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We study quark mass matrices derived from magnetized T2/Z, orbifold models. Yukawa
matrices at three modular fixed points, T = i, ¢>*"3, and ioco, are invariant under S-, ST-,
and T-transformations. We study these invariances on the 7?/Z, twisted orbifold. We find
that Yukawa matrices have a kind of texture structure, although those at T = ico are not
realistic. We classify the Yukawa textures at T = i and e*™3. Moreover we investigate the
conditions such that the quark mass matrix constructed by Yukawa textures becomes ap-
proximately a rank-one matrix, which is favorable to lead to hierarchical masses between
the third generation and the others. It is found that realistic quark mass matrices can be ob-
tained around the S-invariant and S7-invariant vacua. As an illustrative example, we show
the realization of the quark mass ratios and mixing based on Fritzch and Fritzch—Xing
mass matrices.

Subject Index B29, B41, B43, B55

1. Introduction
The origin of flavor structure such as the mass hierarchy and flavor mixing is one of the unsolved
mysteries in present-day particle physics. In the Standard Model (SM), quark flavor observables
have been described by ten real parameters: six quark masses, three mixing angles, and one
CP-violating phase. Similarly, lepton flavor observables need twelve real parameters: six lepton
masses, three mixing angles, and three Dirac and Majorana CP-violating phases. To understand
the origin of this large number of parameters, two types of approach, bottom-up and top-
down, have been carried out. In the bottom-up approach, non-Abelian discrete flavor models
have been proposed where Sy, 4y, A(BN?), A(6N?), and so on are assumed as flavor symmetries
of quarks and leptons [1-6]. Then, such symmetries are broken by the vacuum expectation
values (VEVs) of gauge singlet scalars, so-called flavons, but they become complicated.

Another bottom-up approach is to limit the number of parameters in the fermion mass ma-
trices. For example, in Ref. [7] Fritzch proposed the idea of texture-zero for quark mass matrices
where some of entries are zero, and this was extended in Ref. [8] as the Fritzch—Xing mass ma-
trix (for a review, see Ref. [9]). Moreover, several types of texture structures were studied [10].
Actually, four phenomenologically viable zero textures of Hermitian quark mass matrices have
been investigated, and it has been found that there are several possibilities (see, e.g., Ref. [11]
and references therein).

On the other hand, superstring theory is a promising candidate for the unified theory. Super-
string theory predicts ten dimensions. Low-energy effective field theory of superstring theory
can be described by ten-dimensional (10D) super-Yang—Mills theory. Compactification of 10D
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superstring theory as well as super-Yang—Mills theory can lead to a variety of phenomena
in particle physics, e.g. the flavor structure. Torus and orbifold compactifications with mag-
netic flux background are among the simplest, but have interesting structure. They lead to
four-dimensional chiral theory, and the generation number is determined by the size of the
magnetic fluxes [12-15]. Furthermore, their Yukawa couplings depend on moduli and can be
suppressed. Indeed, realistic mass matrices can be realized [16-19].

One important aspect is that the torus compactification and its orbifolding have the mod-
ular symmetry I' = SL(2, Z) as well as ' = SL(2, Z)/Z,, which is a geometrical symmetry.
Moreover, zero-mode wavefunctions in magnetized torus and orbifold models transform non-
trivially under the modular symmetry [20-26]. In this context the modular symmetry is regarded
as the flavor symmetry. Indeed, three-generation magnetized orbifold models lead to covering
groups of Ay, Sy, As, A(98), and A(384) with center extensions as flavor symmetries [25]. In
addition, Yukawa couplings also transform non-trivially under the modular symmetry. In this
sense, the modular symmetry is not a simple symmetry, under which coupling constants and
masses are invariant, but Yukawa couplings are spurion fields, which transform non-trivially
under the modular symmetry.

Recently, the modular symmetry has been attracting attention from the bottom-up approach.
Interestingly, the finite modular subgroups I' y for N = 2, 3, 4, 5 are isomorphic to S3, 44, Sy,
and 45, respectively [27]. Motivated by this point and string compactification, in the bottom-
up approach flavor models with "y have been studied intensively to lead to realistic quark
and lepton mass matrices (see, e.g., Refs. [28-76]). In these modular flavor symmetric models,
Yukawa couplings as well as masses are modular forms, which are functions of the modulus .
When we choose proper values of 7, we can realize quark and lepton masses and their mixing
angles as well as CP phases. Stabilization of the modulus 7 has also been studied. The modulus
can be stabilized at fixed points, T = i, ¢>*"3, with a certain probability [77-79]. The Z, and
75 residual symmetries remain at these fixed points 7 = i and ™3, respectively, and they are
generated by S and ST, while at the fixed point 7 = ico, T-symmetry remains. Because of the
residual symmetries, mass matrices have specific patterns. Indeed, realistic results were obtained
at nearby fixed points [49,52,59,71,72].

In this paper we revisit the structure of Yukawa matrices in magnetized orbifold models.
Generic string compactifictions including magnetized models lead to more than one candidate
for the Higgs modes, which have the same quantum numbers under the SU(3) x SU(2) x U(1)
SM gauge group and can couple with quarks and leptons. They are massless at the perturbative
level. They may gain mass terms by non-perturbative effects, i.e. the p-term in supersymmetric
models, and the lightest direction of multi-Higgs modes may be determined. However, such
analyses are not straightforward in explicit models, and the lightest direction is not clear. Thus,
in the analysis of Refs. [16-19], the lightest direction is parametrized in the multi-Higgs field
space. Using those parameters, the possibility of deriving realistic quark masses and mixing
angles was examined. We follow the same procedure. In addition, we emphasize the modular
symmetry of Higgs modes. Multi-Higgs modes are a (reducible) multiplet of the modular sym-
metry in magnetized orbifold models. As mentioned above, the 7, (Z3) residual symmetries
generated by S (ST) remain at these fixed points t = i (r = ¢*"3). Each Higgs mode has a
definite Z, (Z3) charge at © = i (¢*"73). We can realize a specific pattern of Yukawa matrix at
these fixed points of 7, depending on Zy charges of Higgs modes. That is, texture structures
are realized; we classify them here. We show that S-invariant vacua at t = i and S7-invariant
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273 are useful to realize a large hierarchy in quark masses. However, we need

small deviations from S-invariant and S7-invariant vacua to derive realistic results fixing 7 =i
and T = e*3. For example, the Fritzch mass matrix and the Fritzch—Xing mass matrix can be
realized from these textures by taking appropriate Higgs VEV directions.

The paper is organized as follows. In Sect. 2 we review the zero-mode wavefunctions and
Yukawa couplings on the torus and orbifold with magnetic fluxes. In Sect. 3 we review the
three-generation fermion models on the orbifold. In Sect. 4 we study and classify the struc-
ture of Yukawa matrices at three modular fixed points. In Sect. 5 we show the condition such
that quark mass matrices become rank-one matrices, and hence a large hierarchy of quarks is
realized. In Sect. 6 we give examples of numerical studies for the quark mass matrices in our
models. Section 7 concludes this study. In Appendix A and B we give the proofs of the rank-one
conditions shown in Sect. 5.

vacua at t = e

2. Orbifold compactification with magnetic fluxes

The 10D super-Yang—Mills theory is the low-energy effective theory of superstring theory. We
compactify the six dimensions, which includes the orbifold 7?/Z, and four-dimensional com-
pact space. We assume the flavor structure originated from 7%/Z,, although four-dimensional
compact space may contribute to an overall factor of Yukawa matrices. Thus, we concentrate
on the two-dimensional orbifold 72/Z, with magnetic flux, and give a review of zero-mode
wavefunctions and Yukawa couplings on these backgrounds [13-15].

2.1 Torus compactification
First, we briefly review zero-mode wavefunctions on magnetized 72 [12]. For simplicity, we
concentrate on a U(1) background magnetic flux given by
wiM
Imt

F=dA=

dz A dZ, (1)

where z is the complex coordinate on 72 and 7 is the complex structure modulus. The flux M
is induced by the vector potential one-form

aM

A= Im((Z + ¢)dz). )

Imzt
In what follows, we consider the vanishing Wilson line ¢ = 0. Then, the torus identification
z~z+4+m+ nt, m,n e 7, gives the Dirac quantization condition, M € Z. Furthermore, the
two-dimensional spinor with U(1) unit charge ¢ =1, ¥ = (¥4, ¥ _)', must fulfill the boundary
conditions

v l)zeXp{iﬂMIm_Z}‘/’(Z)v 1/’(Z+r)=exp{inMIm(fz)
Im<t I

mrt

}w(n. 3)

By solving the massless Dirac equation, i v = 0, under the above conditions, it is found that
only positive (negative) chiral zero-mode wavefunctions have the | M| number of degenerate
solutions for M > 0(M < 0); the jth zero mode is expressed as

1/4 , N .
w_{_’lMl(Z, ‘L’) _ (|M|) ei”‘M‘Z% Zem‘er(“Jm—M) €2m|M|z(ﬁ+€)

A2
Le?
M 1/4 . Imz L
=<%) e’”MZM[Agl}QMw, M), “)
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P = (e o) =0T M- ©)

where A denotes the area of 72, and 9 denotes the Jacobi theta function defined by

a i 2 .
) VvV, T)= em(a+€) ‘[€2nl(a+()(v+b)‘ §
[b =2 (6)

This function has the property

L L- J+k+Mim
19|:A61}(V1, M7) x 19[]‘62 (v, MoT) = )~ 19|: MIBMZ :|(V1 + va, (M1 + M>)7)

i mey, +m,
sz—M1k+M]Mzm
x 19|: My Mr(My+M>) :|
x (viMy — vy My, My My (M) + My)7). (7)
Consequently, we find the normalization and product expansions of the zero modes:
[ @z (1 e ) = @iy P, ®)
wilMH(z’ ‘L’) . 1//:{:’|M2|(Z, T) — Z Yijkl//i,\MllJrlel(z’ .[)’ (9)

k€ my|+1my)

where
yik — /dzzl//iMll(Z, f)wilMﬂ(z, ‘L') (wilMl\Hle(Z’ 1.)>*

1/4 [ My |i—| M| j+| M Ma |k
9| PSEGATET 0, (M, Ma(M) + Ma)lT). (10)

M M,

— A_1/2
M + M,

Hereafter, we omit the chirality sign + from the zero modes.

