importe quel mode comme une somme de deux com-

posantes de quadrature, c’est-a-dire de composantes en cosinus et sinus de 'onde de
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fréquence w
E =& coswt + & sin wt.

Les deux quadratures & et & obéissent a une inégalité de Heisenberg similaire a celle
bien connue pour la position et 'impulsion d’un oscillateur matériel [21]. Si on définit
la variance Ax d’une variable statistique x par la relation habituelle

Az = Va? — 72,

alors les variances A& et A&, des deux quadratures ont un produit nécessairement

supérieur a une certaine constante &3
2
AEANE, > &F.

Cette constante & est calculable a partir des constantes fondamentales et de la fré-
quence w et elle caractérise le niveau des fluctuations quantiques. En fait, Pénergie £
dans le mode étant proportionnelle & £ + &2, I'inégalité de Heisenberg implique que

cette énergie est supérieure a un minimum

E > —ho.

[N

Le vide est alors défini comme 1’état ou I’énergie est minimale, ce qui suffit pour dé-

terminer toutes les propriétés de cet état
— 1 -
E:§hw 5 51252:0 5 AglegQZgo.

Dans cet état, les valeurs moyennes de & et de & sont nulles et les variances sont égales
entre elles tout en minimisant leur produit. Ce minimum correspond aux fluctuations
du vide [22].

Dans ces mémes années ou la cohérence de la théorie quantique se construit, London
[23] donne une interprétation quantique des forces d’interaction entre atomes ou molé-
cules neutres, connues depuis les travaux de Van der Waals [24]. Ces forces expliquent
un grand nombre de phénomenes. Elles jouent un role crucial en chimie des colloides,
domaine étudié par Overbeek et Verwey et dans lequel I'attraction de type Van der
Waals entre colloides détermine les propriétés de stabilité [25]. Overbeek, observant
un désaccord entre la théorie de London et les mesures qu’il effectue, remarque que la
théorie de London est fondée sur des interactions instantanées. C’est a Casimir qu’il

demande d’étudier I'influence éventuelle de la vitesse finie de propagation du champ
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électromagnétique sur la force de Van der Waals [26]. Avec Polder, Casimir parvient a
donner une expression complete de la force de Van der Waals en tenant compte de cette
vitesse finie [27]. C'est en fait un des premiers exemples d’utilisation des méthodes de
I’électrodynamique quantique. Le papier de Casimir et Polder traite aussi le cas de
I'interaction entre un atome et une paroi parfaitement réfléchissante.

Tres vite, Casimir réalise que ses résultats peuvent s’interpréter et se redériver di-
rectement a partir de la notion d’énergie du vide [28]. Prolongeant son analyse, Casimir
observe que les fluctuations du vide se manifestent par des effets physiques observables
sur des miroirs macroscopiques. ’énergie du vide calculée en présence de deux miroirs
dépend de leur distance. Il en résulte que les fluctuations du vide se manifestent par
des forces exercées sur les parois de la cavité que forment ces deux miroirs. C’est la
premiere prédiction d’un effet mécanique macroscopique des fluctuations du vide [29].

Casimir considere une cavité formée par deux miroirs parfaitement plans et paral-
leles entre eux (figure 0.1). La surface A des miroirs est supposée beaucoup plus grande
que le carré de la distance L afin de pouvoir négliger tout effet de diffraction sur les
bords des miroirs. En considérant le cas de miroirs parfaitement réfléchissants, Casimir
calcule la force mécanique exercée par les fluctuations du vide sur ces miroirs. Il obtient
les expressions suivantes pour la force et I’énergie, que nous notons respectivement Fi,q
et Foas

B hem? A e hem? A
T 2404 ’ Cas = 903

=

FCas

(A>L%). (0-1)

T AL

>

L

Fic. 0.1 — La configuration géométrique étudiée par Casimir.

Cette force est attractive et ’énergie est une énergie de liaison. On utilise des
conventions de signes qui sont les plus courantes dans les travaux sur l'effet Casimir.
Bien que ce ne soit pas la convention thermodynamique habituelle pour les énergies,
nous la conservons dans toute la suite du travail.

Il est intéressant de noter que dans ce cas idéal des miroirs parfaitement réfléchis-
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sants, les expressions de la force et de I’énergie ne dépendent que de parametres géomé-
triques et de deux constantes fondamentales: la vitesse de la lumiere ¢ et la constante
de Planck f, cette derniere mettant clairement en évidence le caractere essentiellement
quantique de Deffet Casimir. Ces expressions ne font pas intervenir la charge de 1’élec-
tron, comme c’est le cas pour les forces de Van der Waals. Cette propriété d’universalité
de la force et de I’énergie de Casimir entre deux miroirs parfaitement réfléchissants cor-
respond, comme I’a montré Lifshitz [30], a la saturation de la réponse des miroirs qui
ne peuvent réfléchir plus de 100% de la lumiere incidente.

La force de Casimir a une amplitude faible : pour des miroirs de surfaces A = lcm?,
séparés d’une distance L = lpum, Foas ~ 0.1uN. Cependant, il est possible d’observer
expérimentalement et de mesurer une telle force. Peu apres la prédiction théorique
de Casimir, un certain nombre d’expériences ont permis de mettre 'effet en évidence
[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Ces dernieres années,
des progres considérables ont été réalisés sur la mesure de la force entre miroirs mé-
talliques [48, 49, 50, 51, 52, 53, 54, 55]. Ces expériences atteignent aujourd’hui une
précision expérimentale qui permet de comparer directement et quantitativement les
résultats de mesures aux prédictions théoriques. Nous développerons plus tard ces as-
pects expérimentaux pour donner les détails qui nous seront nécessaires.

Cette nouvelle génération d’expériences de haute précision est pour une tres large
part a lorigine d’un renouveau des études théoriques sur 'effet Casimir. Pour compa-
rer sérieusement les résultats expérimentaux aux prédictions théoriques, il faut tenir
compte des différences entre le cas idéal envisagé par Casimir et les situations réelles
des expériences. Lifshitz a le premier développé une théorie de 'effet Casimir entre
miroirs diélectriques pour commencer a rendre compte de ces différences [30]. Dans
ce travail tout a fait essentiel, Lifshitz a introduit la prise en compte détaillée de la
réponse optique des miroirs ainsi que celle des fluctuations.

Des erreurs mineures dans les calculs de Lifshitz ont déclenché une floraison de
contributions théoriques contradictoires et cette floraison a continué jusqu’a nos jours.
En particulier, Schwinger, de Raad, Milton ont repris les calculs de Lifshitz entre deux
miroirs métalliques a température non nulle [56]. Leur méthode, appelée depuis la
“prescription de Schwinger”, est encore aujourd’hui 1’'objet de discussions polémiques
dans la littérature [57] et nous y reviendrons dans ce manuscrit de maniere détaillée.

Il faut également signaler le tres grand nombre de papiers théoriques sur 'effet Ca-
simir dans les configurations les plus variées. En ce qui concerne ces travaux, nous nous
contentons ici de renvoyer aux articles de revues ou livres dans lesquels sont citées des

centaines de références [58, 59, 60, 61] (voir également les contributions au Séminaire
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Poincaré sur 1’énergie du vide [62]).

Dans ce travail, nous nous concentrerons sur les sujets liés directement aux situa-
tions étudiées expérimentalement. Ceci nous restreint a l’effet des fluctuations du vide
électromagnétique mais concerne encore plusieurs effets importants. Nous discuterons
ces effets de maniere détaillée en gardant a I'esprit notre objectif essentiel, celui d’une
comparaison précise entre les résultats des expériences et les prédictions théoriques.

Pour illustrer cette idée, considérons la figure 0.2 ou sont représentés les résultats
expérimentaux de 'expérience menée a I’Université de Riverside en Californie ainsi que

la courbe représentant les prédictions théoriques.
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Fic. 0.2 — Comparaison entre les données expérimentales et les prédictions théoriques pour
la force de Casimir, reportée en [51]. Les carrés et barres représentent les points
expérimentauz et les barres d’erreur pour quelques uns d’entre euz ; la ligne conti-
nue représente lévaluation théorique. Avec Uaimable autorisation de U. Mohideen.

L’accord théorie-expérience observé sur cette courbe n’a pu étre obtenu qu’en te-
nant compte de quatre types de corrections entre la situation idéale de Casimir et celle
des expériences :

- d’abord la correction importante liée a la géométrie des expériences, pour lesquelles

la force est mesurée entre un miroir plan et un miroir sphérique, et non entre deux

miroirs plans paralleles, comme dans la configuration initiale de Casimir,

- ensuite la réponse optique des miroirs métalliques utilisés qui, contrairement a celle

de miroirs parfaits, dépend de la fréquence du champ incident,

- puis les effets thermiques, qu’il faut nécessairement évaluer sur ces expériences réali-

sées a température ambiante,
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- et enfin les corrections de rugosité de surface des miroirs.

La force de Casimir est la conséquence expérimentale la plus accessible a ’échelle
macroscopique des fluctuations du vide. C’est une prédiction fondamentale de la théo-
rie quantique des champs qui est directement liée a une des principales difficultés de la
physique fondamentale aujourd’hui, a savoir le probleme de ’énergie du vide. Ce pro-
bleme, repéré depuis longtemps, n’a toujours pas de solution satisfaisante et il est donc
important de 1’étudier de facon approfondie [63]. De plus, ce probleme est directement
lié a celui de la constante cosmologique [64, 65], en plein renouveau aujourd’hui apres
I’observation de 'accélération de I’expansion cosmologique (voir les contributions de N.
Straumann et M. Turner dans [62]). Toute définition opérationnelle du vide nécessite la
définition d’une enceinte délimitant un espace vide et la force de Casimir, de ce point
de vue, est précisément la manifestation physique des fluctuations du vide lorsqu’on
les enferme dans une enceinte.

Il faut également noter que 'analyse des caractéristiques de la force de Casimir
est largement justifiée par les mesures tres précises de force qui se développent a des
distances entre le nanometre et le micrometre. L’objectif de ces mesures est de tester la
gravité newtonienne a courte distance [66], en particulier pour la recherche de nouvelles
forces prévues par les modeles théoriques d’unification et ayant des portées comprises
entre le nanometre et le millimetre [67, 68, 69]. On peut également citer la recherche
de dimensions supplémentaires compactes éventuelles qui se manifesteraient aussi par
de nouvelles forces [70]. Tous ces tests consistent donc essentiellement & mettre des
contraintes sur d’éventuelles déviations de la théorie standard actuelle, en comparant
les résultats expérimentaux aux prédictions théoriques.

On suppose souvent qu’une éventuelle nouvelle force est décrite par un potentiel
de Yukawa avec une portée A et une amplitude a mesurée relativement a la force de

Newton

Vir) = Gimme <1 + oze_%) :

12

ou (i est la constante newtonienne de gravitation et 5 la distance entre les deux objets
macroscopiques considérés de masses my et my. Une mesure précise de la force a une
distance I permet alors d’exclure les amplitudes supérieures a une certaine valeur «

pour une certaine portée A. Cet argument est illustré sur la figure 0.3

Aux distances millimétriques, les mesures sont en fait des tests de la force de gra-
vité newtonienne [71]. A des distances inférieures a la centaine de microns, la force

de Casimir est la force dominante entre deux objets neutres non magnétiques et toute
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Fic. 0.3 — Fspace des parameétres pour des forces de type Yukawa sur lequel Uamplitude o, re-
lative a la gravité newtonienne, est tracée en fonction de la portée A. Les frontieres
(lignes continues), déduites des expériences, délimitent pour (a, \) les domaines

exclus au-dessus des frontiéres. Avec Uaimable autorisation de J. Long.

mesure de nouvelles forces hypothétiques est en fait une comparaison de précision entre
un résultat expérimental et une prédiction théorique de la force de Casimir [66, 69].

Ce travail de these s’inscrit dans ce contexte de comparaisons théorie-expérience
pour lesquelles I'exactitude des calculs théoriques devient aussi cruciale que la préci-
sion des expériences. Son but est donc de développer des méthodes théoriques fiables
pouvant caractériser les situations expérimentales réelles.

Contrairement aux méthodes utilisées habituellement en théorie des champs, nos
méthodes sont basées fondamentalement sur le fait que les fluctuations du vide obéissent
aux lois de 'optique et qu’ainsi les diffuseurs peuvent étre simplement caractérisés par
leurs amplitudes de diffusion, comme on en a I’habitude en optique [72, 73]. Le premier
chapitre de ce mémoire consistera a mettre en place les outils nécessaires a la descrip-
tion de ces amplitudes de diffusion. Nous verrons comment construire cette description
de maniere systématique a partir de matrices de transfert T' et de matrices de diffusion
S de la théorie des réseaux [74, 75] en utilisant les symétries du diffuseur plan. Nous
commencerons par les détailler dans le cas simple d’une interface entre deux milieux
diélectriques. Nous verrons comment composer des réseaux élémentaires pour traiter

des systemes composés, la lame et le multi-couche diélectriques, puis comment décrire
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la situation d’une lame diélectrique absorbante en utilisant les propriétés d’unitarité
de la diffusion.

Une fois les propriétés de diffusion des miroirs ainsi détaillées, nous traiterons dans
le deuxieme chapitre la cavité formée par les deux miroirs comme une simple cavité
Fabry-Perot. Nous définirons une matrice de résonance R reliant les champs a I'inté-
rieur de la cavité aux champs incidents. Nous calculerons la force de Casimir comme
la différence des pressions de radiation entre les cotés externe et interne des miroirs.
Nous verrons que la force peut s’écrire comme une intégrale réguliere sur les fréquences
imaginaires grace aux propriétés de causalité, de stabilité et de transparence a haute
fréquence des amplitudes de diffusion [76]. Ces propriétés sont vérifiées pour tout mi-
roir physique et I’expression obtenue est automatiquement finie, sans aucune nécessité
de recourir aux procédures de régularisation-renormalisation généralement invoquées
[77, 78, 79]. Nous retrouverons ’expression idéale de Casimir dans la limite des miroirs
parfaits. Nous verrons également que ce calcul de pression de radiation donne un ré-
sultat interprétable comme une formule des déphasages, permettant de relier la force
de Casimir a la matrice S globale de la cavite.

Le troisieme chapitre étendra ces résultats au cas des miroirs métalliques qui sont
utilisés dans les expériences récentes. Nous présenterons les différences essentielles entre
un matériau diélectrique dans lequel les électrons sont liés et un métal dont les porteurs
sont libres. Le premier modele de métal que nous envisagerons est le modele plasma
qui décrit une dynamique sans friction des électrons de conduction. Ce modele mettra
clairement en évidence les caractéristiques essentielles de la force de Casimir entre mi-
roirs métalliques, notamment la correction due précisément a une conductivité finie du
métal. Une description plus fine du métal sera ensuite donnée par le modele de Drude
qui rend compte des processus de relaxation des électrons de conduction. Cet effet de
la relaxation étant dominant dans un domaine de fréquences pour lequel la réponse
optique du miroir est déja presque saturée, cette relaxation jouera peu vis-a-vis de
la force de Casimir. En revanche, les modifications de la réponse du métal dues aux
transitions inter-bandes auront un effet significatif sur la force pour certaines distances.
Nous en tiendrons compte en décrivant le métal a partir des données optiques réelles
tabulées. Il apparaitra alors clairement qu’une description fine des propriétés optiques
du métal est nécessaire pour atteindre la précision du pourcent dans I’évaluation de la
force de Casimir.

A partir de ces résultats donnés a température nulle, nous inclurons I'effet des fluc-
tuations thermiques sur I’évaluation de la force de Casimir dans le quatrieme chapitre.

Nous définirons un facteur correctif incluant a la fois les corrections de conductivité
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et les corrections thermiques. Il sera alors possible de dégager la notion essentielle de
corrélation entre ces deux corrections. Nous expliciterons cette corrélation dans le cadre
du modele plasma et nous en dégagerons des caractéristiques intéressantes permettant
d’atteindre une haute précision pour I’évaluation théorique de la force de Casimir.

Cette question se pose dans un contexte polémique au sein duquel l'inclusion de la
température en méme temps que celle de la dissipation dans les miroirs a engendré des
résultats contradictoires. Nous discuterons l'origine de ces difficultés dans le chapitre 5.
Nous montrerons comment notre formulation fournit des résultats dépourvus de toute
ambiguité et nous discuterons la relation entre ces résultats et ceux qui sont disponibles
dans la littérature.

Dans le sixieme et dernier chapitre, nous procederons a une revue des expériences
et nous aborderons les problemes des effets géométriques sur la force de Casimir. Cette
question de la géométrie recouvre en méme temps le probleme de la configuration plan-
sphere utilisée dans la plupart des expériences et le probleme de la rugosité de surface
des miroirs. Ces effets sont évalués habituellement a partir d’une méme approximation,
dite approximation de proximité. Nous discuterons la validité de cette approximation
et mettrons en évidence que cette question se présente de facon bien différente pour les
problemes de configuration plan-sphere et de rugosité.

Ceci nous permettra de conclure en discutant les différentes corrections qui inter-
viennent dans les expériences et en proposant une évaluation de leur degré de précision.
Ce tableau de la situation actuelle nous amenera finalement a indiquer les projets théo-

riques et expérimentaux qui nous paraissent importants.
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Chapitre 1

Diffusion par un miroir

Les fluctuations du vide obéissent aux lois de l'optique et 1'effet Casimir est di a
la diffusion de ces fluctuations sur les miroirs de la cavité. Ces miroirs sont eux-mémes
caractérisés par des amplitudes de diffusion, comme c’est 1'usage en optique [72, 73].
Ce premier chapitre a pour but de présenter les méthodes générales pour décrire ces
processus de diffusion en utilisant les symétries du probleme.

Ici, nous étudions la diffusion par des miroirs parfaitement plans, paralleles et im-
mobiles. La diffusion est stationnaire, ce qui se traduit par I'invariance du systeme par
translation de temps. A cette symétrie correspond la conservation de la fréquence w
du champ au cours de la diffusion. Les miroirs plans sont pris également infiniment
étendus dans la dimension transverse (e, e,). La géométrie est invariante par transla-
tion de 'espace dans la direction transverse, c’est-a-dire le long du plan des miroirs.
Cette symétrie se traduit par la conservation, au cours du processus de diffusion, du
vecteur d’onde transverse des champs incident, réfracté et réflechi k = ke, + k,e,. Les
polarisations TE et TM sont elles aussi conservées dans le processus de diffusion. Par
symétrie cylindrique, on pourra supposer une incidence dans le plan (e;,e.). Dans un
milieu caractérisé par son indice n = /¢, ott I'on a noté ¢ la permittivité du milieu, la
propagation oblique se décrit par les relations

k, = ¥ nsin 0 \ k, = “ncos 0 (1-1)
c c

entre la fréquence w, I'angle de réfraction # et le vecteur d’onde.

Cette analyse identifie les parametres les mieux adaptés a la description de la dif-
fusion du champ sur un miroir. Ces parametres, la fréquence du champ w, les vecteurs
d’onde transverses associés k et la polarisation p sont les quantités conservées au cours

du processus et sont utilisés comme les “bons nombres quantiques” dans la suite.
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Ces symétries vont nous permettre d’introduire les matrices de diffusion S et de
transfert T' de la théorie des réseaux électromagnétiques [74, 75]. Ces matrices seront
les éléments constitutifs de notre description théorique de la diffusion et elles seront
utilisées dans toute la suite du travail. Nous commencons a expliciter ces outils dans le
cas d’une interface entre deux milieux. En traduisant également dans ce point de vue
la propagation du champ dans un milieu, nous décrivons ensuite une lame diélectrique
et d’autres miroirs composés tels que les multicouches diélectriques. Nous insistons
sur le caractere systématique de ces descriptions écrites sur des lois de composition
construites sur les matrices T'.

Ce travail nous permettra également de caractériser simplement la diffusion du
champ sur une lame absorbante. En utilisant uniquement la propriété d’unitarité dans
la diffusion des champs quantiques, nous montrons que le bruit ajouté dans une lame
absorbante s’écrit en fonction des amplitudes de diffusion déja calculées. Cette pro-
priété jouera un role important pour le calcul de la force de Casimir dans le prochain

chapitre.
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A L’interface entre deux milieux

Nous étudions pour commencer la situation d’une interface parfaitement plane sépa-
rant deux milieux diélectriques dispersifs d’indices respectifs n; et ny. Par conservation

du vecteur transverse et de la fréquence, on déduit les lois de la réfraction

ck, . .
— =n;sinf; = nqsin b,.
w

Le vecteur longitudinal k., lui, n’est pas conservé et c’est précisément en son change-
ment de signe que consiste la réflexion. La réfraction vers le second milieu modifie k,

de sorte que la relation constitutive (1-1) est vérifiée dans les deux milieux.

A.1 Les deux polarisations

Les deux polarisations du champ correspondent aux géométries présentées sur la
figure 1.1. Nous utilisons les conventions usuelles [80, 81]: la polarisation transverse
électrique TE correspond a un vecteur champ électrique perpendiculaire au plan d’in-
cidence et la polarisation transverse magnétique TM correspond a un vecteur champ
électrique contenu dans ce plan. La symétrie des miroirs plans et paralleles permet de
traiter séparément ces deux polarisations a travers tout le processus de diffusion par la

cavité.

Fic. 1.1 — Géométrie des directions de propagation et des champs électriques pour les deux
polarisations TM et TFE.

On commence par considérer une onde incidente en polarisation TM. On a donc

toujours

EM=H™M=0. (1-2)

En notant les champs incident &, transmis & et réfléchi E..¢, on obtient

BN = (&M +EL) costy

T

HTY = (g™ gM)p,

ref
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™ _  oTM
E., = &, cosb

HY = &Mn,. (1-3)

Pour simplifier au maximum les expressions, nous écrivons les amplitudes des champs &
au voisinage immédiat de 'interface. Par ailleurs, ’onde incidente correspond au milieu
1. La situation réciproque sera traitée plus loin. Enfin, il est a signaler que nous avons
défini les champs magnétiques H avec la méme dimension que les champs électriques
E. Dans chaque milieu, I'amplitude du champ H est celle du champ £ multipliée
par l'indice n correspondant. Les conditions générales de continuité des composantes
tangentielles des champs a l'interface permettent d’écrire les équations de continuité
suivantes

(EM 4+ € cos by = ELM cos b,

T

(EM - = EMn.. (1-4)

ref
Il est intéressant pour la suite de former le rapport entre ces deux équations

EilTjM + ETe%/[ _ nycosby

I
TM ™
gin - g

ref

(1-5)

Ny cos 04

et de calculer leur produit

np cos <<E$M>2 — <ETM>2> = ngy cos by (EtTrM>2 ) (1-6)

ref

Pour une onde polarisée TE, la vibration du champ électrique s’effectue normale-

ment au plan d’incidence

EF=H"=0. (1-7)

Comme précédemment, nous écrivons les champs dans chaque milieu

B - (6 el

vl r
Hg? = — <g$E - 512?) 1, cos 8y

E}Y = &F°

Y = —&Fn,cos b, (1-8)

et nous obtenons les relations de continuité

TE TE _ TE
gin + gef - gtr

T

(E1F — Exf)nicosty = E3Fnycosbs. (1-9)

ref
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Pour le rapport entre ces deux équations, on trouve une expression analogue a (1-5)

avec les facteurs de projection cos#; interchangés

EiEE + ETefE _ nycosb

rel ) 1-10
EE — EgafE N9 cos Oy ( )

Par contre, le produit des équations (1-9) a la méme forme qu’en (1-6)
ny cos 04 <<5$E>2 - (ELE>2> = ngy cos by (EtTrE>2 . (1-11)

A.2 Les amplitudes de diffusion

A ce stade, on définit "amplitude de réflexion comme le rapport du champ réfléchi

au champ incident, pour chaque polarisation,

gref

2 = 3

1

(1-12)

L’indice 1 | 2 désigne la diffusion d’un champ incident par I'interface, du milieu 1 vers

le milieu 2. On déduit de (1-5) et (1-10) les expressions explicites de ces amplitudes de

réflexion
TTE . kz,l - kz,?
12 =
| kz,l —I' kz,?
1k, — 0k
™ 1fvz,2 2Mvz,1
™2 = —3 7 -3 (1-13)

erk. o + g2k,

On définira également et de la méme fagon les coefficients de transmission comme

le rapport entre 'onde transmise et I’onde incidente

Eur
t1|2 — g—t

1

(1-14)

On établit a I'aide des équations (1-4) et (1-9) les relations entre ces amplitudes de

transmission et les amplitudes de réflexion

L = cos 0, (1 12 )
Hp = 1+r5. (1-15)

On obtient ainsi les expressions explicites

tTE _ ka,l
12 kz,l—l'kz,Z
2e0k,,
= ——= (1-16)

eok.1 + 1k 2
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En utilisant (1-6) et (1-11), on obtient également des relations entre les carrés des

amplitudes, avec la méme forme pour les deux polarisations
kz,l (1 - 7“1|22> = kz,? t1|22- (1‘17)

Nous avons utilisé la relation (1-1) entre les vecteurs d’onde et les angles.
On peut réécrire les conditions de continuité en termes d’impédances. Celles-ci n’ont
pas la méme forme pour les deux polarisations parce que les facteurs de projection cos

n’interviennent pas de la méme facon

g™ _ n E™
Y cosf °
H™ = —ncos GE;FE. (1-18)

Ces relations s’écrivent dans chacun des deux milieux (m = 1, 2) en fonction de facteurs

d’impédances

™ _ m
mo T cos 0,
ZTTHE = n,,cosb,,. (1-19)

Nous avons omis le signe global qui ne se manifeste pas. En utilisant ces impédances,

les amplitudes de réflexion s’écrivent de la méme facon pour les deux polarisations

21— 22

(1-20)

2= —
zZ1 + 22

Nous retrouvons avec ces notations les notions d’impédances de surface, avec toutefois

des conventions différentes des conventions usuelles [82].

A.3 La réciprocité

On peut décrire simplement la situation ou la méme interface est traversée avec
le sens inverse de propagation. Ceci correspond a la situation réciproque de la précé-
dente, et elle est obtenue par échange des deux directions de traversée de 'interface.
La situation réciproque correspond aussi a une symétrie spatiale par rapport au plan

de I'interface suivie de I’échange des indices des deux milieux (voir la figure 1.2).

Les miroirs étant immobiles, la fréquence est conservée dans cette symétrie. Le

vecteur d’onde et le champ électrique se transforment comme des vecteurs!. On définira

1. Alors que le champ magnétique se transforme comme un ’pseudo-vecteur’ spatial. On suppose

bien sur qu’il n’y a pas de champ magnétique extérieur appliqué.
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Fic. 1.2 — Réciprocité.

par les notations (?, r, f) les champs et les amplitudes de diffusion de la situation

réciproque

O

— re - E r
T1|2 = ginf 5 t1|2 = ?ltn (1—21)

La transformation réciproque sur 'amplitude de réflexion est donc simplement donnée

par échange des indices

ri2 = 721, (1‘22)
c’est-a-dire comme on le voit directement sur les impédances (1-19)

Ti2 = —T1j2- (1-23)

Cette propriété de réciprocité est vraie pour les deux polarisations.

Pour le coefficient de transmission, on doit traiter chaque polarisation séparément

by = cos 0, (1 T1)2 ) =1y
71TE —TE TE
t1|2 = 1 —I‘ T1|2 = t2|1 . (1—24)

Mais on constate ensuite, par inspection des formules précédentes, que la relation sui-
vante entre les amplitudes de transmission directe et réciproque est la méme pour les
deux polarisations

-TM -TE

bl ngcosth ko (1-25)
tng[ tng nycosby k.

Il en est de méme pour la relation entre les carrés des amplitudes

2 = 2
1 — T1|2 = 1 — T1|2

— t1|2¥1|2. (1—26)
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Les raisonnements que nous venons de présenter sont possibles a condition de sup-
poser que les équations microscopiques a la base de la diffusion sont invariantes par
renversement du temps. C’est un théoréme de microréversibilité sur lequel nous revien-

drons plus loin.

A.4 Milieux absorbants

La causalité de la réponse optique du milieu implique [83, 84] que la permittivité
¢ [w] est une fonction analytique de la fréquence w sur tout le demi-plan complexe
supérieur Im (w) > 0. Cette propriété jouera un role important dans ce travail et nous
nous en servirons pour transformer certaines intégrales sur l'axe des fréquences réelles
en intégrales sur l'axe des fréquences imaginaires. Il sera alors commode d’utiliser la

notation
w =1€. (1-27)

Avec cette notation, la propriété de causalité correspondra a ’analyticité dans le demi-

plan
Re (¢) > 0. (1-28)

La propagation du champ dans le milieu est décrite par une phase e'** déterminée
par le vecteur d’onde longitudinal k.. Nous savons qu’a partir du moment ou l'indice
du milieu possede une partie imaginaire non-nulle, le champ est atténué au cours de
sa propagation dans le milieu. Autrement dit, le facteur e**s* contient un facteur d’ex-
tinction lié a la partie imaginaire du vecteur k.. Il est important de remarquer que ceci
impose de choisir le bon signe quand on définit le vecteur k, a partir des relations de
dispersion

w2

k2 = e~ k*. (1-29)
Ce choix est lié a la direction de propagation du champ dans le milieu. On pourra noter

k, =1k Re (k) >0 (1-30)
pour une propagation du champ vers la droite et

k, = —ik Re (k) >0 (1-31)

pour une propagation du champ vers la gauche.

En utilisant les notations £ et &, nous regroupons ces deux cas en une seule équation

2
R=glegt k? Re (k) >0 (1-32)
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A.5 Ondes évanescentes

Toutes les relations ont été écrites jusqu’a présent pour les ondes ordinaires qui
se propagent librement dans le vide. Cependant, un champ se propageant d’un milieu
ny > 1 vers le vide ng = 1 devient évanescent quand son angle d’incidence est supérieur
a l’angle limite de réflexion totale nysinfy > 1. [’onde évanescente dans le vide est

alors caractérisée par les conditions

2

. . w
k. imaginaire ) <k, (1-33)
a comparer pour les ondes ordinaires a
%
k. reel | — >k (1-34)

2

Les résultats obtenus précédemment pour les ondes ordinaires peuvent étre étendus
aux ondes évanescentes en utilisant la notion importante de prolongement analytique.
La quantité k? est négative pour les ondes évanescentes, ce qui pose un probleme pour
définir la variable complexe k..

La condition d’atténuation lors de la propagation dans le vide permet de choisir le
branchement qui sélectionne la bonne détermination de k., conformément aux équations
écrites dans la section précédente. Les notations qu’on a introduites a cette occasion
sont bien adaptées pour décrire le processus de prolongement aux ondes évanescentes
et ceci est valable également si le milieu diélectrique est absorbant. Les amplitudes de
réflexion et de transmission pour les ondes évanescentes sont alors simplement données
comme prolongement analytique des expressions des amplitudes des ondes ordinaires
(1-13,1-16) avec & donné par I’équation (1-32) [85].

Ces modes évanescents peuvent se caractériser du point de vue de la réciprocité.
Une onde évanescente correspond a une propagation d’un milieu réfringeant vers le
vide. En particulier, les amplitudes de réflexion correspondent a de simples phases, ce
qui correspond au phénomene bien connu de réflexion totale. On obtient alors
‘2

= 1.

‘71|2

Pour autant, les coefficients de transmission ne s’annulent pas puisqu’il existe une onde
transmise. Ces résultats illustrent la propriété bien connue que la discussion des lois
portant sur 1’énergie souleve des questions délicates dans le secteur des ondes évanes-
centes [86)].

On retiendra que les équations déterminant les amplitudes de réflexion se prolongent
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au secteur évanescent, la forme de ces amplitudes restant la méme que celle démontrée
pour les ondes ordinaires. En moyenne, il n’y a pas de transfert d’énergie a travers 'in-
terface pour les modes évanescents mais ces modes existent réellement et se propagent
tout de méme le long de l'interface. Nous verrons qu’ils interviennent dans le calcul de
la force de Casimir.

Dans le prochain chapitre, nous aurons besoin d’évaluer les amplitudes de réflexion
dans le secteur évanescent et également pour les fréquences imaginaires. Ces amplitudes
seront obtenues par prolongement analytique de celles que nous aurons calculées pour
les ondes ordinaires.

Dans le secteur évanescent, la valeur de k; est imaginaire comme pour les ondes
ordinaires alors que la valeur de kg est réelle, ko étant alors exactement I'inverse de la
longueur sur laquelle le champ subsiste au voisinage de la surface. Pour les fréquences
imaginaires, les permittivités ¢ [i£] sont toujours réelles, et il en est de méme pour g
et k1. Ces arguments détermineront les comportements des amplitudes sur ces deux

secteurs.

B Les miroirs traités comme des réseaux

Nous voulons maintenant mettre en place un point de vue tres systématique des
amplitudes de diffusion inspiré de la théorie des réseaux [74, 75]. Par exemple, I'inter-
face étudiée dans la section précédente sera considérée comme un réseau électromagné-
tique avec deux ports a gauche et a droite. Nous pourrons alors écrire des relations de
type entrée/sortie (in/out) en considérant la superposition linéaire des deux situations
étudiées dans la section précédente. Nous pourrons aussi écrire des relations de type
transfert gauche/droite.

Cette méthode conduira a une description systématique de la diffusion. Elle nous
permettra de dégager tres aisément les lois de composition qui seront a la base de la
description de la diffusion par une lame ou un multicouche. Elle fournira les relations

générales entre les amplitudes qui découlent de la propriété de réciprocité.

B.1 Matrice S et réciprocité

La matrice S est une matrice de type entrée-sortie reliant les champs diffusés aux
champs incidents. Les amplitudes représentées sur la figure 1.3 sont rassemblées en vec-
teurs colonnes notés “in” et “out” qui correspondent respectivement aux amplitudes

entrantes et sortantes.
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out
(51 e

in
Siln E2

Fic. 1.3 — Diffusion sur une interface entre deux milieuz.

Ces vecteurs sont reliés par une matrice de diffusion, ou matrice S

gout gin
( giut ) = 51|2< 5111 ) : (1-35)
2 2

Pour faire clairement le lien avec les notations des sections précédentes, nous dé-
taillons ici les définitions exactes des champs dans le cas particulier d’une interface

séparant deux milieux 1 et 2. Les champs incidents sur 'interface, se propageant dans

le milieu 1 ou dans le milieu 2, s’identifient aux champs “in”

gin = gin
En = & (1-36)

Les champs sortants sont des superpositions linéaires des champs transmis et réfléchis

calculés dans la section précédente

gfut = gref—l'gtr
EM = Ey+ Erer (1-37)

Il est évident que les éléments de la matrice S sont tout simplement les amplitudes de

diffusion discutées dans la section précédente

EM = npE” 4 hpsy
g;)ut — t1|2(€‘in —|— FHQE%H. (1—38)

Par identification avec I’équation (1-35), ceci définit la matrice S
T1)2 f1|2
Sl|2 - _ . (1—39)
t1|2 1)2
La réciprocité est une propriété de symétrie du réseau des lors que les équations mi-

croscopiques sont invariantes par renversement du temps. C’est I’extension au cas des
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champs, due a Casimir lui-méme [87], des propriétés de micro-réversibilité découvertes
par Onsager [88]. C’est une conséquence des équations de Maxwell que les processus
électromagnétiques se déroulant dans les milieux diélectriques obéissent a cette pro-
priété, si toutes les grandeurs a considérer dans la définition du systeme sont bien
invariantes par renversement du temps, ce qui suppose en particulier qu’il n’y ait pas
de champ magnétique extérieur appliqué. Nous allons démontrer dans la suite de cette
section que, pour un réseau électromagnétique dont les deux ports L et R sont dans le

vide, le principe de réciprocité se traduit par le caractere symétrique de la matrice 5.

