
J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

Published for SISSA by Springer

Received: February 8, 2022
Accepted: March 31, 2022
Published: April 26, 2022

Operators for generic effective field theory at any
dimension: on-shell amplitude basis construction

Hao-Lin Li,a,c Zhe Ren,a,b Ming-Lei Xiao,a,d,e Jiang-Hao Yua,b,f,g,h
and Yu-Hui Zhenga,b
aCAS Key Laboratory of Theoretical Physics,
Institute of Theoretical Physics, Chinese Academy of Sciences,
Beijing 100190, P.R. China
bSchool of Physical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, P.R. China
cCentre for Cosmology, Particle Physics and Phenomenology (CP3),
Universite Catholique de Louvain,
Chem. du Cyclotron 2, 1348, Louvain-la-neuve, Belgium
dDepartment of Physics and Astronomy, Northwestern University,
Evanston, IL 60208, U.S.A.
eHigh Energy Physics Division, Argonne National Laboratory,
Lemont, IL 60439, U.S.A.
fCenter for High Energy Physics, Peking University,
Beijing 100871, P.R. China
gSchool of Fundamental Physics and Mathematical Sciences,
Hangzhou Institute for Advanced Study, UCAS,
Hangzhou 310024, P.R. China
hInternational Centre for Theoretical Physics Asia-Pacific,
Beijing/Hangzhou, P.R. China
E-mail: haolin.li@uclouvain.be, renzhe@itp.ac.cn,
minglei.xiao@northwestern.edu, jhyu@itp.ac.cn, zhengyuhui@itp.ac.cn

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2022)140

mailto:haolin.li@uclouvain.be
mailto:renzhe@itp.ac.cn
mailto:minglei.xiao@northwestern.edu
mailto:jhyu@itp.ac.cn
mailto:zhengyuhui@itp.ac.cn
https://doi.org/10.1007/JHEP04(2022)140


J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

Abstract: We describe a general procedure to construct the independent and complete
operator bases for generic Lorentz invariant effective field theories, given any kind of gauge
symmetry and field content, up to any mass dimension. By considering the operator as
contact on-shell amplitude, the so-called amplitude operator correspondence, we provide
a unified construction of the Lorentz and gauge and flavor structures by Young Tableau
tensor. Several bases are constructed to emphasize different aspects: independence (y-basis
and m-basis), repeated fields with flavors (p-basis and f-basis), and conserved quantum
numbers (j-basis). We also provide new algorithms for finding the m-basis by defining inner
products for group factors and the p-basis by constructing the matrix representations of
the Young symmetrizers from group generators. The on-shell amplitude basis gives us a
systematic way to convert any operator into such basis, so that the conversions between
any other operator bases can be easily done by linear algebra. All of these are implemented
in a Mathematica package: ABC4EFT (Amplitude Basis Construction for Effective Field
Theories).
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1 Introduction

The Standard Model (SM) has been acknowledged as the most successful model in particle
physics, yet several experimental facts indicated that new physics exists beyond the SM.
Under the circumstances that no signal of new physics below the TeV scale is found at
the Large Hadron Collider (LHC), the effective field theory (EFT) framework provides a
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systematical parametrization of all kinds of new physics at an energy scale below the new
physics. The EFT framework has been applied to various models at different energy scales,
such as the standard model effective field theory (SMEFT) [1–9], the low-energy effective
field theory (LEFT) [10–13], the standard model effective field theory with right-handed
neutrinos (νSMEFT) [14–18], the low-energy effective field theory with right-handed neu-
trinos (νLEFT) [18–20] and so on.

As a successful paradigm to understand particle physics at different scales, theories of
EFT beyond the leading order attract more and more attention. As of the SMEFT, the
first SMEFT operator was written down in 1979 by Weinberg on the mass dimension 5 [1],
and then in 1986, Buchmuler and Wyler wrote the dimension six operators [2]. Since then,
they have been writing down the SMEFT operators getting more and more attention,
especially after the LHC finished its first run. According to the power counting in the
SMEFT, the lower dimension, the more dominant contributions. However, there are also
many cases that a higher dimension operator dominates the physical processes. Therefore,
it is necessary to write down the complete set of operators at higher dimensions.

When certain EFT is applied to study a specific physical process, it is crucial to obtain
a complete and independent operator basis in order to find all independent operators related
to the process without miscounting and redundancies. In the SMEFT, it takes more than 20
years to obtain the complete and independent basis, the Warsaw basis [3], the widely-used
operator basis at dimension 6. However, when it comes to a higher dimension, although
the number of independent operators at certain dimension can be fully determined once
the model is known, there are still difficulties to write down explicit operators: such as
the equation of motion, covariant derivative commutator, the Bianchi identities, the Fierz
identities, total derivatives, and repeated fields, etc. Furthermore, choices of the complete
and independent operator basis can be multifarious due to the huge number of possible
operators and the freedom to define redundant operators among them.

Recent developments of the on-shell method have greatly reduced the difficulties for
the Lorentz sector of effective operators [21–28], where independent operators are enu-
merated in terms of their corresponding on-shell amplitude basis. An ultimate algorithm
that systematically deal with all the redundancy relations was proposed in [5, 7, 29]. In
particular, the Lorentz sector is represented by a Young tensor component of the group
SL(2, C) × SU(N), the former being the Lorentz group, and N is the number of external
particles in the on-shell amplitude. Additionally, gauge group tensors and repeated field
issues are tackled carefully to guarantee the independence among the flavor-specified op-
erators, with flavor relations automatically derived and encoded in the final expressions of
the operators. Furthermore, it has the advantage that any operator could be expanded
on this on-shell basis, rendering a coordinate as unique identifier of the operator. The
Young tensor method has been applied to the SMEFT [5, 7], the LEFT [12], νSMEFT and
νLEFT [18] to obtain the on-shell EFT operator bases. Note that we are always assuming
massless particles in this algorithm; massive scalars and fermions do not make a difference
as shown in [18], but operators involving higher-spin massive particles/fields require more
sophisticated algorithm, which are investigated in [26–28].
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The above Lorentz part of an operator can be applied to any generic EFT with Lorentz
invariance. On the other hand, the gauge structure of the operator depends on the model.
For the general SU(N) gauge group, we still use the Young tableau to obtain the complete
set of the gauge structure. In this case, we invent a Littlewood-Richardson method at
the Young tableau level, instead of the Young diagram level traditionally, using only the
fundamental indices under the SU(N) group. Thus our Young tensor method could apply to
any Lorentz invariant EFT with any gauge symmetry, such as SU(5), left-right symmetry,
and so on.

After getting the Lorentz and gauge structure, one can take the direct product of two
Young Tableau, which obtains the on-shell basis for a type of operator called the y-basis and
m-basis. Suppose there are repeated fields with flavor indices in the operator. In that case,
the flavor tensor will obey a certain symmetry structure: the flavor tensor can be decom-
posed via the Sn symmetry according to the Schur-Weyl duality [30]. With the permutation
symmetry, we could re-write the operators, ad re-organize these operators according to the
flavor symmetry, which gives the permutation basis (p-basis) and flavor specified operators
(f-basis). Given the EFT operators, one question to ask is what is in the UV for such op-
erators. We perform the partial wave expansion on the operator with the Pauli-Lubanski
and Casimir action to decompose the ones to several j-basis operators, which have a certain
spin and gauge quantum numbers. These constitute different bases of a type of operator:
y-basis, m-basis, p-basis, f-basis (previously called p’-basis [5, 7]) and j-basis.

We not only provide a systematical way to obtain the complete and independent op-
erator basis of EFT that can be applied to generic models, but also present a systematical
method to write any operator basis in terms of our operator basis modulo equation of
motion and commutator of covariant derivative. In the traditional approach, the basis
conversion is quite challenging: how to convert any operator into a standard basis in a
systematic way? In this work, due to the advantage of the Young tensor basis, we can
systematically convert any operator into the on-shell basis using the reduced rule we pro-
vide. All of these are presented in a Mathematica package ABC4EFT, which is publicly
available in the website HEPForge.

On the technical side, we summarize several improvements and new features in the
package compared to our previous work [5, 7]:

• We propose a new efficient algorithm to find the independent m-basis gauge factors,
which simultaneously provides a metric tensor for finding the coordinate of arbitrary
gauge factors.

• In our previous work [7], the coordinate of p-basis operator with definite flavor permu-
tation symmetry is obtained by constructing the irreducible representation of flavor
permutation group with the Clebsch-Gordon coefficients, while in this work, such
information is extracted from the representation of the corresponding Young sym-
metrizers. The new method is also more straightforward for obtaining the f-basis,
which is the reduced p-basis and called p’-basis previously, than the one in the previ-
ous work, where a de-symmetrization algorithm was implemented. The new workflow
of generating the operator bases is summarized in figure 1.
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Figure 1. Flow chart of the ABC4EFT package for finding all independent operators for a given
model at certain mass dimension. The Lorentz Y-basis is constructed using semi-standard Young
tableaux (SSYTs) and the gauge Y-basis is constructed using Littlewood-Richardson rules. To deal
with repeated fields, we introduce the matrix representation of the generators of the symmetric
group Sn, and construct the matrix representation of the projection operator b to get the p-basis.
Finally we select the first projection operators b of each Sn representation, which correspond to
Young symmetrizers Y, and obtain the flavor-specified operators as the f-basis.

• We generalize the Poincare partial wave expansion to the operator j-basis given par-
ticular partitions, and provide a unified Casimir method to obtain both the Lorentz
and gauge j-basis.

In this paper, in section 2 we introduce the building blocks used to build operator basis
in any EFT and the fact that these building blocks are connected with spinor variables
by amplitude-operator correspondence. In section 3, we illustrate the algorithm to obtain
various operator bases, including y-basis, m-basis, p-basis, f-basis, and j-basis. In section 4,
we show that we are able to convert operators among different bases and reduce an over-
complete basis to a complete one. In section 5, we introduce how to define a model in
ABC4EFT and the functions to obtain operator bases in such a model. We conclude in
section 6.

2 Building blocks and amplitude-operator correspondence

In this paper, the building blocks are the covariant derivatives acting on fields Ψs which
are irreducible representations (jr, jl) of the Lorentz group and irreducible representations
r of gauge groups, written as DωΨ explicitly for each field Ψ, where ω ≥ 0. If not specified,
the indices on the covariant derivatives can either be the Lorentz indices or the SL(2,C)
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indices depending on the context. The covariant derivative under the SL(2,C) is defined as

Dαα̇ = Dµσ
µ
αα̇ ∈ (1/2, 1/2), (2.1)

and here we present all kinds of fields as the irreducible representations of the SL(2,C):

φ ∈ (0, 0), ψα ∈ (1/2, 0), ψ†α̇ ∈ (0, 1/2), (2.2)

FLαβ = i

2Fµνσ
µν
αβ ∈ (1, 0), FRα̇β̇ = − i2Fµν σ̄

µν

α̇β̇
∈ (0, 1), (2.3)

CLαβγδ = Cµνρλσ
µν
αβσ

ρλ
γδ ∈ (2, 0), CRα̇β̇γ̇δ̇ = Cµνρλσ̄

µν

α̇β̇
σ̄ρλ
γ̇δ̇
∈ (0, 2). (2.4)

The covariant derivatives in our notation should be understood as acting on the nearest field
on the right, and the SL(2,C) indices and gauge indices on the covariant derivatives, and
that field should be understood as the indices of the whole building block. For example, con-
sider the case that two covariant derivatives acting on the SM field Q, the left-handed quark,

Dα(1)α̇(1)Dα(2)α̇(2)Qα(3)ai = (D2Q)α(1)α(2)α(3)α̇(1)α̇(2)ai. (2.5)

Where a is the index of the fundamental representation of the SU(3) gauge group, and i
is the index of the fundamental representation of the SU(2) gauge group.

In general, the building blocks DωΨ are the reducible representations of the SL(2,C)
group and can be decomposed as a direct sum of the irreducible representations,

DwΨ ∈
(
jl + w

2 , jr + w

2

)
⊕ lower weights. (2.6)

Consider the case where all kind of particle state with |Ψ〉 generated by the fields Ψ
are massless with the helicity h. The spinor helicity variables are defined as Pµσµαα̇ = λαλ̃α̇
up to the little group transformation λ→ e−iϕ/2λ, λ̃→ eiϕ/2λ̃. The amplitude basis of N
particles, denote by B (h1, . . . , hN ), should transforms as B → eihiϕB under the little group
transformation of the ith particle. Thus we can apply the following amplitude-operator
correspondence [5, 7],

〈0 |DwΨ|Ψ〉 ∼ λ2jl+wλ̃2jr+w, (2.7)

where (jl, jr) = (−h, 0) for particle states with helicity h ≤ 0 and (jl, jr) = (0, h) for
particle states with helicity h ≥ 0. This formula will give a correct phase eihϕ under the
little group transformation of the particle |Ψ〉. The total symmetries of λs and λ̃s indicate
that only the highest weight of the irreducible representations of SL(2,C) group in eq. (2.6)
should be kept. In fact, the lower weight of the irreducible representations in eq. (2.6) can
be converted into other fields by equation of motion (EOM) and the corvariant derivative
commutator i[D,D] = F , and thus are understood as redundancies in EFT operators
perspective as follows,

D[αα̇Dβ]β̇ = DµDνσ
µ
[αα̇σ

ν
β]β̇ = −D2εαβεα̇β̇ + i

2[Dµ, Dν ]εαβσ̄µνα̇β̇ ,

D[αα̇ψβ] = Dµσ
µ
[αα̇ψβ] = −εαβ(D/ψ)α̇,

D[αα̇FLβ]γ = DµFνρσ
µ
[αα̇σ

νρ
β]γ = 2DµFµνεαβσ

ν
γα̇,

D[αα̇CL β]γδε = DµCνρσλσ
µ
[αα̇σ

νρ
β]γσ

σλ
δε = iεαβ(σν)γα̇(σσλ)δεDµCµνσλ.

(2.8)
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The above discussion can be generalized to the massive scalars and fermions as presented
in ref. [12].

Our field building blocks are not only representations of the Lorentz group, but also
representations of gauge groups as well, so we need an invariant tensor T a1,...,aN as a
group factor to contract N field building block DwiΨi,ai in the operator to form a gauge
singlet, where the ais are indices of representation ri of the gauge group. If one only
has fundamental, anti-fundamental, and adjoint representation of SU(M) group in the
model,1 then the invariant tensor T a1,...,aN must be able to construct with the following
basic invariant tensors:

SU(M) : fABC , dABC , δAB, (TA)ba, εi1...iM , εi1...iM , δab . (2.9)

where letters in lowercase denote the indices of (anti)fundamental representations and
letters in uppercase denote the indices of adjoint representations of the corresponding
gauge group, TA’s are the generators for the fundamental representation, and fABC and
dABC are defined by −2iTr

(
[TA,TB]TC

)
and 2Tr

(
{TA,TB}TC

)
, where square and curly

brackets represents the commutator and anti-commutator, respectively. Concretely, in the
SMEFT, we have the basic tensors for the SU(2) and SU(3) :

SU(3) : fABC , dABC , δAB, (λA)ba, εabc, εabc, δab (2.10)
SU(2) : εIJK , δIJ , (τ I)ji , εij , εij , δij , (2.11)

where τ and λ are Pauli and Gell-Mann matrices respectively. If one needs a field carrying
other irreducible representations, then additional invariant tensors may be needed. For
example, if one adds a SU(2) quartet ∆I with a single index I to the model, then at least
one additional invariant tensor ΓIabc is needed to convert the fields to the one with only
fundamental indices with definite permutation symmetry — ∆abc = ΓIabc∆I . The reader
can refer to appendix B for how to register a new invariant tensor in the group profile file.
On the other hand, if one expresses the fields directly with tensors of only fundamental
indices for SU(M) group, such as ε and δ, and leaves the symmetry among the indices
implicit, then no other invariant tensor is needed.

