
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús 
establertes per la següent llicència Creative Commons:                     https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de 
uso establecidas por la siguiente licencia Creative Commons: https://creativecommons.org/licenses/?
lang=es

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



Eulàlia Nicolau Jiménez

Ultracold atoms in coupled ring
potentials and flat-band lattices

Thesis supervisor:
Prof. Verònica Ahufinger Breto

Submitted in fulfillment of the requirements
for the degree of Doctor of Physics

Departament de Física
Universitat Autònoma de Barcelona

Bellaterra, September 2023





Als meus pares,
per l’educació que m’heu donat.





Reserve your right to think, for even to think
wrongly is better than not to think at all.

— HYPATIA OFALEXANDRIA





ACKNOWLEDGMENTS

Although I find one thesis more than enough for a lifetime, it has been a wonderful ride thanks
to the people that have accompanied me along the way.

First and foremost, this thesis would not exist without the careful guidance of Verònica
Ahufinger. I met Verònica ten years ago when I was an eager undergraduate student starting
the first year of the physics degree. I distinctly remember how, when I asked her to collaborate
on some research project, she accepted even before I was able to build my case. From then
on, Verònica has never doubted my ability to become a researcher and has done everything in
her power to make that a reality. During my undergraduate studies, I learned by her side the
joy of scientific research, while at the same time I discovered my preference for the abstract
world of theoretical physics. Thanks to her I have learned not only a great deal of physics, but
also the many skills that one requires to become a researcher: how to ask questions, how to
write articles (through countless corrections that thankfully decreased with the years!), how to
present results and, last but not least, to trust myself and my physical intuitions. You are the
main reason today I call myself a physicist.

This thesis has also been marked by the incredibly fruitful collaboration with Anselmo
Marques and Ricardo Dias. During my stay in Portugal, they welcomed me into their group
and made me feel like one of their team. They introduced me to the field of topology in
ultracold lattice gases, which allowed me to expand my physics background in a new direction
and access a different line of research. I am especially grateful to Anselmo, with whom I had
the pleasure to share the thrill and excitement of research through our many discussions about
physics. I look forward to keep working with you.

To Jordi Mompart, who accompanied me through the first stages of my thesis, I thank his
time, absolute faith in my work, and constant encouragement. I am also grateful to Bruno
Juliá-Díaz, who kindly shared his expertise on Josephson oscillations and self-trapping. Also,
I am indebted to David Marín and Armengol Gasull for their insights and discussion on
mathematical topics that allowed me to further some of my works.

I am very thankful to Gerard Pelegrí and Joan Polo, from whom I inherited their line
of research on ring potentials. My start in the field was smooth thanks to their patience in
responding to my many questions about physics and numerical simulations. I am also grateful
to Hong Yang, with whom I had the pleasure to coincide in the Boulder summer school, as our
discussions eventually led me to the fascinating field of non-ergodic phenomena.

My journey into the world of science started many years before the PhD, through the



viii

program Joves i Ciència of Fundació Catalunya La Pedrera, which gave me a first taste of
the joy of discovery and understanding. I am especially thankful to Pelayo García de Arquer,
Alejandra Valencia, and Zach Wissner-Gross for their role in that process.

I am grateful to all the QAOS family and the senior and junior members of the optics group
for providing a nice and friendly environment in which to work. In particular, I am grateful
to David Viedma for our discussions on photonic lattices, and to my other office colleagues,
Josep Cabedo, Chris Hensel, Gerard Queraltó, and Gerard Pelegrí, for making the PhD student
life a very positive experience.

I am thankful to Profs. Thomas Busch and Simon Gardiner for their encouraging and
careful reports of this thesis, as well as to Profs. Anna Sanpera, Anna Minguzzi, and Matteo
Rizzi for agreeing to take on the role of thesis committee. In addition, I would like to thank
Prof. Maksym Serbyn for offering me a postdoc position, so that I can continue doing this
peculiar job in which one is paid to learn.

I would like to thank all the people who have accompanied me through these four years
from the outside of the academic world. I am thankful for my friends Queralt, Víctor, Marta,
Silvia, and Eric, for fillingmy life with another dimension. ToMarisa and Javier, for welcoming
me into their family and taking care of me as one of their own. To Òscar, for giving me the
opportunity to break free of the rational world of science and step with me into the music.

Finally, I owe my deepest gratitude to my family, Adriana, Maite, and Marcel, for their
unconditional and loving support. I am grateful to my sister Adriana for her advice from
the other side of the diploma. To my father Marcel, for our many discussions about physics,
mathematics, and the intricacies of the academic world. To my mother Maite, for the constant
logistical and emotional support, her encouragement and, of course, for her delicious and
nutritious food.

And I am grateful to you, Maria, for making physics only one of the many things I learned
during these four years.

Eulàlia Nicolau Jiménez
September of 2023

This thesis has been supported by MCIN/AEI/ 10.13039/501100011033 Contract No. PRE2018-
085815 and the research stay has been partly supported byCOST through the ActionCA16221. Some of
the numerical calculations have been performed using the Argus computing cluster of the Universidade
de Aveiro.



Contents

List of publications xi

List of acronyms xiii

1 Preface 1

2 Theoretical foundations 9
2.1 Bose-Einstein condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Single particle in ring potentials . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Topology in physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Orbital angular momentum dynamics of Bose-Einstein condensates trapped
in two stacked rings 39
3.1 Physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Stability of the stationary states . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Dynamical regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Bosonic orbital Su-Schrieffer-Heeger model in a lattice of rings 55
4.1 Physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Single particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Two-particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Many-body Aharonov-Bohm caging in a lattice of rings 75
5.1 Physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Single particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 N particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Generalization to non-uniform fluxes . . . . . . . . . . . . . . . . . . . . . 91
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



x CONTENTS

6 Local Hilbert space fragmentation in bosonic flat-band lattices 97
6.1 Diamond necklaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Arbitrary flat-band lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions and outlook 125

A Appendix 129
A.1 Properties of the critical points . . . . . . . . . . . . . . . . . . . . . . . . . 129

B Appendix 131
B.1 Eigenvectors of the strong-link Hamiltonian . . . . . . . . . . . . . . . . . . 131

C Appendix 133
C.1 Intertwining operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.2 Level statistics and non-integrability in the 1D Pyrochlore chain . . . . . . . 134

Bibliography 137



LIST OF PUBLICATIONS

The research contained in this thesis is supported by the following publications:

Chapter 3: Orbital angularmomentumdynamicsofBose-Einstein condensates trapped
in two stacked rings

1. Eulàlia Nicolau, Jordi Mompart, Bruno Juliá-Díaz, and Verònica Ahufinger, Orbital
angular momentum dynamics of Bose-Einstein condensates trapped in two stacked rings,
Physical Review A, 102, 023331 (2020).

Chapter 4: Bosonic orbital Su-Schrieffer-Heeger model in a lattice of rings

2. Eulàlia Nicolau, Anselmo M. Marques, Jordi Mompart, Ricardo G. Dias, Verònica
Ahufinger, Bosonic orbital Su-Schrieffer-Heeger model in a lattice of rings, Physical Review
A, 108, 023317 (2023).

Chapter 5: Many-body Aharonov-Bohm caging in a lattice of rings

3. Eulàlia Nicolau, Anselmo M. Marques, Ricardo G. Dias, Jordi Mompart, Verònica
Ahufinger,Many-body Aharonov-Bohm caging in a lattice of rings, Physical Review A, 107,
023305 (2023).

Chapter 6: Local Hilbert space fragmentation in bosonic flat-band lattices

4. Eulàlia Nicolau, Anselmo M. Marques, Jordi Mompart, Verònica Ahufinger, Ricardo G.
Dias, Local Hilbert space fragmentation and weak thermalization in Bose-Hubbard diamond
necklaces, Physical Review B, 107, 094312 (2023).

5. Eulàlia Nicolau, Anselmo M. Marques, Ricardo G. Dias, Verònica Ahufinger, Flat-band
induced local Hilbert space fragmentation, arXiv:2306.15660 (2023, under revision in
Physical Review B).





LIST OF ACRONYMS

AQUID Atomtronic quantum interference device
BEC Bose-Einstein condensate
CLS Compact localized state
EPT Equitable partition theorem
ETH Eigenstate thermalization hypothesis
FSM Four-state model
GPE Gross-Pitaevskii equation
IQHE Integer quantum Hall effect
LIOM Quasi-local integral of motion
MBL Many-body localization
NN Nearest-neighbor
OAM Orbital angular momentum
QMBS Quantum many-body scars
SQUID Superconducting quantum interference device
SSH Su-Schrieffer-Heeger
SSM Six-state model
TSM Two-state model





1
PREFACE

Since the first experimental realization of a Bose-Einstein condensate (BEC) in 1995 [1–3],
predicted by A. Einstein 70 years earlier, the study of BECs has constituted a whole new field
of physics. S. N. Bose developed a statistical description of photons to derive Planck’s law
of black-body radiation in 1924 [4], which Einstein generalized to massive bosons and used
to predict their condensation into the ground state in the absence of interactions [5, 6]. At
first, Bose-Einstein condensation was believed to be a pathological behavior of an ideal gas,
which would be prevented by interatomic interactions, until 1938, when London suggested
Bose-Einstein condensation as the cause for superfluidity in liquid helium [7]. However, the
connection was uncertain, as the condensate fraction of helium was very low due to its strong
interatomic interactions. After many advances in the techniques of cooling and trapping of
atoms [8], which earned S. Chu, C. Cohen-Tannoudji, and W. D. Phillips a Nobel Prize in 1997,
Bose-Einstein condensation of a weakly interacting gas was achieved in 1995 [1–3], earning E.
A. Cornell, C. E. Wieman, and W. Ketterle a Nobel Prize in 2001.

In a BEC, a bosonic gas at very low temperatures presents a macroscopic population of
the ground state, i.e., almost all particles occupy the same quantum state, and therefore exhibit
a high degree of coherence. Because of the large population of the ground state and its long-
range coherence, a Bose-Einstein condensate constitutes a giant matter wave, which exhibits
macroscopic quantum effects. Besides more common quantum effects as interference patterns,
demonstrated in [9], BEC presents features such as superfluidity, which enable, for instance,
the existence of persistent currents in toroidal traps [10] or the formation of vortices [11], and
nonlinearity, which drives the formation of solitons [12–15]. Since the first experimental
realization of a BEC, further advances in cooling techniques made possible the condensation
of Cooper pairs, thus reaching the quantum degenerate regime for fermionic gases [16–18].

The field of ultracold gases permeated into condensed matter physics when strongly
correlated regimes were achieved through the use of optical lattices. In these systems, laser
beams generate conservative dipole forces [19] that create a periodic potential where quantum
tunneling effects compete with interatomic interactions. The transition from a superfluid,
where tunneling effects dominate, to a Mott insulator, a phase ruled by interactions, was
predicted [20, 21] and experimentally observed in a ultracold bosonic gas in 2002 [22]. The
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appeal of ultracold lattice gases as an experimental platform is the high degree of controllability
[23, 24]. The interactions in each site are governed by the s-wave scattering length, which
can be modified through either optical [25–27] or magnetic [28–30] Feshbach resonances by
harnessing excited molecular states. Long-range interactions are also within reach through
the use of dipolar gases [31–33]. Also, one can achieve almost any desired lattice geometry
by adjusting the parameters of the lasers, such as their direction, intensity, or frequency. For
example, one can produce from simple cubic and square lattices to more complex geometries
such as triangular [34], hexagonal [35], or kagome [36]. In addition, one can reduce the
dimensionality to one or two dimensions by means of the optical lattice or by introducing
additional potentials that freeze the dynamics in one or two axes [37].

As a result of their high tunability, ultracold lattice gases are a excellent candidate for
quantum simulation [23, 24, 38], an idea originally envisioned by Feynman [39]. Classical
simulation of a quantum system quickly becomes unfeasible for relatively small system sizes
and particle numbers (even in state-of-the-art supercomputers) due to the rapid growth of the
Hilbert space. Instead, one can use a quantum system to simulate another, such that the number
of resources required to simulate the system scales linearlywith its size instead of exponentially.
The simulator must be a simpler quantum system with an analogous Hamiltonian that has
highly controllable parameters and that is easy to measure. For example, ultracold fermions in
an optical lattice described by the Fermi-Hubbard model are believed to serve as a quantum
simulator of high temperature superconductivity [40]. However, one can take this idea a step
further and ask: what phenomena are allowed by the laws of quantum mechanics? Ultracold
lattice gases can also tackle this question with their capability to generate almost on-demand
Hamiltonians. They have served to predict theoretically new exotic quantum phases that have
later been reproduced experimentally and also allowed to design quantum systems without a
parallel in nature [41–44].

A particularly important application of quantum simulation is the study of topological
phases, which do not fit within the celebrated Landau-Ginzburg paradigm [45]. This highly
successful theory describes phase transitions by expanding the free energy near the transition
point in terms of a local order parameter. The generality of this formalism makes it applicable
to a broad range of phase transitions, from the phase transitions of water to those of magnetic
materials. The underlying principle behind these processes is symmetry breaking, which can
be detected through the expectation value of the order parameter. Let us take for example the
paramagnet to ferromagnet phase transition. As the temperature is lowered below the Curie
temperature, the material acquires a non-zero magnetization as all the spins spontaneously
align in a random direction, thus breaking rotational symmetry [46]. The main limitation of
Landau’s theory is the locality of the order parameter, which, in the case of the ferromagnet
transition, is the local magnetization. Some phases cannot be distinguished by a local order
parameter, rather, it is their global features that change from one phase to the other. These are
known as topological phases, as their description relies on the mathematical field of topology,
which deals with the global properties of geometrical objects that do not change under contin-
uous deformations [47]. In this context, two objects are topologically equivalent when they can
be continuously deformed into one another by twisting or bending them and are distinguished
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from other topological classes by a topological invariant. In analogy, topological invariants
also characterize physical systems, which take distinct values for different topological phases.

The observation of the integer quantum Hall effect (IQHE), a topological phase, marked
a turning point in condensed matter physics [48]. For a cold two-dimensional electron gas
pierced by a strong magnetic field, the Hall conductance exhibits quantized plateaus as a func-
tion of the magnetic field. The effect was understood through the Harper-Hofstadter model
[49, 50], which describes spinless fermions in a square lattice, by Thouless, Kohmoto, Nightin-
gale, and den Nijs [51]. The phases with a quantized Hall conductance are not characterized
by a local order parameter (a continuous number), but correspond to the change in the Chern
number (an integer) that characterizes the bulk of the material. This topological invariant pre-
dicts the presence of conducting edge states when the material has open boundary conditions,
a connection known as the bulk-boundary correspondence. The IQHE turned out to be an
example of a topological insulator, a material that is insulating in the bulk but conducting at
the boundary. While it was originally thought that a magnetic field was required to obtain this
type of phenomenology, Haldane showed through the anomalous quantum Hall effect that the
breaking of time-reversal symmetry, even in the absence of a magnetic field, was sufficient [52].
Much later, Kane and Mele demonstrated that systems with time-reversal symmetry could
also present topological phases through the study of graphene and the quantum spin-Hall
effect [53]. All these results eventually crystallized into The ten-fold way, a classification of topo-
logical insulators and superconductors into ten classes in terms of their dimensionality and
the time-reversal, particle-hole, and chiral symmetries [54, 55]. Far from leaving this field stale,
the study of topological insulators has flourished since this result, as many topological phases
have been found to escape this classification. For instance, crystalline symmetries can stabilize
topological phases that would otherwise be trivial according to the previous classification,
which leads to a much more nuanced and rich categorization [56]. Other types of topological
phases have been discovered since, including Weyl semimetals [57], topological Anderson
insulators [58] or floquet topological insulators [59], while many questions remain open, such
as the effect of interactions on free-fermion topological phases [60]. These questions can be
effectively tackled in ultracold lattice gases by using, for instance, synthetic dimensions [61,
62] or artificial gauge fields that simulate magnetic fluxes [63–65]. Using these and other
techniques, many topological phases have been realized in this environment [66], including,
for example, the Haldane [67] and the Hofstadter models [68–70].

This physical platform is also well-suited to explore out-of-equilibrium many-body dy-
namics. Instead of focusing on the ground state features, one can perform a global quench,
i.e., prepare the system in a certain state (the ground state of a certain Hamiltonian), sud-
denly change the Hamiltonian parameters, and consider the unitary time evolution under
the new Hamiltonian. The main question in this field is under which conditions and how
does a quantum system out of equilibrium reach a thermal equilibrium state. Ultracold lattice
gases present an excellent experimental platform to explore this question, as they are not only
highly tunable, but also well isolated from their environment [71]. This feature stimulated a
discussion around thermalization in isolated quantum many-body systems, which eventually
gave birth to the eigenstate thermalization hypothesis (ETH) [72–74]. The ETH explains
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thermalization through the presence of thermal eigenstates, which have microcanonical (i.e.,
thermal) expectation values for local observables. As a result, the system thermalizes as local
observables acquire thermal expectation values. This occurs because the Hilbert space is able
to act as a thermal reservoir for its subsystems, which enables the spread of entanglement and
the initially local information. There is abundant numerical evidence of the validity of the
ETH for a varied array of systems, including hard-core bosons and interacting spin chains
[74–80], spinless and spinful fermions [81–84], or soft-core bosons [85–88]. However, not all
quantum systems obey this hypothesis. The latter, usually referred to as non-ergodic, avoid
thermalization (sometimes completely) by retaining some memory of the initial state even
for a long time. For example, integrable systems fail to thermalize due to the presence of an
extensive number of conserved quantities that constrain evolution [89] while in many-body
localized systems, the interplay between disorder and interactions gives rise to emergent
integrability [90]. Although these are fairly well-known examples, this domain has attracted a
lot of attention recently with the discovery of quantum many-body scarred systems [91–108].
The non-ergodic behavior in these systems only emerges for some initial states, caused by a
vanishing set of eigenstates with an anomalously low entanglement entropy. This phenomenon
is closely related to a broader mechanism known as Hilbert space fragmentation, where the
system fails to thermalize by virtue of having exponentially-many dynamically disconnected
sectors in the Hilbert space [109]. This effect typically appears in constrained systems, such as
those conserving the dipole moment or the center of mass [110–115], and, as is the case of
scarred systems, the dynamics strongly depend on the initial state. Understanding quantum
thermalization and the mechanisms that avoid this process is not only of fundamental interest,
but also may result in applications in quantum computation [116, 117], where it is of critical
importance to preserve the information of the initial state.

Thermalization is enabled by the exchange of particles and energy between subsystems,
which makes localization a natural route to non-ergodic behavior [118]. As first discovered
by Anderson, the presence of strong enough disorder localizes single-particle wavefunctions
of a periodic medium [119]. The absence of extended states makes the system insulating,
which precludes thermalization [118]. However, disorder is not the only route to localization.
Electrons in a sufficiently strong magnetic field perform closed orbits that lead to quantized
energy levels, effect known as Landau quantization [120]. A similar result can be achieved
in an ultracold lattice gas breaking time-reversal symmetry in the absence of an external
magnetic field. Within this context, synthetic gauge fields [63, 65] can be engineered to
produce Aharonov-Bohm caging, which is characterized by the presence of compact localized
states (CLSs) [121, 122]. These eigenstates have compact support on typically few nearby
sites while their amplitude is exactly zero on the remainder of the lattice due to destructive
interference. Due to the periodicity of the lattice, these eigenstates lead to the presence of
flat bands. Alternatively, for an optical lattice with time reversal symmetry, the geometry of
the lattice can be arranged to produce the destructive interference that leads to localization
[123]. As it is the case with topological insulators, it is not yet well-understood what is the
effect of interactions in a flat-band system. The single-particle kinetic energy becomes zero
in a flat-band so that interactions have an outsized effect on the properties of the system.
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Remarkably, flat-band lattices have been shown to host a variety of non-ergodic behavior,
such as isolated quantummany-body scars [124] or disorder-free many-body localization [125,
126], and they have been proposed as candidates for the transfer of quantum states through a
quantum network [127].

Interacting ultracold bosons are the leitmotiv of the research described in this thesis; the
focus, however, is twofold. The first theme is ring potentials, which exhibit single-particle
eigenstates with a well-defined orbital angular momentum (OAM). They play a major role
in the developing field of atomtronics, that seeks to devise an alternative to electric circuits
using ultracold atoms, while also providing a platform for quantum simulation and quantum
technologies [128, 129]. Ring potentials are the simplest geometries that lead to non-trivial
loop circuits, where the superfluidity of BECs acquires a fundamental role, allowing for the
appearance of persistent currents [10, 130–136] as well as vortices [137]. For instance, they
have been used to propose an Atomtronic Quantum Interference Device (AQUID) [138–143],
the atomic analog of the superconductor device SQUID [144], that acts as a very precise
magnetometer or as a rotation sensor. Another possible application is Sagnac interferometry,
which provides rotation sensing through the collision of two solitons [145]. Within this context,
we study the OAM states of a BEC trapped in two stacked rings coupled by quantum tunneling.
As an alternative, one can also couple multiple coplanar ring potentials [146], which allows
one to generate lattices of rings [147]. OAM plays a fundamental role within this platform, as
it leads to complex tunneling amplitudes that can be controlled through the geometry of the
lattice [147–150]. In this setting, we investigate strong correlated regimes hosting non-trivial
topological phases, where interactions play a fundamental role. The second theme of this
thesis is flat-band lattices that exhibit single-particle CLSs. We explore how on-site bosonic
interactions modify the thermalization properties of the system and in particular we explore
the emergence of Hilbert space fragmentation.

We begin this thesis by describing the physical models that we will later use, as well as the
underlying theoretical foundations, in Chapter 2. We start with the main concepts behind
Bose-Einstein condensation, from the role of quantum statistics to the mean-field description
of BECs at zero temperature in terms of the Gross-Pitaevskii equation (GPE). Then, we explain
how to generate optical lattices, briefly analyze their single-particle features, and introduce
the many-body description by means of the Bose-Hubbard model. Regarding ring trapping
potentials, we give an in-depth account of the single-particle problem and then discuss two
toy models that allow us to describe arbitrary coplanar lattices of identical rings. To introduce
the topic of topology, we revise its main concepts, with a special emphasis on the Berry phase,
connection and curvature, and review their application to periodic systems. We also discuss
topological insulators and the bulk-boundary correspondence and analyze in detail the Su-
Schrieffer-Heeger model. Finally, we discuss thermalization in a classical and a quantum
setting, introducing the main ideas of the ETH as well as the main routes to its violation.

In Chapter 3, we study a BEC confined in a two-stacked ring geometry by deriving the
evolution equations for the amplitudes of each OAMmode from the GPE equation [151]. This
system is governed by the interplay between the OAM, the tunneling between rings, and the
repulsive interactions within each ring. Stationary solutions emerge when the two rings have
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the same population in a single OAM mode, while self-trapping and Josephson oscillation
regimes arise due to an initial population imbalance. However, these stationary solutions and
dynamical regimes are not stable against Bogoliubov-type perturbations in higher ordermodes
across the whole parameter space. We develop analytical models for both cases and validate
our results through numerical simulations, showing, for instance, that the destabilization of
the dynamical regimes are completely analogous to the Bogoliubov excitation dynamics of the
stationary states.

In Chapter 4, we consider a one-dimensional lattice of tunnel-coupled ring potentials in
a SSH-like configuration, where the local eigenstates with non-zero OAM endow each site
with a synthetic dimension [152]. First, we establish the single-particle topological features
of the model, which we characterize by performing a basis rotation that resolves the unitary
symmetry inherent to the circulation of the OAM states. Then we explore the two-boson
problem, where the presence of doublons (pairs of bosons bound by interactions) radically
alters the topological phases of the system. We develop analytical models for two regimes: a
strong-link model that characterizes the doublon bands in the dimerized regime, and, using
perturbation theory for the strongly interacting limit, a model for each doublon subspace
which exactly maps to either the single-particle SSH or the Creutz ladder.

In Chapter 5, we increase the complexity of the lattice of rings by introducing a tilting angle
[153]. We demonstrate how the geometry of the lattice can be exploited to generate many-body
Aharonov-Bohm caging on almost anyN-boson subspace, by tuning the tilting angle, and
how the extent of the cage can be chosen through the periodicity of this angle. In contrast
with the previous lattice of in-line rings, the tunneling amplitudes here can take complex
values, which allows one to map the lattice to a Creutz ladder with a synthetic flux. For a π
flux, the system exhibits Aharonov-Bohm caging, which is characterized by single-particle
CLSs that are induced by destructive interference. ForN bosons with on-site interactions, we
use perturbation theory to obtain a single-particle effective model for each subspace in the
strongly interacting regime.

Chapter 6 also deals with flat-band lattices, but in this case, we shift our focus to time-
reversal invariant systems, where the single-particle CLSs arise as a result of local symmetries.
First, we prove Hilbert space fragmentation in a family of diamond necklaces with on-site
interactions [154], and later demonstrate how this mechanism is general for a complete class of
flat-band lattices [155]. We use graphs as a visual representation that reveals the fragmentation
of the Hilbert space and its properties, as well as some recent results from graph theory, the
equitable partition theorem, to define the class of flat-band lattices that we consider. The
fragmentation of the Hilbert space is revealed upon a basis rotation that decouples the CLSs at
the single-particle level. As a result, we are able to identify a conserved quantity in terms of the
parity of the number of particles in the CLSs. Also, we explore the numerical signatures of this
phenomenon, namely, a nested-dome distribution of entanglement entropies, thermalization
restricted to each sub-sector, and both integrable and non-integrable sectors with a broad
range of dimensions and entanglement scalings. Furthermore, we show this mechanism to be
robust to generic long-range interactions.
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Finally, in Chapter 7 we present the conclusions of this thesis and discuss possible new
lines of research that stem from this work.





2
THEORETICAL FOUNDATIONS

In this chapter, we provide the theoretical foundations of this thesis and the physical models
used throughout the following chapters. In Section 2.1, we give an overview of Bose-Einstein
condensates (BEC) in which we discuss how bosonic particle statistics lead to condensa-
tion and we introduce the mean-field description of the interacting Bose gas at T = 0, the
Gross-Pitaevskii equation (GPE). In Section 2.2, we review optical lattices in terms of the
corresponding single-particle problem and we also explore the many-body scenario through
the Bose-Hubbard model. Additionally, we present the use of matrices and graphs within this
framework to investigate many-body Hamiltonians. In Section 2.3, we introduce the models
used to study ring trapping potentials. We analyze the case of a single ring and then derive the
tunneling amplitudes that arise when considering multiple coplanar rings. In Section 2.4, we
explain the main concepts used to characterize the topology of discrete physics systems and
describe a particular one-dimensional example, the Su-Schrieffer-Heeger model. Finally, in
Section 2.5, we discuss thermalization in both classical and isolated quantum systems, we give
an overview of the eigenstate thermalization hypothesis and briefly describe those systems
that violate it.

2.1 Bose-Einstein condensates

In this section, we review the basics of BECs and briefly develop their mean-field treatment.
First, we describe how bosonic quantum statistics underlie Bose-Einstein condensation and
briefly explore the role of dimensionality. Then, we introduce the mean-field description of
a weakly interacting BEC at zero temperature through the GPE. We discuss its derivation
and also outline how to reduce its dimensionality to be able to describe low-dimensional
condensates.
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2.1.1 Identical particles
The notion of particle indistinguishability plays a fundamental role in Bose-Einstein conden-
sation. Consider two particles, e.g., two electrons , that are identical, with the same intrinsic
properties such as mass, electric charge, and spin. One might be able to assign labels to the
particles (particle 1 and particle 2) by measuring them. For example, if the two particles are
sufficiently far apart, one can distinguish them by measuring their position. Identical parti-
cles become indistinguishable when no such measurement exists. This has some important
consequences on the wavefunction that represents these two particles, Ψ (ξ1, ξ2), where ξi
accounts for the spatial and spin coordinates of particle i, with i = 1, 2. If we permute the
coordinates of two indistinguishable particles, the probability should not change. Therefore,
the wavefunction can take one of two forms,

Ψ (ξ1, ξ2) =
1√
2

[φ (ξ1, ξ2)± φ (ξ2, ξ1)] , (2.1)

where φ (ξ1, ξ2) and φ (ξ2, ξ1) are eigenfunctions of the Schrödinger equation, and the proba-
bility density reads

|Ψ (ξ1, ξ2)|2 =
1

2

[
|φ (ξ1, ξ2)|2 + |φ (ξ2, ξ1)|2 ± 2Re {φ∗ (ξ1, ξ2)φ (ξ2, ξ1)}

]
. (2.2)

Bosons are symmetric with respect to particle exchange, Ψ (ξ1, ξ2) = Ψ (ξ2, ξ1), and have
integer spin, while fermions are antisymmetric, Ψ (ξ1, ξ2) = −Ψ (ξ2, ξ1), and have half-
integer spin. This connection to the spin of the particles is known as the spin-statistics
theorem, which was formulated by M. Fierz and W. Pauli and later conceptually developed
by J. Schwinger [156–158]. As a consequence of the permutation symmetry, fermions follow
Fermi-Dirac statistics, while bosons follow Bose-Einstein statistics, whose characteristic traits
can already be seen from the two-particle probability density, Eq. (2.2). For fermions, one
recovers the Pauli exclusion principle: two indistinguishable fermions cannot occupy the
same quantum state, |Ψ (ξ, ξ)|2 = 0. In contrast, indistinguishable bosons can occupy the
same state and do so with a probability twice the probability for distinguishable bosons,
|Ψ (ξ, ξ)|2 = 2 |φ (ξ, ξ)|2. That is, fermions tend to be apart, while bosons tend to bunch
together. In this thesis, we will focus on the latter.

Let us discuss the consequences of the bunching effect in a large number of bosons. ForN
bosons, the wavefunction is a symmetric superposition of all possible particle permutations
[159],

Ψ (ξ1, ξ2, · · · , ξN) =
1√
N !

∑

i1,··· ,iN
φ (ξi1 , · · · , ξiN ) , (2.3)

and the probability of finding allN particles in the same coordinates is

|Ψ(ξ, ξ, · · · , ξ)|2 = N !|φ(ξ, ξ, · · · , ξ)|2. (2.4)

Therefore, the tendency of bosons of occupying the same state rapidly increases with the
number of bosons. However, this quantum statistics effect only takes place if the identical
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particles are indistinguishable. For a three-dimensional gas of identical bosons at room
temperature, the particles can be distinguished bymeasuring their positions, as their associated
wavepackets do not overlap. The size of this wavepacket at a temperature T can be quantified
through the de Broglie wavelength,

λT =
h

p
=

h√
2πMkBT

, (2.5)

where h is the Planck constant, p is the momentum of the particle, M is the mass of the
particles, and kB is the Boltzmann constant. If we lower the temperature of the gas, λT will
increase as the momenta of the bosons decreases, and the wavepackets will begin to overlap
when the following condition is fulfilled,

ηλ3
Tc ' 1, (2.6)

where η = N/V is the particle density,N is the number of bosons, and V is the volume of the
gas. This condition gives an estimate of the transition temperature Tc at which the quantum
interference effects begin to take place and the bosons tend to macroscopically occupy the
single-particle ground state, forming a BEC. The number of particles in the ground state,
N0, increases as the temperature is lowered down until there is a complete occupation of the
ground state at T = 0. For a three-dimensional box, the condensate fraction reads [160]

N0

N
= 1−

(
T

Tc

)3/2

. (2.7)

The particles that do not occupy the ground state and instead populate other excited states
form the depletion of the condensate. This phase transition is remarkable as it occurs at a
temperature where the first excited state is accessible to classical (i.e., distinguishable) particles.
Therefore, it is a high-temperature effect driven by quantum statistics that occurs for both
interacting and non-interacting Bose gases. However, this phase of matter is metastable, as the
transition temperature typically corresponds to a solid phase. It can be achieved, for instance,
in dilute gases of neutral atoms, where the three-body collisions driving the formation of
molecules are rare [1–3].

The transition to a condensate phase, which also occurs in the presence of interactions,
is highly dependent on the dimensionality of the system and the trapping potential. While
true condensation always occurs below Tc for three dimensions both in free space and in
the presence of a trapping potential, the transition is more nuanced for two-dimensional
(2D) and one-dimensional (1D) systems [37]. One of the main characteristics of BECs is
off-diagonal long-range order: the single-particle density matrix, ρ (r, r′) = 〈Ψ̂(r)Ψ̂ (r′)〉,
does not vanish for increasing particle distances, lim|r−r′|→∞ ρ (r, r′) 6= 0 [161]. This is a
direct consequence of the overlapping de Broglie wavepackets of individual bosons, which
become indistinguishable even for macroscopic distances. For 2D and 1D systems at T > 0,
phase fluctuations can destroy long-range order [162], giving distinct phases such as quasi-
condensates [163, 164]. However, phase fluctuations are suppressed at T = 0, making true
condensation possible in any dimension.
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2.1.2 The Gross-Pitaevskii equation
Let us consider a gas of interacting bosons in the condensed state and under the action of an
external potential Vext(r). We assume that the gas fulfills the dilutness condition: the range of
the interactions is much smaller than the average distance between atoms, η−1/3. In this case,
three-body collisions are highly improbable and they can be safely neglected. The many-body
Hamiltonian in second quantization for a system ofN bosons interacting through two-body
collisions reads [165]

Ĥ =

ˆ
drΨ̂†(r)

[
− ~2

2M
∇2 + Vext(r)

]
Ψ̂(r)+

1

2

¨
drdr′Ψ̂†(r)Ψ̂† (r′)V (r− r′) Ψ̂ (r′) Ψ̂(r),

(2.8)
where Ψ̂(r) and Ψ̂†(r) are the boson field annihilation and creation operators, respectively.
These operators fulfill the following commutation relations, [Ψ̂ (r′) , Ψ̂†(r)] = δ3 (r′ − r)
and [Ψ̂ (r′) , Ψ̂(r)] = [Ψ̂† (r′) , Ψ̂†(r)] = 0. The first integral of the Hamiltonian describes
the single-particle contribution to the energy, which includes the kinetic and external potential
contributions, while the second describes the two-body interactions between particles. For a
cold and dilute gas, the de Broglie wavelength is much larger than the range of the interactions,
such that the exact form of the interaction potential V (r− r′) does not play an important
role [160, 165, 166]. In addition, the momenta of the particles is very small at T � Tc [see
Eqs. (2.5) and (2.6)], such that the only relevant scattering processes are s-wave two-body
collisions, which yield an isotropic interaction potential. Then, the potential V (r− r′) can
be replaced by an effective contact interaction V (r− r′) = gδ3 (r− r′) with a strength
g = 4π~2as/M that depends on a single parameter, the s-wave scattering length as [167],
which is positive (negative) for repulsive (attractive) interactions. Introducing this interaction
potential into Eq. (2.8), and integrating over r′ yields the second quantization Hamiltonian for
contact interactions,

Ĥ =

ˆ
drΨ̂†(r)

[
− ~2

2M
∇2 + Vext(r)

]
Ψ̂(r) +

g

2

ˆ
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (2.9)

The time evolution of operator is given within Heisenberg’s picture as i~∂tÂ(t) = [Â(t), Ĥ]

with Â(t) = eiĤt/~Âe−iĤt/~, wherewe have assumed an explicitly time-independent operator.
For the bosonic field operator, one arrives at the following evolution equation [165],

i~
∂Ψ̂ (r)

∂t
=

(
− ~2

2M
∇2 + Vext(r)

)
Ψ̂ (r) + g|Ψ̂ (r) |2Ψ̂ (r) , (2.10)

where we have used the commutation relations given above. The field operator can be de-
composed as Ψ̂(r, t) = 〈Ψ̂(r, t)〉 + δΨ̂(r, t), where the first term is the expectation value
(i.e., a complex number with a well-defined phase) and the second term accounts for the
thermal and quantum fluctuations [165]. For a large number of particles at zero temper-
ature, one can neglect these fluctuations and obtain the so-called condensate wavefunc-
tion, Ψ̂(r, t) ≈ 〈Ψ̂(r, t)〉 ≡ Ψ(r, t), which is normalized to the total number of bosons,
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´
dr |Ψ(r, t)|2 = N . Applying this approximation to Eq. (2.10) yields the Gross-Pitaevskii

equation (GPE) [168, 169],

i~
∂Ψ(r)

∂t
=

(
− ~2

2M
∇2 + Vext(r)

)
Ψ(r) + g|Ψ(r)|2Ψ(r), (2.11)

which describes a weakly interacting BEC at T = 0 in three dimensions (3D) in terms of a
macroscopic wavefunction. The time-independent version of the GPE can be obtained by
using the Ansatz Ψ(r, t) = Ψ(r)e−iµt/~ [165],

(
− ~2

2M
∇2 + Vext(r) + g|Ψ(r)|2

)
Ψ(r) = µΨ(r), (2.12)

where µ is the chemical potential, the energy necessary to extract one particle from the
condensate. One can reduce the dimensionality of the GPE (2.11) to describe 2D or 1D
condensates by introducing a anisotropic harmonic trap that freezes the dynamics of one
(for a 2D BEC) or two (for a 1D BEC) dimensions. For a tight confinement (µ� ~ω, with ω
the frequency of the trap in the directions of confinement), the condensate wavefunction can
be factorized. Then, one can obtain a reduced GPE in which the condensate wavefunction
only depends on the unfrozen degrees of freedom. In Chapter 3, we will analyze a quasi-one
dimensional BEC at T = 0 in terms of the one-dimensional version of the GPE.

2.2 Optical lattices

In this section, we continue exploring ultracold bosons but shift our attention to optical
lattices, which will appear in Chapters 4 - 6, and analyze them both from a single-particle
and a many-body perspective. First, we describe how the optical dipole force can be used to
create periodic potentials for neutral atoms and then describe the single-particle solutions in
such potentials in terms of Bloch functions. Then, we explore the bosonic many-body case by
outlining the derivation of the Bose-Hubbardmodel. We discuss how the Fock basis formalism
in second quantization allows one to represent Hamiltonians of finite systems as matrices.
Finally, we make a connection to graph theory, which can be used to reveal some properties of
a physical system by representing its Hamiltonian matrix as a graph.

2.2.1 Single particle description
The dynamics of a neutral atom trapped in an optical lattice are closely related to those of an
electron in a solid-state crystal. While periodic potentials arise naturally in solid-state physics
from the periodicity of the crystalline lattice, optical lattices are artificially engineered through
the use of conservative light-matter interactions. A neutral atom subject to a far off-resonant
oscillating electric field undergoes an energy shift proportional to the intensity and inversely
proportional to the detuning, ∆E(r) ∝ I(r)/∆ [19]. In 1D, two counter-propagating lasers
along the x direction can create a standing wave, such that the atoms feel a position dependent
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energy shift. Depending on the sign of the detuning, they become attracted to either the
maxima (for red detuned lasers) or minima (for blue detuned lasers) of the position-dependent
intensity. This leads to an effective sinusoidal potential,

V (x) = V0 sin2 (2π/λx) , (2.13)

where λ is the wavelength of the lasers and V0 is proportional to their intensity. The minima of
V (x) constitute the sites of the lattice while themaxima define potential barriers between sites
through which quantum tunneling can occur. Although we describe here the one-dimensional
case, one can generate square (in 2D) and cubic (in 3D) optical lattices by using additional pairs
of counter-propagating lasers [170]. Additionally, one can exploit the direction, polarization,
phase and frequency of the laser beams, to engineer more complex geometries [34–36].

It is instructive to first analyze the 1D single particle case, which is described by the
time-independent Schrödinger equation,

(
− ~2

2M

∂2

∂x2
+ V (x)

)
Ψn
q (x) = En

q Ψn
q (x). (2.14)

This equation also describes an electron in a periodic potential, which allows us to borrow some
well known results from solid-state physics. The Bloch theorem states that the wavefunction
of a particle in a periodic potential takes the following form [171, 172],

Ψn
q (x) = eiqxunq (x), (2.15)

where the functions unq (x + D) = unq (x) have the same periodicity as the lattice potential
V (x), defined by the lattice spacingD. They are modulated by plane waves, where q is the
quasimomentum, a quantum number characterizing the translation symmetry of the potential.
Due to the periodicity of the lattice, not all values of q yield unique solutions to Eq. (2.14),
so that one can restrict the quasimomentum to the first Brillouin zone,−π/D < q ≤ π/D,
without loss of generality. Similarly to the electronic band structure, a particle in an optical
potential presents a series of energy bands n and energy gaps. As one increases the potential
depth V0 with respect to the gapless free-particle limit (at V0 = 0), energy gaps grow and the
energy bands flatten as the eigenstates become more localized at each site of the lattice.