B.2 Matrice T et lois de composition

La matrice T' correspond a une facon différente d’envisager le processus de diffusion
sur le méme réseau. Il ne s’agit plus de relier les champs diffusés aux champs incidents,
comme le faisait la matrice S, mais de relier les deux ports du diffuseur du point de
vue d’un “transfert” de champ du coté droit au c6té gauche. Les champs sont identifiés

par les relations suivantes conformément a la figure 1.4

g = &n g =&

&' = & g =é&r (1-40)
o m
_ out— ¢
g, =g <i2i 2
€,=¢] .
€=¢€,

Fia. 1.4 — Description de linterface entre deux milieux dans une approche de transfert.

Les colonnes regroupant les champs a gauche et a droite sont reliés par une matrice T

&7 E7 a b
L =T 2 Typ=| 7 1) (1-41)
51 52 C1)2 d1|2

Ce point de vue se révelera tres utile pour formuler les lois de composition d’une
maniere tres systématique. On peut noter que le calcul des multicouches diélectriques
est depuis longtemps fondé sur de telles techniques [89, 90].

Nous pouvons relier les coefficients de cette matrice T' a ceux de la matrice S

o 1 b . F1|2
a2 = T— 12 = — 57—
t1)2 t1)2
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T2 Lyalie — 12T 1)
Ci2 — LB d1|2: 2] | |- (1‘42)

t1)2 t1)2

On note qu’il sera impossible de déduire la matrice T' de la matrice S dans le cas
d’une transmission nulle: les coefficients de la matrice T ne sont pas définis dans ce
cas. Comme nous le verrons plus loin, c’est précisément la situation rencontrée dans
la limite d’un milieu d’épaisseur infinie, limite souvent considérée dans I'interprétation
des expériences.

Les amplitudes de diffusion peuvent également se déduire des amplitudes de trans-

fert en inversant les relations précédentes

1 _ bl|2
t1|2 = — Mg = ——
a2 a2
C1]2 = G1|2d1|2 - bl|2C1|2
T1|2 = — t1|2 = . (1—43)
a2 a2

On remarque la relation générale entre le déterminant de la matrice T" et le rapport

des coefficients non diagonaux de la matrice S

% = aypdip — bippcrp = det T, (1-44)

L’intérét principal des matrices de transfert est qu’elles sont bien adaptées a 1’écri-
ture des lois de composition d’éléments optiques. En effet, I’empilement d’éléments
optiques se traduit simplement par le produit des matrices T' correspondant a chaque
élément. Pour deux réseaux connectés dont les ports sont donc respectivement les ports
1]2 et 2|3, nous obtenons pour le systeme équivalent 1|3 la matrice T' définie par le pro-

duit des matrices T' de chaque réseau
T1|3 — T1|2T2|3. (1—45)

Chaque réseau pourra représenter un élément optique élémentaire tel que la traversée
d’une interface ou la propagation dans un milieu (voir la section suivante). Mais il
pourra tout aussi bien représenter un systeme composé tel qu'une lame ou un miroir
multicouche.

Dans tous les cas, le produit des matrices T' décrira I’empilement de deux éléments

optiques A et B pour en fabriquer un troisieme, noté AB
Tag =Th\1Tg (1—46)
Il est clair que les déterminants sont simplement multipliés dans un empilement

det TAB = det TA. det TB. (1—47)
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Les amplitudes de transfert sont obtenues en développant le produit des matrices

(aAB bAB>_<aA bA><aB bB)
caB  daB B ca  da cg dp
axp = apap+bacs
bap = aabg + badg

caB = caap + dacy

dAB = CAbB—I-dAdB. (1—48)

B.3 Réseaux électromagnétiques élémentaires

Dans cette section, nous considérons deux types de réseaux élémentaires, la traversée
d’une interface et la propagation dans un milieu, qui permettent de construire par
composition tous les miroirs plans qui nous intéressent dans la suite.

Pour T'interface, nous réécrivons les amplitudes de réflexion (1-20) en fonction des

facteurs d’impédances

21 — 22
T =
2 z21 + 22
Tizg = —Tip (1-49)

Nous rappelons également I’équation (1-17) pour les amplitudes de transmission
K1
e = 2T
— K2
t1|2 = 3 /;11/1 —T%p. (1—50)

Nous déduisons de la section précédente les amplitudes de transfert

1
= d = —
a2 12 t1|2
r
bijg = c12 = _t1||2‘ (1-51)
1)2

Nous introduisons ici une notation qui sera utilisée par la suite et qui consiste a écrire

les amplitudes de réflexion de I'interface sous forme d’une exponentielle

T1|2 — _e_ﬁ 7 ﬁ —In (ZZ + Zl) ‘ (1_52)

22 — 21

La propagation du champ sur une distance ¢ a l'intérieur d’un milieu m est ca-

ractérisée par une phase accumulée par chaque champ se propageant dans les deux
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Fic. 1.5 — Propagation dans un milieu.

directions mais sans mélange entre ces deux champs (voir la figure 1.5).

Ceci correspond a une matrice T' tres simple

O 0
T = (e ) (1-53)
0 e"om

a,, correspond au parametre de phase sur I’épaisseur ¢

2
oy = Uk, = E\/@c—z + k2. (1-54)

Cette phase est la méme pour les deux polarisations et pour les deux directions de

propagation possibles.

B.4 Composition et réciprocité

Nous avons vu en (1-44) que pour l'interface, le déterminant de la matrice T est

simplement donné par

t
det Ty = tli = (1-55)

1]2 K1

Dans le cas de la propagation dans un milieu m, on a
det TP" =1 (1-56)

ce qui correspond simplement, d’apres (1-55), a la conservation au cours de la propa-
gation du vecteur k.
En utilisant le fait que le déterminant de la matrice T' se multiplie dans la composi-

tion (1-47), on déduit que la relation (1-55) est en fait valable pour tout réseau a deux
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ports construit avec la symétrie du miroir plan par composition d’un empilement quel-
conque de traversées d’interfaces et de propagations. En effet, cette loi est vraie pour
ces réseaux élémentaires et elle a son expression préservée par la loi de composition.
En particulier, pour tout réseau dont les deux ports correspondent au vide, on aura

K1 = K2, ce qui conduira a la forme particuliere de 1’équation (1-55)
detT =1. (1-57)

Par suite des relations déja démontrées, on déduit que la matrice S sera symétrique

|
Il
o~

(1-58)

Ce résultat constitue la démonstration de la propriété de réciprocité avec I’hypothese
de la symétrie du miroir plan.

En explicitant la matrice S d’un tel réseau

r i
SZ(t F)’ (1-59)

on utilise les relations (1-42) pour donner la matrice T" associée

N

Inversement, partant de la matrice T'" d’un réseau réciproque

b 1 +b
T:(“ ) o detT=1 , d=-1% (1-61)

c d a
S:(

Comme on ’a déja dit, ces formes sont liées a la propriété générale de réciprocité. Dans

_r
t

ol ) , detT =1. (1-60)

t

N AN T

on déduit la matrice S

(1-62)

Q |~ Qo
| Q|
Qo

le cas particulier ou le réseau est de plus invariant par symétrie par rapport a son plan
médian (ce sera le cas de la lame), les deux coefficients de réflexion sont alors égaux
(r =7), ce qui implique pour les amplitudes de transfert ’égalité b = —c.

En utilisant la forme générale d’'une matrice S réciproque, nous pouvons expliciter
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les relations correspondant a ’empilement de deux éléments optiques. En effet, les

relations (1-48) se réécrivent

1 11 FA B
app = —— = —— — ——
tap lalp talp
FAB 1 FB FA t]23 — TBFB
tAB tale  1a i
T'AB TA 1 tQA — TAFA B
CAB = — = ——+——7——
tap  talp ta g
d {35 — rABTAB
AB — ——F——
tAB
—TAFB —|— (tQA — TAFA) (t% — TBFB)

- . 1-63

On peut ensuite revenir aux coefficients de la matrice de diffusion composée Sup

tats
tAB - T -
1—TATB
TA—I- tz —TAFA B tz B
TAB = (A_ ) =7y —2——
1—TATB 1—TATB
T + Ta (I — rBT Tal}
rap = ATl TreTe) o Taly (1-64)
1—TATB 1—TATB

Par récurrence, on pourra déduire les coefficients de diffusion pour tout miroir multi-

couche. Nous étudions ci-dessous la lame et le multicouche diélectrique.

B.5 La lame diélectrique

Une lame diéletrique est construite par 'empilement d’une interface 0|1 ou I'indice
0 correspond au vide et l'indice 1 au matériau d’indice ny, d’une propagation sur
I’épaisseur ¢ de la lame avec une phase oy = fk; et, finalement, d’une autre interface

1]0. La matrice T' de la lame s’écrit donc simplement comme
Tlame — e (1-65)

La lame est bien sur un réseau réciproque, et elle est de plus, par construction, inva-

riante dans la symétrie spatiale par rapport a son plan médian. Sa matrice S a donc

f
glame — ( ' ) . (1-66)
t r

la forme suivante
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Nous calculons ci-dessous les amplitudes r et ¢.
On utilisera les notations déja introduites pour décrire l'effet de propagation du

champ dans la lame
o=k, (1-67)

et les amplitudes de réflexion sur la lame

e_ﬁTE . _TTE . ZTE — 1
ot 7 LTE 4
TE
- TE —
20 Ko
e_ﬁTM . . T™ . ZTM - 1
oL SIM ]
™
z = ™ — 5 (1—68)
) K1

I’indice 0 désignant ici le vide pour lequel ¢ = 1. On a noté conformément aux notations

déja introduites
Ko = — + k?

K1 = e1— + k2. (1—69)

B _b

pint K1 1 €z —e 2
o1 — - _B 8
| Koy/2sinh 3\ —e 2 e2

8 i
. Ko 1 ez ez
e = o . 1-70
110 k1 +/2sinh (3 ( =5 cs ) ( )
On vérifie que le produit de ces deux matrices redonne bien la matrice identité, ce qui
signifie que les effets des deux interfaces se compenseraient s’ils n’étaient pas séparés

par l'effet de propagation dans le diélectrique.

On peut donc écrire, par composition, la matrice globale de la lame

Tlame _ ; €§ —e_g e 0 €§ €_§
= 2sinh 3 —e_§ e§ 0 e e_g e§

alame blame
- ( clame dlame ) ’ (1_71)
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avec
Jame eled — e P _ sinh (8 + «)
el — e P sinh 8
Jame _ ePem — e Fe” _ sinh (8 — «)
e — e P sinh 3
(o — : h o
blame —_ lame _ € € _ sin ) 1-72
‘ e —e=P  sinhf ( )
On déduit les amplitudes de diffusion, conformément aux relations (1-43)
Jlame sinh 3
sinh (0 + «)
lame sinh &
TS a— 1-73
" sinh (0 + «) ( )

Il est intéressant de noter que ces résultats ont la méme structure que ceux obtenus
pour une cavité Fabry-Perot [91, 92]. Nous venons en fait de calculer le Fabry-Perot que
constitue la lame en utilisant la méthode de multiplication des matrices T'. Le grand
avantage de cette méthode est sa généralité que nous allons utiliser pour calculer des

miroirs multicouches.

B.6 Le miroir massif comme cas limite

La plupart des calculs de la force de Casimir considerent la configuration de deux
miroirs massifs, semi-infinis, se faisant face. Il est clair physiquement que les miroirs
réels ont une épaisseur finie. La lame est donc une description plus réaliste et c’est
a partir de ce modele de lame que le miroir massif peut étre considéré comme le cas

limite
e " — 0. (1-74)

Nous avons supposé la présence d’une absorption, aussi petite soit elle, qui implique une
extinction totale du coefficient de transmission sur une grande distance. Nous allons
voir que cette limite présente plusieurs comportements pathologiques et qu’elle doit
donc étre traitée avec le plus grand soin.

Tout d’abord, il est important de noter que la matrice T' n’est pas définie dans cette

limite. La matrice S d’un milieu semi-infini s’écrit sous la forme suivante

) rmassif 0 )
Sma551f — . 7 rmassﬂ — T0|1. (1_75)
0 rmassﬂ
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On voit bien sur les relations (1-42) que les coefficients de la matrice T ne sont alors
pas définis puisque 1™ = 0. Les coefficients de réflexion s’identifient aux coefficients
de réflexion de la premiere interface 0|1 puisque 'extinction totale de la transmission
interdit toute interférence dans la lame.

On remarque que la matrice S du miroir massif n’est pas identique a celle de I'in-

terface

massif in
S # Soli
int o lop
0|1 - . (1—76)
t0|1 To|1

Nous avons déja dit que la limite e — 0 correspond a une lame d’épaisseur ¢ infinie en
présence d’absorption. Méme dans ce cas, il faut noter que la limite ¢ — oo n’implique
pas de facon uniforme ¢= — 0. En effet, si on a a la fois g% — 0 et k* — 0, alors &
tend vers 0 et a n’est pas forcément grand, méme quand ¢ > 1. Dans ce cas ou o — 0,
on a des comportements tres différents pour la lame et le miroir massif. Pour la lame,

d’apres (1-73), cette limite correspond a
fame ] plame 0, (1-77)
alors que pour le miroir massif, on obtient les comportements suivants
massit _y pmassit _, To|1- (1-78)

On a la une caractéristique importante de la lame par rapport au miroir massif: le
champ est toujours transmis a travers la lame dans la limite des basses fréquences. A
cette limite en effet, la longueur d’onde du champ est beaucoup plus grande que I’épais-
seur de la lame, de sorte que celle-ci apparait comme une petite modulation spatiale
d’indice plutoét que comme une interface discontinue. Ce régime de faible profondeur
optique de la lame correspond a une pathologie potentielle.

On a ici considéré implicitement un modele de miroir diélectrique pour lequel &
tend vers une constante a la limite quasistatique £ — 0 [93]. Pour les métaux en re-
vanche, I'indice diverge a cette limite. A température non-nulle de plus, le nombre de
photons par mode diverge aussi pour w — 0. Toutes ces difficultés sont a la source des
polémiques qui ont émaillé la discussion des forces de Casimir depuis des années. Nous

les discuterons en détail dans le chapitre 5.
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B.7 Les miroirs multicouches

Il est intéressant d’étudier de la méme facon le cas du miroir composé de deux ou
plusieurs lames accolées I'une a ’autre. Par exemple, un modele souvent utilisé pour
les calculs de la force de Casimir est celui d’un miroir massif recouvert d’une couche
mince [94].

Partant des réseaux élémentaires, la double lame, que nous notons ici “dlame”, est
construite par empilement de trois interfaces et de deux propagations dans des milieux
différents. On distingue alors trois milieux de propagation pour le champ : le vide 0 des
ports externes, le milieu 1 de la premiere lame et le milieu 2 de la deuxieme. Du point

de vue matriciel, on a donc
leame _ TintTprTintTprTint (1 79)
ofi2o = Lopdr La2t2 L2)0- -

On rappelle la forme des matrices T pour les interfaces

b ) (1-80)

int Kj 1
Ly = \ e T, ( 1

Pour la propagation dans chaque milieu m on utilise des notations condensées

ET 0
T = (()m E—> . Bi=ermo . Ep=etrme (181)

m

On écrit la matrice T' de la double lame

o~ dlame
dlame 1 1 1 a b
To|1|2|0 = - - = - 7 , (1-82)
\/1 ~Ton \/1 ~ T2 \/1 — 0 oj12/0
avec
~dl — et + - — + g
agrzio = E7 B+ B rp By rap + rop By rip by 4 rop By By o
Zdlame  __ + o+ + - - + - -
bo|1|2|0 = kL T200 + Ey 7“1|2E2 + 7“0|1E1 7“1|2E2 Tol0 + 7“0|1E1 Fy
~dl _ + 1+ + - — + N
Co|?|nzj|eb = ropn by By Frop By iy rop + By riplEy + EY By rap

o~

difeme = o B Ef o + rop Efrip By + ErrpBfrop + ETEy . (1-83)
La relation de réciprocité pour le déterminant de cette matrice

det Tylyioie = 1, (1-84)
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se traduit par la relation

o~

~dlame jdlame ~dlame
a0|1|2|0d0|1|2|0 — Coj1)2/0

o~

dlame
bo|1|2|0

Pour la matrice S, on pourra écrire

dlame
Sdlame _ r l
ol1)2l0 = _ .
t 7
ol1]2[0

= (1 —rop) (1= rij) (1 —7r2p)-

(1-85)

(1-86)

Les relations (1-43), simplifiées pour le cas d’un réseau réciproque, définissent les élé-

ments de cette matrice

5 5 5 dlame
dlame 1—17r \/1—T \/1—T
dlame  __ l _ \/ o 12 2jo
a a

o[1|2[o

Lojijzlo =
oj12/0
~\ dlame
dl
dlame __ E ame _ E
Toji)2l0 = =\ =
a/ o[1)2|o @/ o210
b dlame Z dlame
—dlame _ [ ¥ _ =z
Tojtj2jo = P = = .
oj12/0 o[1[2[0
En utilisant les notions d’impédances (1-18)
TE _ R ™ _ €€
Z = ’ Zj - ’
3 K

les amplitudes de réflexion aux interfaces prennent la forme générale

ZZ'—Z]‘

T, = .
4 zZi + z;

En rassemblant tous ces résultats, on écrit les coefficients @ et ¢

~ a
a =

(z0+ z1) (21 + 22) (22 + 20)
N c
c =

(z0+ z1) (21 + 22) (22 + Zo)7

avec les expressions suivantes pour a et ¢

a = (z0+42z1) (214 22) (224 20) EIFE; + (z0+ z1) (21 — 22) (22 — 20) EII—EQ_

(1-87)

(1-88)

(1-89)

(1-90)

+ (20 — 21) (21 — 22) (22 + 20) El_E; + (20 — z1) (21 + 22) (22 — 20) By B

¢ = (20— 21)(21+ 22) (22 + 20) EY ES + (20 — 21) (21 — 22) (22 — 20) Ef E

+ (20 + 21) (21 — 22) (22 + 20) El_E; + (z0+ z1) (21 + 22) (22 — 20) BT F5 .

(1-91)
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Le coefficient de réflexion du miroir “double-lame” est finalement donné par

dlame

c
Tolt)2lo = =~

== (1-92)

a

SH )

Ces calculs montrent comment la méthode de multiplication des matrices T' permet
d’obtenir les amplitudes de réflexion de miroirs réalistes.

Dans le cas ou les deux lames d’épaisseur respective £ et {5 correspondent au méme
milieu, I’égalité z; = z, suffit a montrer que le miroir ainsi formé est une seule lame
d’épaisseur £ = {1 + (5.

La double lame est souvent étudiée dans le cas limite ou la deuxieme lame a une
épaisseur tres grande. Physiquement, cette lame est considérée comme un substrat sur
lequel est déposée une autre lame dont I’épaisseur est finie. Nous considérons que la
couche mince correspond a la lame 1 et le miroir massif a la limite de grande épaisseur
de la lame 2. Dans les résultats de la section précédente, nous prenons donc les termes

. By
au premier ordre en 7+ et nous obtenons
2

liy pdlame _ (20— 21) (21 + 22) Ef 4 (20 + 21) (21 — 22) BT .93
S To[ij2j0 = i+ _ _ o (1-93)
2=+ (204 21) (21 + 22) B + (20 — 21) (21 — 22) E

Du point de vue de la méthode du produit des matrices T', cette configuration d’une
couche déposée sur un miroir massif est intéressante. Comme nous ’avons vu, la matrice
T d’un miroir massif n’est pas définie et I’empilement de la lame sur le miroir massif
ne peut étre calculé que comme cas limite du produit de matrices T' de deux lames
d’épaisseurs finies.

En continuant dans la méme voie, un miroir multicouches, noté ici “mc”, sera défini

par 'empilement de n lames. La matrice T' d’un tel multicouche peut donc s’écrire
me _ TllameTQIame . T%ame (1_94)

ot T}ame correspond & la lame i. Pour des calculs explicites, il sera en fait beaucoup
mieux adapté d’écrire la matrice T' comme nous venons de le faire pour la double lame

™ = oW T Ty .. TP T, (1-95)

n

Les deux calculs sont équivalents mais le second conduit a des expressions plus simples
a manipuler. En effet, en accolant une succession de lames, on introduit entre deux
lames successives un milieu vide virtuel qui ajoute des termes intercalaires dans le
produit des matrices T'. Ces termes alourdissent les expressions et la réduction aux

formules simplifiées devient difficile a effectuer, surtout quand n augmente.
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C Unitarité de la diffusion

C.1 Diffusion quantique

Le cadre d’analyse de la diffusion du champ sur un miroir diélectrique que nous
avons présenté est un cadre classique. Nous avons en effet défini les amplitudes de ré-
flexion et de transmission en considérant des champs classiques &€ incidents, réflechis
et transmis par les miroirs. Cette analyse n’est pas completement satisfaisante quand
il s’agit de décrire la diffusion de champs quantiques, qu’on notera de facon géné-
rique a, c¢’est-a-dire la diffusion des fluctuations du vide. En particulier, pour un miroir
contenant un milieu absorbant, 1’absorption sera traduite, dans l’esprit du théoréme
fluctuations-dissipation, par des fluctuations ajoutées correspondant a des modes de
bruit b supplémentaires. Ces lignes de bruit sont diffusées par les miroirs comme le
sont les champs dont il a été jusqu’a présent question.

Ces bruits représentent les fluctuations quantiques inévitablement associées aux
pertes par dissipation. On peut préciser cette idée en considérant des miroirs diélec-
triques comme constitués d’atomes. Ces atomes sont responsables de 1’absorption parce
qu’ils diffusent par émission spontanée. Réciproquement, précisément au sens que nous
avons donné a cette notion, ces modes de bruit diffusent aussi vers les modes de champs
considérés [95, 96, 97, 98, 99]. C’est d’ailleurs dans ce cadre qu’on pourra interpréter
les modes évanescents, alimentés par les fluctuations du champ entrant dans le systeme
par le biais des lignes de bruit associées a la dissipation. Ces fluctuations peuvent se
propager en effet dans le miroir avec des angles d’incidence supérieurs a l’angle limite
défini pour ce milieu. A 'extérieur du miroir, elles vont correspondre a une propagation
évanescente du champ, s’atténuant rapidement lorsqu’on s’éloigne de l'interface. Ces
modes, confinés au voisinage de la surface des miroirs, sont donc des voies “fermées”
mais ils contribuent néanmoins aux effets physiques tels que la pression de radiation
et I'effet Casimir (voir le chapitre suivant).

Nous sommes donc en présence de deux situations différentes. Pour un miroir sans
absorption, construit a partir de milieux d’indices réels, la matrice S calculée précé-
demment doit étre unitaire. Ses coefficients obéissent alors a des relations particulieres
que nous discutons ci-dessous. Pour un miroir absorbant en revanche, la matrice S
calculée précédemment ne peut pas étre unitaire. Cette matrice doit étre vue comme
la restriction aux modes d’intérét (les champs diffusés considérés) d’une matrice de dif-
fusion plus grande qui prend en compte les lignes de bruit. Comme nous allons le voir,

c’est la prise en compte de ces fluctuations supplémentaires qui permettra de garantir
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I"unitarité de la diffusion globale. Cette unitarité est une condition de consistence pour
la description du processus de diffusion [74, 75]. Avec cette condition de principe, on
pourra caractériser les fluctuations ajoutées, sans se référer a un modele microscopique

particulier pour spécifier leurs propriétés.

C.2 La lame non absorbante

La permittivité ¢ d’une lame sans absorption est réelle. Dans ce cas, les vecteurs x;
et ko sont purement imaginaires pour les fréquences réelles, de sorte que les rapports
d’impédance sont réels. Les amplitudes de diffusion a I'interface sont donc réelles et,
d’apres I'équation (1-52), (3 est réel. Pour la propagation, le parametre de phase «,

proportionnel a k, est imaginaire pur. On notera donc
0 =03, , o =1q;. (1-96)
On peut alors calculer explicitement les amplitudes de diffusion (1-73) de la lame

sinh (3, sinh 3,

tslab : = — / :
sinh (0, +1a;)  sinh 3, cos o; + i cosh 3, sin ov;

dlab sinh (1) 7sin oy
r = —= — = —— . —. (1-97)
sinh (0, + 1a;) sinh /3, cos a; + 1 cosh 3, sin a;

On en déduit directement les relations suivantes
sinh? B, + sin? o
sinh? 3, cos? o 4 cosh® 3, sin? o;

tr'4+rt" = 0. (1-98)

=1

[t + 1l

Cette derniere relation montre que les amplitudes de réflexion et de transmission sont
en quadrature entre-elles.
Ces relations sont en fait caractéristiques d’une matrice S unitaire, puisqu’on peut

écrire

t|? 2ot
gty [ MEHIE et (1-99)
trs 4 rt* |t|" + |r|

ou [ est la matrice unité.

C.3 La lame absorbante

Dans le cas général d’une lame construite avec un milieu absorbant, on sépare les

parties réelles et imaginaires

B =0 +15 ) a = o, + 10 (1-100)
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Les coeflicients de la lame s’écrivent alors

sinh 3 sinh 3, cos 3; + 1 cosh 3, sin 3;

tslab _ _
sinh~  sinh~, cosv; + 2 cosh 7, sin ~;
slab si‘nh a_ si‘nh o, cos o + z cosh o, s‘in o; (1-101)
sinh ~ sinh 7, cos v; + 1 cosh ~, sin~;

Dans ce cas, la matrice S calculée seulement sur les modes principaux n’est plus
unitaire. Cependant cette matrice doit étre considérée comme la restriction d’une ma-
trice plus grande qui est unitaire et qui décrit les lignes de bruit. La transformation des

champs quantiques incidents en champs quantiques diffusés par la lame s’écrit donc

out in bin
(Cllt):S(a?)JrU(?) (1-102)

ou mn bln

as as 2

Les champs a; et ay sont les modes principaux couplés par la lame et les champs b;

sous la forme

et by sont les modes de bruit. La matrice U contient les amplitudes de diffusion de
ces modes vers les modes principaux. La stationnarité de la diffusion implique que les
modes de bruit sont des superpositions linéaires de modes de méme fréquence et qu’ils
sont ainsi donnés comme équivalents a tous les bruits entrants dans le systeme. Les
champs b et bou*

aln et aout .

sont décorrélés entre eux et ils sont également décorrélés des modes

Il est important de noter que les commutateurs canoniques sont les mémes pour les
champs entrants et les champs sortants. En effet, les champs sortants sont, comme les

champs entrants, des champs libres. On aura donc

out _out t

Ay s am’

in _in t
Ay s am’

(1-103)

Les notations m,m’ représentent les modes des champs tels qu’on va les préciser au

chapitre suivant. Cette égalité est centrale: elle correspond a une condition d’unitarité

globale de la diffusion [74, 75, 100]
STS + UTU = 1. (1-104)

Cette condition va permettre de décrire les fluctuations ajoutées par les lignes de bruits.

Pour la matrice U correspondante, on peut en effet écrire

U= ( v ) (1-105)
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et on déduit de (1-104)

2 2 * *
o (et )

wo* +vw* |w|’ + |v
L= Jwl* + o + [t + ||
0 = wo*+ow* +tr* 4+ rt*. (1-106)

Ces relations sont écrites pour des fréquences réelles et correspondent aux ondes ordi-
naires. Pour ces modes, la condition d’unitarité (1-106) implique que les amplitudes de

diffusion ont un module plus petit que 1

t)? < 1
I < 1. (1-107)

Nous utiliserons au chapitre suivant ces propriétés importantes et nous préciserons
comment on doit étendre la discussion aux modes évanescents. Remarquons également
que ces propriétés peuvent étre démontrées de maniere plus générale pour des réseaux
dissipatifs quelconques [101]. Ici, nous nous sommes contentés de la lame que nous

utilisons a nouveau dans le prochain chapitre.
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Chapitre 2

Force de Casimir entre deux miroirs

diélectriques

Le calcul de la force de Casimir que nous présentons est issu du point de vue local
[77] dans lequel la force s’écrit comme la différence des pressions de radiation calculées
a 'extérieur et a 'intérieur de la cavité. Les pressions sont définies a partir des tenseurs
de Maxwell évalués par les fonctions de corrélation des champs calculées dans trois ré-
gions: les deux régions externes des ports gauche (L) et droit (R) de la cavité et une
région interne des champs intracavité (C). On utilise les outils présentés au chapitre
précédent pour détailler le calcul de ces champs. On définit la matrice S de la cavité
qui exprime les champs sortants du Fabry-Perot en fonction des champs incidents.

Pour calculer la pression de radiation sur les faces internes des miroirs, on introduit
aussi une matrice de résonance R qui relie les champs intracavité aux champs incidents.
Nous montrons que la pression interne est simplement déterminée par la fonction d’Airy
de la cavité, c’est-a-dire aussi par les coefficients de réflexion des miroirs. Cette pro-
priété se démontre dans le cas général des miroirs dissipatifs en utilisant 'unitarité des
processus de diffusion [100, 101].

Les techniques de prolongement analytique des fonctions de réponse, ainsi que les
propriétés physiques de causalité et de transparence a haute fréquence, nous permettent
ensuite d’écrire la force a température nulle comme une intégrale définie sur ’axe des
fréquences imaginaires. L’expression de la force obtenue est réguliere, sans divergence
associée aux infinis de ’énergie du vide [76]. Cette expression tout a fait générale per-
met de traiter n’importe quel type de miroir diélectrique. Elle redonne 1’expression
de Lifshitz dans le cas particulier des miroirs diélectriques massifs [30] et I'expression

idéale de Casimir dans la limite des miroirs parfaits [29].
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Enfin, nous définissons 1’énergie de Casimir comme le potentiel dont dérive la force.
Nous montrons que cette énergie peut aussi se calculer a partir des déphasages subis
par les champs qui sont déterminés par les valeurs propres de la matrice S de la cavité.

Nous discutons aussi 'interprétation de la force en termes de temps de Wigner.

A Champs diffusés par la cavité

Dans le chapitre 1, nous avons décrit la diffusion du champ sur un miroir. Nous
avons introduit les “bons nombres quantiques” qui sont bien adaptés au probleme.
Nous allons maintenant définir plus précisément les modes du champ quantique puis

traiter leur diffusion par la cavité.

A.1 Modes du champ libre

La géométrie étudiée est celle d'une cavité formée par deux miroirs parfaitement
plans, paralleles entre eux et de surface infinie. Ceci correspond a une symétrie de
translation dans le plan transverse, qu’on a noté plan zy le long de la surface des
miroirs, et donc également a la conservation des vecteurs d’onde transverses k, et k,
au cours du processus de diffusion. Ces vecteurs transverses seront considérés comme
spectateurs pour le calcul de la force et rassemblés en un seul vecteur a deux dimensions

k = (k;, ky). On notera 'intégration sur ce vecteur
d*k [ dk, [ dk,
A7? 27 2r

La symétrie garantit la spécularité parfaite de la réflexion et permet donc de traiter

séparément les deux polarisations TE et TM, puis de sommer sur ces deux polarisations

2.

p=TE,TM

Nous avons déja insisté sur I'invariance par translation dans le temps du probleme
de diffusion, c’est-a-dire la stationnarité du processus pour des miroirs immobiles et
donc la conservation de la fréquence w. Un mode se propageant dans le vide est défini
par les trois composantes de son vecteur d’onde et sa polarisation. Nous introduisons

un symbole m rassemblant ces nombres quantiques

m = (k., k,p) (2-1)
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ainsi qu'un symbole de sommation
IED SN A=
- 472 o

m Y4 0

Le champ libre est la superposition de deux modes pour k et w fixés. Ces deux

(2-2)

modes correspondent a deux directions de propagation, i.e. aux deux signes possibles

pour k.
2
w
k, = = k? (2-3)
avec ¢ = +1 pour une propagation vers la droite et ¢ = —1 pour une propagation vers

la gauche. Dans 1’équation (2-2), chaque direction correspond a une intégration sur k,
limitée au valeurs positives ou négatives selon le sens de propagation. Il est important
de noter que ce sont justement les deux modes correspondant aux deux valeurs du signe
¢ qui seront couplés par la diffusion sur un miroir ou sur la cavité.

Les champs quantiques E et B s’écrivent en un point
E(r,z,t) = Y elm] (E]m] + E[m]")
B(r,z,t) = Y B[m](Elm] + Em]"). (2-4)

Les amplitudes des modes sont construites sur les opérateurs création et annihilation

A .
5[m]:@'./game—lw—kr—kzz) . r=(vy). (2-5)

Les vecteurs ¢ et (3 décrivent la polarisation respectivement pour les champs £ et B.

On introduit d’abord les composantes du vecteur d’onde

sin # cos ¢
k=21 sinfsin e |- (2-6)
¢

cos

Les angles 0 et ¢ reperent la direction d’incidence du champ. Sur la figure 1.1 du
chapitre 1, on a pris le champ incident dans le plan zz, i.e. pour un angle azimutal
@ = 0. Les vecteurs de polarisation sont donnés de facon générale pour une incidence
quelconque par les expressions suivantes

—sin

TE _ ﬁTM _ cos



tel-00001749, version 1 - 27 Sep 2002

46 Chapitre 2. Force de Casimir entre deux miroirs diélectriques

cos 8 cos ¢
e™M=_p"™ = | cosfsiny |. (2-7)

—siné

Les opérateurs création et annihilation obéissent a des relations de commutations

canoniques [102]

[amvam’] = 0,
alal,| =0,
amyal | = 6, (27)° 8 (k —K)6 (k. — K.)

S (2:8)

Dans la suite, nous utiliserons également les fonctions de corrélation de ces opé-

rateurs pris dans un état d’équilibre thermodynamique. Ces fonctions ont une forme

universelle
<ama;rn,> = (14 7m) Om,mr
<a1n’am> = Ny m,m/’
<amain,> = 0

<a;rn,am> = 0 (2-9)

Ces relations expriment les propriétés de 1’état d’équilibre thermodynamique en termes
de champs quantiques [103, 104] (pour une discussion détaillée, voir par exemple [74]).

Alors que le commutateur des champs est indépendant de 1’état du champ, les
fonctions de corrélation dépendent de cet état. Ici, ils dépendent de la température.

Autrement dit, c’est I'anticommutateur des champs qui caractérise les fluctuations du

CRORE
(&

champ. On D’écrira ici

<am m/ —I_ a /am>
1
2

) f

aT)’L7 am/ (2—10)
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Dans un premier temps, nous allons analyser la situation a température nulle. On
a alors n,, = 0 et on retrouve la définition de I’état vide avec une énergie équivalente

a la moitié d’un photon par mode

imal) = L
" 2

L’analyse de la situation a température non nulle sera traitée dans le chapitre 4.