Combining the aforementioned group factors and the Lorentz structures the operators
involving N fields with helicity {h1, h2, · · · , hN} at a certain dimension d can be formally
expressed as,

O(d)
N = T a1,...,aN εnε̃ñ

N∏
i=1

DwiΨi,ai , (2.12)

where ñ+n ≡ r = ∑
i (ωi + |hi|) ≡

∑
i ri and ñ−n = ∑

i hi so that the ε’s and ε̃’s contract
all spinor indices of su(2)l and su(2)r of the building blocks. An interesting observation
suggests that the following relation is correct

r = d−N (2.13)
1Here we use SU(M) for the gauge group, because the notation SU(N) is occupied for the N -particle

symmetry group.
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n̄

n
0 1 2 3

0 φ6 ψ2φ3 F 2
Lφ

2, FLψ
2φ, ψ4 F 3

L

1 ψ†2φ3 ψ†ψφ2D, ψ†2ψ2, φ4D2

2 F 2
Rφ

2, FRψ
†2φ, ψ†4

3 F 3
R

Table 1. All possible non-vanishing classes involving spin 0, 1/2, 1 fields at the mass dimension
6, where n =

∑
i

( 1
2ωi −min(0, hi)

)
and ñ =

∑
i

( 1
2ωi + max(0, hi)

)
are the number of ε’s and ε̃’s

contraction.

for operators only involving fields with helicity |hi| < 2. The gauge group factor T can
be factorized to the product of invariant tensor for each gauge group T = ∏

G TG. Taking
the SMEFT as example where we only have the SU(3) and SU(2) non-Abelian gauge
group, therefore T can be written as T = TSU(3)TSU(2), and TSU(3) and TSU(2) can be the
combination of the elements defined in eq. (2.10) and (2.11).

Given the operator in the form of eq. (2.12), the full amplitude-operator correspondence
combining everything together is∫

d4x
〈

0
∣∣∣O(d)

N (x)
∣∣∣Ψa1

1 , . . . ,Ψ
aN
N

〉
∼M(d) (φa1

1 (p1), . . . , φaNN (pN )) δ(4)
(

N∑
i=1

λiλ̃i

)
, (2.14)

M(d) (φa1
1 (p1), . . . , φaNN (pN )) = T a1,...,aN

G B(d)(h1, . . . , hN ), (2.15)

where φis are the external particles with momenta pi, and ai are collections of the group
indices for them. B = 〈·〉n[·]ñ is the kinematic part of the amplitude in which the su(2)l
and su(2)r indices are contracted with the ε’s and ε̃’s in eq. (2.12) accordingly and the
notations 〈ij〉 = λαi λjα and [ij] = λ̃iα̇λ̃

α̇
j are applied. The correspondence between the

EFT operators and amplitudes fully takes care of the redundancies in the EFT operators
since operators which differ by the EOM or the i[D,D] = F correspond to the same
amplitude according to eq. (2.7) and the momentum conservation in eq. (2.14) further
eliminates the IBP redundancy. So after finding all independent amplitudes, which can be
done in a systematically way, the complete and independent operator basis can be obtained
by making use of the amplitude-operator correspondence.

Before moving further, we would like to clarify some terminology that will be used in
the following.

• Class: the Lorentz irreducible representations presented by a set of abstract fields
with helicities {h1, h2, · · · , hN} and their covariant derivatives that can be Lorentz-
invariant form a Lorentz class.

• Type: for a specific model, substitution of fields of the model into the abstract fields
of each Lorentz class that can form gauge invariant is a type.

• Term: for each type, the spin-statistics of the m repeated fields in the type constrains
flavor indices of operators transforming under certain representation of the symmetric

– 7 –
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n̄

n
0 1 2 3

0 φ7 ψ2φ4 ψ4φ, FLψ
2φ2, F 2

Lφ
3 F 2

Lψ
2, F 3

Lφ

1 ψ†2φ4 ψ†ψφ3D, ψ†2ψ2φ, φ5D2 F 2
Lψ
†2, ψ†ψ3D, FLψ

†ψφD,
ψ2φ2D2, FLφ

3D2

2 ψ†4φ, FRψ
†2φ2, F 2

Rφ
3 F 2

Rψ
2, ψ†3ψD, FRψ

†ψφD,
ψ†2φ2D2, FRφ

3D2

3 F 2
Rψ
†2, F 3

Rφ

Table 2. All possible non-vanishing classes involving spin 0, 1/2, 1 fields at the mass dimension 7.

n̄

n
0 1 2 3 4

0 φ8 ψ2φ5 ψ4φ2, FLψ
2φ3,

F 2
Lφ

4
FLψ

4, F 2
Lψ

2φ,
F 3

Lφ
2 F 4

L

1 ψ†2φ5 ψ†2ψ2φ2, ψ†ψφ4D,
φ6D2

FLψ
†2ψ2, F 2

Lψ
†2φ,

ψ†ψ3φD, FLψ
†ψφ2D,

ψ2φ3D2, FLφ
4D2

F 2
Lψ
†ψD, ψ4D2,

FLψ
2φD2, F 2

Lφ
2D2

2 ψ†4φ2, FRψ
†2φ3,

F 2
Rφ

4

FRψ
†2ψ2, F 2

Rψ
2φ,

ψ†3ψφD, FRψ
†ψφ2D,

ψ†2φ3D2, FRφ
4D2

F 2
RF

2
L , FRFLψ

†ψD,
ψ†2ψ2D2, FRψ

2φD2,
FLψ

†2φD2, FRFLφ
2D2,

φ4D4, ψ†ψφ2D3

3 FRψ
†4, F 2

Rψ
†2φ,

F 3
Rφ

2
F 2

Rψ
†ψD, ψ†4D2,

FRψ
†2φD2, F 2

Rφ
2D2

4 F 4
R

Table 3. All possible non-vanishing classes involving spin 0, 1/2, 1 fields at mass dimension 8.

group Sm. The decomposition of the representation of Sm of all the Lorentz and gauge
invariant tensors in the type into irreducible representations of Sm gives the terms in
that type.

• Operator: due to the Schur-Weyl duality, the irreducible representations of Sm of a
term are also irreducible representations of SU(nf ), where nf is the flavor number
of the repeated fields. Specifying each flavor index with nf according to the semi-
standard Young tableau (SSYT) gives the independent (flavor-specified) operators in
a term.

Table. 1, 2 and 3 list all possible non-vanishing classes involving the massless spin 0,
1/2 and 1 fields at mass dimension 6, 7 and 8 respectively. At and beyond mass dimension
6, classes involving only two fields vanish since these must contain EOMs of the fields, and
classes involving only three fields all vanish except the F 3

L and F 3
R since these involve at

least one derivative and can be converted to classes involving more fields due to the EOM.
From the perspective of the on-shell amplitude, the above conclusions correspond that
two-point on-shell amplitudes vanish and three-point on-shell amplitudes satisfy special
kinematics for massless particles.
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W 2 permute S-W
duality

Figure 2. Relations among the bases. The red arrow means that the basis can always be able to
find its coordinates on the y-basis through a reduce procedure. The yellow circle indicates that the
m-basis, p-basis and j-basis are related by linear transformations. The operators in the p-basis are
tensors of the symmetric group Sm, and these in f-basis are tensors of SU(nf ) group, where m is
the number of repeated fields and nf is the flavor number of each repeated field. These two basis
are connected by the Schur-Weyl duality.

3 Operator basis

In this section, we introduce the main function of the package, namely to construct an
independent operator basis. We start by assuming that all the constituting fields are
distinguishable, and the operators in this sense are the so-called flavor-blind operators,
By flavor-blind, we mean to treat repeated fields with different flavor indices as formally
different field objects; for those that does not have flavor indices, we also add unique
flavor indices to them to distinguish them as if they have additional flavor structures. For
example, without additional labeling, the operator Fµν∂µφ∂νφ vanishes not only because
of the anti-symmetry of Fµν , but also because of the identity between the two φ fields.
Hence, after the labeling the operator becomes Fpµν∂µφr∂νφs, which does not necessarily
vanish. In particular, if we have two different φ as in, for example, the Two Higgs Doublet
Model, and the indices r, s can be chosen from {1, 2}, then it is a perfectly valid operator.
Working with flavor-blind operator is easier because repeated fields do not introduce extra
redundancy relations, and we can investigate its Lorentz structures and gauge factors
separately. We will construct the first complete and independent basis of flavor-blind
operators, called y-basis, and choose independent monomials from them, obtaining the
m-basis. Then we will deal with the repeated fields by permutations of flavor labels, and
obtain the p-basis. After applying the Schur-Weyl duality and treating flavor labels as
tensor indices that can take different values (if there are no flavor degrees of freedom,
then the indices take identical values), an operator as flavor tensor have many tensor
components called flavor-specified operators, and the basis formed by these operators is
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called f-basis. We use permutation symmetries of the flavor tensors to determine the
additional constraints among the flavor-specified operators. Finally we re-organize the y-
basis to be the eigenbasis of angular momentum and gauge quantum numbers using the
square of Pauli-Lubanski operator W 2 [29, 31] and obtain the j-basis. The relations among
the above bases are shown in figure. 2.

3.1 Y-basis

In this subsection, we consider the flavor-blind operators and construct the operator basis
using Young tableaux; that is why the basis obtained this way is called y-basis. As men-
tioned in eq. (2.14), a type of local amplitudes can be decomposed as the kinematic factor
B that describes the energy dependence and the angular distribution and the gauge factor
TG that describes the gauge structure of external particles. For a given type, where the
helicity hi and gauge group representation ri of each external particle are known, the kine-
matic factors {Bi} span a linear space of dimension NB and the gauge factors {TGj} span
a linear space of dimension NG for each gauge group G, i = 1, · · · ,NB and j = 1, · · · ,NG.
The linear space of amplitude basis thus is the direct product of {Bi} and all sets of {TGj}
with dimension N = NB ×

∏
GNG.

The kinematic factors can be obtained by utilizing an auxiliary SU(N) transformation
introduced in [5, 7, 32], where N is the number of particles in a given class and the indices
are raised as SU(N) indices. The SU(N) transformation acts on the kinematic variables
(λi, λ̃i) and keep the total momentum invariant. Now λiα and λ̃iα̇ transform as 2×N and
2̄ × N̄ representation of the SL(2,C) × SU(N) group respectively. For a given class with
the tuple (N,n, ñ), where n and ñ denote half the number of left-handed spinor indices and
right-handed spinor indices in the class, representations of λs and λ̃s under SU(N) group
can be presented by the Young diagrams

λ⊗n = . . .︸ ︷︷ ︸
n

, λ̃⊗ñ =

N
−

2


. . .

...
...

︸ ︷︷ ︸
ñ

. . .

. (3.1)

Then the representation of B under the SU(N) is the inner product of λ’s and λ̃’s, which can
be reduced to a direct sum of irreducible representations of SU(N) using the Littlewood-
Richardson rule. It was proved in ref. [32] that all irreducible representations denoted by
Young diagrams in the reduction vanish due to the momentum conservation except the
primary Young diagram

(3.2)

YN,n,ñ =

N
−

2


. . .

n︷ ︸︸ ︷
. . .

...
...

︸ ︷︷ ︸
ñ

. . .

.
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ñ

n
0 1 2 3 4

0

1

2

3

4

Table 4. All possible non-vanishing classes involving spin 0, 1/2, 1 fields presented by the SU(N)
Young diagram at the mass dimension 8, where ω = N − h, ω̃ = N + h. N is the number of fields
in the class and h represents the sum of helicities of all fields in the class. The gray boxes denote
the SU(N) representation of λ̃s and the white boxes denote the SU(N) representation of λs.

However, although the primary Young diagram is in one-to-one correspondence with
the tuple (N,n, ñ), different classes may share the same primary Young diagram since
the tuple (N,n, ñ) does not include all information of a class {{h1, h2, · · · , hN}, ω}, where
ω is the number of covariant derivatives in the class. Given a set of labels {1, · · · , N}
corresponding to each particle in the class and the number of labels to be filled in the
primary Young diagram

#i = ñ− 2hi, i = 1, · · · , N. (3.3)

All the SSYTs obtained by filling the labels {
#1︷ ︸︸ ︷

1, . . . , 1,
#2︷ ︸︸ ︷

2, . . . , 2, . . . ,
#N︷ ︸︸ ︷

N, . . . , N} in the pri-
mary Young diagram span the space of all amplitudes in the class, and the amplitudes
corresponding to the SSYTs are the independent basis vectors of the space, that is, {B(y)

i }.
The SSYTs can be translated to amplitudes column by column with the following rules

k1
k2
...
kN−3
kN−2

∼ Ek1...kN−2ij [ij], i
j
∼ 〈ij〉 , (3.4)

where the E is the Levi-Civita tensor of the SU(N) group.
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Here we give an example of class F 2
Lφ

2D2. The class is denoted by the helicity of each
field and the number of derivatives in the class, which in this case is {{−1,−1, 0, 0}, 2}.
Then we can conclude that the primary Young diagram corresponding to the class is

(3.5)

since N = 4, n = 3 and ñ = 1. The number of each labels {1, 2, 3, 4} to be filled in the
primary Young diagram (3.5) can be deduced from eq. (3.3), #1 = 3, #2 = 3, #3 = 1 and
#4 = 1. Thus filling in all labels will give SSYTs as follows,

1 1 1 3
2 2 2 4

1 1 1 2
2 2 3 4 , (3.6)

and the SSYTs can be translated to amplitudes using eq. (3.4),

〈12〉2 〈34〉 [34] = B(y)
1 , 〈12〉 〈13〉 〈24〉 [34] = B(y)

2 . (3.7)

The amplitudes can be further translated to operators using the amplitude-operator cor-
respondence eq. (2.7) and eq. (2.14), which are

B(y)
1 = FL1

αβFL2αβ(Dφ3)γα̇(Dφ4)γα̇, (3.8)
B(y)

2 = FL1
αβFL2α

γ(Dφ3)βα̇(Dφ4)γα̇. (3.9)

The label (y) on B indicates the kinematic factor B(y) is obtained as the y-basis, we keep
the same notation below.

As for the gauge factor T , we proposed in our previous work [5, 7] an algorithm to
find all the independent T expressed in terms of products of Mth-rank Levi-Civita tensors
given that all the fields are expressed with fundamental indices only. The algorithm is to
apply the generalized Littlewood-Richardson rules to construct the singlet Young tableaux
from the set of Young tableaux corresponding to each field. Therefore to implement the
algorithm, one needs to convert all the fields with non-fundamental indices to the ones
with fundamental indices only such that they have a direct correspondence to the Young
tableaux. For the most interesting case, a field of adjoint representation of SU(M) gauge
group FA, such a conversion can be made by contracting the field with the ε tensor and
generator TA of fundamental representation in the following form:

εa1...aM (TA)aMi FA ≡ Fa1...aM−1i ∼

M
−

1



a1 i

a2

...

aM−1

, (3.10)

Specifically, for the gauge bosonW andG for SU(2) and SU(3) gauge groups in the SMEFT,
we have the following correspondence:

εjk
(
τ I
)
k
iW

I = Wij ∼ i j ,

εacd
(
λA
)
d
bG

A = Gabc ∼ a b
c

.
(3.11)
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For the fields of other representations, new invariant tensors may be needed to facilitate
such conversion as discussed in appendix B.

