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Abstract. At the start of the upcoming LHC Run-3, CMS will deploy a heterogeneous High
Level Trigger (HLT) farm composed of x86 CPUs and NVIDIA GPUs. In order to guarantee
that the HLT can run on machines without any GPU accelerators - for example as part of
the large scale Monte Carlo production running on the grid, or when individual developers
need to optimise specific triggers - the HLT reconstruction has been implemented both for
NVIDIA GPUs and for traditional CPUs. This contribution will describe how the CMS software
used online and offline (CMSSW) can transparently switch between the two implementations,
and compare their performance on GPUs and CPUs from different architectures, vendors and
generations.

1. Introduction
At the start of Run-3 in 2022, the Compact Muon Solenoid (CMS) experiment at CERN will
deploy a High Level Trigger (HLT) farm composed of 200 dual processor servers, each equipped
with two AMD EPYC “Milan” 7763 CPUs and two NVIDIA Tesla T4 GPUs. This GPU has a
half-width, half-length form factor and a power consumption of 70W – a low power, compact
GPU suitable for deployment in the “1U” servers chosen for the HLT farm.

CMS uses a single simulation, reconstruction and analysis software (CMSSW) for both the
online selection at the HLT and the offline data processing and analysis. An overview on the
use of GPUs at HLT planned for Run-3 and later can be found in Chapter 12 of the Phase-2
Upgrade of the CMS Data Acquisition and High Level Trigger Technical Design Report [1]. The
solutions that have been developed to make an efficient use of GPUs (or other accelerators) and
support the transparent fall-back to CPU-only processing are described in [2]. The algorithms
that have been ported to the CUDA platform to run on NVIDIA GPUs are described in [3],
[4] and [5]. The exploration of different performance portability solutions to automate the CPU
implementations of these algorithms and the porting to other GPU architectures are described
in more detail in [6] and [7].

Section 2 describes the performance of the HLT configuration of CMSSW running only
on CPUs: Section 2.1 examines the scaling of the performance with the number of threads;
Section 2.2 shows the evolution of HLT performance across different generations of CPUs; and
Section 3 compares it with the results of the HEP-SPEC06 benchmark [8]. Section 3 examines
the performance of the HLT when the “heterogeneous” algorithms described in [3], [4] and
[5] are offloaded to a GPU: Section 3.1 shows how the performance improvements depend on
the combination of host CPUs and GPUs; while Section 3.2 tries to make a more objective
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Figure 1. Scaling of the HLT throughput with the number of threads per job. The
measurements were performed on a dual AMD EPYC “Milan” 7763 machine with a total of 256
hardware threads, varying the number of threads per job and adapting the number of concurrent
jobs to fully utilise the machine, as described in Section 2.1. The blue line (on the primary y axis)
shows the total throughput relative to the maximum value, obtained with 32 concurrent jobs
each with 8 threads. The red line (on the secondary y axis) shows the performance normalised
to the number of threads per job, while the dashed line indicates the ideal scaling.

comparison of the performance of different generation of GPUs. Section 4 gives an overview
of the ongoing developments and future work directions, and concludes the paper with a look
at the implications of this work on the HLT for the upcoming Run-3 and the future Phase-2
upgrades. All measurements are based on a snapshot of the HLT menu under development for
Run-3, running over data from 2018 with a pileup of 50 interactions per event.

2. Performance on CPUs
Modern server CPUs have modular, multi-core architecture, and achieve their full potential
using Simultaneous Multi Threading (SMT) technologies to run two or more hardware threads
on each core. When they are combined in a dual-socket platform, the result is a machine with
a large number of hardware threads: for example, the HLT machines deployed in 2018 have
two Intel Xeon Gold “Skylake” 6130 processors, resulting in 2 × 16 × 2 = 64 threads, while
the machines deployed in 2022 have two AMD EPYC “Milan” 7763 processors, with a total
of 2 × 64 × 2 = 256 threads. The use of multithreaded software is essential to exploit the
full processing power of these platforms while maintaining a relatively low memory footprint.
In addition, using a smaller number of processes with a larger thread count can improve the
utilisation of GPUs, reducing the contention from the processes that share them, and the total
amount of GPU memory needed.