(2-11)

s @,

A.2 Matrice S de la cavité

On étudie a présent la diffusion du champ sur la cavité formée par deux lames
planes se faisant face, séparées d’une distance L. On a représenté une telle cavité sur la
figure 2.1. De maniere plus précise, on suppose que les faces internes des deux miroirs
sont placées en z = 0 et z = L. La zone intracavité 0 < z < L se distingue donc des
deux zones externes a gauche et a droite de la cavité. Les fleches représentent les deux

sens de propagation associés aux modes a diffusés.

L C1 C2 R

Fia. 2.1 — Deux miroirs formant la cavité.

Nous utilisons les outils mis en place au chapitre précédent pour décrire la diffusion
du champ. Nous définissons donc des matrices Sy et S5 pour chacun des miroirs. On a

au niveau du premier miroir

out in
ClL B ClL B
— =5 — ’ S =
ach ¢y 1 m

(2-12)

La matrice S; a été calculée au chapitre précédent pour une lame. Pour simplifier,
nous supposons ici que le miroir est symétrique par réflexion par rapport a son plan
médian. Tous les champs sont définis au voisinage immédiat de la face correspondante
du miroir.

Nous procédons de la méme facon pour le deuxieme miroir

ady _ g ach g — ry 1
out — V2 ’ 2=

ap ay toy 19

(2-13)
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Les champs intracavité acy; et acy sont reliés 'un a l'autre par la propagation libre

dans le vide sur une distance L, ce qui s’écrit

o e kL
gy = dagie
S kL
ag, = ag e (2-14)

En résolvant I’ensemble des équations linéaires (2-12,2-13,2-14), on obtient comme dans

[76] la matrice S globale de la cavité

out in
( agut ) — Scav ( aill; ) (2_15)
R R

avec
[ l o+ (t% - r%) roc?tkl tytpeth=t (2-16)
cav — d 1t ik, L t2 22 2tk L
1tqe ry + (13 — r3) rie
en ayant posé
d=1—ryrye?*=l, (2-17)

Les différences dans les expressions avec celles de [76] sont dues & des choix de conven-
tion différents, d’une part pour la valeur z de référence pour chaque champ, d’autre
part pour 'ordre des composantes dans les vecteurs.

Le choix adopté ici correspond a la méthode systématique de traitement des ré-
seaux présentée dans le chapitre 1. Il est a ce titre intéressant de noter que la cavité de
Fabry-Perot peut aisément étre analysée en terme de produit de matrices T'. On peut

en effet écrire la matrice T.,, de la cavité
Tcav - TlTprT2 (2—18)
ou Ty et T, représentent les miroirs 1 et 2

ain a—) a—) aout
E)=n( ) ()= () e
ag, acy ep) aR

alors que T™" représente la propagation intracavité sur une longueur L dans le vide

— —
) e ) (2-20)
ey lep)
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On calcule alors comme dans le chapitre précédent

Teav = “ bl e 0 @ 62 . (2—21)
C1 dl 0 elkzL Co d2

avec pour ¢ = 1,2

1 T
a; = — 5 bZ = ——

t; t;

r; 2 —
o= di = —1. 2-22
a=7 - (2:22)

Cette matrice de transfert relie les champs a gauche et a droitre de la cavité et on sait

a partir d’elle trouver la matrice S,y correspondante. On déduit les coefficients qui

cav tCaV
Sy = ( " ) . (2-23)
tCaV T.Cav

On obtient bien sir une matrice symétrique comme une conséquence du théoréme de

apparaissent dans (2-16)

réciprocité. Si de plus les miroirs 1 et 2 sont identiques, ce qui est souvent supposé dans
les calculs de la force de Casimir, on voit que Tepy = Teav. Ceci correspond au fait que la

cavité est alors invariante dans une symétrie spatiale par rapport a son plan médian.

A.3 Matrice R de la cavité

Afin de calculer la pression de radiation des champs sur les deux faces d’un miroir
de la cavité, il est également nécessaire d’exprimer les champs intracavité. C’est ce que
fait la matrice de résonance R.,, que nous étudions maintenant.

La matrice R.,, exprime les champs a l'intérieur de la cavité a partir des champs

incidents sur cette cavité. A partir des relations issues des matrices 57 et 53

ag, = tlaiﬁ“ +riag,
ag, = Troag, + tzaiﬁ“ (2-24)
et des propagations (2-14)
ag, = tlaiﬁ“ + eikzLag2
ag, = rzeikzLaa + tgaiﬁ“, (2-25)

on déduit la forme de la matrice R,y

ag ai® 1 t rytqethel
il = Rcav 111; ) Rcav - 1ik I v . (2_26)
o)) ar d thle z t2
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A.4 Prise en compte des modes de bruit

Jusqu’a présent dans ce chapitre, nous avons traité la diffusion par la cavité de
champs classiques. Cette diffusion est décrite par les amplitudes de diffusion et de
résonance contenues dans les matrices S et K. Dans le cas de miroirs non-absorbants,
ces amplitudes suffisent pour évaluer la force de Casimir et obtenir la formule écrite dans
[76]. Quand les miroirs sont absorbants, il faut tenir compte également des fluctuations
entrant par les modes du bruit discutés dans le chapitre précédent.

En tenant compte des modes de bruit au niveau de chaque miroir, on peut montrer
que les commutateurs canoniques des champs quantiques dans la cavité sont simplement

donnés par les commutateurs des champs libres incidents multipliés par la fonction

d’Airy de la cavité [100]

[agmv agm'T] - [agma agm’T] = gm(sm,m’
1— r2r§r1rf>
g = (=l (2-27)
( d|? m

La fonction g,, est la fonction d’Airy de la cavité construite sur les amplitudes de
réflexion des miroirs. Nous écrivons ici le cas de miroirs symétriques. Dans un cas plus
général, il faudrait prendre les amplitudes de réflexion des miroirs vues de I'intérieur
de la cavité [101].

Les commutateurs canoniques pour les champs intracavité correspondent a une
densité spectrale différente de celle du vide puisqu’elle est multipliée par la fonction
d’Airy. C’est la base des effets d’“Electrodynamique Quantique en Cavité” avec des
modifications des propriétés de couplage radiatif entre atomes et photons [105] ou
par exemple dans un autre domaine, de modification de la propagation en Théorie
Quantique des Champs [106].

B Pression de radiation du vide

Pour calculer les effets de pression de radiation, nous étudions maintenant le tenseur
des contraintes de Maxwell (stress-tensor) d’abord pour des champs libres, puis en

présence d’un miroir et enfin dans la configuration de la cavité.
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B.1 Tenseur de Maxwell pour des champs libres

La pression sur un miroir plan selon le plan zy est donnée par la composante T,
du tenseur de Maxwell. On écrit pour les champs libres [102, 107]

1 1 T T
TZZ:§(E§-|-E§—EZ?—|—B§—|—B§—BZ?):§(E IIE + B'IIB). (2-28)

Nous faisons des choix de normalisation qui fixent la dimension de F et B dans le vide;

IT est la matrice décrivant une réflexion mathématique par rapport au plan xy

10 0
m=1 (o1 0 |. (2-29)
00 —1

En évaluant les champs en un point donné, on obtient ainsi

To(r,z,t) = Y > alm,m') (Em] + )T (E[m']+ )T . (2-30)
Le produit (E[m] + E[m]!) (E[m'] + E[m']") représente les formes quadratiques des am-
plitudes des modes. Les facteurs géométriques 7 rassemblent les éléments vectoriels

i) = ]+ 6l 0] .

Dans la suite, nous nous contenterons d’étudier les effets statiques de la pression de

radiation du vide (les effets dynamiques sont étudiés par exemple dans [108, 109, 110,
111, 112]). Nous étudierons donc seulement la valeur moyenne de la composante 7,..
Cette valeur moyenne est a la fois une valeur moyenne dans 'espace et le temps qui
sélectionne la composante de Fourier de T, correspondant a une fréquence et un vecteur
d’onde nuls. Elle est en méme temps la valeur moyenne dans I’état quantique particulier
qu’est le vide. Quelle que soit l'interprétation, cette valeur moyenne sélectionne les
termes contenant un champ a,, et son conjugué alf et elle opere donc une contraction
o —
Le facteur géométrique se simplifie alors considérablement
(cos2 ©+ sin® c,o) + (cos2 f — sin? (9)
2
= cos?d. (2-32)

7 [m,m] =

Ce terme correspond au facteur de projection bien connu depuis la théorie de Maxwell

de la pression de radiation. On peut le décomposer en deux facteurs

— la composante longitudinale de I'impulsion du champ, sous incidence oblique, est

proportionnelle a cos§ ou # correspond a ’angle d’incidence,
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— la force calculée par unité de surface du miroir doit tenir compte d’un deuxieme
facteur de projection cos# représentant un rapport de surface sous incidence

oblique.

Ce facteur cos?§ intervient dans le rapport entre la composante longitudinale 7.

du tenseur de Maxwell et la densité d’énergie

hw
T.) = g, —=. 2
(1) =3 costa, g

m

Cette composante est bien str infinie dans le vide.

B.2 Diffusion sur un miroir

Pour traiter le cas d’un miroir, on doit étudier I'effet de la diffusion. On doit aussi
sommer la contribution des pressions de radiation de part et d’autre du miroir. On

obtient ainsi une pression moyenne
(P)= (127 + T2 = (TE7 +T17)). (2-34)

C’est simplement une loi de conservation de I'impulsion de part et d’autre du miroir
[113].
Pour prendre en compte l'effet de la diffusion, nous notons d’abord que les vecteurs

de polarisation sont transformés de la facon suivante par réflexion sur le miroir

k— 11k
e — lle
06— —113. (2-35)

Ceci signifie que les vecteurs d’onde et le champ électrique se comportent comme des
vecteurs sous la réflexion tandis que le champ magnétique se comporte comme un
pseudo-vecteur. Notons également I'absence de termes croisés en polarisation dans (2-
28). Cette séparation des polarisations reste valable apres réflexion sur des miroirs
plans. Plus généralement, les facteurs m donnés en (2-31) sont des invariants dans la

diffusion du champ sur le miroir. On a en effet explicitement, avec I17 = II

& [m) e [m'] — ¢ [m] U ILe [m'] = ¢* [m] e [m]

B [m] 13 [m'] — 87 [m] TG [m') = 87 [m] 115 [m].
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Si on calcule le cas d’un miroir seul dans le vide, on trouve bien stir une condition
d’équilibrage des pressions de radiation de part et d’autre du miroir. Autrement dit,
on a des pressions de radiation égales de part et d’autre du miroir. Ceci n’est plus vrai
dans le calcul de la cavité puisque les deux cotés d’un miroir ne jouent plus des roles

équivalents.

B.3 Diffusion sur la cavité

Dans le cas de la cavité, nous calculons la différence des pressions de radiation

exercées sur les deux faces du miroir 1 et du miroir 2. Nous obtenons comme 1'illustre

la figure 2.2

(P) =127+ T2 = (T2 7 +127))

(Po) =(TE 7+ T2 = (T2 +T17)). (2-36)
L c1 c2 R
0 C

Fic. 2.2 — Pressions de radiation sur les miroirs de la cavité.

Pour évaluer ces quantités, nous utilisons les matrices S et R pour réexprimer tous
les champs en fonction des champs entrants. On utilisera les équations (2-16,2-26).
Nous calculons ensuite les valeurs moyennes des formes quadratiques de ces champs.
Nous constatons alors qu’il n’est pas nécessaire de reprendre ce calcul qui a déja été
fait. En effet, tous les champs incidents sont supposés correspondre au vide de rayon-
nement. Le calcul des fonctions de corrélation se déduit donc immédiatement de celui
des commutateurs. Or nous avons déja rappelé que ces commutateurs prennent une
forme simple. D’abord pour les champs externes af"* et a@™, ils sont identiques aux
commutateurs canoniques par suite de 'unitarité des processus de diffusion. Ensuite,
pour les champs intracavité, on a vu en (2-27) que leurs commutateurs sont les com-

mutateurs canoniques simplement multipliés par la fonction d’Airy g, de la cavité.

Nous déduisons donc

(P1) = Zcos2 O b (1 — gm)

m
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(Py) = Z c08? 0, Fiw, (Gm — 1)

m

= —(P). (2-37)

La sommation sur les deux directions étant déja effectuée, I'intégration symbolisée par
la notation )~ est restreinte aux valeurs positives de k..

Nous avons ainsi obtenu une formule dont I'interprétation est assez simple [76]. La
force est la différence des pressions de radiation a ’extérieur et a I'intérieur de la cavité.
A Dextérieur de la cavité, la pression correspond simplement a I’expression (2-33) de
la pression de radiation du vide. A I'intérieur de la cavité par contre, cette pression est
modulée par la fonction d’Airy, décrivant justement la densité spectrale de la cavité.
Les fluctuations sont ainsi augmentées ou réduites selon que leur fréquence correspond
ou pas a un mode de la cavité. C’est en fait le bilan de ces augmentations et réductions
qui, lorsqu’il est sommé sur tous les modes m, donne la force de Casimir. Le point de
vue local permet ainsi de calculer la force de Casimir a partir de conceptions issues de
I'optique classique.

On a montré ici que (P2) = — (P1), ce que 'on peut interpréter par le fait que la
force globale sur la cavité est nulle par suite de I'invariance du vide par translation

globale
(Py) 4+ (P1) = 0. (2-38)

La formule (2-37) n’est pas définitive puisqu’il nous faut encore tenir compte de I'effet

des ondes évanescentes.

B.4 Effet des ondes évanescentes

Nous venons de démontrer que la force de Casimir est déterminée par la fonction
d’Airy de la cavité

P 2

glzz [w] _ l— |rk 1 [w] Tﬁ 2 [w” -
11—y [w]rg o [w] e®aE]

(2-39)

Cette fonction g [w] se construit sur les fonctions de réponse ry | [w] et rp , [w] des
miroirs. La forme explicite de ces coefficients est donnée dans le chapitre précédent,
pour une lame par exemple. Il est a noter que cette formule s’applique également a des
miroirs non symétriques. Il faut alors prendre 'amplitude de réflexion telle qu’elle est
vue par les champs a 'intérieur de la cavité [101].

Cette fonction gy [w] est la fonction d’Airy d’une cavité telle qu’elle est décrite dans
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la théorie usuelle du Fabry-Perot. Construite sur les coefficients de réflexion associés a
chacun des deux miroirs, cette fonction fait aussi intervenir le facteur de propagation
e?*:L correspondant & la phase accumulée par le champ au cours de sa propagation
dans la cavité sur une longueur aller-retour 2L. Il est intéressant de relier cette fonction
d’Airy a la fonction de réponse du Fabry-Perot qui a la forme d’une fonction de “boucle”
et qui représente "avantage d’étre directement adaptée a 'utilisation des propriétés de

causalité. Dans ce but, nous écrivons
G [w] =1+ fil [w] + £ ] (2-40)

ot fi [w] est la fonction retardée caractérisant la réponse optique de la cavité
p Pic [w] p P P 2ik L
Klwl=—5—= el =rgelrg, wle™™ (2-41)
1= pi [w]
Cette fonction est la réponse caractéristique d’une boucle de contre-réaction dans la-

quelle le gain en boucle ouverte est pj, [w]. C’est aussi la fonction typique du phénomene

d’interférences multiples

flw] = i (Wl + [ W] + [ok ()] + .. (2-42)

Pour les modes se propageant librement dans le vide, k, est réel ce qui correspond

au domaine

o | &

> |k]. (2-43)

Nous considérons aussi le secteur des ondes évanescentes

IA

k|- (2-44)

o &

Comme on I’a déja discuté, ces modes évanescents sont alimentés par les fluctuations
du champ entrant dans le systeme par les lignes de bruit associées a la dissipation dans
le matériau. Ces modes sont confinés au voisinage de la surface des miroirs de la cavité
mais ceci ne les empéche pas de contribuer a la pression de radiation sur les miroirs.
Pour ces modes également, il y a une différence entre les deux cotés d’'un miroir liée a
la présence du deuxieme miroir.

Nous avons vu au chapitre 1 comment les amplitudes de diffusion pour un miroir,
données initialement pour les modes libres, pouvaient se définir sur le secteur évanescent
par prolongement analytique. Le méme raisonnement s’applique ici pour la fonction

retardée fi [w] aussi bien que pour la fonction avancée ff [w]" avec les modifications



tel-00001749, version 1 - 27 Sep 2002

56 Chapitre 2. Force de Casimir entre deux miroirs diélectriques

nécessaires. Ce prolongement pose le probleme de “branchement” au niveau des racines
qui sera réglé suivant les procédures déja discutées.

On revient tout d’abord aux notations définies dans le chapitre précédent

w = i , Re(£) >0
k. = 1ok \ Re (k) >0 (2-45)

avec ¢ = £1 suivant le sens de propagation.
Les fonctions de réponse sont construites sur les amplitudes de réflexion de chaque
miroir. On rappelle les propriétés essentielles vérifiées par les amplitudes d’un miroir

diélectrique, pour k et p fixés

— la diffusion est causale

ry [1€] analytique sur Re(¢) > 0, (2-46)

— le miroir diélectrique est transparent a haute fréquence

e[l = 0 pour  [¢] — oo, (2-47)

— les conditions d’unitarité globale de la diffusion ont montré

lrp| < 1 pour les ondes ordinaires. (2-48)

Dans un premier temps, nous continuons ce raisonnement en faisant une hypothese
simple, raisonnable pour les miroirs diélectriques [30, 76]. Nous supposons ici que la
condition (2-48) est également vérifiée sur le secteur évanescent et les fréquences ima-
ginaires. Dans ce cas, on peut alors montrer [83] que les amplitudes de réflexion sont
telles que |ry| < 1 sur le demi-plan Re () > 0. On en déduit alors que la fonction de
boucle [y [i€] est certainement analytique sur le demi-plan Re (¢) > 0.

On voit alors par inspection directe que les formules écrites pour la pression de
radiation des ondes ordinaires se prolongent naturellement sur le secteur évanescent.
Ceci permettra d’écrire I'expression finale de la force de Casimir comme une intégrale
sur toutes les fréquences réelles puis, en utilisant a nouveau les propriétés d’analyticité,
comme une intégrale sur les fréquences imaginaires [30, 76] (voir section suivante C.2).

Il nous faut maintenant revenir sur les hypotheses que nous venons de faire pour
les miroirs diélectriques. Ces hypotheses ont des statuts bien différents sur les deux

secteurs concerneés.
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Pour les fréquences imaginaires, les modules des amplitudes de réflexion sont des
réels compris entre 0 et 1 pour tous les modeles de miroirs étudiés dans ce travail. On
le voit directement sur les expressions (1-73) de la lame
sinh & s 2—1

~  sinh (o + ) 7 ¢ = z+1 (2-49)

lame __

7

puisque « et z, tels qu’ils sont définis par exemple en (1-67) et (1-68) au chapitre pré-
cédent, sont des réels positifs avec o > 0 et z > 1. Ceci est vrai pour tout modele défini
par une permittivité diélectrique ¢, sachant que cette fonction est réelle et décroissante
vers 1 sur 'axe imaginaire [81]. Comme «, (3 est donc réel positif.

Dans le secteur évanescent par contre, les amplitudes de réflexion n’ont pas toujours
un module inférieur a 1. On discutera ce probleme de maniere plus détaillée dans le
prochain chapitre puisqu’il se pose de facon particulierement aigiie pour les miroirs
métalliques. Il nous faudra alors reprendre le raisonnement que nous sommes en train
de faire. Toutefois, nous utiliserons encore la condition de “stabilité”, a savoir le fait
que fi [i€] est analytique dans le demi-plan Re (£) > 0.

On peut noter également que les ondes évanescentes n’existent pas quand on étudie
le cas d’un modele d’espace a une dimension. Le probleme discuté ci-dessus ne se pose

donc pas dans ce cas [91].

C Expression de la force de Casimir

Nous rassemblons les résultats écrits jusqu’a présent pour donner I’expression finale
de la force de Casimir entre deux miroirs diélectriques. Fn fait, nous allons écrire
deux expressions équivalentes pour cette force, la premiere comme une intégrale sur les
fréquences réelles, la seconde comme une intégrale sur les fréquences imaginaires. La
premiere est plus proche de I'intuition développée depuis le début de ce mémoire alors

que la seconde est mieux adaptée aux calculs explicites qui seront faits dans la suite.

C.1 Intégration sur les fréquences réelles

Pour écrire la premiere expression, nous appelons F' la force obtenue en multipliant
la pression (P;) sur le miroir 1 par la surface A du miroir et en ajoutant la contribution
des ondes évanescentes a celles des ondes ordinaires. Pour ces dernieres, nous partons

des expressions (2-37) et nous explicitons la sommation sur les modes en procédant au



tel-00001749, version 1 - 27 Sep 2002

58 Chapitre 2. Force de Casimir entre deux miroirs diélectriques

changement de variable

w? wdw

2 2
="k = kdk =

z
C C

(2-50)

Nous obtenons ainsi la contribution F,,.q des ondes ordinaires a la force de Casimir

comme 'intégrale

d?k _—
Faa = A%Z [ [ ek CRE R e

Comme nous ’avons déja discuté, les ondes évanescentes correspondent aux fré-

quences comprises dans le segment
0<w<clk|. (2-52)

De plus, la contribution F,,, des ondes évanescentes a la pression de radiation est

I’expression obtenue par prolongement analytique a partir de celle des ondes ordinaires
d?k e .
Faw = Ag- > [ [ ek caL-gen. e

En ajoutant ces deux résultats, on obtient donc 'expression finale de la force comme

une intégrale sur toutes les fréquences réelles

/ 47@/ dw k. (—f W] = L []). (2:54)

On rappelle que les expressions de f{ pour les ondes évanescentes sont obtenues par
prolongement analytique de celles valables pour les ondes ordinaires. On précise égale-
ment que les mémes raisonnements s’appliquent aux fonctions avancées fi [w]" et aux
fonctions retardées fy [w]. En utilisant la réalité de la réponse, le passage des unes aux

autres est décrit par les conjugaisons
e N (2-55)
qui respectent les conditions
Re(¢) >0 ) Re (k) > 0. (2-56)

[’équation (2-54) donne I'expression finale de la force de Casimir pour des miroirs

diélectriques plans dans le vide du champ électromagnétique. Les miroirs sont décrits
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par des amplitudes de réflexion qui obéissent aux propriétés physiques générales que
nous avons discutées. L’expression s’applique aux miroirs absorbants, et nous devons
utiliser I'unitarité du processus de diffusion pour le démontrer. Elle contient la contri-
bution des ondes évanescentes qui a été obtenue par prolongement analytique de la
contribution des ondes ordinaires. La prise en compte de cette contribution est abso-

lument nécessaire pour obtenir I’expression correcte de la force [30, 76].

C.2 Intégration sur les fréquences imaginaires

[expression (2-54) de la force de Casimir est une intégrale sur ’axe des fréquences
réelles. On peut la transformer en une intégrale sur ’axe des fréquences imaginaires.
Cette deuxieme expression sera beaucoup plus commode a utiliser dans les calculs
explicites faits dans la suite de ce travail.

Ce passage de 'axe des fréquences réelles a I’axe des fréquences imaginaires est une
opération bien connue en analyse complexe [114]. Considérons d’abord la fonction de
réponse retardée fi [w] de la cavité. En invoquant les propriétés déja discutées, on sait
que fy [w] n’admet aucun pdle sur le demi-plan Re (£) > 0 et est en fait une fonction
analytique sur ce demi-plan. En considérant le contour €' représenté sur la figure 2.3,

on déduit alors du théoréme de Cauchy

/ j%f /C d= f 2] = 0. (2-57)

Imw=Re

Rew=-1Im¢
C

Fic. 2.3 — Contour d’intégration dans le plan complexe pour Uapplication du théoréme de

Cauchy a la fonction de réponse retardée fy [i€].

On écrira ce contour (voir la figure 2.3)
C=C+Cx+C; (2-58)

ou C, correspond aux fréquences réelles, (', au quart de cercle de rayon tendant vers

I'infini et C; a 'axe des fréquences imaginaires parcouru de w = +ico vers w = 0.
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En faisant appel a la transparence a haute fréquence (2-47) de tout miroir physique,
nous voyons que la contribution de I'arc de cercle C, s’annule dans la limite d’un rayon
infini. La propriété (2-57) se traduit donc comme une relation entre I'intégrale sur I’axe
réel et I'intégrale sur "axe imaginaire. En tenant compte des sens de parcours, nous

démontrons donc

/de/dw ko (— 7 [w /ko/dg (2 i€ (2-59)

Pour la partie avancée, on utilise les mémes arguments sur le contour C* obtenu

par conjugaison £ — £* a partir du précédent (voir la figure 2.4). On obtient alors

/de/dw ko (— 7 [w /ko/dg (F2 1)) - (2-60)

Imw=Re¢

C* Rew=-Im¢

Fic. 2.4 — Contour d’intégration dans le plan complexe pour Uapplication du théoréme de

Cauchy a la fonction de réponse avancée fi [i€]".

En utilisant la réalité de la réponse [76], on voit que cette équation est en fait identique
a la précédente (2-59). On obtient la méme intégrale sur I’axe imaginaire pour la partie
avancée de la fonction de réponse que pour la partie retardée. Le résultat final est alors

donné comme la somme de ces deux termes qui sont en fait égaux

F(L) = /dzk/dwﬁ:fk [¢],

P Z _ Iok [Zf]
Al =
pe i€l = gy [k 5 [1€] e b

=
|

2
\ otk (2-61)
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Cette expression est une intégrale convergente et réguliere pour n’importe quel
type de miroir décrit par des coefficients de réflexion caractérisés par les propriétés de
causalité, de stabilité et de transparence a haute fréquence. La force ainsi calculée est
libre de toute divergence habituellement associée au caractere infini de I’énergie du vide.
De telles divergences apparaissent dans la plupart des calculs de I'effet Casimir. Elles
sont liées a ’hypothese habituelle de réflecteurs parfaits et obligent alors a utiliser
des méthodes diverses de renormalisations-régularisations. Ici, ce sont les propriétés
physiques des miroirs réels qui garantissent leur découplage vis-a-vis des fluctuations
de haute fréquence et constituent ainsi une procédure de régularisation naturelle de la
force [76].

On a utilisé ici la propriété importante que les amplitudes de réflexion sont plus

petites que 1 pour les fréquences imaginaires
lry [1€]] < 1 pour & reel. (2-62)

On l'a déja dit, cette propriété est toujours vérifiée (y compris pour les miroirs mé-
talliques discutés dans le chapitre 3). Bien str, I’expression de la force entre miroirs
parfaits s’obtient comme la limite sur (2-61) de la réflexion parfaite pour chacun des

miroirs
ri [i] — —1. (2-63)

Cette limite est prise sur tout le spectre de fréquence, et pour les deux polarisations.
En effectuant le changement de variable

/d?k/dé_ﬁ /dm / i (264)

on réécrit la force sous la forme suivante, sommeée sur les deux polarisations,

ZEA dli K2 ﬁA k3¢
5 62/1[/ = 7T2 dli 62/1[/ -1

0

o0

hcA / u?
= ——— [ du
16724 et — 1

0

heAm?
= 5100 (2-65)

On retrouve bien le résultat que Casimir a dérivé pour deux miroirs parfaits. L'effet de

coupure de ’exponentielle e?* fait jouer un role prépondérant aux valeurs de ¢ telles
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que

22 <. (2-66)

9

On voit alors que la limite des miroirs parfaits doit se comprendre par rapport aux
valeurs des amplitudes de réflexion dans ce domaine de fréquence. Cet argument jouera

un role essentiel dans la discussion des miroirs métalliques.

C.3 Comparaison avec la formule de Lifshitz

Comme nous ’avons déja rappelé, Lifshitz a été le premier a aborder la question
du calcul de la force de Casimir entre des miroirs réels [30]. Son approche était basée
sur la résolution des conditions de bord et des équations de continuité pour le champ
électromagnétique dans le vide enfermé entre deux diélectriques plans semi-infinis. Lif-
shitz avait introduit un champ fluctuant dont les propriétés spectrales étaient définies
par la partie imaginaire de la permittivité du milieu.

Il avait ensuite calculé la force de Casimir en introduisant la plupart des techniques
que nous avons utilisées dans notre dérivation. Il faut noter toutefois que son résultat
ne s’appliquait qu’au cas du miroir diélectrique semi-infini. Lifshitz n’avait pas écrit
son résultat en ces termes et, a notre connaissance, c’est Katz [115] qui a le premier
exprimé la formule de Lifshitz en utilisant les coefficients de réflexion du miroir massif.
Ce travail de Katz était une simple réécriture de la formule de Lifshitz, limitée au cas
particulier étudié par celui-ci.

Le traitement par amplitudes de réflexion que nous avons présenté permet de calcu-
ler la force pour n’importe quel type de miroir. Notre formulation par matrice S a pour
avantage d’avoir une signification physique claire tout en étant tres générale. Elle s’ap-
plique a tous les miroirs décrits par des amplitudes physiques. Elle a d’abord été écrite
pour des miroirs non absorbants [76] mais, comme nous l'avons indiqué ici, elle s’ap-
plique sans modification majeure au cas des miroirs absorbants [116, 117, 118]. A titre
de parenthese, elle est également parfaitement adaptée a I’étude des effets dynamiques
de la pression de radiation du vide [108, 109, 110, 111].
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D La formule des déphasages

D.1 L’énergie de Casimir

La force de Casimir, telle que nous 'avons donnée en (2-61) dérive d'un potentiel
que nous pouvons définir comme 1’énergie de Casimir entre deux miroirs plans réels a

température nulle

(2:67)

L’énergie est simplement la primitive de la force en supposant par convention qu’elle

s’annule a distance infinie
E(L) = /d:z; F (). (2-68)
L

On a ici utilisé des conventions de signes pour lesquelles la force d’attraction et 1’énergie
de liaison entre les miroirs sont données comme des quantités positives. Ces conventions
ne sont pas habituelles pour I’énergie et il faut faire attention a ce point dans toute
discussion impliquant des considérations thermodynamiques.

L’énergie peut alors s’écrire soit comme une intégrale sur les fréquences réelles a
partir de (2-54)

E(L)= —%Z/%jdw %m {L;{[E:"]]} : (2-69)

L —py
0

soit comme une intégrale sur les fréquences imaginaires a partir de (2-61)

B =—22 5 [ [ag mb - el (2-70)

Les conditions de causalité et de stabilité garantissent que I'intégrande

In[L - of, [i€] (2-71)

est analytique dans le demi-plan complexe Re (§) > 0. Il est donc clair que ces deux
expressions sont équivalentes au méme titre que les deux expressions de la force a partir
desquelles elles ont été obtenues.

Ces expressions peuvent s’interpréter comme I’énergie stockée par la cavité au cours
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de la diffusion. Elle se calcule par exemple a partir des déphasages subis par les champs

diffusés

AL [i€] = In[1 — p} [i€]) (2-72)

Ces déphasages peuvent étre déduits de la matrice S¢,y. Cette propriété a été démontrée
de maniere détaillée pour les miroirs non absorbants [76]. Nous la rappelons ici pour

mémoire mais ne la discutons pas plus puisque nous ne 'utilisons pas dans la suite.

D.2 La formule des temps de Wigner

On peut donner encore une interprétation différente de cette formule. Pour cela, on
commence par intégrer I’expression (2-70) par parties. Avec les conditions déja utilisées

pour en démontrer ’analyticité, on voit que le terme de bord correspondant s’annule

(€1 — g i€y = o0. (2-73)

On en déduit que ’énergie de Casimir peut s’écrire sous la forme

=52 [5F [aeca o, (2-74)

En isolant dans l'intégrande la densité spectrale hé des fluctuations du vide, il nous

reste un temps de Wigner défini en dérivant le déphasage par rapport a la fréquence

e [i€] = 0 (AL [i€) (2-75)
Dans ce point de vue, I’énergie de Casimir est due au fait que les fluctuations qui
arrivent en permanence sur la cavité sont stockées pendant un certain temps [76].
Dans cette interprétation dynamique [113], une énergie de liaison signifie que ce sont
les temps de Wigner négatifs qui en déterminent le signe. Autrement dit, ce sont les
modes hors résonance, ceux pour lesquels le temps de Wigner est négatif, qui définissent
le caractere liant de I’énergie de Casimir. Cette interprétation est cohérente avec la
discussion analogue de la force de Casimir [91].

En effet, les parties résonnantes du spectre correspondent a une énergie plus grande
dans la cavité qu’a l'extérieur (g,, > 1 dans ’équation (2-37)). Elles contribuent donc
a une force répulsive pour les deux miroirs. Par contre, les parties anti-résonnantes
du spectre correspondent a une énergie moins grande dans la cavité qu’a 'extérieur
(gm < 1) et contribuent donc & une force attractive. Le fait que la force soit finalement
attractive montre que ce sont les parties anti-résonnantes du spectre qui imposent leur

signe [91].
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Chapitre 3

Cas des miroirs métalliques

Comme nous ’avons brievement présenté dans l'introduction, les expériences ré-
centes de mesure de la force de Casimir s’effectuent entre des miroirs métalliques.
Comme il sera clair a la fin de ce chapitre, ce choix est en grande partie justifié par
les bonnes réflectivités qu’on peut atteindre avec les métaux. Dans le chapitre 2, nous
avons montré comment calculer la force de Casimir a partir des amplitudes de réflexion
pour des miroirs diélectriques. Ces amplitudes introduisent tout naturellement ’effet
de la réponse optique dans ’évaluation de la force et cette formulation est donc parti-
culierement adaptée a 1’étude des corrections liées a la conductivité des métaux [118].

Les miroirs métalliques, comme n’importe quel type de miroirs physiques, ne sont
pas parfaitement réfléchissants a toutes les fréquences du champ incident. Nous ex-
plicitons en premier lieu différents modeles de réponse optique utiles pour discuter ce
probleme, le modele plasma et le modele de Drude. Enfin, nous traitons le cas des
métaux réels a partir des données optiques tabulées [119].

Nous discuterons plusieurs problemes liés a la description par un modele plasma.
Nous verrons comment retrouver, en les généralisant, des résultats antérieurs basés
sur la prise en compte explicite des modes plasmons caractéristiques d’un métal. Nous
ferons le lien entre notre formulation et ce point de vue. Nous devrons présenter les
difficultés analytiques que la réponse métallique peut induire, en particulier au niveau
du prolongement aux ondes évanescentes. Nous discuterons enfin de 'approximation
qui consiste a négliger les effets de la dispersion spatiale dans le calcul de la force de
Casimir. Nous montrerons comment tous ces problemes se résolvent en conduisant a
une expression de la force formellement identique a celle obtenue dans le chapitre pré-
cédent pour les miroirs diélectriques.

Ceci nous permettra finalement de discuter de maniere explicite les corrections in-
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duites sur la force de Casimir par la conductivité finie des miroirs métalliques. Nous
définirons des facteurs correctifs adaptés a ’analyse de ces effets et les calculerons pour
les différents types de réponses considérés. La température sera prise nulle dans tout ce
chapitre. Nous verrons au chapitre suivant comment prendre en compte la correction
supplémentaire engendrée par la pression de radiation des fluctuations thermiques du

champ.

A Réponse optique des métaux

Par rapport aux diélectriques, les métaux sont caractérisés par la présence de
charges libres, les électrons de conduction. Il y a donc au sein du métal une conduc-
tivité o non nulle qui génere une réponse au champ incident délocalisée sur le métal.
Il est pourtant possible de décrire la réponse optique d’un métal par une permittivité
e comme pour un diélectrique [120]. On a alors les mémes formes pour les amplitudes
de diffusion d’un miroir métallique que celles que nous avons présentées au chapitre 1
pour les diélectriques.