To end this subsection, we also give a review of the modular symmetry for wavefunctions [23].
The modular group I' = SL(2, Z) is generated by two generators, S- and 7-transformations,
and defined as

Fr=(ST|8=2 S*=T)Y=2>=1. (11)
Then, the modular transformation for (z, 7) is given by
1
S:(z,t)— (—?——), T:(z,71)— (z, T+ 1), (12)
T T

and under these two transformations the wavefunctions in Egs. (4) and (5) behave as the mod-
ular forms of weight 1/2 transformed by I'yy:

M1

VI GE ) = Ip@) Y @t M. el (13)
k=0

where J; ,2(¥, 7)is the automorphy factor, T is the double covering group of I" generated by two
generators, S- and T-transformations (which are the double covering of S and T), and defined
as

T=(ST|S*=Z =Ty =22 S*=ST)°=2=1, ZT =T2), (14
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Table 1. The numbers of zero modes on the magnetized 72/Z, twisted orbifold.

| M| 1 2 3 4 5 6 7 8 9 10 11 12

Z,-even 1 2 2 3 3 4 4 5 5 6 6 7
Z5-odd 0 0 1 1 2 2 3 3 4 4 5 5

and p is the unitary representation of Fz‘M‘ generated by the following S- and T-
transformations:

~ : 1 ik ~ i L2
mmﬂzaﬂtjﬁfmﬁu P(T) = &5 (15)

F2| um 1s defined as
Ty =(S.T|8*=2Z S*=8TY =2=-1, ZT =TZ, T =). (16)
That is, p satisfies the following algebraic relations:
Sy =p(2),
P =PSRN = p(2) = -1,
PONT) = B(Tp(2),
PPV =1. (17)
We note that 7-transformation for the wavefunctions can be defined with the vanishing Wilson

line only if M € 27 for consistency with the boundary conditions. The 7-transformation can
be consistent for non-vanishing Wilson lines when M € 27 + 1 [25].

2.2 Orbifold compactification

Second, we briefly review zero-mode wavefunctions on the 7'?/Z, twisted orbifold with mag-
netic flux M [13]. The T?/Z, twisted orbifold is obtained by further identifying the Z, twisted
point —z with z, i.e. z ~ —z. In addition to the torus boundary conditions in Eq. (3), the wave-
functions on the magnetized T'?/Z, twisted orbifold are required to fulfill

Vr2yzp(—2) = (=1)"¥r2 29 (2), me 7. (18)
Hence, they can be expressed by the wavefunctions on magnetized 772; actually, the zero modes
are expressed as

U@ = N (wiM@) + (—1rupt-2)
= N7 (w1 @)+ (Dl M) (19)

where
. 1/2 =0, |M|/2),
i LY ( | /2) 20)
1//2  (otherwise).

In Table 1 we show the number of zero modes on the magnetized 7%/Z, twisted orbifold for

vanishing discrete Wilson lines and Sherk—Schwarz phases.
Next, we review the modular symmetry of zero modes on the orbifold. The zero modes
in Eq. (19) behave as modular forms of weight 1/2 transformed by I';;ss; under the modular

'For zero modes with non-vanishing discrete Wilson lines and Sherk—Schwarz phases, see Refs. [14,15].
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transformation:

Vi (P 0) = DT 1) Y By (Pl (2 ©), w2}
k

where pr2/zy is the unitary representation of Fz‘ ) generated by the following S- and T-
transformations:

~ 711/4 27T]k - 2
0. S /\/'f/\/ cos|[ —— ), 0. T)i =",
/OTZ/Z(Z)( )jk = Wi < Wi ) /OTz/Zg( ik =€ ik
~ ~ - Aiemt 2wk - ~ )
Prozy(S)in = NN [M] Sm( M| ) o P (T =T . (22)

We again note that the 7-transformation is consistent for vanishing discrete Wilson lines only if
M € 27. The T-transformation can be consistent for non-vanishing discrete Wilson lines when
M e 27+ 1[25].

3. Three-generation models

3.1 Classification for three-generation models

In this subsection we review the classification of the three-generation models which lead to
non-vanishing Yukawa coupling in the T?/Z, twisted orbifolds (for details, see Refs. [80,81]).
Yukawa coupling for four-dimensional effective theory is given by the overlap integral of zero
modes on the orbifold:

V= [ e i) 23)

where 7, zﬁ)’é, and 1//,’; are zero modes for left-handed fermion, right-handed fermion, and
Higgs fields. We focus on the case where the flavor structure comes from only 7?/Z,, although
another four-dimensional compact space contributes an overall factor of Yukawa matrices.
Then, Yukawa couplings relevant to the flavor structure are written as

ik _ M &l kMl \)*
O L Evieviie (ViEe) 04)

where M, Mg, and My are the magnetic fluxes for left-handed fermion, right-handed fermion,
and Higgs fields, respectively. To preserve the gauge invariance, these fluxes must satisfy the
following flux condition:

|Mp| = [IML| £ | Mgl|. (25)

Moreover, the Yukawa coupling in Eq. (24) should be invariant under a 7, twist. Thus, non-
vanishing Yukawa coupling must satisfy the following Z, parity condition:

L+ m+n=0(mod2). (26)

By these flux and parity conditions, the flux and parity for Higgs fields are fixed once we choose
ones for left- and right-handed fermions such that three generations of fermions are realized. In
Table 2 we show all the possible three-generation models with non-vanishing Yukawa couplings
when |My| = ||[My| + |Ng||. Here, we ignore the three-generation models with flux |My| =
[|M| — | Ng|| because such models do not lead to realistic results.
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Table 2. Possible three-generation models with non-vanishing Yukawa couplings on the 72/Z, twisted
orbifold when |My| = || M| 4+ | Mg]|. There are additional possible models obtained by left (L) and right
(R) flipping, although they are omitted from this table.

M (parity) Mg (parity) My (parity)  No. Higgs modes Model name

4 (even) 4 (even) 8 (even) 5 4-4-8, (e,e,e), SH
4 (even) 5 (even) 9 (even) 5 4-5-9, (e,e,e), SH
5 (even) 5 (even) 10 (even) 6 5-5-10, (e,e,e), 6H
4 (even) 7 (odd) 11 (odd) 5 4-7-11, (e,0,0), SH
4 (even) 8 (odd) 12 (odd) 5 4-8-12, (e,0,0), SH
S (even) 7 (odd) 12 (odd) 5 5-7-12, (e,0,0), SH
5 (even) 8 (odd) 13 (odd) 6 5-8-13, (e,0,0), 6H
7 (odd) 7 (odd) 14 (even) 8 7-7-14, (0,0,e), 8H
7 (odd) 8 (odd) 15 (even) 8 7-8-15, (0,0,e), 8H
8 (odd) 8 (odd) 16 (even) 9 8-8-16, (0,0,e), 9H

3.2 Yukawa couplings
Here, we review how to calculate Yukawa couplings in the three-generation models. First of all,
we calculate ones on the torus given by

v = [ e (w o) @)
Using the normalization in Eq. (8) and the product expansion in Eq. (9), we find that
Mo Mo VA
ik M Mg
Y;Y = (AIm7)"'/2 »
[Mp|—-1 | MRli—|Mp|j+| My Mgim
X Z ¥ 'ML%RM”' (0, IMLMRM|T) - Siv jk.| Myt~ My im
m=0
[Mp|-1
= C D TNMali MM, M Sik k[ Myl My s (28)
m=0

1/4
where £ € Z, c = 2AIm )~ !/? ’M]&—@“ , and we have used the notation

N
nN = 19|:]g:|(0» M), M = M MrMp|. (29)

Then, Yukawa couplings on the 7'?/Z, twisted orbifold can be expressed by ones on the torus,
because zero modes on the orbifold can be expressed by ones on the torus. Inserting zero modes
on the orbifold in Eq. (19) to Yukawa couplings on the orbifold in Eq. (24), we find that

YA =Y oMoy M grk Ml y K (30)

i,k
where
OIM = NT (84 + (=1)"8; m—r) - (31)

We also study the modular symmetry of Yukawa couplings on the orbifold. Since Yukawa
couplings are written by the overlap integral of zero modes, from the transformation law for
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Table 3. The number of each Z4 eigenstate in wavefunctions on the 72/Z, twisted orbifold at t = i. n
denotes the eigenvalues of the Z4 twist. The S-transformation eigenstates and eigenvalues are the same
as those for Z4.