The Bloch wavefunctions are orthonormal with respect to each energy band n and quasi-
momentum q, for a finite system, they fulfill,

´
[Ψn′

q′ (x)]∗Ψn
q (x)dx = δn′nδq′q . Another conve-

nient basis is formed by the Wannier states, which are constructed as linear superpositions of
Bloch waves [170],

wn (x− xi) =
1√
M

∑

q

e−iqxiΨn
q (x), (2.16)

where M is the number of sites. While Bloch waves are delocalized through the lattice,
Wannier functions are localized at each site of the lattice xi. The Wannier functions are a
useful description in the tight binding regime, where the lattice depth is large, and can be used
to derive the Bose-Hubbard model that describes the many-body scenario, as shown in the
next section.
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2.2.2 Bose-Hubbard model
The Bose-Hubbard model [20] is the simplest model that captures the dynamics of interacting
bosons in an optical lattice potential. Itsmain feature is the interplay between the kinetic energy
and the interactions between particles. In Section 2.1.2, we described weakly-interacting
ultracold bosonic gases through a mean-field approach yielding the GPE (2.11). In an optical
lattice, one can reach strongly correlated regimes where the interactions play an important
role in the dynamics of the system. The Bose-Hubbard model can be derived from the second
quantization Hamiltonian with contact interactions, Eq. (2.9), in the presence of a periodic
potential. When the lattice depth is large enough, the Wannier functions are highly localized
at each site, and for low temperatures interband transitions are suppressed. Then, the bosonic
field operators can be expanded as a linear combination of theWannier functions of the lowest
energy band as

Ψ̂(r) =
∑

i

w0 (r− ri) âi, (2.17)

where âi and â†i are the annihilation and creation operators acting on each site i of the
lattice. These operators fulfill the bosonic commutation relations [âi′ , â

†
i ] = δi′i, and

[âi′ , âi] = [â†i′ , â
†
i ] = 0. Introducing Eq. (2.17) into (2.9), yields the Bose-Hubbard model [23]

ĤBH = −
∑

i,i′

Ji,i′
(
â†i′ âi + â†i âi′

)
+

1

2

∑

i

Uin̂i (n̂i − 1)−
∑

i

µin̂i (2.18)

where n̂i = a†iai is the boson number operator. The properties of the different terms of the
model are described below:

1. The first term acts as a kinetic energy, it contains the hopping terms that annihilate one
particle in one site and create another in a different site. The tunneling matrix elements
are given by the following overlap integral

Ji,i′ = −
ˆ
w∗0 (r− ri)

[
−~2∇2

2M
+ V (r)

]
w0 (r− ri′) dr. (2.19)

2. The second term gives the interaction energy, it results from the contact interactions
between bosons populating the same site. The strength of the interaction Ui depends
on the Wannier function on a single site i

Ui = g

ˆ
|w0 (r− ri)|4 dr, (2.20)

where g is given in Section 2.2.1.

3. The last term describes the on-site potential µi, the energy required to remove a particle
located at a given site i of the lattice. It arises when an external potential is added to the
optical lattice and varies the potential at each site,

µi =

ˆ
w∗0 (r− ri)

[
−~2∇2

2M
+ V (r)

]
w0 (r− ri) dr. (2.21)
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The simplest and most typical form of the Bose-Hubbard model is restricted to nearest
neighbor tunnelings, as the tunneling amplitude Ji,i′ decays exponentially with the distance,
such that the first sum only includes the terms 〈i, i′〉. Additionally, in the absence of an external
potential on top of the optical lattice, the sites become identical, which yields a homogeneous
interaction strength Ui = U , chemical potential µi = µ, and tunneling amplitude Ji = J .
In that case, one typically removes the last term of (2.18), as it becomes a constant energy
shift. All these parameters, J , U , and µ, depend on the form of the Wannier functions, which
are, in turn, determined by the trapping potential. As the depth of the lattice increases, the
Wannier functions become more localized, which causes the tunneling J to decrease and the
interaction strength U to increase. Therefore, in an optical lattice, one can continuously tune
the ratio U/J by modifying the parameters of the laser that creates the lattice, which allows
one to reach strongly correlated regimes even in a weakly interacting gas. Depending on
the ratio U/J , the bosonic gas is either in a superfluid phase, when the hopping dominates
over the interactions, or in a Mott insulator phase, when repulsive interactions predominate
[20–22]. However, many variations and extensions of this model have been considered in the
literature [23, 24, 173]. For example, the addition of a position-dependent on-site potential
can be used to model disorder and study bosonic many-body localized phases [174]. Also, one
might consider interactions involving bosons in different sites of the lattice to model dipolar
interactions [175] or the population of excited states instead of the ground-state at each site of
the lattice [176]. In Chapters 4 and 5, we will explore lattices where we populate excited states,
the states with orbital angular momentum l = 1 of a ring trapping potential that forms each
site of the lattice.

2.2.3 Fock states, matrices, and graphs

The quantum state of a single-particle problem is well-described by the single-particle wave-
function. For two indistinguishable particles or more, a wavefunction description needs to
enforce symmetrization (anti-symmetrization) for bosons (fermions) to take into account the
effect of particle exchange symmetry (discussed in Section 2.1.1). This description, which
remains quite simple for two particles [see Eq. (2.1)], quickly becomes cumbersome when the
number of particles increases. In the second quantization formalism, used to introduce the
Bose-Hubbard model (Sec. 2.2.2), quantum many-body states are described by Fock states
[177]. These states specify the number of particles occupying a certain state (in this case a site),
instead of denoting the state that each individual particle occupies, which greatly simplifies
the notation. In an optical lattice with M sites, each Fock state |fs〉 is obtained through the
creation operator a†j acting on the vacuum state,

|fs〉 ≡ |n1, n2, . . . , ni, . . . , nM 〉 =
M∏

j=1

(
a†j

)nj
√
nj!
|∅〉, (2.22)
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Figure 2.1: (a) Example of a simple graph and (b) corresponding adjacency matrix. (c,d) Graph
representing a Hamiltonian of a three-site linear optical lattice loaded with bosons where each
vertex represents a Fock state |fs〉. (c) For a single boson, each vertex of the graph indicates
the position of a site. (d) For three bosons, the geometrical structure of the lattice becomes
hidden in the many-body Fock space.

where ni is the number of particles in site i and s denotes a unique set of indices ni. The Fock
states fulfill the following orthonormality condition

〈n′1, . . . , n′M | n1, . . . , nM 〉 =
M∏

j=1

δn′jnj ⇒ 〈fs′ | fs〉 = δss′ . (2.23)

For a given number of sites M and a total number of particlesN =
∑M

k=1 nk , the Fock states
{|fs〉} constitute a basis that allows one to cast the Hamiltonian into a matrix form, where
the matrix elements of the Hamiltonian are given byHss′ = 〈fs′ |Ĥ|fs〉. Then, one can use
exact diagonalization to find numerically all or some of the eigenvalues and eigenstates of the
Hamiltonian [178]. Throughout this thesis, we will use this method to analyze lattice systems,
which works well for a small number of sites M and particlesN , where the dimension of the
Hilbert space is relatively small. However, the rapid growth of the Hilbert space dimension
with M and N makes this method impracticable for larger system sizes. For these cases,
one might use other numerical methods such as tensor networks [179, 180], where one does
not represent the whole Hilbert space but instead only a fraction of it that obeys certain
entanglement constraints.

The representation of Hamiltonians as matrices suggests a connection to graph theory,
from which we will borrow some tools in Chapter 6. A simple graph is a set of vertices V and
a set of edges E that indicate connections between pairs of distinct vertices, E ⊆ {{x, y} |
x, y ∈ V and x 6= y} [181]. Such a structure can be represented visually through a series
of points representing the vertices, and straight lines representing the edges between such
vertices (see some examples in Fig. 2.1). Note that the exact location of each vertex does not
alter the graph, which is independent of its visual representation. Choosing an order for the
vertices V yields a one-to-one correspondence between graphs and square matrices. One
can define many associated matrices to a given graph, but the most relevant matrix for our
purposes is the adjacency matrix. The off-diagonal elements of this matrix that take a value of
1 indicate the edges of the corresponding graph and are known as adjacency relations, while
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disconnected pairs of vertices are represented by zeros. Figure 2.1(b) shows the adjacency
matrix associated to the graph in Fig. 2.1(a), as a simple example.

Graphs are ubiquitous in many fields beyond physics, representing a myriad of structures
such as metabolic networks, neural networks, the World Wide Web, ecological networks and
others [182]. These networks often have a degree of complexity that cannot be captured by a
simple graph, and require an extension of the concept. For example, weighted graphs have
edges with a certain value, which are reflected in the value of the off-diagonal elements of the
corresponding adjacency matrix. Also, colored graphs can include numerical labels for each
vertex and other types of graphs can include loops, which correspond to adjacency relations
that start and end in the same vertex. In this thesis, we will make use of an extended notion of
a graph to represent Hamiltonian matrices visually by treating them as an adjacency matrix.
These matrices will correspond to weighted and colored graphs that might include loops. We
will refer to these objects simply as graphs.

The correspondence between matrices and graphs provides a common ground between
mathematics and physics in this context. In mathematics, spectral graph theory deals with
the properties of graphs in relation with the eigenstates and eigenvalues of their associated
matrices [183]. In analogy, in physics one is often concerned with solving the eigenvalue
problem given by the time-independent Schrödinger equation. This connection motivates
the interdisciplinary use of graph theory tools to analyze quantum systems. Let us consider a
many-body Hamiltonian representing particles in an optical lattice [Eq. (2.18), for instance].
The associated Hamiltonian matrix can have non-zero diagonal elements corresponding to the
on-site potentials or interactions, and also off-diagonal elements with different weights given
by the different tunneling amplitudes. Figures 2.1(c) and (d) show the graph of the Hamiltonian
for a three-site linear optical lattice with one and three bosons, respectively, where the vertices
are the Fock states forming the product-state basis of the Hamiltonian. These graphs reveal
different information for the single-particle and the many-body cases. For a single particle,
each basis state denotes the site that the particle occupies. For example, a Fock state reads
|0, . . . , 0, 1, 0, . . . , 0〉, and thus it represents the position of the particle in the lattice. Thus,
by locating each vertex of the graph appropriately, the graph can represent schematically the
geometric structure of the lattice [see the case of 3 sites in Fig. 2.1(c)], or manifest visually
the symmetries of the Hamiltonian. We will use this kind of visual representation to analyze
compact localized states in terms of the symmetries of the graph in Chapter 6. Note also
that the graph representation of a Hamiltonian critically depends on the basis we choose
for the Hamiltonian, which determines the information that we can extract from it. For
example, a set of completely decoupled vertices correspond to the eigenstates of a diagonalized
Hamiltonian, but this picture does not highlight any new information. For a many-body
Hamiltonian, the Fock states indicate the number of particles in each site of the lattice, for
example |3, 0, 2, 1, 0, . . .〉 [Eq. (2.22)]. As a result, the geometry of the lattice becomes hidden
in the graph of the corresponding Hamiltonian [see the case of 3 bosons in 3 sites in Fig. 2.1(d)].
However, this representation might reveal other properties, such as the presence of densely
linked clusters leading to quantum many-body scars [184] or highly symmetric graphs leading
to time crystals [185]. We will use this many-body graph representation of Hamiltonians in
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Chapter 6 to analyze the fragmentation of the Hilbert space.

2.3 Single particle in ring potentials

In the previous section, we discussed conventional optical lattices, where the dynamics are
typically restricted to the local ground states of each lattice site. However, in this thesis we
will study excited orbital angular momentum (OAM) states in ring-trapping potentials. In this
section, we describe the physical models used to analyze these states from a single-particle
perspective. First, we solve the Schrödinger equation to find the solutions for a single ring.
Then, we consider the case of multiple coplanar rings by considering two toy models: two
inline rings and three rings in a triangular configuration. These models are the basis to study
arbitrary lattices of identical coplanar rings, where complex tunnelings naturally arise as a
consequence of the OAM. We also outline a method to compute these tunneling amplitudes
and we give an overview of the experimental techniques that can be used to implement these
trapping potentials.

2.3.1 Single ring potential
We have seen in the previous section that counter-propagating lasers can be used to generate
optical lattice potentials, that, in 1D, take a sinusoidal form. However, one might consider
distinct trapping geometries forming each site of the lattice, such as ring potentials, which we
will explore in Chapters 4 and 5. In this section, we compute the single-particle eigenstates of
a two-dimensional toroidal trap, generated by a displaced harmonic potential of frequency
ω that reads V (ρ) = Mω2

2
(ρ− ρ0)2, whereM is the mass of the particles, ρ is the radial

coordinate, and ρ0 is the radius of the ring. The time-independent Schrödinger equation in
cylindrical coordinates for this potential reads

[
−~2∇2

2M
+
Mω2 (ρ− ρ0)2

2

]
φ = Eφ. (2.24)

Due to the cylindrical symmetry of the external potential, the eigenstates are also eigenstates
of the L̂z = −i~ ∂

∂ϕ
operator, where ϕ is the azimuthal coordinate. Therefore, they have a

well-defined OAM l and take the form

φνp(ρ, ϕ) = ψlp(ρ)eiνϕ, (2.25)

where ν = ±l is the winding number and p labels the radial excitations. Introducing this
Ansatz (2.25) into (2.24), one obtains an equation for the radial part of the wavefunction,

− ~2

2M

[
d2ψlp
dρ2

+
1

ρ

dψlp
dρ

+
l2

ρ2
ψlp

]
+
Mω2 (ρ− ρ0)2

2
ψlp = Eψlp. (2.26)

We will use the following two assumptions:
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1. We assume that there are no radial excitations (we fix p = 0), such that the states occupy
the ground state of the radial potential. As this potential takes a displaced harmonic
form, the ground state can be obtained variationally by taking the following displaced
Gaussian as an Ansatz: ψ0

0(ρ) ' Ce−α(ρ−ρ0β)2 , with α ∼ 1/2σ2 and β ∼ 1 [186].

2. When the term l2

ρ2
ψlp in Eq. (2.26) is small, the radial wavefunction for a mode l can be

approximated by the ground state radial wavefunction ψl0(r) ≈ ψ0
0(r). This is valid for

p = 0, low values of l and radii ρ0 a few times σ or larger [187].

Given these assumptions, the wavefunction simplifies to φν0(ρ, ϕ) = ψ0
0(ρ)eiνϕ. Then, the

energy of an eigenstate, which can be obtained from Eq. (2.24), reads

E(l) =

ˆ
d2r

[
V (ρ) |φν0(ρ, ϕ)|2 +

~2

2M
|∇φν0(ρ, ϕ)|2

]

=

ˆ
d2r

[
V (ρ)

∣∣ψ0
0

∣∣2 +
~2

2M

∣∣∣∣
dψ0

0

dρ

∣∣∣∣
2
]

+ l2
~2

2M

ˆ
d2r

∣∣∣∣
ψ0

0

ρ

∣∣∣∣
2

= E0 + Ecl
2.

(2.27)

Thus, the energy has a ground state contribution common to all OAMmodes,E0, and a term
that increases with l2. Therefore, the system presents a non-degenerate ground state with
l = 0, while the excited states form pairs of degenerate states with orbital angular momentum
l and opposite winding numbers ν = ±l [see Fig. 2.2(b)]. In Chapters 4 and 5, we will consider
lattices where each site is a ring potential and bosons populate the states l = 1 of each ring
trap, which remain decoupled from the other manifolds of states.

2.3.2 Tunneling amplitudes in coupled ring potentials
In order to study a lattice where each site is a ring potential, one must first consider the
simplest case of a single particle trapped in two tunnel-coupled coplanar rings [see Fig. 2.2(a)].
The dynamics of this system are governed by the time-dependent Schrödinger equation,

i~
∂Ψ(r, t)

∂t
= − ~2

2M
∇2Ψ(r, t) + V (r)Ψ(r, t). (2.28)

We consider the case of two identical rings, L andR, with radius ρ0 and frequency ω, where
the potential minima of the two rings are separated by a distance d. We define the local polar
coordinates at each ring, (ρj, ϕj) with j = R,L, to write the local eigenstates of the system
in position representation [Eq. (2.25)] as

φj±l (ρj, ϕj) = 〈r | j,±l〉 = ψl (ρj) e
±il(ϕj−ϕ0), (2.29)

where we have introduced ϕ0 as the arbitrary phase origin and l denotes the OAM. For a large
enough distance d, each set of local eigenstates with OAM l form (to a good approximation)
an orthonormal basis. As the different sets of states with OAM l are separated in energy [see
Eq. (2.27) and Fig. 2.2(b)], each set of states can be analyzed independently. We assume that
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Figure 2.2: (a) Schematic of the two-identical ring configuration (L andR) with radii ρ0 and
separated by a distance d. Each ring has local polar coordinates (ρj, ϕj) with j = L,R and
the origin of the phase ϕ0 is indicated in orange. (b) Qualitative representation of the energies
for each set of states with OAM l.

given an initial state that is a superposition of the states {|L,+l〉, |L,−l〉, |R,+l〉, |R,−l〉},
the dynamics of the system will not drive excitations to other states. Then, the total state of
the particle at a time t for a given OAM l can be written as

∣∣Ψl(t)
〉

= aL+l(t)|L,+l〉+ aL−l(t)|L,−l〉+ aR+l(t)|R,+l〉+ aR−l(t)|R,−l〉, (2.30)

where the amplitudes aj±l fulfill
∑

j=L,R

∑
ν=±l |ajν |

2
= 1, such that

〈
Ψl(t) | Ψl(t)

〉
= 1. In-

troducing this expression into the Schrödinger equation (2.28) and projecting for the different
states |j,±l〉with j = L,R, one can find a set of linearly-coupled evolution equations for the
amplitudes aj±l,

i~
dajν
dt

=
∑

j,j′=L,R

∑

ν,ν′=±l
J j
′,ν′
j,ν aν

′
j′ , (2.31)

where the parameters J j
′,ν′
j,ν are given by

J j
′,ν′
j,ν =

ˆ
d2r[φjν ]

∗
[
−~2∇2

2M
+ V (r)

]
φj
′

ν′ . (2.32)

The evolution equations (2.31) can be written in matrix form by ordering the corresponding
states, {|L,+l〉, |L,−l〉, |R,+l〉, |R,−l〉}. This defines the Hamiltonian of the four-state
model (FSM), i~∂ta(t) = Ĥl

FSMa(t), where a = (aL+l, a
L
−l, a

R
+l, a

R
−l)

T .
The parameters J j

′,ν′
j,ν are constrained by the global symmetries of the system, which where

thoroughly analyzed in [186]. We briefly review their arguments here. One might note from
Fig. 2.2(a), that the external potential V (r) is invariant under x and y reflections,

Mx : (x, y)→ (x,−y), My : (x, y)→ (−x, y), (2.33)

which modify the complex factor of the local eigenstates of the two rings while leaving its
radial term invariant,

Mx

(
φj±l
)

= e∓2ilϕ0φj∓l, My

(
φj±l
)

= e∓2ilϕ0e±ilπφk∓l, k 6= j. (2.34)
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Therefore, the Hamiltonian Ĥl
FSM is invariant underMx andMy , and consequently, it is also

invariant under parity,MxMy . Applying these operators to the Hamiltonian and using their
effect on the local eigenstates, Eq. (2.34), constraints the possible values of the parameters
J j
′,ν′
j,ν , leaving only three independent tunnelings:

(i) JL,∓lL,±l ≡ J l1e
±2ilϕ0 , couples opposite winding number states within a single ring.

(ii) JR,±lL,±l ≡ J l2, couples same winding number states in adjacent rings.

(iii) JR,∓lL,±l ≡ J l3e
±2ilϕ0 , couples opposite winding number states in adjacent rings.

There is also a self-energy term that is equal for all the states {|j,±l〉}, J j,±lj,±l ≡ El, and we
have defined J l1, J l2, J l3, El ∈ R. The tunnelings (i) and (iii) appear due to the presence of the
second ring, which breaks cylindrical symmetry. While the self-energy and (ii) are always real,
(i) and (iii) have a complex factor that is modulated by the origin of the phase ϕ0, indicated in
Fig. 2.2(a). However, this origin can be chosen arbitrarily, as any value will lead to identical
dynamics. For two inline rings, one can choose ϕ0 along the axis that crosses the center of
the two rings such that all parameters J j

′,ν′
j,ν become real. For this choice of ϕ0, the four-state

model defined by the evolution equations (2.31) reads

i~
d

dt




aL+l
aL−l
aR+l
aR−l


 =




El J l1 J l2 J l3
J l1 El J l3 J l2
J l2 J l3 El J l1
J l3 J l2 J l1 El







aL+l
aL−l
aR+l
aR−l


 ≡ Ĥ

l
FSM




aL+l
aL−l
aR+l
aR−l


 . (2.35)

In order to obtain a good quantitative agreement between the predictions of the four-state
model and the integration of the 2D Schrödinger equation, one must accurately calculate the
parameters J j

′,ν′
j,ν . However, the overlap integral in Eq. (2.32) is strictly valid in the limit where

the local eigenstates are orthogonal, as it does not take into account any overlap between them.
Instead, one can compute the parameters J j

′,ν′
j,ν by diagonalizing the Hamiltonian matrix of

the four-state model, which gives the following eigenstates and energies,
∣∣El

1

〉
=

1

2
(−|L,+l〉 − |L,−l〉+ |R,+l〉+ |R,−l〉), El

1 = El + J l1 − J l2 − J l3,
∣∣El

2

〉
=

1

2
(−|L,+l〉+ |L,−l〉 − |R,+l〉+ |R,−l〉), El

2 = El − J l1 + J l2 − J l3,
∣∣El

3

〉
=

1

2
(|L,+l〉 − |L,−l〉 − |R,+l〉+ |R,−l〉), El

3 = El − J l1 − J l2 + J l3,

∣∣El
4

〉
=

1

2
(|L,+l〉+ |L,−l〉+ |R,+l〉+ |R,−l〉), El

4 = El + J l1 + J l2 + J l3.

(2.36)

Then, one can find the amplitudes of the self-energy and the tunneling from the energiesEl
i

by inverting the above relations,

El =
1

4

(
Ẽl

1 + Ẽl
2 + Ẽl

3 + Ẽl
4

)
, J l2 =

1

4

(
−Ẽl

1 + Ẽl
2 − Ẽl

3 + Ẽl
4

)
,

J l1 =
1

4

(
Ẽl

1 − Ẽl
2 − Ẽl

3 + Ẽl
4

)
, J l3 =

1

4

(
−Ẽl

1 − Ẽl
2 + Ẽl

3 + Ẽl
4

)
.

(2.37)
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Figure 2.3: Tunneling amplitudes J1
1 , J1

2 , and J1
3 as a function of the separation distance

between rings for (a) ρ0 = 2.5σ and (b) ρ0 = 5σ with σ =
√

~/Mω.

The exact eigenenergies of the system, {Ẽl
i}, can be obtained through imaginary-time evolu-

tion of the 2D Schrödinger equation, by subtracting at each step the projections of the lower
energy states. To do that, we define the numerical external potential as the truncated sum of
the ring potentials for the left and right rings,

V (r) =
Mω2

2
min

[(√
(x− ρ0 − d/2)2 + y2 − ρ0

)2

,

(√
(x+ ρ0 + d/2)2 + y2 − ρ0

)2
]
.

(2.38)
Figure 2.3 represents the tunneling amplitudes J1

1 , J1
2 , and J1

3 as a function of the separation
distance between rings for a ring radius (a) ρ0 = 2.5σ and (b) ρ0 = 5σ with σ =

√
~/Mω, as

obtained through this method. For both radii, the difference between J1
2 and J1

3 decreases
with the distance d, while the tunneling J1

1 remains approximately one order of magnitude
smaller than the others. For this reason, we will neglect J1

1 in Chapters 4 and 5.
The two-ring model allows one to describe one-dimensional lattices of rings where all

the ring centers are aligned, as those can be reduced to pairs of inline rings with tunneling
amplitudes described by the four-state model. However, we need to study another system in
order to be able to describe arbitrary coplanar geometries of identical rings: three coplanar
identical rings L,R, and C forming a triangle, as shown in Fig. 2.4. Such structure can also
be described by a few-state model, which in this case includes the six local eigenstates with
OAM l in the rings L, R, and C : {|L,+l〉, |L,−l〉, |C,+l〉, |C,−l〉, |R,+l〉, |R,−l〉}. To
simplify the model, we fix the origin of the phase along one of the axis uniting two of the
rings, L -C , thus giving real tunneling amplitudes for this pair of rings. Necessarily, the other
directions, L -R and C -R, form a non-zero angle with ϕ0, which leads to complex values
for the tunnelings (i) and (iii). We define the local coordinate system (x, y) for the pair L - C ,
such that ϕ0 goes along the positive x axis (see Fig. 2.4). For the pair C -R, the origin of the
phase measured in the local coordinate system (x′, y′) is ϕ′0 = π−Θ. This leads to a complex
factor e±2ilϕ0 = e∓2ilΘ in the tunnelings between opposite circulation states that depends on
the central angle Θ, and thus can be modified by changing the geometry of the lattice. For a
central angle Θ > π/3, the couplings along L - R can be neglected due to the rapid decay
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Figure 2.4: Schematic of the three-identical-rings configuration L - C -R forming a triangle
with a central angle Θ. The origin of the phase ϕ0 runs along the L - C axis, the rings L - C
and C -R are separated a distance d from the potential minima at ρ = ρ0.

of the tunneling strength J2 and J3 with the separation distance (see Fig. 2.3). In this case,
ordering the amplitudes of the local eigenstates as {aL+l, aL−l, aC+l, aC−l, aR+l, aR−l}, yields the
following six-state-model (SSM) Hamiltonian,

Ĥl
SSM =




El J l1 J l2 J l3 0 0
J l1 El J l3 J l2 0 0
J l2 J l3 El J l1

(
1 + e−2ilΘ

)
J l2 J l3e

−2ilΘ

J l3 J l2 J l1
(
1 + e2ilΘ

)
El J l3e

2ilΘ J l2
0 0 J l2 J l3e

−2ilΘ El J l1e
−2ilΘ

0 0 J l3e
2ilΘ J l2 J l1e

2ilΘ El



. (2.39)

Any two-dimensional lattice of rings can be understood as a series of pairs of rings with
either real or complex couplings, described by the four and six-state models, Eqs. (2.35) and
(2.39), respectively. In Chapter 4 we will explore a lattice formed of inline rings, where the
couplings are real, while in Chapter 5 we will study a lattice with complex couplings. In
Chapter 3, we consider an entirely different configuration of tunnel coupled ring potentials:
two rings stacked one on top of the other. In contrastwith the case of coplanar rings, cylindrical
symmetry is preserved in this configuration and the couplings J3 and J1 do not arise. In this
case, we describe the system in the quasi-one dimensional regime by finding the evolution of
the amplitudes of each OAMmode.

Isolated ring potentials can be created through a variety of techniques, including time-
averaged potentials [188–190], painting potentials, [191, 192], static Laguerre-Gauss beams
[193], magnetic traps [194–196], and conical refraction [197]. Once the trapping potential is in
place, the excited states with non-zero OAM can be generated by rotating a weak link[10, 198],
by transferring OAM from photons to atoms [133, 199], or using a temperature quench [200].
To generate tunnel-coupled geometries of rings, one can use digital micromirror devices,
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which can create arbitrary potentials through a dense array of mirrors that can be controlled
individually [201]. This technique has already been used to study a BEC trapped in two
coplanar rings side by side [143]. Also, one can engineer a ring lattice using micro-lens arrays
by combining them with conical refraction techniques [202], for which a 10× 8 lattice was
demonstrated. For the particular case of two stacked rings, one can use optical fibers [203].
Additionally, the dynamics of ultracold atoms in coplanar ring lattices are formally equivalent
to those of the px and py excited states of a conventional lattice [204–207]. This corresponds
to the limit ρ0 = 0 in our description, and provides another route to observe the results
described in Chapters 4 and 5.

2.4 Topology in physics

In this section, we discuss how topology arises in discrete physical systems with a focus on
ultracold atoms in optical lattices. We start by making a connection between well-known
mathematical results from topology and the main concepts used to analyze the topology of
physical systems: the Berry phase, connection, and curvature. Then, we discuss the application
of these concepts to periodic systems, which leads to the bulk-boundary correspondence and
the concept of topological insulators. Finally, we introduce the Zak phase, used to analyze 1D
systems, and describe in detail the simplest 1D topological insulator, the Su-Schrieffer-Heeger
model.

2.4.1 Basic concepts
Topology is the field of mathematics that studies the properties of geometrical objects that
remain invariant under continuous deformations [208]. Two objects are said to be topologically
equivalent if they can be transformed from one to the other through a continuous deformation.
These transformations can involve stretching or twisting the object without breaking it or
joining any discontinuous parts. Within this mathematical context, an important result is the
Gauss-Bonnet theorem, which links differential geometry and topology. It relates the local
properties of a surface, the curvature at each point, to its topology, which is a global property
[47]. In the particular case of a closed oriented surface S, it reads

1

4π

ˆ
S

κ dA = 1− g, (2.40)

where κ is the curvature, dA is the element of surface area of the object, and g ∈ N is the
genus, the number of holes. The genus is a topological invariant, a quantity that remains
invariant under topological deformations. Thus, two topologically equivalent objects share
the same topological invariant. Recalling the most famous example, a doughnut and a cup
are topologically equivalent (g = 1), as they can be continuously deformed into one another,
while a sphere and a glass, constitute a different topological class (g = 0, they have no holes).

Topology also arises in quantum systems when considering a continuous variation of its
Hamiltonian in parameter space [209]. In analogy with the Gauss-Bonnet theorem [47], the
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varying parameters will define a geometrical object in which the so-called Berry curvature will
play the role of the curvature κ and the Berry phase will be the resulting topological invariant.
As a result, a Hamiltonian can have different topological phases characterized by distinct Berry
phases. In this setting, two phases orHamiltonians are said to be topologically equivalent if they
can be continuously deformed into one another while maintaining its relevant symmetries and
without closing the energy gap [210]. Consider aHamiltonian Ĥ(R) determined by some time-
varying parameters R = R(t) such that the instantaneous eigenstates at a given time t fulfill
Ĥ|m(R)〉 = Em(R)|m(R)〉. Through the course of time evolution, theHamiltonian changes
as the parameters trace a path in parameter space. We take one of the instantaneous eigenstates
as an initial state, |ψ(t = 0)〉 = |m(R0)〉withR0 = R(t = 0), and let it evolve. If the energy
gaps around Em(R) remain open during time evolution and the evolution is slow enough
compared to the frequencies associatedwith the energy gaps, the adiabatic theorem tells us that
the system will remain in the instantaneous eigenstate without transitioning to other states
[172]. Then, the time evolved state will only pick up a phase factor |ψ(t)〉 = eiθm(t)|m(R)〉.
The phase θm(t) can be obtained by introducing this expression into the Schrödinger equation
[211]

Ĥeiθm|m(R)〉 = i~
∂

∂t
eiθm|m(R)〉,

eiθmEm(R)|m(R)〉 = −~eiθm ∂θm
∂t
|m(R)〉+ i~eiθm

∂

∂t
|m(R)〉,

(2.41)

and projecting over 〈m(R)|,

∂θm
∂t

= i〈m(R)| ∂
∂t
|m(R)〉 − 1

~
Em(R). (2.42)

Integrating the above expression (2.42) over the time interval of the evolution yields

θm(t) = i

ˆ t

0

〈m(R)| ∂
∂t′
|m(R)〉dt′ − 1

~

ˆ t

0

Em(R)dt′ = γm(t) + βm(t). (2.43)

Thus, the evolved state acquires a complex phase composed of two terms: βm(t) is the usual
dynamical phase that any state acquires due to time evolution and γm(t) is the geometrical or
Berry phase, discovered by Berry in 1984 [212]. As Berry later stated in [213], βm(t) answers
the question how long did your journey take? While γm(t) answers where did it take you?

The geometrical nature of the Berry phase is revealed when rewriting it in terms of the
Berry connection Am(R) by using ∂

∂t
|m[R(t)]〉 = ∇R|m(R)〉dR(t)

dt
, which gives

γm = i

ˆ R(t)

R(0)

〈m(R)|∇R|m(R)〉 · dR =

ˆ R(t)

R(0)

Am(R) · dR. (2.44)

One might note that the Berry connection is only gauge invariant for closed paths through
parameter space. In this case, the Berry phase can be rewritten using Stokes theorem as

γm =

˛
C
Am(R) · dR =

¨
A

[∇×Am(R)] · dS ≡
¨
A

Ωm · dS, (2.45)
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where Ωm = ∇ ×Am(R) is the Berry curvature and the integral is now performed over
the surfaceA enclosed by the curve C. The Berry curvature plays the role of the geometrical
curvature in Gauss-Bonnet theorem, while the Berry phase becomes the topological invariant
[214]. The surface of the geometrical object here becomes the surfaceA in parameter space.
While the Berry phase is derived assuming that there are no degeneracies in the spectrum
during the adiabatic time evolution, Wilczek and Zee proposed a generalization of this concept
to take them into account [215, 216].

Periodic systems present a natural choice of parameters that affect the eigenstates of the
system: the components of the quasimomentum q. As discussed in Section 2.2.1, the Bloch
theorem states that eigenstates of the Hamiltonian describing a single particle in a periodic
potential can be written as a plane wave times a periodic function unq . The Brillouin zone,
which contains unique eigenstates in quasimomentum space, has periodic boundaries, and
thus can be regarded as a closed surface over which the eigenstates of the system vary. In this
case, one might write the corresponding Berry phase for a given energy band n as [211]

γn = i

ˆ
BZ

〈
unq |∇q|unq

〉
· dq, (2.46)

where now the integral is performed over the Brillouin zone. Remarkably, the value of the
Berry phase of a periodic system predicts the presence or absence of states localized at the
boundary when considering open boundary conditions. This is known as the bulk-boundary
correspondence. Consider an insulator with a given topological invariant characterizing its
bulk, surrounded by an insulator with a distinct topological invariant, such as air or vacuum.
When considering the two insulators as a whole, the topological invariant changes from the
inner medium to the outer one, which can only occur if the energy gap closes at the boundary.
This is the origin of the edge states, which are conducting states that bridge the energy gap and
are localized at the boundary of the inner medium. Then, the inner insulator is said to be in a
topological phase, while the surrounding insulator is in a trivial one. Therefore, the topological
invariant of the bulk, which is defined for periodic boundary conditions, determines the
presence of states at the boundary when considering open boundary conditions. This effect
can be observed in the integer quantum Hall effect [48], whose discovery gave rise to the field
of topological insulators [217]. These materials are insulating in the bulk but conducting at
the boundary of the material due to the presence of conducting edge states.

Zak phase

In Chapters 4 and 5, we will deal with 1D topological insulators, which are characterized
through the Zak phase. This phase is the Berry phase in 1D, and was first used by J. Zak to
analyze electronic energy bands in solids [218]. It reads

Zn = i

ˆ π
D

− π
D

〈
unq

∣∣∣∣
d

dq

∣∣∣∣unq
〉
dq, (2.47)

whereD is the lattice spacing. For inversion symmetric systems, J. Zak showed that Zn is
quantized, taking the values Zn = 0, π (mod 2π), which corresponds to the trivial and the
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topological phase, respectively [218]. For a given energy gap, the total Zak phase is given by
the sum of all Zak phases of the bands underneath that gapZ =

∑
nZn [219]. This total Zak

phase determines the presence of edge states when one considers open boundary conditions
[220–222]. A convenient method to computeZn numerically is the Wilson-loop approach,
where one approximates the integral by a summation of small segments [210, 220]. The Zak
phase for a sufficiently small segment from qj to qj+1 is e−iZ

j
n ≈ 〈unqj | unqj+1

〉, where we
have approximated the differentiation by a finite difference. Then, the Zak phase over the
whole Brillouin zone is the sum for all segmentsZn =

∑
j Zjn. However, the wavefunctions

computed numerically can have arbitrary phases which affect the value of Zn. To avoid
this problem, one can write the exponential in a gauge invariant form, i.e., invariant under
transformations of the form

∣∣unq
〉
→ eif(q)

∣∣unq
〉
,

Wn = e−iZn =
N∏

j=1

e−iZ
j
n =

N∏

j=1

〈
unqj
∣∣unqj+1

〉
, (2.48)

such that the Zak phase can be recovered asZn = Arg (limN→∞Wn). Therefore, in order to
compute the Zak phase, one needs to find the functions |unq 〉 by writing the Hamiltonian in
quasimomentum space. The band structure of the Hamiltonian, described in Section 2.2.1, can
be recovered in the tight binding formalism by considering periodic boundary conditions and
letting the number of unit cellsNc tend to infinity so that one can expand the creation and
annihilation operators as a Fourier integral. The expressions for the creation and annihilation
operators read

ĉ†j =
1√
Nc

√
D

2π

ˆ
BZ

ĉ†qe
iqxjdq,

ĉj =
1√
Nc

√
D

2π

ˆ
BZ

ĉqe
−iqxjdq,

(2.49)

where D is the lattice spacing and xj = jD is the position of the unit cell j. For lattices
with more than one site per unit cell, there are two conventions for the bulk Hamiltonian,
sometimes called Basis I and Basis II in the literature. In Basis I, the most common and the
one we use here [223, 224], the index xj denotes the position of the unit cell (the external
degree of freedom) without specifying the position of each site within the unit cell (the internal
one). This restricts the amount of information of the associated Zak phase but simplifies its
computation. In Basis II, one also takes into account the internal degrees of freedom [224,
225]. Both basis have been used to accurately characterize the topology of 1D systems in both
theoretical and experimental studies (see [226] and references therein).

2.4.2 Su-Schrieffer-Heeger model

The simplest example of a topological insulator is the Su-Schrieffer-Heeger (SSH) model, a 1D
lattice with alternating couplings t1 and t2. It was introduced by Su, Schrieffer, and Heeger for
spinless fermions to explain the conductivity properties of the molecule polyacetylene [227].
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Its tight binding Hamiltonian reads

ĤSSH =
Nc∑

k=1

[
t1(â†kb̂k + b̂†kâk) + t2(b̂†kâk+1 + â†k+1b̂k)

]
, (2.50)

whereNc is the number of unit cells. Each unit cell k is composed of two sitesA andB, with
associated creation operators â†k, b̂

†
k [see Fig. 2.5(a)]. The topological phase of this system is

determined by the Zak phase, Eq. (2.47), which is quantized due to the inversion symmetry of
this model [218]. In order to obtain it, we need to compute the bulk Hamiltonian, which is a
function of the annihilation and creation operators in quasimomentum space. We introduce
Eq. (2.49) with ĉ = â, b̂ into the SSH Hamiltonian (2.50) and compute first the terms of the
Hamiltonian proportional to â†b̂:

Ĥred
SSH =

Nc∑

j=1

t1â
†
j b̂j + t2â

†
j+1b̂j

=
D

2πNc

Nc∑

j=1

ˆ
BZ

ˆ
BZ

dq dq′â†q b̂q′
(
t1e

iqxje−iq
′xj + t2e

iq(xj+D)e−iq
′xj
)

=
D

2πNc

Nc∑

j=1

ˆ
BZ

ˆ
BZ

dq dq′â†q b̂q′
(
t1e

ixj(q−q′) + t2e
ixj(q−q′)eiqD

)

=

ˆ
BZ

ˆ
BZ

dq dq′â†q b̂q′δ (q − q′)
(
t1 + t2e

iqD
)

=

ˆ
BZ

dqâ†q b̂q
(
t1 + t2e

iqD
)

(2.51)

Performing the same computation for the terms of ĤSSH proportional to b̂†â, one obtains
ĤSSH (2.50) in terms of the creation and annihilation operators in quasimomentum space,

ĤSSH =

ˆ
BZ

dq
[
â†q b̂q

(
t1 + t2e

iqD
)

+ b̂†qâq
(
t1 + t2e

−iqD)] , (2.52)

and the real space Hamiltonian can be written as

ĤSSH =

ˆ
BZ

Ψ̂†qHqΨ̂qdq, where Ψ̂q =

(
âq
b̂q

)
. (2.53)

Thus, the bulk Hamiltonian takes a matrix form that reads

Hq =

(
0 t1 + t2e

iqD

t1 + t2e
−iqD 0

)
. (2.54)

Due to the internal degree of freedom of the SSH model, spanned by the sites A and B
[see Fig. 2.5(a)], the bulk-Hamiltonian is a 2 × 2 matrix with two eigenvalues E1(2)(q) =
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Figure 2.5: (a) Representation of the SSH model where the shadowed region indicates the unit
cell with sitesA andB, and t1 and t2 indicate the intra and intercell couplings, respectively.
(b) Energy spectrum forNc = 20 unit cells as a function of t2/t1 with the trivial (Z = 0) and
topological (Z = π) phases indicated in blue and orange, respectively, and the edge states
indicated in red. Amplitude at each site i of (c) an extended state and of (d) an hybridized edge
state, for t2/t1 = 1.5 as indicated in (b).