Il est important de noter une propriété générique des permittivités métalliques [123]

directement liée a la présence d’électrons libres

09

€ [w] ~ — 00 pour w — 0. (3-1)

—w
Dans cette équation, og représente la conductivité quasistatique, ¢’est-a-dire la limite de
o a fréquence nulle. A cette méme limite quasistatique, la permittivité d’un diélectrique
est finie. Nous verrons dans la suite les conséquences importantes de la présence d’un
tel pole a fréquence nulle pour les métaux.

A haute fréquence, les miroirs sont transparents et 'intensité de la force est réduite
en conséquence. Nous analyserons en détail dans ce chapitre ces comportements. 11 est
important cependant de noter tout de suite que leffet de filtrage de la cavité sélectionne
les domaines de fréquence par la condition % < 1. En d’autres termes, les grandes
distances entre miroirs correspondent typiquement aux basses fréquences et les courtes
distances aux hautes fréquences.

Dans le cas des métaux, les longueurs de cavité seront rapportées a une longueur
caractéristique, la longueur plasma Ap, qui dépend explicitement des propriétés des

électrons de conduction. Cette longueur est équivalente a une fréquence plasma

2mce

. (3-2)

wp =
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définie a partir des propriétés du milieu. On a ainsi

. 47 Ne? B Ng?
“p = . .
m EogMm

N = ZN,, (3-3)

ou N est le nombre d’électrons de conduction par unité de volume, c’est-a-dire égale-
ment le produit du nombre Z d’électrons par atome et de la densité atomique N, ; ¢
représente la charge élémentaire et m* est la masse effective d’un électron de conduc-
tion. Cette masse est différente de la masse d’un électron libre en raison des interactions
avec les ions constituant le réseau métallique, les autres électrons...

Les longueurs de cavité tres grandes devant la longueur plasma correspondront au
régime de saturation de la réponse des miroirs pour lequel les miroirs tendent a se
comporter comme des réflecteurs parfaits et la force de Casimir tend vers la formule
idéale. En revanche, pour des fréquences plus élevées que wp, les miroirs deviennent
de mauvais réflecteurs. Cet argument est important puisqu’il conduit au fait que la
force est une quantité naturellement convergente. Ceci implique aussi que la force est
inférieure a la force idéale pour des distances entre miroirs inférieures a la longueur
d’onde plasma ou du méme ordre. Typiquement pour les métaux, la valeur de Ap est
de I'ordre du dixieme de micrometre (Ap ~ 0.1gm). Nous reviendrons sur ce point plus

en détail dans la suite de ce chapitre.

A.1 Le modele plasma

Nous considérons en premier lieu une réponse optique modélisée par un plasma
d’électrons libres de conduction sans aucune dissipation. Avec ce modele plasma, les

permittivités sur les fréquences réelles et imaginaires sont données respectivement par

clw] = 1-=5
eli€] = |4t (3-4)

£2
Ce modele simple nous permettra d’effectuer la plupart des calculs a venir analytique-
ment. Ce modele joue un role privilégié dans le cadre général de la théorie de 'optique
des solides. Nous discuterons plus loin le lien explicite tres bien connu en optique des
solides entre le modele plasma et les plasmons de surface des métaux [121]. Par ailleurs,
ce modele souleve des difficultés particulieres vis-a-vis du calcul de la force de Casimir

et nous allons montrer comment résoudre ces difficultés.
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A.2 Le modele de Drude

Le modele plasma ne peut pas correspondre a une description réaliste de la ré-
ponse optique du métal puisque, par construction, ce modele ignore les processus de
relaxation des électrons responsables de cette réponse. La permittivité définie pour un
modele plasma est en effet réelle pour toute fréquence réelle. Notons que ce modele
n’obéit évidemment pas aux relations de Kramers-Kronig, qui seront discutées plus
loin, puisqu’il est a la fois dispersif et non dissipatif!

Une meilleure représentation des propriétés optiques des électrons de conduction

est donnée par le modele de Drude [122] qui définit une permittivité complexe

elw] = l_w(wiiF)
clig] = 1+—F (3-5)

Ce modele simple permet de prédire, qualitativement au moins, le comportement des
électrons d’un métal [123]. Dans ce modele, la relaxation est créée par les processus
de diffusion des électrons sur les ions du métal, les impuretés ou les défauts du cristal.
Elle est décrite de maniere effective par un parametre de relaxation I' défini comme
I'inverse du temps moyen de relaxation. Le parametre de relaxation est beaucoup plus
petit que la fréquence plasma, et ce pour la grande majorité des métaux. Pour Al, Au
et Cu en particulier, nous avons comme valeurs typiques

r
— ~ 4 x 1077, (3-6)

wp

Puisque ce rapport est bien plus petit que 'unité, le parametre de relaxation n’induit
sur ¢ [1€] un effet significatif qu’aux fréquences pour lesquelles cette permittivité est tres
supérieure a 1'unité, c’est-a-dire lorsque les miroirs métalliques se comportent quasiment
comme des réflecteurs parfaits. L’influence de la relaxation sera donc faible sur la valeur

de la force de Casimir, comme on le verra par la suite.

A.3 Les transitions inter-bandes

Le modele de Drude ne permet pas d’expliquer le comportement optique d’un métal
réel sur tout le spectre de fréquence. Pour les fréquences optiques, typiquement avec
une énergie de 'ordre de quelques €V, la lumiere excite des transitions inter-bandes
et la seule contribution des électrons de conduction n’est plus suffisante pour décrire

les propriétés optiques du milieu [123]. 1l existe bien sir des approches théoriques qui
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permettent de définir des permittivités métalliques plus réalistes [124]. Nous ne nous
engagerons pas dans la discussion de ces méthodes et nous contentons de décrire la ré-
ponse optique des métaux directement a partir des données optiques tabulées [125, 126].
Ces données permettent de “reconstruire” une permittivité réaliste décrivant la réponse
optique des métaux de maniere réaliste.

La fonction de réponse ¢ [w] donnée sur 1’axe des fréquences réelles peut se décompo-
ser en une partie réelle &’ et une partie imaginaire ”. Ces deux parties sont directement

connectées par des relations de Kramers-Kronig [93]

ew] = &w]+e"[w]
] -1 = %ii/dxigé%%, (3-7)

0
P désignant la valeur principale au sens de Cauchy. Ces relations expriment la causa-
lité de la réponse, autrement dit le fait déja discuté que la fonction ¢ [w] est analytique
dans le demi-plan Im (w) > 0.

Il est important de remarquer que ces relations ne sont pas absolument générales.
Par exemple, le modele plasma ne vérifie certainement pas cette relation puisque la
partie dissipative de ¢ est nulle alors que la partie dispersive ne se réduit pas a 1.
Dans ce cas, il faut écrire des relations de dispersion avec “soustractions” qui, elles,
sont tout a fait générales [83, 127]. Pour les métaux réels toutefois, les relations de
Kramers-Kronig sont effectivement vérifiées, pourvu que la dissipation soit traitée de
maniere correcte. Ceci signifie en particulier que la fréquence plasma est alors liée a la
partie dissipative de la permittivité par des regles de somme [123, 124].

On déduit alors une expression de la permittivité ¢ [i£] pour les fréquences imagi-
naires en fonction de la partie dissipative de la permittivité ” [w] pour les fréquences

réelles

4@—1=§/¢%§f§- (3-8)

0

Comme on 'a déja dit, e [1€] est alors réel et positif pour tout ¢ réel, c’est aussi une
fonction qui décroit de la valeur co pour ¢ = 0 jusqu’a la valeur 1 pour £ = oo (voir
93))

Comme toujours quand il s’agit de discuter des propriétés optiques, les fréquences
seront mesurées comme des pulsations, en rad.s™!, mais les discussions seront exprimées

en eV, avec la relation de conversion

1eV = 1.537 x 10%rad.s7*.
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Dans la pratique, on commence par évaluer la fonction £” [w] pour les fréquences réelles
a partir des données tabulées [118]. Ce travail doit étre mené de fagon tres soignée, faute

de quoi des résultats peu fiables peuvent étre obtenus [50, 128, 129].

6

10

€’ (w)

s L s
10 12 13 14 16 17

10 10 10 10° 10 10
wlrad/s]
Fic. 3.1 — Partie imaginaire " [w] de la permittivité en fonction de la fréquence réelle pour
les trois métaur Al, Cu et Au.

On remonte ensuite a ¢ [i£] a I'aide de (3-8). La encore, ce travail demande du soin,
a la fois pour extrapoler les données optiques au domaine des basses fréquences, d’autre
part pour maitriser les problemes de précision numeérique. Ici, nous suivons exactement
la procédure proposée en [118], procédure qui fonde d’ailleurs le traitement actuel et
systématique des corrections de conductivité sur la force de Casimir [52, 53, 54, 55].

Pour la figure 3.1, les données sont issues de [119] sur une largeur de spectre de
0.04 - 1000 €V pour Al et de 0.1 - 1000 eV pour Au et Cu. Si l'interpolation ne pose
aucun probleme, la densité des points de données étant suffisante, il faut en revanche
extrapoler ces données a basse fréquence pour augmenter le domaine sur lequel les inté-
grations seront effectuées. Cette extrapolation est faite par ajustement avec un modele
de Drude. Les parametres ajustables du modele, i.e. la fréquence plasma et le para-
metre de relaxation, se déduisent des données dans le cas de "aluminium directement
depuis les points de données. On trouve ainsi pour Al wp = 11.5 eV et I' = 50 x 1073
eV. Pour Au et Cu en revanche, ces parametres ne peuvent étre déterminés séparement
a partir des données optiques, en trop petit nombre. On utilise alors les connaissances
de la physique du solide [123] pour déterminer la fréquence plasma.

On a vu, dans I'introduction de ce chapitre, que cette quantité se calcule en fonction
de la masse effective m* des électrons de conduction. Nous choisissons pour la masse
effective des électrons de conduction les valeurs %* ~ 1 pour Au et %* ~ 1.45 pour

Cu [125, 126]. On obtient alors quasiment la méme {réquence plasma pour Au et Cu,
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wp = 0.9 €V, ce qui correspond a une longueur plasma Ap = 136 nm. Cette simili-
tude des longueurs plasma pour Au et Cu expliquent une identité des valeurs pour la
force et I’énergie de Casimir entre miroirs d’or et de cuivre initialement non comprise
[50, 118]. Les données optiques nous permettent alors de déduire le parametre I' du
modele de Drude a choisir pour 'extrapolation. Nous obtenons ainsi I' = 35 meV pour
Au et I' = 30 meV pour Cu. Ces valeurs correspondent respectivement aux rapports
% =38 x 1072 et % = 3.3 x 1072, IIs sont du méme ordre de grandeur que celui

pour Al: % = 4.4 x 1072, La permittivité évaluée sur ’axe imaginaire ¢ [i£] est ensuite

obtenue par l'intégration (3-8) et le résultat est présenté sur la figure 3.2.

10
10° . — Al
----- Au
10° & ———Cu
10 \\
oy \\
D 4 A3
10 N
, N
10 \\
10" AN
o ) ) ) ) S
10 1012 1013 1014 1015 1016 1017
&[rad/s]

Fic. 3.2 — Permittivité compléte ¢ [i€] évaluée sur les fréquences imaginaires pour les trois
métaur Al, Cu et Au.

Notons que les longueurs de cavité typiquement étudiées dans les expériences sont
comprises entre 0.1 et 10 um, et correspondent donc essentiellement a des fréquences
dans un domaine spectral s’étendant de 0.1 a 10 eV. Pour obtenir des valeurs fiables
de la force, il faut disposer des valeurs de e [¢£] sur un intervalle largement supérieur,
typiquement de 107* & 10% eV. Ceci nécessite de partir de valeurs de &”[w] sur un
intervalle encore plus grand, de I'ordre de 107° a 10* ¢V. Il est clair que ces contraintes
peuvent entrainer des imprécisions dans le calcul de la force, d’autant plus qu’une

grande exactitude sera visée. Nous y reviendrons.

B Discussion des modeles

Comme nous 'avons déja dit, le modele plasma souleve des difficultés spécifiques

que nous discutons maintenant. Nous montrons que ces difficultés se résolvent et que la
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force de Casimir garde en fait une expression formellement identique a celle démontrée

dans le chapitre 2 dans le cadre des hypotheses pour les miroirs diélectriques.

B.1 Modele plasma et plasmons

Un premier probleme est associé au lien étroit qui existe entre le modele plasma
et les plasmons de surface. Ceux-ci sont des excitations qui se propagent librement en
I’absence de relaxation, a I'interface vide|métal. Dans notre point de vue, on les obtient
immédiatement en étudiant "amplitude de réflexion sur une interface vide|métal en

polarisation TM

2
Tk [lf] - 1 + ZTM ’ < - : 2 . (3—9)
Velig] & + k2
On voit immédiatement que cette amplitude diverge quand 2™ = —1, ce qui cor-

respond a la définition des plasmons de surface. On note également qu’elle s’annule

pour ™ = 41, ce qui correspond & 'angle de Brewster. Les deux situations sont

rassemblées dans ’équation

(z™)* = 1. (3-10)

Pour le modele plasma, c’est une équation du second degré pour w?

wt — W? (w% + 2c2k2> + w%chZ = 0. (3-11)

On obtient aisément la racine correspondant & z™ = —1

e wp + 2c7k* — \/wl‘—_ﬁ + 4ctk? (3-12)

N 2

et celle correspondant a I’angle de Brewster

L w% + 2¢°k? —|—2 wl‘% + 4c4k4‘ (3-13)

La condition (3-12) est la relation de dispersion bien connue pour les plasmons de
surface (voir équation (2.46) dans [121]). Cette relation est souvent écrite dans la limite

des incidences rasantes

k? > wi. (3-14)
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Elle prend alors une forme plus simple
w? = é. (3-15)
2

Par suite des deux relations précédentes, cette solution tombe évidemmment dans
le secteur évanescent, ce qui correspond a une propriété bien connue des plasmons
de surface. Ces résultats signifient que des excitations collectives existent pour des
fréquences réelles. Comme c’est toujours le cas dans la théorie de la diffusion, ces
excitations correspondent a des divergences des amplitudes de diffusion quand on ne
prend pas en compte les phénomenes de relaxation, ce qui est le cas pour le modele
plasma. Si on inclut Ueffet de la relaxation, le pole de ry est déplacé de I'axe réel dans
le demi-plan Im (w) < 0 et la divergence devient une résonance.

Cette discussion montre de facon évidente que le module de r{ ne peut certainement
pas rester plus petit que 1 pour les miroirs métalliques. En fait, il diverge pour le modele
plasma et cette divergence est régularisée par la prise en compte de la relaxation.
Comme ce parametre obéit a la relation (3-6), cette résonance va toujours dépasser
la valeur 1 pour le module de ry. C’est donc une difficulté vis-a-vis de 'hypothese
qu’on a faite au chapitre précédent sur le module de ry. Il est intéressant de remarquer
que pour tout type de miroir, la structure des amplitudes de réflexion aux interfaces
(voir (1-68) au chapitre 1), garantit que la condition (2-48) du chapitre 2 est toujours
vraie en polarisation TE quelque soit le modele de ¢ considéré. C’est uniquement en
polarisation TM que se posent les problemes. Ceci correspond au fait bien connu que
les plasmons n’existent que polarisés TM.

Malgré cette difficulté, on pourra encore obtenir ’expression de la force de Casimir
et celle-ci sera en fait formellement identique a celle que nous avons écrite dans le cadre
de notre hypothese. Pour le voir, reprenons la démonstration faite en section C.2 au
chapitre 2, en nous interdisant de supposer que le module de ry soit plus petit que 1.

Nous rappelons la forme de la fonction de réponse a partir de laquelle nous avons

pu calculer la force de Casimir

P
Px ¥ ik
fld= Y AP e gl = g R 316)
1 — py [w]
p=TE,TM
C’est exactement la fonction de réponse d’une boucle de contre-réaction construite
avec un gain en boucle ouverte mesuré par 'amplitude pj [w]. La condition |py [w]| <1
implique certainement que la boucle de contre-réaction ne peut jamais se mettre a
osciller ; autrement dit, il n’y a pas de pole de fx[w] dans le demi-plan Im (w) > 0.

Mais on sait aussi que cette condition |p} [w]| < 1, si elle est suffisante, n’est pas
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nécessaire: on peut dépasser |pj [w]| = 1 sans atteindre le seuil d’oscillation pourvu
que ce soit avec une phase non adaptée a l'oscillation.

La condition qui est indispensable dans notre raisonnement est la “stabilité” du
systeme formé par la cavité et le champ. Elle s’exprime par le fait que fx [w] n’a pas
de pole dans le demi-plan Im(w) > 0 et est en fait une fonction analytique dans
ce domaine. Sous cette seule condition, on démontre que la contribution des ondes
évanescentes est donnée par le prolongement analytique de la fonction fx [w] sur le
secteur évanescent.

Pour préciser ces idées, considérons le modele plasma dans le régime particulier ou
les fréquences w sont inférieures ou de l'ordre de la fréquence plasma w ~ wp, alors
que le vecteur d’onde transverse est supposé beaucoup plus grand. Dans ce régime,

les équations générales pour les amplitudes de réflexion sur 'interface se simplifient

beaucoup

rat [w] =0

1 —ew] W

™ P

e |w] = = . 3-17

o ] l+efw]  2w?— wi (3-17)
Non seulement 7™ a alors un module plus grand que 1 pour 0 < w < wp mais, de

2

plus, il diverge pour w? = w? = WTP. Ceci correspond effectivement a la fréquence wy

des plasmons de surface, dans la limite des incidences rasantes (3-14,3-15).
Dans ce cas particulier, il est aisé d’écrire que la fonction de boucle fi [w] a des

poles correspondant a 1’équation
W] = 1L (3-18)
Pour des fréquences réelles dans le secteur évanescent, deux poéles sont identifiés
wi =w? (1+£eF) ) k= |k|. (3-19)

Cette équation a une interprétation physique simple. Elle signifie que les plasmons
de surface correspondant aux deux miroirs sont couplés par les ondes évanescentes se

~L représente 'amplitude relative de ce couplage

trouvant dans la cavité; le facteur e~
et ’équation (3-19) décrit le déplacement des fréquences plasmon di a ce couplage.
Le raisonnement a été fait pour le moment avec le modele plasma, c’est-a-dire en
négligeant toute dissipation. Si on tient compte de la dissipation, les deux péles w. vont
étre déplacés de I’axe réel vers le demi-plan Im (w) < 0. Les poles qui se trouvaient sur

la frontiere du domaine d’analyticité Im(w) > 0 vont donc étre repoussés au-dela de
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cette frontiere, ce qui garantit la stabilité de la cavité. Par exemple, pour le modele de

Drude, le méme calcul montre que les poles sont déplacés en

wy = \/wf (1 +enl) — g @E (3-20)
4 2

A contrario, U'instabilité, c’est-a-dire le déclenchement d’une oscillation spontanée
du systeme, correspondrait au déplacement d’un poéle de I'axe réel Im (w) = 0 vers le
domaine Im (w) > 0. Ceci est bien str impossible physiquement en 1’absence de tout

mécanisme susceptible de fournir ’énergie nécessaire a cette oscillation.
Dans ces conditions, les raisonnements faits dans le chapitre précédent pour les
miroirs diélectriques peuvent maintenant étre étendus au cas des miroirs métalliques,
la fonction fx [w] étant analytique dans le demi-plan Im (w) > 0. On trouve alors le

méme résultat que dans le chapitre 2

hA o [ i [7€]
F(L) = EZ/dk/dfm#m
Pk li€] = rig [ ligd e (3-21)

Comme on ’a déja vu, les amplitudes de réflexion évaluées sur I’axe imaginaire sont

toujours plus petites que 'unité
£ reel — |rgif]] < L (3-22)

Ceci assure que la force est une expression réguliere pour tous les miroirs vérifiant les
propriétés physiques que nous avons utilisées : causalité, stabilité, transparence a haute
fréquence.

Remarquons que, dans le cas particulier du modele plasma, les poles de fx [w] se
trouvent sur la frontiere du domaine Im (w) > 0. Pour valider notre raisonnement, il
faudra donc contourner ces pdles pour rester dans le domaine d’analyticité de fi [w].

C’est ce que représente le contour dessiné sur la figure 3.3.

Cette subtilité n’est pas nécessaire des que la dissipation est prise en compte.

Nous allons voir plus loin que la force de Casimir peut également se comprendre
comme une interaction de Van der Waals entre les excitations élémentaires dans les
miroirs. Ceci est tout a fait analogue a l'interaction de Van der Waals entre deux
atomes [27] qui peut se comprendre en étudiant les amplitudes des diffusions sur le
systeme a deux atomes [130, 131] ou, alternativement, I'interaction entre les fluctuations

élémentaires dans les deux atomes [132, 133]. Nous ferons ce calcul dans le cas du
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Imw = Re

Rew = -Im¢&
clk]
ondes evanescentes
Fic. 3.3 — Prolongement analytique pour la fonction de réponse retardée en tenant compte des

singularités dans le secteur €vanescent, pour le cas particulier du modele plasma.

modele plasma a la limite d’une distance courte pour laquelle on peut se contenter de
I'interaction instantanée de Coulomb. Nous verrons alors que le calcul de type Van der

Waals donne le méme résultat que la formule écrite ci-dessus [134].

B.2 Plasmons et dispersion spatiale

Les résultats que nous venons de présenter sont en fait des cas limites d’une théo-
rie plus générale [121, 135] qui permet d’analyser l'interaction des modes plasmons
au-dela du régime de Coulomb. Une telle théorie permet également de discuter ’hypo-
these, sous-jacente dans le raisonnement fait jusqu’ici, d’absence de dispersion spatiale
au niveau de la réponse du métal au champ.

La description de la réponse optique d’un métal distingue typiquement deux ré-
gimes, définis par le rapport entre la longueur d’onde A du champ électromagnétique
et le libre parcours moyen ¢ des porteurs électroniques. Ce libre parcours moyen est
donné par la dynamique de ces porteurs, { = vpT, ou la vitesse de Fermi vgp mesure la
vitesse typique des électrons dans le métal alors que 7 est le temps caractéristique du
processus considéré.

Pour des longueurs d’onde A > ¢, la réponse optique du métal pourra étre considé-
rée comme locale: les grandeurs de courant et de densité mesurées en un point seront
liées au champ électromagnétique évalué en ce méme point et la description du métal
sera donnée par une fonction diélectrique e [w] ne dépendant que de la fréquence du
champ. Dans le cas général en revanche, les effets de non-localité spatiale pourront de-
venir importants et il faudra alors décrire la réponse optique par un e [w, k] dépendant
non seulement de la fréquence mais aussi du vecteur d’onde k.

Les métaux sont également caractérisés par l'existence d’excitations collectives de
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surface se propageant le long de l'interface métal|vide. On a parlé dans la section pré-
cédente des plasmons de surface. En tenant compte plus précisément des relations de
dispersions de ces modes plasmons, Heinrichs [135] (voir aussi [121]) a mis en évi-
dence de maniere claire le changement de comportement correspondant a la longueur
caractéristique

vp

V3wp

Cette longueur peut s’interpréter comme la longueur sur laquelle les charges s’éloignent

lp =2 (3-23)

de I'interface. Elle correspond a la discussion du début de cette section avec 7 de 'ordre
de la période plasma i—;r. Heinrichs a montré qu’il est possible de définir trois régimes

de distances L différents entre les miroirs formant la cavité

—~ 1) L < lp correspond a l'effondrement de I'hypothese locale. Pour des miroirs
séparés d’une distance plus petite que la longueur typique /p, on ne peut plus
décrire la réponse des métaux par une permittivité simple et il faut redéfinir une

réponse optique réaliste dans ce régime;

— 1) lp <« L < Mp correspond a une interaction instantanée traitée en bonne
approximation dans le cadre de I’électrostatique avec, de plus, la réponse optique

des miroirs décrite par une permittivité ¢ [w] sans dispersion spatiale;

— 1ii) Ap < L correspond au régime retardé, ou les effets de retard doivent étre

pris en compte tout en négligeant tout effet de la dispersion spatiale.

Dans la suite de ce travail, on considere que le régime i) est exclu. A nouveau, ceci
peut étre discuté par analogie avec la discussion des forces de Van der Waals entre
atomes. Le régime 1) que nous excluons correspond au cas ou la force de Van der Waals
devient une force moléculaire. Les régimes ii) et iii) correspondent a une force a longue
portée qui peut étre calculée a partir des amplitudes de diffusion évaluées séparément
pour les deux diffuseurs [27, 130, 131].

On peut donner un ordre de grandeur pour /p. On trouve conventionnellement [123]
vp ~ 10°m /s pour un métal, de sorte que fp ~ 2 x 107>Xp est de I'ordre de quelques
angstroms. Pour les trois métaux que nous considérons, on a: Al vp = 2.03 x 10°m/s,
Au vp = 1.40 x 10°m/s, Cu vp = 1.57 x 10°m/s.

Ceci implique que toutes les expériences récentes sur la force de Casimir sont dans
les régimes ii) ou iii) mais n’approchent jamais le régime i). Il est donc inutile de
prendre en compte les corrections a la force de Casimir calculées par Heinrichs [135]

par une étude détaillée des contributions d’échanges entre les modes plasmons.
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C Corrections de conductivité

Les effets induits par la conductivité finie des miroirs seront évalués relativement a
la prédiction de Casimir, établie entre deux miroirs parfaitement réfléchissants. L’outil
essentiel des discussions a venir sera donc défini par le facteur correctif, c’est-a-dire le
rapport de la force de Casimir entre miroirs réels et la force de Casimir calculée dans

la situation “idéale” des miroirs parfaits

_F

= FCas ‘

On procedera de la méme facon pour I’énergie
K

= ECas ‘

Les grandeurs F' et E correspondent respectivement a la force et 1’énergie de Casimir,
telle qu’elles sont données en (2-61) et (2-70) au chapitre précédent. On rappelle les

expressions de la force et de I’énergie dans la situation idéale

Feas = hedr : Ecas = M
24014 72003
Pour le moment, ces facteurs correctifs rendront compte des corrections de conducti-
vité. Dans le prochain chapitre, nous étendrons leur définition au cas des corrections
de température.

Notre formulation de la force ou de I’énergie ne repose sur aucun modele microsco-
pique particulier de réponse optique. Elle suppose seulement que cette réponse engendre
des amplitudes de diffusion satisfaisant des propriétés de causalité, de stabilité et de
transparence a haute fréquence. Toutefois, elle repose de facon essentielle sur le carac-
tere spéculaire de la réflexion du champ a la surface des miroirs et ne peut donc rendre
compte des effets de rugosité de surface des miroirs en 1’état actuel. Nous aborderons

cette question de la rugosité de surface dans le dernier chapitre de ce travail.

On peut donner la forme générale de ces facteurs correctifs en partant des résultats

60L4Z [ / i€ P
9C()7TL:Z/d2 /dg In[1 — pp [2€]].

P [1€] = 1y 1 [i€] g 5 [i€] G_ZHL (3-24)

du chapitre précédent
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A la limite des miroirs parfaits ry, [1£] = 1, on retrouve les résultats idéaux, c’est-a-dire
ici np = 1 et yg = 1. Comme |ry| est plus petit que 1 pour les fréquences imaginaires,

on voit que l'effet de la conductivité est toujours un effet de réduction de la force
F=npFoas,  np < 1. (3-25)

Nous avons également vu que la force tend vers 'expression idéale pour des miroirs

métalliques lorsque la distance est beaucoup plus grande que la longueur plasma

P L
e =1 pour =L (3-26)
P

Il nous reste maintenant a analyser quantitativement le cas d’une distance quelconque.

C.1 Le modele plasma

(C’est ce que nous faisons d’abord avec le modele plasma. Dans ce cas, on peut dériver
analytiquement les expressions pour les facteurs correctifs np et ng. Nous rappelons
d’abord les résultats obtenus dans le chapitre 1 pour 'amplitude de réflexion sur une

lame
lame sinh o e —e @
- _ - _ . 3-27
g sinh (8 + «a) eled — e=Pe—a ( )

Les notations sont les mémes que dans le chapitre 1: ¢ représente 'amplitude de

réflexion sur la premiere interface alors que

/ 2
a=rl="{ 515—2 + k? (3—28)
C

représente la propagation sur 1’épaisseur physique / de la lame. A la différence du
chapitre 1 cependant, ces quantités sont maintenant évaluées pour des fréquences ima-
ginaires et on voit que 3 et « sont des réels positifs. Pour un métal, o est toujours

minoré par une borne qui ne dépend que de I’épaisseur ¢ et de la longueur plasma
o> — =2r—. (3-29)

Si on suppose que ’épaisseur de la lame est plus grande que la longueur plasma, ce
qui est le cas dans les expériences, le facteur e pourra toujours étre considéré comme
tres petit devant 1. L’amplitude de réflexion sera donc la méme que pour le miroir
d’épaisseur infinie

1 — ZTE 1 — ZTM

re [i€] = [T : re [i€] = T3 (3-30)
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avec

o felig s ke o elig/Es ke (3.31)

z0 = , z0 = .
VE + k2 Veli€) & + k2

On remarque que cette simplification est vraie méme pour les milieux non absorbants,

tels ceux décrits par le modele plasma, alors que e serait resté un nombre de module
1 sur les fréquences réelles, et ceci quelque soit I’épaisseur de la lame.

Le calcul technique de la force de Casimir pour le modele plasma [118, 136] est re-
poussé dans ’appendice A. Ici, nous donnons le résultat de ce calcul et nous discutons
les deux cas limites.

Le facteur sans dimension nf défini par (3-25) ne dépend que du rapport de distance
% dans le cas du modele plasma. C’est donc une fonction universelle, dans le cadre de

ce modele, qui est représentée sur la figure 3.4.

10

1

Ne 10

10° 100 10" 10 10
L/A,

Fic. 3.4 — Facteur correctif de la force en fonction de la longueur de la cavité, normalisée sur
la longueur plasma. La droite en tirets correspond au comportement asymptotique
des courtes distances.

A la limite des grandes distances, on retrouve le comportement qualitatif déja dis-

cuté: la force de Casimir tend vers la formule idéale pour des distances grandes devant

la longueur plasma
L> p = Nk~ 1. (3-32)

Les calculs de I'appendice conduisent a la loi asymptotique suivante, discutée dans de
nombreux articles [56, 137, 138]

8 A Ap
L> Xp = ”FPZl_gTTfPJrO((fP) ) (3-33)
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Nous reviendrons de maniere plus détaillée dans le chapitre 5 sur ce lien direct entre les
grandes distances et la limite des réflecteurs parfaits: il souleve en effet des questions
délicates a température non nulle.

La limite des courtes distances est particulierement intéressante a étudier dans
le cadre du modele plasma. Pour des longueurs de cavité L < Ap, la réduction est
significative par rapport a la force idéale. Nous voyons en effet sur la figure 3.4 que n

est proportionnel a la longueur L pour les courtes distances

L < Mp = N ol (3-34)
Ap
Le coefficient o est calculé par la méthode analytique décrite dans 'appendice A (voir
aussi [118, 136]) et nous allons en donner ci-dessous une expression mathématique et
une interprétation physique.

Nous pouvons remarquer ici que le régime de courte distance correspond a un
changement d’exposant dans la loi de puissance a laquelle obéit la force. A grandes
distances L > Mp, la force dépend comme L~* de la distance entre les miroirs. A
courtes distances L < Ap, la dépendance est en L™2. On observe donc un changement
d’exposant quand la longueur de la cavité croise la longueur plasma des miroirs, comme
on le voit clairement sur la figure 3.4. Cette variation de loi de puissance est analogue
au changement de régime découvert par Casimir et Polder [27] pour la variation de la
force de Van der Waals entre deux atomes en fonction de la distance interatomique.

Pour interpréter le résultat (3-34) et écrire une expression pour «, nous écrivons les
amplitudes de réflexion sur un miroir décrit par un modele plasma avec une épaisseur
grande devant la longueur plasma. Nous obtenons donc les formes (3-31). Le facteur
exponentiel dans I'intégrale donnant la force de Casimir détermine les valeurs de x

prédominantes
kL < 1. (3-35)

Par ailleurs, la nécessité d’une bonne réflectivité conduit a une condition sur la fré-

quence

£ < wp. (3-36)

~

Comme L < Ap, ces deux conditions impliquent que la fréquence est petite en compa-

raison avec le vecteur d’onde transverse

¢ < clk|. (3-37)
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Autrement dit, ces conditions sélectionnent le régime d’incidence “rasante” ou le vec-

teur d’onde transverse est grand en comparaison aux autres quantités

clk] > &wp
K1 =~ Kgp X |k| (3—38)

On peut alors donner une expression simple pour les amplitudes de réflexion, déja
discutée au niveau de I"équation (3-17). Nous trouvons ainsi un point important: a
courtes distances, seule la polarisation TM contribue a la force de Casimir.

Il est alors possible d’expliciter le comportement du facteur correctif pour la force.
On a en effet partant de (3-21)

60L" i M [i€]
L <\ = d’k [ d¢ |k| k= -
< Ap Uia o5 / 0/ £ | | 1 _ PEM [lf] (3 39)

A = () <

w2 2 2
_ s - |k|L‘ 3-40
<wz + £2> ‘ (3-40)

On peut alors développer la fraction comme une série géométrique

= [k g Y (i) (3-41)

c

c’est-a-dire

L [ o[ o W
nF:m/duu /ng(wZH_Z
0 0 n

2n
) e avec u =2 k| L. (3-42)

=1

La forme lorentzienne des amplitudes de réflexion permet d’exprimer analytiquement
I'intégrale sur £ [139]

~ w? o _m (4n = 3)!!
[ (te) .

2n+ D! = 1.35...(2n+1)
2n)! = 24.6...(2n). (3-44)

avec
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On trouve alors (3-34) avec

—~ 30 1 (4n-—3)!
= /¢§2}§ELE—2;' (3-45)
n=1 &
On peut écrire explicitement les premiers termes de cette série
15 5 7
=— 14+ =4+——+4... 3-46
“ ¢%2<+ﬁ4+%4+ > (3-46)
ainsl qu’une expression numérique approchée du résultat
a ~ 1.1933. (3-47)

Cette formule contient un certain nombre de résultats existants. Le premier terme
de ce développement correspond a I’approximation qu’on trouve dans Lifshitz (équation
(3.1) dans [30]). Lifshitz avait donc déja le bon comportement pour la loi de puissance
et sa bonne interprétation de 'exposant. Le coefficient qu’il donnait était cependant
faux et Heinrichs a corrigé 'expression en introduisant le second terme (équation (75)
dans [135] avec 1 + 2; = &2). Le résultat exact est celui que nous venons de donner en
(3-45).