Z, parity, no. generations No. Z4(S) eigenstates

n=1 n=-1 n=i n=—i
even, 2n n n 0
even, 2n + 1 n+1 n 0 0
odd, 2n 0 0 n n
odd, 2n + 1 0 0 n+1 n

zero modes we find that Yukawa couplings are transformed as
ik ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i ik
Y, V1) =T, N2 (V. DI oV 007220 (Wi Br2szy (V) B2 e Y 5 (7).
(32)

4. Yukawa textures by modular symmetry

In this section we study the restrictions on Yukawa matrices by modular symmetry. We will see
that modular symmetry at its fixed points restricts the structure of the Yukawa matrices, and
then the Yukawa matrices have a kind of texture structure. The fixed points for the modular
transformation are: as follows:

I. © =iisinvariant under S-transformation.
II. 7 =¢¥B = wisinvariant under ST-transformation.
III. 7 =ioco (Im7 = o0) is invariant under 7-transformation.

Hereafter, we investigate the structure of Yukawa matrices at these three fixed points. We note
that we write Yukawa matrices on the 72/Z, twisted orbifold as Y7 instead of Y}é’;zz.
4.1 S-invariance
Only if © = i, the wavefunctions on the 72/7, twisted orbifold can be expanded by 74 twist
eigenstates (for Z4 twist eigenstates, see Refs. [14,15,23,82]). The Z4 twist is defined by the fol-
lowing transformation of the complex coordinate on 7°:

z — iz. (33)
The numbers of the Z, eigenstates in the wavefunctions on the 7°>/Z, twisted orbifold are
shown in Table 3. Note that the S-transformation eigenstates and eigenvalues are the same as

for Z4; under S-transformation the wavefunctions on the Z4 eigenbasis are transformed by a
diagonalized matrix composed of 74 eigenvalues.

At t =i, Yukawa matrices are invariant under S-transformation because S: T = —1/7. This
S-invariance is written as
Y = T a(S, LS - TS, DBR(S) 7 - (D1 2(S, DBu(Shw)* - Y7TX, (34)
with
Jia(S,7) = (=0)' 2, (35)

On the 7,4 eigenstates, that is, on S-transformation eigenstates, the transformation matrix, ﬁ(§),
is given by a diagonalized matrix composed of 74 eigenvalues. The numbers of 74 eigenvalues
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Table 4. The structures of Yukawa matrices for each S-eigenstate Higgs mode. The Yukawa matrices are
S-transformation eigenstates and are restricted to two types of structure by S-invariance. The symbol
“x” denotes non-zero matrix elements.

7, parities of Structures of Yukawa matrices for each S-eigenstate Higgs mode
(L, R, H)
1 —1 i —i
x* % 0 0 0 =
(even, even, even) x* % 0 0 0 = None None
(0 0 *) (* * 0)
* % 0 0 0 =
(even, odd, odd) None None * % 0 0 0 =
0 0 =* * % 0
* % 0 0 0 =
(odd, even, odd) None None x % 0 0 0 =
0 0 = * % 0
0 0 = * % 0
(odd, odd, even) 0 0 = * % 0 None None
x* % 0 0 0 =

in the diagonalized matrix can be read from Table 3. Then, the S-invariance in Eq. (34) restricts
the structure of the Yukawa matrices to two types, as shown in Table 4.

As a simple example, we show a restriction on the Yukawa matrices in the model “4-4-8,
(e,e,e), SH” in Table 2. Five Higgs modes in this model, whose flux is eight and parity is even,
are transformed by

1 0 O 0 0
0 1 0 0 0

TipS puS)={0 0 1 0 0 (36)
0 0 0 -1 0

o
o
o
o
|
—_

under S-transformation. On the other hand, three generations of fermions, whose flux is four
and parity is even, are transformed by

1 0 0
Ji2(S, DBL(S) = Jip(S, pr(S)= [0 1 0 37)
0 0 -1
Then, the S-invariance on the Yukawa matrices is written as
1 00 0 0\
1 0 0 1 0 0 01 0 0 0
Y%=10 1 0 0 1 0 0 01 0 0 YK, (38)
0 0 —1) Ao o -1/ fo 0 0 -1 0
0 0 0 0 -1

kk'
Thus, the Yukawa matrices for S-invariant Higgs modes, Y?°, Y! and Y??, and those for S-
variant Higgs modes, Y?7* and Y7*, are restricted to the following two structures, respectively:

x* % 0 0 0 =
Yoz — |« ol. YiR4=10 0 x|, (39)
0 0 =« * % 0
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Table 5. The number of each Z eigenstate in wavefunctions on the 72%/Z, twisted orbifold at t = ¢**%

= w. n denotes the eigenvalues ofthe Z¢ twist. The S7T-transformation eigenstates are the same as those
for Z¢. The ST-transformation eigenvalues are given by the squares of the Z4 eigenvalues.

7, parity, no. generations No. Z eigenstates
n=1 1 =o' n=w N =’ N =’ N =

even, 3n n 0 n 0 n 0
even, 3n + 1 n+1 0 n 0 n 0
even, 3n + 2 n+1 0 n+1 0 n 0
odd, 3n 0 n 0 n 0 n
odd, 3n + 1 0 n+1 0 n 0 n
odd, 3n + 2 0 n+1 0 n+1 0 n

where the symbol “x” denotes non-zero matrix elements.

4.2  ST-invariance

Only if 7 = €**"® = @ and flux M = even, the wavefunctions on the 7?/Z, twisted orbifold can
be expanded by Z¢ twist eigenstates (for Zg twist eigenstates, see Refs. [14,15,23,82]). The Z4
twist is defined by the following transformation of the complex coordinate on 77

z— "3z, (40)

The numbers of Z eigenstates in the wavefunctions on the 7>/Z, twisted orbifold are shown
in Table 5. Note that the S7-transformation eigenstates are the same as those for Zg. The
ST-transformation eigenvalues are given by the squares of the Zg eigenvalues since S7-
transformation at its fixed point is equivalent to a Z; twist. Under the S7-transformation,
hence, the wavefunctions on the Z¢ eigenbasis are transformed by a diagonalized matrix com-
posed of the squares of the Z¢ eigenvalues.

At T = w, the Yukawa matrices are invariant under the S7-transformation because ST:
= —1/(t 4+ 1). Only if the fluxes My, Mg, and My are all even integers is this S7-invariance
written as

YU = 11 p(ST, 0)pL(ST )iy - J2(ST, @)BR(ST ) - (N12(ST, ) (ST e - Y77¥, (41)
with

Jp(ST v) = (=@ + 1) (42)

On the Z¢ eigenstates, i.e. on ST-transformation eigenstates, the transformation matrix, ,'5(3’7’ ),

is given by a diagonalized matrix composed of the squares of Z¢ eigenvalues. The numbers of

Z¢ eigenvalues in the diagonalized matrix can be read from Table 5. Then, the S7-invariance in
Eq. (41) restricts the Yukawa matrices to three types of structure, as shown in Table 6.

As a simple example, we show a restriction on the Yukawa matrices in the model “4-4-8,

(e.e,e), SH.” The five Higgs modes in this model, whose flux is eight and parity is even, are
transformed by

1 0 O 0 0

0O 1 0 0 O
Jip(ST.0)pp(STY=[0 0 &> 0 0 (43)

0 0 0 o 0

0O 0 O 0 w
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Table 6. The structures of the Yukawa matrices for each S7-eigenstate Higgs mode. The Yukawa matrices
are ST-transformation eigenstates and then are restricted to three types of structure by ST-invariance.
The symbol “x” denotes non-zero matrix elements.

7, parities of Structures of Yukawa matrices for each S7-eigenstate Higgs mode

(L. R, H) :

1 1) o)
* 0 0 0 %« 0 0 0 =
All patterns 0 0 =x x* 0 0 0 % 0
0 %« 0 0 0 =« * 0 0

under S7-transformation. On the other hand, the three-generation fermions, whose flux is four
and parity is even, are transformed by

1 0 0
Ji2(ST. 0)p(ST) = J1 (ST, 0)pr(ST) = | 0 w* 0 (44)
0 0
Then, the ST-invariance on the Yukawa matrices is written as
1 0 0 0 0\
1 0 O 1 0 0 0 1 0 0 0
Y*=10 o 0 0 o 0 0 0 o* 0 o YK, (45)
0 0 p 0 0 i 0 0 0 o 0
0 0 O 0 o/,

Thus, the Yukawa matrices for ST-invariant Higgs, Y7° and Y7!, those for w-eigenstate Higgs,

Y7 and Y73, and those for w’-eigenstate Higgs, Y74, are restricted to the following three struc-
tures, respectively:

YijO,l — Yi_j2,3 — Yij4 — (46)

S O *
* O O
S *x O
S ¥ O
S O *
* O O
* O O
S *x O
S O %

4.3  T-invariance
Only if the flux M = even, the wavefunctions on the 7>/Z, twisted orbifold can be expanded
by T-transformation eigenstates.