2.1. Multi-threaded performance
Support for multithreading was introduced in CMSSW [9] during the Long Shutdown 1 period
(2013-2014), based on the Intel Threading Building Blocks library [10], and continuously
improved over the years. Figure 1 shows the scaling of the performance of CMSSW running
the HLT application as a function of the number of threads per job. The measurements were
performed on a dual AMD EPYC “Milan” 7763 machine with a total of 256 hardware threads,
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Figure 2. Evolution over time of the performance of x86 CPUs from different generations and
vendors, measured by the throughput achieved by the HLT on a full dual-socket machine (left)
and scaled by the number of hardware threads (right).

running as many concurrent jobs as needed to utilise all of them: 64 jobs with 4 threads, 32 jobs
with 8 threads, etc., up to two jobs with 128 threads; each job was pinned to a specific set of
cores from either one of the two CPUs; it was not possible to run 128 jobs with 2 threads or 256
jobs with a single thread due to the amount of memory available on the machine, as indicated by
the shaded area; a single job with 256 threads was not considered, to avoid incurring in NUMA
effects. The highest performance is obtained by 32 concurrent jobs with 8 threads each, while
all other configurations achieve a relative efficiency higher than 98%.

2.2. Performance across CPU generations
The machines used at HLT during Run-2 (2015-2018) are based on the latest (at the time)
generations of Intel Xeon processors, and achieve high density with a compact form factor
fitting four dual-socket motherboards in a “2U” enclosure. During the Long Shutdown 2 period
(2019-2021), after evaluating different solutions based on server CPUs by Intel and AMD, the
adoption of the AMD EPYC line of processors led to a different choice for Run-3, with a dual-
socket motherboard in a “1U” enclosure. Figure 2 shows the evolution of the performance of
these CPUs between 2014 and 2021, using the HLT software as a benchmark. A fixed version
of the software has been run on each machine, and the optimal job configuration was chosen
after performing a scan similar to the one shown in Figure 1. The right plot shows how the
performance per core (or per thread) has been stable across many generations of Intel Xeon
CPUs, and received a dramatic increase with the AMD EPYC CPUs. The left plot shows that
the overall performance for the whole machines largely followed the small increase in core count
for the Intel Xeon CPUs, while it jumped due to the high performance per core and the large
core count in the AMD EPYC CPUs.

2.3. Comparison with the HEP-SPEC06 benchmark
While the use of the HLT application itself is the ideal choice to evaluate the performance of
different machines, it is not always a practical on. On the other hand, a standardised benchmark
is useful only if it reflects the performance of the actual workloads. Over the past 10 years
the high energy physics community has used the HEP-SPEC06 benchmark [8] to evaluate the
performance of multi-core computing systems. It is thus interesting to see how, despite its age,
it is still a useful metric for the evaluation of modern systems. Figure 3 shows the correlation
between the HLT performance, measured as described in Section 2.2, and the HEP-SPEC06
score measured [11] on the same machines.
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Figure 3. Comparison of the event processing throughput for a reference HLT configuration
and the results of the HEP-SPEC06 (HS06) benchmark, measured on nodes equipped with CPUs
from different generations (from 2014 to 2021) and different vendors (Intel and AMD).

3. Performance on GPUs
The introduction of computing accelerators, like GPUs, makes measuring the performance of a
hardware system or a software application significantly more complex, as the results may depend
on multiple factors. For example:

– the performance of the CPU and of the GPU (or other accelerator);

– the application’s efficiency on the CPU and GPU (or other accelerator);

– the “heterogeneous” fraction of the application that can be offloaded.

A recent snapshot of the HLT under development for Run-3 has been used to measure the
performance of different combinations of CPUs and GPUs, evaluate the improvement obtained
offloading the “heterogeneous” algorithms to GPUs, and estimate the relative performance of
different GPUs from multiple generations.

3.1. Performance of the full HLT using GPUs
The overall performance of the full HLT application was measured on various combinations of
CPUs and GPUs. These measurements highlight how strongly the results depend on the relative
performance of the CPUs and GPUs, and suggest that the best results can be obtained when
the system is designed around a specific application or use case.