(+)
−

√
t21 + t22 + 2t1t2 cos(qD), that define the band structure of the model. The associated

eigenvectors are

∣∣u1
q

〉
=

1√
2



√
t21 + t22 + 2t1t2 cos(qD)

t1 + t2e−iqD

−1


 ,

∣∣u2
q

〉
=

1√
2



√
t21 + t22 + 2t1t2 cos(qD)

t1 + t2e−iqD

+1


 .

(2.55)
From the eigenvectors (2.55), one can compute the Zak phase, which takes a value of 0 for
t1 > t2 and a value of π for t1 < t2. Due to the bulk-boundary correspondence, a phase of
π predicts the presence of two edge states for open boundary conditions [228, 229]. Figure
2.5(b) shows the energy spectrum for Nc = 20 unit cells as a function of t2/t1 with the
trivial (Z = 0) and topological (Z = π) phases indicated in blue and orange, respectively.
Two states depart from the bulk bands when the Zak phase changes from 0 to π and remain
separated from them at zero energy. The presence of these edge states becomes intuitive when
considering the dimerized limit, when either t1 or t2 are zero and the chain is composed of
a series of decoupled dimers. For t1 = 0, there is a single site completely disconnected at
each boundary, which generates two strictly localized eigenstates. For t2 = 0, the complete
lattice is composed of dimers, which generate degenerate eigenstates with energies±t1. For
t1 < t2 with t1 6= 0, the edge states penetrate into the bulk while maintaining an exponential
localization with respect to the edge [shown in Fig. 2.5(d)]. Thus, the model presents two
edge states whenever the lattice starts and ends with the weaker coupling. These edge states
are topologically protected by chiral symmetry, also known as sublattice symmetry, which
keeps them locked at zero energy [210]. For a chirally symmetric lattice, one can divide the
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chain into two sublattices containing the sitesA orB such that there are no couplings, either
hopping terms or on-site potentials, within each sublattice (in graph theory, this corresponds
to a bipartite graph). This symmetry is defined by a unitary and Hermitian operator Γ̂ that
anti-commutes with the Hamiltonian Γ̂ĤΓ̂† = −Ĥ. For the SSH model, it takes the same
form at each unit cell j, Γ̂ = ⊕Ncj=1σz , where σz is the z Pauli matrix. This operator can also be
written in terms of the orthogonal sublattice projectors P̂A = 1

2
(I + Γ̂) and P̂B = 1

2
(I− Γ̂),

where I is the identity operator. Note that the total action of P̂A and P̂B spans the whole
Hilbert space, P̂A + P̂B = I, as they project on the subset of sites A(B). The presence of
this symmetry has some important consequences on the energy spectrum. Given a chirally
symmetric Hamiltonian with a set of eigenstates Ĥ |ψn〉 = En |ψn〉, the energy spectrum is
symmetric,

ĤΓ̂ |ψn〉 = −Γ̂Ĥ |ψn〉 = −Γ̂En |ψn〉 = −EnΓ̂ |ψn〉 , (2.56)
where Γ̂|ψn〉 is the chiral partner of |ψn〉, with energy −En. Thus, each zero-energy edge
state is the chiral partner of the other edge state. Additionally, the edge states have support on
a single sublattice. As Ĥ |ψn〉 = 0 for the edge states,

ĤP̂A(B) |ψn〉 = Ĥ
(
|ψn〉 +

(−) Γ̂ |ψn〉
)

=
(
Ĥ |ψn〉 (+)

− Γ̂Ĥ |ψn〉
)

= 0. (2.57)

In contrast, the non-zero energy eigenstates have non-degenerate chiral pairs, and thus must
be orthogonal. As a consequence, they have equal support on both sublattices

0 =
〈
ψn
∣∣Γ̂
∣∣ψn
〉

=
〈
ψn
∣∣P̂A
∣∣ψn
〉
−
〈
ψn
∣∣P̂B
∣∣ψn
〉
. (2.58)

In the thermodynamic limit (i.e.,Nc →∞), one can find approximate solutions that are
exponentially localized at the edge and that occupy a single sublattice. For a finite lattice, these
solutions are hybridized under the action of the Hamiltonian, which produces a small energy
splitting that decays exponentially with the size of the system. The eigenstates for a finite
system can be approximated as symmetric and antisymmetric superpositions of the edge states
localized at each boundary [210]. This energy splitting can be seen in Fig. 2.5(b) at t2/t1 & 1
due to the small size of the lattice (Nc = 20). Figures 2.5(c) and (d) represent the amplitudes
at each site i of two eigenstates for t2/t1 = 1.5. Fig. 2.5(c) corresponds to an extended state
which occupies both sublattices, while Fig. 2.5(d) represents one hybridized edge state which
mostly occupies one sublattice on the left half of the chain and the other sublattice on the right
half.

2.5 Thermalization

In this section, we explore the concept of thermalization in quantum systems. We first take
a step back to introduce classical thermalization, which is closely related to the notions of
ergodicity, mixing, and chaos, and that relies on the concept of phase space. We also discuss
how classical integrable systems fail to thermalize. Then, we explain the obstacles that arise
when going from a classical to a quantum description and outline the main ideas behind the
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eigenstate thermalization hypothesis (ETH). Finally, we briefly discuss the different kinds of
systems that violate this hypothesis and thus fail to thermalize.

2.5.1 Classical thermalization

A classical system (e.g., a gas) in thermal equilibrium can be well-characterized by macroscopic
quantities such as the temperature and the chemical potential. Remarkably, this description
is independent of the positions and momenta of each particle as it is compatible with many
microscopic configurations. Given a particular initial state, thermalization is the process by
which a system reaches an equilibrium state defined by macroscopic quantities. Therefore,
the process of thermalization can be thought of as the erasure of the information of the initial
state [230].

The description of classical thermalization relies on the notion of phase space. Consider
a collection of N particles with positions {r1, r2, ..., rN} and momenta {p1,p2, ...,pN}.
These 2N degrees of freedom are the continuous variables that define the phase space
{r1, r2, ..., rN ,p1,p2, ...,pN}. Given an initial state with a certain energy, time evolution
will define a trajectory ϑ(t) through the phase space. However, the trajectory ϑ(t) will be
restricted to a constant-energy hypersurface in the phase space due to energy conservation.
Such a system can be analyzed through the lens of dynamical systems theory and its subfield,
ergodic theory. There are mainly three properties of dynamical systems underlying classical
thermalization [231]: ergodicity, mixing and chaos.

• Ergodicity. For (almost) all initial states, the trajectory gets arbitrarily close to all points
in phase space for sufficiently long times. Additionally, Liouville’s theorem [232] implies
that the system will spend equal amounts of time in equal volumes of phase space [231].
As a consequence, long-time averages of observables can be computed as phase-space
averages, which are far easier to calculate.

• Mixing. Given an initial state with a small spread in phase space it eventually acquires
a uniform spread over the whole phase space, as correlations to the initial state decay
through time evolution. This is the same process by which a drop of dye in a glass
of water eventually gives the water a uniform color when the water is stirred, which
corresponds to time evolution [233].

• Chaos. Initial states that are arbitrarily close in phase space exhibit exponentially
diverging trajectories in phase space, thus presenting a high sensitivity to perturbations
in the initial state. The strength of the chaotic behavior can be quantified through the
so-called Lyapunov exponents, which measure the rate of divergence of the trajectories.
Given the separation δ(t) = ϑ(t)−ϑ′(t) between two nearby trajectories, the maximal
Lyapunov exponent, λ = limt→∞ lim|δ(0)|→0

1
t

ln |δ(t)||δ(0)| , gives the mean exponential rate
of divergence [234]. Then, a positive value of λ is taken as a strong indicator of chaos
and serves as a measure of the predictability of the system.
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These concepts can be classified into the Ergodic Hierarchy [235], which can be conceptually
simplified to

Chaotic ⊂ Mixing ⊂ Ergodic, (2.59)

where we have included chaos following [236, 237] (the interested reader can find amuchmore
nuanced classification and discussion in [233]). Ergodicity is the first level of this hierarchy,
which implies that ergodic systems need not be mixing or chaotic. Then, mixing is a stronger
condition that implies ergodicity, and chaos implies both mixing and ergodicity. However, for
classical systems with a large number of particles, one generally expects chaos, mixing and
ergodicity [231]. Therefore, classical systems thermalize through the course of time evolution,
which adequately scrambles the phase space such that the information on the initial state
effectively disappears.

However, not all classical systems thermalize. Integrable systems present as many con-
served quantities as degrees of freedom, which exactly determine the trajectories through the
phase space. As a consequence, these systems do not explore the whole phase space, they are
not ergodic. The difference between chaotic and integrable systems can be intuitively visual-
ized in dynamical billiards. Consider a classical particle moving at a fixed constant velocity
and trapped in a region with zero external potential that is enclosed by infinite potential walls.
When the particle encounters a wall, it bounces off elastically producing a specular reflection.
In two dimensions, such systems represent an ideal model of a billiard game that ignores
effects such as friction and thus conserves kinetic energy. The dynamics in these geometrical
enclosures, referred to as stadiums, critically depend on the geometry [238]. In Figure 2.6,
we compare trajectories in a circular stadium [Fig. 2.6(a)] and a Bunimovich stadium, which
is composed of two parallel lines united by circular sections at both ends [Fig. 2.6(b) and (c)]
[239]. In Fig. 2.6(a) and (b), dark blue lines indicate the first 50 reflections, while the gray lines
beneath show up to the 200th reflection. For the Bunimovich stadium, almost all initial states
lead to the particle eventually exploring the complete surface of the stadium, such that the
trajectory eventually covers the whole stadium uniformly. Note that one can find trajectories
that do not explore the whole stadium, such as one that bounces perpendicularly to the parallel
walls without touching the circular ones. Those trajectories form the set of measure zero of
initial states that do not explore the whole phase space in this ergodic system. In contrast,
the circular stadium is an integrable system: it conserves not only energy, but also angular
momentum, due to the presence of cylindrical symmetry. As a result, the trajectories are a
superposition of radial and angular periodic motions such that the trajectory leaves some
regions of the stadium unexplored. Fig. 2.6(c) illustrates chaos in the Bunimovich stadium by
representing the first 6 reflections for slightly different initial conditions. The trajectories
are highly sensitive to perturbations in the initial conditions: they rapidly diverge and their
positions and direction of motion become uncorrelated.

2.5.2 Quantum thermalization

In this section we explore how the notion of classical thermalization is translated into the
realm of quantum physics. Due to Heisenberg’s uncertainty principle, position andmomentum
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Figure 2.6: Trajectories exemplifying (a) integrability in the circular stadium and (b) ergodicity
and (c) chaos in the Bunimovich stadium. (a,b) The first 50 reflections are indicated in blue
and gray lines indicate up to the 200th reflection. (c) First 6 reflections for slightly different
initial conditions illustrating the rapidly diverging trajectories in a chaotic system.

in a quantum system cannot be determined simultaneously with arbitrary precision, ∆x∆p ≥
~/2. As a consequence, there is no notion of phase space and trajectories cannot be defined.
Additionally, the Schrödinger equation is linear, in contrast with the non-linearity that leads to
chaos in classical systems. As discussed in Section 2.5.1, classical systems thermalize through
the course of time evolution and the description of this process relies on the notion of phase
space [74]. In contrast, here we will see that quantum systems thermalize due to the presence
of thermal eigenstates and that unitary time evolution only reveals their presence [89].

The eigenstate thermalization hypothesis (ETH) provides a framework to understand
thermalization in an isolated quantum many-body system [72–74]. However, it is not immedi-
ately obvious what thermalization means in this context. Statistical quantum mechanics often
deals with quantum systems in contact with an environment that acts as a reservoir [240].
In these systems, thermalization is enabled by the exchange of energy and particles between
the system and the environment [see Fig. 2.7(a)]. However, isolated quantum many-body
systems, by definition, lack this reservoir, such that thermalization requires a slightly different
conceptualization. Let us consider a bipartition of the Hilbert spaceH into two subsystemsA
and B such that dim(A)� dim(B) [see Fig. 2.7(b)]. This could correspond, for example, to
an optical lattice of L sites subdivided into two subsystems spanning LA and LB sites such
that LA � LB. This bipartition is physically relevant because the measurement of global
operators in a thermodynamically large system (with an exponentially large Hilbert space) is
not experimentally feasible [241, 242]. Instead, one can measure local operators acting on a
finite subset of the Hilbert space, for example, on subsystemA. The system thermalizes if the
subsystem B acts as a reservoir for the subsystemA, such that local operators acting onA
acquire thermal expectation values. Now we can understand how the erasure of information
underpinning classical thermalization also seems to arise in quantum systems, where unitary
evolution prevents the loss of information (i.e., given an initial state with a density matrix ρ,
the purity, tr(ρ2), remains constant). Thermalization in an isolated quantum system occurs as
entanglement spreads between subsystemsA and B as they exchange energy and particles
[90]. Thus, the information on the initial state is transferred to inaccessible highly-nonlocal
observables, while the measurable local observables in A acquire thermal expectation val-
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Figure 2.7: (a) Quantum system in contact with an environment in which thermalization is
possible through the exchange of energy and particles with the thermal bath. (b) Isolated
quantum system where thermalization takes place when a subsystem B acts as a reservoir for
a much smaller subsystemA.

ues. Let us explicitly write this argument to find the consequences of thermalization on the
eigenstates of the system.

Consider a Hamiltonian Ĥ, with eigenstates Ĥ|Eα〉 = Eα|Eα〉, and an initial state
|ψ(0)〉 =

∑
α cα |Eα〉 with a small energy variance,

〈ψ(0)|Ĥ|ψ(0)〉 = Ē,

√〈
ψ(0)

∣∣Ĥ2
∣∣ψ(0)

〉
− Ē2 = ∆� W, (2.60)

whereW is the bandwidth of the energy spectrum. The system thermalizes if local observables
reach equilibrium expectation values given by the microcanonical ensemble [89]. At a time t,
the state is given by |ψ(t)〉 =

∑
α cαe

−iEαt/~ |Eα〉, such that the expectation value of a local
observable Ô can be written as

〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 =
∑

α

|cα|2Oαα +
∑

α 6=β
c∗αcβOαβe

i(Eα−Eβ)t. (2.61)

Assuming that the expectation value 〈Ô(t)〉 eventually reaches equilibrium and stays near
the equilibrium value with small fluctuations, the equilibrium value of 〈Ô(t)〉 can be well
approximated by its infinite-time average, which reads

〈Ô〉∞ ≡ lim
t→∞

1

t

ˆ t

0

dt 〈Ô(t)〉 =
∑

α

|cα|2 〈Eα|Ô|Eα〉. (2.62)

We have assumed a non-extensive number of degeneracies such that the off-diagonal terms in
Eq. (2.61) cancel due to dephasing when computing the infinite-time average. Thus, 〈Ô〉∞
is exclusively determined by the so-called diagonal ensemble, which only depends on the
probabilities |cα|2 determining the initial state and the expectation values of the eigenstates,
〈Eα|Ô|Eα〉. The system thermalizes if 〈Ô〉∞ equals the microcanonical prediction for a
microcanonical shell around the mean energy of the initial state, Ē,

〈Ô〉mc|Ē ≡
1

N
∑

{Eα|∆E>|Ē−Eα|}
〈Eα|Ô|Eα〉, (2.63)
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where the sum includes the N eigenstates with energies inside the microcanonical shell∣∣Ē − Eα
∣∣ < ∆E. Comparing equations (2.62) and (2.63), we note that 〈Ô〉∞ depends on

the initial state through the probabilities |cα|2, while 〈Ô〉mc|Ē only depends on the energy Ē.
However, if the expectation values of the eigenstates 〈Eα|Ô|Eα〉 fluctuates only weakly for
eigenstates with nearby energies, they can be taken out of the sum in Eq. (2.62) [74]. Then, one
can use the normalization of the probabilities |cα|2 to see that 〈Ô〉∞ = 〈Ô〉mc|Ē . This leads
to the main idea of the ETH, that can be stated as follows [72–74]:

For a large interacting and isolated quantum many-body system, the expectation values
of a local observable Ô on the eigenstates of the Hamiltonian, 〈Eα|Ô|Eα〉, coincide
with the microcanonical ensemble average around the corresponding energy 〈Ô〉mc|Eα .

Then, the eigenstates themselves are said to be thermal, and their presence explains the
thermalization of isolated quantum many-body systems.

2.5.3 Non-ergodic systems
In analogy with classical systems, not all isolated quantum many-body systems obey the ETH
and thermalize. Such systems violate this hypothesis either weakly or strongly, depending
on the relative number of eigenstates that are non-thermal. The main examples are briefly
discussed below.

• Quantum integrable systems are those that present at least as many conserved quan-
tities as degrees of freedom in the system. There must be an extensive number of local
operators that commute with the Hamiltonian and with each other, thus excluding the
projectors to the eigenstates of the system [89]. The presence of these conservation laws
exactly determines the eigenstates and eigenvalues of the system and prevents it from
thermalizing, analogously to what occurs for classical systems [243]. There are many
integrable non-interacting many-body systems, such as one-dimensional spin chains
solvable by Bethe Ansatz. In contrast, integrable interacting models are fine-tuned
and hard to implement, as even small perturbations can shift the model away from
integrability [89, 243]. In nearly-integrable models, those with small terms breaking
integrability, the system rapidly relaxes to a steady state determined by the integrable
model and only reaches the true thermal equilibrium at a much longer timescale. This
phenomenon is known as prethermalization [244].

• Systems exhibiting many-body localization [245] (MBL) also fail to thermalize as
predicted by the ETH due to the interplay between interactions and strong disorder [90].
As thermalization requires the exchange of energy and particles, MBL systems prevent
thermalization due to their insulating nature, in analogy with the non-interacting case
of Anderson insulators [118]. This causes the emergence of integrability through an
extensive set of quasi-local integrals of motion (LIOMS). Many-body localization is
stable within a broad range of interactions and variation of the parameters of the
Hamiltonian, thus, it constitutes an stable phase of matter, in contrast with integrable
systems [246, 247].
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• Both in integrable systems and MBL the ETH is violated strongly by all the eigenstates
of the system. More recently, it has been shown that the ETH can be weakly violated by
a vanishing subset of states in the thermodynamic limit. These states have a very low
entanglement entropy compared to the states at the same energy density. Quantum
many-body scars (QMBS) where discovered experimentally in one-dimensional Ryd-
berg arrays [91] and theoretically in the underlying PXP model [92, 93], while also being
shown in the AKTLmodel [94, 95]. A tower of energy-equispaced scarred states leads to
revivals in fidelity and to a slow entanglement growth for certain initial states with an
anomalously high overlap with the scarred eigenstates. Additionally, there are also other
kinds of non-thermal states that do not lead to fidelity revivals, such as isolated quantum
many-body scars or some states generated through projector embedding formalisms
[248].

• The ETH can also be violated either weakly or strongly in systems exhibitingHilbert
space fragmentation [109] (which has also received the name of Hilbert space shatter-
ing [111] and Krylov fracture [113]). The Hilbert spaceH of a system exhibiting Hilbert
space fragmentation is composed of a series of dynamically disconnected sectors. This
can be formalized as [113]

H =
K⊕

j=1

Kj, Kj = spant
{
e−iĤt |ψ0〉

}
, (2.64)

where spant
{
e−iĤt |ψ0〉

}
≡ span

{
|ψ0〉 , Ĥ |ψ0〉 , Ĥ2 |ψ0〉 , · · ·

}
denotes the set of

states that can be reached through time evolution, i.e., through the action of the Hamil-
tonian Ĥ, given an initial state |ψ0〉. The state |ψ0〉 is usually taken as a product state, as
those are easily preparable in an experiment. Any Hamiltonian possessing a symmetry
with an associated conservation law takes a block diagonal form where each sector is
spanned by the states sharing the same quantum number. What differentiates Hilbert
space fragmentation from the effect of conventional symmetries is the exponential
growth of the number of sectors with the size of the system. In contrast, conventional
symmetries yield either a constant number of sectors (e.g., systems with discrete global
symmetry) or one that grows at most polynomially (e.g., systems with a continuous
global symmetry) [249]. The sectors in a fragmented system usually have a wide range of
dimensions, from frozen (i.e., one-dimensional) sectors to exponentially-large sectors,
and they can include both integrable and non-integrable sectors [109]. The fractured
structure of the Hilbert space prevents the system from exploring all states and thermal-
izing as predicted by the ETH. Such blocks usually arise due to kinetic constraints which
forbid specific transitions, as the ones arising in a Rydberg blockade, where adjacent
atoms cannot be transferred to the Rydberg state. In Chapter 6, we will explore local
Hilbert space fragmentation, which arises due to a local conservation law driven by the
presence of compact localized states [250].





3
ORBITAL ANGULAR MOMENTUM DYNAMICS OF

BOSE-EINSTEIN CONDENSATES TRAPPED IN TWO
STACKED RINGS

In this chapter, we study a Bose-Einstein condensate (BEC) trapped in two coupled ringswithin
the mean-field description, using the Gross-Pitaevskii equation (GPE) that we introduced in
Section 2.1.2. In particular, we focus on the stationary states and dynamical regimes that arise
when the same orbital angular momentum (OAM) mode is populated in both rings. For both
cases, we study these regimes in the presence of small perturbations in other OAMmodes by
using analytical models and numerical simulations.

Ultracold atoms trapped in ring potentials are one of the most promising systems in the
emerging field of atomtronics [128, 129, 251, 252]. They have been considered for quantum
sensing applications such as rotation sensing [188, 189], magnetometry [253], Sagnac inter-
ferometry [145, 254–258], or the atomic analog to superconducting quantum interference
devices (SQUIDs) [10, 138–141, 198, 259–261]. Rings are the simplest geometries that lead to
non-trivial loop circuits, in which the superfluidity of BECs gives rise to persistent currents
[132, 262]. One can transfer OAM to the trapped BEC either by rotating a weak link [10, 198],
by coherent transfer of angular momentum from photons to the atoms [133, 199], or by a tem-
perature quench [200]. Regarding the implementation of the ring trapping potential, several
techniques have been implemented or proposed: magnetic traps [194–196], conical refraction
[197], pairs of optical fibers [203], static Laguerre-Gauss Beams [193], and time-averaged
[188–190] or painting [191, 192] potentials (see also [128] and references therein).

On the other hand, the Josephson effect is a fundamental phenomenon in quantum me-
chanics that has been widely explored in superconductors, and its study has been recently
extended to bosonic ultracold atomic systems [263–270]. Josephson oscillations can arise in
weakly coupled BECs trapped in a double-well potential: when there is a non-zero population
imbalance, quantum tunneling allows the particles to oscillate periodically from one well to
the other. However, repulsive interactions can suppress tunneling such that the atoms remain
mostly trapped in one of the wells, regime known as macroscopic quantum self-trapping
[265]. Weakly coupled condensates have been proposed as basic building blocks for quantum
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technologies [271–274]. In particular, the dynamics of BECs in tunnel-coupled ring potentials
have been thoroughly explored in a variety of geometries such as stacked rings with [275, 276]
or without lattices [277–285], concentric rings [186, 286], or coplanar rings [146, 287].

In this chapter, we investigate a BEC trapped in two rings in a stack configuration to
study the interplay between the OAM, the tunneling dynamics, and the repulsive nonlinear
interactions. First, we consider an initial state with a single OAMmode equally populated in
both rings, which gives rise to symmetric and antisymmetric stationary states. The stability
conditions for these states against OAM perturbations were derived within the mean-field
theory and using Bogoliubov analysis in [278]. Here, we revisit the problem and demonstrate
that the system can be described by a two-state model with fixed point solutions. In particular,
one can derive a classical Hamiltonian that characterizes the dynamics of the system in terms
of the orbits around the critical points. Second, we consider an initial state where a single
OAM mode is populated with a non-zero population imbalance between rings, such that
tunneling and interactions give rise to different dynamical regimes. We derive analytically the
boundary condition between Josephson oscillations and self-trapping, and study numerically
the stability of these regimes against perturbations in higher order OAMmodes.

This chapter is organized as follows. In Section 3.1, we describe the physical system and
introduce the few-state model of OAMmodes derived from the GPE. Section 3.2 deals with
the stability of the stationary states: after presenting briefly the Bogoliubov analysis, we derive
a two-state model, find its critical points and analyze its associated classical Hamiltonian. The
model is then compared against numerical simulations of the complete system of equations
derived in Section 3.1. Section 3.3 focuses on the dynamical regimes of Josephson oscillations
and self-trapping: we first study the case of populating a single mode in each ring and then
explore the role of higher order OAM perturbations. Finally, the conclusions are presented in
Section 3.4.

3.1 Physical system

The system under consideration is shown in Fig. 3.1. It consists of two coaxial annular traps
around the z-axis separated by a distance 2z0, where a BEC ofN atoms is trapped. The BEC is
described within the mean-field theory by the GPE, Eq. (2.11), which in cylindrical coordinates
reads

i~
∂Ψ(r, t)
∂t

=

[
~2

2M

(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− ∂2

∂z2
+

L2
z

~2ρ2

)
+V (r) + g|Ψ(r, t)|2

]
Ψ(r, t), (3.1)

where V (r) is the external potential,M is the atomic mass, Lz = −i~ ∂
∂φ

is the z component
of the OAM, and g = 4π~2as/M accounts for the contact interactions characterized by the
s-wave scattering length as. The wavefunction, Ψ(r, t), is normalized to the total number of
particles,N . Henceforth, we will consider exclusively repulsive interactions, g > 0, and rings
with large enough radii such that the term 1

ρ
∂
∂ρ

can be neglected in Eq. (3.1). The trapping
potential in (3.1) is defined as V (r) = Vz(z) + Vρ(ρ), where Vz is a symmetric double-well
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+z0

−z0

ρ
ρ0

φ

Figure 3.1: Schematic representation of the geometry of the system. The trapping potential
consists of two ring traps, up, u, and down, d, that are located in the planes±z0, centered at
ρ = 0, and have radius ρ0.

harmonic potential with minima at±z0, and Vρ is a harmonic radial potential centered at ρ0.
We assume weak coupling between the rings and that Vz and Vρ are steep enough such that
the BEC only presents azimuthal excitations. Then, the wavefunction can be factorized as

Ψ(r, t) = Ψ(ρ)
[
Φu(z)χu(φ, t) + Φd(z)χd(φ, t)

]
, (3.2)

whereΨ(ρ) is the ground state of the radial harmonic potential and the functionsχu(φ, t) and
χd(φ, t) contain the dependence of the BEC wavefunction with respect to time. The functions
Φu(z) and Φd(z) are two modes localized in the wells up (u) and down (d) constructed as a
superposition of the ground and first excited stationary solutions of the GPE equation. The
total number of particles in each ring is

´
dφ|χu/d(φ, t)|2 = Nu/d(t) and the functions Ψ(ρ),

Φu(z) and Φd(z) are normalized to 1. The functions χu(φ, t) and χd(φ, t) for the upper and
lower rings can be written as a linear combination of the OAM eigenstates,

χu/d(φ, t) =
1√
2π

∞∑

ν=−∞
αu/dν (t) eiνφ, (3.3)

with amplitudes αu/dν (t). For each eigenstate, the condensate has a quantized OAM ν~. The
OAMmode coefficients are normalized to the number of particles in the ν-th angular mode
in each ring, |αu/dν (t)|2 = N

u/d
ν (t), such thatNu/d(t) =

∑
ν N

u/d
ν (t). Henceforth, we will

omit the explicit time dependence in αu/dν (t). The evolution equations for the amplitudes of
each OAMmode, αu/dν , read [277, 278]:

i
∂α

u/d
ν

∂τ
= ν2αu/dν − καd/uν + γ

∑

nn′

αu/dn (α
u/d
n′ )∗αu/dν−n+n′ , (3.4)

where τ = ~t/(2MR2) is the scaled time, κ = R2
´
dz (Φd(z))∗

[
∂2

∂z2
− 2M

~2 Vz
]
Φu(z) is the

tunneling rate between the two rings, and γ = MR2g/(π~2)
´
dρρ|Ψ(ρ)|4

´
dz|Φu(z)|4 is
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the interatomic interaction parameter with R−2 =
´
dρρ−1|Ψ(ρ)|2. The first term of the

RHS in (3.4) corresponds to the kinetic energy of the ν-th mode, the second term, to the
tunneling between the two rings, which only couples OAMmodes with the same ν , and the
third term is the nonlinear interaction that couples different OAMmodes within each ring.
The parameters τ , κ, γ and the other magnitudes appearing on the figures of this chapter are
dimensionless.

3.2 Stability of the stationary states

Let us consider that only one OAMmode n is initially populated in both rings: |αu/dn (τ =

0)|2 6= 0, |αu/dν 6=n(τ = 0)|2 = 0. Then, stationary solutions only exist for equal number of
particles between rings,Nu

n = Nd
n = N/2, and Eq. (3.4) simplifies to

iα̇u/dn = n2αu/dn − καd/un + εαu/dn , (3.5)

where ε = γN/2 and the dot indicates the derivative with respect to τ . By diagonalizing this
system of equations, we find the following symmetric and antisymmetric stationary solutions
with energies µ±:

(αun, α
d
n)s =

√
Ne−iµ+τ (1, 1), µ+ = n2 + ε− κ, (3.6a)

(αun, α
d
n)a =

√
Ne−iµ−τ (1,−1), µ− = n2 + ε+ κ. (3.6b)

3.2.1 Bogoliubov analysis
In order to study the stability of the states (3.6a) and (3.6b), we fix n = 0 and add a small
amplitude symmetric perturbation in an arbitrary mode ν 6= 0, of the form

αu/dν = e−iµ±τ (uu/dν e−iωτ + (vu/dν )∗eiωτ ). (3.7)

By introducing this Ansatz together with (3.6) into (3.4) and linearizing for small amplitudes
of uu/dν and (v

u/d
ν )∗, we obtain the following Bogoliubov-de Gennes equations

ωuu/dν = (ν2 − µ± + 2ε)uu/dν + εv
u/d
−ν − κud/uν , (3.8a)

−ωvu/d−ν = (ν2 − µ± + 2ε)v
u/d
−ν + εuu/dν − κvd/u−ν . (3.8b)

By diagonalizing (3.8), one finds that only the antisymmetric state can be unstable against
perturbations in higher order modes. The corresponding excitation branch, ω, determines the
regions of the parameter space for which the antisymmetric state is unstable [278]:

ω =
√

(ν2 + ε− 2κ)2 − ε2. (3.9)

For real values of ω, the perturbations (3.7) remain periodic and thus bounded, while, for
imaginary values, the perturbations in mode ν grow exponentially, destabilizing the stationary
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Stable
Unstable

ν = ±1

ν = ±2

ν =
±3

Figure 3.2: Real (white) and imaginary (color) regions of ω for the antisymmetric state with
n = 0 and perturbations in the modes ν = ±1,±2,±3 in the parameter space [κ, ε]. The
points rhombus, square, circle and triangle correspond to the parameter values used in Fig. 3.3
with the circle also being used in Fig. 3.4.

state. Fig. 3.2 shows the real (white) and imaginary (colored) regions of ω for the stationary
state with n = 0 and perturbations in ν = ±1,±2,±3 as a function of κ and ε. Interactions
increase the instability regions of the antisymmetric state. The spectrum in (3.9) also holds for
stationary solutions with n 6= 0; in that case, the perturbation ν is the OAM difference with
respect to n.

3.2.2 Two-state model

The Bogoliubov analysis predicts the stability regions of the stationary solutions in the pa-
rameter space. However, it does not describe the dynamics once the stationary state has been
destabilized. In order to get an insight into the excitation process, we derive the simplest model
that captures these dynamics: a two-state model that includes the antisymmetric stationary
state mode and a pair of perturbation modes±ν . We take for simplicity the mode n = 0 for
the stationary state, with |αu0 |2 = Nu

0 and |αd0|2 = Nd
0 . Then, the system of equations (3.4)

reduces to a set of six equations that can be expressed in matrix form as

i




α̇u0
α̇uν
α̇u−ν
α̇d0
α̇dν
α̇d−ν




= Â ·




αu0
αuν
αu−ν
αd0
αdν
αd−ν



, (3.10)
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where

Â =




γBu
0 γαu−ν(α

u
0)∗ γαuν(αu0)∗ −κ 0 0

γαu0(αu−ν)
∗ ν2+γBu

ν 0 0 −κ 0
γαu0(αuν)∗ 0 ν2+γBu

−ν 0 0 −κ
−κ 0 0 γBd

0 γαd−ν(α
d
0)∗ γαdν(α

d
0)∗

0 −κ 0 γαd0(αd−ν)
∗ ν2+γBd

ν 0
0 0 −κ γαd0(αdν)

∗ 0 ν2+γBd
−ν



,

(3.11)
where we have defined the factorBu(d)

±ν = 2Nu−|αu(d)
±ν |2 withNu/d = |αu/d0 |2 + |αu/dν |2 +

|αu/d−ν |2 being the total number of particles in the u and d rings. We impose the initial condition
αu0 = −αd0 and add small amplitude symmetric perturbations in the high ordermodes±ν such
that δαu±ν = δαd±ν . Due to angular momentum conservation and the fact that the stationary
state is in the mode n = 0, the conditions |αuν |2 = |αu−ν |2 and |αdν |2 = |αd−ν |2 are fulfilled.
Assuming that the phase difference between the perturbedmodes stays approximately constant
during the time evolution and that |αd±ν | ≈ |αu±ν |, we can define αν ≡ αu±ν = αd±ν . We will
also assume that the initial condition αu0 = −αd0 is maintained during the temporal evolution,
so that we can also useNu ≈ Nd = N/2. Applying all these conditions, the expression (3.10)
can be simplified to a set of three equations for αu0 , αν and αd0, that in matrix form read:

i



α̇u0

α̇ν

α̇d0


=Â′



αu0

αν

αd0


, (3.12)

where the matrix Â′ is



γ
(
N − |αu0 |2

(
1− 2

(
αν
αu0

)2))
0 −κ

0 −κ+ ν2 + γ
(
N − |αν |2

(
1−

(αu0
αν

)2))
0

−κ 0 γ
(
N − |αu0 |2

(
1− 2

(αν
αu0

)2))


.

(3.13)
This system can be reduced further by noting that the first and last diagonal elements are
equal. Then, defining α0 ≡ αu0 , we obtain the following two-state model (TSM):

i

(
α̇0

α̇ν

)
=

(
γ(N − |α0|2

(
1− 2

(
αν
α0

)2))
+ κ 0

0 −κ+ ν2 + γ
(
N − |αν |2

(
1−

(
α0

αν

)2))
)(

α0

αν

)
.

(3.14)
In order to understand the oscillatory dynamics of the system, we define α0 = |α0|eiφ and
αν = |αν |eiθ. By using particle conservation, 2|α0|2 + 4|αν |2 = N , and defining the phase
difference ζ = θ − φ, the system reduces to two coupled real equations:

˙|αν |2 = 2γ|αν |2
(

2|αν |2 −
N

2

)
sin 2ζ, (3.15a)

ζ̇ = 2κ− ν2 + γ

(
3|αν |2 −

N

2

)
+ γ

(
4|αν |2 −

N

2

)
cos 2ζ. (3.15b)
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Critical points

The critical points of the two-state model fulfill ˙|αν |2 = ζ̇ = 0. Imposing ˙|αν |2 = 0 in
Eq. (3.15a), we find |αν |2 = 0, |αν |2 = N/4, and sin 2ζ = 0, where the two first trivial
solutions correspond to the minimum and maximum values of |αν |2 that are due to particle
conservation. The critical points can be then found imposing ζ̇ = 0 in Eq. (3.15b). For the
trivial cases, the critical points are

(
cos 2ζ =

2κ− ν2 − ε
ε

≡ A, |αν |2 = 0

)
, (3.16a)

(
cos 2ζ =

ν2 − 2κ− ε/2
ε

≡ B, |αν |2 =
N

4

)
. (3.16b)

Due to the boundedness of the cosine in (3.16a), the solution with |αν |2 = 0 exists if

ν2

2
≤ κ ≤ ν2 + 2ε

2
, (3.17)

and similarly, the solution with |αν |2 = N/4, Eq. (3.16b), exists if

ν2 − 3ε/2

2
≤ κ ≤ ν2 + ε/2

2
. (3.18)

By studying the eigenvalues of the Jacobian at the critical points, these trivial solutions can
be shown to be saddle points (see Appendix A.1). For the nontrivial solution, for which |αν |2
takes values different from 0 orN/4, the critical points are

(
ζ = aπ, |αν |2 =

ν2 − 2κ+ 2ε

14ε/N
≡ C

)
, (3.19a)

(
ζ = (2a+ 1)

π

2
, |αν |2 =

2κ− ν2

2ε/N
≡ D

)
, (3.19b)

where a ∈ Z. Taking into account the minimum and maximum values of |αν |2 due to particle
conservation, the solutions with ζ = aπ exist if

ν2 − 3ε/2

2
≤ κ ≤ ν2 + 2ε

2
, (3.20)

whereas the ones with ζ = (2a+ 1)π/2 exist if

ν2

2
≤ κ ≤ ν2 + ε/2

2
. (3.21)

Note that the second set of solutions, Eq. (3.19b), has a more restrictive condition than the
first, Eq. (3.19a). Similarly as before, these solutions can be shown to be centers, with the
trajectories orbiting around them (see Appendix A.1). Table 3.1 summarizes the critical points,
their existence conditions and if they are saddle points or centers.
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ζ |αν |2 κmin κmax

A = cos 2ζ =
−ν2 + 2κ− ε

ε
0

ν2

2

ν2 + 2ε

2

B = cos 2ζ =
−ν2 + 2κ+ ε

2

ε

N

4

ν2 − 3ε
2

2

ν2 + ε
2

2

aπ C =
2ε+ ν2 − 2κ

14ε/N

ν2 − 3ε
2

2

ν2 + 2ε

2

(2a+ 1)
π

2
D =

2κ− ν2

2ε/N

ν2

2

ν2 + ε
2

2

Table 3.1: Critical points of the two-state model and corresponding existence conditions.

Two-state model Hamiltonian

Assuming that the variables |αν |2 and ζ are canonical conjugates, they fulfill ∂H/∂(|αν |2) = ζ̇

and ∂H/∂ζ = − ˙|αν |2, and thus the corresponding classical HamiltonianH reads:

H(|αν |2, ζ) =|αν |2
[

2κ− ν2 − γN

2
+

3

2
γ|αν |2 + γ

(
2|αν |2 −

N

2

)
cos 2ζ

]
. (3.22)

Fig. 3.3 shows lines of constantH(|α1|2, ζ) for various initial conditions and γ = 1/2000,
N = 4000 (thus, ε = 1), ν = 1 and different values ofκ. According to the existence conditions
of the critical points, Eqs. (3.17, 3.18, 3.20, 3.21), there are four possible types of phase diagrams
as a function of the tunneling κ:

• (ν2− 3ε/2)/2 < κ < ν2/2: there are saddle points at (B, |αν |2 = N/4) and centers at
(ζ = aπ, C) [e.g., Fig. 3.3(a)]. The orbits around the centers are not accessible for the
initial conditions |αν |2/N ' 0 and ζ = 0, thus, the stationary state is stable.