On peut également interpréter ce résultat comme l'interaction instantanée entre
les modes plasmons de surface [134, 135]. Nous avons en effet donné en (3-19) les
fréquences w, et w_ des plasmons de surface déplacées par leur couplage par interaction
de Coulomb. Il est alors tout a fait naturel de décrire I'interaction de Van der Waals
entre ces plasmons comme le déplacement de I’énergie de 1’état fondamental de ce

systeme

d?’k [hwy = hw_ hws
E=-A -2 . 3-48
/ 42 { 2 + 2 2 (3-48)

Dans cette formule, A [ 212712{ est un simple comptage des modes et le terme entre crochet
décrit le déplacement de 1’énergie de I’état fondamental du au couplage. On peut noter
que le signe global correspond a la convention sur le signe de ’énergie que nous avons
adoptée et qui est 'opposée de la convention habituelle. En utilisant (3-19), on obtient

aussi

2k T 5 oML 4 /T — o WL
E:A/——M%1—¢_M VI . (3-49)
42 2

En développant alors en séries entieres les racines et en dérivant par rapport a L, on

vérifie que 'expression obtenue pour F' est identique a celle que nous avons déja écrite
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en (3-39).

On a ainsi démontré I'identité entre le résultat donné par notre formulation de la
force donnée sur ’axe imaginaire (3-21) et le calcul directement basé sur les interactions
entre plasmons [121]. Il faut noter que cette analyse se généralise dans le cas retardé,

c’est-a-dire pour une longueur de cavité quelconque vis-a-vis de Ap [140, 141].

C.2 Le modele de Drude

Nous discutons rapidement le modele de Drude en notant simplement que la prise
en compte de la relaxation n’a qu’une influence marginale sur la force de Casimir. Cette
propriété se voit clairement sur la figure 3.5 qui montre les corrections induites par un

modele de Drude par comparaison avec un modele plasma sans dissipation.

10
Ne 10" |
—— plasma
——— Drude
10” e —
10? 10" 10° 10 10°

L/A,

Fic. 3.5 — Fuacteur de réduction de la force de Casimir quand la réponse optique des miroirs
est modélisée par un modéle plasma (ligne pleine) ou par un modeéle de Drude
(ligne pointillée). Nous avons pris un rapport % égal a 4 x 10~ qui correspond a

la valeur typique pour les trois métaux considérés Al, Cu et Au.

L’interprétation de cette propriété a déja été donnée: comme I' < wp, le modele de
Drude ne modifie la permittivité que dans un domaine de fréquence ou la réflection est
presque parfaite. Ce modele ne change donc pratiquement pas la valeur de la force de
Casimir. Toutefois, pour une estimation de haute précision, il est bien sur préférable

de prendre en compte la premittivité réelle [118].
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C.3 Les métaux réels

Nous en venons finalement au cas des métaux réels pour lesquels les données op-
tiques de la littérature permettent de reconstruire la réponse optique et donc de calculer
les facteurs correctifs pour la force et ’énergie. C’est ce que nous présentons sur la fi-
gure 3.6 ou est représenté le facteur correctif pour la force np, pour des miroirs massifs

en aluminium (Al), en cuivre (Cu) et en or (Au).

Ne

L [m]

Fic. 3.6 — Facteur de réduction pour la force de Casimir entre miroirs réels en fonction de
la distance L entre les miroirs. Les trois courbes correspondent au cas de miroirs
en aluminium (Al, courbe pleine), en or (Au, courbe pointillée) et en cuivre (Cu,

courbe en tirets).

On remarque tout de suite les comportements typiques qu’on vient de décrire de part et
d’autre de la longueur plasma correspondante. On remarque également que les courbes
de réduction pour Au et Cu sont quasiment confondues, ce qui reflete bien au niveau
du facteur correctif la propriété observée pour ¢ [i£] (voir la figure 3.2).

La figure 3.7 représente le facteur correctif g en énergie pour les mémes miroirs,
avec les mémes comportements typiques observés pour np dans les régimes de grande

et courte distances.

On peut noter que le facteur de réduction sur I’énergie est plus grand que celui pour
la force. Autrement dit, l'effet de réduction lié a la conductivité finie des miroirs est
moindre sur ’énergie que sur la force. De plus, les valeurs de la force et 1’énergie
sont réduites quand on passe, a longueur de cavité fixée, de I’aluminium a 'or ou au
cuivre. Ceci est cohérent avec le fait que les longueurs plasma de 'or et du cuivre sont

supérieures a celle de I'aluminium et que par conséquent ’aluminium est un meilleur
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Ne

0.4 s
107 10° 10°

Fic. 3.7 — Facteur de réduction pour Uénergie de Casimir entre miroirs réels en fonction de
la distance L entre les miroirs. Les trois courbes correspondent au cas de miroirs
en aluminium (Al, courbe pleine), en or (Au, courbe pointillée) et en cuivre (Cu,

courbe en tirets).

réflecteur que les autres métaux. On notera finalement qu’on observe un changement
de la loi de puissance pour la force et ’énergie a courtes distances, c’est-a-dire pour
des distances inférieures a la longueur plasma correspondant aux miroirs utilisés.

On donne ici quelques valeurs numériques pour ces facteurs de réduction np et ng

pour les trois métaux et pour des distances typiques

Al Au Cu

ne [0.1 pm]  0.55 0.48 0.48
pe (0.0 pm]  0.63 055 0.5
pe[05 pm] 085 081 0.8 (3-50)
pe[0.5 4m]  0.88 085 0.8
pe[3.0 pm] 096 0.96  0.96
e [3.0 pm] 0.9 0.97  0.97

On voit clairement sur ces chiffres que 'effet de la conductivité finie des miroirs mé-
talliques est tres important quantitativement sur la force de Casimir, puisqu’il peut
atteindre une réduction de 50% de la force pour une distance d’environ 0.1um.
Remarquons que, de par sa simplicité, le modele plasma est abondamment utilisé
pour les évaluations des facteurs correctifs. Il est donc particulierement intéressant
d’étudier les écarts entre les facteurs correctifs calculés avec ce modele et ceux obtenus

en utilisant les données optiques tabulées. La figure 3.8 montre ces différences.



tel-00001749, version 1 - 27 Sep 2002

C Corrections de conductivité 87
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Fic. 3.8 — Comparaison des facteurs de réduction pour la force np entre deux miroirs d’or
(Au, A\p = 136nm) en fonction de la distance intracavité L, quand la réponse
optique de ces miroirs est modélisée par un modéle plasma (ligne en tirets) ou

définie par les données optiques tabulées (ligne pleine).

Cette figure met clairement en évidence qu’une description détaillée des propriétés
optiques des métaux est absolument nécessaire pour obtenir une estimation précise
de la force. En particulier, les transitions inter-bandes a haute fréquence doivent étre
prises en compte. Cette figure montre que le modele plasma reste un bon modele
typiquement pour les longueurs de cavité supérieures a 0.5um. Cette remarque jouera

un role important dans le prochain chapitre.
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Chapitre 4

Force de Casimir a température non nulle

Dans le chapitre 2, nous avons présenté le calcul de la force de Casimir a température
nulle et dans le chapitre 3, nous avons étendu ce calcul au cas des miroirs métalliques.
Nous avons défini des facteurs correctifs adaptés pour "analyse de résultats expérimen-
taux que nous présenterons plus loin. Comme toutes les expériences sont effectuées a
température ambiante, nous devons maintenant évaluer 'effet de température sur la
force de Casimir.

Ce chapitre a pour but de donner une évaluation théorique précise des contributions
thermiques a l'effet Casimir, en calculant la pression de radiation du rayonnement du
corps noir comme nous avons calculé celle des fluctuations du vide dans le chapitre
2. Ce calcul nous fournira simultanément les termes de correction liés a la réponse
optique des miroirs, en particulier des miroirs métalliques, et les termes de correction
thermique. Nous insisterons sur un point essentiel pour atteindre une haute précision
dans I’évaluation théorique de la force: les corrections de conductivité finie des miroirs
et les corrections thermiques ne peuvent se définir indépendamment les unes des autres,
elles sont en fait corrélées 'une a 1’autre. Nous caractériserons cette corrélation pour
des miroirs décrits par un modele plasma.

Comme nous ’avons annoncé dans l'introduction, le traitement simultané de la
température et de la dissipation dans les miroirs métalliques a engendré un débat tres
polémique. Nous discutons les difficultés a l'origine de ce débat dans le chapitre 5.
Pour le moment, dans ce chapitre 4, nous oublions ce contexte et présentons l'effet de

la température en suivant la méthode développée dans les chapitres précédents.
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A L’effet de température

Il est en principe simple de prendre en compte 'effet des fluctuations thermiques du
champ. A température non nulle, celles-ci sont superposées aux fluctuations du vide. Il
nous faut donc maintenant ajouter la pression de radiation des fluctuations thermiques

a celle que nous avons déja calculée pour les fluctuations du vide.

A.1 Estimations et longueur d’onde thermique

A température nulle, ’énergie du champ se réduisait simplement a la contribution
du vide %ﬁw par mode de fréquence w. A température non nulle, I’énergie du champ
est la somme de cette contribution du vide et de 1’énergie du nombre moyen 7, de

photons par mode donné par la loi de Planck
1 r _ 1
—hw — —+ 7, | hw avec M, = ——. (4-1)
2 2 e’@% —1

La contribution d’un mode de fréquence w a la force de Casimir telle qu’elle est dérivée
a température nulle dans le chapitre 2 (voir (2-54)) doit donc étre multipliée par le

facteur

hw
14+ 2n, = coth {ZkBT} ) (4-2)

Malgré son apparente simplicité, la prise en compte de ce facteur (4-2) va introduire
des points délicats qui doivent étre analysés tres rigoureusement. En particulier, quand
nous allons exprimer la force comme une intégrale sur ’axe des fréquences imaginaires,
il s’agira de traiter avec le plus grand soin le facteur (1 + 2n;¢) présent dans 'inté-
grande a température non nulle. Ce facteur présente en effet sur 1’axe des fréquences
imaginaires, c’est-a-dire pour ¢ réel, des poles régulierement espacés aux fréquences

dites de Matsubara [57]

QW]CBT
h

h=n pour n entier. (4-3)

Cette répartition discrete des modes d’excitation thermique sur I'axe imaginaire est
typique de la théorie des champs en température non nulle. La limite de température

nulle doit en fait étre comprise comme [30, 56, 77, 142]

. QW]CBT
A

— 0. (4-4)

wr
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La fréquence wr est donc ’échelle naturelle des effets thermiques.

Qualitativement, il est clair que les corrections thermiques doivent commencer a
étre importantes pour un mode de fréquence w quand kg1 devient de 'ordre de %hw.
En d’autres termes, la correction thermique a la force de Casimir devient sensible,
relativement a la force calculée a température nulle, pour des longueurs grandes. Ce
point sera traité de facon quantitative dans la suite mais nous pouvons déja caractériser
ce régime en introduisant une distance typique, la longueur d’onde thermique, au-dela

de laquelle les corrections thermiques seront dominantes

2me he
Ar = — = . 4-5
T wr kBT ( )
La longueur At est directement liée au parametre 3 utilisé habituellement en physique
statistique
1
Ar=h = —. 4-6

A température ambiante T' = 300K, cette longueur est de 'ordre de ~ 7um. Ceci im-
plique que la correction thermique et la correction métallique sont a priori importantes

dans des domaines distincts.

A.2 Pression de radiation a température non nulle

A température nulle, on a vu comment le calcul des fonctions de corrélation des
champs pouvait se ramener au calcul des commutateurs de ces champs. Ces commuta-
teurs étaient canoniques pour les champs a 'extérieur de la cavité et modulés par la
fonction d’Airy pour les champs intracavité.

A température non nulle, cette propriété est encore vraie. Les anti-commutateurs

des champs sont déterminés par les commutateurs et par le nombre moyen de photons

<am.a;rn,> - (%er)

Ceci est une conséquence de I’hypothese d’équilibre thermodynamique que nous faisons

par mode m

(4-7)

s @y

ici, y compris en présence d’absorption dans les miroirs. Nous considérons donc que
les fluctuations entrant dans tous les modes, y compris les modes de bruit, obéissent a
la relation (4-7). Nous en déduisons que c’est encore vrai pour les champs sortants et
les champs intracavité étudiés au chapitre 2. Si nous ne faisions pas cette hypothese
d’équilibre thermodynamique, nous ne pourrions pas obtenir la force simplement a

partir de la fonction d’Airy.
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A.3 Calcul de la force

Grace a cette condition d’équilibre thermodynamique, les résultats du chapitre 2

sur les pressions de radiation du vide sont généralisés en incluant simplement le facteur

(4-2)

Y = R e P [ AR B AT SRR

ou fy [w] est la fonction “boucle” décrivant la réponse optique de la cavité.
Sur 'axe des fréquences réelles, nous pouvons développer la fonction coth en série

d’exponentielles. Nous écrivons

nm(wtn
1—|—2nw—coth——1—|—22 I (4-9)

w
T n=1

Nous avons introduit un facteur de convergence n qui est un nombre réel positif tendant
vers 0. Ce facteur permet d’assurer la convergence de cette série sur tout le demi-axe
positif, la borne w = ( faisant encore partie du domaine de convergence puisque n > 0
strictement. Ce facteur de convergence permet également de rendre le développement
(4-9) uniformément convergent sur tout le quart de plan complexe qui joue un role
dans les arguments d’analyticité discutés ci-apres. Sans ce facteur de convergence, on
aurait un probleme de définition de la série (4-9) en w = 0, mais également pour toutes
les fréquences de Matsubara (4-3). La limite n — 0 devra étre prise seulement a la fin
du calcul.

Conformément a 1'usage établi depuis Lifshitz [30], nous introduisons la notation

suivante pour le type de somme apparaissant dans (4-9)

et = se+Y ¢
= Y el (110

En utilisant cette notation, on obtient ’expression suivante de la force

F(L) = lim MZZ/ / o T b (—f W] = L)), (A1)

n—0+

Insistons sur le fait que le facteur de convergence permet de justifier sur (4-11) I'inver-

sion formelle du signe somme Y et des intégrales [ dw et [ dZk.



tel-00001749, version 1 - 27 Sep 2002

A L’effet de température 93

Nous utilisons maintenant les mémes conditions de causalité, de stabilité et de
transparence a haute fréquence que dans le chapitre 2 avec les précisions apportées
pour le cas métallique dans le chapitre 3. Ceci nous permet de prolonger fp [i£] sur le

domaine complexe correspondant aux conditions d’analyticité

Im(w) =Re (&) >0
Re (w) = —=Im(£) > 0. (4-12)

Comme dans le chapitre 2, nous utilisons le théoréme de Cauchy pour obtenir une
identité entre I'intégrale sur les fréquences réelles et une intégrale sur les fréquences
imaginaires. Plus précisément, la présence du facteur de convergence n fait que la partie
C'; du contour correspond maintenant a ’axe z = 1£ + n dans le plan complexe avec ¢
réel positif et n réel positif proche de 0 (voir la figure 4.1). Ceci montre I'importance
de ce facteur i alors que la fonction coth % présente des poles sur I'axe imaginaire aux

fréquences Matsubara z, = inwr.

Rew
Fic. 4.1 — Le contour dans le plan complexe pour Uapplication du théoréme de Cauchy a

température non nulle.

Nous procédons de maniere analogue pour la fonction de réponse avancée fi [i£]”
avec un contour qui se trouve dans le quart de plan Im(w) > 0,Re(w) < 0 (voir
la figure 2.4 dans le chapitre 2). Nous obtenons finalement ’expression suivante de

I'intégrale

O RA Y &2k [
F@):nﬂf&?Z;/ﬁ/d“ o
n 0

<e—2mﬁf{j i€ + ] + €5 7 [ — 77]) : (4-13)

Quand f{ [i€] ne présente pas de singularité sur l’axe des fréquences imaginaires,

on peut immédiatement oublier les 1 dans fi [{£ 4+ n] et fi [1£ —n]. Dans le cas des
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métaux, les fonctions de réponse peuvent présenter des pathologies au voisinage de
w = 0. Les problemes associés et les nombreuses discussions polémiques qu’ils ont
suscité sont discutés de maniere plus détaillée dans le chapitre 5. Ici, nous discutons
une méthode de calcul qui n’est pas affectée par ces problemes.

Nous écrivons la force en séparant les contributions correspondant a des n différents
RA S o
F(L) = lim == ¢ 750 F (n), (4-14)

avec

r ™ P [1€] e 2
= Z/dzk/df cos [Qwa] K 1—kr[i§[]i§] gt (4-15)

Nous avons omis la référence a n dans les facteurs ry [i£ 4 n] mais il est sous-entendu
que I'expression doit étre réécrite comme dans (4-13) en cas de probleme.

Il est important de noter que cette formulation permet de séparer les différentes
contributions des fluctuations du vide et des fluctuations thermiques. En effet, le terme
n =0 donné dans (4-14)

hA 1~ hA 1 2 P lig] el
23 2 T 2r%2 Z/d /d§ 1 —rb [ig] e2xL” (4-16)

correspond exactement a 'expression (2-61) de la force de Casimir donnée a tempé-

rature nulle. Les termes suivants n > 1 rassemblent donc les effets thermiques. On
reviendra plus loin sur cette fagon efficace de séparer les différents termes correctifs.
La définition de I’énergie correspond a une intégration sur la distance relative entre

les miroirs
= /d:z; F(x) (4-17)
L

et cette procédure est effectuée a température constante. En termes de potentiels ther-
modynamiques, I’énergie ainsi calculée correspond en fait a 1’énergie libre du systeme.

Conformément a 1'usage, on abregera par “énergie de Casimir”.

B Corrections thermiques

Au début de ce chapitre, nous avons introduit une distance typique At a partir

de laquelle les effets thermiques sont sensibles. A température ambiante (7" = 300K),
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nous avons vu que cette longueur était de l'ordre de ~ T7um. Par contraste, nous
avons vu dans le chapitre 3 que les corrections de conductivité étaient caractérisées
par la longueur d’onde plasma Ap dont la valeur typique est de 0.1pum. Les deux types
de corrections, thermique et de conductivité, correspondent donc a des domaines de
longueur de cavité bien séparés.

Le but de cette section est de donner une évaluation précise de la force de Casimir
quand sont prises en compte simultanément les corrections optiques et thermiques. A
cette fin, nous caractériserons l'effet combiné de ces deux corrections par le facteur
correctif suivant

F
" Fow’

Comme précédemment, F' est la force calculée en incluant les deux corrections et Foaq

e (1-18)

représente la situation idéale. Nous pouvons introduire également des facteurs correctifs
associés séparément a chaque type de correction de conductivité et thermique
P T

R e (19
FP est la force calculée en ne tenant compte que des corrections de conductivité finie
des miroirs et F'T en incluant uniquement les corrections thermiques. Dans le cas du
modele du plasma, 71 est exactement le facteur correctif qui a été discuté dans la
section C du chapitre précédent. Ce facteur ne dépend que du rapport % et, comme
on I’a vu, il ne differe de 1 que pour % plus petit que ou du méme ordre que 1. Par
contre, nt ne dépendra que du rapport % et il ne différera de 1 que pour % plus grand
que ou du méme ordre de 1. On discutera les conséquences de cette situation dans cette

section et dans la suivante.

B.1 Formulation de la force et de 1’énergie entre deux

miroirs métalliques et a température non nulle

Nous avons vu que pour des miroirs réels caractérisés par des coefficients de diffusion
dépendant de la fréquence, la force de Casimir est définie comme une intégrale sur
les fréquences et les vecteurs d’onde transverses associés au vide et aux fluctuations

thermiques. On rappelle ici 'expression obtenue pour la force
hA r né P li€]
F(L) = — d’k [ d — S S0 L.
(£) %322/ [aeeos || v i
" 0

peli€]l = ric [k lig] e ™. (4-20)
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Le facteur correctif pour la force entre deux miroirs identiques s’écrit donc

12014 o [ 2mné Py [1€]
= d“k | d€ cos K
v ey 0/5 ]
PhliE] = (i) e ", (4-21)

Cette formule inclut les effets simultanés de température et de conductivité que nous
cherchons a caractériser. Les amplitudes de réflexion décrivent en effet la dépendance

en fréquence de la réponse optique des miroirs, comme nous "avons déja analysé. La
27mné

présence du facteur cos correspond a la prise en compte des fluctuations ther-

miques. L’évaluation numérique de cette expression fournira bien le facteur correctif
global. Nous la présentons maintenant en utilisant le modele plasma pour caractériser
la réponse optique des miroirs. En principe cependant, on peut utiliser les données
optiques pour définir cette réponse, comme on ’a fait au chapitre précédent, et donner

ainsi un résultat plus général.

B.2 Evaluations numériques des facteurs correctifs

Nous présentons ici I’évaluation du facteur correctif pour la force obtenue par I'inté-
gration numérique de I’expression (4-21) en utilisant un modele plasma et en choisissant
une température de 300K, ce qui est typiquement le cas pour les expériences récentes.
Comme auparavant, les facteurs correctifs sont calculés pour les longueurs de cavité
intéressantes expérimentalement, c’est-a-dire sur le domaine 0.1-10pgm. La présence du
facteur cos, fortement oscillant a haute fréquence, demande une grande attention dans
le calcul numérique.

Les résultats pour np sont présentés sur la figure 4.2 en trait continu [136]. Ils sont
comparés directement avec le facteur de réduction de la force lié aux corrections de
conductivité et avec le facteur d’augmentation de la force lié a la température. Ces
deux corrections sont calculées comme le np mais en faisant une hypothese simplifica-
trice: pour le premier, le calcul est fait a température nulle alors que, pour le second,

le calcul est fait pour des miroirs parfaits.

La figure 4.3 montre les résultats similaires obtenus sur I’énergie cette fois. Par
rapport a celles obtenues pour la force, il y a un effet “d’échange” intéressant: si les
corrections de conductivité étaient plus importantes pour la force, en revanche les cor-

rections thermiques sont plus marquées pour 1’énergie.
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F1G. 4.2 — Facteurs correctifs pour la force calculés pour des miroirs d’aluminium (Al, figure
du haut), d’or et de cuivre (Cu-Au, figure du bas) en fonction de la longueur de
la cavité L : en traits pleins, facteur correctif global; en tirets, facteur correctif de

conductivité ; en traits tiretés, facteur correctif thermique.

B.3 Facteur de corrélation

La lecture des figures 4.2 et 4.3 montre clairement que les corrections thermiques
sont importantes dans la limite des grandes distances alors que c’est a courtes distances
que les corrections de conductivité finie dominent. On a donc les deux régimes déja

discutés qualitativement

LA = npp~l
L>Xp = g~ (4-22)

Nous menons ici les discussions pour le calcul de la force mais ces discussions s’ap-

pliquent aussi bien aux facteurs g, ng et 7t corrigeant 1’expression de 1’énergie.
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0.1 1.0 10.0

01 1.0 10.0
L[pm]
F'1G. 4.3 — Facteurs correctifs pour Uénergie pour des miroirs d’aluminium (Al, figure du
haut), d’or et de cuivre (Cu-Au, figure du bas) en fonction de la longueur de
la cavité L : en traits pleins, facteur correctif global; en tirets, facteur correctif de

conductivité ; en traits tiretés, facteur correctif thermique.

Puisque les valeurs typiques de Ap ~ 100nm et At ~ 7um sont bien distinctes, le
facteur correctif global np se comporte approximativement comme le simple produit

des facteurs correctifs de conductivité et thermique, évalués séparement

P T
e~ M X T (4-23)
(C’est avec cette approximation que sont évaluées usuellement les corrections de conduc-
tivité et de température dans les expériences.
Dans une analyse plus fine des figures 4.2 et 4.3, on voit que les deux facteurs correc-
tifs nk et n¢ sont appréciables dans le domaine de distance entre 1 et 4um, c’est-a-dire

entre les deux cas limites (4-22). Dans ce domaine, I"approximation peut étre discu-
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table. Ce point est d’autant plus important que ce domaine de distances intermédiaires
est expérimentalement exploré. Du point de vue de la comparaison théorie-expérience,
il est donc essentiel de préciser les calculs sur ce domaine, afin d’atteindre une préci-
sion élevée et de pouvoir discuter de facon tres précise la validité de "approximation
habituelle de décorrélation.

Pour répondre a cette question, nous définissons la quantité dg qui va mesurer le

degré de validité de 'approximation en tant que facteur de corrélation

e =g e (14 0r) . (4-24)

Par définition méme de dp, I'égalité (4-24) est ici exacte. Sur la figure 4.4 sont tracés
le facteur g et le facteur dg, introduit de la méme facon pour I’énergie, en fonction
de la distance entre les miroirs. On a calculé ces facteurs pour les longueurs plasmas
correspondant a Al d’une part, Au-Cu d’autre part, ainsi que pour deux autres lon-
gueurs plasma. Ceci va nous permettre de dégager les comportements remarquables de
ces facteurs.

Par rapport a ’approximation (4-23), une valeur non nulle de dp constitue une
signature de la corrélation existante entre les corrections de conductivité et de tempé-
rature. On voit sur la figure 4.4 que ces facteurs sont de 1’ordre de 1% pour Al et Au-Cu
a température ambiante. A un niveau de précision moins bon, le calcul séparé de nt
et de g et évaluation du facteur global np & partir du simple produit des corrections
séparées est donc une méthode utilisable. En revanche, si une précision de 1% ou mieux
est visée, 'approximation (4-23) est insuffisante et on doit utiliser le facteur correctif

global.

Il faut noter que ces facteurs de corrélation augmentent avec la température ou la
longueur plasma. Le signe obtenu sur dp signifie que ’approximation de décorrélation
donne des valeurs sous-estimées pour la force.

Afin de rendre la discussion plus précise, nous donnons des valeurs numériques des
facteurs correctifs pour deux distances expérimentalement significatives: 0.5um et 3pum.
La premiere correspond a la distance minimale pour laquelle le modele plasma peut

étre utilisé pour une comparaison précise avec I’expérience (voir section C du chapitre
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(©))
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o
S Fic. 4.4 — Corrélations ép (courbe du haut) et dg (courbe du bas) en fonction de la longueur
8 de cavité pour les trois métaux Al, Au et Cu et pour deux longueurs plasma (Ap =
! .
© 0.3 — 0.5um) supplémentaires.
5

3).
L =0.5um
Al Cu — Au
ne 0.843 0.808
nF 0.843 0.808
n 0.879 0.851
NE 0.883 0.855

A cette distance L = 0.5um, la contribution thermique contribue pour moins que un

pour mille a la force et a quelques pour mille seulement a I’énergie de Casimir

L = 0.5um = ng = 1.000
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ng = 1.004.

Au niveau du pourcent, il n’est donc pas nécessaire de tenir compte de la correction
thermique.

A des distances encore plus courtes, nous savons qu’il faut tenir compte précisé-
ment de la réponse optique du miroir en utilisant les données optiques, comme nous
I’avons détaillé au chapitre 3. A ces courtes distances, nous pourrons ignorer la correc-
tion thermique completement. On sera alors simplement ramené pour les corrections
de conductivité a la section C du chapitre précédent.

Pour des distances plus grandes, telles que . = 3um, la situation est inversée
puisque les corrections thermiques deviennent dominantes. La correction de conducti-
vité joue certes un réle mais le recours au modele plasma ne pose aucun probleme en

terme de précision. Nous reportons ci-dessous les corrections thermiques

L =3um = ng = 1.117
ng = 1.470,
et les autres facteurs
L =3um
Al Cu — Au
ne 0.971 0.963
neng 1.084 1.076
ng 1.090 1.083
n 0.978 0.972
nEng 1.437 1.429
NE 1.449 1.444

Ici, toutes les corrections doivent étre prises en compte: les corrections thermiques sont
importantes, les miroirs ne peuvent pas étre considérés comme parfaits et c’est la que
le facteur de corrélation est le plus important.

On remarque que 'effet de corrélation des corrections peut toujours étre analysé en
utilisant le modele plasma. Les distances L pour lesquelles les facteurs de corrélation
sont non nuls correspondent en effet au régime L > Ap ou le modele plasma est suffisant
pour décrire la réponse optique des métaux.

Nous retiendrons que les facteurs de corrélation entre les deux corrections doivent
étre pris en compte s’il s’agit d’atteindre une haute précision dans la comparaison

théorie-expérience.
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B.4 Loi d’échelle

On remarque sur les courbes de la figure 4.4 que les facteurs de corrélation corres-
pondant a différentes longueurs plasma présentent tous une méme dépendance fonc-
tionnelle vis-a-vis de la distance. Leurs maximums respectifs sont atteints pour la méme
distance typique entre les miroirs et les amplitudes de ces maximums varient linéaire-
ment avec la longueur plasma. Ces caractéristiques semblent indiquer ’existence d’une

loi d’échelle pour les corrélations

0 = “Z Ap. (4-25)

Ceci signifie que le terme de corrélation est alors proportionnel, d’une part, au

rapport i—; des longueurs d’onde qui caractérisent respectivement les effets plasma et

thermique et, d’autre part, a la fonction Ap qui ne dépend plus que de % Cette loi
d’échelle est confirmée sur la figure 4.5 ou nous avons tracé
A
A = L6, (4-26)
Ap

La superposition quasiment parfaite des différentes courbes démontre ’existence d’une
telle loi d’échelle. Nous interpréterons 'existence de cette loi dans la prochaine section
et nous montrerons que les facteurs Ap et Ag peuvent étre obtenus analytiquement.
Avant méme cette interprétation analytique, nous pouvons remarquer que nous
disposons désormais d’une méthode simple pour atteindre une tres haute précision dans
I’évaluation théorique de la force et de 1’énergie de Casimir en présence de corrections
de conductivité et de température. Le facteur correctif global est simplement donné

par ’expression
A
o= Ry <1+A—PAF>
T

A
T

Cette méthode est moins directe que le recours aux intégrations numériques com-
pletes. Mais elle requiert des calculs plus simples sans pour autant sacrifier la précision
a cette simplicité. En effet, les facteurs n* et n' sont calculés par un calcul beaucoup
plus simple dans lequel soit 'effet de la température, soit 'effet de réflection imparfaite
est ignoré. Ensuite, 'effet de corrélation entre ces deux corrections est estimé par le
terme i—;A ou A est déduit de la figure 4.5 utilisée comme une abaque. Typiquement,

un facteur de corrélation § de 'ordre du pourcent pourra ainsi étre estimé avec une
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précision bien meilleure. Une alternative a cette méthode graphique est d’utiliser les

expressions analytiques que nous allons présenter dans la prochaine section.

C Expressions analytiques

Dans cette section, nous donnons des résultats analytiques qui peuvent étre utiles
en complément des résultats numériques déja présentés. L’idée générale consistera a
utiliser la décomposition des effets du vide et des effets thermiques que nous avons
démontrés précédemment.

En effet, dans I’équation (4-21), la contribution m = 0 correspond a 'effet du vide

et s’identifie donc a la correction de conductivité seule

=2 [ / den L_p [g[]gﬁlfgjﬁzid]‘ e

Les autres contributions m > 1 s’identifient donc aux effets thermiques et nous les

décomposerons ici en deux parties correspondant, d’une part, aux effets thermiques

pour des miroirs parfaits

240L4 = 2rmé 2e~ 28l
(e — Z /dz /dg cos { } s (4-29)

et, d’autre part, a un résidu Anrp qui est une maniere alternative de représenter le

mélange des corrections de conductivité et de température

Anp = 240L4§:/d2 /dg cos {27””5} k AS

Pi [i€] P [i€] 2e2t

Af . — . 4-30
T— o0 ig] T TP T 30

Ces trois termes composent ensemble le facteur correctif
e = g+ (e — 1) + Anp. (4-31)

La correction de conductivité seule, nt, a déja été discutée longuement dans la
partie C du chapitre 3. Nous voulons ici discuter également la correction thermique
ng évaluée pour des miroirs parfaits ainsi que la correction supplémentaire Ang. Ceci

nous permettra de dériver analytiquement les expressions obtenues dans la section
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précédente pour le facteur de corrélation. Nous utiliserons alors la condition Ap < Ap
dont nous avons vu qu’elle est valable dans toutes les expériences faites avec des métaux
usuels (Ap ~ 0.1pum) & température ordinaire (Ap ~ Tum).

Nous donnerons ici aussi les facteurs calculés pour 1’énergie
e = g+ (g — 1) + A, (4-32)

mais repoussons en appendice les détails des calculs.

C.1 Correction thermique pour des miroirs parfaits

Nous détaillons ici le terme (ng — 1). En intégrant sur les fréquences £, on montre

dans I'appendice B que (4-29) se réécrit sous forme d’une série

(ng — 1) =30 Z ((a;)4 B cosh [am] > ‘ (4-33)

am sinh® [am)]

Ce résultat est identique a celui donné par des calculs antérieurs [56, 77, 142]. Le

N A . , ,
parametre a = 5 est encore une autre maniere de représenter une échelle naturelle

de température

FLC 7TTeﬂ‘ o ﬂ-)\T

Tox = , = = —. 4-34
T ksl “TTT T (4:34)
La température effective Tog dépend de la distance entre les miroirs.
Pour le terme correspondant en énergie, a partir de I'intégration
E(L) = Ecas = /d:z; (e — 1) Feas, (4-35)
L

on obtient apres normalisation par 1’énergie idéale de Casimir

o= =53 (< 1

am)’tanh [am] ~ (am)?sinh? [am]

) . (4-36)

C.2 Correction supplémentaire

Les discussions menées plus haut suggerent que le terme Anp doit correspondre
a un domaine de longueur de cavité dans lequel existent a la fois les corrections de

conductivité et les corrections thermiques. Typiquement comme on ’a vu, avec Ap ~
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0.1pm et Ay ~ 7pm, ces distances sont centrées autour de 1um. On est donc dans un

régime
Ap L L < Ay (4-37)

dans lequel un développement perturbatif en puissances de Ap est possible. Au premier

ordre, d’apres ’appendice B, nous trouvons

2L Dk \ 2
~ " e <1+§—>. (4-38)

(ezﬁL _ 1)2 T

Reporté dans (4-30), ce développement permet de définir une fonction ¢p qui apparait

multipliée par le facteur a-dimensionné %P dans 'expression de Anp

A
Anp o~ fpng. (4-39)

Cette fonction est indépendante de Ap, i.e. des caractéristiques optiques des miroirs et

elle sera dite universelle. Des calculs assez directs conduisent a son expression

b = 15 & ( 1 N 1
T — (am)’tanh [am]  (am)®sinh? [am]
2
4co‘sh [gm] 2 —|—‘4co4$h [am]) (4-40)
am sinh” [am] sinh® [am]
On procede de méme pour ’énergie
AT/EECas = /dl‘ AT/FFCas- (4—41)
L
Le résultat sur ce facteur correctif prend alors la forme
A
Ap = o
- 1 1
= —45 - -
vE mzzzl ( (am)’tanh[am]  (am)?sinh? [am]
2cosh 4
T [fm] ). (4-42)
amsinh” [am]  (am)
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C.3 Expression analytique des facteurs de corrélation

Nous pouvons maintenant donner une dérivation analytique de la loi d’échelle que
nous avons présentée dans la section précédente. Cette loi sera valable dans le régime
de grande distance L > Ap. On rappele d’abord les développements obtenus pour les

corrections de conductivité nf et nt dans ce régime
8 Ap A\’
P
S LA Y i
T 3L (( L) )
2 Ap A’
P =1-2=+0( (> : 4-43
E —7 7 (4-43)

En partant des expressions (4-31,4-32) des facteurs correctifs, on peut regrouper les
résultats obtenus pour les différents facteurs et obtenir ainsi respectivement pour la

force et ’énergie,

e o= mpns + (L—np) (nf — 1) + Anp
8 A A
~ ppnp 4 3_7TTP (g —1) + qubF
e = meng + (1—mp) (ng — 1) + Ang
2 A A
~ g ;fp (mg — 1) + qubE. (4-44)

Nous avons développé les termes correctifs n* et AP au premier ordre en %’. Nous en

déduisons finalement la loi d’échelle (4-27) avec

Sa 1) Mo

Ap —
S T A L g
20 (ng — 1) Arog
Ag = 222V —7)  ATOE (4-45)
T L g L ng

Ces fonctions ne dépendent plus de Ap: on a déja insisté sur leur caractere universel.
Elles sont tracées sur la figure 4.5 ot 'on voit qu’elles coincident a mieux que 1% avec

les résultats des calculs numériques de la section précédente.