AtImt = oo, the Yukawa matrices are invariant under the 7-transformation because 7: t =
7 + 1. Only if the fluxes M, My, and My are all even integers is this 7-invariance written as

Y% = T (T, i00)pr(T v - J1jo(T , i00)5r(T) 1 - (J1 2T, i00) g (T ) - Y%, (47)
with

Jip(T,oy=1,  F(T)u=e""Ms,. (48)
This leads to
2 -2 k2
yik — yiik 1 AR R 49
exp |:7Tl (ML + M. M (49)

and we find the non-zero elements condition,

2 2 2 »
(_ + L — —) mod 2 = 0, otherwise Y* = 0, (50)
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Table 7. The number of each texture structure matrix in three-generation models. The first column shows
the three-generation models classified and named in Table 2. The other columns show the number of
each texture at t = i and t = w. The values in parentheses denote the eigenvalues of corresponding
Higgs modes under S- (at t = i) and ST-transformation (at T = w).

No. of each texture at t =i No. of each texture at 1 = w

Three-generation * % 0 0 0 = * 0 0 0 % 0 0 0 =
models * % 0 0 0 = 0 0 = * 0 0 0 % 0

0 0 = * % 0 0 % 0 0 0 = * 0 0
4-4-8, (e,e,e), SH 3(1) 2(—-1) 2(1) 2 (w?) I (w)
4-5-9, (e,e,e), SH 3(1) 2(=1) None None None
5-5-10, (e,e.e), 6H 3(1) 3(=1) None None None
4-7-11, (e,0,0), SH 3 (i) 2(—1) None None None
4-8-12, (e,0,0), SH 3 (i) 2(—1) 2(1) 2 (0?) 1 (w)
5-7-12, (e,0,0), SH 3(i) 2(—1) None None None
5-8-13, (e,0,0), 6H 3(i) 3(—1) None None None
7-7-14, (0,0,e), 8H 4(-1) 4(1) None None None
7-8-15, (0,0,e), 8H 4(-1) 4(1) None None None
8-8-16, (0,0,e), 9H 4(-1) 5(1) 3(1) 3 (w?) 3 (w)

which makes almost elements of the Yukawa matrices vanish. For example, in the model “4-4-8,
(e.e.,e), SH,” only three combinations of indices,

(i, j, k) =1(0,0,0), (1,1,2), (2,2,4), (51)

can satisfy the non-zero element condition in Eq. (50), and the Yukawa matrices are restricted
to the following four structures:

x* 00 000 000 000
YP=10 0 0f, Y?=]0 % 0of, Y”*=]0 0 of, Y =10 0 0. (52
000 000 00 * 000

We cannot realize flavor mixing from these Yukawa matrices. Similarly, in other three-
generation models we cannot realize mass matrices for the up and down sectors consistent with
observations. Therefore, hereafter we avoid discussion of 7T-invariance in Yukawa matrices.

4.4 Classification for textures in three-generation models

To end this section we classify the number of each texture structure in three-generation models
on the T?/Z, twisted orbifold. We show the result in Table 7. Note that we ignore the textures
by T-invariance at Im v = oo.

5. Rank-one structures in the mass matrix
Once the lightest Higgs field develops its VEV, the Yukawa couplings give a fermion mass term:

MY = YTHHY), (53)
where we have assumed that (H*) are given by the direction of the lightest Higgs mode. By using
texture structures, we investigate here the Higgs VEV direction such that the quark mass matrix

has rank one. Since quark mass ratios have a large hierarchy, we can approximately regard it as
a rank-one matrix:
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My (O(1076) 0
m, = m, 0(1073) ~m, 0 , (54)
m, 1) 1
My O(10~%) 0
my = my, O(1072) ~ my 0 . (55)
my 1 1

Thus, the mass ratios consistent with observations would be realized near the Higgs VEV direc-
tions, leading to a rank-one quark mass matrix. In other words, if there is no direction leading
to a rank-one mass matrix, it is difficult to reproduce the observed values of quark mass ratios.
In this section we show the conditions where such a rank-one mass matrix can be realized by
textures in the three-generation magnetized orbifold models.

5.1 Higgs VEV directions at t = i
In this subsection we investigate the Higgs VEV directions leading to a rank-one fermion mass
matrix at ¢ = i. In this case, the fermion mass matrix can be expanded by textures as

. % 0 ijm 0 0 =« ijn
MI=3"x « o @HEMD+Y [0 0 x| (HY. (56)
m\0 0 % n\x % 0

Suppose that non-vanishing elements have generic values, but not specific relations among el-
ements. Then, a rank-one matrix can be realized in the following cases:

I.  If the mass matrix includes three or more of

S ¥ ¥
S ¥ ¥
* O O

then the Higgs VEV directions leading to rank one exist in the S-eigenstate directions.
II. Inaddition to case I, if the mass matrix is symmetric (non-symmetric) and includes one
(two) or more of

* O O
* O O
S % *

then the Higgs VEV directions leading to rank one exist not in the S-eigenstate direc-
tions, too.
III. If the mass matrix is symmetric and includes two or more of both types of textures, then
the Higgs VEV directions leading to rank one exist not in the S-eigenstate directions.
IV. If the mass matrix is non-symmetric and includes two or more of

S ¥ ¥
S ¥ ¥
* O O
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Table 8. The Higgs VEV directions leading to a rank-one mass matrix at t = i.

Three-generation models Higgs VEV directions leading to rank one
4-4-8, (ee,e), SH S-invariant, not S-eigenstate

4-5-9, (ee,e), SH S-invariant, not S-eigenstate

5-5-10, (ee,e), 6H S-invariant, not S-eigenstate

4-7-11, (e,0,0), SH i eigenstate, not S-eigenstate

4-8-12, (e,0,0), SH i eigenstate, not S-eigenstate

5-7-12, (e,0,0), SH i eigenstate, not S-eigenstate

5-8-13, (e,0,0), 6H i eigenstate, —i eigenstate, not S-eigenstate
7-7-14, (0,0,e), 8H —1 eigenstate, not S-eigenstate

7-8-15, (0,0,e), 8H S-invariant, —1 eigenstate, not S-eigenstate
8-8-16, (0,0,e), 9H —1 eigenstate, not S-eigenstate

and three or more of

* O O
* O O
S ¥ %

then the Higgs VEV directions leading to rank one exist not in the S-ecigenstate direc-
tions.
V. If the mass matrix is non-symmetric and includes three or more of

0 0 =«
0O 0 x|,
* x 0

then the Higgs VEV directions leading to rank one exist in the S-eigenstate directions.

Proofs of the above are presented in Appendix A. We show which Higgs VEV directions
leading to rank one exist in the three-generation models in Table 8. There are four models where
rank-one directions exist on S-invariant directions. In these four models, we have the possibility
of realizing a realistic quark mass matrix if we assume an almost S-invariant vacuum.

5.2 Higgs VEV directions at t = w
In this subsection we investigate the Higgs VEV directions leading to a rank-one fermion mass
matrix at T = w. In this case, the fermion mass matrix can be expanded by textures as

« 0 0)” 0 % 0\ 00 %\
M7=3"10 0 «| HY+Y |+ 0 0o HMH+D [0 =« o] HY). (57
e \0 % 0 m \0Q 0 =x n \x 0 0

Suppose that non-vanishing elements have generic values, but not specific relations among the
elements. Then, a rank-one matrix can be realized in the following cases:

1. If the mass matrix is symmetric (non-symmetric) and includes two (three) or more of

* 0 0
0O 0 =1,
0 x 0

then the Higgs VEV directions leading to rank one exist in the S7-invariant directions.
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Table 9. Higgs VEV directions leading to a rank-one mass matrix at 7 = w.

Three-generation models Higgs VEV directions leading to rank one

4-4-8, (e,e,e), SH ST-invariant, o> eigenstate, not ST-eigenstate

4-8-12, (e,0,0), SH not ST-eigenstate

8-8-16, (0,0,¢), 9H ST-invariant, o> eigenstate, w eigenstate, not ST-eigenstate

II.  If the mass matrix is symmetric (non-symmetric) and includes two (three) or more of

0 = 0
* 0 0],
0 0 =

then the Higgs VEV directions leading to rank one exist in the S7-eigenstate directions
corresponding to eigenvalue w?.
III. If the mass matrix is symmetric (non-symmetric) and includes two (three) or more of

0 0 =
0 x 0],
* 0 0

then the Higgs VEV directions leading to rank one exist in the S7-eigenstate directions
corresponding to eigenvalue w.

IV. If the mass matrix is symmetric (non-symmetric) and includes one (two) or more of two
types of textures and two (one) or more of another type of texture, then the Higgs VEV
directions leading to rank one exist not in the S7-eigenstate directions.

V. If a non-symmetric mass matrix includes three or more of two types of textures, then
the Higgs VEV directions leading to rank one exist not in the S7-eigenstate directions.

Proofs of the above are presented in Appendix B. We show which Higgs VEV directions lead-
ing to rank one exist in three-generation models in Table 9. Note that we omit three-generation
models including odd integral flux since the S7-transformation for Yukawa couplings cannot
be defined with vanishing Wilson lines. There are two models where rank-one directions exist
on ST-invariant directions. In these two models, we have the possibility of realizing a realistic
quark mass matrix if we assume an almost S7-invariant vacuum.