In order to illustrate this algorithm, let us take dimension-8 type W 2HH†D2 in the
SMEFT as an example. The SU(2) group factor can be obtained by constructing the singlet
Young diagrams of the SU(2), and the SU(2) structure in this type contains W , H and H†,
which transforms as the adjoint, fundamental and anti-fundamental representations of the
SU(2) respectively. The correspondence between each field and its Young tableau under
the SU(2) is denoted as

(τ I1)i1j1W
I1
1 ≡ εj1m1(τ I1)m1

i1
W I1

1 ∼ i1 j1 , (τ I2)i2j2W
I2
2 ≡ εj2m2(τ I2)m2

i2
W I2

2 ∼ i2 j2 , (3.12)
H3i3 ∼ i3 , εi4j4H

†j4
4 ∼ i4 . (3.13)

The singlet Young diagram of SU(2) can be constructed with the Littlewood-Richardson
rule in the following ways:

i1 j1
i2 j2−−−−−→ i1 j1

i2 j2

i3−−→ i1 j1 i3
i2 j2

i4−−→ i1 j1 i3
i2 j2 i4

∼ εi1i2εj1j2εi3i4εi4j4(τ I1)i1j1(τ I2)i2j2 = T
(y)
SU2,1, (3.14)

i1 j1
i2 j2−−−−−→ i1 j1 i2

j2

i3−−→ i1 j1 i2
j2 i3

i4−−→ i1 j1 i2
j2 i3 i4

∼ εi1j2εj1i3εi2i4εi4j4(τ I1)i1j1(τ I2)i2j2 = T
(y)
SU2,2. (3.15)

The tensors eq. (3.14) and eq. (3.15) can be further simpified to

T
(y)
SU2,1 = 2δI1I2δi3j4 , T

(y)
SU2,2 = δI1I2δi3j4 − iε

I1I2J(τJ)i3j4 . (3.16)

The construction of the SU(3) group factor TSU3 is trivial since W , H and H† transform
as the singlet under the SU(3) group, T (y)

SU3,1 = 1.
The complete y-basis of the type W 2HH†D2 is then the direct product of the Lorentz

and gauge factors. Define T (y)
ijk ≡ T

(y)
SU3,iT

(y)
SU2,jB

(y)
k and the basis vectors of y-basis of type

W 4
L are

O(y)
W 2

LHH
†D2,1 = T (y)

111 = 2δI1I2δi3j4 〈12〉2 〈34〉 [34] (3.17)

= 2δI1I2δi3j4WL
I1
1
αβWL

I2
2 αβ(DH3)i3γα̇(DH†4)j4γα̇,

O(y)
W 2

LHH
†D2,2 = T (y)

112 = 2δI1I2δi3j4 〈12〉 〈13〉 〈24〉 [34] (3.18)

= 2δI1I2δi3j4WL
I1
1
αβWL

I2
2 α

γ(DH3)i3βα̇(DH†4)j4γα̇,

O(y)
W 2

LHH
†D2,3 = T (y)

121 =
[
δI1I2δi3j4 − iε

I1I2J(τJ)i3j4
]
〈12〉2 〈34〉 [34] (3.19)

=
[
δI1I2δi3j4 − iε

I1I2J(τJ)i3j4
]
WL

I1
1
αβWL

I2
2 αβ(DH3)i3γα̇(DH†4)j4γα̇,

O(y)
W 2

LHH
†D2,4 = T (y)

122 =
[
δI1I2δi3j4 − iε

I1I2J(τJ)i3j4
]
〈12〉 〈13〉 〈24〉 [34] (3.20)

=
[
δI1I2δi3j4 − iε

I1I2J(τJ)i3j4
]
WL

I1
1
αβWL

I2
2 α

γ(DH3)i3βα̇(DH†4)j4γα̇,

with the dimension N = NB ×
∏
GNG = 2× 2× 1 = 4.
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3.2 M-basis

For phenomenological studies, the community using the Feynman diagram approach to
compute the observables indicates a preferred monomial operator basis. However, as one
can see from eq. (3.17) to eq. (3.20), the result presented in y-basis may become polyno-
mials when using the notation of Lorentz indices and non-fundamental gauge indices. In
this sense, the y-basis expressions provide an over-complete monomial basis (m-basis) can-
didates by selecting superficially different monomials from those polynomials. In principle,
these monomials can be expressed as linear combinations of complete and independent ba-
sis operators, thus providing a way to discern their independence. This procedure can be
used to reduce any over-complete operator basis proposed for different phenomenological
purposes as long as a general conversion algorithm is found. In the following subsections,
we will first illustrate that the Lorentz structure of an operator can be matched onto an
on-shell amplitude which can be further reduced to the y-basis amplitude following the
reduction algorithm provided in our previous work [5, 7], then we will provide a new effi-
cient algorithm to obtain the independent gauge m-basis, which simultaneously provided
all the information needed to find the coordinates of arbitrary gauge factors on the selected
m-basis as a byproduct.

3.2.1 Lorentz m-basis

In our program, the monomial Lorentz m-basis candidates are selected from polynomials
of the y-basis operators. Any other over-complete monomial Lorentz structures proposed
by readers can be reduced by the same procedure discussed in section 4. The first step is
to translate each monomial back into on-shell amplitudes expressed in angel and square
bracket notations. Secondly, these on-shell amplitudes may correspond to the non-SSYT of
the primary Young diagram, which can be able to convert to the linear combination of the
existing complete and independent y-basis consisting of that SSYT. We provide the algo-
rithm for this conversion in our previous work [5, 7], which will be discussed in detail in sec-
tion 4.1. Finally, with the coordinates of each monomial on the amplitude y-basis, one can
perform the Gaussian elimination to find the independent monomials from these candidates.

We still take the class F 2
Lφ

2D2 as an example. The on-shell amplitude y-basis of the
class is given by eq. (3.8) and eq. (3.9), where the spinor indices can be translated to
Lorentz indices as

B(y)
1 = −4FL1νµFL2

µν (Dλφ3)
(
Dλφ4

)
, (3.21)

B(y)
2 = −4FL1µ

νFL2
µλ (Dλφ3) (Dνφ4) + 4FL1µ

νFL2
µλ (Dνφ3) (Dλφ4)

− 2FL1νµFL2
µν (Dλφ3)

(
Dλφ4

)
. (3.22)
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Then we choose the over-complete basis to be:

B(m)
1 = FL1νµFL2

µν (Dλφ3)
(
Dλφ4

)
= −1

4B
(y)
1 , (3.23)

B(m)
2 = FL1µ

νFL2
µλ (Dλφ3) (Dνφ4) = 1

8B
(y)
1 − 1

8B
(y)
2 , (3.24)

B(m)
3 = FL1µ

νFL2
µλ (Dνφ3) (Dλφ4) = 1

8B
(y)
2 . (3.25)

Therefore, we can pick out the first two basis vectors to form the Lorentz m-basis, with the
conversion matrix that transform the Lorentz y-basis to Lorentz m-basis, denoted as K(my)

B ,

K(my)
B =

−1
4 0

1
8 −

1
8

 . (3.26)

3.2.2 Gauge m-basis

For the gauge factors, monomial candidates like their Lorentz counterparts should also be
obtained by reducing the y-basis results’ polynomials. For example, from eq. (3.16), one
can directly identify two independent and complete monomial group factors as

Tm1 = δI1I2δi3j4 , Tm2 = εI1I2J(τJ)i3j4 , (3.27)

and the conversion matrix between the y-basis and the m-basis is manifest:

K(my)
SU2 =

 1
2 0
− i

2 i

 . (3.28)

However, it is not always so lucky to have the number of superficially distinct monomial
group factors equals to that of y-basis, especially when multiple adjoint representations
present. For example, in the appendix. A, we find that there are ten superficially distinct
monomial candidates for four gluon operators G4:

Tmcan,1 = dABEdCDE , Tmcan,2 = dABEfCDE , Tmcan,3 = fABEfCDE , Tmcan,4 = δABδCD,

Tmcan,5 = dCDEfABE , Tmcan,6 = δACδBD, Tmcan,7 = dACEdBDE , Tmcan,8 = dACEfBDE ,

Tmcan,9 = dBDEfACE , Tmcan,10 = dCDEfABE (3.29)

We need to select 8 independent gauge factors from the above candidates. Unfortunately,
we do not have a symbolic reduction algorithm similar to the Lorentz amplitude. To find
independent ones from candidates, we propose an efficient new method to find the m-basis
iteratively and also provide the way to find coordinate of arbitrary group factors on this
basis, which also benefits the conversion of the base.

We start by introducing the inner product defined between two group factors of the
same type:

(T, T ′) =
∑
{ai}

(T a1a2...)∗T ′a1a2..., (3.30)

– 15 –



J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

i.e. the contraction of all the corresponding indices of T ′ and the complex conjugate of T .
For example, the contraction of the first candidate itself becomes:

(Tcan,1, Tcan,1) =
∑

{ABCD,EF}
(dABFdCDF )∗dABEdCDE

= 200
9 . (3.31)

With this definition of the inner product, one can iteratively determine whether a candidate
gauge factor is independent of those in a candidate pool that has already been proven to
be independent with each other by checking whether the metric tensor gij = (Ti, Tj) is
invertible formed by this candidate gauge factors and those in this pool. Following the
algorithm, the pool is an empty set in the first step. One can pop out the first gauge factor
from the candidates Tcan,1 and add it into the pool, which gives a trivial one-dimensional
invertible metric tensor g11, so we can retain Tcan,1 in the pool. The second step is to add
Tcan,2 into the pool, and the corresponding metric tensor gij becomes:

gij =

g11 g12

g21 g22

 =

200
9 0
0 40

 . (3.32)

One can verify the invertibility of this metric tensor by checking whether the determinant
of the metric tensor is zero or not; if it is zero, then it means that Tcan,2 and Tcan,1 are
not independent, so we can abandon the Tcan,2 in the pool and move on to test Tcan,3.
Luckily, in our example, gij is invertible, so we keep Tcan,2 in the pool as one of our gauge
m-basis. One can continue this procedure for one candidate at a time until a number of
independent monomials reach that of the y-basis group factor, which gives a set of complete
and independent monomial group factors as the m-basis {T (m)

i }, with the corresponding
metric tensor gij . In our example, one can verify that the first 8 candidates Tcan,1−8 are
independent with each other, so finally, our m-basis group factors become

T
(m)
1 = dABEdCDE , T

(m)
2 = dABEfCDE , T

(m)
3 = fABEfCDE , T

(m)
4 = δABδCD, (3.33)

T
(m)
5 = dCDEfABE , T

(m)
6 = δACδBD, T

(m)
7 = dACEdBDE , T

(m)
8 = dACEfBDE ,

of which the metric tensor is:

gij =



200
9 0 0 0 0 40

3
−20

3 0
0 40 0 0 0 0 0 −20
0 0 72 0 0 24 20 0
0 0 0 64 0 8 40

3 0
0 0 0 0 40 0 0 20
40
3 0 24 8 0 64 0 0
−20

3 0 20 40
3 0 0 200

9 0
0 −20 0 0 20 0 0 40



. (3.34)
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Comments are in order for the above new algorithm. First, the inner product as a con-
traction of all the corresponding indices of two tensors can be viewed as a dot product of two
1-dimensional vectors if one flattened all the tensor indices. This dot operation is usually
very fast in a linear algebra library. Therefore one can view the construction of the metric
tensor as a way to compress the information in the gauge factors onto the lower-dimensional
space before checking their independence. Otherwise one needs to check the independence
among vectors of very large dimension (d = ∏

i dimri , where dimri are the dimension of the
representation ri). Second, the procedure to find the independent m-basis simultaneously
constructs the metric tensor, which can be used to define the dual basis to find the coordi-
nate of an arbitrary tensor as we discuss in section 4.1, where most computational complex-
ity resides in the inversion of the metric tensor of which dimension is N 2

G. However, if one
starts with a set of flattened tensors of much larger large dimension d×NG, one may en-
counter numerical accuracy issue for either solving the coordinate ci in a linear equation sys-
tem on a vector space of dimension d or finding the “QR-Decomposition” of this set of ten-
sors, which may lead to an error in determining the independence among the group factors.

Equipped with the technique for converting arbitrary Lorentz structures and group
factors to a complete and independent basis, one can, in principle, verify the independence
of any two operators of the same type no matter what in form the operators are written.
To complete the story we combine the K(my)’s in the eq. (3.26) and eq. (3.28) in hand, and
obtain the full transformation matrix K(my)as the outer product of K(my)

SU3 , K
(my)
SU2 and K(my)

B ,

K(my) = K(my)
SU3 ⊗K

(my)
SU2 ⊗K

(my)
B =


−1

8 0 0 0
1
16 −

1
16 0 0

i
8 0 − i

4 0
− i

16
i

16
i
8 −

i
8

 , (3.35)

where we have used K(my)
SU3 = (1) for the W 2HH†D2. We list the m-basis in the following:

O(m)
W 2

LHH
†D2,1 = T (m)

111 = −1
4δ

I1I2δi3j4 〈12〉2 〈34〉 [34]

= WL
I
1νµWL

Iµν
2 (DλH3i)(DλH†i4 ), (3.36)

O(m)
W 2

LHH
†D2,2 = T (m)

112 = 1
8δ

I1I2δi3j4(〈12〉2 〈34〉 [34]− 〈12〉 〈13〉 〈24〉 [34])

= WL
I
1µ
νWL

I
2
µλ(DλH3i)(DνH

†i
4 ), (3.37)

O(m)
W 2

LHH
†D2,3 = T (m)

121 = −1
4ε

I1I2J(τJ)i3j4 〈12〉2 〈34〉 [34]

= εIJK(τK)ijWL
I
1νµWL

Jµν
2 (DλH3i)(DλH†j4 ), (3.38)

O(m)
W 2

LHH
†D2,4 = T (m)

122 = 1
8ε

I1I2J(τJ)i3j4(〈12〉2 〈34〉 [34]− 〈12〉 〈13〉 〈24〉 [34])

= εIJK(τK)ijWL
I
1µ
νWL

J
2
µλ(DλH3i)(DνH

†j
4 ), (3.39)

where T (m)
ijk ≡ T

(m)
SU3,iT

(m)
SU2,jB

(m)
k . Comparing the above m-basis with the y-basis of

W 2
LHH

†D2 eq. (3.17)–(3.20), it can be seen that the forms of the m-basis vectors are all
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monomials where each field is labeled with the Lorentz indices while the completeness and
independence of the y-basis are kept in the transformation.

Here we want to remind the readers that the above y-basis and m-basis are obtained
in the condition where all fields are distinguishable. For example, in eq. (3.38), the two
WLs are antisymmetric due to their symmetric Lorentz structure and antisymmetric gauge
structure, but the W bosons in the SM must be totally symmetric. That is why we need
to introduce the p-basis for repeated fields.