• ν2/2 < κ < (ν2 + ε/2)/2: there are saddle points at (A, |αν |2 = 0) and (B, |αν |2 =
N/4), and centers at (ζ = aπ, C) and (ζ = (2a + 1)π/2, D) [e.g., Fig. 3.3(b)]. Given
Eq. (3.19), the value of |αν |2 corresponding to the centers at ζ = aπ diminishes with
the tunneling κ while the one for the centers at ζ = (2a + 1)π/2 grows with κ. For
the values of κwhen the |αν |2 value of the centers at ζ = aπ is equal or inferior than
those of ζ = (2a + 1)π/2, the system orbits around (ζ = aπ, C). For lower values
of κ, the contrary occurs, and the system performs open orbits around the centers
(ζ = (2a+ 1)π/2,D) [e.g., Fig. 3.3(b)].

• (ν2 + ε/2)/2 < κ < (ν2 + 2ε)/2: there are saddle points at (A, |αν |2 = 0) and centers
at (ζ = aπ, C) [e.g., Fig. 3.3(c)], which allows the system to perform orbits around these
centers.
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Figure 3.3: Lines of constantH(|α1|2, ζ) for ν = 1, γ = 1/2000, andN = 4000 (thus, ε = 1)
and (a) κ = 0.3, (b) κ = 0.6, (c) κ = 1, (d) κ = 1.7. In dashed blue, orbits corresponding to
the stationary state excitations for the unstable cases, (b) and (c). The parameter values of the
plots correspond to the points rhombus, square, circle and triangle in Fig. 3.2, respectively.

• For all other values of κ, i.e., (ν2 + 2ε)/2 < κ < (ν2 − 3ε/2)/2, there are neither
saddle points nor centers [e.g., Fig. 3.3(d)], such that the stationary state is stable.

Combining all these conditions we find that the antisymmetric stationary state is unstable
for ν2/2 < κ < (ν2 + 2ε)/2, which coincides with the stability conditions predicted by the
Bogoliubov analysis (see Fig. 3.2). The Bogoliubov excitations correspond to the open and
closed orbits around the centers given the initial conditions ζ = 0 and |αν |2/N ' 0, as the
ones shown in blue dashed lines in Figs. 3.3(b) and 3.3(c).

The population transfer between the states with n = 0 and the perturbations ν during
the excitation is determined by the corresponding orbit. One can find an upper bound to
the population transfer, |αν |2max/N , by considering the initial conditions ζ(τ = 0) = 0
and |αν(τ = 0)|2/N = 0, which correspond to the orbit with H(|αν |2, ζ) = 0. Taking
into account the different possible orbits, either open or closed, and particle conservation in
Eq. (3.22), one reaches

|αν |2max
N

=





2κ− ν2

ε
;

ν2

2
≤ κ ≤ ν2 + ε/4

2
,

2

7

ν2 − 2κ+ 2ε

2ε
;
ν2 + ε/4

2
≤ κ ≤ ν2 + 2ε

2
.

(3.23)

The upper bound of the population transfer grows linearly with the tunneling κ, and reaches
its maximum for κ = ε/4+ν2

2
, when the centers at ζ = (2a + 1)π/2 and ζ = aπ have the

same |αν |2. Then, the upper bound of the population transfer decreases linearly with κ down
to zero.
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Figure 3.4: Temporal evolution of the populations, Ñu/d
ν = N

u/d
ν /N , forN = 4000, κ = 1

and ε = 1 (circle in Fig. 3.2) of the two-state model (TSM) with ν = 1 (black) and the complete
system of equations up to ν = ±15 (color). Initial conditions: αu0 = −αd0 = α0 =

√
N/2

with perturbations of order
√
N/2 ·10−4 [up to ν = ±5 for the complete system of equations

(3.4)].

For an initial state with n 6= 0, one observes analogous dynamics as the ones described
above, where the pairs of excited modes have an OAM difference±ν with respect to n. For
example, for κ = 1, ε = 1 and the stationary state with n = 0, the states that form the
excitation are ν = ±1, whereas for n = 1, the excited modes are ν = 0 and ν = 2.

3.2.3 Numerical simulations

In this section, we will compare numerically the predictions of the two-state model (3.14)
and the complete system of equations (3.4) for the stationary state with n = 0, κ = 1 and
ε = 1 (corresponding to the circle in Fig. 3.2). Fig. 3.4 shows the time evolution of the
populations according to the two-state model (black) and by numerical integration of the
system of equations (color).

For the two-state model, we initially set the amplitudes to α0 =
√
N/2 and α1 =√

N/2 · 10−4 in the system of equations (3.14). The population of the perturbation α1 grows
exponentially, in agreement with Eq. (3.9) of the Bogoliubov analysis. Then, the growth of the
perturbation slows down, the population reaches a maximum closely bounded by Eq. (3.23),
and the transfer of population is inverted; the population returns to α0. This population
transfer pattern is repeated periodically and, for small τ , it precisely captures the dynamics
predicted by the complete set of equations.

For the full model, we populate equally the n = 0 modes, αu0 = −αd0 =
√
N/2, and

introduce perturbations of order
√
N/2 · 10−4 for ν 6= 0 up to ν = ±5 in Eq. (3.4). We

include the first ν = ±15 modes in the simulation, thus truncating the system of equations
well above the highest relevant mode. In this case, the excitation is formed by the pair of modes
ν = ±1, which evolve with the same population within each ring, thus conserving angular
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momentum. For long times, the periodic pattern in the evolution of the populations is no
longer accurately described by the two-state model since the system does not keep the same
population in the n = 0 modes of the two rings. However, the variations in the period and
amplitude of the oscillations could be explained using the two-state model, which suggests
that the dynamics of the system are highly sensitive to perturbations (see Fig. 3.3) i.e., a small
perturbation can cause the system to change the orbit. Thus, by analogy, the perturbations
appearing during the evolution in the full model would lead to oscillations presenting small
changes in their period and amplitude. Also, the maximum population that the excitations
reach is lower than the one of the two-state model due to secondary excitations: the higher
order modes that are also excited modify the dynamics of the main excitation, ν = ±1. In this
case, the mode ν = ±2 (yellow) reaches populations of order O(10−3) while higher order
modes have smaller contributions.

3.3 Dynamical regimes

Thus far, we have studied the destabilization of the stationary states, which have a single
OAMmode n populated with the same number of particles in both rings. However, when the
initial population in each ring is not the same, tunneling and interactions give rise to different
dynamical regimes in the system.

The dynamics of BECs trapped in double-well potentials are known to present either
Josephson oscillations or self-trapping depending on the ratio between the tunneling and the
nonlinear interactions [266]. In the Josephson oscillations regime, the population performs
complete oscillations between the two wells while in the self-trapping regime, the population
remains mostly trapped in one well. In order to find the self-trapping condition for our system,
we initially populate a single mode n and factorize the amplitudes as αu/dn =

√
N
u/d
n eiβ

u/d
n .

The system of equations (3.4) can then be rewritten in terms of the population imbalance,
zn = (Nu

n − Nd
n)/N , and the phase difference, δφn = βdn − βun , as a set of two coupled

equations: 



żn = −
√

1− z2
n sin δφn,

δφ̇n = Λzn +
zn√

1− z2
n

cos δφn,
(3.24)

where Λ = γN/(2κ) = ε/κ and τ has been scaled to 2κτ . Assuming that zn and δφn
are canonically conjugate variables, then, ∂H/∂zn = δφ̇n and ∂H/∂δφn = −żn, and the
corresponding classical Hamiltonian reads

H =
1

2
Λz2

n − cos δφn
√

1− z2
n. (3.25)

Note that the Hamiltonian is equal for all n. Thus, the system presents identical dynamics
for all OAM modes. In order to find the boundary between the regimes of self-trapping
and Josephson oscillations, we impose zn(τ) = 0, which is only fulfilled in the Josephson
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Self-trapping

Figure 3.5: (a) Boundary between the self-trapping and the Josephson oscillations regimes as
predicted by (3.26) for: a) δφn(0) = 0, b) δφn(0) = π/2, c) δφn(0) = 3π/4, d) δφn(0)→ π.
(b) Time evolution of z0 for z0(0) = 0.6, δφ0(0) = 0, N = 4000, κ = 1 and e) Λ = 4, f)
Λ = 10, g) Λ = 24.

oscillations regime. Using energy conservation in (3.25) and denoting the initial parameters as
zn(τ = 0) ≡ zn(0) and |δφn(τ = 0)| ≡ δφn(0), one reaches

Λc = 2

(
cos δφn(0)

√
1− z2

n(0) + 1

z2
n(0)

)
, (3.26)

which defines the phase boundary between the two regimes in terms of the initial population
imbalance, the phase difference and the ratio Λ. This condition is a generalization of the one
found in [265] for a BEC in a double-well potential. In addition, analogous dynamics are
obtained for the total imbalance and phase difference in a system of stacked lattice rings in the
deep superfluid limit [260, 275]. In this limit, the potential barriers between the sites of the
lattices are small enough that the system resembles a couple of free rings. Fig. 3.5(a) shows
the boundary given by (3.26) for different values of the initial phase difference δφn(0) as a
function of Λ = ε/κ and the initial population imbalance zn(0). The self-trapping regime
occurs for sufficiently large imbalance and ratio Λ = ε/κ. As the phase difference grows from
0 to π, the region of parameters for which self-trapping occurs grows and, as one approaches
the limit δφn(0)→ π, the minimum population imbalance to obtain self-trapping approaches
zn(0) = 0.

Figure 3.5(b) shows the temporal evolution of the population imbalance, z0, for z0(0) =
0.6, δφn(0) = 0 and for different values of Λ: e) Λ = 4, f) Λ = 10, g) Λ = 24. As the ratio
Λ = ε/κ grows, the oscillations become anharmonic until the average population imbalance
becomes non-zero. If one further increases Λ, the amplitude of the remaining oscillations
decreases and they are eventually suppressed, then, the population remains at the initial
imbalance.

3.3.1 Stability of the dynamical regimes
In this section we study numerically the stability of the dynamical regimes, Josephson oscil-
lations and self-trapping, in the presence of perturbations in higher order modes. Initially,
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we populate the mode n = 0 with a certain imbalance z0(0) between the rings and a phase
difference of π, and introduce small amplitude perturbations in higher order modes of order√
N/2 · 10−4 for ν 6= 0 up to ν = ±3. Then, we also discuss the case in which the initial

phase difference between the modes with n = 0 is 0.
Fig. 3.6 shows the different dynamics in the parameter space [κ, ε] for (a) z0(0) = 0.1, (b)

z0(0) = 0.4 and (c) z0(0) = 0.75. Black and blue indicate stable and unstable self-trapping,
respectively, white indicates stable Josephson oscillations and green and yellow indicate
unstable Josephson oscillations. The simulations run up to τ = 100, and the color gradients
indicate the decay times. The boundary between Josephson oscillations and self-trapping is not
modified by the perturbations, and thus it is determined by Eq. (3.26) taking δφ0(0) = π. For
small initial imbalance, Eq. (3.9) predicts accurately the regions of stability of the dynamical
regimes, as the initial state resembles the stationary state [see Figs. 3.2 and 3.6(a)]. As the initial
imbalance gets larger, the structure of the unstable regions becomes more involved [Figs. 3.6(b)
and 3.6(c)].

The criteria for classification are the following. The stable regimes are those for which the
population of the perturbed modes remains below 0.01. For stable Josephson oscillations, the
population imbalance of the main mode becomes zero at some point during time evolution,
whereas in the stable self-trapping regime it does not. The decay time of the unstable regimes
is defined as the time for which the total mode populations,Nν , of the main mode and the
perturbation modes cross.

The Josephson oscillations and self-trapping dynamics decay into unstructured oscillations
when higher order modes get excited. The system then remains in a state of non-periodic
oscillations between the two rings that involves several modes. Fig. 3.7 presents examples of
these dynamics for unstable (a) Josephson oscillations and (b) self-trapping, corresponding to
the square in Fig. 3.6(c) and the circle in Fig. 3.6(b), respectively.

Close to the boundary between the stable and the unstable regimes, the system presents
semistable Josephson oscillations and self-trapping. In these cases, the population of a single
excited mode±ν grows and decays periodically, without destabilizing the dynamics of the
main mode, n = 0. The upper plots of Figs. 3.8 and 3.9 show an example of semistable
Josephson dynamics and semistable self-trapping dynamics, respectively. The lower plots of
these figures show the corresponding total mode populations Ñu

ν + Ñd
ν = (Nu

ν +Nd
ν )/N ,

which present a pattern analogous to those shown by Bogoliubov excitations of the stationary
state (see Fig. 3.4). Therefore, the semistable dynamics can be understood as Bogoliubov
excitations of the dynamical states modulated by tunneling.

Figs. 3.6(d) and (e) show the different dynamics in the parameter space [κ, ε] for initial
imbalance z0(0) = 0.75 and z0(0) = 0.9, respectively. For these cases, the initial phase
difference between the modes with n = 0 is 0. In these cases the boundary between Joseph-
son oscillations and self-trapping is given by Eq. (3.26) taking δφ0(0) = 0 [see Fig. 3.5(a)].
Consequently, the Josephson oscillations regimes are much larger than the ones with initial
phase difference equal to π [see Figs. 3.6(a), (b), and (c)]. As the initial phase difference is 0,
which corresponds to the symmetric state in the stationary case, there is no mechanism of
Bogoliubov destabilization and the unstable regimes do not resemble the spectrum of Fig. 3.2.
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(a) (b) (c)

(d) (e)

Semistable

Unstable

Stable

Josephson
oscillations Self-trapping

Decay time

Figure 3.6: Dynamical regimes in the parameter space [κ, ε] up to τ = 100 withN = 4000
for (a) z0(0) = 0.1, (b) z0(0) = 0.4, (c) z0(0) = 0.75, (d) z0(0) = 0.75, and (e) z0(0) = 0.9.
Initial phase difference π for (a), (b), and (c) and 0 for (d) and (e). The marked points correspond
to: square [Fig. 3.7(a)], circle [Fig. 3.7(b)], triangle (Fig. 3.8) and white rhombus (Fig. 3.9). For
the semistable cases, the dynamics do not decay up to τ = 100.

Instead, there is an interactions threshold that depends mainly on the imbalance above which
the Josephson oscillations become unstable. For initial imbalance z0(0) = 0.4, both regimes
are stable and the Josephson oscillations regime occupies the vast majority of the considered
parameter space.

The time scales considered in this section, which go up to τ = 100, reach the order of 8 s
for 87Rb, a ring radius of ρ0 = 5 · 10−6 m and an oscillator length of the harmonic potentials
a = 1 · 10−6 m. Within a time scale up to τ = 10, which corresponds to 0.8 s, one would
observe several Josephson oscillations, as can be seen in Figs. 3.7(a) and 3.8(a). Therefore, the
described dynamics are within reach in state of the art experiments.
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Figure 3.7: Temporal evolution of the populations, Ñu/d
ν = N

u/d
ν /N with N = 4000, for

unstable Josephson oscillations (a) κ = 4, ε = 3, z0(0) = 0.75 [square in Fig. 3.6(c)] and
self-trapping (b) κ = 1.5, ε = 3.5, z0(0) = 0.4 [circle in Fig. 3.6(b)]. The modes that grow
from τ = 5 onwards include ν = ±1,±2,±3.

Figure 3.8: Temporal evolution of semistable Josephson oscillations for κ = 4.5, ε = 1,
N = 4000, and z0(0) = 0.4 [triangle in Fig. 3.6(b)] for (a) the populations in each mode and
ring, Ñu/d

ν = N
u/d
ν /N , and (b) the total mode populations, Ñu

ν + Ñd
ν . Note that the time axis

has a gap between τ = 0 and τ = 15 to show the relevant dynamics.
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Figure 3.9: Temporal evolution of semistable self-trapping for κ = 0.35, ε = 1.25,N = 4000
and z0(0) = 0.75 [rhombus in Fig. 3.6(c)], for (a) the populations in each mode and ring,
Ñ
u/d
ν = N

u/d
ν /N , and (b) the total mode populations, Ñu

ν + Ñd
ν . The population of the modes

αu±1 remain below 0.01.

3.4 Conclusions

In this chapter, we have investigated a BEC with repulsive interactions trapped in two rings in
a stack configuration. The stability and dynamics of the BEC have been studied within mean-
field theory and in terms of its OAMmodes. For the case of a single mode equally populated
in both rings and including small perturbations in other modes, we have derived a two-state
model that predicts the regions of the parameter space supporting stable stationary states.
This model also describes the dynamics of the system after destabilization, and characterizes
accurately the features of the excitations. The analytical results of the two-state model have
been contrasted with the numerical integration of the full model, finding a good qualitative
and quantitative agreement.

Also, we have analyzed the dynamics of the system when a single OAMmode is populated
with an arbitrary population imbalance between the two rings: the dynamical regimes of
Josephson oscillations and self-trapping. The boundary condition between the two regimes
has been analytically derived in terms of the population imbalance and the corresponding
phase difference. We have found that the dynamics are equal for all OAMmodes, and resemble
the dynamics of a double-well system. By numerical analysis, we have characterized these
dynamical regimes against perturbations in higher order OAMmodes.



4
BOSONIC ORBITAL SU-SCHRIEFFER-HEEGER MODEL IN

A LATTICE OF RINGS

In this chapter, we explore a one-dimensional lattice of in-line rings with local eigenstates in
each site with a well-defined orbital angular momentum (OAM) by using a Bose-Hubbard-type
model. The tunneling amplitudes between these states are well-described by the four-state
model introduced in Section 2.3.2 and thus take real values. We analyze the single- and
two-boson problems and focus on their topological characterization and the effect of on-site
interactions.

A cornerstone idea behind topological insulators is the bulk-boundary correspondence. It
relates the presence of robust edge states in a system with open boundary conditions with
non-trivial values of topological invariants defined by the bulk bands. The symmetries and
dimensionality of the non-interacting bulk restrict the possible topological phases that the
system can host [54, 217]. However, interacting systems do not possess a well-defined band
structure with an associated topological invariant. In contrast to the characterization of non-
interacting topological phases, a systematic description of interacting topological phases has
yet to be developed [288].

The simplest casewhere interactions already play a role is the two-body problem. Repulsive
and attractive interactions can cause the formation of bound pairs of particles with energies
outside the non-interacting energy bands [289, 290]. Such composite objects, usually called
doublons [291–293], have very long lifetimes due to the finite energy bandwidth of the single-
particle kinetic energy [294]. Doublons have been experimentally observed in ultracold atoms
[291] and organic salts [295]. Also, they have been shown to arise in a variety of systems,
including models with long range interactions [296–299], in superlattices [300], and in spinor
gases [301].

Here we study a system of one or two bosons in a one-dimensional lattice of rings with
alternating distances. This geometrymimics the Su–Schrieffer–Heeger (SSH)model [227, 302],
which was initially proposed to describe solitons in polyacetylene, and was latter revealed as
the simplest instance of a topological insulator. Each local potential has eigenstates with OAM
l with winding numbers ±l. The particles are loaded into the states with l = 1 providing
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each site of the lattice with two internal states. The interacting two-particle SSH model was
previously studied for both on-site and nearest-neighbor interactions [299, 303–305]. Here,
the additional degree of freedom in each site leads to a richer array of bound-states, edge
bound states and strongly interacting subspaces. There is a wide variety of techniques to
generate ring potentials and to transfer angular momentum to the particles, thus exciting the
states l > 0 (see discussion in Chapter 3). In addition, a ring lattice can be engineered for
instance using micro-lens arrays by combining them with conical refraction techniques [202],
for which a 10× 8 lattice was demonstrated, or using digital micro-mirror devices, which
provide a high degree of geometrical tunability [201]. Alternatively, the physics described
here can also be observed in the p band of a conventional optical lattice [204–207]. Then, the
atoms have to be loaded into the p-band orbitals of the form px ± ipy [205, 207] which can
be achieved using the following techniques: adiabatical deformation of an adjacent trap with
resonant tunneling transfer [204], lattice shaking and shortcuts to adiabaticity [206], or OAM
transfer from light to the atoms [199].

The rest of the chapter is organized as follows. In Sec. 4.1, we introduce the physical
system and discuss the coupling strengths that appear between the different winding numbers.
We analyze the single-particle case in Sec. 4.2, defining a basis rotation that decouples the
system into two SSH chains that allow for a topological characterization of the system. We
calculate their energy spectra and topologically-protected edge states for different distances.
In Sec. 4.3, we explore the two-boson case by introducing on-site bosonic interactions in each
site. We analyze the doublon bands in the energy spectrum in terms of a strong-link model.
Additionally, we derive the effective Hamiltonians for the bound states in the regime of strong
interactions, which lead to effective SSH and Creutz ladder models. Finally, we present our
conclusions in Sec. 4.4.

4.1 Physical system

We consider bosons loaded into a one-dimensional lattice of ring potentials with alternating
distances d and d′. Each unit cell, k, includes the sites Ak and Bk, as depicted in Fig. 4.1,
where we define the local polar coordinates for each site, (ρjk , ϕjk) with j = A,B. The ring
potential at each site is formed by a displaced harmonic potential in the radial coordinate,
V (ρjk) = 1

2
Mω2(ρjk − ρ0)2, where ω is the frequency of the radial potential,M , the mass of

the atoms, and ρ0, the radius of the ring. All the local potentials are identical, they have the
same frequency ω and radius ρ0. The distances d(′) are measured from one potential minima
to the next, such that the distance that separates the unit cells isD = d+d′+4ρ0 (see Fig. 4.1).

As we saw in Sec. 2.3 of Chapter 2, the eigenstates of an isolated ring potential have well-
defined OAM l with winding numbers ν = ±l such that the sets of eigenstates with different
OAM l are well-separated in energy. In a lattice structure, the states of a given manifold l are
only resonant to states of the same manifold, and thus, effectively decoupled, so that one can
study them separately [146, 147]. The total field operator for a given OAM l can be written as
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Ak Bk Ak+1 Bk+1

d d′2ρ02ρ0

ρAk+1 ϕAk+1

Figure 4.1: Representation of the considered one-dimensional lattice of rings. Each unit cell
consists of two sites, Ak and Bk, formed by identical ring potentials where (ρjk , ϕjk) are
the local radial and azimuthal coordinates at each site. The distance between adjacent sites
alternates between d for consecutive sites within a unit cell and d′ for the sites in adjacent unit
cells.

a linear combination of the local OAM eigenstates at each site of the lattice,

Ψ̂l(r)=
Nc∑

k=1

∑

ν=±l
φνAk (ρAk , ϕAk)â

ν
k+φνBk (ρBk , ϕBk)b̂

ν
k, (4.1)

whereNc is the number of unit cells and âνk and b̂νk are the annihilation operators of the local
OAM states |jνk 〉, where j = A,B denotes the site and k labels the unit cell. We consider an
integer number of unit cellsNc throughout this chapter. The wavefunctions of each state |jνk 〉
are given by

φνjk (ρjk , ϕjk) = 〈r | jνk 〉 = ψ (ρjk) e
iν(ϕjk−ϕ0), (4.2)

where ψ (ρjk) is the radial part of the wavefunction and e
iν(ϕjk−ϕ0) is the complex phase due

to the non-zero OAM, where ϕ0 indicates an arbitrary phase origin.
The total Hamiltonian that describes the bosonic system is Ĥl = Ĥ0

l + Ĥint
l , with a

single-particle Hamiltonian

Ĥ0
l =

ˆ
d2r Ψ̂†l (r)

[
−~2∇2

2M
+ V (r)

]
Ψ̂l(r), (4.3)

where the potential V (r) is the sum of the truncated harmonic potentials of each site, and an
interaction term that includes s-wave binary collisions

Ĥint
l =

g

2

ˆ
d2r Ψ̂†l (r)Ψ̂†l (r)Ψ̂l(r)Ψ̂l(r), (4.4)

where g is proportional to the s-wave scattering length.
As we saw in Sec. 2.3.2 of Chapter 2, complex tunneling amplitudes can arise in coplanar

rings for states with nonzero OAM. However, for a lattice of inline rings one can always
choose the origin of the phase ϕ0 along the lattice direction such that all couplings are real.
Let us recall the three types of tunnelings: J1 couples states with opposite winding numbers
within a single ring, J2 couples states with the same winding number in adjacent rings, and
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J3 couples states with opposite winding numbers in adjacent rings. Then, the tunneling
strengths J1, J2, and J3 can be computed from the eigenvalues of the four-state model (FSM)
[see Eq. (2.37)], which can be obtained through imaginary time evolution of the single-particle
FSMHamiltonian for a particular ring separation d. As the coupling |J1| is approximately one
order of magnitude smaller than the other two couplings for any distance d, it can be safely
neglected in our analysis.

For the considered lattice of rings, the relevant tunneling amplitudes are J2 and J3, which
correspond to the intra-cell distance d, and J ′2 and J ′3, which correspond to the inter-cell
distance d′ (see Fig. 4.1). In particular, we study the states with OAM l = 1 and winding
numbers ν = ±1, which we will denote by the circulation labels α = ±. We introduce the
total bosonic field operator (4.1) in Eq. (4.3), use the above assumptions, and use harmonic
oscillator units for the distances and energies, σ =

√
~/Mω and ~ω, respectively. Then, one

arrives at the following single-particle Hamiltonian in terms of the creation and annihilation
operators of the local OAM eigenstates

Ĥ0
l=1 = J2

Nc∑

k=1

∑

α=±
âα†k b̂

α
k + J ′2

Nc−1∑

k=1

∑

α=±
b̂α†k â

α
k+1+

+J3

Nc∑

k=1

∑

α=±
âα†k b̂

−α
k +J ′3

Nc−1∑

k=1

∑

α=±
b̂α†k â

−α
k+1 + H.c.

(4.5)

The interaction Hamiltonian can be obtained by introducing the total bosonic field op-
erator restricted to an OAM l (4.1) into Eq. (4.4). As all rings are identical and we consider
on-site interactions, theA andB sites yield identical interaction terms. The interaction term
for a particular sublattice j = a, b reads

Ĥint
l,j =

g

2

ˆ
drΨ̂†l,jΨ̂

†
l,jΨ̂l,jΨ̂l,j

=
g

2

ˆ
dr

Nc∑

k=1

[
(φ+l

jk
)∗â+l†

jk
+ (φ−ljk )∗â−l†jk

]2 [
φ+l
jk
â+l
jk

+ φ−ljk â
−l
jk

]2

=
g

2

Nc∑

k=1

ˆ
dr |ψ(ρjk)|4

[
e−ilϕjk â+l†

jk
+ eilϕjk â−l†jk

]2 [
eilϕjk â+l

jk
+ e−ilϕjk â−ljk

]2

=
g

2

Nc∑

k=1

ˆ
dr |ψ(ρjk)|4

[
e−2ilϕjk

(
â+l†
jk

)2

+ e2ilϕjk

(
â−l†jk

)2

+ 2â+l†
jk
â−l†jk

]

[
e2ilϕjk

(
â+l
jk

)2
+ e−2iϕjk

(
â−ljk
)2

+ 2â+l
jk
â−ljk

]

=
U

2

Nc∑

k=1

(
â+l†
jk

)2 (
â+l
jk

)2
+
(
â−l†jk

)2 (
â−ljk
)2

+ 4â+l†
jk
â−l†jk

â+l
jk
â−ljk

=
U

2

Nc∑

k=1

n̂+l
jk

(
n̂+l
jk
− 1
)

+ n̂−ljk
(
n̂−ljk − 1

)
+ 4n̂+l

jk
n̂−ljk ,

(4.6)
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where n̂αjk = ĵα†k ĵ
α
k are the number operators for each site j, unit cell k and circulation α, and

U ≡ g
´
dr |ψ (ρjk)|4 is the interaction strength. The total interaction Hamiltonian reads

Ĥint
l=1 =

U

2

∑

j=a,b

Nc∑

k=1

[
n̂+
jk

(n̂+
jk
− 1) + n̂−jk(n̂

−
jk
− 1) + 4n̂+

jk
n̂−jk
]
. (4.7)

Besides the conventional Bose-Hubbard like interaction terms for each circulation, there is an
additional cross-circulation term with a greater strength.

4.2 Single particle

4.2.1 Band structure
Let us explore the single particle case. One can obtain the Hamiltonian in momentum space by
considering the limitNc →∞ and periodic boundary conditions and expanding the creation
and annihilation operators in the Hamiltonian (4.5) as a Fourier integral [using Eq. (2.49) from
Chapter 2]. In this case, the distance that separates the unit cells isD = d + d′ + 4ρ0 and
ĵαq = âαq , b̂

α
q are annihilation operators in quasimomentum space. Then, the Hamiltonian in

Eq. (4.5) can be written in terms of the Hamiltonian in quasimomentum space as

Ĥ0
l=1 =

ˆ
BZ

Ψ̂†qĤqΨ̂qdq, (4.8)

where Ψ̂†q =
(
â+†
q , â

−†
q , b̂

+†
q , b̂

−†
q

)
. For our system, the Hamiltonian Ĥq reads

Ĥq =




0 0 J2 + J ′2e
iqD J3 + J ′3e

iqD

0 0 J3 + J ′3e
iqD J2 + J ′2e

iqD

J2 + J ′2e
−iqD J3 + J ′3e

−iqD 0 0
J3 + J ′3e

−iqD J2 + J ′2e
−iqD 0 0


, (4.9)

and has the following eigenvalues:

ε1,2 = ±
√
t′2a + t2a + 2t′ata cos (qD),

ε3,4 = ±
√
t′2s + t2s + 2t′sts cos (qD),

(4.10)

where
t′a = J ′2 − J ′3, ta = J2 − J3,

t′s = J ′2 + J ′3, ts = J2 + J3.
(4.11)

The system presents two sets of energy bands ε1,2 and ε3,4 that are symmetrical with respect to
zero energy. The energy bands ε1 and ε2 tend to degeneracy at zero energy for large intertrap
separations d(′), for which J (′)

2 = J
(′)
3 . A direct topological characterization of the system does

not respect the bulk-boundary correspondence, due to the presence of a unitary symmetry
defined by the exchange of circulations +↔ − in each site, which we will discuss later. In
the next section we perform a basis rotation that leaves the Hamiltonian in block diagonal
form, allowing for a topological characterization of the system within each block.
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4.2.2 Mapping into two decoupled SSH chains
We consider the symmetric (s) and antisymmetric (a) superpositions of the positive and
negative circulations in each site

∣∣∣As(a)
k

〉
=

1√
2

(∣∣A+
k

〉
+
(−)

∣∣A−k
〉)
,

∣∣∣Bs(a)
k

〉
=

1√
2

(∣∣B+
k

〉
+
(−)

∣∣B−k
〉)
.

(4.12)

In this new basis, the single particle Hamiltonian in (4.5) can be block diagonalized into two
decoupled SSH chains. The symmetric chain is described by the Hamiltonian

Ĥs = ts

Nc∑

k=1

âs†k b̂
s
k + t′s

Nc−1∑

k=1

âs†k+1b̂
s
k + H.c., (4.13)

where âsk and b̂sk are the annihilation operators of the symmetric states defined in Eq. (4.12) and
the couplings t(′)s (4.11) define the energy bands ε3,4 of Eq. (4.10). Similarly, the antisymmetric
chain is described by the Hamiltonian

Ĥa = ta

Nc∑

k=1

âa†k b̂
a
k + t′a

Nc−1∑

k=1

âa†k+1b̂
a
k + H.c., (4.14)

where âak and b̂ak are the annihilation operators of the antisymmetric states defined in Eq. (4.12)
and the couplings t(′)a (4.11) define the energy bands ε1,2 of Eq. (4.10). Thus, each SSH chain
contributes two energy bands to the whole system.

Figure 4.2 shows the couplings t(′)a and t(′)s as a function of the separation distance between
two rings d(′) obtained numerically using Eqs. (4.11) and (2.37). We represent the cases of
two ring radii, ρ0 = 2.5σ and 5σ, where σ =

√
~/Mω is the harmonic oscillator length. All

couplings decay with the separation distance, but due to the dependence of t(′)s and t(′)a on the
couplings J (′)

2 and J (′)
3 , t(′)a remains much smaller than t(′)s regardless of the ring radius ρ0 and

frequency ω.
In the SSH model [210], the topological phase of the system is determined by the ratio of

the couplings, t/t′ (see a detailed discussion in Sec. 2.4). This ratio determines the value of the
Zak phase in each energy band p [Eq. (2.47)], which is obtained through the eigenstates of the
bulk Hamiltonian. For t < t′, the Zak phase isZ1,2 = π and the system is in the topological
phase, while for t > t′, the Zak phase is Z1,2 = 0 and the system is in the trivial phase [see
Fig. 4.3(a) and (b)]. As predicted by the bulk-boundary correspondence, the system with open
boundary conditions presents two edge states in the topological phase that are not present in
the trivial phase, shown in the next section.

One might try to compute the Zak phase using the eigenstates of the non-rotated Hamil-
tonian, Eq. (4.9), which presents four energy bands and three energy gaps. In that case, the
presence of edge states at each gap would be given by the sum of the Zak phases of all the
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Figure 4.2: Couplings t(′)a and t(′)s as a function of the separation distance d(′) between rings
for ρ0 = 2.5σ and ρ0 = 5σ, where σ =

√
~/Mω is the harmonic oscillator length.

bands below that gap. However, those results do not fulfill the bulk-boundary correspondence,
as they do not correctly predict the presence of edge states. This is due to the fact that the
Hamiltonian presents a unitary symmetry that exchanges the circulations +↔ − at each site.
As a result, the Hamiltonian can be block diagonalized such that each pair of bands arising
from each symmetry sector have independent Zak phases associated to them.

Figure 4.3 shows the phases of the symmetric, Ĥs, and antisymmetric, Ĥa, chains as a
function of the separation distances d and d′ for ρ0 = 5σ. The color represents the ratios (a)
ts/t

′
s and (b) ta/t′a, and the solid black lines separate the trivial (above) and topological (below)

phases. We define the nearly dimerized regimes of the trivial and topological phases by their
lower boundaries at t/t′ = 10 (dotted blue line) and upper boundaries at t/t′ = 0.1 (dashed
yellow line), respectively. In the nearly dimerized regime, the SSH model is well approximated
by a set of decoupled dimers that correspond to the dimerized limit. Both chains are in the
topological phase for d > d′, and in the trivial phase for d < d′, but the ratio t/t′ varies for the
symmetric and antisymmetric chains, as it is determined by the dependence of the couplings
ta, ts on J2 and J3, Eq. (4.11). Thus, it is subject to their constraints, namely: (i) the couplings
decay with the distance d, (ii) J3 > J2 with J3 ≈ J2 for d� 1, (iii) J2, J3 > 0, valid for the
considered range of distances.

Decoupled SSH chains also emerge in other physical platforms, such as the polariton
micropillar system supporting the excited photonic modes px and py studied in [306]. The
zigzag configuration of the micropillar structure gives rise to two decoupled SSH chains
corresponding to the px and py modes, with a glide reflection symmetry between the chains
[307], which are in opposite topological phases due to the geometry of the structure. In contrast,
here both SSH chains are in the same topological phase for any pair of distances d and d′.
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Figure 4.3: Phase diagram of the (a) symmetric, Ĥs, and (b) antisymmetric, Ĥa, chains as a
function of the separation distances between rings, d(′), for ρ0 = 5σ, where σ =

√
~/Mω is

the harmonic oscillator length. Color represents the ratios (a) ts/t′s and (b) ta/t′a, the black
line separates the trivial phases with Z1,2 = 0 (warm colors) and the topological phases
withZ1,2 = π (cold colors). The dashed blue lines and dotted yellow lines bound the nearly
dimerized regimes of the trivial and topological phases, respectively.

4.2.3 Exact diagonalization results

We consider a lattice of rings of Nc = 20 unit cells with ρ0 = 5σ, d′ = 3.6σ and the two
cases d = 4σ and 5σ. Figure 4.4 shows the energy spectrum of the system for d = 4σ (black
dots) and d = 5σ (blue crosses). The outer bands correspond to the symmetric chain Ĥs [ε3,4
in (4.10)], while the inner bands correspond to the antisymmetric chain Ĥa [ε1,2 in (4.10)].
This correspondence can be deduced from the values of ts and ta [see Eq. (4.11) and Fig. 4.2],
as they fulfill ts > ta. Additionally, the condition ts > ta also makes the outer bands more
dispersive than the inner bands for both distances d [see ε1,2 and ε3,4 in Eq. (4.10)]. For both
cases, the two chains are in the topological phase, which leads to the presence of four edge
states, two for each chain. The dispersion of both models is reduced considerably for d = 5σ
compared to d = 4σ, as both chains enter the nearly dimerized regime.

Figure 4.5 shows (i) the amplitude of the left and right edge states of Ĥs and Ĥa, and (ii)
the real space densities |Ψ|2 of the left edge state, taking d′ = 3.6σ, ρ0 = 5σ, andNc = 20
for all cases. Figures (a) and (c) correspond to the symmetric chain for d = 4σ and d = 5σ,
respectively. Figures (b) and (d) correspond to the antisymmetric chain for d = 4σ and d = 5σ,
respectively. In subfigures (i), each bar represents the amplitude of the basis states in Eq. (4.12)
for each site. In all cases, the edge states only populate one sublattice, either theA, or theB
sites, with the population decaying exponentially from the edge. They are obtained as the
symmetric and antisymmetric superpositions of their hybridized counterparts. The edge
states for d = 5σ, show an almost complete localization of the population in the edge site
as both Ĥs and Ĥa are within the nearly dimerized regime. However, for d = 4σ all edge
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Figure 4.4: Single particle energy spectrum for a chain ofNc = 20 unit cells with ρ0 = 5σ,
distances d′ = 3.6σ, d = 4σ (black dots) and d = 5σ (blue crosses). The inset shows the inner
bands given by Ĥa and the zero-energy edge states.

states penetrate considerably into the bulk. In subfigures (ii) that show the real space density
plots, one can see the difference between the edge states of Ĥs and Ĥa in the orientation of
the nodes that appear in the density |Ψ|2. These nodes appear due to the superposition of the
positive and negative circulations of the mode with OAM l = 1, Eq. (4.12).

4.3 Two-particle

In this section we investigate the role of on-site bosonic interactions by considering the
simplest possible interacting case, a two-boson system. The total Hamiltonian is Ĥl=1 =
Ĥ0
l=1 + Ĥint

l=1, where the independent-particle term Ĥ0
l=1 [interaction term Ĥint

l=1] is given
in Eq. (4.5) [Eq. (4.7)]. Figure 4.6 shows the two-particle energy spectrum in gray lines as a
function of the interaction strength to tunneling ratio U/t′s for a chain ofNc = 15 unit cells
with ρ0 = 5σ and the distances d = 5σ and d′ = 3.6σ. At zero interaction U/t′s = 0, the
spectrum presents five scattering continua, which correspond to the different two-particle
combinations that occupy the different energy bands of the single-particle spectrum. As the
particles occupy different sites, the energy bandwidth of these bands stays constant for any
value of U . For a non-zero interaction strength, nine additional bands can be distinguished,
for which the energy depends on the interaction strength U . On top of these bands we plot
in color the eigenvalues of the strong-link Hamiltonian discussed in the next section. Those
bands have contributions of basis states where two bosons occupy the same site, forming a
bound state referred as doublon, that leads to a nonzero interaction energy [289–293].

In order to characterize the doublon bands, we analyze two regimes: (i) For the topological
dimerized limit of the original lattice, where d′ < d and J ′2, J ′3 � J2, J3, we derive a strong-
linkmodel that describes the doublon bands at any interaction strengthU , and (ii) For the limit
of strong interactions, U � J

(′)
2 , J

(′)
3 , we use perturbation theory to describe the effective
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Figure 4.5: Edge states of (a,c) Ĥs and (b,d) Ĥa. The distance is (a,b) d = 4σ and (c,d) d = 5σ,
with d′ = 3.6σ, ρ0 = 5σ, andNc = 20 for all cases. (i) Amplitude of the left (filled black bars)
and right (empty blue bars) edge states of the symmetric and antisymmetric states (4.12) at
each site. (ii) Real space density, |Ψ|2 of the first 15 sites of the left edge state. The edge states
arise as the symmetric and antisymmetric superpositions of their hybridized counterparts.

subspaces that appear as a result of introducing the couplings J (′)
2 , J

(′)
3 as a perturbation.