6. Numerical example: model “4-4-8, (e,e,e), SH”

In this section we study the model “4-4-8, (e,e,e), SH.” We assume that both up and down
sectors correspond to this model. Then we show examples to realize the quark masses and
mixing angles.

6.1  Yukawa matrices
Here we show the Yukawa matrices in the model “4-4-8, (e,e,e), SH.” Table 10 shows the zero-
mode assignments for left-handed fermions L, right-handed fermions R, and the Higgs fields
H.
This model has five zero modes for Higgs fields. The Yukawa couplings Y7L/ R/ H* are given
by
YRR = YOI 4 YO R 4 YIRE? £ YIBHD £ YA HA,
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Table 10. Zero-mode wavefunctions in the “4-4-8, (e,e,e), SH” model.

Li()\'ab) Rj()\.w) Hk(kb"‘)
0 ey Yo Yo
e B St 1 Ay
2 y2 v SV +v5)
3 = +vp)
48
4 1/I‘TZ
where
X() X3
Y70 = ¢cyyg X YT =g Xs Xy |,
X> X
V2X X,
Y2 = chus %(Xo + X2) . Y =] X X3 |,
\/EX] X3
X
Yij4 = C4-4-§ X] y (58)
Xo
with

Xo = 1o + 2132 + nes,

X1 = ns + m2a + nao + Nse,
X2 = 2(n16 + n4s)s

X3 = na + m2s + 136 + M6,
X4 =ma + 120 + naa + ns2.

Here, we have used the notation
N
ny =1 1(2)8 (0, 1287).

Under modular transformation, these Yukawa couplings Y7* are transformed as follows:

YL (@ 0 @) (TG 05 ) (5@ 0f @) v7e, 69
where y € T and the unitary representations py and pg are generated by
1 V2 V2 V21
g (L V21 V2.2 0 V2 =2
~ ~ ~ ~. Ti/4

S =—-|v2 0 V2|, mS)=57|v2 0 -2 0 V2[. (0

1 V2 1 V2 V2 0 V2 -2

1 =2 V2 V2 1
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1 0 0 0 0
1 0 0 0 ¢ 0 0 0
o(Ty=10 e+ o |.p(T)=|0 0 i 0 0 (61)
o o0 -1 0 0 0 —eif 0

0 0 0 0 1

In what follows we assume that both up and down Yukawa matrices for quarks are given
by Eq. (58). We also assume that the Higgs VEV directions for the up and down sec-
tors are independent. Otherwise, we cannot derive realistic results. In particular, the quark
mixing can be realized by taking different Higgs VEV directions for the up and down
sectors.

6.2 Quark flavors at t =i

In this subsection we present numerical studies on the model “4-4-8, (e,e,e), SH” at T = i where
the Yukawa matrices are restricted by S-invariance. First, we assume that the vacuum is S-
invariant. Then we search the Higgs VEV directions leading to a rank-one quark mass matrix on
an S-invariant vacuum. The rank-one matrix is favorable in the limit that we neglect the masses
of the first and second generations. However, we need a small deviation from the S-invariant
vacuum to realize non-vanishing masses of two light generations.> That is, we could realize
quark masses and mixing angles at a point close to the S-invariant vacuum. As an illustrative
example, we show that the Fritzch—Xing mass matrix can be realized on such a vacuum. We
also show some numerical results.

6.2.1  S-invariance and rank-one directions. Att =i, S-transformations for Yukawa couplings
in Eq. (60) are diagonalized into

1 0 0 0 0

1 0 0 01 0 0 0
olmS)os=10 1 o], OfmSos=lo o 1 0o ol (2

0 0 -1 00 0 —1 0

00 0 0 —I

where O4 and Og are orthogonal matrices to diagonalize p4 and pg. These diagonalizations
are consistent with the transformation in Eq. (38). Note that there are degrees of freedom
on the choice of S-transformation eigenbasis because of its degeneracy. Without loss of
generality, it is possible to choose the S-transformation eigenbasis such that the Yukawa
matrices

vk = [of]"[oF )’ [of]* yTI¥ (63)

are expressed as

20n rank-one directions, we can also realize small but non-zero up (down) and charm (strange) quark
masses by slightly shifting the value of the modulus 7 from fixed points instead of the shifting of the
directions of Higgs VEVs.
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1.00 —0.0839 0 —0.0572 —0.248 0
Y79 =1-0.0839 0.00704 0], Y7'=]| —0248 —0.943 0],
0 0 0 0 0 0
0.0683 —0.301 0 0 0
Y2 =|-0.301 0.281 o |, v#3=1]o0 —0.636 |,
0 0 0.844 0 —0.636 0
0 0 0.602\
Yitr=1 o0 0 —0.158 |. (64)
0.602 —0.158 0 )

As shown in Table 8, this model has the Higgs VEV directions leading to a rank-one mass
matrix in both S-invariant and not S-eigenstate directions. In our numerical studies, we assume
an almost S-invariant vacuum. We calculate the absolute values of the Cabibbo—-Kobayashi—
Maskawa (CKM) matrix elements as well as the mass ratios of the quarks near the S-invariant
Higgs VEV direction which lead to a rank-one mass matrix. On the S-transformation eigenbasis
in Eq. (64), we can find that one such S-invariant Higgs VEV direction is given by

(H* =[0I (H*) = (1,0,0,0,0). (65)

6.2.2  Illustrative example: Fritzch—Xing mass matrix. In the model “4-4-8, (e,e,e), SH,” the
mass matrix is symmetric. Here, we assume a mass matrix such as

A B 0 A B 0
M,=|B p c|, M,=|B D ] (66)
0 C 0 0 C 0

where A-D and A—D’ are real values. Such mass matrices can be realized by the appropriate
linear combination of the Yukawa matrices in Eq. (64). Note that we have used the flavor basis
such that the (1,1) entry is the largest. For convenience, we redefine the mass matrix for the up
sector, M, as

0 0 1 0 0 1 0 C 0
M,-MP=10o 1 o|lmM,0 1 o|l=|C D B (67)
1 0 0 1 0 0 0 B 4
In the same way, we can obtain
0o C 0
MP=|c b B (68)
0 B A

for the down sector. These redefined mass matrices are the so-called Fritzch-Xing mass
matrices.’

Now we can realize quark masses and mixing angles based on the Fritzch—Xing mass matrix.
To realize the Fritzch—Xing mass matrix, we first parametrize the Higgs VEV direction by polar
coordinates (0, ¢) as

A

(Hf,d) = vy.4(c0s 6, 4,800, 4cO8 P, 4,0, sin 6, 4sin ¢, 4, 0). (69)

3The Fritzch-Xing mass matrix can be obtained by another type of string compactification [83-85].
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Table 11. The mass ratios of the quarks and the absolute values of the CKM matrix elements at t = i
under the Higgs vacuum in Eq. (71). Comparison values of mass ratios are shown in Ref. [§6]. Those of
the CKM matrix elements are shown in Ref. [87].

Obtained values Comparison values

(5.58 x 1076,2.69 x 103, 1)

(my, me, m;)/my (2.16 x 1079, 8.13 x 1073, 1)

(ma, my, my)/my, (2.02 x 1073,4.10 x 1072, 1) (6.86 x 1074,1.37 x 1072, 1)

0.973 0.233  0.000550 0.974 0.227  0.003 61
0.00251 0.00812 1.00 0.00854 0.0398  0.999

Vexml = |(U9)'UY] (0.233 0.973  0.00848 0226 0973  0.0405

Note that we take the third and fifth VEVs into zero to construct the Fritzch—Xing mass matrix.
Then, the quark mass matrices take the forms in Eq. (66).
Next, to realize the quark flavors at t = i, we choose the following parameters:

(6, ¢u) = (0.008 38, —0.0251), (70)
(O, pa) = (—0.0427, 0.346).
The Higgs VEV direction is given by
(FI;‘) = v,(1.00, 0.008 38, 0, —0.000 211, 0), (1)
(HY) = v4(0.999, —0.0402, 0, —0.0145, 0),

which are the directions very close to the rank-one in Eq. (65). Then, the mass matrices for up
and down quarks are given by

1.00 —8.60 x 1072 0

MY =Y (H)=|-860x 102 —853x107* 1.34x 1074 (72)
0 1.34 x 10~ 0
[ 1.00 ~7.39 x 102 0

M} =YH*EN = -739%x 1072 449 x 1072 9.20 x 1073 (73)
\ 0 9.20 x 1073 0

We can obtain the mass ratios of the quarks and the absolute values of the CKM matrix ele-
ments shown in Table 11.