3.3 P-basis and F-basis

The y-basis and m-basis are bases of flavor-blind operators where all fields are distinguish-
able. Suppose there are repeated fields in an operator. In that case, extra constraints
require the permutation symmetry of flavor indices of the repeated fields must come from
those of Lorentz and gauge factors since the operator stays the same if we exchange two
repeated bosonic fields or obtains a minus sign if we exchange two repeated fermionic fields.

π ◦ O{fk,...}︸ ︷︷ ︸
permute flavor

=
(
π ◦ T {gk,...}G1

) (
π ◦ T {hk,...}G2

)
· · ·︸ ︷︷ ︸

permute gauge

(
π ◦ B{fk,...}{gk,...},{hk,...}

)
︸ ︷︷ ︸

permute Lorentz

, (3.40)

The constraint can also be understood as the requirement of the spin statistic for amplitudes
involving identical particles in an amplitude perspective,

M(p)(φa1(p1), . . . , φam(pm)︸ ︷︷ ︸
m

, . . .
)

= Dφ(π)M(p)(φaπ(1)(p1), . . . , φaπ(m)(pm)︸ ︷︷ ︸
m

, . . .
)
,

Dφ(π) =

 1 boson φ
(−1)sgn(π) fermion φ

, π ∈ Sm,
(3.41)

where Dφ(π) denote the representation of permutation π for the identical particles φ, and
(−1)sgn(π) is the signature of the permutation π. Technically, we will treat repeated fields
labeled by different flavor indices as different objects regarding to the permutation, and then
organize m-basis operators into irreducible representations of the corresponding symmetric
group by applying the group algebra projectors discussed below. The operators obtained in
this way serving as the basis vectors of a irreducible representations of the symmetric group
are called p-basis, with “p” for permutation. Furthermore, when we treat each operators
in the p-basis as flavor tensors of the corresponding SU(nf ) group, i.e. the flavor-specified
operators, the spaces spanned by these flavor tensors are identical if they were the bases
of the same irreducible representation of the symmetric group. Thus redundancies appear
in the p-basis when irreducible representations of symmetric group of dimension larger
than one exist, which only happens for operators with three or more repeated fields with
flavor number larger than one. After removing these redundancies, the remaining operators
form our f-basis, with “f” for flavor. These redundancies are related to the so-called flavor
relation in the literatures as we will illustrate in detail below.

We will still use the type W 2
LHH

†D2 as an example to illustrate the method of ob-
taining the p-basis. Exchange of the two repeated fields {WL1,WL2} form a 1-dimensional
representation of the symmetric group S2, as shown in eq. (3.41). Exchange of the Lorentz
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indices of the repeated fields in the type form a 2-dimensional representation of the S2
because the linear space spanned by the y-basis of the Lorentz factor of the type is 2-
dimensional, and any permutation of the S2 acting on the basis should give a linear com-
bination of basis vectors since the basis is complete.

The generator of the S2 group is (1 2), then it acting on the y-basis of the Lorentz
factor of the W 2

LHH
†D2, eq. (3.7) gives the following relations,

(1 2) 〈12〉2 〈34〉 [34] = 〈21〉2 〈34〉 [34] = 〈12〉2 〈34〉 [34], (3.42)
(1 2) 〈12〉 〈13〉 〈24〉 [34] = 〈21〉 〈23〉 〈14〉 [34] = 〈12〉2 〈34〉 [34]− 〈12〉 〈13〉 〈24〉 [34]. (3.43)

Using this method, we can deduce the matrix representations of (1 2) acting on the y-basis
of the Lorentz factor of W 2

LHH
†D2 as

D(y)
B [(1 2)] =

 1 0
1 −1

 . (3.44)

The matrix representations of the S2 generator acting on the m-basis are connected to that
acting on the y-basis by D(m) = K(my)D(y)(K(my))−1, so we obtain

D(m)
B [(1 2)] =

 1 0
−1

2 −1

 . (3.45)

Similarly, we can obtain the matrix representations of the S2 generator acting on the m-
basis of the SU(2) gauge factor of the W 2

LHH
†D2, eq. (3.27), as 2× 2 matrix

D(m)
SU2[(1 2)] =

 1 0
0 −1

 . (3.46)

The matrix representations of the generator for SU(3) gauge factor is still trivial,
D(m)
SU3[(1 2)] = (1), and finally the matrix representations of the S2 generator acting on

the full m-basis of the type should be the direct product of that of the gauge factor and
that of the Lorentz factor, D(m)(π) = D(m)

SU3(π)⊗D(m)
SU2(π)⊗D(m)

B (π), so

D(m)[(1 2)] =


1 0 0 0
−1

2 −1 0 0
0 0 −1 0
0 0 1

2 1

 . (3.47)

In this example, the W bosons in the SM have only one flavor number, which requires that
the permutation symmetry of flavor indices must be totally symmetric. The generator (1 2)
S2 group can be used to generate all Young symmetrizers of S2, among which the Young
symmetrizer of totally symmetric representation of S2 can be presented as

Y [2]
1 = 1

2Y [ 1 2 ] =


1 0 0 0
−1

4 0 0 0
0 0 0 0
0 0 1

4 1

 , (3.48)
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where the superscript [2] denotes the totally symmetric representation of S2, and subscript
labels each Young symmetrizer of the representation, which can only be 1 in this case
since [2] is a one-dimensional representation. Each row of the matrix in eq. (3.48) gives
the flavor-symmetrized m-basis in terms of the linear combinations of the original m-basis
eq. (3.36)–(3.39). We find that the matrix in eq. (3.48) is rank-2 and choose the first row
and the last row to be the basis vectors of p-basis,

K(pm) =

 1 0 0 0
0 0 1

4 1

 . (3.49)

So the two operators of the p-basis of the type W 2
LHH

†D2 are written explicitly as

O(p)
W 2

LHH
†D2,1 = −1

8Y [ 1 2 ] δI1I2δi3j4 〈12〉2 〈34〉 [34]

= WL
I
νµWL

Iµν(DλHi)(DλH†i), (3.50)

O(p)
W 2

LHH
†D2,2 = 1

16Y [ 1 2 ] εI1I2J(τJ)i3j4(〈12〉2 〈34〉 [34]− 〈12〉 〈13〉 〈24〉 [34])

= εIJK(τK)ijWL
I
µ
νWL

Jµλ(DλHi)(DνH
†j), (3.51)

where the Y [ 1 2 ]s in the amplitudes above act on all corresponding indices, including the
SU(2) indices I1, I2 and the spinor indices 1, 2 in this case. It should be noted that the
amplitudes above are not exactly the amplitudes generated by the above operators, but
the amplitudes corresponding to the operators by amplitude-operator correspondence.

The situation would be more complicated when an operator involves three or more
repeated fields. Generally, for m repeated fields, we choose the Sm group generators as
(1 2) and (1 2 · · · m) and use the matrix representations of the two generators to generate
matrix representations of all Young symmetrizers of the Sm. When m ≥ 3 and the flavor
number of the repeated fields is more than 1, we will need to deal with representations
of the Sm with dimension 2 or more. For example, consider type Q3He†CD. Labeling the
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fields as Q1Q2Q3H4e
†
C5, the y-basis and m-basis of Q3He†CD are as follows:

Y-basis
O(y)
Q3He†CD,1

iεabcεikεjl (Q1aiQ2bj)
(
Q3ckσ

µe†C5
)
DµH4l

O(y)
Q3He†CD,2

−iεabcεikεjl
(
Q1aiσ

µe†C5
)

(Q2bjDµQ3ck)H4l

O(y)
Q3He†CD,3

−iεabcεikεjl (Q1aiQ3ck)
(
Q2bjσ

µe†C5
)
DµH4l

O(y)
Q3He†CD,4

iεabcεijεkl (Q1aiQ2bj)
(
Q3ckσ

µe†C5
)
DµH4l

O(y)
Q3He†CD,5

−iεabcεijεkl
(
Q1aiσ

µe†C5
)

(Q2bjDµQ3ck)H4l

O(y)
Q3He†CD,6

−iεabcεijεkl (Q1aiQ3ck)
(
Q2bjσ

µe†C5
)
DµH4l

(3.52)

M-basis
O(m)
Q3He†CD,1

iεabcεikεjl (Q1aiQ2bj)
(
Q3ckσ

µe†C5
)
DµH4l

O(m)
Q3He†CD,2

iεabcεikεjl
(
Q1aiσ

µe†C5
)

(Q2bjDµQ3ck)H4l

O(m)
Q3He†CD,3

iεabcεikεjl (Q1aiQ3ck)
(
Q2bjσ

µe†C5
)
DµH4l

O(m)
Q3He†CD,4

iεabcεijεkl (Q1aiQ2bj)
(
Q3ckσ

µe†C5
)
DµH4l

O(m)
Q3He†CD,5

iεabcεijεkl
(
Q1aiσ

µe†C5
)

(Q2bjDµQ3ck)H4l

O(m)
Q3He†CD,6

iεabcεijεkl (Q1aiQ3ck)
(
Q2bjσ

µe†C5
)
DµH4l

(3.53)

K(my) =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


(3.54)

The m-basis of this type is 6-dimensional and the matrix representations of group algebra
projectors bλi [7] served as basis vectors for the irreducible representation λ = [3], [2, 1],
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[1, 1, 1] can be constructed from the representation matrices for the group elements:

b
[3]
1 =Y [3]

1 =



−1
6 0 −1

3
1
3 0 1

6
1
6 0 1

3 −
1
3 0 −1

6
1
3 0 2

3 −
2
3 0 −1

3

−1
3 0 −2

3
2
3 0 1

3

0 0 0 0 0 0
1
6 0 1

3 −
1
3 0 −1

6


, b

[2,1]
1 =Y [2,1]

1 =



1
3 0 2

3
1
3 0 −1

3

−1
3

4
3 −

2
3

1
3 −

2
3

1
3

0 0 0 0 0 0
1
3 0 2

3
1
3 0 −1

3

−1
3

2
3 −

2
3 0 −1

3
1
3

−1
3 0 −2

3 −
1
3 0 1

3


,

b
[2,1]
2 =(2 3)Y [2,1]

1 =



1
3 0 −1

3 −
2
3 0 −1

3
1
3 −

2
3

1
3 −

2
3

4
3 −1

0 0 0 0 0 0
1
3 0 −1

3 −
2
3 0 −1

3

0 −1
3

1
3 0 2

3 −
1
3

−1
3 0 1

3
2
3 0 1

3


, b

[1,1,1]
2 =Y [1,1,1]

1 =



1
2 0 0 0 0 1

2
1
6 0 0 0 0 1

6

0 0 0 0 0 0
0 0 0 0 0 0
1
3 0 0 0 0 1

3
1
2 0 0 0 0 1

2


, (3.55)

where one can see that by convention the first basis vector bλ1 in a irreducible representation
always corresponds to the Young symmetrizer, and for the multi-dimensional representa-
tion such as [2, 1], the rest basis vectors can be constructed by multiplying the Young
symmetrizer with the group elements. In the following Will refer the flavor indices p, r, s
as 1, 2, 3 in the symmetric group. From the above matrix representations of group algebra
projectors, we find that there are 6 independent basis vectors in the p-basis,

P-basis

O(p)
Q3He†CD,1

1
6Y [ p r s ] iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(p)
Q3He†CD,2

1
3Y

[
p r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(p)
Q3He†CD,3

1
3(r s)Y

[
p r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(p)
Q3He†CD,4

1
3Y

[
p r
s

]
iεabcεikεjl

(
Qpaiσ

µe†C t
)

(QrbjDµQsck)Hl

O(p)
Q3He†CD,5

1
3(r s)Y

[
p r
s

]
iεabcεikεjl

(
Qpaiσ

µe†C t
)

(QrbjDµQsck)Hl

O(p)
Q3He†CD,6

1
6Y

[
1
2
3

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

(3.56)

K(pm) =



−1
6 0 −1

3
1
3 0 1

6
1
3 0 2

3
1
3 0 −1

3
1
3 0 −1

3 −
2
3 0 −1

3

−1
3

4
3 −

2
3

1
3 −

2
3

1
3

1
3 −

2
3

1
3 −

2
3

4
3 −1

1
2 0 0 0 0 1

2


. (3.57)

However, since we treat each fermion in the operators as a flavor multiplet with flavor nf ,
the operators in the p-basis become flavor tensors of representations of SU(nf ) group. The
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two projectors of [2, 1], b[2,1]
1 and b[2,1]

2 , acting on the m-basis vectors actually give a different
set of the p-basis vectors that span the same SU(nf ) space. To illustrate this point, let us
take

T (1)
prs = b

[2,1]
1 Mprs = 1

3Y
[

1 2
3

]
Mprs = 1

3 (Mprs +Mrps −Msrp −Mspr) , (3.58)

T (2)
prs = b

[2,1]
2 Mprs = 1

3 (2 3)Y
[

1 2
3

]
Mprs = 1

3 (Mpsr +Mspr −Mrsp −Mrps) , (3.59)

then T (1)
prs and T (2)

prs span a 2-dimensional representation of S3 where each element of S3 can
be presented as

D[2,1] (E) =

 1 0
0 1

 , D[2,1] (1 2) =

 1 0
−1 −1

 , D[2,1] (1 3) =

−1 −1
0 1

 , (3.60)

D[2,1] (2 3) =

 0 1
1 0

 , D[2,1] (1 3 2) =

−1 −1
1 0

 , D[2,1] (1 2 3) =

 0 1
−1 −1

 . (3.61)

The following relations allow us to rewrite each component of T (2)
prs as linear combinations

of components of T (1)
prs,

T
(i)
p1,··· ,pm = d(µ)

m!
∑
π∈Sm

[Dµ (π)]i1 T
(1)
π(p1,··· ,pm), i = 1, · · · , d(µ). (3.62)

For example,

1
3
∑
π∈S3

[Dµ (π)]21 T
(1)
π(prs) = 1

3
(
−T (1)

rps + T (1)
psr + T (1)

spr − T (1)
rsp

)
= (2 3) Y

[
1 2
3

]
T (1)
prs

= 1
3 (2 3)Y

[
1 2
3

]
Y
[

1 2
3

]
Mprs

= 1
3 (2 3)Y

[
1 2
3

]
Mprs

= T (2)
prs. (3.63)

So we should keep only one Young symmetrizers of [2, 1] in eq. (3.55), and the independent
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operators, presented as flavor tensors, are called the f-basis.

F-basis

O(f)
Q3He†CD,1

1
6Y [ p r s ] iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(f)
Q3He†CD,2

1
3Y

[
p r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(f)
Q3He†CD,3

1
3Y

[
p r
s

]
iεabcεikεjl

(
Qpaiσ

µe†C t
)

(QrbjDµQsck)Hl

O(f)
Q3He†CD,4

1
6Y

[
p
r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

(3.64)

K(fm) =


−1

6 0 −1
3

1
3 0 1

6
1
3 0 2

3
1
3 0 −1

3

−1
3

4
3 −

2
3

1
3 −

2
3

1
3

1
2 0 0 0 0 1

2

 . (3.65)

The relation eq. (3.62) is valid for representations of the symmetric group with any dimen-
sion, and we always choose to keep the first Young symmetrizer for representations with
dimension more than 1 in the package.