Strong-link Hamiltonian

In this section we consider the dimerized limit of the real space SSH lattice. First, we consider
the topological dimerization, for which d′ < d, and such that the corresponding couplings can
be neglected, J ′2, J ′3 � J2, J3. Thus, the symmetric Ĥs and antisymmetric Ĥa SSH lattices are
also in the dimerized limit. In this regime, the doublon bands can be described by the reduced
two-particle Hamiltonian of a single strong link in unit cells k and k + 1. This approach was
used in [303] to analyze the doublon bands of the two-particle conventional SSH model. The
basis states of this two-particle Hamiltonian are the ten two-particle combinations of the sites
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A andB in the unit cells k and s = k + 1, namely:
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+
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〉
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(4.15)

In this basis, the strong-link Hamiltonian reads

ĤSL =




U 0
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√
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.

(4.16)
To find the eigenvalues and eigenvectors of ĤSL, we consider the regime of large distances
where J ′2 ' J ′3 ≡ J . In this regime, the eigenvalues are

E1 =0, E2 = U, E3 = 2U,

E7,8 =
U −
√

16J2 + U2

2
, E9,10 =

U +
√

16J2 + U2

2
,

E4+q =


cos


1

3
arccos


− U

4
√
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(
U2

8J2 + 2

3

)−3
2


+

2πq

3


·2

√
U2

8J2 + 2

3
+

U

2
√

2J


 2
√

2J,

(4.17)
where q = 0, 1, 2. Table 4.1 presents the eigenvectors in the limit |U | � J while the general
expressions can be found in Table B.1 of the Appendix B.1. The strong-link model for the
trivial dimerization is analogous to the topological dimerization model and it can be obtained
by simply replacing the indices s = k + 1 of eachA site in the basis states (17) by s = k. This
yields the same eigenvectors and eigenvalues given in Eq. (4.17) and Tables 4.1 and B.1 in the
regime of large distances.

Figure 4.6(a) shows the eigenvalues (in color) on top of the exact diagonalization results
(in gray) as a function of the ratio U/t′s. The exact diagonalization results correspond to the
distances d = 5σ and d′ = 3.6σ, which determine the values of the couplings J (′)

2 , J
(′)
3 (see

Fig. 4.2). To compare the analytical and numerical results, we fix the coupling J of ĤSL as
the largest numerical coupling, J ′3, which corresponds to the topological dimerization of the
strong-link model. Thus, we consider the eigenvalues of ĤSL in the regime of large distances
(J ′2 ' J ′3 ≡ J ), Eq. (19). The analytically obtained eigenvalues accurately predict the overall
energy dependence of the doublon bands obtained numerically.
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Figure 4.6: (a) Two-particle energy spectrum for a chain ofNc = 15 unit cells with ρ0 = 5σ
and distances d′ = 3.6σ, d = 5σ obtained through exact diagonalization (gray lines) and
eigenvalues of the strong-link Hamiltonian Eq. (4.16) for J ′3 = J in color. (b-e): Numerical
results for various sections of the spectrum with the color indicating (b) the expectation value
of the bound state populationNb; (c,d), the expectation value of the average distance to the
nearest edgeNe, and (e) parity Π. The circle indicates a crossing between different doublon
bands and the rectangles indicate the sections of the spectrum depicted in (b-e).
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Table 4.1: Normalized eigenvectors vn and eigenvalues En of the strong-link Hamiltonian
ĤSL in the regime of large distances, and the regime of strong interactions |U | � J . Two
cases are considered, {U > 0, U < 0}, and a single number is given when it is the same for
both cases. Note that the eigenvectors and eigenvalues n = 1, 2, 3 are independent of the
ratio |U |/J . The third column indicates the parity Π of the eigenstate with respect to the
exchange circulation symmetry +↔ − in each site.

Table 4.1 gives the eigenvectors vn of the strong-linkHamiltonianEq. (4.16) in the regimeof
strong interactions |U | � J for two cases, {U > 0, U < 0}, and specifies the corresponding
eigenvalues En for the two regimes. The eigenvectors and eigenvalues n = {1 − 3} do
not depend on the coupling J and thus they do not change when increasing |U |/J . In both
regimes, the eigenvalues form three groups, with energies 0, U and 2U . This tendency can
be observed even for relatively small ratios |U |/t′s in Fig. 4.6, where the energy difference
between the different groups of doublon bands diminishes for increasing values of |U |/t′s. The
eigenvectors in Table 4.1 clarify the differences between these three groups. The eigenvectors
with energy zero are a superposition of states where the two particles populate different sites,
|Aαs , Bα′

k 〉. As there are four possible states, there are four bands with energy zero. In these
states the two bosons do not interact, and their energy, which is given by the interaction
Hamiltonian term (4.7), becomes zero. The group with energy U is composed of eigenstates
that are a superposition of states with two bosons in the same site and the same circulation,
|jαk , jαk 〉, which also results in four possible states and four energy bands. Finally, the group
with energy 2U is formed of states where the bosons occupy opposite circulations in the same
site |j+

k , j
−
k 〉. In this case, there are only two available states and this results in only two energy

bands.
Figure 4.7 represents the adjacency graph of the strong-link Hamiltonian ĤSL and its

symmetries. Each vertex represents one of the basis states in Eq. (4.15) and the edges represent
the off-diagonal (solid blue lines) and diagonal (solid blue loops) matrix elements of ĤSL.
The symmetries of the graph become explicit by locating the states |B+

k B
−
k 〉 and |A+

s A
−
s 〉 in

the out-of-plane z axis, which is perpendicular to the plane where all the other basis states
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Figure 4.7: Adjacency graph of the strong-link Hamiltonian ĤSL Eq. (4.16). Each vertex
represents one of the basis states in Eq. (4.15) and the edges represent the off-diagonal (solid
blue lines) and diagonal (solid blue loops) matrix elements of ĤSL. The dashed lines indicate
the reflection symmetries with respect to the oxz (yellow), oyz (pink), and oxy planes, where
the states |B+

k B
−
k 〉 and |A+

s A
−
s 〉 are located in the out-of-plane axis z (gray).

lie (where s = k + 1). Then, the graph explicitly exhibits three symmetries: (i) a reflection
symmetry with respect to the oxz (yellow) plane that leaves the states |B+

k B
−
k 〉, |A+

s A
−
s 〉,

|A+
s B
−
k 〉, and |A−s B+

k 〉 invariant; (ii) a reflection symmetry with respect to the oyz (pink)
plane that leaves the states |B+

k B
−
k 〉, |A+

s A
−
s 〉, |A−s B−k 〉, and |A+

s B
+
k 〉 invariant; and (iii) a

reflection symmetry respect to oxy plane that only permutes the states |B+
k B

−
k 〉 and |A+

s A
−
s 〉

located in the out-of-plane axis z (gray). A single strong-link is symmetric with respect to the
exchange of the sitesA andB, regardless of the number of particles. This symmetry is reflected
in the two-particle graph as the combined application of the symmetries (ii) and (iii). However,
this symmetry disappears when we move away from the dimerized limit by introducing weak
couplings between the different strong links. In contrast, there is a symmetry that originates
in the total Hamiltonian [Eqs. (4.5) and (4.7)], the exchange of circulations +↔ − in each site,
which is inherited by ĤSL. This symmetry can be obtained by applying the symmetries (i) and
(ii) in the two-particle graph. Both the eigenstates of Ĥl=1 and ĤSL have well-defined parities
Π with respect to the exchange of circulations in each site, and we indicate the latter in Table
4.1.

The spectrum in Fig. 4.6 shows a large number of intersections and avoided crossings
between the doublon bands and the scattering continua, as well as between different doublon
bands at U/t′s ' ±0.7 [black circle in Fig. 4.6(a)]. The presence of avoided crossings can be
understood in terms of the circulation exchange symmetry +↔ − discussed above. They
can appear for doublon states and extended states of the same parity that converge in energy.
In contrast, states of opposite parities belong to different symmetry sectors and are therefore
completely decoupled. Below we discuss two examples of avoided crossings.

Fig. 4.6(b) shows the avoided crossing of the state v3 with the upper band of extended
states. The color represents the expectation value of the bound state population in each strong
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linkNb =
∑Nc−1

k=1 n̂bk , where

n̂bk =n̂+
Ak+1

n̂+
Ak+1

+ n̂+
Ak+1

n̂−Ak+1
+ n̂+

Ak+1
n̂+
Bk

+ n̂+
Ak+1

n̂−Bk + n̂−Ak+1
n̂−Ak+1

+ n̂−Ak+1
n̂+
Bk

+ n̂−Ak+1
n̂−Bk + n̂+

Bk
n̂+
Bk

+ n̂+
Bk
n̂−Bk + n̂−Bk n̂

−
Bk
.

(4.18)

The number operators account for the ten state combinations that form the strong-link
Hamiltonian basis in the topological dimerization. This avoided crossing occurs due to the
strong hybridization between the state v3, which has positive parity, and extended states of
the upper band, where all states also have positive parity.

In the avoided crossing shown in Figs. 4.6(d) and (e), the strong resonance involves an edge
bound state instead of the states of the band associated to the state v3. The color in Fig. 4.6(d)
gives the expectation value of Ne =

∑2Nc
o=1

∑
α=±min((o − 1)/2Nc, 1 − o/2Nc)n̂o,α/2

where n̂o,α is the number operator at site o for the circulation α = ±, so that it represents
the average normalized distance to the nearest edge. There are two states below and above
the doublon bands with high edge localization (dark lines), which indicates the presence of
edge bound states associated to that doublon band. For the same avoided crossing, the color
in Fig. 4.6(e) indicates the parity Π of each eigenstate. Embedded within the band of extended
states, there is an inner band of extended states with a lower value of 〈Ne〉, which correspond
to those states where a particle occupies the upper single-particle band of the symmetric
SSH spectrum and the other particle occupies an edge state [304]. Of these states, only some
have a positive parity that allows for the avoided crossing to occur. Such embedded states
are only present in the topological dimerization of the original chain, which possesses four
topologically protected single-particle edge states. They are also present in the zero energy
band [dark horizontal lines in Fig. 4.6(c)], in which either the two particles occupy an edge
state, at exactly zero energy, or one occupies one edge state while the other occupies the
single-particle bands of the antisymmetric SSH lattice.

To obtain the strong-link Hamiltonian we consider that each strong link is completely
decoupled from the adjacent ones, such that every dimer yields exactly the same eigenvalues.
This model is strictly valid in the dimerized limit, where the either the inter- or intra-cell
couplings are exactly zero. As a result of the weak coupling between strong links, the doublon
bands computed through exact diagonalization are not exactly degenerate, but present some
dispersion [see Fig. 4.6(b)]. Additionally, the doublon bands obtained numerically can present
edge bound states above or below the energy of the corresponding doublon band [dark lines
in Fig. 4.6(d)]. They can be identified with Tamm-Shockley states as they are a result of the
renormalized couplings at the edge sites that arise when one introduces the weak couplings
as a perturbation [303, 308–310]. In the next section we are going to lift this degeneracy by
moving away from the dimerized limit and we will consider the regime of strong interactions
to better understand the emergence of the doublon subspaces.

Strong interactions limit

Consider the regime of strong interactions, where the interactions dominate over the tunneling
processes, U � J2, J3, J

′
2, J

′
3. The available states for U → ∞, can be deduced from the
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three groups of eigenvectors of the strong-link Hamiltonian for strong interactions (see Table
4.1). The two bosons can either occupy different sites or occupy the same site forming a
doublon. The bosons can form two possible bound states: A, where the two particles occupy
the same site and the same circulation, |jαk , jαk 〉, with j = A,B and α = ±, and B, where
the two particles occupy the same site and opposite circulations |j+

k , j
−
k 〉. These bound states

have energiesEA = U andEB = 2U , respectively, given by the interaction term (4.7).
If one introduces the couplingsJ2, J3, J

′
2, J

′
3 as a perturbation, the bound states in adjacent

sites become coupled through second-order hopping processes, which creates an effective
dispersive subspace for each bound state class. As the bound states are well separated in energy,
these subspaces are decoupled and can be analyzed independently. The matrix elements of the
effective Hamiltonian for each subspace up to second-order perturbation theory read [311,
312]

〈u|Ĥeff |u′〉 =E0
uδuu′ +

1

2

∑

w

〈u|Ĥ0
l=1|w〉〈w|Ĥ0

l=1|u′〉
[

1

E0
u − E0

w

+
1

E0
u′ − E0

w

]
,

(4.19)
where |u〉, |u′〉 are the bound-states, |w〉, |w′〉 are themediating states in each hopping process,
andE0 are the unperturbed energies. Note that the first-order corrections are always zero.
For |u〉 6= |u′〉, one obtains an effective tunneling term, while for |u〉 = |u′〉, one obtains an
effective on-site potential.

B subspace

Let us start with the B subspace, which is composed of only one bound state per site, |j+
k , j

−
k 〉.

The existence of this bound state is due to the inter-circulation interaction term in the inter-
action Hamiltonian (4.7). Thus, it is a consequence of the ring structure of each site of the
lattice [150, 153] and cannot appear in a conventional SSH lattice [303]. When we introduce
the couplings J2, J3, J

′
2, J

′
3 as a perturbation, the bound states of the B subspace in adjacent

sites become coupled through second-order hopping processes. These yield two effective
couplings: an intra-cell coupling between the bound states |A+

k , A
−
k 〉 and |B+

k , B
−
k 〉, and an

inter-cell coupling between |B+
k B

−
k 〉 and |A+

k+1, A
−
k+1〉. Additionally, each bound state ac-

quires a self-energy term through second-order processes, yielding effective on-site potentials
at each site. Note that in the edge sites there are half the mediating states present in the bulk
sites [303, 304, 308]. Thus, the effective on-site potential in the edge VE is smaller than the
on-site potential in the bulk VB . Using Eq. (4.19), the resulting effective subspace is an SSH
chain with renormalized couplings and a bulk-edge on-site potential mismatch

ĤB=

[
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3
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U
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B
1 + b̂B†Nc b̂

B
Nc),

(4.20)

where the creation and annihilation operators âB(†)
k and b̂B(†)

k correspond to the bound states of
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Figure 4.8: Two-particle energy spectrum for Nc = 15 unit cells with ρ0 = 5σ, distances
d′ = 3.6σ, d = 4.5σ, and U/t′s = 20 for the (a) B and (b) A subspaces. (i) Energies as a
function of the edge on-site potential correction V in units of VA(B) and (ii) energies for the
exactly compensated on-site potential mismatch, (aii) V = VB and (bii) V = VA.

the B subspace in theA andB sites, respectively. This mismatch can be exactly compensated
by introducing an on-site potential V in the edge sites of the real space lattice. Figure 4.8(a)
shows the energy spectrum of the B subspace forNc = 15 unit cells with ρ0 = 5σ, distances
d′ = 3.6σ, d = 4.5σ, and U/t′s = 20. In Fig. 4.8(ai), the spectrum is represented as a function
of the edge potential correction V in units of VB = (J ′22 + J ′23 )/2U , the value of the potential
that exactly compensates the mismatch. Figure 4.8(aii) shows the spectrum for the potential
VB. For V = 0, the spectrum presents only two dispersive bands. The lower band contains
two extra states that arise due to the impurity potentials at the edge sites of the SSH chain.
When increasing the potential correction V , these Tamm-Shockley states depart from the
lower chain as their energy grows linearly and become localized at the edge. For VB, the
potential mismatch is compensated exactly, thus restoring the chiral symmetry of the model
and yielding two topologically-protected edge states.

A subspace

In contrast with the B subspace, theA subspace presents two bound states per site instead of
only one, |jαk , jαk 〉 with α = ±. In the strong interactions regime, the bound states in adjacent
sites become coupled through second-order hoppings, which yields four effective couplings
between the adjacent bound states |Aαk , Aαk 〉 and |Bα′

k′ , B
α′
k′ 〉, thus forming a Creutz ladder
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structure [313]. In analogy with the B subspace, each bound state also obtains an effective
on-site potential that generates a bulk-edge on-site potential mismatch. Using Eq. (4.19), the
effective model of this subspace reads

ĤA =
∑

α=±

(
Nc∑

k=1

[
2J2

2

U
âAα†k b̂Aαk +

2J2
3

U
âAα†k b̂

A−α
k

]
+ H.c.

+
Nc−1∑

k=1

[
2J ′22
U

âAα†k+1 b̂
Aα
k +

2J ′23
U

âAα†k+1 b̂
A−α
k

]
+ H.c.

+ 2
J2

2 + J2
3 + J ′22 + J ′23
U

Nc∑

k=1

[
âAα†k âAαk + b̂Aα†k b̂Aαk

]

− 2
J ′22 + J ′23

U

[
âAα†1 âAα1 + b̂Aα†Nc

b̂AαNc

])
,

(4.21)

where the creation and annihilation operators âAα(†)
k and b̂Aα(†)

k correspond to the bound
states of theA subspace with two particles in circulation α in theA andB sites, respectively.
The effectivemodel of theA subspace takes the same form as the original single-particle model
in Eq. (4.5), with additional on-site potential terms. Figure 4.8(b) shows the energy spectrum
of theA subspace forNc = 15 unit cells with ρ0 = 5σ, distances d′ = 3.6σ, d = 4.5σ, and
U/t′s = 20 for (bi) an increasing potential correction V in units of VA and for (bii) the exactly
compensated spectrum at VA = (J ′22 + J ′23 )/U . Figure 4.8(bi) shows four bands with the
outer ones presenting a larger dispersion than the inner ones, and also four Tamm-Shockley
states for which the energy increases linearly with the potential correction V . As in the B
subspace, the impurity states coincide in energy with the dispersive band due to the edge-bulk
potential mismatch, but here two of them are located within the bulk. The fact that these
two states, in the absence of any edge potential compensation, naturally appear within a bulk
continuumwhile remaining localized at the edge, suggests that they may be regarded as bound
states in the continuum [314]. Once the on-site potential mismatch is exactly compensated,
introducing VA, the single-particle [Eq. (4.5)] and two-particle [Eq. (4.21)] models become
completely analogous. Then, one can apply the single-particle basis rotation (4.12) for theA
bound states that transforms the system into two decoupled SSH chains with the following
renormalized couplings

tAs = 2
J2

2 + J2
3

U
t′As = 2

J ′22 + J ′23
U

tAa = 2
J2

2 − J2
3

U
t′Aa = 2

J ′22 − J ′23
U

.

(4.22)

The spectrum in Fig. 4.8(bii) is equivalent to the single-particle one shown in Fig. 4.4 with
renormalized and shifted energies. The outer bands, which show a greater dispersion, belong
to the symmetric chain, while the inner ones belong to the antisymmetric chain. As bothmodels
are in the same topological phase, both lattices contribute with two topologically-protected
edge states.
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4.4 Conclusions

In this chapter, we have studied a system of one or two bosons loaded into states with OAM
l = 1 in a lattice of rings, with alternating distances d and d′. By selecting the states with a
givenOAM l, each site of the lattice presents two internal states given by the two circulations+
and−. At the single-particle level, this system presents non-trivial topological characteristics,
that can be properly analyzed by resolving the exchange symmetry between the circulations +
and−. This leads to two decoupled SSH chains whose associated Zak phases determine the
topological phase of the system. We analyze the parameter space in terms of the distances d
and d′, finding that both chains are always in the same topological phase but show different
dispersion in their bands. Thus, the system can present four topologically-protected edge
states.

Secondly, we study the case of two bosons with on-site interactions, which generate a rich
landscape of doublon bands and edge bound states. In these bands, the two-particles occupy
the same site, and we analyze them analytically in two limits. In the dimerized limit, one
can reduce the system to a single strong link. The eigenvalues of the associated Hamiltonian
accurately predict the overall energy dependence of the doublon bands obtained using exact
diagonalization in the nearly dimerized regime. The strong-link eigenvectors are analyzed in
the strong interactions limit, where we find that they form three distinct groups. They either
tend to states where the two particles are in distinct sites, with energy zero, or to the same site
in the same circulation (with energy U ), or opposite circulations (energy 2U ). Additionally,
we show that the avoided crossings between the doublon bands and the bands of extended
states can only arise between eigenstates of the same exchange parity sector. In order to be
able to capture the subspaces created by these doublon states away from the dimerized limit,
we consider the strong interactions limit using second-order perturbation theory. The two
doublon subspaces are well separated in energy and thus can be studied independently. We
find effective models that map to an SSH model and a Creutz-like model with a bulk-edge
on-site potential mismatch. We show how this mismatch can be corrected by introducing a
potential at the edge sites, thus recovering the chiral symmetry that topologically protects the
doublon edge states. The effective models are benchmarked using exact diagonalization.





5
MANY-BODY AHARONOV-BOHM CAGING IN A LATTICE

OF RINGS

In this chapter, we explore a one-dimensional (1D) staggered lattice of rings within the Bose-
Hubbard formalism. This lattice can be understood through the six-state-model presented in
Sec. 2.3.2 of Chapter 2, which predicts that the tunneling amplitudes between orbital angular
momentum (OAM) states with opposite circulations in each ring can take complex values.
These complex couplings realize synthetic fluxes that can be exploited to generate flat bands
created by Aharonov-Bohm caging. Within this context, we study the single-particle case and
then analyze the role of on-site interactions in this phenomenon.

Neutral particles can emulate the dynamics of electrons in the presence of magnetic fields
through the engineering of artificial gauge fields [63, 315]. In the well-known Aharonov-
Bohm effect [316, 317], a charged particle performing a closed loop on a region with a non-
zero electromagnetic potential acquires not only a dynamical phase but also an additional
phase known as the Aharonov-Bohm phase. For particular periodic lattice geometries, single-
particle wavefunctions undergo a sharp localization due to destructive interference known
as Aharonov-Bohm caging [121, 122]. These localization effects arise in systems such as the
T3 model [121, 318, 319] or the diamond chain [122], and it has been observed in several
experimental platforms, such as networks of conducting wires [320, 321], ultracold atoms
[322], and photonic lattices [216, 323, 324].

Of particular interest is the role that interactions play in a system with single-particle
Aharonov-Bohm caging, which has been explored in different regimes [122, 150, 293, 325, 326].
The addition of interactions lifts the degeneracy of the single-particle flat bands, providing
a mechanism for particles to avoid caging [122, 293, 325]. However, in the regime of strong
interactions, Aharonov-Bohm caging of two particles can be recovered for appropriately tuned
magnetic fluxes through the formation of bound states [293].

Here, we study a 1D lattice of ring potentials populated by OAMmodes with l = 1 and
winding numbers ν = ±l. Such states give rise to complex couplings that can be engineered
by modifying the geometry of the lattice [146–150, 327]. Thus, it is a system where synthetic
fluxes arise naturally. The physics described here can be observed either in a lattice of ring
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potentials or in the p-band of a conventional lattice. For both cases, a variety of techniques exist
to generate the potentials and transfer angular momentum to the particles (see discussions in
Chapters 3 and 4). For the particular case of an optical lattice, a staggered geometry can be
generated in a superlattice with commensurate wavelengths of light beams where the extra
tunnelings are switched off with square lattices [328]. The local eigenstates with winding
number ν = ±l provide the systemwith a synthetic dimension, such that it can bemapped to a
Creutz laddermodelwith a flux threading each plaquette. For this family ofmodels, interaction
induced effects have been studied for repulsive [307, 313, 329, 330] and attractive [331, 332]
on-site interactions, and for nearest-neighbor interactions [333–335]. In particular, two-body
Aharonov-Bohm caging was explored in [313], where a photonic lattice implementation was
proposed. Here, we explore theN-boson case and further generalize the study to the case of
non-uniform fluxes, which are known to enrich the Aharonov-Bohm caging phenomenology
in single-particle diamond lattices [336].

The chapter is organized as follows. We introduce the system in Section 5.1 and analyze
the single-particle case in Sec. 5.2. For the case in which a π-flux threads each plaquette, we
analyze both the topology of the system and study the Aharonov-Bohm caging effect in terms
of the compact localized states (CLSs) that compose the flat-band spectrum. In Section 5.3, we
generalize this study to the case ofN particles by introducing on-site repulsive interactions
and studying the regime of strong interactions using perturbation theory. In Sec. 5.4, we
generalize the study to the case of non-uniform fluxes and summarize our conclusions in Sec.
5.5.

5.1 Physical system

We consider a few bosons loaded into a 1D lattice where the adjacent sites are equally separated
by a distance d. Each unit cell k is composed of two sitesAk andBk , and we make the lattice
staggered by introducing an angle φ as depicted in Fig. 5.1. Given the local polar coordinates
of each site, (ρjk , ϕjk) with j = A,B, the local trapping potential is a ring potential of the
form V (ρjk) = 1

2
Mω2(ρjk − ρ0)2, where ω is the frequency of the radial potential,M is the

mass of the particles, and ρ0 is the radius. For ρ0 = 0, the ring trap reduces to a harmonic
potential. We consider identical local potentials at each site.

The eigenstates of each isolated ring have a well-defined OAM l. Each value of l corre-
sponds to two degenerate eigenstates with winding numbers ν = ±l (with the exception of
l = 0, that corresponds to a single non-degenerate eigenstate). Therefore, they are eigenstates
of the operator L̂z = −i~ ∂

∂ϕ
with eigenvalue ~ν . We will denote the local eigenstates as |jνk 〉,

where k is the unit cell index, j = A,B is the site, and ν is the winding number. As we saw in
Sec. 2.3 of Chapter 2, these sets of local eigenstates with different OAM l are well-separated
in energy, which makes them effectively decoupled in a lattice structure [146, 147]. In analogy
with the previous chapter, the total field operator for the states with OAM l in the lattice reads

Ψ̂l(r) =
Nc∑

k=1

∑

ν=±l
φνAk (ρAk , ϕAk) â

ν
k + φνBk (ρBk , ϕBk) b̂

ν
k, (5.1)
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Ak

Bk

Ak+1

Bk+1Bk−1

d d

φ

ϕ0

Figure 5.1: Diagram of the 1D staggered chain where the adjacent sitesA andB are separated
by a distance d. The unit cell is marked by a rectangle and the gray line indicates the origin of
the phase ϕ0. The black arrows denote real tunneling amplitudes while the blue ones indicate
complex tunneling amplitudes between states of different winding number.

whereNc is the number of unit cells, and âνk and b̂νk are the annihilation operators of the local
eigenstates |Aνk〉 and |Bν

k〉, respectively. The wavefunctions of each state |jνk 〉 are given by

φνjk (ρjk , ϕjk) = 〈r | jνk 〉 = ψ (ρjk) e
iν(ϕjk−ϕ0), (5.2)

where ψ (ρjk) is the radial part of the wavefunction and e
iν(ϕjk−ϕ0) is the complex phase due

to the non-zero OAM, with ϕ0 indicating the origin of the phase.
For an array of coplanar rings, the local OAM eigenstates become coupled through the

tunneling amplitudes J1 (for opposite circulations within a single ring), J2 (for the same
circulation in adjacent rings), and J3 (for opposite circulations in adjacent rings), see Sec. 2.3.2.
In Chapter 4, we investigated an array of inline rings, where the complex factors accompanying
J1 and J3 vanish for an appropriately chosenϕ0. Here, we choose the origin of the phase along
theAk andBk sites of the same unit cell (see Fig. 5.1), such that the corresponding couplings
are real. The inter-cell couplings between the sitesBk andAk+1 form an angle φ with respect
to the origin of the phase, such that the corresponding couplings between opposite circulations
acquire a complex phase e±i2lφ. Therefore, one can tune the complex phase of these couplings
by modifying the geometry of the staggered chain, i.e., the angle φ (see Fig. 5.1).

In this chapter, we focus on the regime of large distances, defining J2 = J3 ≡ J , and we
neglect the J1 coupling. Also, we study the states with OAM l = 1 and winding numbers
ν = ±1, that we denote with the circulation label α = ±, and consider an integer number of
unit cells. Given the above assumptions and using harmonic oscillator units, the single-particle
Hamiltonian of this system reads

Ĥ0
l=1 = J

∑

α=±

[
Nc∑

k=1

(
âα†k b̂

α
k + âα†k b̂

−α
k

)
+

Nc−1∑

k=1

(
b̂α†k â

α
k+1 + e−2αiφb̂α†k â

−α
k+1

)
+ H.c.

]
.

(5.3)
By representing the two circulations + and− as separate sites, one can depict this system as
the Creutz ladder with vanishing vertical couplings shown in Fig. 5.2. The two circulations
α = ± act as a synthetic dimension that constitutes the two legs of the ladder. Henceforward,
we use the notation |jαk , n〉 to denote the number of particles n in the local state |jαk 〉. In the
following section, where we discuss the single-particle case, n will always be n = 1. For this
case, the states in each site are |Aαk , 1〉 and |Bα

k , 1〉, the couplings are J = J and θ = 2φ.
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|A−
k , n〉 |B−

k , n〉

|A+
k , n〉 |B+

k , n〉 |A+
k+1, n〉

|A−
k+1, n〉

|B+
k−1, n〉

|B−
k−1, n〉

J
e±iθJ

Figure 5.2: Schematic representation of the sites and couplings of the lattice formed by a real
dimension and the synthetic dimension spanned by the two circulations± in each siteAk and
Bk. The unit cell is indicated as a dotted rectangle and the complex couplings are eiθJ from
circulation + to− and its complex conjugate in the opposite direction.

5.2 Single particle

In this section, we will analyze in detail the single-particle case, which will be the basis to
understand the generalization toN particles that we explore in Section 5.3. As we have seen,
the complex factor e±2iφ that appears with the J3 couplings can be tuned by modifying the
real space angle φ of the staggered chain (see Fig. 5.1). We are interested in the case φ = π/2,
for which the J3 inter-cell couplings are accompanied by a minus sign, thus generating a
synthetic π-flux in each plaquette. Note that the couplings in the staggered chain can form
either rhombus or triangle plaquettes with two configurations each, such that every one of
them contains a π-flux (see Fig. 5.3). As a result, a particle cannot tunnel two sites to the
right or to the left due to destructive interference. This destructive interference that leads to
localization due to the presence of a flux is known as Aharonov-Bohm caging [121, 122]. For
φ = π/2, the Hamiltonian in Eq. (5.3) reduces to

Ĥ0
l=1 = J

∑

α=±

[
Nc∑

k=1

(
âα†k b̂

α
k + âα†k b̂

−α
k

)
+

Nc−1∑

k=1

(
b̂α†k â

α
k+1 − b̂α†k â−αk+1

)
+ H.c.

]
. (5.4)

A topological characterization of this system can be obtained by analyzing the block-
diagonalized Hamiltonian. We introduce the following basis change (with n = 1),

∣∣∣As(a)
k , n

〉
=

1√
2

(∣∣A+
k , n

〉
+
(−)

∣∣A−k , n
〉)
,

∣∣∣Bs(a)
k , n

〉
=

1√
2

(∣∣B+
k , n

〉
+
(−)

∣∣B−k , n
〉)
,

(5.5)

that decouples the system into the two following Hamiltonians,

Ĥs =2J
Nc∑

k=1

âs†k b̂
s
k + H.c.,

Ĥa =2J
Nc−1∑

k=1

âa†k+1b̂
a
k + H.c.,

(5.6)
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J −J

ππ ππ

ππ ππ

Figure 5.3: Schematic representation of the lattice with a π-flux in each plaquette, for which
the cross-circulation couplings reduce to −J (blue dashed lines). The different diagrams
highlight the plaquette configurations that enclose a π-flux: rhombi and triangles with two
configurations each.

where âs(a)
k and b̂s(a)

k are the annihilation operators of the states in Eq. (5.5). The Hamiltonians
Ĥa and Ĥs correspond to two Su-Schrieffer-Heeger (SSH) chains in the dimerized limit, i.e.,
linear chains with alternating couplings where either the inter or the intra-cell coupling is
zero (see Fig. 5.4 with n = 1 andJ = J ). The two models have the same couplings, 2J and 0,
in opposite configurations.

We consider an integer number of unit cells and that the first site of the chain is a site
A (and thus, the last, a site B), such that the edge couplings are real [see Fig. 5.4(a)]. In that
case, the symmetric SSH chain, Ĥs, is in the trivial phase, characterized by a quantized Zak
phaseZ = 0, and the antisymmetric chain, Ĥa, is in the topological phase with a quantized
Zak phase,Z = π. If we instead consider a lattice starting with aB site, the symmetric chain
would be the one in the topological phase. Thus, for an integer number of unit cells, the two
edge states come from the same SSH chain. For a non-integer number of unit cells, the Creutz
ladder also presents two edge states [see Fig. 5.4(b)]. However, in this case each edge state
comes from a different chain, as SSH models with an odd number of sites exhibit a single edge
state [337].

In Fig. 5.5(a), we represent the energy spectrum of a chain withNc = 12 unit cells and
φ = π/2 obtained through exact diagonalization. We obtain two flat bands and two zero-
energy edge states that correspond to the superposition of the energy spectra of Ĥs and Ĥa,
in Eq. (5.6). The edge states are eigenstates of the antisymmetric chain and are completely
localized at the edge sites (with n = 1),

|Aa1, n〉edge =
1√
2

(∣∣A+
1 , n

〉
−
∣∣A−1 , n

〉)
,

∣∣Ba
Nc , n

〉
edge

=
1√
2

(∣∣B+
Nc
, n
〉
−
∣∣B−Nc , n

〉)
.

(5.7)
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FIG. 2. Schematic representation of the sites and couplings
of the lattice formed by a real dimension and the synthetic
dimension spanned by the two circulations ± in each site Ak

and Bk. The unit cell is indicated as a dotted rectangle and
the complex couplings are ei✓J from circulation + to � and
its complex conjugate in the opposite direction.

IV. As we have seen, the complex factor e±2i� that ap-
pears in the J3 couplings can be tuned by modifying the
real space angle � of the staggered chain (see Fig. 1).
We are interested in the case � = ⇡/2, for which the J3

inter-cell couplings become J3 = �J2 = �J , thus gener-
ating a synthetic ⇡-flux in each plaquette. Note that the
couplings in the staggered chain can form either rhombus
or triangle plaquettes with two configurations each, such
that every one of them contains a ⇡-flux (see Fig. 3). As a
result, a particle cannot tunnel two sites to the right or to
the left due to destructive interference. This destructive
interference that leads to localization due to the presence
of a flux is known as Aharonov-Bohm caging [5, 6]. For
� = ⇡/2, the Hamiltonian in Eq. (5) reduces to
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â↵†

k b̂↵k + â↵†
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A topological characterization of this system can be ob-
tained by analyzing the block-diagonalized Hamiltonian.
We introduce the following basis change (with n = 1),
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↵
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��B�
k , n

↵�
,

(7)

that decouples the system into the two following Hamil-
tonians,

Ĥs =2J

NcX

k=1

âs†
k b̂s

k + H.c.,

Ĥa =2J

Nc�1X

k=1

âa†
k+1b̂

a
k + H.c.,

(8)

where â
s(a)
k and b̂

s(a)
k are the annihilation operators of

the states in Eq. (7). The Hamiltonians Ĥa and Ĥs cor-
respond to two Su-Schrie↵er-Heeger (SSH) chains in the

J �J
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FIG. 3. Schematic representation of the lattice with a ⇡-flux
in each plaquette, for which the cross-circulation couplings
reduce to �J (blue dashed lines). The di↵erent diagrams
highlight the plaquette configurations that enclose a ⇡-flux:
rhombi and triangles with two configurations each.

dimerized limit, i.e., linear chains with alternating cou-
plings where either the inter or the intra-cell coupling is
zero (see Fig. 4 with n = 1 and J = J). The two models
have the same couplings, 2J and 0, in opposite configu-
rations, which leads to them having opposite topological
phases.
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FIG. 4. Decoupled symmetric and antisymmetric SSH chains
with alternating couplings 2J and 0. The unit cell of each
chain is indicated by the dotted rectangles.

We consider an integer number of unit cells and that
the first site of the chain is a site A (and thus, the last,
a site B), such that the edge couplings are real. In that

case, the symmetric SSH chain, Ĥs, is in the trivial phase,
characterized by a quantized Zak phase � = 0, and the
antisymmetric chain, Ĥa, is in the topological phase with
a quantized Zak phase, � = ⇡. If we instead consider a
lattice starting with a B site, the symmetric chain would
be the one in the topological phase. Thus, for an integer
number of unit cells, there are always two edge states
present regardless of the configuration of the chain.

In Fig. 5(a), we represent the energy spectrum of a

Figure 5.4: Decoupled symmetric and antisymmetric SSH chains with alternating couplings
2J and 0 for (a) an integer number of unit cells and (b) a non-integer number of unit cells. The
unit cell of each chain is indicated by the dotted rectangles and the edge states are indicated in
red.

5.2.1 Single-particle Aharonov-Bohm caging
In this section, we explore single-particle Aharonov-Bohm caging. The flat bands that appear
in the spectrum when a π-flux threads each plaquette [see Fig. 5.5(a)], are characterized by the
presence of compact localized states (CLSs). These eigenstates have high real space localization:
their amplitude is non-zero in a few close-by sites while being exactly zero everywhere else.
The smallest possible basis for the CLSs in this model spans the states of one unit cell and an
extra site (where n = 1),

{
|A+

k , n〉, |A−k , n〉, |B+
k , n〉, |B−k , n〉, |A+

k+1, n〉, |A−k+1, n〉
}
. (5.8)

The CLSs are found to be [see Fig. 5.5(b)]

|Υ1
k, n〉 =

1

2

(
|B+

k , n〉+ |B−k , n〉 − |A+
k , n〉 − |A−k , n〉

)
,

|Υ2
k, n〉 =

1

2

(
|B+

k , n〉 − |B−k , n〉 − |A+
k+1〉+ |A−k+1, n〉

)
,

|Υ3
k, n〉 =

1

2

(
|B+

k , n〉+ |B−k , n〉+ |A+
k , n〉+ |A−k , n〉

)
,

|Υ4
k, n〉 =

1

2

(
|B+

k , n〉 − |B−k , n〉+ |A+
k+1, n〉 − |A−k+1, n〉

)
,

(5.9)

and their corresponding energies areE1 = E2 = −2J andE3 = E4 = 2J (where J = J
in the single-particle case). Any initial state that can bewritten as a superposition of these states
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Figure 5.5: (a) Single-particle energy spectrum for Nc = 12 unit cells and φ = π/2. (b)
Representation of the CLSs defined in Eq. (5.9) that are eigenstates of the Creutz ladder,
see Fig. 5.2, when a π-flux threads each plaquette. The radius of each circle represents the
amplitude and the color represents the phase, with red being a π phase, and green being a
phase zero.

will remain localized in the caging cell defined in (5.8). We note that the π-flux case of this
system exactly maps to the usual π-flux Creutz ladder with complex horizontal couplings [313]
through a gauge transformation. In suchmodels, the unit cell is composed of only two sites and
presents two CLSs. One CLS corresponds to our two CLSs with energiesE1 = E2 = −2J
and the other, to the two CLSs with E3 = E4 = 2J . For an arbitrary flux, the adjacent
triangle plaquettes contain fluxes 2φ and−2φ, such that the model does not map to a Creutz
ladder with only two sites per unit cell.