C.4 Comportements asymptotiques

Ces résultats analytiques montrent que 'influence des contributions thermiques se
définie a 'aide du parametre «, c’est-a-dire en termes de température effective, que

ce soient pour des miroirs parfaits ou des miroirs plasma. Nous donnons a présent les
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comportements asymptotiques basse et haute températures quand ces limites corres-

pondent respectivement aux régimes

a> 1 TR T < Teg
a1 > T > Teg. (4-46)

Nous commencerons par détailler la limite o > 1. Cette limite implique en termes de
longueur de cavité L < Ar. Nous supposerons par ailleurs que le traitement perturbatif

en %P est toujours possible, i.e. que

Ap < L < Ay (4-47)

Dans ce secteur (4-47), les formules que nous venons de dériver se traitent naturellement
en séries de perturbation en é Nous retiendrons uniquement les termes de contribu-
tion dominante sur les expressions de chaque facteur correctif. Ainsi on obtient pour

(ng — 1) donné en (4-33)

a1l = (-1 = 30) 4+O<ie—2a>

(%
1/ 7\* 1
R

En utilisant le méme argument pour Anp, on obtient

15 e 1 1
op = L —I-O<—€_2a>

m — (am)B (8%

= ;—5%4 3)+0 <é€_2a>
T eff o

En rappelant (4-43), on peut donner le comportement du facteur correctif global quand

(4-47) est vérifiée
L/ TN\ 8 45 T\’ A\ 1
=14 ——— |1 —=—=C(3 ol | — —e? | .(4-50
e (Teﬂ> 37 L [ el )<Teﬂ> * (L) ry (4-50)
On fait les mémes comparaisons au niveau des facteurs correctifs en énergie, en ne

Ce résultat est retrouvé chez [56, 143].
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conservant que les termes prédominants dans la limite o > 1. On peut ainsi approximer

=1 1,
(g —1) = 457;1 3+O<§ez>

(am)

- i_i (Ti)S ((3)+0 (%e—%“) : (4-51)

De la méme facon pour le terme Ang, la contribution dominante est identifiée

45 <~ 1 1
QbE - ‘|‘O<—2€_2a>
(a4

3
et (am)

EE o)

En utilisant (4-43), on obtient le comportement a a > 1 du facteur correctif en énergie

45 (T \° 2 \p 45 /T \°
%::;(h)<®—;fb—ggga)uﬂ

4o ((A%) y %e_2a> | (4-53)

Dans la limite du miroir parfait Ap — 0, on retrouve le résultat connu pour les correc-

tions thermiques [77].
Le régime opposé o < 1 défini en (4-46) correspond a la limite des hautes tem-
pératures T' > T.g. En termes de longueur de cavité, il conduit nécessairement aux

inégalités
Ap < A1 < L. (4-54)

Dans cette limite, les expressions (4-29), (4-30) que nous venons de dériver ne sont pas
adaptées: il n’est pas possible de développer perturbativement en o < 1. Ce probleme
rappelle celui rencontré pour les corrections de conductivité ou les deux régimes %P <1
et %P > 1 ne sont pas uniformément connectés. Pour effectuer ces développements dans
la limite @ < 1, 1l est indispensable de recourir a la propriété remarquable de symétrie
d’inversion en température des contributions thermiques pour la force et I’énergie de
Casimir. Cette symétrie a été remarquée initialement par Brown et Maclay [77] et est
souvent utilisée dans un contexte plus large de théorie des champs [144]. Elle s’exprime

symboliquement par des relations du type

f(Ti) +f<T;H>

Il
<o

Py s () =0 (4-55)
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qui permettent de passer d’une forme en température a sa forme duale. Ainsi s’établit
la connexion entre f («) développable pour oo > 1 et f (é) développable pour o <« 1.
Nous détaillons les calculs correspondants dans I’appendice B. Ici, nous nous conten-

tons de donner les résultats obtenus a la fin de ce calcul pour np

15 3 Ap A

45 1A 1 o2
= -2 (3) (1—;%’)“9(? ) (4-57)

en accord avec [143]. Ces facteurs vont donc définir respectivement une force et une

et pour ng

énergie de Casimir indépendantes de h: on parle a ce titre de limite classique.
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0.6
05 A,=0.1pm
- ip=0.3pm
—-—- A,=0.5um
L P
0.4 —— theorie
A o3}
0.2
0.1
0.0 L
0.1 1.0 10.0
L[pm]
0.6
05| Ap=0.1um
- ip=0.3pm
—-—- A,=0.5um
L P
0.4 —— theorie
Ae o3}
0.2
0.1
0.0 L
0.1 1.0 10.0

L[pum]

F1G. 4.5 — Les facteurs de corrélation représentés pour la force (courbes du haut) et pour
Uénergie (courbes du bas) aprés le rééchelonnement décrit par l'équation (4-26).
Différentes longueurs plasma correspondent a des courbes quasiment identiques,
représentées en traits plein, tiret et pointillés. Ces courbes coincident presque par-
faitement avec les expressions analytiques dérivées en (4-45) et représentées ici

par les courbes en trait gras.
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Chapitre 5

La polémique sur les miroirs dissipatifs a

température non nulle

Nous avons présenté au chapitre précédent la facon dont nous dérivons I'expression
de la force a température non nulle. Comme nous 1’avons expliqué, cette expression est
valable pour tous les miroirs, qu’ils soient diélectriques ou métalliques, dissipatifs ou
non dissipatifs. Cette formulation est basée sur la décomposition en série d’exponen-
tielles de la fonction coth qui représente les fluctuations thermiques.

Il existe une formulation alternative, qui a été dérivée par Lifshitz [30] et qui est
tres largement utilisée dans la littérature. Cette formulation est donnée, comme nous
allons le voir dans ce chapitre, a partir d’'une décomposition du coth sur ses poles.
Cette formulation alternative est équivalente a celle que nous avons utilisée quand les
amplitudes de réflexion obéissent a des conditions de régularité que nous spécifierons
plus loin. Malheureusement, ce n’est pas le cas pour les modeles de miroirs métalliques
prenant en compte la dissipation alors que ce sont justement ces modeles qui décrivent
les expériences récentes. A partir de cette difficulté purement mathématique s’est dé-
veloppée une discussion polémique qui a pris des proportions considérables récemment
[145, 146, 147, 148, 149, 150, 151, 152].

Dans le présent chapitre, nous décrivons la formulation dite de Lifshitz, nous dis-
cutons les difficultés de cette formulation et nous montrons comment les résoudre. Les
résultats de cette analyse ne modifient en rien les conclusions du chapitre précédent.

Les détails les plus techniques sont renvoyés dans I"appendice C.
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A La formulation dite de Lifshitz

A.1 Décomposition sur les poles du coth

Nous partons de 'expression initiale de la force écrite sur ’axe réel, a température

non nulle
= % %:/2271;/000 dw k.coth L;T—Tw} (—fx [w] — fc[w]), (5-1)

ol fy [w] est toujours ici la fonction “boucle” décrivant la réponse optique de la cavité.

Avec les conditions détaillées au chapitre 2, nous utilisons a nouveau le théoreme
de Cauchy pour écrire 'expression de la force sur I’axe imaginaire. Nous définissons le
contour d’intégration de telle sorte que les poles du coth restent exclus de I'intérieur
de ce contour. Autrement dit, la partie C; du contour utilisé pour la partie retardée
est décalée a l'aide d’un régulateur n par rapport a I'axe z = £ (voir le chapitre 2 et
en particulier la figure 2.3). On procéde de méme pour la partie avancée de la fonction
de réponse (voir la figure 2.4 du chapitre 2). On obtient ainsi I’expression de la force

sur ’axe imaginaire

P =t Y L/ /ﬁfﬁ(mm[ i€+ 0)] selic+

ﬂmhfgﬂm—m]ﬁm—m). (52)

On peut alors décomposer le coth sur ses poles

+ oo
T wT 1
th | — = —_ 5-3
«© [wT (i€ + 77)] w4l —inwy (5-3)
puis introduire les relations habituelles dans 1’espace des distributions
lim —— = P 4 x5 (a) (5-4)
nif(%rix:tn_ Gz N i

P désigne la valeur principale au sens de Cauchy.
Si nous supposons que la fonction f} [1£] est suffisamment réguliere (nous allons
préciser la signification de cette hypothese plus loin), alors nous déduisons que la force

est déterminée par I'expression

F (L) _QkBTAZ/ / f ki fE[i€) 8 (€ = nwr). (5-5)

n=—0oo
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On obtient alors I'expression donnée par Lifshitz [30] que nous présentons sous la forme

F(L)= k;}:f ZZ/ko ko fLi60] . (5-6)

La notation E; a été introduite au chapitre précédent (voir I’équation 4-10 de ce

chapitre). Les fréquences et vecteurs d’onde ont leurs expressions usuelles, prises sur

les poles du coth

Ky = A = 4+ k2. (5-7)

Nous avons maintenant deux formulations alternatives pour la force de Casimir.

Celle que nous venons de dériver sera appelée “formulation de Lifshitz”

ksT A <
FL:B ZFn

2 pk fn]
Z / ks e
oL li€] = L [ig] e, (5-5)

(C’est une somme sur les poles du coth, c’est-a-dire aussi sur les fréquences de Mat-
subara. Par contre, la formulation que nous avons présentée au chapitre précédent
consiste en une décomposistion de Fourier du coth

hA (-~
F(L) = 55 Fn)

273

~ 5 2mné Py [i€]
F(n) = zp:/dko/dfcos{wT} Kl—pi[if]' (5-9)
Dans la dérivation que nous avons présentée de la formule de Lifshitz, nous avons
supposé au niveau de (5-2) que fi [1£] ne présente pas de singularité sur l’axe des fré-
quences imaginaires et qu’on pouvait immédiatement omettre les n dans fp [i£ + 1] et
factoriser I'expression par fi [1£]. Quand ce n’est pas le cas, cette dérivation n’est plus
valable. Autrement dit, la décomposition du coth sur ses poles introduit des distribu-
tions (£ — nwr) qui génerent la somme apparaissant en (5-8). Du point de vue de la

théorie des distributions, & fi [i£] joue alors le role d’une fonction test [153]. On sait
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bien que la théorie des distributions a besoin d’hypotheses fortes sur la régularité des
fonctions tests. En particulier, ces hypotheses requierent nécessairement la continuité
de kfi [i€] en £ = 0.

C’est ce point qui va se révéler critique dans les discussions qui suivent. La fonction
de réponse fy [i£] étant construite a partir des amplitudes de réflexion, les conditions
de validité de la formule (5-8) dépendront crucialement du comportement de ces am-

plitudes autour de £ = 0.

A.2 Lien entre les deux formulations

Dans notre formulation en revanche, une non analyticité ou une discontinuité ponc-

tuelle est sans effet sur le calcul de la force ou de ’énergie. [’expression intégrée

/df cos [2226] K i [1€] (5-10)

est en effet définie a partir du moment ou f [i€] est réglée, c’est-a-dire discontinue au
plus sur un ensemble dénombrable de points du domaine d’intégration avec des limites
finies a gauche et a droite des points de discontinuité. La structure de la fonction de
réponse fi [1£] comme fonction “boucle” garantit son caractere réglé. En effet, il est clair
qu’une singularité sur 'amplitude de réflexion ry [i£] n’induira pas de divergence pour
JE [i€]. Autrement dit, la fonction de transfert peut étre discontinue si les amplitudes
de réflexion le sont, mais elle sera toujours bornée. La contribution des discontinuités
sur un ensemble dénombrable de points sera de mesure nulle et donc sans conséquence
sur la valeur de l'intégrale. Cet argument permet de comprendre qu’une discontinuité
de f7 [i€] n’a pas d’influence sur la formule (5-10), alors qu’elle s’avere critique dans la
formulation de Lifshitz.

Ces deux formulations sont souvent présentées comme équivalentes par application
de la formule sommatoire de Poisson. Bien str, une analyse précise, du méme type que
celle que nous venons de faire, va montrer que cette formule de Poisson est valable
seulement sous certaines conditions de régularité.

La formule sommatoire de Poisson [153] est une égalité établie entre des sommes
définies sur une fonction et sa transformée de Fourier. Pour la présenter, réécrivons la
fonction F définie en (5-8)

Flo)= 3 [ Pkonta) fLligto). 511



tel-00001749, version 1 - 27 Sep 2002

B Limite haute température 115

ainsi que sa transformée de Fourier

F(t) = Z/d2k7d§ cos D—ﬂ K fLi€] (5-12)

qui n’est autre que la fonction apparaissant en (5-9).

La formule sommatoire de Poisson consiste en 1’égalité

Y Fla+n)= % ZF (m) ¥ (5-13)

Cette égalité est vraie “presque partout” étant donné le caractere réglé de F (). Quand

Ty [i€] est continue en & = 0, elle est vraie également au point £ = 0

S F(m) = - 3 Fm). (5-14)

Quand ce prolongement est possible, il établit I’équivalence entre notre formulation et
celle de Lifshitz. Mais le point essentiel est que I’égalité (5-14) n’est pas vérifiée quand
fy [1€] n’est pas continue en ¢ = 0. Les deux formules ne sont plus équivalentes: la
formule dite de Lifshitz donne alors un résultat incorrect alors que la formule présentée
au chapitre 4 donne encore le bon résultat.

Nous allons maintenant présenter quelques prédictions engendrées par la formule
de Lifshitz dans la littérature.

B Limite haute température

Le régime de haute température apparait comme un régime critique pour la formu-
lation de Lifshitz. En présentant les prédictions que cette formulation implique, nous
retrouverons les principaux éléments de la polémique qui s’est développée a ce sujet
dans la littérature. En utilisant la notion de température effective, définie en 4 C, ce
régime se caractérise par la condition

he

T> Ty = .
> lefr T

(5-15)

A cette limite, le terme quasistatique n = 0 est prédominant dans (5-8). Les expo-

—28knL

nentielles e jouent en effet le role de facteurs de coupures pour les termes n > 1

puisque

T
26,L ~ 2mn
eff

> 1, n > 1. (5-16)
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On pourra alors écrire a cette limite
kT A
4m?

Ce sont donc les amplitudes de réflexion calculée a la limite quasistatique, en n = 0,

T'> T — FLifenitz ~ F(n=0). (5-17)

qui détermineront le comportement haute température de la force. Des expressions
différentes pour celles-ci engendreront des comportements différents. C’est ce point
que nous abordons a présent, en le détaillant pour les miroirs parfaits ou décrits par

un modele plasma ou un modele de Drude.

B.1 Cas des miroirs parfaits

Pour des miroirs parfaitement réfléchissants, on a pour les amplitudes de réflexion
re 6] =—1 et U [ig) = —1, (5-18)

uniformément pour tout n. On peut alors directement évaluer la contribution qua-
sistatique et donner le comportement haute température de la force par 1’expression
suivante

kT A
Ar 3

On parle pour cette limite haute température de la limite “classique” de la force de

7> Teff — Fparfait ~ C(g) . (5_19)

Casimir, ’expression étant indépendante de h.

B.2 Le modele plasma

Dans le cadre du modele plasma, les amplitudes de réflexion en polarisation TM et

TE sont, a la limite quasistatique,

k| — /% + k2
ri 0] = il = et M0 = —1. (5-20)
k| + /& + k2

A partir de ces expressions, nous donnons en appendice ’expression du terme n = 0.

Pour le comportement a grandes distances, on pourra considérer la limite |k| — 0 de

la formule précédente pour lequel
0] =—-1 et mM0]=—1. (5-21)

Nous déduisons alors que la limite haute température coincide avec le résultat (5-19)

obtenu dans la limite du miroir parfait.
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B.3 Le modele de Drude

Le modele de Drude, en revanche, ne permet pas de retrouver cette limite du miroir
parfait a partir de la limite haute température. A la limite quasistatique n = 0, les

amplitudes de réflexion sont en effet données par
0 =0 et  rM[0]=—1. (5-22)

Ceci est dicuté en détail dans 'appendice C.
Cette perte de la contribution des modes TE a pour conséquence immédiate de
réduire d’un facteur 2 I'expression du terme quasistatique. On obtient alors a haute

température

ksT A

T> T, Fhrude =
> dar = bnde = T

¢(3), (5-23)

Cette limite ne coincide pas avec celle définie pour les miroirs parfaits ou les miroirs de
type plasma. De plus, on ne retrouve pas le résultat correspondant au modele plasma,
dans la limite de dissipation nulle I' — 0. A cette limite pourtant, la permittivité du
modele de Drude tend bien vers celle du modele plasma. Pour ces raisons, le modele
de Drude a souvent été considéré comme problématique [151]. Il est pourtant clair
que ce modele, qui prend en compte la relaxation des électrons de conduction, est une
description de la réponse métallique plus réaliste que le modele plasma (voir la section
C.1).

Autrement dit, avec le modele de Drude, les limites haute température et miroirs
parfaits ne commutent pas alors qu’elle commutent si 'on utilise un modele plasma.
Schwinger [56] est le premier a avoir remarqué cette non-commutativité. Pour récupé-
rer le comportement (5-19), Schwinger a imposé la prescription consistant a prendre la
limite des miroirs parfaits avant de considérer la limite haute température. Cette pres-
cription permet évidemment de retrouver (5-19) pour tous modeles de métaux. Mais
n’expliquant rien, elle ne dit pas pourquoi un certain ordre est imposé pour prendre
les limites. Enfin, en prenant d’abord la limite du miroir parfait, la prescription de
Schwinger renonce au probleme le plus important. Il est clair en effet que si la limite
du miroir parfait est prise en premier lieu, il n’est plus question de discuter de 'effet
sur la force de la prise en compte des propriétés réelles des miroirs utilisés dans les

expériences !
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C La polémique récente

Les discussions que nous venons de présenter ont été développées récemment [145,
146]. Elles insistent toutes sur la différence de traitement entre le modele plasma et
le modele de Drude. Elles se heurtent a des résultats contradictoires (5-19,5-23) qui
auraient des implications physiques considérables s’ils étaient vrais.

Ainsi, Bostrom conclut a la disparition dans la limite quasistatique de la contri-
bution des modes polarisés TE pour la force et 1’énergie de Casimir calculées par un
modele de Drude [145]. Une manifestation spectaculaire de cette perte de contribution
est le comportement (5-23) de la force et de 1’énergie, réduites d’un facteur 2 par rap-
port aux force et énergie calculées entre des miroirs décrits par un modele plasma. Ce
résultat engendre dans le méme temps des prédictions thermodynamiques suspectes,
comme par exemple l'existence d’une gamme de longueur de cavité sur laquelle ’en-
tropie du systeme est négative [151].

Alors que le calcul de Bostrom est celui auquel on aboutit si 'on suit fidelement,
comme en B.3, les étapes du calcul depuis la formule initiale de Lifshitz, un autre point
de vue a été parallelement développé [146]. Mathématiquement, cette “version” est
encore plus problématique: elle engendre en effet une contribution linéaire en tempéra-

ture a courte distance, alors que nous avons démontré que les corrections thermiques a

T
Te 3id

3
courtes distances sont échelonnées en O << > ) En fait, ces résultats reposent sur

des erreurs de calculs identifiables.

Analysant ces résultats problématiques, Klimchitskaya et al. ont introduit une pres-
cription de type Schwinger “généralisée” au sens ou elle sélectionne les termes du calcul
de Lifshitz a conserver pour retrouver dans le cadre du modele de Drude des résultats
de méme forme que ceux donnés par le modele plasma [151, 152]. La encore, cette
prescription n’explique rien vis-a-vis des problemes prescrits. Elle joue le réle d’un ar-
gument ad hoc dans le contexte polémique qui ne conduit a aucune conclusion précise
hors de ce contexte. Par ailleurs, le modele plasma prend un statut privilégié dans cette
prescription puisqu’il ne pose pas de probleme. Les auteurs déduisent de leur analyse
que la description de l'effet Casimir a température non nulle est mal définie pour les
systemes dissipatifs. Cette conclusion, déja formulée par Bostrom, est basée sur le fait
qu’il n’est pas possible de retrouver la situation du modele plasma a partir de la for-
mule de Lifshitz donnée pour un modele de Drude dans la limite de dissipation nulle.
Cette conclusion est poussée encore plus loin en [151, 152] et devient une critique du

point de vue de la théorie de la diffusion en présence de dissipation [57].
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Dans la suite de cette section, nous montrons que ces affirmations sont tout a fait
exagérées. Le point de vue développé dans le présent mémoire permet de résoudre
toutes ces difficultés sans nécessiter la moindre hypothese ad hoc.

Nous remarquons que le modele de Drude a pour conséquence de définir un coef-
ficient de réflexion TE discontinu. Cette discontinuité a des conséquences importantes
sur la possibilité méme d’utiliser la formulation de Lifshitz. Les conséquences aber-
rantes de la formule de Lifshitz sont ainsi directement liées a des défauts d’analyticité
des amplitudes de réflexion TE dans le secteur quasistatique £ — 0.

Nous montrons enfin que notre formulation résiste au probleme posé par ces discon-
tinuités. Nous explicitons le résultat prévu par notre méthode pour le modele de Drude
et montrons qu’il est similaire a celui obtenu pour un modele plasma. La dissipation
n’induit aucune “catastrophe” et la limite de faible dissipation est tout a fait réguliere

quand on la discute sur ’expression finale de la force.

C.1 Amplitudes de réflexion

Nous commencons par discuter les amplitudes de réflexion calculées a partir d’un
modele plasma ou d’un modele de Drude. Par rapport a [145] dont les prédictions
sont déterminées ponctuellement en & = 0, nous analysons ici les comportements des
amplitudes de réflexion dans tout le voisinage de ce point. Seule une telle analyse
permet de bien comprendre les différences mathématiques entre les deux modeles.

On garde les mémes notations que dans le chapitre 1. On calcule les amplitudes
ry [i€] pour une polarisation p dans le cas particulier du miroir massif. Nous donnons

les comportements respectifs dans les deux cas limites suivants:

— cas a): le champ est pris sous incidence normale, i.e. k = 0 fixé. On étudie alors la
limite quasistatique w — 0 pour les deux polarisations. Sous incidence normale,
les amplitudes sont dégénérées. Les enchainements sont détaillés dans "appendice

C. Pour le modele plasma on a donc

rieso [0] = 1o [0] = — 1. (5-24)
Pour le modele de Drude, on trouve le méme résultat

rieco [0] = 1o [0] = —1. (5-25)

— cas b): cette fois-ci on se place a la limite quasistatique & = 0 et 1’on s’approche

de I'incidence normale k — 0. Pour le modele plasma, on trouve

rro [0 = 1o [0] = 1. (5-26)
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Pour le modele de Drude, on trouve maintenant un résultat différent

raco [0 =0, M 0] = —1. (5-27)

Pour un miroir massif dont les propriétés optiques sont décrites par un modele de
Drude, les deux limites £ — 0 (quasistatique) et k — 0 (incidence normale) ne com-
mutent pas pour la polarisation TE. Mathématiquement, I’approche du point £ = 0 ne
se fait pas de facon uniforme dans le plan (£, k), ce qui révele la présence d’une discon-
tinuité pour ce coefficient de réflexion ri¥ [€]. Cette discontinuité n’est pas observée
pour la polarisation TM.

D’une facon générale, c’est la structure de la réponse optique ¢ [1£] qui conditionne
les propriétés de continuité des amplitudes de réflexion définis pour un miroir massif.
Le coefficient de réflexion des modes polarisés TE sera discontinu des que la réponse
optique est telle que

lim £2¢ [i€] = 0. (5-28)

£—0

C’est le cas du modele de Drude. Le modele plasma est un cas particulier pour lequel
. 2 . 2
i €t 6] = (529

ce qui induit des amplitudes de réflexion continues. Insistons encore une fois sur le fait
que le modele de Drude, bien qu’il conduise a un probleme mathématique en raison
de la discontinuité de I'amplitude TE, est une description physique plus réaliste de la

réponse optique des métaux.

C.2 Comparaison des deux formulations

En partant de notre formulation, nous montrons maintenant comment la formu-
lation de Lifshitz peut aboutir aux comportements erronés précédents. On commence

par séparer sur notre formulation la contribution du vide des contributions thermiques
hA G hA = hA =
F(L)=— F =—F — F(n). -
(1) = 55 SR = PO+ 5 3 F o (5:30)

On analyse ensuite la validité des enchainements nécessaires pour retrouver la for-

mule de Lifshitz. Nous renvoyons a ’appendice C pour une écriture explicite de ces
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dérivations. Nous ne donnons ici que le résultat, qui consiste a pouvoir se ramener a

I’expression suivante

- A / d€ 0 (s fili€ kBTAZ / Pk welig]. (5-31)

On rappelle que la somme sur les polarisations est toujours incluse
> €. (5-32)
P

C’est sur le terme ¢ (k fx [1£]) que va porter la discussion. Dans le cas d’une fonction
Jx [1€] continue, on peut intégrer ce terme. On est alors exactement ramené a la formule
de Lifshitz. Autrement dit, les deux formules sont équivalentes, comme le démontrait
la formule sommatoire de Poisson, applicable pour ces fonctions fx [1£] continues.

Dans le cas du modele de Drude, f'F [i€] est discontinue en ¢ = 0. On devra donc
conserver tous les termes dans I'expression suivante

FLA ~
ro= = Z Fln

n>1

_ ’fij‘ / A o) - [ane / dé 9 (r 22 [i€))

kBTA Z/d k #, fic i) (5-33)

n>1

Le deuxieme terme contient en fait le terme de différence qui explique les écarts des
prédictions obtenues en utilisant chaque formulation. C’est sur ce terme que porte
explicitement la prescription de Klimchitskaya et al. [151] qui consiste a le choisir tel

que les prédictions ne soient pas contradictoires.

C.3 Limite de dissipation nulle

Le modele de Drude consiste en une permittivité

wp

§(E+T) 3

EDrude [Zf] =1 +

et il tend pour I' — 0 vers le modele plasma.

Exactement comme pour le modele plasma, la limite de grande distance se définie
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sans ambiguité comme correspondant au régime de distances L > Ap. Quand on calcule

le facteur correctif np dans ce régime, on montre que (voir I'appendice C)
nprde nglasma pour I'— 0. (5-35)

Ceci résoud les questions qui avaient été posées dans la section B.3. L’expression finale
de la force est bien définie pour le modele de Drude et elle tend vers le résultat du
modele plasma lorsque I' — 0. Ce n’était pas le cas pour les résultats déduits sans

précaution de la formule de Lifshitz, dans des conditions ou celle-ci n’est pas valable.
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Chapitre 6

Description des expériences et effets de la

géométrie

Nous avons décrit dans les chapitres précédents comment évaluer la force de Casi-
mir en tenant compte des effets de conductivité des miroirs métalliques et des effets
des fluctuations thermiques. Nous avons considéré la configuration géométrique de Ca-
simir avec deux miroirs plans et paralleles entre-eux. En fait, la plus grande partie des
expériences de mesure de la force de Casimir est effectuée avec une géométrie plan-
sphere et il faudra bien entendu en tenir compte. Par ailleurs, les miroirs ne sont pas
parfaitement plans car tout miroir réel présente une rugosité de surface.

Nous allons discuter ces effets dans ce chapitre, continuant ainsi de nous rapprocher
de notre objectif, a savoir une description théorique précise de la réalité expérimentale

des mesures.

A Les expériences

Nous commencons par décrire le contexte expérimental des mesures de la force
de Casimir. Nous ne serons pas exhaustifs et renvoyons a d’autres articles pour une
introduction historique [26, 59, 154] ou technique [57] de ce contexte. Notre but est de
bien montrer comment les prédictions théoriques se situent par rapport aux expériences.
Nous distinguerons deux générations d’expériences séparées a la fois par la chronologie

et par leur degré de précision.
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A.1 Expériences avant 1997

Les premieres expériences qui mettent en évidence une force d’attraction entre deux
miroirs sont réalisées assez rapidement apres la prédiction de Casimir.

Overbeek et Spaarnay [31] commencent & mesurer une telle force entre miroirs di-
électriques en considérant deux miroirs plans paralleles en verre. Pour la mesure, ils
utilisent une balance électro-mécanique a ressort. La valeur de 1’élongation du ressort
sous la contrainte de I’attraction entre les plaques est donnée par variation de capacité.
Elle permet, apres étalonnage, la mesure de 'intensité de la force. L’expérience n’est
pas quantitativement concluante, mais elle est déja un modele pour les expériences
futures.

Derjaguin et Abrikosova [33] observent en 1957 une attraction entre deux miroirs
diélectriques, tous deux en silice, une plaque faisant face a une lentille sphérique montée
a I’extrémité d’'une balance a couteau. La force est mesurée grace a un circuit électrique
contre-agissant sur le déséquilibre de la balance di a I’attraction. Le recours a une len-
tille sphérique a la place d’une deuxieme plaque simplifie le contréle de la géométrie
en éliminant le probleme du parallélisme rencontré chez Overbeek et Sparnaay. C’est
a cette occasion qu’est introduite une approximation développée par Derjaguin [155]
pour évaluer la force de Casimir entre une lentille sphérique et une plaque. Nous allons
discuter plus loin en détail cette approximation qui joue un réle central dans ’analyse
des expériences plan-sphere.

En 1957, Sparnaay [34] raffine son premier systeme de mesure pour déterminer la
force pour la premiere fois, entre deux miroirs métalliques neutres. Il utilise tour a
tour des miroirs en aluminium (Al-Al), chrome (Cr-Cr) ou acier (Cr-acier) et considere
des distances de séparation entre les miroirs allant de 0.5 a 2pum. Sparnaay discute
en détail les difficultés expérimentales principales, en particulier le controle délicat du
parallélisme entre les plaques, la détermination précise de la distance et le contréle
de neutralité, point délicat étant donné que la force de Casimir peut facilement étre
masquée par des forces électrostatiques. Avec une barre d’erreur qu’on peut a poste-
riort estimer aujourd’hui de 100%, Sparnaay conclut prudemment que “les attractions
observées ne contredisent pas la prédiction théorique de Casimir”.

Une meilleure mesure de la force de Casimir entre des surfaces métalliques est réali-
sée par Blokland et Overbeek en 1978 [44]. La force est mesurée a I’aide d’une balance
a ressort entre une lentille sphérique et une plaque, toutes deux recouvertes de couches
minces d’épaisseur 50 — 100nm de chrome, pour des séparations allant de 132 a 670nm.

La mesure est réalisée, comme chez Overbeek et Spaarnay, en déterminant la capacité
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du systeme. La méme géométrie permet d’utiliser ’approximation de Derjaguin pour
évaluer la force. Il faut noter que les auteurs comparent pour la premiere fois leurs
résultats aux évaluations théoriques utilisant la théorie de Lifshitz pour le chrome. Ils
peuvent ainsi conclure a un accord de I'ordre de 25% entre leurs mesures et les valeurs
calculées pour la force. On peut ainsi considérer qu’ils inaugurent le programme de
comparaison théorie-expérience qui se poursuit encore aujourd’hui.

La force de Casimir a pu étre mise en évidence et mesurée dans un certain nombre
d’autres expériences, en particulier [37, 38, 42]. Nous renvoyons pour plus de détails

aux revues citées plus haut.

A.2 Expériences apres 1997

Récemment, de nouvelles techniques de mesures ont permis d’atteindre une bien
meilleure précision. Nous décrivons ici celles d’entre-elles qui semblent étre les plus
intéressantes vis-a-vis de nos objectifs.

En 1997, Steve Lamoreaux mesure la force de Casimir a 1’aide d’un pendule de
torsion a l'université de Washington [48]. La force est mesurée entre une sphere métal-
lisée et une plaque métallique, portées a des potentiels électrostatiques différents mais
controlés. Etant donné que les forces électrostatiques et de Casimir agissent simulta-
nément, il est nécessaire de soustraire 'effet de la force électrostatique afin de déduire
la valeur de la force de Casimir. Cette mesure est faite pour des distances entre les
miroirs comprises entre 0.6 et 6um. La comparaison de ces résultats de mesure a la
théorie est rapportée par Lamoreaux comme confirmant un accord au niveau de 5%.
Il est a souligner toutefois que cette expérience n’a pas vu la correction thermique qui
doit pourtant étre importante aux plus longues distances étudiées.

Peu apres, les résultats d’'une deuxieme expérience sont publiés par Umar Mohideen,
de 'université de Californie, a Riverside [49]. Alors que I'expérience de Lamoreaux a
été arretée assez vite, celle de Mohideen a fait ’objet de nombreuses publications cor-
respondant a des progres sensibles dans la précision et le controle (voir par exemple
[51, 52]). Cette expérience est basée sur I'utilisation d’un microscope a force atomique
(AFM). Une sphere métallisée est fixée a I'extrémité du levier du microscope et placée
pres d’une plaque métallique plane, a des distances de 0.1 a 0.9um. Les deux surfaces
sont au méme potentiel électrostatique. La force de Casimir est mesurée par lecture op-
tique en analysant la déviation d’un faisceau laser réfléchi a I’extrémité du levier courbé
sous l'effet de la contrainte mécanique induite par la force d’attraction entre les deux

miroirs. La comparaison entre les résultats expérimentaux obtenus et les prédictions
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théoriques a été effectuée pour des miroirs recouverts de couches d’aluminium (Al-Al
[49, 51]) et d’or (Au-Au [52]). Une précision expérimentale de I'ordre du pourcent est
typiquement obtenue, et 'accord avec la théorie est également annoncé au niveau de
1%. Le méme groupe étudie également a I’heure actuelle les effets de surfaces modulées
sinusoidalement sur les propriétés de la force de Casimir [156].

Une expérience indépendante utilisant également un microscope a force atomique a
été publiée en 2000 par Thomas Ederth de I'Institut de Chimie des Surfaces de Stock-
holm [53]. Le principe est le méme que celui des expériences de Mohideen mais la force
est mesurée entre deux cylindres métalliques neutres, de courbure 10mm, placés avec
leurs axes a angle droit. Le domaine de distances explorées entre ces miroirs s’étend de
20 a 100nm. Ederth utilise des surfaces dont la rugosité est beaucoup mieux contro-
lée que dans les autres expériences. Apres une analyse soignée des sources d’erreurs,
Ederth conclut a une précision de 'ordre de quelques pourcents.