3.4 J-basis

The above amplitude basis can be re-organized to be the eigenbasis of the conserved angular
momentum and gauge quantum numbers for subsets of the external particles. In this case,
the spin and quantum numbers for partitions of the external operator correspond to certain
ultraviolet resonances. This eigenbasis can be obtained from the partial wave expansion
via the Casimir action, more specifically, the Pauli-Lubanski operator [29, 31]. In terms
of the spinor helicity notation, the Pauli-Lubanski operator, Wµ = 1

2εµνρσP
νMρσ, can be

rewritten. It forms a Casimir invariantW 2 for the Poincaré group, which has the eigenvalue
−P 2J(J + 1). Apply to multi-particle states I = {i, j, . . . }, P 2

I = (∑i∈I pi)2 is the total
momentum square, and J is the total angular momentum. These operators are represented
by the helicity spinors as follows

PIαα̇ =
∑
i∈I

λiαλ̃iα̇, MI,αβ = i
∑
i∈I

(
λiα

∂

∂λβi
+ λiβ

∂

∂λαi

)
,

M̃I,α̇β̇ = i
∑
i∈I

λ̃iα̇ ∂

∂λ̃β̇i

+ λ̃iβ̇
∂

∂λ̃α̇i

 . (3.66)

W 2
I = 1

8
∑
ij∈I

(
〈ij〉[j|M̃2|i] + [ij]〈j|M2|i〉 − 2〈i|M |j〉[i|M̃ |j]

)
. (3.67)

It’s straightforward to confirm that the Poincaré algebra is satisfied with

[Pρ,Mµν ] = i(gρµPν − gρνPµ). (3.68)
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For example, the scattering amplitude ψ1φ2 → ψ3φ4 generated by a dim-5 operator O =
(ψ1ψ3)φ2φ4 is A = 〈13〉, which is exactly the eigenstate of W 2,

W 2
{1,2}〈13〉 = −3

4s12〈13〉. (3.69)

The eigenvalue −P 2
IJ(J + 1) = 3

4s12 confirms that J = 1/2. Angular momentum conser-
vation ensures that W 2

IA = W 2
ĪA, when Ī is the complement of channel I. The eigenstate

of W 2
I is called a partial-wave amplitude with angular momentum J , among that, the

independent one is called the Lorentz j-basis.
To obtain the j-basis in given channel I, we apply W 2

I to the y-basis in the same
dimension d. The result must be the dim-(d + 2) amplitudes. Note that a Mandelstam
variable sI times the dim-d y-basis is also a dim-(d + 2) amplitude. We can then reduce
them to our dim-(d + 2) y-basis and solve the coefficient matrix Wij , which is defined as
W 2
IB

y,d
i = ∑

jWijsIBy,dj .

W 2
IB

y,d
i =

∑
j

Kwyij B
y,d+2
j , sIBy,di =

∑
j

Ksyij B
y,d+2
j ⇒

∑
j

WijKsyjk = Kwyik . (3.70)

After that, we diagonalize Wij and obtain the j-basis. For example, to obtain the j-basis in
channel {1, 2} of state {1/2, 1/2, 1/2, 1/2} with 2 derivatives, we first list the dim-8 y-basis
as follows

By,8i =
{
[12][34]2 〈34〉 , − [13][24]2 〈24〉 , [13][24][34] 〈34〉

}
. (3.71)

Acting the W 2 in the channel {1, 2} gives

W 2
{1,2}


[12][34]2 〈34〉
−[13][24]2 〈24〉
[13][24][34] 〈34〉

 =


0 0 0
0 −6 4
1 0 −2




[12][34]2 〈34〉
−[13][24]2 〈24〉
[13][24][34] 〈34〉

 . (3.72)

After diagonalization, we obtain
−1 −6 6
−1 0 2
1 0 0




0 0 0
0 −6 4
1 0 −2



−1 −6 6
−1 0 2
1 0 0


−1

=


−6 0 0
0 −2 0
0 0 0

 . (3.73)

Therefore, the complete set of the J-basis in the dim-8 should be
BJ=2

BJ=1

BJ=0

 =


[12][34]s34 − 6[13][24](s24 + s34)

([12][34]− 2[13][24])s34

−[12][34]s34

 =


−1 −6 6
−1 0 2
1 0 0




[12][34]2 〈34〉
−[13][24]2 〈24〉
[13][24][34] 〈34〉

 .

(3.74)

The total angular momentum for the particles {1, 2} is 2, 1, and 0 respectively. In our
package, the function W2Diagonalize incorporates the above steps. A similar J basis can
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be defined on the gauge group factor space. The meaning of J becomes a series value of
Casimir of the corresponding gauge group for each group of particles in the channel. The
definition of the Casimirs is based on the following definition of the action of generators
on a group factor:

T ′I1I2...IN ≡ T
A

I
◦ TI1I2...IN =

N∑
i∈I

(TA
ri)

Z
IiTI1...Ii−1ZIi+1IN , (3.75)

where I again represents a channel of particles that the generator acts on e.g., I = {1, 2},
T represents a formal operator on the gauge m-basis, TA

ri represents the generator matrices
for irreducible representation ri. For SU(M) group, one needs the value of M − 1 Casimirs
constructed from generators to characterize an irreducible representation. For SU(2) and
SU(3) we have the following Casimirs:

C2 = TaTa, for both SU(2) and SU(3), (3.76)
C3 = dabcTaTbTc, for SU(3) only, (3.77)

For a general definition of Casimirs, one can consult the textbook [33]. We take the operator
type W 4 as an example; the corresponding gauge m-basis is:

T
(m)
1 = δI1I3δI2I4 , T

(m)
2 = δI1I2δI3I4 , T

(m)
3 = δI1I4δI2I3 . (3.78)

C2
{1,2}
◦ T (m)

i = Ta
{1,2}
◦ Ta
{1,2}
◦ T (m)

i = (C2)ij
{1,2}

T (m)
j =


4 0 −2
−2 0 −2
2 0 4



T

(m)
1

T
(m)
2

T
(m)
3

 , (3.79)

where (C2)ij
{1,2}

represents the representation matrix of C2
{1,2}

on the gauge m-basis. Diag-

onalizing the (C2)ij
{1,2}

gives you the eigenvalues as (C2)
{1,2}

= 2, 1, 0, and the corresponding

eigenvectors:

T
(J=2)
I1I2I3I4

= −3T (m)
1 + 2T (m)

2 − 3T (m)
3 = −3δI1I3δI2I4 + 2δI1I2δI3I4 − 3δI1I4δI2I3

T
(J=1)
I1I2I3I4

= 1T (m)
1 − T (m)

3 = δI1I3δI2I4 − δI1I4δI2I3

T
(J=0)
I1I2I3I4

= 1× T (m)
2 = δI1I2δI3I4 . (3.80)

Representing the W1 and W2 are the group to intermediate irreducible representations of
quartet, doublet, and singlet, respectively. The above gauge j-basis can be obtained by the
function GaugeJBasis.

Combining the coordinates of the Lorentz and gauge j-basis, one can obtain the opera-
tor j-basis,here we give an example of the j-basis of type Q3He†CD. To define the j-basis with
channels, one first need to label the fields, by convention, we label the fields in increasing
order of their helicities, i.e., in our example, the fields are labeled as Q1Q2Q3H4e

†
C5.
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With the function GetJBasisForType, we can obtain the results listed below:

O(f)
1 = 1

6Y [ p r s ] iεabcεikεjl (QpaiQrbj)
(
Qsckσ

µe†C t
)
DµHl

O(f)
2 = 1

3Y
[
p r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

O(f)
3 = 1

3Y
[
p r
s

]
iεabcεikεjl

(
Qpaiσ

µe†C t
)

(QrbjDµQsck)Hl

O(f)
4 = 1

6Y
[
p
r
s

]
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

group: (Spin, SU(3)c, SU(2)w,U(1)y)
{Q1, Q2}, {Q3, H4, e

†
C5} Oj

(1, 3, 3, 1
3) −2O(f)

1 + 1
2O

(f)
2 + 3

2O
(f)
3

−6O(f)
1 + 3O(f)

2

(0, 3, 3, 1
3) −[1 + 2(r s)]O(f)

2 − 2O(f)
4

(1, 3, 1, 1
3) [1

2 + (r s)]O(f)
2 − [1

2 + (r s)]O(f)
3 − 2

3O
(f)
4

[1 + 2(r s)]O(f)
Q3He†CD,2

− 2O(f)
4

(0, 3, 1, 1
3) 2O(f)

1 +O(f)
2

{Q1, H4}, {Q2, Q3, e
†
C5} Oj

(3
2 , 3, 3,

2
3) 8O(f)

1 + 7
2 [1 + (r s)]O(f)

2 + 3
2 [1 + (r s)]O(f)

3

(1
2 , 3, 3,

1
3) O(f)

1 + 1
2 [1 + 3(r s)]O(f)

2 − 3
2 [1 + (r s)]O(f)

3 −O(f)
4

−[1− (r s)]O(f)
2 − 2O(f)

4

(3
2 , 3, 1,

2
3) 3

2 [1− (r s)]O(f)
2 − 1

2 [1− (r s)]O(f)
3 − 8

2O
(f)
4

(1
2 , 3, 1,

2
3) −O(f)

1 + 1
2 [1 + (r s)]O(f)

2 + 1
2 [1− (r s)]O(f)

3 − 1
3O

(f)
4

−2O(f)
1 + [1 + (r s)]O(f)

2

{e†
C5, Q1}, {Q2, Q3, H4} Oj

(1, 3, 2,−5
6) O(f)

1 + [1 + (r s)]O(f)
2 +O(f)

4

O(f)
1 + 1

2(r s)O(f)
2 − 1

2 [2 + (r s)]O(f)
3 − 1

3O
(f)
4

2O(f)
1 + (r s)O(f)

2

2O(f)
1 +O(f)

2
1
2 [1 + 2(r s)]O(f)

2 − 1
2 [1 + 2(r s)]O(f)

3 − 2
3O

(f)
4

O(f)
1 + [1 + (r s)]O(f)

2 −O(f)
4

{H4, e
†
C5}, {Q1, Q2, Q3} Oj
(1

2 , 1, 2,−
1
2) O(f)

1 + [1 + (r s)]O(f)
2 +O(f)

4

O(f)
1 + 1

2(r s)O(f)
2 − 1

2 [2 + (r s)]O(f)
3 − 1

3O
(f)
4

2O(f)
1 + (r s)O(f)

2

2O(f)
1 +O(f)

2
1
2 [1 + 2(r s)]O(f)

2 − 1
2 [1 + 2(r s)]O(f)

3 − 2
3O

(f)
4

O(f)
1 + [1 + (r s)]O(f)

2 −O(f)
4

(3.81)
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Let us take a closer look at the j-basis of {Q1, Q2}, {Q3, H4, e
†
C5}. Permuting the label

of the three repeated Qs gives the following three different channels:

group: (Spin, SU(3)c, SU(2)w,U(1)y)
{Q1, Q2}, {Q3, H4, e

†
C5} O(y)

j O(m)
j O(p)

j

(1, 3, 3, 1
3) (0,−2, 0, 0, 1, 0) (0, 2, 0, 0,−1, 0) (−2, 1

2 , 0,
3
2 , 0, 0)

(2, 0,−4,−1, 0, 2) (2, 0, 4,−1, 0,−2) (−6, 3, 0, 0, 0, 0)
(0, 3, 3, 1

3) (−2, 0, 0, 1, 0, 0) (−2, 0, 0, 1, 0, 0) (0,−1,−2, 0, 0,−2)
(1, 3, 1, 1

3) (0, 0, 0, 0, 1, 0) (0, 0, 0, 0,−1, 0) (0, 1
2 , 1,−

1
2 ,−1,−2

3)
(0, 0, 0,−1, 0, 2) (0, 0, 0,−1, 0,−2) (0, 1, 2, 0, 0,−2)

(0, 3, 1, 1
3) (0, 0, 0, 1, 0, 0) (0, 0, 0, 1, 0, 0) (2, 1, 0, 0, 0, 0)

{Q3, Q1}, {Q2, H4, e
†
C5} O(y)

j O(m)
j O(p)

j

(1, 3, 3, 1
3) (1,−1, 0,−2, 2, 0) (1, 1, 0,−2,−2, 0) (−4, 0, 5

2 , 0,−
3
2 , 0)

(2, 0,−1,−4, 0, 2) (2, 0, 1,−4, 0,−2) (−6, 0, 3, 0, 0, 0)
(0, 3, 3, 1

3) (0, 0,−1, 0, 0, 2) (0, 0, 1, 0, 0,−2) (0, 2, 1, 0, 0,−2)
(1, 3, 1, 1

3) (−1, 1, 0, 0, 0, 0) (−1,−1, 0, 0, 0, 0) (0,−1,−1
2 ,−1,−1

2 ,−
4
3)

(−2, 0, 1, 0, 0, 0) (−2, 0,−1, 0, 0, 0) (0,−2,−1, 0, 0,−2)
(0, 3, 1, 1

3) (0, 0, 1, 0, 0, 0) (0, 0,−1, 0, 0, 0) (2, 0, 1, 0, 0, 0)
{Q2, Q3}, {Q1, H4, e

†
C5} O(y)

j O(m)
j O(p)

j

(1, 3, 3, 1
3) (1, 1, 0, 1, 1, 0) (1,−1, 0, 1,−1, 0) (4, 5

2 ,
5
2 ,−

3
2 ,−

3
2 , 0)

(1, 0, 1, 1, 0, 1) (1, 0,−1, 1, 0,−1) (6, 3, 3, 0, 0, 0)
(0, 3, 3, 1

3) (−1, 0, 1,−1, 0, 1) (−1, 0,−1,−1, 0,−1) (0,−1, 1, 0, 0,−2)
(1, 3, 1, 1

3) (−1,−1, 0, 1, 1, 0) (−1, 1, 0, 1,−1, 0) (0, 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

4
3)

(−1, 0,−1, 1, 0, 1) (−1, 0, 1, 1, 0,−1) (0, 1,−1, 0, 0,−2)
(0, 3, 1, 1

3) (1, 0,−1,−1, 0, 1) (1, 0, 1,−1, 0,−1) (−2, 1, 1, 0, 0, 0)
(3.82)

The j-bases of two channels differed by permuting labels of repeated fields may look dif-
ferent on flavor-blind bases, but indeed they are the same up to a permutation and an
overall constant. For example, the j-basis operator corresponding to the state (0, 3, 3, 1

3) of
{Q1, Q2}, {Q3, H4, e

†
C5} expanded on the f-basis is given as

−[1 + 2(r s)]O(f)
2 − 2O(f)

4 (3.83)

= 1
3

{
−[1 + 2(r s)]Y

[
p r
s

]
− Y

[
p
r
s

]}
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl

while the j-basis operator corresponding to the state (0, 3, 3, 1
3) of {Q3, Q1}, {Q2, H4, e

†
C5} is

[2 + (r s)]O(f)
2 − 2O(f)

4 (3.84)

= 1
3

{
[2 + (r s)]Y

[
p r
s

]
− Y

[
p
r
s

]}
iεabcεikεjl (QpaiQrbj)

(
Qsckσ

µe†C t
)
DµHl
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One can check the operator eq. (3.84) is connected with eq. (3.83) by a permutation that
transform {Q1, Q2}, {Q3, H4, e

†
C5} to {Q3, Q1}, {Q2, H4, e

†
C5}, which is (1 3 2), or (p s r)

in this case, with

(p s r)
{
−[1 + 2(r s)]Y

[
p r
s

]
− Y

[
p
r
s

]}
=
{

[2 + (r s)]Y
[
p r
s

]
− Y

[
p
r
s

]}
(3.85)

4 Conversion among different bases

It has always been a confusing issue to have multiple choices of operator bases in the EFT,
which keep active in the literature for different purposes. For example, at dimension 6, the
Warsaw basis [3], the HISZ basis [34], and the SILH basis [35] were introduced to address
different aspects in the studies of the SMEFT operator. Therefore, it is important to
systematically relate the bases to compare results among works in different areas of study.
However, due to the many redundancy relations, the conversions between operator bases
are usually tedious. In the package, we provide a solution by deriving the coordinate of
any given operator under the y-basis, so that the relations among the operator bases could
be solved easily by linear algebra.