We consider an initial state where only a single siteAk in the bulk of the chain is populated.
Fig. 5.6(a) shows the time evolution of the population of each local eigenstate, P|jαk ,1〉 (with j =

A,B), for the initial state
(∣∣A+

k , 1
〉

+
∣∣A−k , 1

〉)
/
√

2, which corresponds to the superposition
(|Υ3

k, 1〉 − |Υ1
k, 1〉)/

√
2. The population coherently oscillates between the sitesAk andBk

without populating any other sites due to destructive interference atBk−1 andAk+1. Thus,
the total caged population, Pcag = P|A+

k ,1〉 + P|A−k ,1〉 + P|B+
k ,1〉 + P|B−k ,1〉, stays at Pcag = 1

throughout the time evolution. Additionally, the two circulations within each site maintain
the same population at all times: P|A+

k ,1〉 = P|A−k ,1〉 and P|B+
k ,1〉 = P|B−k ,1〉. For the initial

state
(∣∣A+

k , 1
〉
−
∣∣A−k , 1

〉)
/
√

2 = (|Υ4
k, 1〉 − |Υ2

k, 1〉)/
√

2, one obtains identical dynamics
but the exchange in population takes place between the sitesAk andBk−1, as the sign of the
superposition shifts the destructive interference to the sitesBk andAk−1. Fig. 5.6(b) shows the
time evolution for the initial state

∣∣A+
k , 1
〉

= (−|Υ1
k, 1〉+ |Υ3

k, 1〉−|Υ2
k−1, 1〉+ |Υ4

k−1, 1〉)/2.
As this initial state cannot be written as a superposition of CLSs of a single caging cell, the
population reaches both the sitesBk andBk−1. The total caged population, which in this case
also stays constant, is Pcag = P|A+

k ,1〉 + P|A−k ,1〉 + P|B+
k ,1〉 + P|B−k ,1〉 + P|B+

k−1,1〉 + P|B−k−1,1〉.
Also, we simulate a chain with Nc = 12 unit cells and choose the unit cell k = 4 for the
initial state. The caging dynamics in Fig. 5.6 can also be understood in terms of the decoupled
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Figure 5.6: Time evolution of the population of the states |jαk , 1〉 with j = A,B and total
caged population, obtained through exact diagonalization for J = 1,Nc = 12 unit cells and
φ = π/2. The continuous red line is the total caged populationPcag; the dashed black line is the
population in the states |Aα4 , 1〉, with α = ±; and the dotted blue line is the population in the
states (a) |Bα

4 , 1〉, (b) |Bα
3 , 1〉 and |Bα

4 , 1〉. The initial states are (a)
(∣∣A+

4 , 1
〉

+
∣∣A−4 , 1

〉)
/
√

2
and (b)

∣∣A+
4 , 1
〉
.

dimers of the SSH chains. For the symmetric and antisymmetric initial states, in Eq. (5.5),
the population remains trapped in the corresponding dimer of the symmetric, Ĥs, or the
antisymmetric, Ĥa, chain (see Fig. 5.4). In contrast, the initial state

∣∣A+
k , 1
〉
populates both the

symmetric and antisymmetric SSH chains, such that the population reaches both dimers and
as a consequence reaches a broader spatial extent.

5.3 N particles

In this section, we explore the many-body dynamics of the system forN bosons with repulsive
interactions. As shown in Chapter 4, the interaction Hamiltonian describing on-site two-body
collisions for the states with l = 1 reads

Ĥint
l=1 =

U

2

∑

j=A,B

Nc∑

k=1

[
n̂+
jk

(n̂+
jk
−1)+n̂−jk(n̂

−
jk
−1)+4n̂+

jk
n̂−jk
]
, (5.10)

where n̂αjk = ĵα†k ĵ
α
k is the number operator and the interaction strength is defined as U ≡

g
´
d2r |ψ (ρjk)|4 [147]. The cross-circulation term induces a nearest-neighbor interaction

term along the rungs of the Creutz ladder which was also considered in [334].
Henceforward, we will analyze the regime of strong interactions, in which the interaction

term dominates over the tunneling term, U � J . We are interested in the bound-states
where theN bosons occupy a single site of the lattice,

{
|jαk , n〉 ⊗ |j−αk ,m〉

}
, where there are

n particles in one circulation andm particles in the other circulation (with n+m = N ). In
the regime of strong interactions, the kinetic Hamiltonian, Ĥ0

l=1 [Eq. (5.3)], is introduced as a
perturbation that couples the bound states

{
|jαk , n〉 ⊗ |j−αk ,m〉

}
in adjacent sites. This effect
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creates subspaces that are well-separated in energy, and thus, effectively uncoupled. We will
analyze in detail the two and three-particle cases as an example in the next subsections. The
matrix elements of the effective Hamiltonian of each subspace up to third order are given by
[311, 312]

〈d|Ĥeff |d′〉 =E0
dδdd′ +

1

2

∑

w

〈d|Ĥ0
l=1|w〉〈w|Ĥ0

l=1|d′〉 ·
[

1

E0
d − E0

w

+
1

E0
d′ − E0

w

]
+

+
1

2

∑

ww′

〈d|Ĥ0
l=1|w〉〈w|Ĥ0

l=1|w′〉〈w′|Ĥ0
l=1|d′〉·

·
[

1

(E0
d − E0

w) (E0
d − E0

w′)
+

1

(E0
d′ − E0

w) (E0
d′ − E0

w′)

]
,

(5.11)

where |d〉, |d′〉 are the bound-states, |w〉, |w′〉 are themediating states in each hopping process,
andE0 are the unperturbed energies. Note that the first-order corrections are always zero.
For |d〉 6= |d′〉, one obtains an effective tunneling term, while for |d〉 = |d′〉, one obtains an
effective on-site potential. While Eq. (5.11) provides a good description up to N = 3, for
N > 3, one would need to compute the higher-order terms of the perturbative expansion.

5.3.1 Two and three particles
For the two and three-particle cases, there are only two subspaces available that arise from the
following bound-state classes:

(a) A: N particles occupy the same site and the same circulation, |jαk , N〉. These are the
bound-states that minimize the interaction energy, which isEA = N(N − 1)U/2.

(b) B: these bound-states maximize the interaction energy and take the following two forms:

(i) ForN even,N/2 particles in each circulation,
{
|j+
k , N/2〉 ⊗ |j−k , N/2〉

}
,

with energyEB,even = (3N2/2−N)U/2.
(ii) ForN odd, (N − 1)/2 particles in one circulation and (N − 1)/2 + 1 in the other

{
|j+
k , (N − 1)/2〉 ⊗ |j−k , (N − 1)/2 + 1〉,
|j+
k , (N − 1)/2 + 1〉 ⊗ |j−k , (N − 1)/2〉

}
,

with a slightly lower energy,EB,odd = (3N2/2−N − 1/2)U/2.

A subspace

We introduce the coupling J as a perturbation, i.e., U � J , such that the states of the A
subspace in adjacent sites become coupled. The states for the two-particle case, e.g., |Aαk , 2〉
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and |Bα′
k , 2〉, become coupled through second-order hopping processes, while the states in the

three-particle case, e.g., |Aαk , 3〉 and |Bα′
k , 3〉, become coupled through third-order hopping

processes. Additionally, each state is coupled to itself also through second-order hoppings, such
that an effective on-site potential arises. Note that for both cases, the third-order contribution
to the effective on-site potential is zero. Also, the on-site potential has different magnitudes
for the bulk, VB , and the edge, VE , since the number of available mediating states for the bulk
states is twice the number of the ones available for the states localized at the edge sites [303,
304, 308]. Using Eq. (5.11) up to second order for the two-particle case and up to third order
for the three-particle case, the resulting effective chains become a Creutz ladder, depicted
in Fig. (5.2) with n = 2 or 3. The parameters that characterize the two and three-particle
effective models as well as those of the single-particle case are given in Table 5.1.

Parameters Single-particle A2 A3 B3

J J 2J2/U 3J3/(2U2) 121J3/(72U2)

θ 2φ 4φ 6φ 2φ

φ π/2 π/4 π/2, π/6 π/2

VE — 4J2/U 3J2/U 11J2/(6U)

VB — 8J2/U 6J2/U 11J2/(3U)

V — 2J2/U J2/U —

Table 5.1: Summary of parameters that characterize the single-particle case and the two and
three-particle effective subspaces that exhibit Aharonov-Bohm caging. Parameters of the
Creutz ladder defined in Fig. 5.2: couplings J , angle θ and real space angle φ that induces a
π-flux. Effective on-site potential up to second-order corrections at the edge sites, VE , and
the bulk sites, VB , and edge correction potential V .

The inter-cell cross couplings between theA subspace states with opposite circulations
contain a complex factor e±iθ (where θ takes different values for each subspace, see Table 5.1).
Then, for two (three) particles and the real space angle φ = π/4 (φ = π/2 or π/6) (see
Fig. 5.1), the complex factor becomes a π phase and the effective chain acquires a π-flux in
each plaquette of the Creutz ladder, see Fig. 5.3. Due to the similarities between the single-
particle model and the effectiveA subspace, we can apply the basis-change employed for the
single-particle case, taking n = 2 or 3 in Eq. (5.5). As expected, one obtains two dimerized
SSH-like decoupled systems with renormalized couplings [Fig. 5.4 with n = 2 or 3 and
J = 2J2/U or 3J3/(2U2)], with additional on-site potentials inherited from the Creutz
ladder, VB and VE .

Fig. 5.7 shows the energy spectrum of theA subspace for (a1) two particles and (b1) three
particles for U/J = 50 andNc = 12 unit cells. We choose the angle φ that induces a π-flux
in each effective Hamiltonian, φ = π/4 and φ = π/2, respectively. In contrast with a regular
SSH model, the effective chains are not chirally symmetric due to the presence of the bulk-
edge on-site potential mismatch. Therefore, the four eigenstates that fall outside the bulk
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Figure 5.7: Energy spectrum of theA subspace for (a) two (φ = π/4) and (b) three (φ = π/2)
particles, U/J = 50 andNc = 12 unit cells with or without an on-site potential correction
V at the edge sites: (a1,b1) V = 0, (a2) V = 2J2/U , and (b2) V = J2/U . We depict bulk
states with black circles, Tamm-Shockley states with blue rhombi, topologically protected
edge states with red triangles, and the green crosses indicate states slightly below the bulk
bands.

bands (blue rhombi) are non-topological Tamm-Shockley edge states, i.e., states induced by
interactions that are localized at the edge sites due to the bulk-edge on-site potential mismatch
[303, 308–310]. One can recover chiral symmetry in the effective model by introducing an on-
site potential V at the edge sites of the real space chain that exactly compensates the potential
mismatch [308]. Figures 5.7(a2) and (b2) show the two and three-particle spectra of theA
subspace when we introduce the on-site potential correction at the edge sites, V = 2J2/U
and V = J2/U , respectively. In this case, we recover the spectrum of an SSH model with two
symmetry-protected edge states (red triangles).

There are some differences between the two and three-particles cases. For three parti-
cles, the processes that induce the bulk-edge on-site potential mismatch are one order of
magnitude higher than the ones that generate the bulk bands. Thus, the bulk-edge mismatch
effectively uncouples the edge sites from the rest of the lattice, which retains chiral symmetry.
Given that the symmetric and antisymmetric SSH chains are in opposite topological phases,
removing the edge sites from the lattice exchanges the topological phase between the two
chains. Therefore, the spectrum in Fig. 5.7(b1) presents not only the four Tamm-Shockley
edge states (blue rhombi), well-separated energetically from the bulk bands, but also two
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topologically protected edge states (red triangles). When we introduce the potential correction
V = J2/U in Fig. 5.7(b2), we exchange the topological phases of the symmetric and antisym-
metric chains. The Tamm-Shockley states are absorbed by the bulk and two topologically
protected edge states remain. We can also observe two states in each band (green crosses)
with slightly lower energies than the others due to fourth-order corrections to the on-site
potential. These corrections are not observable in the two-particle case, see Fig. 5.7(a2), as
the fourth-order corrections are two orders of magnitude smaller than the couplings that
generate the bulk bands.

Following the analogy with the single-particle case, the eigenstates of the flat-band spectra
obtained for two and three particles are the CLSs in Eq. (5.9) taking n = 2 or 3, with energies
±2J . Fig. 5.8 shows the time evolution of the population of the two-particle bound-states of
theA subspace for different initial states. In particular, we consider the initial states analogous
to the ones used in the single-particle case: in Fig. 5.8(a),

(∣∣A+
k , 2
〉

+
∣∣A−k , 2

〉)
/
√

2, and in Fig.
5.8(b),

∣∣A+
k , 2
〉
. One can see that the dynamical evolution is identical to the one observed for a

single particle (see Fig. 5.6). In this case, the dynamics correspond to two-particle Aharonov-
Bohm caging and they take place over a much longer timescale. This is because the couplings
of the effective Creutz ladder are a second-order effect and, thus, much smaller in magnitude
than the ones in the single-particle case (see Table 5.1). We define the total caged population as
the sum of the population in a series of states: (a)Pcag = P|A+

k ,2〉+P|A−k ,2〉+P|B+
k ,2〉+P|B−k ,2〉;

(b) Pcag = P|A+
k ,2〉 + P|A−k ,2〉 + P|B+

k ,2〉 + P|B−k ,2〉 + P|B+
k−1,2〉 + P|B−k−1,2〉. The total caged

population reveals slight population losses that are due to higher-order corrections to the
effective model that make the flat bands in Fig. 5.7 slightly dispersive.

For three particles and the analogous initial states,
(∣∣A+

k , 3
〉

+
∣∣A−k , 3

〉)
/
√

2 and
∣∣A+

k , 3
〉
,

we obtain identical (albeit slower) dynamics that correspond to three-particle Aharonov-Bohm
caging. The periods of the oscillations for the different numbers of particles and U/J = 50
are JTN=1 = 1.55, JTN=2 = 39.5, JTN=3 = 2600.

To further compare the two and three-particle Aharonov-Bohm caging, we consider an
initial state in theA subspace, (|B+

k , n〉 + |B−k , n〉)/
√

2 (with n = 2 or n = 3), located at
the middle of the lattice, and we let it evolve through time. The caged population for this
initial state is Pcag = P|A+

k ,n〉 + P|A−k ,n〉 + P|B+
k ,n〉 + P|B−k ,n〉. Fig. 5.8(c) shows the caged

population after a time 3JTN , where JTN is the period of the oscillations for U/J = 100,
as a function of the ratio U/J for the two and three-particle cases. The caged population
rapidly increases for U > J , reaching a value close to 1 as the system enters the regime
of strong interactions. The growth of the caged population is faster for the three-particle
subspace compared to the two-particle case, and it saturates at a smaller value of U/J . This
can be understood by inspecting the higher-order terms of the perturbative expansion. As the
ratio U/J decreases, higher-order terms of the perturbative expansion have to be taken into
account. For two particles (and also for any subspace with an even number of particles), the
odd-order perturbative corrections are always zero. Then, the next perturbative correction
is fourth order, and it leads to effective on-site potentials, nearest-neighbor hoppings, and
also next-nearest neighbor hoppings that destroy the CLSs. In contrast, the fourth-order
correction to the three-particle case only induces an effective on-site potential, and the fifth
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Figure 5.8: (a,b) Time evolution of the population of the states |jαk , 2〉 with j = A,B and
total caged population, obtained through exact diagonalization for U/J = 50, Nc = 12
unit cells, and φ = π/4. The continuous red line is the total caged population Pcag; the
dashed black line is the population in the states |Aα4 , 2〉, with α = ±; and the dotted blue
line is the population in the states (a) |Bα

4 , 2〉, (b) |Bα
3 , 2〉 and |Bα

4 , 2〉. The initial states are (a)(∣∣A+
4 , 2
〉

+
∣∣A−4 , 2

〉)
/
√

2 and (b)
∣∣A+

4 , 2
〉
. (c) Caged population, Pcag , after a time 3JTN for

theA subspace withN = 2 andN = 3 as a function of the ratio U/J . JTN is the period of
the oscillations for U/J = 100, for the two and three-particle cases and taking φ from Table
5.1. The number of unit cells isNc = 10 forN = 2 andNc = 6 forN = 3.

order induces nearest-neighbor hopping terms that maintain the Creutz ladder structure that
exhibits flat bands. It is not until the sixth-order correction, that the next-nearest neighbor
hoppings appear, making the CLSs disappear. Thus, the three-particle subspaces are more
resilient to deviations from the regime of strong interactions than the two-particleA subspace.

B subspace

The bound-states of the B subspace for the two-particles case have one particle in each
circulation, |j+

k , 1〉 ⊗ |j−k , 1〉. When we consider the couplings between states in adjacent
sites, e.g., between |A+

k , 1〉 ⊗ |A−k , 1〉 and |B+
k , 1〉 ⊗ |B−k , 1〉, there is no complex factor, as

any hopping process between opposite circulations will necessarily be followed by a hopping
process with the opposite phase factor. This results in an effective linear chain with uniform
couplings 2J2/U and on-site potentials VB = 4J2/U at the bulk and VE = 2J2/U at
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Figure 5.9: Energy spectrum of the B subspace for (a) two (φ = π/4) and (b) three (φ = π/2)
particles, U/J = 50 andNc = 12 unit cells. We depict bulk states with black circles, Tamm-
Shockley states with blue rhombi, and topologically protected edge states with red triangles.

the edges. Therefore, the two-particle B subspace has a dispersive spectrum for any φ [see
Fig. 5.9(a)] and therefore cannot exhibit Aharonov-Bohm caging.

The three-particle B subspace arises from bound states of the form |jαk , 2〉 ⊗ |j−αk , 1〉. In
analogy with theA subspace cases, theB effective subspace is a Creutz ladder with a bulk-edge
on-site potential mismatch that can be mapped to two decoupled SSH-like chains with the
same on-site potential mismatch (see Table 5.1). Fig. 5.9(b) shows the energy spectrum for the
three-particle B subspace for U/J = 50,Nc = 12 unit cells, and φ = π/2. However, in this
case there is an extra ingredient: the two bound-states in the same site, |jαk , 2〉 ⊗ |j−αk , 1〉 and
|jαk , 1〉 ⊗ |j−αk , 2〉, are also coupled through second-order processes that generate a complex
vertical coupling in the effective Creutz model. For the angle φ that induces a π-flux, φ = π/2,
the complex couplings of eachmediating process cancel with the symmetric mediating process
(i.e., inverting the direction of the hopping processes from right to left). This compensation
does not occur on the edge sites, which results in an energy mismatch between the Tamm-
Shockley states (blue rhombi) of the two edges. In analogy with the three-particleA subspace
[see Fig. 5.7(b1)], there are two topologically protected edge states (red triangles) besides the
Tamm-Shockley states.

5.3.2 N-particle generalization

From the above cases, one can deduce a recipe to obtain Aharonov-Bohm caging in any
N-particle subspace by looking at the N-particle tunneling processes involving complex
tunnelings, i.e., the cross-circulation couplings J3. We define an arbitrary bound state{
|jαk , n〉 ⊗ |j−αk ,m〉

}
with n particles in one circulation and m particles in the other cir-

culation such that n + m = N . Note that similar bosonic bound-states have been studied
in transmon arrays [338]. In the regime of strong interactions, Aharonov-Bohm caging can
exist in the subspace generated by these bound-states if all theN-particle hopping processes
involving a complex phase acquire the same total phase factor, such that by appropriately
choosing the angle φ, one can induce a π-flux. The bound-states in the sitesBk will be coupled
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Figure 5.10: Hopping processes of an arbitraryN-particle bound state
{
|Bα

k , n〉 ⊗ |B−αk ,m〉
}

that couples to the bound-states in the adjacent site (a)
{
|Aαk+1, n〉 ⊗ |A−αk+1,m〉

}
and (b){

|Aαk+1,m〉 ⊗ |A−αk+1, n〉
}
and corresponding phase factors. Rα and Cα are the numbers of

real and complex hopping processes, respectively, coming from each circulation and the labels
n andm denote the number of particles in each site.

in the adjacent sitesAk+1 (see Fig. 5.10) through the integer number of real hoppings from each
circulation,Rα andR−α, and the integer number of complex hoppings from each circulation,
Cα and C−α, such that

n = Rα + Cα and m = R−α + C−α. (5.12)

Then, the total complex factor will be given by e±2iφ(Cα−C−α). These states are coupled to
both the bound-states

{
|Aαk+1, n〉 ⊗ |A−αk+1,m〉

}
[Fig. 5.10(a)] and

{
|Aαk+1,m〉 ⊗ |A−αk+1, n〉

}

[Fig. 5.10(b)] in the adjacent site, thus fulfilling the following conditions for each case,

{
|Aαk+1, n〉 ⊗ |A−αk+1,m〉

}
:

{
n = C−α +Rα

m = Cα +R−α

}
,

{
Aαk+1,m〉 ⊗ |A−αk+1, n〉

}
:

{
n = R−α + Cα

m = Rα + C−α

}
.

(5.13)

Combining Eqs. (5.12) and (5.13), we obtain the following relations between the number of
complex couplings Cα and the corresponding phase factors (see Fig. 5.10),

{
|Aαk+1, n〉 ⊗ |A−αk+1,m〉

}
: Cα = C−α =⇒ 1,

{
|Aαk+1,m〉 ⊗ |A−αk+1, n〉

}
: Cα − C−α = n−m =⇒ e±2iφ(n−m).

(5.14)

Therefore, one can obtain an effective Creutz ladder model up toN-th order perturbation the-
ory for any subspace withn 6= m. In this case, the states in the same site

{
|jαk , n〉 ⊗ |j−αk ,m〉

}

and
{
|jαk ,m〉 ⊗ |j−αk , n〉

}
are also coupled, which produces an effective vertical coupling in

the Creutz ladder. The order of these couplings is 2|n−m| and they are in general complex.
The effect of these couplings can be neglected if 2|n−m| � n+m = N , asN is the order
of the other couplings that compose the Creutz ladder. Alternatively, the vertical couplings
vanish in the bulk for φ = π/2, as eachN-particle hopping process cancels with its left-right
symmetric counterpart. In the presence of a non-negligible complex vertical coupling, the
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CLSs are no longer eigenstates and, consequently, the subspace does not exhibit Aharonov-
Bohm caging. Then, considering the vertical coupling and using Eq. (5.14), one can obtain a
π-flux through the plaquettes by choosing





φ =
π

2(n−m)
, if 2|n−m| � n+m = N

φ =
π

2
, if n−m is odd.

(5.15)

For n = m, there is only one type of bound state,
{
|jαk+1, n〉 ⊗ |j−αk+1, n〉

}
, such that the

effective model is a linear chain with real couplings, and the system cannot exhibit Aharonov-
Bohm caging. For theN-particle subspaces that exhibit flat bands with φ 6= π/2, the single-
particle spectrum is dispersive, which makes these Aharonov-Bohm caging phenomena a
many-body effect.

Let us see some examples. For theA subspaces,N particles will accumulate a complex
phase e±2iNφ when coupling the states |Bα

k , N〉 and |A−αk+1, N〉. Flat bands arise for the angles
φ = (1 + 2q)π/(2N) with q ∈ Z as long as φ remains small enough so that the sitesAk and
Ak+1 do not become coupled, i.e., |φ| . 2π/3 [147]. Additionally, the vertical couplings are
2N-order connections and thus, always negligible. For the B subspaces with an even number
of particles, N/2, in each circulation, Aharonov-Bohm caging cannot occur. The complex
phases accumulated by the particles cancel out such that all the couplings of the effective chain
are real and the resulting energy bands are dispersive. However, for N odd, the tunneling
process of one of the particles is not compensated, leading to a complex factor e±2iφ. Then,
a phase φ = π/2 leads to a flat-band spectrum while at the same time canceling the vertical
couplings. For a real space angle φ = π/2, the single-particle spectrum exhibits flat bands, and
both theN oddA and B subspaces also present a flat-band spectrum. However, for an angle
φ = π/(2N) theA subspace presents flat bands in the absence of a single-particle flat-band
spectrum, making this instance of Aharonov-Bohm caging a purely many-body effect.

As one increases the number of particles in the system, the number of bound-state config-
urations increases and, in particular, other semi bound-states appear where not all particles
are located in a single-site, i.e.,

{
|jαk , n〉 ⊗ |j−αk ,m〉

}
with n + m < N andN − (n + m)

particles not bound to the site j. The picture described above will hold as long as the subspaces
induced by bound-states do not become degenerate with the subspaces induced by these semi
bound-states. For the B subspaces, as their bound-states have the maximum possible energy,
they will not become degenerate with any other subspace. The other subspaces can become
degenerate with a subspace with some particles in a bound state in the same site, and some
in other sites of the lattice. However, these instances are rare: up to ten particles, only 8 out
of 34 bound-states are degenerate, for example, {|jαi , 5〉} and

{
|jαi , 2〉 ⊗ |j−αi , 2〉

}
. We have

checked numerically the recipe to obtain π-fluxes in arbitrary subspaces given in Eq. (5.15) up
to six particles.
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Figure 5.11: (a) Diagram of the 1D staggered chain for an arbitrary periodicity Γ. The unit cell
k contains Γ sites {j(1)

k , j
(2)
k , ..., j

(Γ−1)
k , j

(Γ)
k } and is enclosed by a dotted rectangle. The gray

line indicates the origin of the phase ϕ0 such that an angle φ is introduced in the inter-cell
couplings. The black arrows denote real tunneling amplitudes while the blue ones indicate
complex tunneling amplitudes between states of different winding number. (b) Schematic
representation of the sites and couplings of the lattice for Γ = 3 and an angle φ such that a
non-uniform π-flux arises.

5.4 Generalization to non-uniform fluxes

In this section, we generalize the study to the family of models where the angle φ of the
staggered chain is introduced with an arbitrary lattice periodicity Γ, thus increasing the
number of sites per unit cell [see Fig. 5.11(a)]. The complex couplings between adjacent sites
only occur between the last site of the unit cell and the first site of the next unit cell. Thus, the
flux induced by this angle φ will not be present in each plaquette, with the exact flux pattern
being a function of the number of sites in the unit cell. Non-uniform fluxes have been studied
in diamond lattices [336, 339], where it has been shown to lead to an enriched Aharonov-Bohm
caging phenomenology.

The analysis of Section 5.3 for the dynamics ofN particles in the regime of strong interac-
tions applies also to this family of models. In particular, the angles given in Eq. (5.15) for each
N-particle subspace also yield π-fluxes, that, in this case, are non-uniform [see an example for
Γ = 3 in Fig. 5.11(b)]. The non-uniform pattern is composed of Γ− 2 rhombi (or triangles)
without a flux followed by two rhombi (or triangles) with a π-flux. For the case of Γ = 2,
discussed in Sections 5.2 and 5.3, the number of rhombi plaquettes without flux is zero. As a
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Figure 5.12: Energy spectrum for different number of particles (a) N = 1, (b) N = 2, (c)
N = 3 and periodicities (1) Γ = 2, (2) Γ = 3, and (3) Γ = 4, for 24 sites. For the two and
three-particle cases, only theA subspace is shown, and we fix U/J = 50 and introduce the
on-site potential correction V at the edge sites. The angle φ is taken from Eq. (5.15) such that
a π-flux is obtained in each subspace: (1) φ = π/2, (2) φ = π/4, and (3) φ = π/2.

result of the non-uniform flux pattern, a particle cannot tunnel Γ sites to the right or the left
due to destructive interference, and as a consequence, the spectrum is composed of a series
of flat bands. Fig. 5.12 shows the energy spectrum for the single-particle case and the two
and three-particleA subspaces for different periodicities, Γ = 2, 3 and 4. The angles φ, as
given by Eq. (5.15), yield a π-flux, and we take U/J = 50 and simulate 24 sites for each case.
Notably, by increasing the periodicity Γ, the number of flat bands increases, as the caging cell
is enlarged and gives support to a larger number of CLSs. The zero-energy edge states that are
present for Γ = 2, are buried in the central band of the spectrum for Γ > 2. As an example,
we discuss the case of Γ = 3 in the next subsection.

5.4.1 Example: Γ = 3

For a periodicity Γ = 3, the unit cell has three sites that we will call A, B, and C . From
Figures 5.12(a2), (b2), and (c2), one can see that theN-particle subspaces (with the appropri-
ate π-flux inducing angle φ) present six flat bands with two degenerate zero-energy bands.
The eigenstates in these flat bands consist of a series of CLSs that one can find through the
diagonalization of a small lattice. Analogously to the Γ = 2 case, the basis states that compose
the smallest caging cell are those within a unit cell and the next site
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FIG. 13. Representation of the CLSs for � = 3 defined in
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system can be mapped to a Creutz ladder with a real
and a synthetic dimension, in which the flux enclosed in
each plaquette is determined by the angle � that makes
the lattice staggered. In the single-particle case, one can
tune the angle � to obtain a uniform ⇡-flux threading
each plaquette. This leads to a flat-band spectrum char-
acterized by the presence of CLSs and the system exhibits
Aharonov-Bohm caging.

For N particles in the regime of strong on-site inter-
actions, bound-states arise where the N particles pop-
ulate a single site. Using perturbation theory, most of
the N -particle subspaces can be mapped to an e↵ec-
tive Creutz ladder with a flux that depends on the angle
�. We have identified the conditions under which these
subspaces present a ⇡-flux that leads to flat bands and
Aharonov-Bohm caging. Remarkably, some of these sub-
spaces can exhibit Aharonov-Bohm caging even in the
presence of a single-particle dispersive spectrum, making
these instances a purely many-body e↵ect.

Finally, we have generalized this study to the case of
non-uniform fluxes by introducing the angle � at an arbi-
trary lattice periodicity �. In this case, one can engineer
flat-band spectra for di↵erent N -particle subspaces and
an arbitrary �. As the unit cell increases in size, the num-
ber of flat bands increases, resulting in a larger number of
CLSs that also have a greater spatial extent. As a result,
the caged particles can explore a broader region of the
lattice before encountering destructive interference, mak-
ing the periodicity � a tunable parameter that controls
the spatial extent of the Aharonov-Bohm caging.

A staggered optical lattice can be generated in a su-
perlattice with commensurate wavelengths of light beams
where the extra tunnelings are switched o↵ with square
lattices [54]. When generating optical lattices, one can
easily obtain a lattice with 65 sites [55]. Then, the atoms
have to be loaded into the p-band orbitals of the form
px±ipy [31, 33] which can be achieved using the following
techniques: adiabatical deformation of an adjacent trap
with resonant tunneling transfer [30], lattice shaking and
shortcuts to adiabaticity [32], or OAM transfer from light
to the atoms [28]. Alternatively, ring potentials can be
generated through a variety of techniques [24] in which
the OAM states with l = 1 can be excited by rotating
a weak link [25, 26], by coherent transfer of angular mo-
mentum from photons to the atoms [27, 28], or by doing
a temperature quench [29]. In particular, a ring lattice
can be engineered for instance using micro-lens arrays by
combining them with conical refraction techniques [56],
for which a 10⇥8 lattice was demonstrated, or using dig-
ital micro-mirror devices, which provide a high degree of
geometrical tunability [57].
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Figure 5.13: Representation of the CLSs for Γ = 3 defined in Eq. (5.17) that are eigenstates
of the Creutz ladder with a non-uniform π-flux, see Fig. 5.11(b). The radius of each circle
represents the amplitude and the color represents the phase, with red being a π phase, and
green being a phase zero.

{
|A+

k , n〉, |A−k , n〉, |B+
k , n〉, |B−k , n〉, |C+

k , n〉, |C−k , n〉, |A+
k+1, n〉, |A−k+1, n〉

}
. (5.16)

We give below the analytical expressions of the CLSs (dropping the label n for conciseness)
and give a visual representation in Fig. 5.13,
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(5.17)

The energies of the CLSs are given by

E1 = 2
√

2J , E2 = −2
√

2J , E3 = −2J ,
E4 = 2J , E5 = 0, E6 = 0.

(5.18)

Let us compare these CLSs with those obtained for Γ = 2, in Eq. (5.9). For Γ = 3, the
unit cell is enlarged, and we obtain more CLSs (six for Γ = 3 vs. four for Γ = 2) that also
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Figure 5.14: Time evolution of the population of the states |jαk , 2〉 with j = A,B,C and
total caged population Pcag (continuous red line), obtained through exact diagonalization
for U/J = 50, Nc = 12 unit cells and φ = π/4. The dashed black line is the popula-
tion in the states |Aα4 , 2〉, with α = ±, the dotted blue line is the population in the states
|Bα

4 , 2〉, and the dashed-dotted green line is the population in |Cα
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span a larger number of sites. As a direct consequence, the caging dynamics resulting from
these flat bands have larger support over the lattice. To give an example, we consider the
two-particle A subspace with φ = π/4, U/J = 50 and Nc = 12 unit cells for Γ = 3. In
Fig. 5.14, we show the time evolution of the population of the states, P|jαk ,2〉 for the initial
state

(∣∣A+
4 , 2
〉

+
∣∣A−4 , 2

〉)
/
√

2. The red line indicates the caged population Pcag = P|A+
k ,2〉+

P|A−k ,2〉 + P|B+
k ,2〉 + P|B−k ,2〉 + P|C+

k ,2〉 + P|C−k ,2〉. The population oscillates between the sites
Ak, Bk, Ck of a single unit cell, as the destructive interference occurs at the sites Ck−1 and
Ak+1.

5.5 Conclusions

In this chapter, we have studied a system of bosons in a staggered lattice with ring traps in
each site and considered the local eigenstates with orbital angular momentum l = 1. The
system can be mapped to a Creutz ladder with a real and a synthetic dimension, in which the
flux enclosed in each plaquette is determined by the angle φ that makes the lattice staggered.
In the single-particle case, one can tune the angle φ to obtain a uniform π-flux threading each
plaquette. This leads to a flat-band spectrum characterized by the presence of CLSs and the
system exhibits Aharonov-Bohm caging.

ForN particles in the regime of strong on-site interactions, bound-states arise where the
N particles populate a single site. Using perturbation theory, most of theN-particle subspaces
can be mapped to an effective Creutz ladder with a flux that depends on the angle φ. We
have identified the conditions under which these subspaces present a π-flux that leads to
flat bands and Aharonov-Bohm caging. Remarkably, some of these subspaces can exhibit
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Aharonov-Bohm caging even in the presence of a single-particle dispersive spectrum, making
these instances a purely many-body effect.

Finally, we have generalized this study to the case of non-uniform fluxes by introducing
the angle φ at an arbitrary lattice periodicity Γ. In this case, one can engineer flat-band spectra
for differentN-particle subspaces and an arbitrary Γ. As the unit cell increases in size, the
number of flat bands increases, resulting in a larger number of CLSs that also have a greater
spatial extent. As a result, the caged particles can explore a broader region of the lattice before
encountering destructive interference, making the periodicity Γ a tunable parameter that
controls the spatial extent of the Aharonov-Bohm caging.





6
LOCAL HILBERT SPACE FRAGMENTATION IN BOSONIC

FLAT-BAND LATTICES

In this chapter, we study local Hilbert space fragmentation in flat band lattices exhibiting
single-particle compact localized states (CLSs). First, we analyze in detail a family of diamond
necklace lattices with n central sites. We show how the fragmentation of the Hilbert space
is revealed upon a certain basis rotation and that there is a conserved quantity related to
the occupation of the single-particle CLSs. Second, we demonstrate that this is a general
mechanism for a complete class of flat-band lattices with commutative local symmetries,
which present a generalized conservation law.

CLSs are eigenstates of a Hamiltonian that have non-zero amplitudes on (typically few)
close-by sites and whose amplitude strictly vanishes on the rest [123, 340]. CLSs arise due
to geometrical frustration through the interplay between the geometry and the tunneling
amplitudes of the model. If the system is periodic, CLSs lead to a macroscopic number of
degenerate eigenstates that constitute a flat band. Flat bands have an energy independent of
the quasimomentum, such that transport is strongly suppressed. They can generally be related
to the presence of CLSs, as these can be constructed as a superposition of degenerate Bloch
states [341].

There are multiple methods of construction to generate flat bands, such as the use of
Fano lattices [123], origami rules [342], fractals [343, 344], bipartite graphs [345], and others
[346–348]. More general procedures also exist, such as solving inverse eigenvalue problems
[340, 349–351], performing band engineering [352], or using strictly local projectors [353,
354]. Although there is no framework capable of generating all systems known to exhibit flat
bands, many CLSs arise as a result of local reflection symmetries in the Hamiltonian. For this
class of CLSs, a general formalism has been proposed using the equitable partition theorem
(EPT) from graph theory [181], and its generalization to complex matrices [355–357]. This
theorem allows one to link the presence of commutative local symmetries to the presence of
CLSs [358].

Systems with Hilbert space fragmentation avoid full thermalization due to the presence of
exponentially many disconnected sectors in their Hilbert space. Remarkably, this mechanism
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can lead both to a weak or a strong violation of the eigenstate thermalization hypothesis
(ETH), that broadly states that the eigenstates of isolated quantum many-body systems have
thermal expectation values for local observables. This effect can arise in a wide variety of
systems, such as dipole moment or center-of-mass conserving systems [110–115], the 1D
t-Jz model [359], the t-V and t-V1-V2 models [360, 361], models within the Fibonacci Hilbert
space of the Rydberg blockade [362], and models with dipolar interactions [363]. All the
above examples exhibit fragmentation of the Hilbert space in the product state basis [249],
i.e., classical fragmentation. Quantum fragmentation, which occurs in an entangled basis,
has been recently shown to arise in Temperley-Lieb spin chains [249] and in quantum East
models [364]. However, it has yet to be determined if quantum fragmentation leads to different
phenomenology than its classical analog.

In the first part of this chapter, we analyze in detail a family of Bose-Hubbard diamond
necklaces [365] that exhibit quantum local Hilbert space fragmentation. In locally fragmented
systems, the conserved quantities that shatter the Hilbert space are strictly local [125, 185, 250,
362, 366], in analogy with the conserved local quantities in disorder-free localization [367] and
in lattice gauge theories [368–371]. In contrast, standard fragmentation is due to the presence
of the recently coined crypto-local conserved quantities, those that cannot be expressed as sums
of local operators [372]. Here, the presence of a single-particle flat band composed of CLSs
gives rise to the fragmentation of the Hilbert space when introducing on-site interactions. As a
consequence of this fragmentation, one finds a nested distribution of entanglement entropies,
sub-sector-restricted thermalization, and a broad range of sub-sectors of the Hamiltonian
that range from frozen sub-sectors following area-law to non-integrable sub-sectors with
logarithmic scaling. Then, a natural question arises: Is there a general local fragmentation
mechanism for flat-band lattices? In the second part of this chapter, we answer this question
affirmatively for arbitrary flat-band lattices possessing commutative local symmetries that
correspond to local reflection symmetries, and thus that obey the EPT theorem.

The chapter is structured as follows: in the first part of the chapter, Section 6.1, we study the
family of diamond necklaces both analytically and numerically. In Sec. 6.1.1, we introduce the
physical model and, in Sec. 6.1.2, we describe the basis rotation that reveals the fragmentation
of the Hilbert space. In Sec. 6.1.3, we analyze the conserved quantity that characterizes the
sub-sectors of the Hamiltonian, present the adjacency graphs of the fragmented Hamiltonian,
and demonstrate that the system is strongly fragmented. The numerical results are discussed
in Sec. 6.1.4, which include the distribution of entanglement entropies, the entanglement
evolution and scaling, the level spacing analysis and a comparison between the differentmodels
of the diamond necklace family. In the second part of the chapter, Sec. 6.2, we generalize the
analysis to other flat-band lattices. In Sec. 6.2.1, we define a class of flat-band systems with
commutative local symmetries and, in Sec. 6.2.2, we demonstrate that they exhibit strong local
Hilbert space fragmentation in the presence of on-site bosonic interactions. In Sec. 6.2.3, we
explore the effect of long-range interactions on the conserved quantities. Finally, we provide
a numerical example in Sec. 6.2.4, the 1D Pyrochlore lattice, and present the conclusions in
Sec. 6.3.
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6.1 Diamond necklaces

6.1.1 Physical system

We study a system of interacting bosons loaded onto a one-dimensional lattice of diamond
necklaces with n central (i.e., spinal) sites [see Fig. 6.1(a)]. Each unit cell k is composed of
the sites C1,k · · ·Cn,k, Uk andDk (with k = 1, ..., Nc), and all the couplings have the same
magnitude J . The Hamiltonian of this system is Ĥn = Ĥ0

n + Ĥint
n , where the single-particle

Hamiltonian reads

Ĥ0
n = J

∑

k

[
ĉ†n,k(ûk + d̂k) + (û†k + d̂†k)ĉ1,k+1 +

n−1∑

j=1

(ĉ†j,kĉj+1,k)

]
+ H.C., (6.1)

where ĉj,k is the annihilation operator of the state |Cj,k〉 at the central site j = 1, ..., n in each
unit cell k, and ûk and d̂k are the annihilation operators of the states |Uk〉 and |Dk〉 at the up
and down sites of each diamond, respectively. In particular, the n = 2 case corresponds to a
type of orthogonal dimer chain [226, 373–382] with absent vertical couplings. The interaction
Hamiltonian reads

Ĥint
n =

U

2

Nc∑

k=1

[
n̂u,k(n̂u,k − 1) + n̂d,k(n̂d,k − 1) +

n∑

j=1

n̂j,k(n̂j,k − 1)

]

=Ĥint
n,diam. + Ĥint

n,cent.,

(6.2)

where we distinguish the terms of the up and down sites of each diamond, Ĥint
n,diam., and the

central sites, Ĥint
n,cent.. The operators n̂u,k = û†kûk, n̂d,k = d̂†kd̂k and n̂j,k = ĉ†j,kĉj,k are the

number operators at the up, down and central sites, respectively.
An interesting characteristic of this family of Hamiltonians is that each diamond presents

a single-particle CLS that only populates the sites Uk and Dk, (|Uk〉 − |Dk〉) /
√

2, [see
Fig. 6.1(a)]. Due to the presence of the CLS in each diamond of the lattice, all models of
this family exhibit a single-particle spectrum with a zero-energy flat band. We are interested
in the many-body states where some of the particles occupy a CLS, and how the existence of
these states modifies the thermalization properties of the whole system. The numerical results
that we present in Section 6.1.4 can be better interpreted by performing a basis rotation and
analyzing the symmetries of the system, which we discuss in the next subsection.