6.3 Quark flavors at T = w

In this subsection we show another numerical example on the model “4-4-8, (e,e,¢), SH” at t =
w, where the Yukawa matrices are restricted by S7-invariance. First, we assume that the vacuum
is ST-invariant. Then, we search the Higgs VEV directions leading to a rank-one quark mass
matrix on an S7-tranformation invariant vacuum. The rank-one matrix is favorable in the limit
that we neglect the masses of the first and second generations. However, as in the studies at 7 =
i, we need a small deviation from the S7-invariant vacuum to realize non-vanishing masses of
two light generations. That is, we could realize quark masses and mixing angles at a point close
to the ST-invariant vacuum. As an illustrating example, we show that the Fritzch mass matrix
can be realized on such a vacuum. We also show some numerical results.
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6.3.1  ST-invariance and rank-one directions. At t = w, ST-transformations for Yukawa cou-
plings which are given by a product of Egs. (60) and (61) are diagonalized into

1 0 0 0 0
1 0 0 01 0 0 0

UlpsST)Us =0 o 0,  UlmESTHUGz=[0 0 o> 0 0], (74
0 0 w 00 0 o 0
00 0 0 o

where Uy and Ug are unitary matrices to diagonalize py and pg. These diagonalizations are
consistent with the transformation in Eq. (45). Note that there are degrees of freedom on the
choice of ST-transformation eigenbasis because of its degeneracy. Without loss of generality,
it is possible to choose an S7-transformation eigenbasis such that the Yukawa matrices

Fiik =[O UiV Ul 1% ¥+ (75)

arc CXpI'GSSGd as

0.9535+0.04357i 0 0
Yo — 0 0 0],
0 0 0
0.2852 — 0.1027i 0 0
Yl = 0 0 0.8093 — 0.000 5968i |,
0 0.8093 — 0.000 5968 0
0 —0.6454 — 0.06436i 0
Y2 = | —0.6454 — 0.064 36i 0 0],
0 0 0
0 0.1615 + 0.1576i 0
Y3 =10.1615+ 0.1576i 0 0 ,
0 0 —0.6802 — 0.5248i
0 0 0.4039 + 0.080 34i
Yi4 = 0 0.1607 — 0.8077i 0 ) (76)
0.4039 + 0.080 34i 0 0

As shown in Table 9, this model has the Higgs VEV directions leading to a rank-one mass
matrix in both S7-invariant and w’-eigenstate directions. In our numerical studies, we assume
an almost ST-invariant vacuum. We calculate the absolute values of the CKM matrix elements
as well as the mass ratios of the quarks close to the S7-invariant Higgs VEV direction which
lead to a rank-one mass matrix. On the S7-transformation eigenbasis in Eq. (76), we can find
that one such ST-invariant Higgs VEV is given by

A

(H*y = [U]1™ (H¥) = (1,0,0,0,0). (77)

6.3.2  lllustrative example: Fritzch mass matrix. Here, we assume a mass matrix such as

A B 0 A B 0
M,=|B o c|. Mm=|B o |, (78)
0 C 0 0 C 0
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where A-Cand A'—C are complex values. Such mass matrices can be realized by the appropriate
linear combination of the Yukawa matrices in Eq. (76). Note again that we have used the flavor
basis such that the (1,1) entry is the largest. For convenience, we redefine the mass matrix for
the up sector, M, as

0 0 1 0 0\[0 0 1 0 Ce¥ 0
M,—»MP=10 1 ofmf0 e offo 1 o]=|Ce® 0 Be|,
1 0 0 0 0 J\1 0 0 0  BeV Ae

(79)
where x, y, and z are fixed by
x = —Arg(A), y = Arg(A) — 2Arg(B), z = —Arg(A) + 2Arg(B) — 2Arg(C). (80)

Then, the redefined mass matrix is given by

0 CeiArg(A)—ZiArg(B) 0
M:,({h) — (CeiArg(A)72iArg(B))* 0 BefiArg(A) , (81)
0 (BefiArg(A))* |A|

and this is a Hermitian matrix. In the same way, we can obtain the Hermitian mass matrix for
the down sector:

0 C/eiArg(A’)—2iArg(B’) 0
Mg(lh) — (C/eiArg(A’)fziArg(B’))* 0 B/efiArg(A’) . (82)
0 (B/e—iArg(A’))* |A/|

These redefined mass matrices are the so-called Fritzch mass matrices.
Here we realize quark masses and mixing angles based on the Fritzch mass matrix. To obtain
the Fritzch mass matrices, we first parametrize the Higgs VEV direction by polar coordinates

0, ¢) as

(Hlfd) = v,.q4(c0s 6, 4, sIn 6, 4 COS Py, 4, SIN O, 4SIN P, 4, 0, 0). (83)
Note that we take the fourth and fifth VEVs into zero to construct the Fritzch mass matrix.
Then, the quark mass matrices take the forms in Eq. (78) and they can always be rewritten as
Fritzch mass matrices by the appropriate transformations.

Next, to realize the quark masses and mixing angles at T = w, we choose the following pa-

rameters:
{ (O, b)) = (0.078 54, 1.574), &4
(04, dq) = (0.1414, 1.558).
The Higgs VEV direction is given by
{ (I:i,f) = ,(0.9969, —0.000 2465, 0.078 46, 0, 0), (85)
(H(ff) = v4(0.9900, 0.001 771, 0.1409, 0, 0),

which are the directions close to the rank-one in Eq. (77). Then, the mass matrices for up and
down quarks are given by

MY = YN (HY)

0.9505 4 0.043 46i —0.050 64 — 0.005 050i 0
= | —0.050 64 — 0.005 050i 0 —(1.995 — 0.001471i) x 107+ ],
0 —(1.995 — 0.001471i) x 10~ 0

(86)
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Table 12. The mass ratios of the quarks and the absolute values of the CKM matrix elements at t = w
under the vacuum alignments of Higgs fields in Eq. (85). Comparison values of mass ratios are shown
in Ref. [86]. Those of the CKM matrix elements are shown in Ref. [87].

Obtained values Comparison values
(my,, mq, m;y)/my (1.52 x 107°,2.86 x 1073, 1) (5.58 x 107°,2.69 x 1073, 1)
(my, mg, my)/ny, (2.37 x 1074,9.41 x 1073, 1) (6.86 x 1074, 1.37 x 1072, 1)

0.974 0.228  0.00292 0.974 0.227  0.003 61
[Vekm| = |(UZ)T Uf| 0.228 0.973  0.0421 0.226 0.973  0.0405
0.00677 0.0416  0.999 0.00854 0.0398  0.999

MY = YRk

d
0.9445 + 0.042 96 —0.09093 — 0.009 068i 0
= [ —0.09093 — 0.009 068i 0 (1.433 = 0.001057) x 1073 |.
0 (1.433 - 0.001057) x 1073 0
(87)

We can obtain the mass ratios of the quarks and the absolute values of the CKM matrix ele-
ments as shown in Table 12.

As a result, we can obtain realistic quark mass ratios and mixing on the model “4-4-8, (e,e.e),
SH” at both t =i and T = w by choosing appropriate Higgs VEV directions. As illustrative
examples we have used the Fritzch and Fritzch—Xing mass matrices, but we can obtain realistic
values of quark masses and mixing angles with other mass matrix forms around S-invariant
and ST-invariant vacua. It is also possible to study other three-generation magnetized orbifold
models.

7. Conclusion

In this paper we have studied the forms of Yukawa matrices in magnetized orbifold models.
In particular, we focused on the forms at three modular fixed points, T = i, w, and ico. Conse-
quently, we found that Yukawa matrices have a kind of texture structure, although those at =
= ioo are not realistic. We have therefore classified the Yukawa textures at t = i and w.

By choosing appropriate Higgs VEV directions, the Yukawa textures classified in this pa-
per can lead to a mass matrix whose rank is one. A rank-one mass matrix is favorable in
the limit that we neglect the masses of the first and second generations. We have also inves-
tigated the conditions such that the quark mass matrix constructed by Yukawa textures be-
comes a rank-one matrix. Then we found that rank-one directions exist on S-invariant and
ST-invariant vacua in several three-generation models. Thus it is possible to realize the large
hierarchy of quark masses if we assume that the vacuum has approximate S-invariance or S7-
invariance. These invariances need to break slightly to shift the Higgs VEV directions from
rank-one directions, since the first- and second-generation quarks have small but non-zero
masses.

We have presented numerical studies on the model “4-4-8, (e,e.e), SH” at both T =iand w, and
assumed almost S-invariant and S7-invariant vacua to reproduce the quark masses and mixing
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angles. As illustrative examples we have shown that Fritzch—Xing and Fritzch mass matrices can
be realized from Yukawa textures at T = i and w, respectively. Also, other forms of quark mass
matrices can lead to realistic mass ratios of quarks and values of the CKM matrix elements
around the S- and ST-invariant vacua. Other three-generation magnetized orbifold models are
similarly interesting.

We can extend our studies to the realization of lepton flavors. The charged lepton masses
are given by the Dirac mass matrix as quarks, but we need to study Majorana masses for the
neutrino sector. For example, in Ref. [88] Majorana masses for right-handed neutrinos induced
by non-perturbative effects of D-brane instanton effects were studied systematically in mag-
netized orbifold models. We will also study it and examine the realization of both quark and
lepton flavors elsewhere.
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Appendix A. Proof: Rank-one conditions at 7 =i
Here we prove the conditions such that the mass matrix becomes rank one at t = i. As shown in
Sect. 5.1, there are five conditions, denoted I, I1, II1, IV, and V, to realize a rank-one mass matrix.
Under each condition, we show the existence of Higgs VEVs (H) = v* such that the mass
matrix M7 = Y¥*yk becomes rank one. Here and hereafter, we use ¢, k € Z, as any constant
value.