Il faut aussi mentionner les expériences spectaculaires du groupe de Federico Ca-
passo a Lucent Technology, qui observent I’effet Casimir au niveau de systemes micro-
électromécaniques (MEMS) [54]. Ces systemes sont des structures mobiles usinées sur
une tranche de semiconducteur par techniques de type circuits intégrés. Ils sont au-
jourd’hui utilisés comme nouvelle génération de détecteurs et d’actionneurs travaillant
dans le domaine de dimensions micro ou submicrométriques [157]. La force de Casimir
est mesurée entre une sphere en polystyrene et une plaque microconductrice de polysi-
licium, toutes deux recouvertes de couches métalliques. La plaque tourne autour d’un
axe de torsion. La variation de I’angle de rotation, quand la sphere est approchée vers
la plaque pour des distances comprises entre 100nm et 1pym, met en évidence la force
de Casimir. L’accord avec la prédiction théorique est au niveau du pourcent.

Ces sytemes ont permis également d’étudier des comportements dynamiques. En
appliquant un courant d’excitation sur des électrodes situées sous la plaque métal-
lique, on peut imposer a celle-ci un mouvement oscillatoire. L’expérience met alors
en évidence d’intéressants effets dynamiques typiques des systemes mécaniques non
linéaires, tels des décalages des fréquences de résonance de 'oscillateur en fonction de
la distance d’approche de la sphere vers la plaque, des comportements hystérétiques
et bistables [158]. A nouveau, toutes ces observations sont en accord avec la force de
Casimir prédite par la théorie. L’intérét principal de ces expériences est de montrer
que la force de Casimir joue un role central dans des systemes d’intérét technologique
comme les MEMS. Ce qui ne doit pas surprendre étant donné que la force de Casimir
est la force dominante dans le domaine micrométrique. Ces expériences montrent que

les effets mécaniques des fluctuations du vide doivent étre considérés pour les micro- ou
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nano-technologies, ce qui, bien avant I’avenement de ce domaine technologique, était
déja discuté par Casimir lui-méme [26].

Les expériences décrites jusqu’a présent sont menées en géométrie plan-sphere ou
dans la géométrie équivalente définie par deux cylindres croisés. Elles ont toutes re-
cours a ’approximation de Derjaguin pour analyser leurs résultats. Par conséquent, la
question du degré de précision de ’approximation de Derjaguin est un enjeu crucial.
Nous allons dans ce chapitre discuter ce point en détail.

Une expérience récente a été effectuée dans la configuration initiale de la prédiction
de Casimir en mesurant la force entre deux miroirs plans paralleles. Cette expérience a
été réalisée a Padoue, dans un laboratoire de 'INFN, par Bressi, Carugno, Onofrio et
Ruoso [55]. La force est mesurée entre deux plaques planes paralleles recouvertes d’une
couche de chromium. L’une de ces plaques est fixée sur un levier alors que celle lui
faisant face est tenue par une cale piézoélectrique rigide. Cette plaque est mise en mou-
vement oscillatoire via la cale piézoélectrique. Une force de Casimir variable est alors
induite sur la plaque montée sur le levier. Le mouvement de cette premiere plaque est
analysé a 'aide d’un transducteur électromécanique a effet tunnel. Les mesures ont été
réalisées pour des distances de 0.5 a 3um. Les résultats sont en accord avec la théorie
avec une précision de l'ordre de 15%. Cette précision médiocre par rapport aux autres
expériences récentes est due aux difficultés expérimentales particulieres de la géométrie

a deux plans.

B Géométrie plan-sphere

Nous avons présenté les évaluations théoriques liées aux corrections de conductivité
et aux corrections thermiques dans une géométrie de miroirs plans et paralleles entre-
eux. Apres le descriptif des expériences, il est clair que I'influence de la géométrie doit
étre analysée du point de vue théorique pour arriver a une description précise de la
réalité expérimentale.

Le premier effet géométrique est évidemment induit par le choix de la majorité des
expériences de mesurer la force de Casimir entre un miroir sphérique et un miroir plan.
Ce recours a une géométrie plan-sphere est motivé par la simplicité du controle d’une
telle configuration, reposant seulement sur deux parametres: le rayon de courbure R de
la sphere et la distance L de plus courte approche. Il est beaucoup plus délicat de main-
tenir constant un strict parallélisme entre deux miroirs plans tout en les approchant

I'un de lautre. Ce point a été étudié historiquement par Sparnaay [34] et il explique
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également que la seule expérience réalisée récemment dans la géométrie des deux plans
[55] ait une précision moins bonne que celles réalisées en géométrie plan-sphere.

Il faut bien voir cependant que la géométrie plan-sphere, plus commode du point
de vue expérimental, conduit a un probleme théorique sérieux: avec cette géométrie,
on perd les symétries de la configuration initiale de Casimir, avec une densité de mode
du champ a l'intérieur de la cavité correspondant a des modes propres parfaitements
connus. Pour un résonateur plan-sphere, la perte de ces symétries ne permet pas une
détermination simple des modes propres du résonateur. Ceci rend plus difficile le calcul
de la force a partir des premiers principes. Ceci oblige a développer des méthodes d’ap-
proximation. Nous nous intéressons en particulier dans ce chapitre a "approximation
de Derjaguin, la seule utilisée a ce jour pour 'analyse des expériences.

Parmi ces méthodes d’approximation, citons les travaux basés sur la notion diffu-
sion multiple du champ [159, 160, 161, 162] ou les approches semi-classiques [163, 164].
Ces travaux ont pu réanalyser ce probleme de la géométrie. En particulier, ces efforts
se révelent adaptés pour résoudre le probleme de la propagation du champ dans des
configurations ou les variables ne peuvent étre séparées. Cette derniere voie est en
fait invoquée pour vérifier les prédictions des résultats déterminés dans la veine de

I’approximation de Derjaguin.

B.1 L’approximation de Derjaguin

Les approximations usuelles pour décrire la situation en configuration plan-sphere
sont issues d’une méthode initialement développée par Derjaguin [155], dans le cadre
explicite de mesure concernant des suspensions colloidales, et reprise dans un contexte
de physique nucléaire par Blocki [165]. Plus tardivement, une analyse basée sur ’additi-
vité de forces terme a terme, assortie d’une procédure de renormalisation [166, 167, 168]
a été introduite. Ces deux voies d’approximation se basent fondamentalement sur les
mémes hypotheses que nous discuterons donc seulement du point de vue de "approxi-
mation de Derjaguin.

L’approximation de Derjaguin, reformulée par Blocki, est une approximation sur
le calcul de la force Fp d’interaction entre deux corps solides, de formes quelconques,
dont la séparation peut étre mesurée par £ “lentement” variable, dans un sens que
nous allons préciser. Dans cette situation, on peut décomposer la force Fp sous la

forme suivante

Fp = /%Fp—p(ﬁ(r))+--- (6-1)
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FPATP est la force d’interaction par unité de surface entre deux plans paralleles définis
localement le long de la surface des corps et donc séparés par la distance correspon-
dante £. On parle alors d’approximation de proximité.

Dans notre cas, cette force s’identifie a la force connue de Casimir entre deux miroirs
plans paralleles séparés par L. L’intégration surfacique est définie sur un plan de réfé-
rence médian et elle peut se restreindre a ’'une des deux surfaces des corps délimitant
la séparation. Les points résiduels sur cette expression symbolisent les termes d’ordres
supérieurs, 1.e. les corrections induites par les effets du non-parallélisme. L’approxima-
tion consiste a négliger ces termes résiduels sur (6-1). Elle ne peut étre raisonnable que
dans le cas ou la géométrie des corps s’éloigne relativement peu d’une géométrie plan-
plan (c’est le “L lentement variable”) c’est-a-dire quand les contributions dominantes
sont limitées au strict voisinage de la zone de plus courtes distances.

Dans le cas de la géométrie plan-sphere, I’approximation devient valable dans la
limite ou le rayon de courbure R devient tres grand devant la distance de plus courte
approche L. Nous discutons le résultat de cette approximation dans la prochaine section

avant d’ajouter des commentaires supplémentaires sur les conditions de validité.

B.2 Force de Casimir en configuration plan-sphere

Considérons la configuration typique d’une sphere de rayon R et d’un plan, séparés

d’une distance minimale L (voir la figure 6.1).

R>>L
M
E
L
Fic. 6.1 — Configuration plan-spheére.

z

La distance £ entre les deux surfaces est alors donnée par ’approximation suivante

1'2

L = L—I_ﬁ , r? = 2% +¢? (6-2)

définie quand L < R. Cette approximation est valable dans le voisinage immédiat de

I’axe de symétrie

r,y < R. (6-3)
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On peut alors transformer 'intégrale sur la surface en une intégrale sur la distance £

[SErem = [FEE )

27 R T
= T d'CFp—p ('C)
L

2 R
— TEp_p. (6—4)
L’intégration a été ici étendue a l'infini, ce qui est possible si l'on suppose que F,_,
tende vers 0 suffisamment vite avec L.
On peut des lors calculer la force entre le plan et la sphere, exprimée dans le cadre

de cette approximation. On aura ’expression

Fpa (1) = 200, (1), (6-5)
Cette expression est de premiere importance dans le contexte de la comparaison ac-
tuelle entre théorie et expérience. Jusqu’a présent, nous avons pu définir les facteurs
correctifs tenant compte simultanément des corrections de conductivité et des correc-
tions thermiques pour la force np et pour ’énergie ng dans la configuration de deux
miroirs plans. Les expériences étant effectuées en géométrie plan-sphere, I'approxima-
tion de Derjaguin nous permet de prendre en compte cette nouvelle géométrie. A partir
du facteur correctif g que nous avons déja détaillé, la force entre un miroir plan et un

miroir sphérique s’écrit donc sous la forme

her?

hem®R

(6-6)

Cette expression inclut donc les effets de géométrie dans le cadre de 'approximation
de Derjaguin, de conductivité finie et de température, tels qu'on les a explicités. Cest
elle qui est utilisée pour comparer les prédictions théoriques avec les résultats expéri-
mentaux récents. Comme nous ’avons déja dit, cette comparaison conduit a un tres

bon accord, au niveau du pourcent.

B.3 Validité de I'approximation

La différence entre la configuration a deux plans et la configuration plan-sphere est
tres importante du point de vue de la géométrie. Cette différence se reflete dans 1’équa-

tion (6-5) qui ne peut manifestement pas étre considérée comme une petite correction
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de la formule idéale de Casimir. A ce titre, ’analyse des conditions de validité de cette
approximation est importante.

Nous pouvons formuler cette question de deux facons différentes. Dans un premier
temps, nous pouvons considérer que I’approximation est correcte si

im —AFp_S (L) =1 avec t = £ (6-7)
=0 2T RE,_, (L) R
Comme nous allons le voir dans la suite de cette section, la propriété (6-7) est vraie et
I’approximation de proximité a donc une certaine validité. C’est en ce sens qu’elle est
souvent appelée “théoréme de proximité”.

Dans une seconde analyse, nous pouvons nous demander quelle est la précision avec
laquelle cette limite est réalisée pour une valeur réelle, évidemment finie, du parametre
t. Sur cette question, nous verrons que les informations disponibles sont beaucoup plus
fragmentaires.

(C’est dans le cadre des miroirs parfaits que les effets de géométrie sont généralement
traités. On peut citer les travaux de Balian et Duplantier [161, 162] basés sur le déve-
loppement des fonctions de Green en diffusion multiple. Les méthodes semi-classiques
développées par Schaden et Spruch permettent de calculer la force entre une sphere et
un plan, non seulement dans le régime % <« 1 [163] mais plus généralement pour toute
valeur du rapport %, en tenant compte des effets de la diffraction [164]. Cette approche
est construite sur la notion de propagation de photons virtuels le long d’orbites pério-
diques établies entre les corps se faisant face. La densité spectrale a 'intérieur de la
cavité est alors définie en sommant sur ces orbites périodiques et permet de calculer la
force de Casimir correspondante. Dans le cas de deux spheres proches dans le méme
régime % < 1, ces calculs permettent de confirmer le résultat (6-5) fourni par I'ap-
proximation de Derjaguin [163].

Pour des miroirs réels, il est important de savoir si I’approximation de Derjaguin
continue a étre valable. Barton [134] a étudié cette question dans le cadre de I'interac-
tion de Van der Waals entre modes plasmons (voir la section C du chapitre 3). Dans
le régime des courtes distances L < Ap, les modes plasmons de surface déterminent
I'interaction entre les miroirs [121]. L’hamiltonien construit sur les plasmons en inter-
action se propageant respectivement le long d’une surface sphérique et d’une surface
plane permet de rendre compte des interactions. En développant la théorie des pertur-
bations, Barton est parvenu a vérifier que la propriété (6-7) restait valable jusqu’au
quatrieme ordre, au moins.

Langbein [159, 160] a étudié ce méme régime non-retardé. Il a considéré un ensemble
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de molécules, caractérisées par leurs polarisabilités respectives. En sommant sur tous
les diagrammes fermés d’interaction, c’est-a-dire sur les interactions mutuelles entre
les dipdles formant I’ensemble, il a pu montrer que la force de Casimir F,_; entre une
sphere de rayon R et un plan était donnée par I’équation (6-7), a tous les ordres dans
I'interaction, dans la limite % — 0.

Seul un calcul exact permet cependant de controler quantitativement le degré de
précision de 'approximation de Derjaguin. Un tel calcul est en principe faisable en
utilisant les méthodes exactes de diffusion [161] ou les méthodes semi-classiques [164].
Malheureusement, peu de résultats explicites sont disponibles. Une exception est four-
nie par le calcul récemment développé par Johansson et al. [169] pour étudier la force
entre une sphere et un plan métalliques. En utilisant un modele plasma et dans le ré-
gime non retardé L < Ap, ces auteurs ont donné une expression de la force de Casimir
utilisant les coordonnées bi-sphériques adaptées a la géométrie en question. La force
alors calculée numériquement peut étre comparée a ’approximation de Derjaguin en
précisant (6-7). Pour les dimensions typiques des expériences du groupe de Mohideen
(sphere de rayon ~ 100um et distances explorées 0.1 — 0.9um) qui définissent un rap-
port % < 1072, Iécart entre 'approximation de Derjaguin et le calcul effectué dans ce

travail reste inférieur au pourcent.

C Corrections de rugosité

Nous discutons maintenant la prise en compte de l'effet de rugosité des miroirs.
Dans I’analyse des expériences, cet effet est pris en compte en utilisant "approxima-
tion de Derjaguin, comme nous allons le décrire ci-dessous. Typiquement, I’effet trouvé
est une fraction du pourcent et il est intégré dans la comparaison théorie-expérience
[52]. Nous verrons ci-dessous qu’une telle analyse peut étre insuffisante parce qu’elle ne
tient pas compte des propriétés spectrales de la rugosité. Nous discuterons les premiers
résultats obtenus avec une telle analyse spectrale dans le cas particulier des miroirs
parfaits.

Pour illustrer cette discussion, nous reproduisons ci-dessous l'image de la surface

d’un miroir utilisé dans les expériences de Mohideen.



tel-00001749, version 1 - 27 Sep 2002

C Corrections de rugosité 133

Fic. 6.2 — Image AFM de la surface d’un miroir utilisé dans les expériences de Mohideen.

Awvec Uaimable autorisation de U. Mohideen.

C.1 L’approximation de rugosité

Habituellement, 'effet de la rugosité est pris en compte par "approximation de
Derjaguin, aussi appelée approximation de proximité. L’énergie y est alors obtenue en

additionnant les contributions des diverses distances effectives
d?r
&il) = [FECw). (65)

Nous considérons a nouveau la géométrie plane et notons L (r) la distance effective

entre les deux points correspondant a une position transverse r = (z,y)
L(r)=L+h(r)+hs(r). (6-9)

L (r) est la distance entre deux points se faisant face, c’est aussi la somme de la longueur
moyenne L de la cavité et des profils h;=; 3 décrivant la rugosité des surfaces sur les
deux miroirs i = 1,2. Les déplacements respectifs moyens h; sont nuls de sorte que
L = L. Par ailleurs, les profils sont supposés statiques.

Dans la limite de faibles amplitudes de rugosité, on peut développer I'expression

(6-8) au deuxieme ordre dans le parametre petit %
Ep (L) = E(L)+46E(L)
E// L _ .
(L) (W +73) + .. (6-10)

SE (L)

[’énergie &£ est alors simplement la somme de 1’énergie I entre deux miroirs parfaite-

ment plans et séparés de la distance L et d’une correction § £/ de rugosité proportionnelle
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a la variance des déplacements h;

h_fz/%rhi (r)?. (6-11)

Le coefficient apparaissant dans 6 I est bien sir la dérivée seconde de I par rapport a

L

E'(L) = dd—;E (L). (6-12)

Nous supposons que les déformations sur chaque miroir ne sont pas corrélées entre-elles

hlhg - 0, (6—13)

ce qui explique I'absence de terme croisé. Par ailleurs, étant donné que h; = 0, les
termes de premier ordre n’interviennent pas.

Les évaluations théoriques de la rugosité de surface [166, 167, 168, 170, 171] partent
toutes habituellement de ce type de développement, en tenant compte éventuellement
de corrélations [156] ou en poussant le développement aux ordres supérieurs [166].

Evaluée de cette maniere, la correction 6 ¥ ne dépend que de 'amplitude de la ru-
gosité et pas des caractéristiques spectrales de la rugosité. Or tout traitement réaliste
de la rugosité doit pouvoir rendre compte de ces caractéristiques: 'effet d’une défor-
mation doit en principe dépendre de la longueur d’onde de cette déformation.

Le but de cette section est de mettre en évidence I'importance de ce dernier point
et de discuter les conditions de validité de (6-10). Anticipant sur ce qui suit, cette dé-
pendance vis-a-vis du spectre sera représentée par une fonction p dépendant du vecteur
d’onde de déformation de la surface du miroir. Ce facteur permettra de caractériser
une éventuelle déviation par rapport a I’approximation de Derjaguin. Nous retrouverons
cette approximation dans la limite ou la longueur d’onde X associée a la déformation
sera plus grande que la distance moyenne [ entre les miroirs. Par contre, pour les lon-
gueurs d’onde A < L. il faudra en principe évaluer la fonction p. Des résultats récents

[172] permettront de calculer cette fonction pour les miroirs parfaits.

C.2 Fonctions de réponse de rugosité

Pour expliciter ce que nous venons de présenter, nous commencons par décomposer
les variances h? comme des intégrales sur les vecteurs d’onde transverses k d’un spectre

de rugosité o; [K]

— d*k
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Un tel spectre de rugosité est défini comme la transformée de Fourier de la fonction de

corrélation du profil de surface

olk] = /%0‘ (r) ekr
o(r—r") = h(r)h(r). (6-15)

Pour tenir compte du spectre de rugosité dans 1’expression de 1’énergie de Casimir,
nous remplacons ensuite dans I’équation (6-10) les variances h? par leur décomposition
spectrale en introduisant un facteur de sensibilité p; [K]

E" (L d?k
se (1) = 5 [ 1o 1+ pa W )+ (6-16)
Les points de suspension rappellent que ce développement est une évaluation a ’ordre
le plus bas seulement de l'effet de rugosité. I’énergie de Casimir est ainsi donnée a
partir d’une intégrale sur les vecteurs d’onde k dans le spectre ou de facon équivalente,

par la longueur d’onde A caractéristique de la déformation de surface

k| = (6-17)

2m
S

L’isotropie de la configuration non perturbée de deux miroirs plans entraine que
la fonction p; [k] dépend simplement du module de k. Dans le cas de deux miroirs

identiques, cette fonction est la méme pour les deux miroirs et on obtient 1’expression
E// L - .
5E(L) = # (P +53) 7+
e
50 K]

472

(6-18)

Cette écriture permet une analyse directe de la situation que nous avons décrite. A la
limite |k| — 0, on se trouve dans une situation quasistatique et on s’attend a ce que
p soit égal a 1. On retrouve en fait I'approximation de Derjaguin (6-10) quand tous
les k contribuant de maniere dominante au spectre o; se trouvent dans le secteur pour
lequel p [k] ~ 1.

On peut également donner ces équations en termes de force et non plus simplement

d’énergie de Casimir. Nous aurons

F) = rw+ T ) e (6-19)
I v
= ﬁ+7Eu(L) || Opejp- (6-20)

LF"(L)
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C.3 Cas des miroirs parfaits

En réanalysant des travaux récents [172] qui évaluent ’énergie de Casimir entre un

miroir corrugué et un miroir plan, nous allons pouvoir étudier ces effets de rugosité.

Cette étude est en fait limitée aux miroirs parfaits. Toutefois, elle nous permettra de

décrire la situation d’'une cavité de longueur L entre deux miroirs métalliques corres-

pondant a une longueur plasma Ap pourvu que L >> Ap. Les résultats de [172] ont été

obtenus pour des surfaces corruguées mais nous pourrons extraire ’expression de la

fonction p [k]| décrivant la sensibilité au spectre.

La corrugation est une déformation d’un des miroirs, caractérisée par un profil

périodique de longueur d’onde A

= e (22).

Ce profil correspond a une variance

2 2
ﬁ:/d—; a2C082 (277[-1’) = %

La variance s’écrit également comme une intégrale sur le spectre

o= h(r)h(r):a(O):/jQTl;a[k].

En rappelant les relations générales suivantes

h [kl] h* [kl] = /d2I'1 /dzrgeikl'rl 6ik2'r2h (I'l) h (I'Q)

— /dZI'O' (r) eikl.r/dQI_zei(kl—kg).I‘Q

= 47%6 (k; — ky) o [ki]

et en explicitant la transformée de Fourier du profil de corrugation

9 .
hlk] = /er a cos {%x} e'kr
= 3 T e € +e ye
2m

= 27T2a5<|k1,|— )\)5(1@),

nous obtenons le spectre de rugosité correspondant

olk] = T2 <|kl,| _ 2;) 5(ky).

(6-21)

(6-22)

(6-23)

(6-24)

(6-25)
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La correction a ’énergie de Casimir est alors donnée par la valeur de p [k] commune

aux deux vecteurs d’onde (kx = :I:ZTW, ky = O)

ey = S8 [Sndond
_ E"Q(”ﬁp[k]. (6-26)

Pour des miroirs parfaits, nous savons que

hem? A
B = mors
12E (L)
E" (L) . (6-27)
Nous réécrivons I’équation (7) de [172]
_ heA L |k|L
(L) = 5 ¢ G s], avec s=S = (6-28)
En identifiant sur (6-26), nous obtenons la forme de la fonction p k]
240
plk] = ?G[S]- (6-29)

Comme nous pouvions le supposer a priori, cette fonction ne dépend que du parametre
sans dimension |k| L.

La fonction G [s], correspond a la somme des contributions des modes TE et TM,
telles que détaillées dans I’équation (8) de [172]. Nous la réécrivons ici en adaptant les
notations. En particulier, nous introduisons des fonctions @, (u), directement reliées
aux fonctions @ (u,v,n) de [173]. Ces fonctions sont directement construites sur les

déphasages accumulés par le champ dans la cavité et prennent la forme suivante

o, (u) = Z—n (6-30)
on(2) = @, () zze;n (6-31)

/ deon,

pn(0) = @ (1)=) —=((n) n=2 (6-32)
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et les valeurs particulieres de la fonction Zeta de Riemann ¢ (n) [174]

(@) = 5 =g 6=
76 9 7
= )= 50(6), (6-33)

nous réécrivons les résultats de [172] sous la forme condensée

3 2.4 2

Vis VI mTes mTs S
G = — Py (1 —e™) + — + — 0, (d7s) — —, (4 s (4
(s) 96035 2 (1 =) + 360 T 15 ¥ () — g (dms) + s (dms)
7s 1
+64—7r('94 (4ms) — 6rs (¢4 (4ms) — 04 (0) — dmsgl, (47s))
9
+m (6 (4ms) — 6 (0) — dmsipg (4ms)) . (6-34)

Nous la traduisons ensuite comme une fonction de sensibilité a la rugosité sous la forme

plK] = %@2 (1 — 6_2K> + % + [;—:1991 (2K) — ;—f;cpg (2K) + %@3 (2K)
. - ot (DI
‘|‘1g%f994 (2K) — % 01 (2K) — ¢4 (20[27 2K ¢, (2K)
. o
_I_él;’)?icpg; (2K) — p6 (20]2— 2K g (2K )7 (6-35)
avec la notation
K =2rs=|k|L. (6-36)

C’est le résultat central que nous pouvons déduire de [172] et qui est représenté sur

la figure 6.3.

A partir de la, nous étudions le comportement de p[K] dans les limites de grande

et petite longueur d’onde.

C.4 Régimes limites

Pour les grandes longueurs d’onde, nous effectuons les développements de Taylor

au deuxieme ordre en K = |k| L. En particulier, nous utilisons

(1 . 6—21«'>2 (1 . 6—21{>3
4 + 9

q)2 <1 o e—?]&”) — <1 o e—?]&”) T

O K K’ 3
— g = -5+ o), (6-37)

+ O (K*)
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8.0

6.0 r

Paor

20 |

0.0

0.0 5.0 10.0 15.0 20.0
K

F'1G. 6.3 — Fonction p[K] en fonction de K = |k| L, caractérisant la sensibilité de [’énergie
de Casimir vis-a-vis de la longueur d’onde du spectre de rugosité de surface. On

distingue clairement deux régimes de comportement a petit et grand K.
ainsi que les développements suivant sur ¢, (z)
2(2) = ((2)—2(1—1Inz)+ 0O (2*)

2

p3(2) = C(3)=2(2)+=(B) =¥ (1) —Inz)+ 0O (z?)

2
p(5) = =)+
_%3 (1 (4) — ¢ (1) = Inz) + O () (6-38)
et enfin les relations
4(2) =4 (0) — 2} (2) z 2 L
© 992 ® — _54(2)—€<1+§+§—ln2>
—|-%2 (1 + % —1In Z) + 0 (%) (6-39)
s (2) — pe (ZO) —zes(2) —C@)+ %24 (3)+ 0 (). (6-40)

En rassemblant ces résultats, nous obtenons ’expression suivante de la fonction p [K]

K K? K bHK

plE] =1~ St Ty o (C(2) = 2K (1 —In(2K)))
%ﬁ (3)+ 12755 (C(4) = 2K¢ (3)) — % (_@g @)

_ (2[6")2 (1 tztz-ln (21()) - (2]2()2 (1 byl (21&”)>>
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W (—@f)c 4y + 28 4(3)) +O(KY), (6-41)

soit, apres simplification

K? 5K?
Kl=14+——

+ O (K?). (6-42)

Nous obtenons en particulier un résultat important : p [K] ~ 1 pour K < 1. C’est dans
ce domaine que "approximation de Derjaguin est vérifiée.
Pour la limite opposée K > 1, les développements sont obtenus de fagon plus

directe. On peut écrire

. 2 (1 — e 2K
D, (1 _ €—2B> — z:; <1/7n> ~ ((2)
en (2K) ~ In(1—e?F) ~e?h (6-43)

En négligeant les termes exponentiellement petits de type K"e 2% « 1, dont le plus

grand est donné par n = 4, nous obtenons

(), K15 =¢(1) | 135-¢(6)

[/, _ O [,74 —2K
pIK] sk v 3 oo Tamar TOEET)
K 22 .
= St 10 (K*e®X). (6-44)

Dans ce régime de rugosité, le facteur de sensibilité p varie linéairement avec K, avec
une pente de % Pour des déformations de courte longueur d’onde, on met en évidence

que 'approximation de Derjaguin perd toute validité.

C.5 Discussion

Les calculs que nous venons de présenter supposent de pouvoir traiter en perturba-
tion 'amplitude /v de la rugosité. Par contre, ils sont valables pour toutes les longueurs
d’onde entre les régimes K < 1 et K > 1. Dans le régime K < 1, nous avons retrouvé
I’approximation de Derjaguin. Autrement dit, c’est dans ce régime seulement que cette
approximation est valable. I.’énergie est alors la valeur moyenne de 1’énergie calculée
dans la configuration plan-plan non déformée, moyenne portant sur les différentes dis-
tances réalisées dans la cavité. Le calcul plus général incluant le facteur de sensibilité
p[K] permet de caractériser la sortie de ce régime.

Pour la discussion de la géométrie plan-sphere, il est moins facile de séparer I’am-

plitude de la déformation et son vecteur d’onde. En effet, ces deux caractéristiques,
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clairement distinctes pour le probleme de la rugosité, sont maintenant déterminées par
un seul parametre, le rayon R de la sphere. Toutefois, a la limite ou R devient tres
grand devant L, on voit que 'amplitude relative de la déformation % et son vecteur
d’onde relatif deviennent tous les deux petits devant 1. On se retrouve alors dans les
conditions de validité de ’approximation de Derjaguin, dite aussi de proximité. C’est
ce qui explique que celle-ci permet de donner des résultats corrects pour la géométrie

plan-sphere a la limite R > L.
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Conclusion

Comme nous 'avons expliqué dans 'introduction, il y a plusieurs bonnes raisons
de tester "accord entre les mesures de la force de Casimir et les prédictions théoriques.

Etant donné la bonne précision atteinte par les expériences, au niveau du pourcent,
ce test suppose également de disposer de prédictions théoriques fiables ayant au moins
le méme niveau de précision. Et, dans ce but, il est indispensable de prendre en compte
les importantes différences qui existent entre la situation idéale calculée par Casimir et
la situation des expériences réelles.

Nous reprenons ici I'essentiel de ce qui a été fait dans ce travail. Tout d’abord, les
expériences sont réalisées dans une configuration plan-sphere plutoét qu’en géométrie
plan-plan. L’approximation de Derjaguin est utilisée pour exprimer la force de Casimir
dans cette configuration plan-sphere en fonction de I’énergie de Casimir dans la confi-
guration a deux plans paralleles. Cette énergie de Casimir entre deux plans est alors
calculée de la maniere la plus exacte possible. Au terme de ces calculs, la force entre
un plan et une sphere est donnée par I’équation

her®R
Fp_s (L) = 360L3 77E (L) 9 (6—45)

ou 7 est le facteur correctif calculé pour I’énergie dans la configuration a deux plans. Il
reste ensuite a prendre en compte également la correction due a la rugosité des surfaces.
Nous donnons ci-dessous des estimations de la précision et de la fiabilité des méthodes
utilisées.

Pour ce qui concerne le probleme de la géométrie plan-sphere, nous avons vu que
les expériences sont faites dans la limite R > L ou R est le rayon de la sphere et L la
distance de plus courte approche. Dans cette limite, 'approximation de proximité est
certainement valable. Toutefois, il serait souhaitable de disposer d’évaluations fiables
des termes suivants dans le développement. Ceci permettrait d’affirmer que cette ap-
proximation ne limite pas la précision.

Il existe bien sur une alternative expérimentale, consistant a se placer dans la confi-

guration a deux plans. Dans ce cas, on est completement débarrassé du probleme de
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géométrie plan-sphere. Malheureusement, I’expérience est beaucoup plus difficile dans
cette configuration et la précision de la seule expérience récente de ce type [55] atteint
seulement 15%.

La correction liée a la réflexion imparfaite des miroirs devient tres importante a
courte distance. Pour rappeler un chiffre, elle est de 'ordre de 50% aux distances les
plus courtes. Elle est observée de facon non ambigiie dans les expériences et peut étre
évaluée de facon tres fiable, pourvu que 'on utilise les méthodes présentées dans les
chapitre 2 et 3 de ce mémoire. Enfin, 'excellent accord théorie-expérience, obtenu seule-
ment en prenant en compte cette correction, est un indice d’une bonne compréhension
de ce probleme.

Les expériences se déroulent a température ambiante et il est alors nécessaire d’éva-
luer théoriquement les corrections liées aux fluctuations thermiques. Cet effet ther-
mique est significatif a grande distance. Pour la plupart des expériences, les distances
explorées sont inférieures a 1ym et la contribution thermique compte pour moins d’un
pourcent au niveau de la force. Elles sont prises en compte dans la formule théorique
utilisée par exemple par Mohideen [156]. Toutefois, étant donné leur relativement faible
contribution, on ne peut pas dire qu’elles aient été observées sans ambiguité. Par contre,
Iexpérience de Lamoreaux [48] aurait du voir cette correction thermique. En effet, pour
une longueur de cavité de 6um et a température ambiante, on trouve une augmenta-
tion de la force de 76% par rapport a la force évaluée a température nulle. Lamoreaux
n’a pas vu cette correction, ce qui signifie tres probablement que les barres d’erreur
sur la mesure étaient plus grandes que celles présentées, au moins pour les distances
explorées au-dela du micrometre. L’effet des fluctuations thermiques reste donc un effet
intéressant a observer.

Par ailleurs, ainsi que nous 1’avons montré, les mesures faites avec une précision
au niveau du pourcent dans la zone de distances intermédiaires, typiquement ~ 3um,
devraient étre sensibles a I'effet de corrélation entre corrections de température et de
conductivité. Nous avons donné dans le chapitre 4 des moyens simples de calculer cet
effet quand ce sera nécessaire.

Enfin, la rugosité de surface des miroirs peut avoir une influence dans les mesures
effectuées aux plus courtes distances. Mohideen [52] a effectué des analyses expérimen-
tales de rugosité des surfaces qu’il a utilisées. Avec "approximation de proximité, il a
estimé un effet inférieur au pourcent.

La encore, cet effet a été pris en compte dans la formule théorique mais on ne peut
pas considérer qu’il ait réellement été testé, vu sa faible contribution au résultat final.

Par ailleurs, comme nous ’avons montré dans le chapitre 6, 1'utilisation du théoréme
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de proximité peut sous-estimer la correction de rugosité pour des longueurs d’onde
de rugosité importantes. Il est donc nécessaire de mesurer de facon systématique les
spectres de rugosité et, en méme temps, de calculer la fonction décrivant la sensibilité
a la rugosité en fonction de la longueur d’onde. Ceci n’a été fait pour le moment que
dans le cas particulier des miroirs parfaits. Une alternative expérimentale serait bien
sur d’utiliser des miroirs ayant des états de surface bien meilleurs que ceux utilisés dans
les expériences actuelles.