6.1.2 Basis rotation

Consider the symmetric and antisymmetric superpositions of the up and down states of each
diamond,

|Sk〉 =
1√
2

(|Uk〉+ |Dk〉) , |Ak〉 =
1√
2

(|Uk〉 − |Dk〉) , (6.3)
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Figure 6.1: (a) Diagram of the one-dimensional diamond necklace model with n central sites.
All couplings have a strength J and the unit cell is shadowed in gray. In the second unit cell
we represent the CLS with the site amplitude being the radius of the circle and the phase
being the color (zero, red; π, blue). (b) Diagram of the rotated model with the renormalized
couplings,

√
2J , denoted by a dashed line. The uncoupled states represent the CLSs, |Ak〉.

where ŝ†k and â
†
k are the respective creation operators and |Ak〉 is the CLS in unit cell k. By

using these states to perform a basis rotation on the single-particle Hamiltonian, in Eq. (6.1),
only the couplings associated to the diamonds are altered,

Ĥ0′
n =

∑

k

[
√

2J
(
ĉ†n,kŝk + ŝ†kĉ1,k+1

)
+ J

n−1∑

j=1

(ĉ†j,kĉj+1,k)

]
+ H.C. (6.4)

One obtains a linear chain that includes the symmetric states, |Sk〉, and the central states |Cj,k〉,
with renormalized couplings corresponding to the diamonds,

√
2J . Additionally, the CLSs in

each unit cell, |Ak〉, become decoupled, see Fig. 6.1(b). In analogy with the transformation of
Ĥ0
n, only the interaction term of the up and down sites of each diamond, Ĥint

n,diam. in Eq. (6.2),
is altered by the basis rotation,

Ĥint′
n,diam. =

U

4

Nc∑

k=1

[
4ŝ†kâ

†
kŝkâk +

∑

σ=a,s

(
σ̂†kσ̂

†
kσ̂kσ̂k

)
+ â†kâ

†
kŝkŝk + ŝ†kŝ

†
kâkâk

]
, (6.5)

where σ̂k (σ̂ = ŝ, â) are the annihilation operators of |Sk〉 and |Ak〉, respectively. The first
term corresponds to a nearest-neighbor interaction that arises when there is at least one
particle in |Sk〉 and one in |Ak〉, akin to the inter-circulation interaction term appearing in
Hubbard models of excited orbital angular momentum states in optical lattices [150, 153]. The
second term is an effective on-site interaction that occurs when there are at least two particles
in either |Sk〉 or |Ak〉. Finally, the last two terms correspond to a two particle tunneling
between the decoupled states |Ak〉 and the states |Sk〉. Therefore, on-site interactions induce a
coupling between the CLSs and the dispersive linear chain through the two-particle tunneling.
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6.1.3 Local and total CLS number parity

Let us consider the two-particle tunneling term that appears in the rotated interaction Hamil-
tonian of Eq. (6.5). As a consequence of this process, the system presents a conserved quantity,
the local CLS number parity, that reads

P̂k = eiπn̂a,k , (6.6)

where n̂a,k = â†kâk is the CLS number operator at unit cell k. This operator commutes with
the rotated interaction Hamiltonian, [Ĥint′

n,diam., P̂k] = 0, and consequently, with the total
rotated Hamiltonian, [Ĥ′n, P̂k] = 0. The operator P̂k can be evaluated at each unit cell k
(which contains a single diamond) and takes the eigenvalues Pk = 1, for an even number of
particles, andPk = −1, for an odd number of particles. We define the local CLS number parity
vector as the vector that contains the eigenvalues of P̂k at each unit cell,P = (P1, · · · ,PNc).
This conserved quantity corresponds to a Z2 local gauge symmetry governed by the two-
particle tunneling term in Eq. (6.5) [332, 383, 384]. Additionally, one can define the total CLS
number parity as the sum of the local operators in all unit cells, P̂ =

∑
k P̂k. Given that the

rotated Hamiltonian commutes with the local operator, it is straightforward to see that it also
commutes with the total CLS number parity, [Ĥ′n, P̂ ] = 0. The eigenvalues of the total parity
are determined by the number of unit cells and the number of particles that can occupy the
CLSs. If there are at least as many particles,N , as unit cells,N ≥ Nc, there areNc + 1 sectors
with eigenvalues P = −Nc,−Nc + 2, ..., Nc − 2, Nc. ForN < Nc, the number of sectors
reduces toN + 1 as the lowest eigenvalues become unavailable. We note that the Z2 local
gauge symmetry makes the sub-sectors in this model similar to the superselection sectors
present in lattice gauge theories, where the shattering of the Hilbert space naturally stems
from the gauge field and leads to non-ergodicity [368, 369, 385].

Spinless fermions in diamond lattices with nearest-neighbor interactions present a locally
fragmented Hilbert space where the number of particles occupying a CLS is conserved, which
corresponds to a U(1) local gauge symmetry [126]. The authors note there that for bosons or
spinful fermions, the two-particle tunneling implies that the number of particles in a CLS is
no longer conserved. Here, we show that for bosons with on-site interactions a new conserved
quantity emerges, the CLS number parity, which preserves the fragmentation of the Hilbert
space.

In Fig. 6.2, we represent three examples of the adjacency graph of the rotated Hamiltonian.
Unless otherwise specified, we consider open boundary conditions, and for all simulations we
fix U = J = 1 and consider an integer number of unit cells. Henceforward, the eigenvalues
Pk are denoted as±. The width of the lines indicates the strength of the couplings between
basis states and, for Figs. 6.2(a) and (b), the color of the nodes indicates the diagonal terms
of the rotated Hamiltonian, ε = 〈f |Ĥ′n|f〉, where |f〉 is a basis state. Fig. 6.2(a) represents
the diamond chain, Ĥ′1, a known square-root topological insulator [226, 386], withN = 2
particles in Nc = 2 unit cells. Each basis state is represented by a node and labeled using
the notation |NC,1NS,1NA,1NC,2NS,2NA,2〉, whereNj,k is the number of particles in state
|jk〉 (j = C, S,A) in the unit cell k. We obtain several uncoupled clusters of basis states with



102 Local Hilbert space fragmentation

Figure 6.2: Adjacency graphs for open boundary conditions and U = J = 1. (a) Ĥ′1,
with N = 2 particles in Nc = 2 unit cells, (b) Ĥ′1, with N = 3 and Nc = 3, (c) largest
sub-sector of Ĥ′1, with N = 4 and Nc = 4. The width of the lines indicates the strength
of the couplings between basis states and the color of the nodes represents the diagonal
terms, ε, in (a,b), and the total number of particles in a CLS, NCLS , in (c). For each cluster,
the values of the total CLS number parity are given as well as the vector P for the local
CLS number parity. In (a), each basis state is represented by a node and labeled using the
notation |NC,1NS,1NA,1NC,2NS,2NA,2〉, whereNj,k is the number of particles in state |jk〉
(j = C, S,A) in the unit cell k.

distinct local eigenvaluesP , i.e., the Hilbert space is fragmented. Each sector with total parity
eigenvalue P is composed of one or more uncoupled sub-sectors with eigenvaluesP . There
is a one-dimensional (or frozen) sub-sector with a single basis state with the two particles
occupying the two CLSs,P = −2, and which is not coupled to any other basis state. There are
two sub-sectors sharing the same total CLS parity value, P = 0, where only one particle is in
a CLS, while the other particle occupies the dispersive chain. The two sub-sectors arise due to
the two CLSs that the particle can occupy, which leads to different orderings in the elements of
the vectorP . Finally, most of the basis states of the largest sub-sector have the two particles in
the dispersive chain and zero in a CLS. However, due to the two-particle tunneling, there are
two special basis states with two particles occupying the same CLS, |002000〉 and |000002〉,
which yield the same eigenvalue for the local and total CLS number parity,P = (+,+) and
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P = 2.

In Fig. 6.2(b), we present the same system, Ĥ′1, for a larger lattice: Nc = 3 unit cells with
N = 3 particles. The number of sub-sectors proliferates due to the presence of an additional
CLS in the lattice. More precisely, forN ≥ Nc, the number of sub-sectors is given by 2Nc ,
while forN < Nc, the number is

∑N
k=0

(
Nc
k

)
. The sub-sectors P = −1, like the sub-sectors

P = 0 in Fig. 6.2(a), have only one particle in the dispersive chain, while all the other particles
occupy distinct CLSs. These particles can not access the two-particle tunneling in Eq. (6.5)
and thus, are trapped in the CLSs. Therefore, these sub-sectors are effectively single-particle
systemswith a non-uniform on-site potential distribution. For the larger sub-sectors, there are
at least two particles in the dispersive chain, making these sub-sectors sensitive to interactions.
Note that the different sub-sectors with the same eigenvalueP for the total CLS number parity
are not degenerate due to the different positioning of the diagonal terms. This will prove to
be an important factor in distinguishing between the different domes of the distribution of
entanglement entropies, as we discuss below in Sec. 6.1.4.

As an example of a sub-sector with a large dimension, we represent the largest sub-sector
of Ĥ′1, withN = 4 particles inNc = 4 unit cells in Fig. 6.2(c). The color of each basis state
represents the total number of particles that are in a CLS, NCLS|f〉 =

∑
k n̂a,k|f〉. Most

of the basis states have zero particles in a CLS. However, there are also some basis states
with four-particles in a CLS (either four-particles in the same CLS or two pairs of particles
in different CLSs), and many-more with two particles in the same CLS. This embedding of
special basis states has some consequences on the distribution of entanglement entropies of
the system, which will be discussed in Section 6.1.4.

It is important to note that the Hilbert space fractures into a series of uncoupled sub-
sectors only on the rotated or entangled basis. Meanwhile, the Hilbert space in the original
or product-state basis exhibits a connected adjacency graph. Thus, the results of this section
show how this system exhibits quantum Hilbert space fragmentation, a distinction recently
proposed in [249]. In contrast, the Hilbert space of classically fragmented systems is shattered
in the product-state basis. While the fracture is only revealed on the rotated basis, it still has
some dramatic consequences on the thermalization properties of this family of models, which
we explore in Section 6.1.4.

Another recently proposed classification of Hilbert space fragmentation distinguishes
between strongly and weakly fragmented systems in the context of dipole conserving models
[110, 111, 387]. The ratio between the dimension of the largest sectorDmax and the dimension
of the full Hilbert space D either tends to one in the thermodynamic limit, signaling weak
fragmentation, or tends to zero, signaling strong fragmentation. Typical initial states of a
weakly fragmented system belong to the largest sector, and thus, completely thermalize, while
only a vanishing subset of initial states are non-thermal. For strongly fragmented systems,
most initial states only have access to a small subset of the Hilbert space, which precludes full
thermalization. Thus, these two types of fragmentation are associated with a weak or a strong
violation of the ETH, respectively. For our model, the dimension of each sub-sector in a sector
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P is

DP=

bN−m2 c∑

%=0

(
(n+ 1)Nc +N − 2%−m− 1

N − 2%−m

)(
Nc + %− 1

%

)
, (6.7)

where the integer % counts the number of pairs of particles that populate the CLSs andm is
defined asm = (Nc −P)/2. The dimension of the largest sub-sector Dmax corresponds to
P = Nc. Given the dimension of the full Hilbert space,

D =

(
(n+ 2)Nc +N − 1

N

)
, (6.8)

the ratio Dmax/D tends to zero at the thermodynamic limit, indicating strong Hilbert space
fragmentation for this family of models. Thus, this result points to a strong violation of the
ETH, as we will numerically argue in the next section.

Finally, this system exhibits local Hilbert space fragmentation, a term recently coined in
[250], as the fragmentation stems from a local conservation law, namely, the local CLS number
parity, [Ĥ′n, P̂k] = 0.

6.1.4 Exact diagonalization results

Level statistics

In order to characterize the properties of the different sub-sectors of the Hilbert space, we
analyze their level statistics using exact diagonalization. For each sub-sector, we consider the
ordered eigenvaluesEn, and the nearest-neighbor gaps sn = En+1 − En. From those, one
can define the level spacing ratios for each pair of gaps [388],

rn =
min (sn, sn+1)

max (sn, sn+1)
, (6.9)

and the corresponding average 〈r〉. Non-integrable systems with time-reversal symmetry
are expected to approximate the probability distribution P (r) of the Gaussian orthogonal
ensemble, with an average value 〈r〉GOE = 0.536 [389]. For integrable systems, a Poisson
distribution is expected, with a characteristic value 〈r〉P = 0.386. In Fig. 6.3, we represent
the average spacing ratio for Ĥ′4 withN = 4 particles inNc = 4 unit cells for the sub-sectors
P = 4, 2, 0 and U = J = 1. We observe how most sub-sectors are within a few error bars
of 〈r〉GOE . The value of 〈r〉 increases with the total CLS number parity, P , as less particles
are trapped in a CLS. Additionally, the lowest values of 〈r〉 correspond to the sub-sectors
with the smallest dimension (i.e., smaller P ), for which the P (r) distribution is not so well-
defined. Besides the sub-sectors shown in Fig. 6.3, the system also presents the integrable
sub-sectors withP = −2, the effectively single-particle sub-sectors, andP = −4, the frozen,
one-dimensional sub-sector.
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Figure 6.3: Mean level spacing ratio for the sub-sectors with P = 4, 2, 0 of Ĥ′4, withN = 4
particles in Nc = 4 unit cells and U = J = 1. The blue dotted line indicates the value
corresponding to the Gaussian orthogonal ensemble, 〈r〉GOE = 0.536, and the dashed green
line, the value for a Poisson distribution, 〈r〉P = 0.386. The error bars are standard errors of
the mean. The sub-sectors P = −2 and P = −4, which are not included, correspond to the
integrable effective single-particle sub-sectors and the integrable frozen state, respectively.

Entanglement entropy and evolution

In this section, we calculate the bipartite von Neumann entanglement entropy, S, for each
eigenstate of the full Hilbert space by partitioning the lattice into two subsystems: left, L;
and right,R. The entanglement entropy is then S = − tr(ρL ln ρL), where ρL is the reduced
density matrix of the left subsystem. We consider the half-chain entanglement entropy by
partitioning the lattice in the middle, with the same number of sites in each subsystem and
such that the cut never falls between the U andD sites of a single diamond.

Fig. 6.4(a) represents the entanglement entropy of all eigenstates of the system for Ĥ′2 with
N = 4 particles inNc = 4 unit cells and U = J = 1. We give the results in terms of the
normalized entanglement entropy, S̃ = S/NL whereNL is the number of sites subsystem L.
The entanglement entropy is not a continuous function of the energy density but presents a
nested-dome structure. Similar structures have been found in the distribution of entanglement
entropies of systems with [106, 366, 390] or without frustration [391], as a similar shattering
mechanism is known to arise in spin systems [392]. In Fig. 6.4(a), each dome corresponds to a
sector with a given value for the total CLS number parity, P .

• The upper dome corresponds to the largest sub-sector, with P = 4, where most basis
states have all particles in the dispersive chain and none is trapped in a CLS.

• The second dome from above corresponds to the sub-sectors with P = 2, where most
basis states have one particle in a CLS and the other three are in the dispersive chain.
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Figure 6.4: Distribution of entanglement entropies and entanglement evolution of a trial
state for Ĥ′2, with N = 4 particles in Nc = 4 unit cells and U = J = 1. (a) Half-chain
bipartite von Neumann entanglement entropy of each eigenstate as a function of the energy.
The horizontal lines are the sector-restricted Page values for each sector and the color of
the dots indicates the normalized density of data points, increasing with warming colors. (b)
Average of the entanglement entropy evolution for ten random rotated basis states of each
sector with eigenvalue P . In both figures, the entropy is normalized to the number of sites in
the subsystem, S̃ = S/NL.

As the subsystem partition does not fall between the sites U andD of any diamond,
the contribution to the entanglement of the particle occupying a CLS is exactly zero.
Thus, the eigenstates belonging to the sector P = 2 have an upper bound for the
entanglement entropy given by the maximum number of particles in the dispersive
chain of the corresponding basis states.

• The third dome corresponds to P = 0, where most basis states have two particles in
a CLS and two in the dispersive chain. Consequently, those sub-sectors have an even
lower bound for the entanglement entropy.

• The sub-sectors with P = −2 have only one particle in the dispersive chain, making
them effectively single-particle systems. As a result, their distribution of entanglement
entropies does not form a dome structure. Most eigenstates accumulate at a constant
value, which one would expect for a linear chain, while some fall below as a consequence
of the interaction-induced on-site potentials, e.g., a particle occupying the |Ak〉CLS can
be translated into an effective on-site potential of strengthU acting on a second particle
located at |Sk〉 of the dispersive chain, due to the first term of H′intn,diam. in Eq. (6.5).
These potentials act as impurities that either attract or repel the wavefunctions, and
they induce an asymmetry between the L andR subsystems that lowers the half-chain
entanglement entropy.

• Finally, there is a single state with exactly zero entanglement entropy and zero energy
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that corresponds to the sub-sector withP = −4, for which all the particles are trapped
in a CLS.

The interaction-induced on-site potentials are the origin of the many-body localization
transition observed in [126, 393] for the diamond chain with nearest-neighbor interactions
and spinless fermions. For spinless fermions, the two-particle tunneling is not present, thus
completely decoupling the CLSs from the dispersive chain, and the random on-site potentials
cause a transition to a many-body localized phase when the interaction, i.e., the effective
disorder, is increased.

Additionally, we plot in Fig. 6.4(a) the sector-restricted Page value (horizontal lines), for
each of the sectors with a given total CLS number parity P . The Page value is the average
entanglement entropy of a random vector, for which DonN. Page derived an analytical expres-
sion for a generic bipartite quantum system [394]. We find the Page value using normalized
random vectors |ψ〉 of the form

〈f | ψ〉 =
αf,ψ + iβf,ψ
Nψ

, (6.10)

where the basis states |f〉 belong to a particular sub-sectorP , αf,ψ and βf,ψ are taken from
a normal distribution with zero mean, and Nψ is the normalization constant. The entan-
glement entropy of each random state is computed by projecting |ψ〉 onto the full Hilbert
space. Then, we compute the average of the entanglement entropy for one thousand random
vectors belonging to a particular sub-sector, such that the sector-restricted Page value is given
by the average value of the corresponding sub-sectors. Each sector-restricted Page value
coincides with the top of each dome [see Fig. 6.4(a)]. In Fig. 6.4(b), we take ten random basis
states for each sector and let them evolve through time (in dimensionless units, J t). The
evolved wavefunctions are computed numerically using the time-evolution unitary operator
defined through the rotated Hamiltonian, Eqs. (6.4) and (6.5). We observe how the average
entanglement entropy at which the evolved states saturate is bounded by the corresponding
sector-restricted Page value indicated in Fig. 6.4(a). This sub-sector-restricted thermalization
induced by the fragmentation of the Hilbert space suggests a violation of the ETH.

Entanglement scaling

In order to further characterize the properties of the different sectors of the Hamiltonian, we
compute the scaling of the entanglement entropy S with system size for each of the sectors
P . In Fig. 6.5, we plot the average entanglement entropy for the eigenstates of each sector
as one increases the number of unit cells of the Hamiltonian Ĥ′2 withN = 3 particles and
U = J = 1. The eigenstates of each sector are identified by diagonalizing the system in the
rotated basis, applying the P̂ operator to the rotated basis states, and determining the sector
from the amplitudes of each eigenstate. The sectors P = 3 and P = 1 exhibit logarithmic
entanglement growth, thus demonstrating subthermal behavior within each sector [95, 395].
However, the growth rate of both sectors is different, as most basis states in sector P = 3
contain three particles in the dispersive chain while none are trapped in a CLS. In contrast,
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Figure 6.5: Average entanglement entropy for each sector P as a function of the number of
unit cellsNc for Ĥ′2 withN = 3 particles and U = J = 1. The inset shows sector P = −1.
The lines are represented as a guide to the eye.

most basis states in sector P = 1 only have two particles in a dispersive state while one is
trapped in a CLS. Both sectors present a logarithmic growth of the form S = σ ln(Nc) + υ
with {σ = 0.708 ± 0.016, υ = 1.148 ± 0.027} for P = 3 and {σ = 0.217 ± 0.006, υ =
0.973± 0.010} for P = 1.

The sector P = −1 corresponds to the effectively single-particle sub-sectors, for which
one observes a surprising slight decrease in the entanglement entropy as the size of the system
increases (see inset in Fig. 6.5). This is due to the on-site potential terms that arise in the
dispersive chain reflecting the presence of one particle in |Ak〉 and one in |Sk〉. Any left-right
subsystem asymmetries in the location of the two nodes of the adjacency graph with an on-site
potential will lower the entanglement entropy. ForNc = 2, there is a single sub-sector where
the two basis states that have an on-site potential fall in opposite subsystems L and R. As
the size of the system increases, more CLSs are available and thus there are more sub-sectors
where there is some asymmetry in the location of the on-site potential (e.g., the two potentials
may fall in the same subsystem L orR). Thus, the average entanglement entropy of the sector
P = −1 slightly decreases with system size. The decrease is more pronounced for small
numbers of unit cells, and it seems to tend to an asymptotic value. This constitutes an anti-
volume correction that should also play a role in sectors P = 1, 3, though it is not noticeable
there as the logarithm term dominates.

The sector withP = −3 includes the one-dimensional sub-sectors where all the particles
are trapped in a CLS. This sector follows an area law scaling, which in one dimension corre-
sponds to a constant value. As a particle in a CLS does not contribute to the entanglement
entropy, the average entanglement entropy for these sub-sectors is zero for any system size.
For this sector, the diagonalization of the full Hilbert space results in a series of degenerate
states that correspond to the different CLSs that the three particles can occupy. Then, the
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entanglement entropy obtained through this method is higher than the one shown in Fig. 6.5,
as it corresponds to an arbitrary numerical superposition of those states. Consequently, one
should compute the entanglement entropy of this sector in the rotated basis analytically. Note
that this sector does not exist forNc = 2 unit cells: as the number of particles isN = 3, one
particle will always occupy the linear chain.

These results demonstrate that the system exhibits weak thermalization with respect to
the full Hilbert space through its fragmentation, while also exhibiting subthermal behavior
within each non-integrable sector.

Model comparison and boundary conditions

In this subsection, we analyze the effect that the number of central sites of the lattice has in
the distribution of entanglement entropies by comparing the different models of the family
of diamond necklaces. Fig. 6.6 shows the distributions of entanglement entropies and the
adjacency graphs of different models forN = 4 particles inNc = 4 unit cells andU = J = 1.
The representedmodels are: (a,e) Ĥ′1, (b,f) Ĥ′2, (c,g) Ĥ′3, (d,h) Ĥ′4. The subplots in the left column
show the normalized entanglement entropy S̃ for each eigenstate as a function of the energy.
The color indicates the density of data points. The subplots in the center column represent
the density of data points η as a function of S̃ for the eigenstates around E = 0. To obtain
a clear picture, we take the eigenstates whose energy fulfills−|E0| · 0.2 < E < |E0| · 0.2,
whereE0 is the ground-state energy, and normalize the density η to 1. The plots in the right
column show the second and third largest sub-sectors in the adjacency graph of the rotated
Hamiltonian. The color of the nodes indicates the total number of particles that occupy a CLS,
as given byNCLS|f〉 =

∑
k n̂a,k|f〉.

We see how increasing the number of central sites in the lattice, going from Ĥ′1 to Ĥ′4,
increases the visibility of the different domes. This can be understood in terms of the adjacency
graphs of the different models. In Figs. 6.6(e-h), most of the basis states of the bottom sub-
sectors have two particles in different CLSs, in purple, although there are some special basis
states, in yellow, where an additional pair of particles also occupies a CLS. A similar pattern
occurs in the top sub-sectors, for which most basis states have one-particle in a CLS, in green,
while some have three particles occupying CLSs, in red. These special basis states appear
due to the two-particle tunneling term in the rotated Hamiltonian of Eq. (6.5), and thus are
present in all sectors except for the integrable ones. The eigenstates that have some weight
on those basis states will have a lower entanglement entropy than those that do not, and they
might fall below the dome of the sub-sector, thus obscuring the visibility of the nested-dome
pattern. When one increases the number of central sites in the lattice, these special basis
states become more sparse compared to the main basis states, which have a lower number of
particles in a CLS [see Figs. 6.6(e-h)]. Therefore, the visibility of the nested-dome structure in
the distribution of entanglement entropies can be enhanced by increasing the sparsity of the
CLSs. This, in turn, increases the sparsity of the special basis states with a higher number of
particles in a CLS due to the two-particle tunneling.

Let us consider what would occur for different numbers of particles. For each particle
added with respect to a fixed number of unit cells, an extra dome appears on top and one
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Figure 6.6: Distribution of entanglement entropies and adjacency graphs forN = 4 particles
inNc = 4 unit cells andU = J = 1 for the following models: (a,e) Ĥ′1, (b,f) Ĥ′2, (c,g) Ĥ′3, (d,h)
Ĥ′4. (a-d) Left plots: normalized entanglement entropy S̃ as a function of the energy, where
color represents the density of data points. (a-d) Center plots: normalized density of data points
as a function of S̃ for the middle region of the spectrum,−|E0| · 0.2 < E < |E0| · 0.2. Plots
(e-h): second and third largest sub-sectors in the adjacency graphs of the rotated Hamiltonians
with the color of the nodes indicating the total number of particles occupying a CLS,NCLS .
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dome (or sector) is removed from below. For example, forN = 5 andNc = 4 unit cells, the
frozen sub-sector is unavailable. However, the number of domes forN ≥ Nc is conserved,
as it corresponds to the number of sectors. As one increases the number of particles, there is
a global shift to the right in the distribution of entanglement entropies, which corresponds
to an increased energy of the eigenstates due to the repulsive interaction. For each particle
removed, keeping the number of unit cells fixed, the upper dome disappears, as there are less
particles populating the dispersive chain. Additionally, the frozen sub-sectors multiply, due to
the different CLSs that the particles can occupy, and become degenerate.

Up to now, we have assumed open boundary conditions, however, this analysis also holds
for periodic boundary conditions. The visibility of the domes when one introduces periodic
boundary conditions is notably worse than for open boundary conditions. This is due to the
fact that periodic boundary conditionsmake the system translation invariant, which introduces
degeneracies in the spectrum between sub-sectors belonging to the same sector. As a result,
one numerically finds arbitrary superpositions of the degenerate eigenstates which have
arbitrary entanglement entropies. The cause of the deteriorated visibility can be corroborated
by introducing vertical couplings between the U andD sites of each diamond and making
their strength different for each unit cell. In that case, although the system still has periodic
boundary conditions, it is no longer translation invariant, and the visibility of the domes is
restored.

In the second part of this chapter, we will consider arbitrary flat-band lattices in order
to determine if this instance of local Hilbert space fragmentation is a broader phenomenon.
In particular, we will concentrate in a class of flat-band lattices that exhibit commutative
local symmetries and we will explore the effect of both on-site and nearest-neighbor bosonic
interactions.

6.2 Arbitrary flat-band lattices

6.2.1 Commutative local symmetries

Let us consider the real symmetric matrix associated with a time-reversal invariant and Her-
mitian Hamiltonian Ĥ. One might interpret this matrix as an adjacency matrix representing
an undirected weighted graph that might contain loops. The vertices of such a graph repre-
sent the basis states of the Hamiltonian, while the edges are the adjacency relations between
the vertices, i.e., the non-zero matrix elements of Ĥ. Graphs might present automorphisms,
permutations of vertices such that the adjacency relations of the associated matrix are left
invariant. Let us take for example a single unit cell of the diamond chain, shown in black
in Fig. 6.7(a), where we have numbered the vertices as 1, 2, and 3. The permutation of the
vertices (or sites) 2 and 3 leaves the graph invariant. This automorphism can be represented as
a permutation that in cyclic notation reads as follows

S = (1)(2, 3), (6.11)
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d̂l,k, ŝj,k

ĉl,k (CLSs)

(a) (bi) (ci) (di) (ei)

(bii) (cii) (dii) (eii)

1

2

3
ŝj,k

t̂j,k

b̂j,k

ŝj,k ŝj,k+1

d̂l,k

ĉl,k

2 4

31

1

2
3

4
5

(fi)

(fii)

CLSs: ĉl,k

Figure 6.7: (a) Adjacency graph exhibiting a commutative local symmetry S = (1)(2, 3)which
corresponds to a local reflection of the sites 2 and 3, where the sites of a unit cell are shown in
black. (i) Examples of flat-band lattices with underlying basic commutative local symmetries of
order two and (ii) their rotated models composed of dispersive states and spinal sites (top row)
and CLSs decoupled at the single-particle level (bottom row). (b) Diamond chain, (c) Creutz
ladder, (d) 1D Pyrochlore chain, (e) double diamond chain (f) 2D diamond necklace lattice.
Examples of CLSs for the lattices (b-e) are given in color, with the radius representing the
amplitude and the color representing the phase, where red is a π phase and blue is a phase zero.
We also indicate the annihilation operators associated with the spinal, top, bottom, dispersive,
and CLS sites for a given unit cell k.

where each parenthesis indicates an orbit whose size is the number of elements it contains.
An orbit of size 1 is called a trivial orbit, as it leaves its element unchanged. A permutation S
can also be represented in matrix form ΠS , which in the above example would read, in the
ordered {|1〉, |2〉, |3〉} basis,

ΠS =




1 0 0
0 0 1
0 1 0


 . (6.12)

One might consider an enlarged Hamiltonian by taking the black sites that form a diamond in
Fig. 6.7(a) as a unit cell and constructing a lattice from it [Fig. 6.7(a) including the gray sites
and couplings]. We will adopt the definition of a commutative local symmetry of a Hamiltonian
Ĥ proposed in [358] as a permutation symmetry S that fulfills

Ĥp,q = ĤS(p),S(q) ∀p, q ⇐⇒ [Ĥ,ΠS ] = 0. (6.13)

A commutative local symmetry is basic and of order o if all the non-trivial orbits of S have the
same size o. For basic commutative local symmetries of order two, the permutation matrix
fulfills Π2

S = I. Then, if S is a commutative local symmetry, the eigenstates of Ĥ are also
eigenstates of ΠS and have a well-defined parity±1 with respect to this symmetry.

The equitable partition theorem (EPT) provides a symmetry-induced decomposition of a
matrix associated with a graph exhibiting an automorphism into a direct sum of smaller matri-
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ces that determine its spectrum and eigenstates [181]. It was originally stated for unweighted
graphs, which can be represented by unweighted adjacency matrices, but was later generalized
to complex square matrices, thus representing generic Hamiltonians [355, 357]. There are
two consequences of the EPT that are of interest here. The EPT states that a system with a
commutative local symmetry has two classes of eigenstates: eigenstates that are symmetric
under the action of S and eigenstates that are not symmetric and that have support only on
the permuted sites [355, 356]. Therefore, the EPT ensures the presence of one or more CLSs
(depending on the geometry of the Hamiltonian). If the commutative local symmetry S is
basic and of order two, these CLSs will have a well-defined negative parity while all the other
states will have a positive parity. Such a permutation can be interpreted visually as a local
reflection symmetry with respect to an axis in the adjacency graph of the Hamiltonian [as
shown in Fig. 6.7(a) for the diamond chain]. This interpretation depends on the depiction of
the Hamiltonian as a graph but provides an intuitive picture of the destructive interference
mechanism that generates the CLSs.

In this section, wewill consider latticemodels exhibitingCLSs that stem fromcommutative
local symmetries of order two in each unit cell. We represent an arbitrary lattice model with n
sites per unit cell as a set of pairs of sites, that we call top and bottom and form a rung. These
make explicit the permutation symmetries of the Hamiltonian as a local y-reflection symmetry
in the Hamiltonian graph. Additionally, each unit cell may present spinal sites that remain
invariant under the reflection. Our lattice will have n = n1 +n2 sites per unit cell, where n1 is
the number of spinal sites, with associated annihilation operators ŝj,k (j = 1, ..., n1), and n2 is
the number of top and bottom sites, with annihilation operators t̂j,k and b̂j,k (j = 1, ..., n2/2),
respectively. The EPT theorem ensures that such a system presents n2/2 negative-parity CLSs
that have support only on the top and bottom sites. Some examples of lattices containing this
class of CLSs and an example of their CLSs are given in the top row of Fig. 6.7: (bi) diamond
chain (a diamond necklace, studied in Sec. 6.1, with zero spinal sites), (ci) Creutz ladder, (di)
one-dimensional (1D) Pyrochlore chain, (ei) double diamond chain (fi) two-dimensional (2D)
diamond necklace lattice. Note that while some of these lattices [(ai) and (bi)] present one CLS
per unit cell, the 1D Pyrochlore chain presents two and the double diamond chain presents
three. Also, the double diamond chain can be recast into a top-bottom configuration by
reordering the sites. Other examples not depicted in Fig. 6.7 include the square root versions
of the diamond chain [386] or the 2D Creutz ladder [390].

6.2.2 Hilbert space fragmentation

One can also classify CLSs phenomenologically in terms of the number of unit cells that they
occupy. In many lattice models, CLSs extending to more than a single unit cell appear as a
consequence of inserting a finite magnetic flux per plaquette [147, 153, 327, 336, 396]. In
these models, adjacent CLSs of a flat band have spatial overlap, which can be used to generate
interaction-driven dynamics [330] and topological effects [150, 397] in many-body systems.
CLSs that occupy a single unit cell can form an orthogonal basis that allows one to detangle
each CLSs at the single-particle level [123]. For CLSs with underlying commutative local
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symmetries, this is ensured by the EPT theorem, which restricts the support of the CLSs to
the permuted sites. Thus, there is no overlap with the CLSs in adjacent unit cells and they can
form an orthogonal basis. Negative parity CLSs, those with an associated basic commutative
local symmetry S of order two, constitute a new basis that is completed by their symmetric
counterparts. The corresponding annihilation operators are

ĉl,k =

n2/2∑

j=1

αlj,k

(
t̂j,k − b̂j,k

)
, d̂l,k =

n2/2∑

j=1

αlj,k

(
t̂j,k + b̂j,k

)
, (6.14)

where k labels the unit cell, j labels the rung, and the coefficientsαlj,k determine the amplitudes
at each rung for each CLS and dispersive state l = 1, ..., n2/2 in unit cell k. In this basis,
the CLSs become decoupled at the single-particle level while the symmetric states, which
we refer to as dispersive states, remain coupled and compose a dispersive chain supporting
extended states. In our notation, the dispersive chain can also include spinal sites, which
remain invariant under this rotation. Figures 6.7(ii) represent the rotated models of the (bii)
diamond chain, (cii) Creutz ladder, (dii) 1D Pyrochlore chain, (eii) double diamond chain, and
(fii) 2D diamond necklace lattice. Each model presents one or more decoupled CLSs for each
unit cell.

The many-body Hamiltonian includes the independent-particle Hamiltonian and the
interaction Hamiltonian, Ĥ = Ĥ0 + Ĥint. The term Ĥ0 can be written as a sum of local
operators in each unit cell Ĥ0 = J ∑k f̂k , where the operators f̂k include particle-conserving
products of the operators ν̂j,k, with ν = t, b, s. We consider the addition of on-site bosonic
interactions of the form n̂νj,k(n̂νj,k − 1), where n̂νj,k = ν̂†j,kν̂j,k , are the number operators at
each site. The interaction Hamiltonian at the top and bottom sites can be written as

Ĥint
t,b =

U

2

∑

k

n2/2∑

j=1

[
t̂†j,k t̂

†
j,k t̂j,k t̂j,k + b̂†j,kb̂

†
j,kb̂j,kb̂j,k

]
. (6.15)

In Section 6.1 of this chapter, we showed that the parity of the number of particles in
each CLS commutes with the Hamiltonian of a diamond necklace or diamond chain [154].
However, the associated conservation quantity remains hidden in the product state basis. We
denote the rotated basis using its associated collection of annihilation operators, {ĉl,k, d̂l,k},
and the product state basis as {t̂j,k, b̂j,k}. We will show that a similar mechanism occurs for
arbitrary flat-band lattices with basic commutative local symmetries of order two, which may
have more than one CLS per unit cell. In this general case, we postulate that the conserved
quantity is the parity of the number of particles in all CLSs of a unit cell. Thus, the operator

P̂k = eiπ
∑n2/2
l=1 n̂cl,k (6.16)

commuteswith theHamiltonian, [P̂k, Ĥ′] = 0, where Ĥ′ is the totalHamiltonian in the rotated
basis, n̂cl,k = ĉ†l,kĉl,k, and n2/2 is the number of CLSs in each unit cell. This conservation
law leads to the fragmentation of the Hilbert space in the rotated or entangled basis, while it
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remains hidden in the product-state basis. Therefore, this is again an instance of quantum
Hilbert space fragmentation, as discussed in Section 6.1.3.

Given that the CLSs only have support on the top and bottom sites, the spinal part of the
interaction Hamiltonian trivially commutes with P̂k. The rotated interaction Hamiltonian on
the top and bottom sites can be obtained by expressing the top and bottom operators in terms
of CLSs and dispersive operators [Eq. (6.14)]. Due to the periodicity of the lattice, it is enough
to consider a single unit cell k. Thus, we omit the unit cell index k in the demonstration, for
ease of reading. The reduced interaction Hamiltonian in the rotated basis reads

Ĥint′
t,b =

U

2

∑

ρ̂,σ̂,τ̂ ,υ̂

n2/2∑

{li}=1

(
Θl1,l2,l3,l4
ρ̂,σ̂,τ̂ ,υ̂

)
ρ̂†l1σ̂

†
l2
τ̂l3 υ̂l4 , (6.17)

where {ρ̂, σ̂, τ̂ , υ̂} = {ĉ, d̂} are the annihilation operators of either a CLS or a dispersive state,
respectively, {li} = 1, ..., n2/2 are the CLS and dispersive state indices (with i = 1, 2, 3, 4),
and Θl1,l2,l3,l4

ρ̂,σ̂,τ̂ ,υ̂ are the coefficients of each term. Only those terms with an odd number of ĉ(†)
l

and of d̂(†)
l operators do not commute with P̂k. Those terms, e.g., ĉ†l1 d̂

†
l2
d̂l3 d̂l4 , exchange one

particle between the CLSs and the dispersive states, thus violating parity. Then, it is enough to
prove that the coefficient Θl1,l2,l3,l4

ρ̂,σ̂,τ̂ ,υ̂ vanishes for terms of this form.
The rotation matrix from the product-state basis {t̂j, b̂j} to the rotated basis {ĉl, d̂l} in

each unit cell can be written as a Kronecker productK = L ⊗M, with

L =



α1

1 α1
2

α2
1 α2

2 . . .
... . . .


 and M =

(
1 1
−1 1

)
. (6.18)

where we have ordered the basis as {b̂1, t̂1, b̂2, t̂2, ...} and {d̂1, ĉ1, d̂2, ĉ2, ...}, and made use of
Eq. (6.14). The inverse of matrixK isK−1 = (L ⊗M)−1 = L−1 ⊗M−1, and indicates the
expressions of {t̂j, b̂j} in terms of {ĉl, d̂l}. By writing L−1 as an arbitrary matrix,K−1 takes
the following general form

K−1 =




β1
1 −β1

1 β1
2 −β1

2

β1
1 β1

1 β1
2 β1

2

β2
1 −β2

1 β2
2 −β2

2

β2
1 β2

1 β2
2 β2

2 . . .
... . . .