Let us take dimension-6 type D2H2H†2 as an example. In ref. [2], there are 3 operators
in this type

O∂H = 1
2Dµ(H†H)Dµ(H†H), O(1)

H = (H†H)(DµH
†DµH), O(2)

H = (H†DµH)(DµH
†H).
(4.1)

However, there are only two independent operators in this type if operators involving the
EOM are not considered in this type, as in the Warsaw basis ref. [3]

OH� =
(
H†H

)
�
(
H†H

)
, OHD =

(
H†DµH

)† (
H†DµH

)
. (4.2)

It is necessary to reduce the over-complete basis eq. (4.1) to a complete basis, such as
eq. (4.2), which can be easily done by the function FindMCoord. The result gives

O∂H
O(1)
H

O(2)
H

 =


−1

2 0
1
2 0
0 1


OH�

OHD

 . (4.3)

So we conclude the over-complete basis eq. (4.1) can be reduced to either {O∂H ,O(2)
H } or

{O(1)
H ,O(2)

H }, and its conversion relations to eq. (4.2) are given in eq. (4.3).
Furthermore, in the SILH basis ref. [35], they list two independent operators different

from those in Warsaw basis as following

O(1)
SILH = Dµ(H†H)Dµ(H†H), O(2)

SILH = (H†←→D µH)(H†←→D µH), (4.4)

where H†←→D µH = H†DµH −DµH†H. The conversion relation between the two complete
bases eq. (4.2) and eq. (4.4) is worth known for comparison of works using the two bases.
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The result gives O(1)
SILH

O(2)
SILH

 =

−1 0
1 −2

OH�

OHD

 . (4.5)

Note that the above linear relations hold up to EOM, which means that the two sides
of an equation can differ by an operator that has vanishing contributions to the on-shell
amplitude in the given type of external state. The difference may contribute to other
types of amplitude due to either tree-level diagram or EOM, and is supposed to have been
counted in those types. When we are not focused on a particular type, extra terms should
be added to the above relations, which will be solved in the near future. In this paper,
we mainly introduce the linear relation restricted to a given type. Thus all the equations
in this section should be understood as modulo EOM. We will show how to decompose a
given flavor-blind operator(amplitude) into the Y-basis in section 4.1, and the conversion
between flavor-specified bases is inferred in section 4.2.

4.1 Unique coordinate of operators

For flavor-blind operators, where each field is distinguishable, the Lorentz structure and
gauge factors can be treated separately. Suppose we have a monomial operator O =
T a1,...,aNBa1,...,aN , we can decompose it in the following steps

Ba1,...,aN =
∑
i

KB,i(Bmi )a1,...,aN , T a1,...,aN =
∑
j

KT,j(Tmj )a1,...,aN ,

O =
∑
i,j

KB,iKT,jT mij , T mij ≡ (Tmj )a1,...,aN (Bmi )a1,...,aN ,
(4.6)

where the final m-basis T mij is simply the direct product of the m-basis for Lorentz structures
and gauge factors.

To get KB, we first decompose B into the y-basis, for which we have a standard
routine [12]:

1. Calculate the corresponding helicity amplitude via the follow replacements

ψiα = |i〉α, ψαi = 〈i|α, ψ†α̇i = |i]α̇, ψ†iα̇ = [i|α̇, iDµ
i = 1

2〈i|
ασµαα̇|i]α̇, (4.7)

FµνiL = 1
2〈i|

ασµαα̇σ̄
να̇β |i〉β , FµνiR =−1

2[i|α̇σ̄µα̇ασναβ̇ |i]
β̇ , σµαα̇σµββ̇ = 2εαβεα̇β̇ . (4.8)

Other forms of building blocks can first be transformed into the above cases, for
example

Ψ̄iγ
µΨj = ψ†iLσ̄

µψjL + ψ†iRσ
µψjR = 〈j|σµ|i] + 〈i|σµ|j],

Fµν = FµνL + FµνR = 1
2 (〈i|σµσ̄ν |i〉 − [i|σ̄µσν |j]) .

(4.9)

Note that some conventional building blocks are usually a mixture of helicity ampli-
tudes with different helicity assignment, which is not preferable in our construction.
In some cases, it would also obscure the features of some computations, like the non-
renormalization theorem [36] is actually trivial from the helicity amplitude point of

– 30 –



J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

view. That is why we are not choosing these building blocks to construct our opera-
tors, but they can still be considered if one insists, by combining types of operators
for a mixture of helicity assignment, while a given operator consisting of these build-
ing blocks would have a coordinate for a combined operator basis. We will show an
example shortly.

2. For any amplitudes that correspond to non-SSYT, use momentum conservation and
Schouten identity to convert it towards SSYT amplitudes, i.e. the y-basis. It requires
a certain order of the constituting fields, and different orders would lead to different
y-basis. We usually adopt the helicity-non-decreasing order proposed in [32], but it
is not mandatory.

The reduction can be implemented in two steps: first, use momentum conservation to
replace as many momenta with lower labels in the order by those with higher labels,
which include the following situation:

• Replace all the momenta of first particle by momentum conservation

〈i1〉[1j] = −
N∑
k=2
〈ik〉[kj]. (4.10)

It amounts to remove all the derivatives on the first field via the IBP relation.

(DnΨ1) · · · ' (−)nΨ1D
n (· · · ) . (4.11)

• Replace all the momenta of particle 2 or 3 in the following cases such that no
lower label momenta would be generated,

[1|p2|i〉 = −
N∑
k=3

[1|k|i〉, 〈1|p2|i] = −
N∑
k=3
〈1|pk|i],

[1|p3|2〉 = −
N∑
k=4

[1|k|2〉, 〈1|p3|2] = −
N∑
k=4
〈1|pk|2],

p2 · p3 =
∑
i,j 6=1

{i,j}6={2,3}

−pi · pj .

(4.12)

This is possible because on-shell conditions convert the lower label momenta
generated. On the operator side, it means that EOM is involved. One could
apply IBP according to eq. (4.12) while keeping track of how some terms are
converted via EOM, so that the reduction still holds at the operator level. We
take the type l̄lH†HD operators in the Warsaw basis as an example

O(1)
Hl=

(
l̄pγ

µlr
)(
H†i
←→
D µH

)
↔A(1)

Hl(lri,Hj ,H
†k,l̄lp)=δilδ

j
k〈1|2−3|4]=−2δilδ

j
k〈1|3|4]
(4.13)

where we used momentum conservation to replace p2 → −(p1 + p3 + p4), and
the p1 and p4 terms vanish by on-shell condition. On the operator side, we can
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do it more carefully(
l̄pγ

µlr
)(
H†i
←→
D µH

)IBP= −2
(
l̄pγ

µlr
)(
iDµH

†H
)
−iDµ

(
l̄pγ

µlr
)(
H†H

)
EOM= −2

(
l̄pγ

µlr
)(
iDµH

†H
)
+
(
l̄pJr+J̄plr

)(
H†H

)
,
(4.14)

where the first term is our y-basis corresponding to the amplitude in eq. (4.13),
and for the second term we used the EOM of lepton iD/ l + J = 0 for lepton
source term l̄J + h.c. in the Lagrangian. In the code, we have not kept track
of these terms because it is still a purely amplitude-based algorithm. An intact
reduction of operators may be implemented in future versions.

Second, when two same-type brackets contain 4 different particles with the order
i < j < k < l, we use the Schouten Identity to apply the following replacement

〈il〉〈jk〉 = 〈ik〉〈jl〉 − 〈ij〉〈kl〉, (4.15)
[il][jk] = [ik][jl]− [ij][kl]. (4.16)

3. When a monomial basis other than the y-basis is defined as the standard m-basis,
such as in the case that Lorentz indices rather than spinor indices are used for the
building blocks, we could find the coordinates of all the m-basis operators via the
above steps

Bmi =
∑
j

Kmyij B
y
j , (4.17)

where Kmy should be the convertible matrix. For a given operator, we can first
decompose it into the y-basis, and then use Kmy to get the coordinate under the
m-basis

B =
∑
j

KyjB
y
j =

∑
i,j

Kyj (Kmy,−1)jiBmi ≡
∑
i

KB,iBmi . (4.18)

For the gauge factors, we can make use of the metric obtained in section 3.2.2 and
easily find the projection of a given gauge factor onto the m-basis by the inner product

(Tmi , T ) =
∑
j

KT,j(Tmi , Tmj ) =
∑
j

gijKT,j , ⇒ KT,i =
∑
j

gij(Tmj , T ), (4.19)

where gij is the inverse metric gijgjk = δik, the invertibility guaranteed by the independence
of the m-basis {Tmi }.

Now that we obtain both KB and KT , whose direct product give a unique coordinate of
the operator O (up to EOM) according to eq. (4.6). However, repeated fields have not been
considered yet. In the presence of repeated fields, the m-basis itself may not be independent.

4.2 Flavor specified operators and flavor relations

When the flavor is turned on, there are two effects: 1. some p-basis operators must vanish
due to the lack of flavors to fill in the tall Young tableau of the flavor tensor; 2. for multi-
dimensional representations of the permutation group for repeated fields, only a subset
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of the p-basis, namely the f-basis, is independent, while the other operators should be ex-
pressed as flavor permutations of the f-basis. The latter leads to the flavor relations among
the flavor components of the operators. We examine the two aspects with two examples.

The first example is the dimension-8 operators H2H†2D4 in ref. [6]. The operators in
ref. [6] and those generated by our package are presented respectively as

Ref. [6]
O(1)
H4 (DµH

†iDνHi)(DνH†jDµHj)
O(2)
H4 (DµH

†iDνHi)(DµH†jDνHj)
O(3)
H4 (DµH†iDµHi)(DνH†jDνHj)

P-basis
O(p)
H2H†2D2,1 HiHj(DµDνH

†i)(DµDνH†j)
O(p)
H2H†2D2,2 HiH

†i(DµDνHj)(DµDνH†j)
O(p)
H2H†2D2,3 Hi(DµHj)(DνH

†i)(DµDνH†j)
(4.20)

Here we retrieved the omitted SU(2) indices in ref. [6]. In our package, the m-basis
and p-basis of type H2H†2D4 can be obtained by the function GetBasisForType as

M-basis Higgs are treated as distinguishable.
O(m)

1 H1iH2j(DµDνH
†i
3 )(DµDνH†j4 )

O(m)
2 H1iH

†i
3 (DµDνH2j)(DµDνH†j4 )

O(m)
3 H1i(DµH2j)(DνH

†i
3 )(DµDνH†j4 )

O(m)
4 H1iH2j(DµDνH†i4 )(DµDνH

†j
3 )

O(m)
5 H1iH

†j
3 (DµDνH2j)(DµDνH†i4 )

O(m)
6 H1i(DµH2j)(DµDνH†i4 )(DνH

†j
3 )

P-basis Higgs are treated as flavor multiplets.
O(p)

1
1
4Y [ p r , s t ]HpiHrj(DµDνH

†i
s )(DµDνH†jt )

O(p)
2

1
4Y [ p r , s t ]HpiH

†i
s (DµDνHrj)(DµDνH†jt )

O(p)
3

1
4Y [ p r , s t ]Hpi(DµHrj)(DνH

†i
s )(DµDνH†jt )

O(p)
4

1
4Y
[
p
r ,

s
t

]
HpiHrj(DµDνH

†i
s )(DµDνH†jt )

O(p)
5

1
4Y
[
p
r ,

s
t

]
HpiH

†i
s (DµDνHrj)(DµDνH†jt )

O(p)
6

1
4Y
[
p
r ,

s
t

]
Hpi(DµHrj)(DνH

†i
s )(DµDνH†jt )

(4.21)

with the conversion matrix

K(pm) =



1
2 0 0 1

2 0 0
0 1

2 0 1
2

1
2 1

0 0 1
2 −

1
2 0 −1

2
1
2 0 0 −1

2 0 0
0 1

2 0 −1
2 −

1
2 −1

0 0 1
2

1
2 0 1

2


(4.22)

where all Higgs are treated as distinguishable in the m-basis and are labeled with 1, 2, 3, 4
while they are treated as repeated flavor multiplets in the p-basis and are labeled with
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p, r, s, t. The coefficient matrix of eq. (4.20) expanded on the m-basis eq. (4.2) is given by
FindMCoord as

C(m) =


1 1 2 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 , (4.23)

thus

C(p) = C(m)
(
K(pm)

)−1
=


1 1 2 1 1 2
1 0 0 1 0 0
0 1 0 0 1 0

 . (4.24)

For the SMEFT where there is only one generation of Higgs, the last 3 terms of the p-basis
in eq. (4.2) vanish and C(p) becomes a square matrix.

C(p) =


1 1 2
1 0 0
0 1 0

 ,

O(1)
H4

O(2)
H4

O(3)
H4

 =


1 1 2
1 0 0
0 1 0



O(p)
H2H†2D2,1

O(p)
H2H†2D2,2

O(p)
H2H†2D2,3

 . (4.25)

Next, let’s look at a more complicated example, where mixed symmetry of flavors is
involved. The operators in the type WLQ3 in ref. [6] can be rewritten in our notation as,

Ref. [6]
O(1)
WLQ3 ε

abcεjlεkm(τ I)imW I
µν (LpiσµνQraj) (QsbkQtcl)

O(2)
WLQ3 εabcεilεkm(τ I)jmW I

µν (LpiQtcl) (QrajσµνQsbk)
O(3)
WLQ3 εabcεilεkm(τ I)jmW I

µν (LpiσµνQsbk) (QrajQtcl)

(4.26)

and the p-basis of this type is listed below.