Table A1 shows the forms of the rank-one mass matrices realized on each condition. It shows
there are two (I), three (II (symmetric), III), four (IT (non-symmetric)), and two (V) equations in

Table Al. Rank-one mass matrices realized on each condition. The second column shows one of the
realized rank-one matrices whose elements satisfy Eqgs. (A1)-(A4) to realize rank one; of course, other
rank-one matrices can be constructed. The third column shows the textures included in each condition.

Rank-one matrix Textures included
MO A0 * x 0
I MO M x* % 0] x3
0 0 0 0 0 =«
MO pOr A2 x % 0 0 0 =« { )
11 MO MU M % 0| x3, [0 0 « {Z(Symmemc) ,
MO M2 2 0 0 x % % 0 (non-symmetric)
MOO MOI MOZ x % 0 0 0 =x
111 MO pm A2 * x 0] x2,10 0 x| x2
MO M M2 0 0 =% * % 0
MO MO 02 x % 0 0 0 =
v MO M M2 x* %« 0] x2,{0 0 %] x3
M Mt M 0 0 x x % 0
0 0 0 0 0 =x
A% 0 0 o0 0 0 |x3
MO M0 * % 0
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each condition as follows:
MOO MOI
Mo~
MOO MOl MOZ MOO MOZ

M*? =0, (AD)

II (symmetric), III : U0 = T T R s R (A2)
MOO MOI M02 MOO MOI M02

IT (non-symmetric), IV : 70 = T S 2 M S (A3)

V: M2 =M"?=0. (A4)

In what follows we check that the above equations are satisfied by the textures on each condition
shown in Table A 1. Note that then the normalization condition of Higgs VEVs, Y |[v*|? = (H)?,
is also satisfied.

Al. Condition I
In this condition, the mass matrix can be expanded as

* x 0 * x 0 * x 0
M7=YRk 1w % 0P+ x Op'+|x x 02 (A5)
0 0 =« 0 0 =« 0 0 =«

where the Yukawa matrices Y?* correspond to S-even textures. The rank-one equations in
Eq. (A1) require the following conditions:

M22 — Yzzkvk — 0’ (A6)

MOOMII _ MOIMIO — (YOOkvk)(Yllkvk) _ (YOIka)(YIOkvk) =0. (A7)
Equation (A6) means that v* is given by a linear combination of * and v!. Then, Eq. (A7)

becomes a quadratic equation for v' /1° € C, and we can always find a solution to this equation.
Thus, we can obtain (v°, v', v?) satisfying the normalization condition and rank-one condition.

A2. Condition II (symmetric), 111
First we consider the condition II (symmetric). In this condition, the mass matrix can be ex-
panded as

* % 0 * % 0 * % 0 0 0 =
MI=YRk =1 5« 0"+ % « O+ |% x 0]+]0 0 |, (AS)
0 0 = 0 0 = 0 0 =% * *x 0

where the Yukawa matrices Y?°, Y¥! and Y??> correspond to S-even textures and Y?* corre-
sponds to S-odd. The rank-one equations in Eq. (A2) require the following conditions:

Y123(Y000 + YOOl(vl/VO) + YOOZ(VZ/VO)) — Y023(Y100 + YlOl(vl/VO) + Y102(V2/V0)), (A9)

Y123(Y010 + YOll(vl/VO) + YO]Z(VZ/VO)) — Y023(Y110 + Ylll(vl/VO) + Y112(V2/V0)), (AIO)

(VO)Z(Y220 + Y221 (VI/VO) + Y222(V2/V0))(Y000 + YOO] (VI/VO) + YOOZ(Vz/VO)) — Y023Y203(V3)2.
(A11)

Equations (A9) and (A10) are linear equations for (v!/»°) and (v*/»°), and we can always find
the solutions. Equation (A11) leads to v* = ¢1v*, and v* is determined by the normalization
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condition. Thus, we can obtain (4, v!, v?, v?) satisfying the normalization condition and rank-
one condition.
Next, we consider condition III. In this condition, the mass matrix can be expanded as

* % 0 * % 0 0 0 =% 0 0 =
MI=YR =1 5« 0"+ % « Op'+]0 0 «|vV+]0 0 x|V, (Al12)
0 0 x% 0 0 =% * % 0 * x 0

where the Yukawa matrices Y7 and Y7! correspond to S-even textures, and Y¥> and Y% corre-
spond to S-odd textures. The rank-one equations in Eq. (A2) require the following conditions:

(YOOO + YOO](V]/VO))(Y”O + Ylll(vl/v(])) — (YOIO + YOll(vl/VO))(YIOO + Y]OI(VI/VO)),
(A13)

(YOOO + YOOl (vl/VO))(YIZQ + Y123(V3/v2)) — (Y022 + Y023(V3/v2))(Y100 + YlOl (VI/VO)),
(A14)

(YOOOVO + YOOIVI)(YZZZ 4+ Y223(V3/v2)) — VZ(Y2O2 + Y203(V3/V2))(Y022 + Y023(V3/V2)).

(A15)

Equation (A13) is a quadratic equation for v! /v* € C, and it is possible to find the solution '

= ¢p’. Equation (A14) is a linear equation for v}/v? € C, and the solution »*
Equation (A15) leads to the solution v = ¢31?, and »? is determined by the normalization
condition. Thus, we can obtain (+°, v!, v?, v?) satisfying the normalization condition and rank-

= ¢,v? exists.

one condition.

A3. Condition II (non-symmetric), IV
First, we consider condition II (non-symmetric). In this condition, the mass matrix can be
expanded as

Ml/ — Yi‘jkvk
0 00 * % 0 * % 0 0 0 =% 0 0 =
=10 « OO+ % « o' +|%x « o|»+]0 0 x|V¥+]0 0 x v4,
0 0 =% 0 0 x% 0 0 x* * % 0 * % 0
(A16)

where the Yukawa matrices Y?°, Y7', and Y?? correspond to S-even textures, and Y73 and Y¥*
correspond to S-odd textures. Note that we have chosen two of the three Higgs bases corre-
sponding to S-invariant textures, and two fermion bases corresponding to S-invariant states to
make the (1,1), (1,2), and (2,1) elements of the first Yukawa matrix zero. The rank-one equa-
tions in Eq. (A3) require the following conditions:

YOOI 4 YOOZ(VZ/VI) _ Y011 4 Y012(V2/V1)

= , Al7
y 1ol + YIOZ(VZ/VI) Y”O(vo/vl) + yaxt! + Y112(V2/V1) ( )
YOOl Y002 2 /5,1 Y023 Y024 47,3
AR AEUTAD IS S S W) AL8)
Y101 + Y102(V2/v1) Y123 + Y124(v4/v3)
YOO] Y002 2 /1 YOll Y012 2 /.1
+ (v/v) + (v=/v') (A19)

Y203 4 Y20A(yA/33) T Y213 4 Y2144 3
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L3 YOO] + YOOZ(VZ/VI) - Y023 + Y024(v4/v3)

v /v) =0/v) :

Y205 4 Y2A(A)3) Y2000 vy + Y21 1 Y222 (32 31)

Equation (A17) means that (v*/v!) is determined by (v*/v!). Equations (A18) and (A19) lead to
ci+ (/) s+ e(v))
3+ eV e+ (/)
This is a quadratic equation for (v*/v*) € C and it is possible to find the solution. That is, we can
obtain (v*/v*), (V*/v"), and (O/v!). Then, Eq. (A20) leads to v} = cov!, and v! is determined by

the normalization condition. Thus, we can obtain (v°, v, v?, v3, v*) satisfying the normalization

(A20)

) = (A21)

condition and rank-one condition.
Next, we consider condition IV. In this condition, similar to Eq. (A16), the mass matrix can
be expanded as

Mijzyijkvk
000 * % 0 0 0 =% 0 0 =% 0 0 =%
=10 x 0O+ |x =« o' +]0 0 «[V+]0 0 x|V +]0 0 x|,
0 0 =% 0 0 = * x 0 * x 0 * x 0
(A22)

where the Yukawa matrices Y?° and Y¥! correspond to S-even textures, and Y72, Y73 and Y¥*
correspond to S-odd textures. The rank-one equations in Eq. (A3) require the following condi-
tions:

y 0ol y o1l

y1oI = yIoQ0/,0) ¢yl (A23)

YO Y02 4 YOB(3)12) 4 YOH(y4 42 o

YOI — Y2 L YIB(3/42) 4 Y1244 42) (A24)
y 0ol youl

(A25)

Y202 1 Y2033 32) 1 Y2404 42) T Y212 1 Y2133 42) + Y2144 42)
y ool Y02 4 y0B3(,3 /32y 4 YOH(4)2)
Y202 1 y203(33 /32) 1 Y 204(y4 /y2) Y2200 /yl) f y22I

o' /v = (v*/v")
(A26)

Equation(A23) determines (v'/v!). Equations (A24) and (A25) determine (v*/v*) and (v*/v?).
Then, Eq. (A26) leads to v! = ¢;»?, and v? is determined by the normalization condition. Thus,
we can obtain (0, v!, v2, V3, v*) satisfying the normalization condition and rank-one condition.