. (6.19)

Thus, one can express the annihilation operators t̂j and b̂j in terms of ĉl and d̂l

t̂j,k =

n2/2∑

l=1

βjl,k

(
d̂l,k + ĉl,k

)
, b̂j,k =

n2/2∑

l=1

βjl,k

(
d̂l,k − ĉl,k

)
. (6.20)
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Then, the coefficient Θl1,l2,l3,l4
ρ̂,σ̂,τ̂ ,υ̂ for the terms containing an odd number of CLS and dispersive

operators takes two forms: (i) for the terms with one CLS operator and three dispersive state
operators and (ii) for the terms with three CLS operators and one dispersive state operator.
These two terms are

(i)

n2/2∑

j=1

[
βjrβ

j
mβ

j
pβ

j
o + (−βjr)βjmβjpβjo

]
= 0,

(ii)

n2/2∑

j=1

[
βjrβ

j
mβ

j
pβ

j
o + βjr(−βjm)(−βjp)(−βjo)

]
= 0.

(6.21)

For both cases, it vanishes at each rung j. As all the other terms commute with P̂k , the parity
of the number of particles in all the CLSs in a unit cell is conserved. The only terms in the
rotated Hamiltonian that produce a particle exchange between the CLSs and the dispersive
states are of the form d̂†l1,kd̂

†
l2,k
ĉl3,kĉl4,k and ĉ

†
l1,k
ĉ†l2,kd̂l3,kd̂l4,k. These denote a two-particle

tunneling between CLSs and dispersive states that preserves P̂k. This mechanism is a direct
consequence of the commutative local symmetry of these lattices: the well-defined parities
of the eigenstates determine the structure of the basis states (6.14) which in turn determines
the form ofM−1. Note that this result is not restricted to one dimension, as the underlying
permutations can exchange sites in any axis [see Fig. 6.7(f)].

As the operator P̂k in each unit cell k commutes with the rotated Hamiltonian Ĥ′, one can
also define the total CLS number parity as P̂ =

∑
k P̂k , which also commutes with Ĥ′. As in

the diamond necklace of Sec. 6.1, the rotated Hamiltonian is composed of a series of sectors
defined by the eigenvalues of P̂ and within those, one or more sub-sectors determined by the
eigenvalues of P̂k. The eigenvalues of P̂ and P̂k are given in Table 6.1 as well as the number
of sectors and sub-sectors in terms of the number of particlesN and the number of unit cells
Nc. The number of sub-sectors grows exponentially with system size, signaling Hilbert space
fragmentation [249], while the locality of the conservation law, [P̂k, Ĥ′] = 0, indicates that
this mechanism produces local Hilbert space fragmentation [250].

We measure the degree of fragmentation by calculating the ratio of the dimension of the
largest sector of the Hilbert space to the total dimension of the space [110]. For this general
class of models, the dimension of the largest sub-sector is

Dmax=

bN2 c∑

%=0

[(
(n1 + n2

2
)Nc +N − 2%− 1

N − 2%

)
·

∑

(δ1,...,δNc )∈Q

Nc∏

k=1

(n2

2
+ 2δk − 1

2δk

)]
,

(6.22)
where the indices % and δk count the number of pairs of particles that populate the CLSs, in
total and for a unit cell k, respectively, N is the number of particles, and the set Q fulfills
Q(%,Nc) = {(δ1, ..., δNc)|% = δ1 + δ2 + ... + δNc}. Then, using the dimension of the full
Hilbert space, Eq. (6.8), the ratioDmax/D tends to zero at the thermodynamic limit, indicating
strong Hilbert space fragmentation.
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No. sectors and sub-sectors
Eigenvalue N > Nc N ≤ Nc

Pk = ±1 2Nc
∑N−1

k=0

(
Nc
k

)
+
(
Nc
N

)
(n2

2
)N

P = −Nc,−Nc + 2, ..., Nc Nc + 1 N + 1

Table 6.1: Eigenvalues of the local, P̂k, and total, P̂ , parities, and number of associated sub-
sectors,Pk and sectorsP for a number of particlesN larger, equal, or smaller than the number
of unit cellsNc.

Let us consider some examples. For the class of models with only one CLSs per unit
cell [Fig. 6.7(bi) diamond chain and (ci) Creutz ladder], the conserved quantity simplifies to
P̂k = eiπn̂ck , in agreement with the analysis of the diamond necklace of Sec. 6.1. The double
diamond chain, Fig. 6.7(ei), is an unusual example, it presents multiple commutative local
symmetries of order two, such as

S1 = (1)(4)(5)(2, 3), S2 = (1)(2)(3)(4, 5),

S3 = (1)(2)(5)(3, 4), S4 = (1)(2)(4)(3, 5).
(6.23)

Taking for example S1 and S2, these are independent commutative local symmetries that lead
to non-overlapping CLSs and thus to independently conserved quantities. However, after
decoupling these CLSs the dispersive lattice still presents an unresolved local symmetry [see
Fig. 6.7(eii)]. The third CLS occupies all diamond sites in Fig. 6.7(ei) and corresponds to
the permutation S = (1)(2, 5)(3, 4). One can perform a second rotation to decouple this
state at the single-particle level. However, the third CLS will not be decoupled from the
dispersive chain at the many-body level due to the presence of interaction-induced one-
particle tunnelings between the dispersive chain and the CLS. In contrast, the 1D Pyrochlore
chain presents the symmetry S = (1, 2)(3, 4) [see Fig. 6.7(di)], which cannot be decomposed
into two independent permutations. As a consequence, it presents two overlapping CLSs
per unit cell that lead to a single conserved quantity P̂k = eiπ(n̂c1,k+n̂c2,k ). Therefore, each
independent local reflection symmetry with an underlying basic commutative local symmetry
S of order two leads to a conserved quantity. These require a single rotation to detangle the
associated CLSs and thus lead to the conservation of parity and fragmentation. Some lattices,
such as the double diamond chain, might present more than one independent local symmetry
per unit cell, which leads to a multiplicity of conserved quantities. For example, one might
create an enlarged unit cell by uniting Creutz and 1D Pyrochlore unit cells, which will lead to
two independent sets of conserved quantities per unit cell.

6.2.3 Long-range interactions
Let us consider how the block-diagonal structure of theHamiltonian is affected by the presence
of long-range interactions. There are mainly three classes of long-range interaction terms for
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a 1D system. Considering interactions that respect the y-reflection symmetry of the system,
these read

(i) Ĥint
1 =

∑

k,k′

∑

j,j′

ξj,j
′

k,k′

(
n̂sj,k n̂tj′,k′ + n̂sj,k n̂bj′,k′

)
,

(ii) Ĥint
2 =

∑

k

∑

j

ϑjn̂tj,k n̂bj,k ,

(iii) Ĥint
3 =

∑

k,k′

∑

j,j′

Ωj,j′

k,k′

(
n̂tj,k n̂tj′,k′ + n̂tj,k n̂bj′,k′ + n̂bj,k n̂tj′,k′ + n̂bj,k n̂bj′,k′

)
.

(6.24)

In term (iii), we have assumed that the cross terms, e.g., n̂tj,k n̂bj′,k′ , have the same strength
than the horizontal terms, e.g., n̂tj,k n̂tj′,k′ . There can also be interactions between spinal sites,
which remain invariant under the basis rotation and thus preserve fragmentation. In order
to understand the effect of these terms, we can write them in the rotated basis determined
by the annihilation operators ˆ̃cj,k =

(
t̂j,k − b̂j,k

)
/
√

2, and ˆ̃dj,k =
(
t̂j,k + b̂j,k

)
/
√

2. In
contrast with the basis considered before [see Eq. (6.14)], the states annihilated by ˆ̃cj,k are
not eigenstates of the system, i.e., they are not the CLSs, except for the cases of the diamond
chain and Creutz ladder, where the CLSs occupy a single rung j [see Fig. 6.7(bi) and (ci) and
Eq. (6.3)]. Thus, the CLSs do not generally become decoupled through this rotation. For
arbitrary lattices, the antisymmetric states represented by ˆ̃cj,k are superpositions of the CLSs
of unit cell k, and thus remain coupled between them within a unit cell at the single-particle
level. The symmetric states given by ˆ̃dj,k form a dispersive chain that is decoupled from the
states given by ˆ̃cj,k. The rotated interaction Hamiltonians in this basis read

(i) Ĥint′
1 =

∑

k,k′

∑

j,j′

ξj,j
′

k,k′

(
n̂d̃j,k n̂sj′,k′+ n̂c̃j,k n̂sj′,k′

)
,

(ii) Ĥint′
2 =

∑

k

∑

j

ϑj
4

[
n̂d̃j,k(n̂d̃j,k − 1) + n̂c̃j,k(n̂c̃j,k − 1)

−ˆ̃c†j,k ˆ̃c
†
j,k

ˆ̃dj,k
ˆ̃dj,k − ˆ̃d†j,k

ˆ̃d†j,k ˆ̃cj,k ˆ̃cj,k
]
,

(iii) Ĥint′
3 =

∑

k,k′

∑

j,j′

Ωj,j′

k,k′

(
n̂d̃j,k n̂d̃j′,k′+ n̂c̃j,k n̂c̃j′,k′+ n̂d̃j,k n̂c̃j′,k′+ n̂c̃j,k n̂d̃j′,k′

)
.

(6.25)

The Hamiltonians (i) and (iii) are defined for any distance between the first, k, and second,
k′, unit cells, and might involve different pairs of rungs j, j′. Thus, they represent not only
nearest-neighbor (NN) interactions but arbitrary long-range interactions. These only include
density-density interaction terms in the rotated basis. Thus, they conserve the number of
particles in all CLSs of a unit cell, as particles are free tomove between the states given by ˆ̃cj,k of
a single unit cell. The Hamiltonian (ii) also includes two particle tunnelings between the states
annihilated by ˆ̃cj,k and ˆ̃dj,k , such that only the parity of the number of particles in all CLSs of
a unit cell is conserved. Therefore, all these terms preserve the fragmentation of the Hilbert
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space and the parity sectors determined by on-site interactions. If one considers the case
where there are no on-site interactions and only long-range interactions of the form (i) and
(iii), then, the structure of the fragmented Hilbert space changes, as each sub-sector is given by
the number of particles in each CLS (not the parity), and the number of sub-sectors proliferates,
leading to a stronger fragmentation. As the authors of [332] point out, all density-density
interactions invariant under the graph automorphism associated with the local symmetry
will preserve fragmentation. In particular, they study the Creutz ladder, diamond chain, and
dice lattice with flux. Their formalism can be used to analyze the generic class of flat-band
lattices with commutative local symmetries studied here, as we show in Appendix C.1. Similar
considerations have been pointed out for the case of all-bands-flat lattices [384].

6.2.4 Example: Pyrochlore lattice
In this section, we numerically study the 1D Pyrochlore chain [Fig. 6.7(di)] as an example of a
model with more than one CLS per unit cell. There are two CLSs per unit cell that, together
with two dispersive states, form a new basis. The associated annihilation operators are given
by

ĉ1 =
1

2

(
t̂1 + t̂2 − b̂1 − b̂2

)
, ĉ2 =

1

2

(
t̂1 − t̂2 − b̂1 + b̂2

)
,

d̂1 =
1

2

(
t̂1 + t̂2 + b̂1 + b̂2

)
, d̂2 =

1

2

(
t̂1 − t̂2 + b̂1 − b̂2

)
,

(6.26)

where we have omitted the unit cell index k. Note that these CLSs occupy two rungs, in
contrast to the states defined by ˆ̃cj,k in the previous section. The single-particle energies
of the CLSs are Ec1 = 1 and Ec2 = −1, and thus the states ˆ̃cj,k are not eigenstates of the
single-particle Hamiltonian. If the CLSs were degenerate, the states given by ˆ̃cj,k would also be
eigenstates. In this basis, the interaction Hamiltonian contains only terms that commute with
P̂k , thus conserving the parity of the number of particles in the twoCLSs, P̂k = eiπ(n̂c1,k+n̂c2,k ).
In a unit cell k, it reads

Ĥint′ =U

[
1

8

∑

l,l′

(
d̂†l d̂
†
l ĉl′ ĉl′ + H.c.

)
+

1

8

∑

l,l′

(
d̂†l d̂
†
l d̂l′ d̂l′ + ĉ†l ĉ

†
l ĉl′ ĉl′

)

+
1

2

(
n̂d1n̂d2 + n̂c1n̂c2 +

∑

l,l′

n̂dln̂cl′

)
+

1

2

[∑

l,l′

ĉ†l d̂
†
l′ ĉl̄d̂l̄′+

(
ĉ†1ĉ
†
2d̂1d̂2 + H.c.

)]]
.

(6.27)
where l̄(′) indicates the opposite index of l(′), i.e., l̄(′) 6= l(′). The terms include on-site
interactions, two-particle tunnelings, and NN interactions in the basis {ĉl, d̂l}. The two-
particle tunnelings and NN interactions both include terms between the dispersive states and
the CLSs and within these two groups.

Figure 6.8 presents the numerical results for the 1D Pyrochlore chain withN = 4 particles
inNc = 4 unit cells, with J = U = 1, and open boundary conditions. The lattice starts with
the sites hosting the CLSs, presents an integer number of unit cells, and one spinal site [see inset
in Fig. 6.8(c)]. Fig. 6.8(a) shows the von Neumann half-chain bipartite entanglement entropy
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of each eigenstate as a function of the energy. The horizontal lines are the sector-restricted
Page values [see Eq. (6.10)] [394] and we represent the entanglement entropy normalized to
the number of sites in the left subsystem, S̃ = S/NL. The entanglement entropies present a
nested-dome structure that can be understood by analyzing the adjacency graph of the many-
body Hamiltonian in the rotated basis, shown in Fig. 6.8(b). The eigenstates that compose
each dome correspond to a total sector of the Hamiltonian with eigenvalue P , composed of
one or more sub-sectors with eigenvaluesP = (P1, · · · ,PNc), where the vectorP contains
the eigenvalues of P̂k at each unit cell k. The color of the nodes in Fig. 6.8(b) represents the
diagonal terms of the rotated Hamiltonian, ε = 〈f |Ĥ′|f〉, where |f〉 is a basis state, which
highlights that the different sub-sectors of a given sector are not degenerate. The entanglement
entropies of the CLSs are exactly zero along several bipartitions of the lattice, one of which
coincides with the half-chain cut considered in Fig. 6.8(a). Thus, particles located in a CLS do
not contribute to the entanglement entropy of the eigenstates. The two-particle tunneling
terms in Eq. (6.27) allow pairs of particles to jump to a CLS. However, those special basis
states form a small fraction of the basis states in each sub-sector, and thus the main basis
states determine the structure of the entanglement entropies. As a result, the entanglement
entropies form the same nested-dome pattern also present in the diamond necklace (Fig. 6.4).
The main difference resides in the sector with P = −4, where all particles occupy CLSs in
distinct unit cells. There are two single-particle CLSs available [Eq. (6.26)] instead of only
one, with energies Ec1 = 1 and Ec2 = −1, and thus, the available energies for the frozen
states are {−4,−2, 0,−2, 4}, with degeneracies {1, 4, 6, 4, 1}. The two non-degenerate
states with energies±4 have exactly zero entanglement entropy and correspond to the case
where all particles populate the same CLS in distinct unit cells. The additional frozen states
are degenerate and thus a higher value of S̃ is obtained numerically.

The nested-dome structure of the entanglement entropies is a direct consequence of the
fragmentation of the Hilbert space and the low entanglement of the CLSs. Thus, it is generally
present in the class of flat-band lattices with commutative local symmetries. However, the
distinguishability of the different domes is not guaranteed, as it depends on several factors
such as the presence of symmetries, the particle filling, the boundary conditions, and the
sparsity of the CLS compared to the dispersive states (see Sec. 6.1.4). Here, the visibility of the
domes is enhanced by introducing one spinal site that makes the CLSs more sparse while also
breaking the x-reflection symmetry of the model [see inset in Fig. 6.8(c)].

In analogy with the diamond necklace, the Hilbert space of the 1D Pyrochlore chain
presents both integrable and non-integrable sub-sectors. The integrable sub-sectors comprise
the frozen states and those in sector P = −2, for which only one particle is free to move in
the dispersive chain, thus forming an effective single-particle model. All the other sub-sectors
are non-integrable, as they present Wigner-Dyson statistics (numerical evidence is given in
Appendix C.2). Figure 6.8(c) shows the evolution of the average entanglement entropy for 20
random initial states belonging to particular sectors. The entanglement entropy grows for all
cases while remaining bounded by the sector-restricted Page value indicated in Fig. 6.8(a). This
is a direct consequence of the fragmentation of theHilbert space, which restricts thermalization
within each sub-sector.
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Figure 6.8: Numerical results for the 1D Pyrochlore chain withN = 4 particles inNc = 4
unit cells and J = U = 1. (a) Half-chain bipartite von Neumann entanglement entropy of
each eigenstate as a function of the energy. The horizontal lines are the sector-restricted Page
values for each sector and the color of the dots indicates the normalized density of data points,
increasing with warming colors. (b) Adjacency graphs corresponding to the dome structures
in (a) for each sector P , where the color of the nodes represents the diagonal terms of the
rotated Hamiltonian, ε. (c) Average of the entanglement entropy evolution for 20 random
rotated basis states of each sector with eigenvalue P . Inset: beginning of the 1D Pyrochlore
chain with one spinal site and bipartitions (dashed blue lines) resulting in a zero entanglement
entropy for the CLSs. In (a) and (c), the entropy is normalized to the number of sites in the
subsystem, S̃ = S/NL.
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The numerical and analytical results presented in this chapter suggest a strong violation
of the ETH that stems from the strong fragmentation of the Hilbert space. Eigenstates at
nearby energies present a wide range of properties, which is reflected in the wide variance
of the entanglement entropies at a given energy, and thermalization only occurs within each
sub-sector. Such behavior is consistent with the extension of the eigenstate thermalization
hypothesis through the use of generalized Gibbs ensembles [89], which are usually employed
to characterize the behavior of integrable models. Instead of the microcanonical ensemble,
one uses a generalized grand canonical ensemble that can be obtained by maximizing the
entropy while taking into account the constraints imposed by the conserved quantities that
lead to integrability [398]. Although the conserved quantities in the systems we study here are
not enough to make the system integrable, they restrict thermalization in an analog way, and
make it depend critically on the initial state.

6.3 Conclusions

We have studied local Hilbert space fragmentation in Bose-Hubbard flat-band lattices. In the
first part of the chapter, we analyze in depth a family of diamondnecklace latticeswithn central
sites. Such models possess a single-particle spectrum with a flat band, which is composed
of compact localized states (CLSs) located in each diamond. Due to the presence of these
CLSs, when adding more bosons with on-site interactions, the Hilbert space becomes locally
fragmented. We have demonstrated how this fragmentation is revealed in the adjacency graph
of the Hamiltonian when applying an appropriate basis rotation that decouples the CLSs at the
single-particle level, making it an instance of quantum local Hilbert space fragmentation. Also,
by analyzing the dimension of the largest sector, we have shown that the system exhibits strong
fragmentation, which leads to a strong violation of the eigenstate thermalization hypothesis.
Wehave found a conserved quantity that uniquely identifies each sub-sector of theHamiltonian,
the local CLS number parity. The sub-sectors present a wide range of dimensions, including
one-dimensional sub-sectors, and also entanglement entropy scalings ranging from area-law
to logarithmic growth, while also including one sector with an anti-volume correction. As a
result of the fragmentation, the distribution of entanglement entropies presents a nested-dome
structure, that stems from the number of particles that are trapped in a CLS. We have found
weak thermalization through sub-sector-restricted entanglement evolution and subthermal
entanglement growth within each non-integrable sector. Additionally, we have shown how
the visibility of the nested-dome structure can be enhanced by increasing the sparsity of the
CLSs, and how the results hold both for open and periodic boundary conditions.

In the second part of this chapter, we have demonstrated that this mechanism for local
Hilbert space fragmentation also arises in a large class of flat-band lattices exhibiting commu-
tative local symmetries. These lattices obey the equitable partition theorem, which ensures
the presence of CLSs and extended states with distinct parities. Upon rotating the basis, such
CLSs become decoupled at the single-particle level, and in the presence of bosonic on-site
interactions, we have demonstrated that this leads to the fragmentation of the Hilbert space,
which is again local, quantum and strong. In this case, a generalized conserved quantity arises:
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the parity of the number of particles in all the CLSs in a single unit cell. For lattices presenting
more than one set of independent local symmetries, multiple conserved quantities per unit
cell can arise. Additionally, the mechanism for local Hilbert space fragmentation studied
here is robust to large classes of long-range interactions, which in some cases causes the
conserved quantity to change from the parity to the total number of particles in the CLSs. By
studying one particular example numerically, the 1D Pyrochlore chain, we have shown that
the sub-sector-restricted thermalization and the nested-dome structure in the entanglement
entropies are a hallmark for this mechanism of fragmentation, and are a consequence of the
low entanglement of the CLSs.

This chapter leaves open the study of other classes of flat-band lattices whichmight present
similarmechanisms of fragmentation. One could consider for instance latticeswith flux, where
conserved quantities were observed in the diamond chain, Creutz ladder, and dice lattice
[332].





7
CONCLUSIONS AND OUTLOOK

The main aim of this thesis has been the study of ultracold bosons in two particular types of
systems: ring-trapping potentials and flat-band lattices. On the one hand, we have focused
on orbital angular momentum (OAM) states in ring potentials, both studying Bose-Einstein
condensates (BECs) and strongly correlated regimes hosting non-trivial topological phases
in optical lattices of ring potentials. On the other hand, we have concentrated on signatures
of thermalization in bosonic flat-band lattices. In this chapter, we summarize the main
conclusions of the thesis and discuss possible future lines of research that stem from this work.

In Chapter 2, we have given an overview of the theoretical background and physical
models used throughout this thesis. We have started by discussing the basics of Bose-Einstein
condensation, including the role of particle statistics and the mean-field description of BECs
at zero temperature through the Gross-Pitaevskii equation (GPE). We have also reviewed
the generation of optical lattice potentials and the single-particle solutions that arise in such
systems, the Bloch wavefunctions. This has served as a preliminary step to introduce the
bosonicmany-body scenario by describing the Bose-Hubbardmodel. Then, we have developed
the physical models used to study ring trapping potentials. First, we have described the single-
particle solutions to the Schrödinger equation for a single ring and then we have shown how
coplanar ring geometries lead to complex tunnelings that critically depend on the geometry
of the system. The two- and three-ring toy models we have considered allow us to describe
arbitrary geometries of lattices of identical coplanar rings. In addition, we have presented the
main concepts necessary to characterize topology in discrete systems, such as the Berry phase
and the bulk-boundary correspondence, while also describing in detail a one-dimensional
example of a topological insulator, the Su-Schrieffer-Heeger (SSH) model. Finally, we have
explored the concept of thermalization, which we have first discussed in a classical setting to
later compare it with the quantum approach to the problem. For an isolated quantum many-
body system, we have reviewed the eigenstate thermalization hypothesis and the systems that
violate it and thus fail to thermalize.

Chapters 3, 4, and 5 have been devoted to the study of ultracold bosons in ring potentials,
starting with the analysis of a BEC in a two-stacked ring geometry in Chapter 3. In this chapter,
we have studied the condensate in the mean-field regime through the GPE by reducing the
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dimensionality of the problem to 1D [151]. In particular, we have derived the evolution
equations for the amplitudes of each orbital angular momentum mode, which highlight the
interplay between the OAM-specific tunneling between rings and the cross-OAM interactions
within each ring. We have focused on populating the same OAMmode in both rings, which
yields stationary solutions when there is the same population in both rings and dynamical
regimes when there is a population imbalance. For both cases, we have analyzed numerically
the stability of the stationary states and the dynamical regimes against small perturbations
in higher-order modes, and have also developed analytically two-state models for both cases.
For the stationary solutions, the two-state model not only predicts the regime of stationary
states, thus agreeing with the results obtained through Bogoliubov analysis, but also describes
the destabilization dynamics of the unstable solutions. For the dynamical regimes, we have
established that the self-trapping and Josephson oscillation regimes are independent of the
OAM mode, and thus reproduce the dynamics of a weakly-coupled double-well potential.
However, these regimes are susceptible to perturbations in other OAMmodes and we have
shown that the destabilization dynamics mimic those of the stationary states. This work could
be continued by studying a two-component BEC in the miscible regime [168, 399], where the
dynamics now depend on the interplay between the inter- and intra-component interactions
and the tunneling, which has lead to fascinating dynamics in double-well potentials [400–402].
For example, it would be interesting to populate different OAMmodes in each component to
explore angular momentum transfer between them.

The rest of the thesis, from Chapters 4 to 6, has dealt with the study of ultracold bosons
in optical lattices through the use of exact diagonalization. In Chapters 4 and 5, we have
transitioned from a 1D to a 2D description of the ring trapping geometry to address lattices
where each site is formed by a ring potential. In particular, we have considered the local
eigenstates of each ring with orbital angular momentum l = 1, which provides each site
with two internal states with circulations + and−. We have studied these systems through
Bose-Hubbard-type models with a focus on strongly interacting regimes and perturbation
theory techniques.

In Chapter 4, we have explored the simplest geometry yielding non-trivial topological
phases in one dimension, a Su-Schrieffer-Heeger (SSH)-like model with alternating distances d
and d′ [152]. First, we have investigated the single-particle case by performing a basis rotation
that decouples the system into two SSH chains with correlated topological phases. This has
allowed us to characterize the system topologically in terms of the separation distances d
and d′. Then, we have considered the case of two interacting bosons to study doublon states,
in which the interactions bind the two particles together in the same site, and the interplay
between topology and interactions. We have used two regimes to characterize the system
analytically: the dimerized limit, where a single strong link describes the doublon bands, and
the strongly interacting regime, where each doublon subspace can be analyzed independently.
The model of the first regime accurately predicts the energy of the doublon bands and agrees
with the exact diagonalization results for a large range of interactions. The second set of
models have allowed us to map the different subspaces to effective single-particle SSH and
Creutz ladder models exhibiting Tamm-Shockley states. Additionally, we have shown how
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one can modify the edge potentials of the lattice to promote these states, which arise due to
impurities at the edge sites, to topologically protected edge states.

In Chapter 5, we have increased the complexity of the problem by considering a staggered
lattice with a tilting angle φ populated by a few bosons [153]. While a 1D lattice of inline rings
presents real tunneling amplitudes between OAM states, for a staggered lattice with φ 6= 0,
some of the tunneling amplitudes can take complex values. Therefore, the synthetic Creutz
ladder, which is comprised of the OAM states with circulations + and − at each site, can
present a nonzero flux that is tuned through the angle φ. First, we have considered the single-
particle case with a π flux, which causes the appearance of compact localized states (CLSs)
that form a flat-band spectrum. The wavefunction of these states has a nonzero amplitude
only on a few nearby sites and is exactly zero on the rest due to the destructive interference
induced by the flux. This phenomenon is known as Aharonov-Bohm caging [121, 122].

In the rest of this chapter, we have explored the effect of on-site interactions on Aharonov-
Bohm caging by focusing on the strongly interacting regime using perturbation theory and
exact diagonalization. For nonzero interactions, the number of subspaces with more than
one boson per site rapidly proliferates with the number of particles. We have shown how
most of these subspaces can be mapped to an effective single-particle Creutz ladder with a
flux, in analogy with the single particle case. This allows one to generate many-body CLSs by
appropriately choosing the real-space angle φ. Remarkably, this instance of Aharonov-Bohm
caging is a purely many-body effect, as it exists even in the absence of a flat-band single-
particle spectrum. Additionally, we have studied the possibility of tuning the spatial extent of
the Aharonov-Bohm cage by modifying the periodicity τ at which the angle φ is introduced.
Increasing this periodicity yields more flat bands and their associated CLSs, which generally
have a larger spatial extent. As a result, particles can explore a larger region of the lattice before
encountering the destructive interference that enforces particle caging. To summarize, we have
demonstrated how the geometry of the lattice can be engineered to select whichN-particle
subspaces exhibit caging (through the angle φ) and the spatial extent of the cage (through the
periodicity τ ). The results of this chapter could be further extended to the diamond chain with
a flux, which has already been shown to host single-particle Aharonov-Bohm caging [147],
through the use of nonidentical ring potentials. Also, one could consider Aharonov-Bohm
caging in non-hermitian lattices, which has already been demonstrated in the diamond chain
[403] and the Creutz ladder [404] by introducing gain and loss terms. In this case, one could
generate many-body CLSs and Aharonov-Bohm caging in the strongly interacting regime by
appropriately tuning the gain and loss coefficients.

In Chapter 6, we have continued with the theme of bosons in optical lattices hosting CLSs,
but with two main differences: we have considered conventional optical lattices, where only
the local ground state of each site can be occupied, andCLSs induced by local symmetry instead
of Aharonov-Bohm caging. Within this type of lattice, we have focused on thermalization and
the presence of Hilbert space fragmentation. In the first part of the chapter, we have analyzed
in-depth a family of diamond necklaces [154], while in the second, we have generalized our
findings to a complete class of flat-band lattices [155]. The diamond necklaces present CLS
in each diamond, which can be decoupled from the dispersive chain at the single-particle
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level by a basis rotation. We have shown that the addition of on-site interactions leads to
a conserved quantity which is revealed in this rotated basis, the parity of the number of
particles occupying each CLS. As a result, the Hilbert space is fragmented in the rotated basis,
which can be observed in the adjacency graphs of the Hamiltonian. This is an example of
quantum fragmentation, which in contrast to classical fragmentation, it is only visible in an
entangled basis, but not on the product state basis. Also, this instance of fragmentation is
local, a result of a local conservation law, and strong, such that no sector predominates in the
thermodynamic limit. We have also studied this phenomenon numerically, finding sectors
with a large range of dimensions, entanglement scalings (including volume and area law),
and that include both integrable and non-integrable sectors. All these characteristics and
the exponential growth of the number of sectors with the size of the system are typical of
fragmented systems. Additionally, we have found a nested-dome distribution entanglement
entropies that can be understood through the adjacency graphs of the Hamiltonian, and that
thermalization is restricted within each sub-sector.

In the second part of Chapter 6, we have evidenced that this instance of Hilbert space
fragmentation is not a particular feature of the diamond chain, but a general mechanism
that arises in a certain class of flat-band lattices. The diamond lattice is a particular example
of a flat-band lattice with local permutation symmetries in the single-particle graph of the
Hamiltonian. For such lattices, the equitable partition theorem from graph theory guarantees
opposite parities between the CLS and the extended states of the system. We have used this
result to demonstrate the presence of a generalized conserved quantity for arbitrary lattices of
this class, the parity of the total number of particles in all CLSs of a unit cell. As in the case of the
diamond necklace, this instance of Hilbert space fragmentation is strong, quantum, and local,
and its hallmark is the presence of the nested-dome pattern of entanglement entropies that
leads to sub-sector-restricted thermalization. Finally, we have also shown that this mechanism
for Hilbert space fragmentation is robust to a broad class of long-range interactions, which in
some cases cause the structure of the fragmented Hilbert space to change, from the parity to
the number of particles in the CLSs of a unit cell. The sensitivity of the CLSs to perturbations
makes these systems ideal candidates for the study of prethermalization [244]. Any small
perturbation that lifts the degeneracy of the flat bands will lead to approximate CLSs yielding
approximate conserved quantities. As a result, one can expect the presence of (possiblymultiple)
prethermalization plateaus in the entanglement entropy, due to the presence of the quasi-
conserved quantities, and full thermalization at a much longer time scale. Alternatively, one
could extend this line of research by studying under which conditions flat-band lattices lead to
time crystals, which have already been shown to appear in a spin 1/2 Creutz ladder [185, 250].
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A.1 Properties of the critical points

For the two-state model derived in Sec. 3.2.2, the behavior of the system around the critical
points can be obtained by studying the eigenvalues of the Jacobian at the critical points. The
Jacobian reads

DF =
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For the critical point (A, |αν |2 = 0),

DF (A, |αν |2 = 0) =

(
−γN sin 2ζ 3γ + 4γ cos 2ζ

0 γN sin 2ζ

)
. (A.2)

The corresponding eigenvalues are real and have opposite sign, λ = ±γN sin 2ζ , thus, the
critical point is a saddle point. For the limiting values of κ in the existence condition of
the critical point, Eq. (3.17), ν2/2 and (ν2 + 2ε)/2, ζ takes the values (2a + 1)π/2 and aπ,
respectively. In those cases, the eigenvalues become zero and the behavior around the critical
point can not be inferred from this method.

Similarly, for (B, |αν |2 = N/4),

DF

(
B, |αν |2 =

N

4

)
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γN sin 2ζ 3γ + 4γ cos 2ζ
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)
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and the eigenvalues are real numbers of opposite sign λ = ±γN sin 2ζ . Thus, this critical
point is a saddle point, except for the limiting cases in Eq. (3.18).
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For the critical point (ζ = aπ, C),

DF (ζ = aπ, C) =

(
0 7γ
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and the eigenvalues are

λ = ±
√
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2

)
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Using the |αν |2 value of the critical point in Eq. (3.19a), these eigenvalues are imaginary, and
thus the stationary point is a center, the trajectories precede around it. For the limiting values
of κ in Eq. (3.20), (ν2 − 3ε/2)/2 and (ν2 + 2ε)/2, |αν |2 becomesN/4 or 0, respectively, in
which case both eigenvalues are zero and the behavior around the critical point can not be
determined.

For (ζ = (2a+ 1)π
2
,D),
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with eigenvalues

λ = ±
√

4γ2|αν |2
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2|αν |2 −
N

2

)
. (A.7)

As before, these stationary points are centers, and the trajectories precede around them, except
for the limiting values of κ in Eq. (3.21).
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B.1 Eigenvectors of the strong-link Hamiltonian

The eigenvectors of the strong-link Hamiltonian discussed in Sec. 4.3 are given in Table B.1
below. These correspond to the eigenvalues in Eq. (4.17), where we consider the limit of large
distances where J ′2 ' J ′3 ≡ J . We have defined the factors
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U +

(−)

√
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2
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2J
, V =

U

2
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2J
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√
2(E2

i − EiV − 1), (B.1)

for i = 4, 5, 6, and the norms of the eigenvectors ṽ7,8,9,10 take the following simple forms
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v1 0 0 1
2

−1
2

0 −1
2

1
2
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2
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0 1
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v3 0 − 1√
2

0 0 0 0 0 0 1√
2

0

ṽ4 1 W4 E4 − V E4 − V 1 E4 − V E4 − V 1 W4 1

ṽ5 1 W5 E5 − V E5 − V 1 E5 − V E5 − V 1 W5 1

ṽ6 1 W6 E6 − V E6 − V 1 E6 − V E6 − V 1 W6 1

ṽ7 1 0 0 −A+ −1 A+ 0 −1 0 1

ṽ8 1 0 −A+ 0 −1 0 A+ 1 0 −1

ṽ9 1 0 0 −A− −1 A− 0 −1 0 1

ṽ10 1 0 −A− 0 −1 0 A− 1 0 −1

Table B.1: Eigenvectors vn of the strong-linkHamiltonian ĤSL in the regime of large distances.
The normalized eigenvectors are vn = ṽn/‖ṽn‖ and we use the factors A+(−), V , andWi

with i = 4, 5, 6 defined in Eq. (25).
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C.1 Intertwining operators

In this section, we apply the argument used in [332] for the Creutz ladder, diamond chain, and
dice lattice with flux, to arbitrary flat-band lattices with basic commutative local symmetries
of order two. The authors in [332] define the so-called intertwining operators Uj,k, which
realize the automorphisms of the single-particle graph in the field operators. In our notation,
they swap the top and bottom operators in a rung j of a unit cell k while leaving the other
operators invariant,

{
Uj,k t̂j,kU †j,k = b̂j,k

Uj,kb̂j,kU †j,k = t̂j,k
and

{
Uj,k t̂j′,kU †j,k = t̂j′,k

Uj,kb̂j′,kU †j,k = b̂j′,k
for j 6= j′, (C.1)

while Uj,kŝj′,k′U †j,k = ŝj′,k′ for a spinal site in any rung j′ and any unit cell k′. For each lattice,
the Hamiltonian will remain invariant under a set of local permutations represented by the
combined action Rk =

∏n2/2
j=1 Uj,k, such that RkĤR†k = Ĥ. Note that, in contrast with

[332], here we deal with flat-band lattices without flux. As a consequence, the intertwining
operators do not cause the insertion of a π flux and the conserved quantity does not include
an additional gauge transformation.

The effect of the intertwining operators on the CLSs and the dispersive states we defined
in Eq. (6.14) is the following,
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]†

=

n2/2∑

j=1

αlj,k

(
b̂j,k − t̂j,k

)
= −ĉl,k.

(C.2)

If the intertwining operators are applied to a different unit cell, the CLS operators remain
invariant

∏n2/2
j1=1 Uj1,kĉl,k′

∏n2/2
j2=1 U †j2,k = ĉl,k′ , for k 6= k′. Due to the positive sign in the
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expression of the dispersive states, Eq. (6.14), they remain invariant under such operation,∏n2/2
j1=1 Uj1,kd̂l,k′

∏n2/2
j2=1 U †j2,k = d̂l,k′ for any pair k, k′. For an on-site bosonic interaction,

the Hamiltonian is composed of a series of terms of the form ρ̂†l1,kσ̂
†
l2,k
τ̂l3,kυ̂l4,k, where

{ρ̂, σ̂, τ̂ , υ̂} = {ĉ, d̂} are the annihilation operators of either a CLS or a dispersive state
[see Eq. (6.17)]. The terms with an odd number of CLS creation or annihilation operators
change sign under the action of the intertwining operators, while the others remain invariant.
As we showed in the main text, those terms always vanish, such that

P̂k = eiπ
∑n2/2
l=1 n̂cl,k (C.3)

is a conserved quantity of the complete system.

C.2 Level statistics and non-integrability in the 1D Py-
rochlore chain

Below we give numerical results on the energy level statistics of the 1D Pyrochlore chain
[Fig. 6.7(di)]. In Table C.1, we show the mean value of the spacing ratio [Eq. (6.9)] for each
sub-sector P = (P1, · · · ,PNc) of the Pyrochlore chain considered in Section 6.2.4, with
N = 4 particles inNc = 4 unit cells, open boundary conditions, and one spinal site per unit
cell. Most sub-sectors tend to the Wigner-Dyson value signaling non-integrability within each
sub-sector. The sub-sectors belonging toP = −2, for which the dimension of the sub-sectors
is very small, tend to the Poisson regime, as those correspond to the integrable effective single-
particle sub-sectors. The sectors P = −4, not included in the table, correspond to the frozen
states.
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Sector P Subsector Pk 〈r〉 Standard error
4 (+,+,+,+) 0.520 0.005
2 (−,+,+,+) 0.508 0.008
2 (+,−,+,+) 0.515 0.008
2 (+,+,−,+) 0.524 0.008
2 (+,+,+,−) 0.526 0.008
0 (−,−,+,+) 0.538 0.014
0 (−,+,−,+) 0.529 0.014
0 (−,+,+,−) 0.531 0.014
0 (+,−,−,+) 0.538 0.013
0 (+,−,+,−) 0.515 0.014
0 (+,+,−,−) 0.503 0.013
−2 (−,−,−,+) 0.40 0.03
−2 (−,−,+,−) 0.40 0.03
−2 (−,+,−,−) 0.36 0.03
−2 (+,−,−,−) 0.43 0.03

Table C.1: Mean level spacing ratio for the sub-sectors with P = 4, 2, 0,−2 of the 1D
Pyrochlore chain, withN = 4 particles inNc = 4 unit cells, open boundary conditions, and
one spinal site. The value corresponding to the Gaussian orthogonal ensemble is 〈r〉GOE =
0.536, while the value for a Poisson distribution is 〈r〉P = 0.386. We also indicate the standard
errors of the mean. The plus and minus signs indicate the positive or negative parity of the
vectorP = (P1, · · · ,PNc) in each unit cell k.
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