P-basis
O(p)
WLQ3,1

1
6Y [ r s t ] εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

O(p)
WLQ3,2

1
6Y [ r s t ] εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiQtcl) (QrajσµνQsbk)

O(p)
WLQ3,3

1
3Y
[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

O(p)
WLQ3,4

1
3(s t)Y

[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

O(p)
WLQ3,5

1
3Y
[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQsbk) (QrajQtcl)

O(p)
WLQ3,6

1
3(s t)Y

[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQsbk) (QrajQtcl)

O(p)
WLQ3,7

1
3Y
[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiQtcl) (QrajσµνQsbk)

O(p)
WLQ3,8

1
3(s t)Y

[
r s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiQtcl) (QrajσµνQsbk)

O(p)
WLQ3,9

1
6Y
[
r
s
t

]
εabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

(4.27)
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Following the similar method above, one can find


O(1)
WLQ3

O(2)
WLQ3

O(3)
WLQ3

 =


1 0 2 0 −1 0 0 0 3
0 1 0 0 0 0 1 0 0
1 0 0 −1 1 1 0 0 −1





O(p)
WLQ3,1

O(p)
WLQ3,2

O(p)
WLQ3,3

O(p)
WLQ3,4

O(p)
WLQ3,5

O(p)
WLQ3,6

O(p)
WLQ3,7

O(p)
WLQ3,8

O(p)
WLQ3,9



. (4.28)

The operators in (4.26) do not present any information on flavor structures, although not all
flavor components of the operators are independent. The flavor constraints are clear once
these operators are expanded on p-basis. For each operator in (4.26), it is straightforward
to decompose the operator into different irreducible representations of SU(nf ) and S3 as

Oprst = 1
6Y [ r s t ]Oprst + 1

3Y
[
r s
t

]
Oprst + 1

3Y
[
r t
s

]
Oprst + 1

6Y
[
r
s
t

]
Oprst. (4.29)

For example,

1
6Y [ r s t ]O(1)

WLQ3,prst
1
3Y
[
r s
t

]
O(1)
WLQ3,prst

1
3Y
[
r t
s

]
O(1)
WLQ3,prst

1
6Y
[
r
s
t

]
O(1)
WLQ3,prst

1
6Y [ r s t ]O(2)

WLQ3,prst
1
3Y
[
r s
t

]
O(2)
WLQ3,prst

1
3Y
[
r t
s

]
O(2)
WLQ3,prst

1
6Y
[
r
s
t

]
O(2)
WLQ3,prst

1
6Y [ r s t ]O(3)

WLQ3,prst
1
3Y
[
r s
t

]
O(3)
WLQ3,prst

1
3Y
[
r t
s

]
O(3)
WLQ3,prst

1
6Y
[
r
s
t

]
O(3)
WLQ3,prst



=



1 0 0 0 0 0 0 0 0
0 0 2 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0 −1





O(p)
WLQ3,1

O(p)
WLQ3,2

O(p)
WLQ3,3

O(p)
WLQ3,4

O(p)
WLQ3,5

O(p)
WLQ3,6

O(p)
WLQ3,7

O(p)
WLQ3,8

O(p)
WLQ3,9



. (4.30)

Where we used the orthogonality of different Young symmetrizers. It seems that one can
choose the linear independent rows from the matrix as independent operators, for example,
the red rows in eq. (4.30). The other rows should be understood as the following flavor
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constraints,
Y
[
r t
s

]
O(1)
WLQ3,prst = 0,

Y
[
r t
s

]
O(2)
WLQ3,prst = 0,

Y
[
r
s
t

]
O(2)
WLQ3,prst = 0,

Y [ r s t ]O(3)
WLQ3,prst = Y [ r s t ]O(1)

WLQ3,prst,

Y
[
r
s
t

]
O(3)
WLQ3,prst = −1

3Y
[
r
s
t

]
O(1)
WLQ3,prst.

(4.31)

However, one should remember that the following f-basis is the truly independent and
complete basis for three or more repeated fields,

F-basis
O(f)
WLQ3,1

1
6Y [ r s t ] iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

O(f)
WLQ3,2

1
6Y [ r s t ] iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiQtcl) (QrajσµνQsbk)

O(f)
WLQ3,3

1
3Y
[
r s
t

]
iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl)

O(f)
WLQ3,4

1
3Y
[
r s
t

]
iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQsbk) (QrajQtcl)

O(f)
WLQ3,5

1
3Y
[
r s
t

]
iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiQtcl) (QrajσµνQsbk)

O(f)
WLQ3,6

1
6Y
[
r
s
t

]
iεabcεilεkm

(
τ I
)
j
mW

I
µν (LpiσµνQraj) (QsbkQtcl) ,

(4.32)

which indicates the operator 1
3Y
[
r t
s

]
O(3)
WLQ3,prst is redundant. So there is another flavor

constraint:

Y
[
r t
s

]
O(3)
WLQ3,prst = 1

2
(
−(s t)Y

[
r s
t

]
O(1)
WLQ3,prst + (s t)Y

[
r s
t

]
O(3)
WLQ3,prst

)
. (4.33)

To conclude, after taking account of the flavor structures, the operator basis of the type
WLQ3 can be chosen as the f-basis (4.32), or equivalently the operator basis (4.26) in
ref. [6] together with the flavor constrains eq. (4.31) and eq. (4.33).

4.3 Alternative operator basis

With the technique of finding unique coordinates of any given operator, we can easily
implement many tasks that were thought to be tedious.

1. We can find conversion matrices between various operator bases in the literature.
Suppose there are two independent operator bases Q(1)

i and Q
(2)
i , both being inde-

pendent and complete. We can find their coordinates under our standard m-basis

Q
(1)
i =

∑
j

K(1)
ij O

m
j , Q

(2)
i =

∑
j

K(2)
ij O

m
j . (4.34)

The conversion matrices must be invertible due to the linear independence within
each basis. Therefore we have

Q
(1)
i =

∑
j,k

K(1)
ij (K(2))−1

jk Q
(2)
k (4.35)
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2. We can also find linear relations among over-complete basis. If an operator basis Q′I
is over-complete, with number n > the actual dimension of the operator space, the
coordinates of them form a n× matrix K′Ii. Not only can we select an independent
subset of basis from its independent rows, but we can also use the solutions to the
linear equation∑I cIK′Ii = 0 to induce the redundancy relations among the operators∑
I cIQ

′
I = 0.

3. We can customize our m-basis by constructing the over-complete basis with selected
rules. As explained previously, in the current version of the package ABC4EFT, we
obtain the m-basis operators by selecting independent ones from an over-complete ba-
sis of operators from the monomials present in the y-basis. It is also possible to build
an independent basis out of particular building blocks that are more conventional or
phenomenologically preferred. For example, the F/F̃ basis of gauge field strength
is more frequently used in the literature than the chiral basis FL/R, with relations
F = FL+FR, F̃ = i(FL−FR). Note that such building blocks are in the reducible rep-
resentation of the Lorentz group, which means that they generate particles with dif-
ferent helicities. On the other hand, our predetermined types all involve fields of only
irreducible representations of the Lorentz group. Therefore it is courteous to merge
several types into one bigger type, which we may call “helicity-inclusive” type of oper-
ators, whose basis is the direct sum of operator basis for types that differ only by signs
of the helicities. For instance, the type we studied in section 3, W 2

LHH
†D2, is in a

bigger “helicity-inclusive” type W 2HH†D2, which also includes the type W 2
RHH

†D2

andWLWRHH
†D2. While the basis forW 2

RHH
†D2 is similar to that forW 2

LHH
†D2

obtained in eq. (3.36)–(3.39), the basis for WLWRHH
†D2 is given below

O(m)
WLWRHH†D2,1 = εIJK(τK)ijW I

Lρ
µW Jρν

R (DµDνH
†j)Hi

O(m)
WLWRHH†D2,2 = W I

Lρ
µW Iρν

R (DµDνH
†i)Hi

(4.36)

After taking into account that W boson has only one flavor, we obtain the p-basis
for the “helicity-inclusive” type W 2H2D2:

OpW 2H2D2 i = {O(m)
W 2

LHH
†D2,1,O

(m)
W 2

LHH
†D2,4,O

(m)
W 2

RHH
†D2,1,

O(m)
W 2

RHH
†D2,4,O

(m)
WLWRHH†D2,1,O

(m)
WLWRHH†D2,2}

(4.37)

Now we can construct all kinds of operators involving Wµν or W̃µν and work out their
coordinates under the basis eq. (4.37) by the expansion W = WL + WR and W̃ =
i(WL−WR), so that an independent set of 6 operators can be selected as an operator
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basis. It can also be used to examine the basis present in the literature, such as ref. [6]

Q
(1)
W 2H2D2 = (DµH†DνH)W I

µρW
Iρ
ν

= −1
4O

p
W 2H2D2 ,1 −

1
4O

p
W 2H2D2 ,3 +OpW 2H2D2 ,6

Q
(2)
W 2H2D2 = (DµH†DµH)W I

νρW
Iνρ = OpW 2H2D2 ,1 +OpW 2H2D2 ,3

Q
(3)
W 2H2D2 = (DµH†DµH)W I

νρW̃
Iνρ = i(OpW 2H2D2 ,1 −O

p
W 2H2D2 ,3)

Q
(4)
W 2H2D2 = iεIJK

(
DµH†τ IDνH

)
W J
µρW

Kρ
ν

= i(OpW 2H2D2 ,2 +OpW 2H2D2 ,4 + 2OpW 2H2D2 ,5)

Q
(5)
W 2H2D2 = εIJK

(
DµH†τ IDνH

) (
W J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν

)
= −2iOpW 2H2D2 ,5

Q
(6)
W 2H2D2 = iεIJK

(
DµH†τ IDνH

) (
W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν

)
= −2(OpW 2H2D2 ,2 −O

p
W 2H2D2 ,4)

(4.38)

It’s easy to check that the conversion matrix is invertible, proving that the 6
operators are indeed a complete basis for the type W 2H2D2.

4.4 Reduction of over-complete basis

With the complete m-basis, it is able to expand any over-complete basis of any type on the
corresponding m-basis and reduce the over-complete basis to its complete subset. Taking
the type D2LL†QQ† as an example, it is straightforward to write down the following over-
completed operators based on the properties of γ matrices,

D2LL†QQ†

O(1) (DµLpiD
µQraj)(L†siQ

†
t
aj)

O(2) (DµLpiD
µQraj)(L†sjQ

†
t
ai)

O(3) (DµLpiQraj)(DµL†s
iQ†t

aj)
O(4) (DµLpiQraj)(DµL†s

jQ†t
ai)

O(5) (DµLpiDνQraj)(L†siσ̄µνQ
†
t
aj)

O(6) (DµLpiDνQraj)(L†sj σ̄µνQ
†
t
ai)

O(7) (DνLpiσµL
†
s
i)(DµQrajσνQ

†
t
aj)

O(8) (DνLpiσµQ
†
t
aj)(DµQrajσνL

†
s
i)

O(9) (DµLpiσµL
†
s
i)(DνQrajσνQ

†
t
aj).

(4.39)
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Each of eq. (4.39) can be expanded on m-basis

M-basis
O(m)

1 (LpiQraj)(DµL
†
s
iDµQ†t

aj)
O(m)

2 (LpiσµνQraj)(DµL†s
iDνQ†t

aj)
O(m)

3 (LpiQraj)(DµL
†
s
jDµQ†t

ai)
O(m)

4 (LpiσµνQraj)(DµL†s
jDνQ†t

ai)

(4.40)

Using FindMCoord, and the coefficient matrix is obtained as



1 0 0 0
0 0 1 0
−1

2
1
2 0 0

0 0 −1
2

1
2

0 1 0 0
0 0 0 1
−1 −1 0 0
1 −1 0 0
0 0 0 0



, (4.41)

where the coefficients in the last row being all 0 is the consequence of O(9) corresponding to
the EOM redundancy. From eq. (4.41) one can choose 4 independent rows of the matrix as
a complete basis of D2LL†QQ†, for example, the 4 rows which are marked red in eq. (4.41).
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Here we give another example of the dim-9 type d†CeCL
†Qu2

C , it is straightforward to
write down the following basis:

d†CeCL
†Qu2

C

O(1) (d†CubL
†
v
i)(eCpQrai)(uC

a
suC

b
t)

O(2) (d†CubL
†
v
i)(eCpQrai)(uC

b
suC

a
t )

O(3) (d†CubL
†
v
i)(eCpuC

a
s)(QraiuC

b
t)

O(4) (d†CubL
†
v
i)(eCpuC

b
s)(QraiuC

a
t )

O(5) (d†CubL
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i)(eCpuC
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t)(QraiuC

a
s)

O(6) (d†CubL
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i)(eCpuC

a
t )(QraiuC
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s)

O(7) (eCpσµd†Cub)(Qraiσ
µL†v

i)(uC
a
suC

b
t)

O(8) (eCpσµd†Cub)(Qraiσ
µL†v

i)(uC
b
suC

a
t )

O(9) (eCpσµd†Cub)(uC
a
sσ

µL†v
i)(QraiuC

b
t)

O(10) (eCpσµd†Cub)(uC
b
sσ
µL†v

i)(QraiuC
a
t )

O(11) (eCpσµd†Cub)(uC
b
tσ
µL†v

i)(uC
a
sQrai)

O(12) (eCpσµd†Cub)(uC
a
t σ

µL†v
i)(uC

b
sQrai)

O(13) (Qraiσµd†Cub)(uC
a
sσ

µL†v
i)(eCpuC
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O(14) (Qraiσµd†Cub)(uC
b
sσ
µL†v

i)(eCpuC
a
t )

O(15) (Qraiσµd†Cub)(uC
b
tσ
µL†v

i)(eCpuC
a
s)

O(16) (Qraiσµd†Cub)(uC
a
t σ

µL†v
i)(eCpuC
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s)

O(17) (uC
a
sσµd

†
Cub)(uC

b
tσ
µL†v

i)(eCpQrai)
O(18) (uC

b
sσµd

†
Cub)(uC

a
t σ

µL†v
i)(eCpQrai)

O(19) (d†CubL
†
v
i)(eCpσµνQrai)(uC

a
sσ

µνuC
b
t)

O(20) (d†CubL
†
v
i)(eCpσµνQrai)(uC

b
sσ
µνuC

a
t )

O(21) (d†CubL
†
v
i)(eCpσµνuC

a
s)(QraiσµνuC

b
t)

O(22) (d†CubL
†
v
i)(eCpσµνuC

b
s)(QraiσµνuC

a
t )

O(23) (d†CubL
†
v
i)(eCpσµνuC

b
t)(QraiσµνuC

a
s)

O(24) (d†CubL
†
v
i)(eCpσµνuC

a
t )(QraiσµνuC

b
s)

(4.42)

The basis is obviously over-complete due to Fierz identities. The independent flavor-blind
basis given in our code is the m-basis

M-basis
O(m)

1 (d†CubL
†
v
i)(eCpQrai)(uC

a
suC

b
t)

O(m)
2 (d†CubL

†
v
i)(eCpuC

a
s)(QraiuC

b
t)

O(m)
3 (d†CubL

†
v
i)(eCpQrai)(uC

b
suC

a
t )

O(m)
4 (d†CubL

†
v
i)(eCpuC

b
s)(QraiuC

a
t )

(4.43)
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The function FindMCoord can be used to find the coefficients of each operator in (4.42)
expanded on m-basis. The result is as following



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
−1 −1 0 0
0 0 −1 −1
2 0 0 0
0 0 2 0
0 2 0 0
0 0 0 2
−2 −2 0 0
0 0 −2 −2
−2 −2 0 0
0 0 −2 −2
0 2 0 0
0 0 0 2
2 0 0 0
0 0 2 0
4 8 0 0
0 0 4 8
8 4 0 0
0 0 8 4
4 −4 0 0
0 0 4 −4



. (4.44)

One can check that the above matrix has rank 4 and the independent operators of
d†CeCL

†Qu2
C can be chosen as 4 independent rows of matrix (4.44), for example, the 4

red rows in (4.44).

5 Brief introduction on ABC4EFT

In this section, first we will show how to include a user-defined model in the Mathematica
package, then we will introduce the Mathematica functions to analyze EFT operators and
give the complete basis of the EFT operators in such a model.
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To load the package, one should first locate the directory of the package ABC4EFT,
and on this directory, one starts with

In[1]:= << ABC4EFT`

The package allows the users to define a model involving various fields, gauge groups,
and global groups. Here is an example of writing a function to define the SMEFT.