La précision des mesures récentes les plus soignées et le progres simultané des cal-
culs théoriques permettent un accord entre théorie et expérience qui peut étre estimé
aujourd’hui au niveau de quelques pourcents. A ce titre, on peut effectivement affirmer
que la force de Casimir est un effet mécanique des fluctuations du vide mis en évidence

de maniere indiscutable.
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Annexe

A Corrections de conductivité: comportements

asymptotiques pour le modele plasma

Nous détaillons dans cet appendice le point de vue analytique qui permet de dé-
duire les comportements a grande (L >> Ap) et courte (L < Ap) distances pour le
facteur correctif lié aux corrections de conductivité des miroirs modélisées par un mo-
dele plasma. Ces comportements sont repris dans la section C du chapitre 3. Afin
de mener le plus simplement possible les dérivations analytiques, nous effectuons le
changement de variable

:_ ¢

c2

/ﬁ;o/oodg - Zdﬁ; K;ng. (A-1)

Ce changement réexprime le jeu de variables naturelles, au sens des bons nombres

K

+ k?

quantiques (£, k), en les variables (£, k), ou k est le vecteur d’onde longitudinal. On
peut alors introduire des variables sans dimension, normalisées par la longueur de la

cavité

L
K =&L ) N=¢—. (A-2)
C

On a donc pour le facteur correctif

120~ [ 0 s
nF = ?Z/d[& K°GP i K]
Py

K

, A P[0, iK]
p [’7 = e
Grlik] / K 1— pr[iQ0,iK]

PP [1Q,1K] = (1P [i9, i K])* e 72 (A-3)
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en ayant pris deux miroirs identiques, dont les amplitudes de réflexion sont donnés par

les formes
1 — ZTE 1 — ZTM
TE () 1~ ™ 'y 1~
r [ZQ,Z]X] = m R r [ZQ,Z]X] = m (A—4)
T _ VE2+ Q2 (i) - 1) T _ Ke[i9)] (A)
K ’ VET QX[ — 1)

Dans le cas particulier du modele plasma on peut écrire
(e[i] —1)Q* = QF,

avec la fréquence plasma normalisée

L L
Qp =Wwp— = 2m—.
C )\p

Il est alors possible d’effectuer I'intégration sur ) analytiquement. On posera pour

cela
VE?+ 0} ¢(—1 Q
== = = —. A-6
‘ K P (+1 VTR (4-6)
Il s’agira également de définir
E=¢lpt (A-7)
Avec ces notations, on aura simplement pour chaque polarisation
rTEEOIK] = —p
2
i~ —((+1)
rMGOIK] = pw, A-8
| ] ¥y +(¢—1) (4-8)
de sorte que pour l'intégration elle-méme, on aura
K
dQ TE1Q, 1K
gTE [Z[(] _ / i P [l .7Z X.] .
K 1—p"™[Q,iK]
B 1
R
K
dQ ™LOK
gTM [Z[(] _ — P [l .7Z X.] .
K 1—p™[iQ, K]
1
2 _ ;o 1 2

= d .
o/yE2<y2+¢+1>2—<y2—4—1>2

Ces expressions permettent aisément de dégager les différents comportements asymp-

totiques a grandes et courtes distances.
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A.1 Grandes distances

Dans le régime de grandes distances L > Ap, les miroirs sont presque parfaitement
réfléchissants 7P [1Q,iK] ~ 1 et on peut développer sur les amplitudes de réflexion

perturbativement en cette limite

= - 2 () 700 (75
~ + —1) 0,py2
Z 1—pr Z 1—pr ()=t zp: ((r ) ) rP)” A\ — P° ) (o=

P P
1
- o 2K
# (00, + (KD -2) i (A)

En utilisant les décompositions (A-8), on développe les amplitudes de réflexion au

premier ordre en Qp' = 2p_ gachant que le facteur exponentiel

2K , .
oL > sélectionne les

_ et
(621\"_1)

valeurs de K ~ 1

(P9, iK) -1 = —

T RO R (S ) e (S V) M (SO (S

CHDH (=1 (R + D+ (-1
= —4i+o<ﬂi>. (A-11)

On obtient alors pour la fonction G sommée sur les deux polarisations

GIK] = ) G'lK]

Y S /dy (1+y%) (A-12)
2K 1 C (62]( _ 1)2 ?

et pour le facteur correctif!

120 [ 9 K3 16 Kie2K Ap \ 2
Po_ 22 4K N ol (&
F mt . e2h —1  3Qp (2K — 1)2 + L

0

1. en utilisant les valeurs données dans [175]

oQ oQ

K3 1 K*e2K o
AK —> = - [axg > T A-1
/ YK 2/ YK )7 T 240 (A-13)
0 0
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- 1—3%%+0<<%P>2>. (A-14)

A.2 Courtes distances

Pour la limite opposée des courtes distances, on décompose la fraction donnée en

(A-9) en éléments simples

= —1)" .
B2 (2 +(+ 1) = (y* —¢— 1)
1 B¢ EC
E2—1<1+<+H+<y2—1>‘<+%_<y2—1>>’ (A-15)

en ayant posé

FEF+1
—— A-1
Hy ES (A-16)

On obtient alors pour I'intégration (A-9)

1 1
GM[IK] = E21_1 1+E§H_/dy ﬁ - EC%+/dy m
AP =H_ (-1 0 0
A2 = H (-1 (A-17)
Etant donné que
1
/dy m = AiiarctanALi, (A-18)

0

on arrive alors a I’expression du facteur correctif intégrée en ()

o0

120
mw = — | dK K°GliK]

s

GIiK] = Y G'liK]=

1 1 1 1 1
= Tz 7 (2 + ECH_ Iarctanz — E§H+A—+arctanA—+> . (A-19)

Le facteur 2 résulte du terme de polarisation TE et du premier membre du terme de

polarisation TM. Pour obtenir la limite courte distance Qp < 1, on développe (A-19)
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2 N
Slp ) ou encore
K ?

une fois les facteurs exponentiels sélectionnent K" ~ 1. On pourra alors développer au

au premier ordre en p. Pour alléger les notations, on note = = (

premier ordre en x
1
§:1—|—§:1;—|—(’)<:1;2>

p‘1=§+2—5+0(x2)

4
Hi=1+ %G_KJ} + O (:1;2>
4K ’ oK
E = " —|—2€I—Z:1;—|—O< )
1 _ - /2K 2 _
E2—1_16 +O< ) (AQO)
On en déduit
4€K o
ECHy = +0 (:1; )
1 -K )
A? %(1—€_B>$—|-O< )
K

= e_é_:zj sinh 5 + 0 (:1;2> <1

A= (1) a4 0 ()

K K
— ¢ 52 cosh % + 0O (:1;2> < 1. (A-21)
En utilisant le développement suivant pour u > 1
1 1 1
arctan [u] = T_2 —|— +0(—), (A-22)
2 3us ut

on peut donner ’approximation suivante pour la fonction G

- 1 1 2
g [Z[(] = ge—fx (I — A—_|_> + O <$5>

T Qp> 1 1 (<9P>3>
= ¢ d ~ - — - | + 0| | — . (A-23)
8 ( K \/sinh% \/COShI% K

On peut alors numériquement effectuer I'intégration et obtenir le coefficient linéaire du

changement de régime de la force a courtes distances

nF:a;w((;P)g)
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30 [ 3K K? K?
a=— dK 6_% > = — > -
™ Jo \/sinh % \/COSh %
~ 1.193. (A-24)

(C’est exactement le méme résultat que nous avons déduit par les développements pré-

sentés dans le chapitre 3 dans la section C.1.
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B Corrections thermiques

Les expressions analytiques des corrections thermiques et les comportements asymp-
totiques présentés dans la section C du chapitre 4 sont ici explicités dans les deux
régimes caractéristiques des hautes et basses températures. On redonne les définitions

des fréquence et longueur d’onde thermiques

_ 27kgT  2mec
R Ap

(B-1)

wr

B.1 Limite basse température

A titre de formulaire, nous rappelons tout d’abord ici un ensemble de relations sur
les fonctions “usuelles” des calculs effectués. Les fonctions hyperboliques impliquées

peuvent se décomposer sur leurs poles

1 1 & 1
- - B-2
tanh [x] 7T k:z_:oo Z + ik (B-2)
d 1 d - 1 - 1
_a (tanh[x]) - _@ (k:z—:oo%—l_lk) _Fk:z—:oo (f—l—ik)Q
1
= B-3
sinh? [x] (B-3)
1d 1 1d {1 & 1 | — 1
2dax (simh2 [:L'])  2de \ w2 k:z_:oo (%—kzk)z) s k:z_:oo (%—I—ik)S
cosh []
= B-4
sinh? [x] (B-4)
1d (COSh[:L']) ld 1< 1 IR 1
3dx \sinh®[z] 3dx \ 73 k:z_:oo (2 —|—ik>3 m k:z_:oo (f—l—ikf
1 (14 2cosh? [z]) (B.5)
3 sinh? [x] ' i

Les intégrations rencontrées pourront se déduire pour la plupart du noyau [176]

1
2z

1
/du sin [au] = gcoth [ra] —

g (B-6)
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On obtient en effet par dérivation partielle par rapport a @ du membre de droite et/ou

par intégrations par parties les formules suivantes

o0 o0 1
/du euu_ L cos [xu] = 8x/du p— 1sin [wu] (B-7)
0 0
o0 9 o0
U . B 9 1 .
/du o sin [xu] = —al,/du o 7sin [zu] (B-8)
0 0
o0 “ o0 1
/du ﬁsin [xu] = 8x/du . 1sin [wu] (B-9)
0 0
7 ue" 7 1
/du ———cos [ru] = —al,/du sin [z u] (B-10)
EE o
0 0
o0 3w o0
du —sin [zu] = 02 [ du ! sin [zu] . (B-11)
/ (ev — 1) ’ / et — 1

Pour faciliter les développements analytiques, nous exprimerons ici les intégrations

/d2k7d§

sur les vecteurs longitudinaux

Ce changement de variables régulier nous donne la formule équivalente pour les facteurs

correctifs en force et en énergie libre, en supposant les miroirs identiques

_240L* T 5 r Arné pl [e€, 1k]
EEE ;(J/dm O/dgcos{ c } = pr i€, in]
PP g, ir] = (P [i€, in])" 720, (B-12)

Par ce changement de variables, les coefficients de réflexion sont déterminés par les

expressions (3-31) de la section C du chapitre 3.
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B.1.1 Correction thermique pour des miroirs parfaits

En utilisant (B-4,B-6,B-8) nous obtenons 'expression du terme correctif défini en
(4-29) dans le texte

4804 & T k?  sin[nArk]
T _
(77F_1> - 4 z}/dliGQHL_l
n=lp

n)\T
_ 30§:< 1 4_ Cos‘h[o?)zm] )
“~ \(am)"  am sinh” [am]
7T)\T
= —. B-1
o 57 (B-13)

Pour les termes en énergie correspondants, on a par intégration directe

o0

E(L) — Bcas = /d:z; (g — 1) Feas
L
_ QECAZ/dJ}/dKJ sin [pArk]
ere — nAT
=17 0
QFLC 0 0 Sin n/\TIX
= / dK 621‘ — /d:z;
L
- 2hcAZ / sin [*2%]
a — — 1\ (nArK)?
1COS n/\TIX
B-14
L ) (B-14)
avec K = kL. En utilisant (B-6,B-7) on déduit I'expression
2hicA o~ 1 1 m 1 11
E(L)— FEc,s = + _ =
(L) ¢ m? ;WAT [ (n)\T)2 <4tanh [W;En] 4n)\T>
11 ( A DR )]
T ooy TATR Q n
LnAt B smh2[ = ] 8 (%)2
heAn? & 2 1 1
BTV E Z {_ Tt 2 . 12 + 3 ] :
—~ L (am) (am)”sinh® [am] = (am)” tanh [am]

On normalisera par I’énergie de Casimir idéale pour obtenir 1’équation (4-36) du cha-

pitre 4.



tel-00001749, version 1 - 27 Sep 2002

156 Annexe

B.1.2 Correction supplémentaire

Pour calculer cette correction définie dans la section C du chapitre 4, on commence

par rappeler le développement a grande distance effectué sur les amplitudes de réflexion

tel qu’il est développé en (A-10). On a alors au premier ordre en Ap

L

Mg pi® [i€]
M g T g T e
- el TM 2 TE\2
= oy (- ) 1= ()

I

2L Dk \ %
S P (1 - C—) . (B-15)

(ezﬁL _ 1)2 T

A partir de ce développement, on a donc

2004 SN [ r A€l e 26 2%
Anp = — E de k% | d 1 S
nr o 1/ K K / € cos [ - ] (2l — 1)2 - + (c&)
m=to 0

o((3)) 1

On effectue alors l'intégrale sur £ pour obtenir

e [206] (11 (L)) (Sl et _inDun

Les relations (B-9,B-10,B-11) permettent d’obtenir exactement la forme (4-40)

b = 15 < ( 1 N 1
T — (am)’tanh [am]  (am)®sinh® [am]
4co‘sh [gm] 2 —|—‘4¢o4$h2 [am] (B-18)
am sinh” [am] sinh® [am]
De la méme facon, pour ’énergie
A77]5)E1(3as = /dl’ A7713‘170215
L
dheAdp S | ¢ I [, 1. [Kin
= - dK K* do —si
2 2/ v (e2K — 1)2 K)\Tn/ ‘ x4sm{ x
"=l L

o0 o0

1 1 K)\Tn 1 1 . K)\Tn
t+t— dx — Cos - — 3 dx —sin
(KArn) z T (KAtn) x T

L L
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On posera { = K Arn pour écrire ce terme sous la forme d’une somme de trois éléments

oo % 2K
Ao ==Y [k KT+ (0
n=1 0 -

7'['2 (GQIX 1)

avec

+K(0),  (B-19)

(B-20)

W) = =0T (1)
On peut déduire le facteur correctif qui s’écrit en fonction de trois intégrations
4heANp —
A B = ——— 2 (I + I + I3)
7 2K
_ e 4 ‘
[1 = /d[\ K mgj (COS |:z:| — 1)

2K
e 1 ‘
I3 = /d]& K (K _ 1)2€2L2COS {Z} .
0

(B-21)

Les deux dernieres intégrations ont déja été abordées en (B-17). On aura donc pour

elles deux
LT 210 KnA
L = 3—/dK K%sm[‘" T}
o) L T
0
B 3 1 (= 1 T TNAT 1
B (n)\T)SL 8 tanh [Wng] 8 2L sinh? [Wng]
11T 2K Kn)
I; = 72—/(1[( K? ? 5COS )
n 2K —
(nAr)” L? (e —1) L
0
_ 1 1 [x%mnAp cosh [Z22] g2 1 (B-22)
C ()P L2\ 8 2L sinh® [ 8 sink? [72] )

Pour la premiere intégration, notre formulaire n’est d’aucun recours, étant donné que

Iy ne converge pas pour la borne inférieure d’intégration 0. La technique d’intégration
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est différente et consiste en la décomposition en série entiere du cos. On a donc

i 2K
I 1 1 /dK ?72 (cos {é} — 1)
(nAr) (e2K — 1) L
0

4 0 (_1)m (n)\T)2m o €2Ix
:(,\422! L2 /d][2 2K 1)
nAr) = 2m: ) (e2K — 1)
4 (=)™ (nAp) 1
= I'(2m+1)¢ (2
o 2 e g e
4 -~ (nAr)™"
- o e =
m=1

Iintégration sur K étant standard pour m > 0 [175]. En utilisant la définition des

nombres By, de Bernouilli en termes de fonction Zeta, on peut écrire [174]

i (_1)m§(2m) (n)\T)Zm B lwn)\T =, 22mB, <7Tn)\T>2m_1

Lt Q2mA L 4 2L = 2m! \ 2L
1 mnAr 1 1
= -7 A T rnA . (B_24)
4 2L tanh[ zLT] oL

On peut donc finalement rassembler ces trois intégrales. En utilisant la relation entre

a et Ap, on obtient

4heA \p ~— 4 1 4 1
AT/E'Ebas — _—Qﬁ _6_4 3 — 6_4 B
T — (an)” tanh [an] (an)”sinh® [an]
T [Oén] - 4] (B-25)
32 (an)sinh” [an] = 16 (an)
En normalisant par 1’énergie idéale de Casimir Fc,s = ’;%‘zi, le facteur correctif de

mélange Ang prend alors la forme (4-42) donnée dans le texte.

B.2 Limite haute température

Comme nous 'avons vu, la limite haute température se dérive a partir des formes
duales des fonctions définies dans un cadre adapté au développement basse tempéra-
ture. La transformation de dualité, telle que symbolisée en (4-55) dans le texte, pourra
étre effectuée avec simplicité depuis les décompositions sur les poles des fonctions hy-

perboliques. Nous commencons donc ici par donner les formules a cette fin utile.
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On explicite tout d’abord les relations duales en a et b suivantes
1 1 1 1 1 1 1 1
_— = - - — — - — B-26
a@—b°  bla—b Pla_b? Ba—b ba (B-26)
1 1 1 1 1 1 1
—_— = ——— —2=—— 42—+ B-27
az(a—b)Z b2 (a—b)2 b3a—b+ b3a+62a2 ( )
1 1 1 1 1 1
—_— = S — —— — = — —. B-2
a’(a —b) bB>a—b ba  b2a®  bad (B-28)

A T'aide de ces relations, on donne immédiatement les transformations sur les décom-

positions sur les poles

am (am — ikw)S

(am)3 (am — k)

1

1 1 1 1
ikm (am — ikw)S a (ikw)Z (am — ikw)Z
1 1 1 1
+ (ikw)S am — ikr (@'kw)S am
- 1 1
B kmod (%” + im>3 (kw)Z o? (%” + im>2
S (B-20)
(km)" « (%” + zm) (tkm)” am
1 J—
(ozm)2 (am — ikw)Z B
1 1
(ikw)Z (am — ikw)Z a (ikw)?’ (am — ikm)
1 1 1 1
(ikr)* am — ikm (am)®
o 1 1 1
(kma)? (A 4 i)’ - (kr)* a ®Z +im
T o
(tkm)” am ik (am)
! (B-31)

(am — ikw)4

ot (%” + im>4'

On peut alors donner a l'aide de ces formules les transformées duales des facteurs

correctifs.
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B.2.1 Correction thermique pour des miroirs parfaits

Nous pouvons écrire les contributions thermiques a la force de la fagon suivante, en

utilisant la parité sur m et les relations (B-4,B-13)

- B ad o cosh [am]
(i =1) = 302, <<am>4 i )
- >, I cosh [am]
= 15m_2;00 ((am)4 am sinh® [am])
oo . 1 1] & 1
- 15m_2_:m <(am)4 - ;k;@ m (2 — ik>3>

= D 1_ (B-32)

ou on a introduit la notation

o= > —m=0. (B-33)
En utilisant les relations duales (B-26,B-29), on obtient pour i

-y =y (3

i e kma® (%” + im>3

1 1
. B-34
TP (= 4 im) | (b a (B4 m)) B3

Le dernier terme de (B-29) ne contribue pas par imparité sur m. Le terme 1 de (ng — 1)
peut étre inclu dans les sommes comme terme m = 0 correspondant a la force de
Casimir idéale F,s. La correction thermique s’écrit finalement a 1’aide des relations

(B-2,B-3,B-4)

77FT:15Z*<Z : 3

b oo \ne—eo kT3 (%” + zm)

+ : + : )
(k) a2 (2 4 im)*  (k7)’ o (A2 +im)

@}

O

o0 1 72 cosh
B 302 kra® sinh?® [%]

k=1

1 w2 1 T
+ 5 . B-35
(kW)Z a? sinh? [%] (kw)?’ o tanh [%] ) ( )
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Pour la correction thermique en énergie, on décompose selon (B-2, B-3)

(m = 1) :45;1(— 2)4+( ! + ! )

(am am)’tanh [am]  (am)?sinh? [am]
B o~ L2 1 1
B ?m:z_:oo ( (am)? " (am)’ tanh [am)] " (am)? sinh? [am])
S W2 1 ¢ 1

-2 22 (i i)

(am)” (am —ikm)  (am)” (am — ikw

15 1 1 1 1

T *

- - + , ) B-36
Ui 9 Z Z ((kw)QOz? (%—Fim)? (kw)?’oz%%-lm) ( )
A Taide de (B-29,B-30) on trouve finalement I’expression

2

= 1 T 1 T
=4 . B-
e 5 ; ((kw)z a? sinh? [’”] + (lmr)?’ o tanh [%”] ) (B-37)

O

B.2.2 Correction supplémentaire

Pour le terme ¢p nous commencons, partant de (B-18), a écrire par parité sur m

T oo . (am)’tanh [am]  (am)®sinh® [am]

4cosh [am] 2 + 4cosh? [am]) (B-35)
am sinh® [am)] sinh* [am)]

Avec les relations (B-2,B-3,B-4,B-5) nous pouvons transformer cette expression pour

obtenir
15— . [1 © 1 - 1
v 2 (? ;oo (am)” (22 — ik) WEOO (am)? (22 — ik)’
p/p— 1 6 — 1
_|__ .
e k—z:oo O‘m<am ik>3 m h=—oco (% Zk>4>

+ ! - 6 ) : (B-39)



tel-00001749, version 1 - 27 Sep 2002

162 Annexe

Les termes ﬁ correspondant a & = 0 se compensent. Les relations (B-29,B-30,B-31)

donnent alors I’expression suivante sur laquelle le terme m = 0 est isolé

15 o= [ <= . 3 1 3 1
oF = = Z - 2 S kr - N2 3 kr o .
2m (kra) (7 —|—zm> (km) o +1m

k=—oc0 m=—oo

4 1 6
— — . B-40
b (= 4 i)’ a4<%+im>4)) B0

Puisque nous pouvons calculer la somme complete sur m explicitement, nous séparons

le terme m = 0 qui se calcule de la fagon suivante

o0

15 16 1 240 8

2r i k* T 3

=—00

En réinvoquant les relations (B-2,B-3,B-4,B-5) on obtient

2
4 m3cosh | &=

15 ; i
o= T2 e =] G 2]
5 _ | o4 <2 + 4cosh %D ]
B b —. B-42
(k) a tanh [%] at sinh’ [%] ’ o ( |

La correction thermique définie par ¢ peut s’écrire suivant les mémes relations de

départ et les meémes enchainements que ceux impliqués pour c’est-a-dire
E,

e = 45Z<_ Z ( miikw

k=—c0

+(a;)2 (am —1 umf * ojn( —1ik7r)3>>

45 & 1
T or ( T Z ( am — ikm

m=—oo k=—c0

+(a;)2 (am —1 ikr)’ * ojn (am —1 ikw)3>>

= 1 1 1
- _Z Z ( m—ikw—l_ 2 '

m=—oc0 k=—o0 (Oém) (am _Zkﬂ-)Q

2 1
o (am - ikw)3> ' (B-43)
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Par transformations duales (B-29,B-30)

45 =, o ., 1 1 1 1
¢E - % Z Z <_(k7TOz)2 <%+im>2_(kﬁ)30z%+im

m=—oc k=—co

2 ! 3> | (B-44)

el (55 4 im)

Encore une fois, nous isolons le terme m = 0 que nous calculons a part

45 & 4 2
_ - __Z B-45
o mdkd T ( )

k=—c0

L’expression pour ¢g est donc finalement donnée par la forme

45°°( 1 72 1 -

o =

T (lmr)2 a? sinh? [%] a (lmr)Soztanh [%]
9 72 cosh %} 9
~kma? sinh® [E] T (B-46)

B.2.3 Comportements asymptotiques

On peut donner les comportements caractéristiques pour nr et ng a la limite de
haute température. Par croissances comparées sur les formes que nous venons d’obtenir,

comme dans la section C du chapitre 4 mais pour le régime o < 1, nous avons

T - m Iy-)
= 30 +0 (—e = )

30 1 =2
— %C (3)‘|‘O <§€ 20‘) (B_47)
et
15 <~ 37 8 1 2
= —— +—+0(= ‘27>
R SN g A O
45 8 1 =2

En rassemblant les termes, nous trouvons

e = np+ (np — 1) + Anp
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et donc pour le facteur correctif

me = nh+ (g — 1) + Ang

45 1 Ap 1,z
_ W2a§(3)<1—ﬁL>—|—(’)<a26 )

(B-50)

(B-51)
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C Miroirs dissipatifs a température non nulle

Dans cet appendice, nous détaillons les discussions du chapitre 5. Nous rappelons

tout d’abord la structure des amplitudes de réflexion, pour les deux polarisations

, 1 — 218 , S
TEE [Zf] = 1+ S TE ’ TEM [Zf] = 1+ ZTM’
avec les impédances
52 .
Selig] + k2 e [i€] Sy R
1B = , 7™ (C-1)
£ 4k Eelig] +h

C.1 Limite haute température

Nous précisons ici le calcul du terme quasistatique de la formulation de Lifshitz,

donné en (5-17) dans le corps du texte

kBTA kBTA TE —92 k|L -1
L Fn=0) = =5 /d?k K [(r 0] 2t — 1)
+ (M [0 e — 1) (C-2)

C.1.1 Cas des miroirs parfaits

Pour des miroirs parfaitement réfléchissants, la permittivité ¢ [1£] est infinie ¢ = 400

sur tout le spectre de fréquence. En termes de coefficients de réflexion, on a donc

riP (0] = —1 et 7fM[0] = —1. Par conséquent

kgT A o kgT A
42 Fln=0)= 42

/ko K| [(1.62|le 1) (LK 1)‘1} ,(C-3)

qui se calcule explicitement puisque

1 T
/d?k K g = 5raC (3)- (C-4)

La limite haute température (C-2) pour des miroirs parfaits est donc donnée par I'ex-

pression suivante

ksT A

Fparfait (T > Teff) ~ A3

¢(3). (C-5)
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C.1.2 Le modele plasma

Dans le cadre du modele plasma avec

el =1+ ?—13’ (C-6)

nous avons des amplitudes de réflexion

TE [n] _ k[ -/ & + K T™M 0] — _ _
B0 = —— V= M =1 (1)
k| + 4/ F + k2

On a donc

- —2
k| — 4/ “F + k2
m m |k|—|— /ucj—;—l—kz

-1

+ (1Mt 1)‘1}

./ 7\ 2 -

3272 L k| + VO + K2
(L 1) (C-8)
21
Qp = —Wwp.
C

Dans la limite des grandes distances L > Ap, ou bien Qp — oo, on a alors ™ [0] =

riP [0] = —1. La force de Casimir correspond alors a la force idéale entre deux miroirs

parfaitement réfléchissants

Fyaoma (L Ap) ~ %g 3). (C9)
C.1.3 Le modele de Drude
Pour le modele de Drude, avec
elif] =1+ —2— (C-10)

E(E+T)
on a des amplitudes de réflexion telles que
el [0]=0 ,  rt[0]=—1. (C-11)
Cette perte de la contribution des modes polarisés TE induit directement sur (C-9) un

facteur %, c’est-a-dire le comportement (5-23) dans le corps du texte.
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C.2 Continuité des amplitudes de réflexion

On détaille ici I’étude du comportement des amplitudes de réflexion dans le voisi-
nage de la limite quasistatique £ = 0, pour un miroir métallique massif, c’est-a-dire
dont les amplitudes sont données par les expressions (C-1). Comme précisé dans le
texte, on étudie, pour un modele plasma et pour un modele de Drude, les deux cas

limites suivants :

— cas a): le champ est pris sous incidence normale, i.e. k = 0 fixé. On étudie alors la
limite quasi-statique w — 0 pour les deux polarisations. Pour le modele plasma,

on a donc les enchainements suivants

1 — asma |2
AL, ] = i ie] = ﬁ R0 = e 0] = 1.

Pour le modele de Drude maintenant, la méme situation implique

B fi€] = rI i) = L Ve U e gy

L + \/€Drude [¢€]

— cas b): cette fois-ci on se place a la limite quasi-statique £ = 0 et ’on s’approche

de I'incidence normale k — 0. Pour le modele plasma, on a donc I’enchainement

k| — /% + k2
I [0] = —— M=l = A0 = 0 = -1
k| + /2 + k2

et pour le modele de Drude

Y

e [0]=0, nM0l=-1 — L 0]=0, nl[0]= -1

Ce sont dans les deux cas a) et b) les comportements décrits en section C.1 dans le

corps du texte du chapitre 5.

C.3 Comparaison des deux formulations

On donne ici la différence entre notre formule, qui est toujours vraie, et la formule
de Lifshitz dont les conditions de validité sont plus restreintes. Avec les notations du

texte, on calcule ici explicitement

FA < kT A
AF =25 zﬂ: F(n) = = Z F(n (C-12)
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en rappelant

F n = 2 COS 27Tn§ pi [Zf] avec Wt = ZWkBT
o = X [ /d§ ke T

wr

_ 21 1] ]
"n) = Z/d e (C-13)

On commence par intégrer par parties

;ﬁ = Z/d2 /df > ztfﬂag (ﬁlfip[ﬁ%ﬂ) (C-14)

n>1 n>1 k

le terme de bord étant nul. On utilise la décomposition [177]

o] . l o
Z sml[ 7] _ T 5 ’ pour 0 < < 2m, (C-15)

=1

pour obtenir

%@F QWSZ/dQ /d§_<i__§>a£<ﬁ%>
Z/(ﬁ / §—E< >a£<ﬁ%>, (C-16)

en notant F (...) la fonction partie-entiere. Réécrivant

7d§ E( ) Z / dé g(¢ (C-17)

on obtient

BEF - it [ fa s (52 o (i)
_hg;l ;/d?km/T d¢ O G%) . (C-18)
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Pour n > 1, les bornes d’intégrations sont toujours parfaitement définies vis-a-vis de

Py [i€], auquel cas on peut écrire

s P = Y /df—G‘—f)aﬁ(“%)

_ kel o €] _
o X [ e 1—pk[fn1 (C-19)

n>1l p

Sur le dernier terme du membre de droite de cette équation, on reconnait exactement

les contribution n > 1 de la formule de Lifshitz. Par ailleurs

AR fo fae s (55 a5 -
. fo o (s )
+Z§)zp:/d2k07d§ €0 G%) . (C-20)

Le dernier terme est intégré par parties, le terme de bord étant nul. On a donc

Z/d2 /d§§85< [ ): Z/d2 /dg .](0-21)

On reconnait le terme %F (0) de notre formulation. On a donc pour la différence entre

notre formulation et celle de Lifshitz

= hng/dZ /dg 0 ( [ﬁ]§]> - kz;AF(O). (C-22)

Si une intégration directe du premier terme de cette différence est possible, alors on a

simplement

AF =0. (C-23)
ph[i€]
1—py.[1€]
n’est pas autorisée et on reste avec un terme de différence non nul.

Si en revanche n’est pas déterminé a la limite quasistatique, alors I'intégration

C’est typiquement le cas pour le modele de Drude ou 1'on a

) k[0
zp:/d k [k 1fpgy[0]. (C-24)
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TM,;
% est partout continu mais 1p‘;T[ f]g] est discontinu au point quasistatique ¢ = 0.
Kk L? ~Pr
On a donc

o= o Juea () e

C’est ce terme qui est a l'origine des prédictions divergentes que nous discutons dans

le corps du chapitre 5.

C.4 Limite de dissipation nulle

Nous rappelons, sous une forme adaptée pour cette discussion, la structure des

amplitudes de réflexion quand on utilise (C-10). On peut écrire

11—z 1 — 2™
TE [:¢] _ TM [ 61 _
r [1€] = T3 Tk [i€] = T3
avec les impédances données sous la forme
£2 w12;, W 52 2
SH k24 E(1-11 <1+ > +k
LB ¥  ( ) #™ = = . (C-26)
Stk \/’52+k2 +d(1-m
On a noté et isolé le terme
I
= C-27
) (¢27)

tel que I — 0 pour I' — 0. On a donc bien stir pour les amplitudes de réflexion, a la
limite I' — 0

(PP M ™) s (R e N ) L (C28)

Notre formulation sépare naturellement les facteurs correspondant aux différentes

corrections

np = n?rude T <ng ) T AnDrude‘ (0_29)

Drude Drude

Les termes np et nt ont déja été explicités, NE R numériquement au chapitre 3. Le

terme ng, explicité au chapitre 4, est un terme de correction thermique, indépendant
de la réponse optique du miroir. Pour le terme de mélange des corrections ApRrde,

d’apres la section C du chapitre 4

o0

Agrede — 2017 =D / dk / ¢ cos [QW] A PR, (C-30)

wr
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ou l’on a noté

- ~1Drude — 9k
AfDrude _ pi [Zf] . 2e 2k (0_31)
- - ~1Drude —2x8L "
1= pp [i€] I —e2eb

Etant donné la structure (C-26) des amplitudes de réflexion pour le modele de Drude,

on peut évaluer le terme A fP™de au premier ordre en 22, comme nous lavons déja

Ap.
7,0
présenté en (A-10), et obtenir

2L 2 2
Drude . € _ TE r:¢#1Drude . TM 1 7Drude
Af e (1 (o) 1= ()’
2L Dk \ 2
~ - ° Sty RN
(62/1[/_1) T 02/432
1
~ A fplasmap AN=——. C-32
f avec = ( )

Ce facteur A = /1 + g est un facteur multiplicatif contenant a lui seul 'effet de la

dissipation non nulle sur le calcul du terme correctif de mélange. On a immédiatement
A—=1 pour ['— 0. (C-33)

La décomposition (C-29) démontre alors 1’identité des comportements pour le modele

plasma et pour le modele de Drude dans la limite I' — 0.
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Résumé

Nous étudions la force de Casimir entre deux miroirs métalliques a température non nulle. Nous
développons les outils théoriques nécessaires a une évaluation précise de cette force et qui permettent
une comparaison de haute précision avec les mesures expérimentales récentes.

A partir de la notion de réseau optique, nous caractérisons la diffusion des fluctuations du vide
électromagnétique sur une cavité Fabry-Perot et calculons la force de Casimir comme la différence
des pressions de radiation exercées par ces fluctuations a I'intérieur et a ’extérieur de la cavité.

L’effet de réflexion imparfaite des miroirs est pris en compte en étudiant leur réponse optique,
d’abord pour des miroirs diélectriques puis pour des miroirs métalliques. Nous détaillons le réle des
propriétés de causalité, de stabilité et de transparence a haute fréquence des amplitudes de diffusion.

Nous calculons également la force de Casimir a température ambiante en évaluant ’effet induit
par les fluctuations thermiques du champ. En tenant compte simultanément de cet effet et de
I’effet de réflexion imparfaite des miroirs, nous montrons que ces deux effets sont corrélés et que
cette corrélation doit étre considérée pour une évaluation de haute précision. Dans le cadre de
notre formulation, nous résolvons la polémique liée au calcul de la force entre miroirs dissipatifs a
température non nulle.

Finalement, nous analysons les problemes de géométrie et de rugosité liés aux expériences. En
particulier pour la question de la rugosité de surface des miroirs, nous montrons pour des miroirs
parfaits que 'approximation de proximité n’est pas toujours valable. Nous insistons sur les effets de
sensibilité liés a la dépendance spectrale de la rugosité.

Mots-clés : force de Casimir, fluctuations du vide et thermiques, réseaux optiques, amplitudes
de diffusion, pression de radiation, miroirs dissipatifs, plasmons de surface, théoréme de proximité,
spectre de rugosité.

Abstract

We study the Casimir force between two metallic mirrors at non zero temperature. We develop
theoretical methods for a high precision evaluation of the force in order to compare with recent
measurements.

From the theory of optical networks, we characterise the scattering of the electromagnetic vacuum
fluctuations on a Fabry-Perot cavity and we calculate the Casimir force as the difference of radiation
pressures exerted by these fluctuations inside and outside the cavity.

The effect of imperfect reflection of the mirrors is considered by studying the optical response of
dielectric mirrors and metallic mirrors. We detail the role of causality, stability and high frequency
transparency properties of scattering amplitudes.

We calculate also the Casimir force at room temperature evaluating the effect induced by the
thermal fluctuations of the field. A simultaneous calculation of thermal corrections and the effect
of imperfect reflection shows that both effects are correlated. This correlation has to be considered
in a high precision evaluation. In the framework of our formulation, we explain the problem of the
evaluation of the force between dissipative mirrors at non zero temperature, subject of a polemical
debate.

Finally, we analyse problems of geometry and mirrors surface roughness connected to the exper-
iments. In particular for the problem of surface roughness, we show for perfect mirrors that the
proximity force approximation is not always valid. We show the importance of sensibility effects
related to the roughness spectrum.

Keywords : Casimir force, vacuum and thermal fluctuations, optical networks, scattering ampli-
tudes, radiation pressure, dissipative mirrors, surface plasmons, Proximity Force Theorem, roughness
spectrum.