A4. Condition V
In this condition, the mass matrix can be expanded as

0 0 =« 0 0 =« 0 0 =«
M7 =Yk =10 0o «[°+]0 0o xP'+]0 0 x| (A27)
x *x 0 * % 0 * % 0

where the Yukawa matrices Y7* correspond to S-odd textures. The rank-one equations in
Eq. (A4) require the following conditions:

MOZ — Y020V0 + Y021vl + Y022v2 — 0’ (A28)
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Table B1. Rank-one mass matrices realized on each condition. The second column shows one of the
realized rank-one matrices whose elements satisfy Egs. (B1)—-(B6) to realize rank one; of course, other
rank-one matrices can be constructed. The third column shows the textures included in each condition.

Rank-one matrix Textures included
MP 0 0 * 0 0 .
C (o o) (00 s) e
0 00 0 = 0
00 O 0 = 0 .
1 00 0 « 0 0] x igflyor;“?egi;)t
00 M2 00 x ymmetric)
0 0 O 0 0 = .
I 0 M 0 0 % 0 |3 tymmetric)
0 0 0 « 0 0 (non-symmetric)
MO0M01M02
v (M10M11M12)
M2 A2 pp22 * 0 0 0 % 0 0 0 = .
0 0 *) 2, (* 0 0) 1, (0 x o) x{zl(ffgﬁ?;ziﬁric)
0 %= 0 0 0 = * 0 0
« 0.0 0 %0 1 (symmetric) 00
00 x]x1,|l*x 0 0 X{2(non—symmetric)’ 0 « 0] x2
0 % 0 0 0 =x * 0 0
« 0.0 1 (symmetric) 0 0 00 =
0 0 = X{Z(non-symmetric)’ *+ 0 0] x2,1]0 x 0] x1
0 % 0 0 0 = * 0 0
MY 0 0 * 00 0 %= 0
M 0 0 0 0 %] x3, % 0 0]x3
0 00 0 % 0 0 0 =
MY 0 0 * 0 0 0 0 =
A% 0 00 0 0 ] x3,10 %« 0] x3
M® 0 0 0 %« 0 x 00
0 00 0 % 0 0 0 =%
MY 0 0 * 0 0] x3, [0 x 0] x3
MO 0 0 0 0 = * 0 0
M=y 4y Py yI2y = (A29)

Equation (A28) means that v* is given by a linear combination of * and v!. Then, Eq. (A29)
leads to v' = ¢;v?, and " is determined by the normalization condition. Thus, we can obtain
(", v!, v?) satisfying the normalization condition and rank-one condition.

Appendix B. Proof: Rank one conditions at T = @

As shown in Sect. 5.2, there are five conditions, denoted I, II, II1, IV, and V, to realize a rank-one
mass matrix at T = w. We prove these rank-one conditions in a similar way to Appendix A.

Table B1 shows the form of the rank-one mass matrices realized for each condition. The table
shows that there are one (I, II, IIT (symmetric)), two (I, I, IIT (non-symmetric)), and four (IV,
V) equations in each condition:

I: M2=Mm"'=0, (B1)

m: M"=wm"0=o, (B2)
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mr: M*»2=m*=0o, (B3)

. MOO MOI M02 MOO M02
IV (symmetric) : WO TS M M S (B4)
MOO MOI M02 MOO MOl M02
MO0 T M T M2 0 T et T2
M12 M21 _ MOI — M22 =0
Ve {MZ=M"=M"2=M"=0, (B6)
MOl M22 M02 Mll =0.

IV (non-symmetric) : (BS)

BI1. Conditions I, II, 111

Here we prove only condition I, because conditions II and III can be proved in a similar way.
In condition I, the mass matrix can be expanded as

* 0 0 * 0 0

00 «|W+]0 0 x|! (symmetric),
A=y~ L \O * 0 0 * 0< (B7)

* 0 0 * 0 0 * 0 0

00 «[vV+]0 0 «|v'+]0 0 %|» (non-symmetric),

0 % 0 \0 * 0 0 % 0

where the Yukawa matrices Y%* correspond to ST-invariant textures. The rank-one equations in
Eq. (B1) require the following conditions:

M =M =Y Lyl = (symmetric),

M2 — y120,0 L yl210 L yI220 _ (B8)
M2 = Y200 Lyl 4 12,2 (non — symmetric).

These are linear equations for ¥, and we can find their solutions and the normalization condi-
tion. Thus, we can obtain V* satisfying the normalization condition and rank-one condition.

B2. Condition IV (symmetric)

Here we prove only one of the three condition IV (symmetric) cases in Table B1, because the
other two cases can be proved in a similar way. We prove the first case, in which the mass matrix
can be expanded as

0 0 0 ¥ 0 0 0 % 0 0 0 =x
M7=y, =10 0 «|+[0 0 «|['+]|x 0 0oV¥+]0 x 0] B
0 = O 0 = O 0 0 = *+ 0 0

where the Yukawa matrices Y7° and Y?! correspond to ST-invariant textures, Y”> corresponds
to an w’-eigenstate texture, and Y7 corresponds to an w-eigenstate texture. Note that we have
chosen two Higgs bases corresponding to S7-invariant textures to make the (1,1) elements of
the first Yukawa matrix zero. The rank-one equations in Eq. (B4) require the following condi-
tions:

yooi,1 y012,2

y102,2 — yl13,3°

(B10)
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Yool 0233
Y2033~ y222,2°
Y0011 y023,3
L. LA (B12)

Y102,2 = Y1200 4 y iyl
Equations (B10) and (B11) lead to v' = ¢;v? and v* = ¢,v?. Then, Eq. (B12) leads to v} =
c3v?, and ¥ is determined by the normalization condition. Thus, we can obtain (°, v!, v, V)

satisfying the normalization condition and rank-one condition.

(B11)

B3. Condition IV (non-symmetric)

Here we prove only one of the three condition IV (non-symmetric) cases in Table B1, because
the other two cases can be proved in a similar way. We prove the first case, in which, similar to
Eq. (B9), the mass matrix can be expanded as

Mij:)/ijkvk
000 * 00 0 * 0 0 % 0 0 0 x
=10 0 «W+]0 0 «x]P'+|x 00|+ 00 +]0 % o]
0 % 0 0 % 0 00 0 0 0 x ¥ 00
(B13)

where the Yukawa matrices Y7° and Y¥! correspond to ST-invariant textures, Y¥> and Y3 corre-
spond to w’-eigenstate textures, and Y7* corresponds to an w-eigenstate texture. The rank-one
equations in Eq. (B5) require the following conditions:

y 01,1 Y0122 4 y013)3
YI02,2 1 yl03,3 = yias (B14)
y 0011 y024,4
Y102,2 1 y103,3 ~ y120,0 4 y121,1° (BI5)
Yooyl y012)2 4 y013,3
Y2044 T y210,0 1 y2ll, (B16)
Yoo, 1 0244
L (B17)
Y 2044 Y 223y3
Equations (B14) and (B15) lead to
=V @0 ) + )00 v + ), (BI8)
and Eq. (B17) leads to
2t o (B19)
From these two relations, we obtain
1
2,3
_ B20
c1(v /V)+CZO(C3(VO/VI)+C4 (B20)

On the other hand, Egs. (B15) and (B16) lead to
(Y102(V2/V3) + Y103)(Y210(v0/v1) + Yle) o (YOIZ(V2/V3) + Y013)(Y120(V0/V1) un lel).
(B21)
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Combining both results, we obtain

¢s 210,.0 /.1 211 c7 120,01 1
(C3(V0/V1)—|—C4+66>(Y (V /V)+Y )O((m-i-Cg)(Y (V /V)+Y )

(B22)
This is a quadratic equation for (v*/v') € C, and it is possible to find the solution ' = cov!.
Consequently, Eq. (B20) leads to v* = ¢jov* and Eq. (B14) leads to

) vt vl (B23)

This relation and Eq. (B19) lead to v’ = ¢;;v* and v' = ¢1»v*, and v* is determined by the
normalization condition. Thus, we can obtain (+°, v!, v?
condition and rank-one condition.

, 3, v}) satisfying the normalization

B4. Condition V'

Here we prove only one of the three condition V cases in Table B1, because the other two cases
can be proved in a similar way. We prove the first case, in which we can choose the ST-cigenbasis
on wavefunctions such that the mass matrix is expanded as

* 0 0 ¥ 0 0 * 0 0
Mi=Y7*kF=10 0 «|"+]o 0 «|'+]o 0o x|V
0 = 0 0 % 0 0 = O
0 = 0 0 *x O 0 = 0
+lx 0 o+« 0 o+« 0 o], (B24)
0 0 =« 0 0 =« 0 0 =«

where the Yukawa matrices Y?°, Y¥' and Y?? correspond to ST-invariant textures, and Y73,
Y73 and Y% correspond to w’-eigenstate textures. The rank-one equations in Eq. (B6) require
the following conditions:

YO 4y P4y 22 =0, (B25)
YZ]OVO + Ylevl + YZIZVZ — O, (B26)
YOI3,3 4 yold 4 L y0Iss (B27)
Y233 4 y244 4 Y2255 _ . (B28)
There are four linear equations for the six VEVs (0, v!, v?, v3, v*, v°). Thus, we can obtain (1°,
vl 12,93, v*, V) satisfying the normalization condition and rank-one condition.
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