The host systems are dual socket machines equipped with Intel Xeon Gold “Skylake”
6130 CPUs, or AMD EPYC “Milan” 7543, 7713 and 7763 CPUs; the GPUs used in these
measurements are one or two NVIDIA Tesla T4 GPUs, or (only in the dual AMD 7763 case)
one NVIDIA A10 GPU. The optimal job configuration for each system was chosen performing
a scan similar to the one shown in Figure 1; each job was pinned to a specific set of cores from
either one of the two CPUs; the GPUs were efficiently shared among the multiple jobs using the
NVIDIA Multi-Process Service [12].
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Figure 4. Absolute (left) and relative (right) performance of the HLT on different machines,
running only on the CPU (blue bars) and offloading to different GPUs: a single NVIDIA T4
(light green), a pair of NVIDIA T4 (dark green), and a single NVIDIA A10 (red).

Figure 4 shows the performance obtained running the HLT on different combinations of CPUs
and GPUs. Adding a second T4 to the dual 7543 gives only a small improvement, suggesting
that these CPUs are evenly matched to a single T4. As the performance of the CPUs increases
this GPU becomes the limiting factor in the system performance, requiring a second GPU or
a single more powerful one. When enough processing power is available from the GPUs, the
performance improvement is stable around 35% for all AMD CPUs: the application is limited
by the performance of the CPUs and the fraction of the algorithms that can be offloaded.

3.2. Performance of the offloadable algorithms
The HLT configuration can be modified to run only the “heterogeneous” algorithms that can be
offloaded to GPUs, and avoid writing any output to disk. These changes ensure that the CPUs
or GPUs running the algorithms are not limited by external factors, leading to a more objective
comparison of their performance.

Figure 5 shows the relative performance of two CPU-only systems – a dual processor machine
with two Intel Xeon “Skylake” 6130 CPUs (2 × 125 W, from 2017), and one with two AMD
EPYC “Rome” 7502 CPUs (2 × 180 W, from 2019) – and of six NVIDIA datacentre GPUs from
four different generations: a Tesla K40 (250 W, from 2013), a Tesla P100 (250 W, from 2017),
a Tesla V100 (250 W, from 2018) and a Tesla T4 (70 W, from 2019), an A100 SXM4 (400 W,
from 2020) and an A10 (150 W, from 2021). The CPU-only measurements were performed
as described in the previous sections. Most of the GPU measurements have been performed
with a single job with 8 and 16 threads, using in each case the configuration that gives the best
performance; only in the case of the V100 multiple concurrent jobs and the use of the MPS server
were necessary to obtain the best throughput. The comparison of the throughput achieved by
the Tesla K40, Tesla P100, Tesla V100 and A100 shows the improvements in performance over
different GPU generations. The Tesla T4 is low-power GPU from the same generation as the
Tesla V100: their comparison shows how GPUs can be optimised for higher performance or
for better power efficiency. Finally, the A10 shows an other interesting working point, with a
different trade-off between performance and power consumption.

4. Future work and conclusions
Over the past five years CMS has brought the use of GPUs for physics reconstruction from the
R&D phase to the production stage, with the deployment of a fully GPU-equipped HLT farm
and the use of GPUs at grid sites. The use of GPUs is expected to grow during and after Run-3,
as CMS aims to leverage GPUs for at least 50% of the HLT capacity during Run-4 and 80%
during Run-5, in order to reduce the costs and improve the efficiency of the HLT farm during the
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Figure 5. Performance or the offloadable part of the Run-3 HLT reconstruction running on
different hardware: two dual-processors machines, and four generations of NVIDIA GPUs.

High-Luminosity LHC [1]. At the same time, multiple R&D activities are starting or continuing:
the investigation of various performance portability solutions like alpaka [6] (chosen for Run-3),
Kokkos [7] or SYCL; the development of new “heterogenous” algorithms both for Run-3 and for
Phase-2, like the Particle Flow and TICL [13]; and use of GPUs over high-speed network fabric.
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