In[2]:= (* Define SMEFT *)
SetAttributes[DefSMEFT, HoldFirst];
DefSMEFT[model_,nf_:3]:= Module[{},
ModelIni[model];
AddGroup[model,"U1b"];
AddGroup[model,"U1l"];
AddGroup[model,"SU3c",GaugeBoson->"G"];
AddGroup[model,"SU2w",GaugeBoson->"W"];
AddGroup[model,"U1y",GaugeBoson->"B"];
AddField[model,"Q",-1/2,{"SU3c"->{1,0},"SU2w"->{1},"U1y"->1/6,"U1b"->1/3},Flavor->nf];
AddField[model,"uc",-1/2,{"SU3c"->{0,1},"U1y"->-2/3,"U1b"->-1/3},Flavor->nf];
AddField[model,"dc",-1/2,{"SU3c"->{0,1},"U1y"->1/3,"U1b"->-1/3},Flavor->nf];
AddField[model,"L",-1/2,{"SU2w"->{1},"U1y"->-1/2,"U1l"->1},Flavor->nf];
AddField[model,"ec",-1/2,{"U1y"->1,"U1l"->-1},Flavor->nf];
AddField[model,"H",0,{"SU2w"->{1},"U1y"->1/2}]
]
DefSMEFT[SMEFT];

Where the inputs of this function are the name of the model and the number of
generations of fermions that would be taken into account in the model. The user-defined
function DefSMEFT invokes the functions ModelIni, AddGroup and AddField in the package,
where ModelIni just initializes the model, and AddGroup, AddField will be introduced in
the following content.

The function AddGroup adds a global group or a gauge group to the model, along with
options that can name the corresponding gauge boson if the added group is gauge and
assign the certain list of indices to a group.

In[3]:= Options[AddGroup]={GaugeBoson->None,Index->"default"};
AddGroup[model_,groupname_String,OptionsPattern[]]

It should be noted that the input groupname_String must be a string that formed by the
commonly used name of the group, for example, "SU3", "SU2" and "U1", and a extra char
to label a certain group, for example, "b", "l", "c", "w" and "y", in order to make the
code recognize and load the corresponding group. For now, the package only contains the
group profile of SU(3), SU(2) and U(1), and we will give a instruction of how to add more
groups in appendix.

The function AddField adds a field to the model. The inputs of AddField are the name
of the model, name of the added field in string, helicity of the field, list of representations
of the field under each group in the model and some options, which include number of
flavor generations, mass dimension, Hermiticity and chirality of the field.

In[4]:= Options[AddField]={Flavor->1,Dim->"default",Hermitian->False,Chirality->{}};
AddField[model_,field_String,hel_,Greps_List,OptionsPattern[]]
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There are a few things about the options that are worth discussing. As mentioned
before, a massless chiral field in most models satisfies the relation |h| = d− 1, where h and
d are helicity and mass dimension of the field, while graviton, with |h| = 2 and d = 2, does
not satisfy the relation. So it is necessary to include the option that specifies the mass
dimension of a field Dim. Another thing is that the Hermitian conjugate of a field will be
automatically added to the model if the option Hermitian is set to False.

We also introduce the most important functions in this section, and leave some auxil-
iary functions that one may be of interest in appendix C.

The function StatResult[model_,dim_] presents the statistic result of a model at
certain mass dimension. For example,

In[5]:= StatResult[SMEFT,8];

Done! time used: 0.2870018
number of real types→541
number of real terms→1266
number of real operators→44807

The function AllTypesC[model_,dim_] presents all complex types in a model at cer-
tain mass dimension. For example, all complex types in SMEFT at mass dimension 6 can
be obtained by

In[6]:= AllTypesC[SMEFT,6]

Out[6]= <|FL3→
{

BL3,BLWL2,WL3,BLGL2,GL3},ψψψ4→
{

dcecuc2,ecLQuc,dcQ2uc,LQ3},
FLφφφψψψ2→

{
BLecH†††L,BLdcH†††Q,BLHQuc,ecH†††LWL,dcH†††QWL,HQucWL,dcGLH†††Q,GLHQuc

}
,

FL2φφφ2→
{

BL2HH†††,BLHH†††WL,HH†††WL2,GL2HH†††
}

,ψψψ2ψψψ†††2→
{

ec2ec†††2,ecec†††LL†††,dc†††ecLQ†††,dcdc†††LL†††,
LL†††ucuc†††,ecec†††QQ†††,dcec†††L†††Q,L2L†††2,dcdc†††ecec†††,ecec†††ucuc†††,dc2dc†††2,dcdc†††ucuc†††,uc2uc†††2,
ecQ†††2uc,dcL†††Q†††uc,dc†††LQuc†††,ec†††Q2uc†††,LL†††QQ†††,dcdc†††QQ†††,QQ†††ucuc†††,Q2Q†††2

}
,

Dφφφ2ψψψψψψ†††→
{

Decec†††HH†††,DHH†††LL†††,DdcH†††2uc†††,Ddcdc†††HH†††,DHH†††ucuc†††,Ddc†††H2uc,DHH†††QQ†††
}

,
D2φφφ4→

{
D2H2H†††2

}
,φφφ3ψψψ2→

{
ecHH†††2L,dcHH†††2Q,H2H†††Quc

}
,φφφ6→

{
H3H†††3

}
|>

The function GenerateOperatorList[model_,dim_] presents all independent opera-
tors in a model at certain mass dimension as monomial p-basis. For example,

In[7]:= GenerateOperatorList[SMEFT,5]

Generating types of operators ...
Time spent: 0.1098517

Out[7]= <|φφφ2ψψψ2→<|H2L2→<|{L→{2},H→{2}}→
{
εεεikεεεjlHkHl

(
LpiLrj

)}
|>|>|>

The output presents the only EFT operator LLHH in the SMEFT at mass dimension 5,
with the flavor structure of the two Ls and the two Hs symmetric.

The function GetBasisForType[model_,type_,OptionsPattern[]] gives the m-basis
and p-basis of a type in a model. The inputs are a user-defined model and a type formed
by derivatives, fields and their Hermitian conjugates in the model. For example, the model
could be the SMEFT and the type could be "D"4"H"2"H†††"2.
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In[8]:= GetBasisForType[SMEFT,"D"4"H"2"H†††"2]

Out[8]= <|"basis"→
{

HiHj(DµµµDνννH†††i)(DµµµDνννH†††j),HiH†††i(DµµµDνννHj)(DµµµDνννH†††j),
Hi(DµµµHj)(DνννH†††i)(DµµµDνννH†††j),HiHj(DµµµDνννH†††j)(DµµµDνννH†††i),HiH†††j(DµµµDνννHj)(DµµµDνννH†††i),

Hi(DµµµHj)(DνννH†††j)(DµµµDνννH†††i)
}

,"p-basis"→<|{H→{2},H†††→{2}}→
{{1

2
,0,0,

1
2

,0,0
}

,{
0,

1
2

,0,
1
2

,
1
2

,1
}

,
{

0,0,
1
2

,-
1
2

,0,-
1
2
}}

|>|>

Here the p-basis operators are flavor-specified operators presented by linear combi-
nations of flavor-blind operators in m-basis "basis". The result in "p-basis" presents
the symmetry of flavor indices of the repeated fields in this type, which in this case are
the Higgs bosons, and the coefficients of each p-basis operator expanded on the flavor-
blind m-basis. The function GetBasisForType can also give the monomial p-basis after
de-symmetrization by adding a option DeSym→→→True.

In[9]:= GetBasisForType[SMEFT,"D"4"H"2"H†††"2,DeSym→→→True]

Out[9]= <|{H→{2},H†††→{2}}→
{
HiHj(DµµµDνννH†††i)(DµµµDνννH†††j),HiH†††i(DµµµDνννHj)(DµµµDνννH†††j),

Hi(DµµµHj)(DνννH†††i)(DµµµDνννH†††j)
}
|>

The function FindYCoord[model_,operator_,OptionsPattern[]] will reduce any
operator to our y-basis and obtain the coordinate. The input format of the operator
is similar to that of the FeynRule for more acceptably. Except that fields and indices are
entered in string format. We show how to input fields and tensor structures in table 5. We
list some of examples in table 6.

In[10]:= FindYCoord[SMEFT,del2["i","k"] del2["j","l"] DC[DC["H†††"["k"],"mu"],"nu"]
DC[DC["H†††"["l"],"mu"],"nu"] "H"["i"] "H"["j"]]

Out[10]= <|SU2→{1, 0}, SU3→{1}, Lor→
{ 1

4
, 0, 0

}
, TProduct→

{ 1

4
, 0, 0, 0, 0, 0

}
, type→H2H†2D4 |>

Where the solutions associated to "SU2", "SU3", and "Lor" are the coor-
dinates in gauge and Lorentz Y-basis respectively, and the result associated to
"TProduct" is the tensor product of the first three terms. We also pro-
vide the function FindMCoord[model_,operator_,OptionsPattern[]] to reduce any
operator to our M-basis and P-basis. The input format is the same as
FindYCoord[model_,operator_,OptionsPattern[]].

The function GetJBasisForType[model_,type_,partition_] presents all possible
eigenvalues of W 2

I and gauge representations of a type in a model for a channel I, along
with the corresponding eigenstates as J-basis operators. The inputs are the model, the
type and certain channel. For example, consider the type HH†W 2

RD
2 in SMEFT. Labeling

the fields as H1, H
†
2 ,WR3,WR4, the J-basis of channel {H1,WR3} → {H†2 ,WR4} can be

obtained as follows.
In[11]:= GetJBasisForType[SMEFT,"H""H†††""WR"2"D"2,{{1,3},{2,4}}]

Out[11]= <|"basis"→
{

HiH†††i
(

DµµµWRIλλλννν
)(

DµµµWRI
νννλλλ

)
,HiWRI

νννλλλ

(
DµµµH†††i

)(
DµµµWRIλλλννν

)
,τττKi

jεεε
IJKHiH†††j

(
DµµµWRI

νννλλλ

)(
DµµµWRJλλλννν

)
,

τττ
Ki
jεεε

IJKHiWRI
νννλλλ

(
DµµµH†††j

)(
DµµµWRJλλλννν

)}
,"groups"→{SU3c,SU2w,Spin},

"j-basis"→{<|{H1,WR3}→{{0,0},{3},2},{H†††2,WR4}→{{0,0},{3},2}|>→{{8i,-6i,-4,3}},
<|{H1,WR3}→{{0,0},{3},1},{H†††2,WR4}→{{0,0},{3},1}|>→{{0,-2i,0,1}},
<|{H1,WR3}→{{0,0},{1},2},{H†††2,WR4}→{{0,0},{1},2}|>→{{-4i,3i,-4,3}},
<|{H1,WR3}→{{0,0},{1},1},{H†††2,WR4}→{{0,0},{1},1}|>→{{0,i,0,1}}}|>
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fields input format group tensors input format
eCp "ec"["p"] δij del2["i","j"]

e†Cp "ec†††"["p"] δab del3["a","b"]

Lpi "L"["i","p"] δIJ del3n["I","J"]

L†ip "L†††"["i","p"] δAB del8n["A","B"]

Qpai "Q"["i","p","a"]
(
τ I
)i
j

τττ["I","j","i"]

Q†aip "Q†††"["i","p","a"]
(
λA
)a
b

λλλ["A","b","a"]

uC
a
p "uc"["p","a"] εij eps2a["i","j"]

u†Cpa "uc†††"["p","a"] εij eps2f["i","j"]

dC
a
p "dc"["p","a"] εIJK eps3n["I","J","K"]

d†Cpa "dc†††"["p","a"] εabc eps3a["a","b","c"]

BLµν or Bµν
L FS["BL","µµµ","ννν"] εabc eps3f["a","b","c"]

BRµν or Bµν
R FS["BR","µµµ","ννν"] fABC fabc["A","B","C"]

W I
Lµν or W Iµν

L FS["WL","µµµ","ννν","I"] dABC dabc["A","B","C"]

W I
Rµν or W Iµν

R FS["WR","µµµ","ννν","I"] σµ or σµ sigma["µµµ"]

GALµν or GAµνL FS["GL","µµµ","ννν","A"] σ̄µ or σ̄µ sigmab["µµµ"]

GARµν or GAµνR FS["GR","µµµ","ννν","A"] γµ or γµ Ga["µµµ"]

Hi "H"["i"] σµν or σµν sigmaT["µµµ","ννν"]

H†i "H†††"["i"] σ̄µν or σ̄µν sigmabT["µµµ","ννν"]

Table 5. In the function FindYCoord, the input format for the SM fields and tensor structures.

building blocks input format
DµeCp DC["ec"["p"],"mu"]

L†ip σ̄
µLri Dot["L†††"["p","i"],sigmab["mu"],"L"["r","j"]] del2["j","i"]

GARµνQ
†ai
p σ̄µν

(
λA
)b
a
d†
Cpb
Hi

FS["GR","mu","nu","A"] "H"["i"] λλλ["A","a","b"] del2["i","j"]

*Dot["Q†††"["j","p","a"],sigmabT["mu","nu"],"dc†††"["r","b"]]

Table 6. Some examples for the input format.

6 Conclusion

In this work, we present a general procedure to construct the independent and complete
operator bases for generic Lorentz invariant EFTs, which is implemented into a publicly
available Mathematica package: ABC4EFT (Amplitude Basis Construction for Effective
Field Theories). This package provides the unified construction of Lorentz structure, gauge
structure, and flavor structure by the Young tensor method, based on the on-shell ampli-
tude operator correspondence. Our procedure can be applied to any EFT with the Lorentz
symmetry and any gauge symmetry and any field content, and generate the complete and
independent basis up to any mass dimension. Compared to our previous work, we improved
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the algorithm for finding the m-basis gauge factors with the metric tensor method; we accel-
erated the method for finding the p-basis coordinate and performing the de-symmetrization
by directly constructing the representation matrix for Young symmetrizers, we also added
the new routine for finding the j-basis operators.

This Young tensor basis provides a modern view of the EFT operators from the on-
shell perspective. It has many advantages: 1) As the mass dimension goes higher, the
Feynman rules of effective operators become very complicated, especially for the operators
with repeated fields, while the corresponding amplitude basis can be obtained much more
easily and the tree-level bootstrap of on-shell amplitudes has the potential to massively
simplify the calculations. 2) The contributions of operators to helicity amplitudes are
manifest, providing insights for analysis of phase space and amplitude interference. 3)
The on-shell basis will also benefit the renormalization group calculation of the higher
dimensional operators.

In principle, one can write down many different kinds of bases in an EFT framework.
These different bases are related by relations such as the equation of motion, the Fierz
identify, etc. Our on-shell amplitude construction provides routine for reducing any oper-
ator into our standard basis. This provides automatic conversions among different bases,
making it possible to compare results from various literature.

Although in this paper we only demonstrate this package using the SMEFT operators
as an example, it could be easily applied to other EFTs including, but not limited to, the
LEFT, the νSMEFT, the two Higgs doublet model EFT, the left-right symmetric EFT,
and the dark matter EFT, etc. Future developments will also include EFT with soft
particles like the non-linear sigma models. One needs to modify the field contents and
gauge structure in the package to generate the on-shell amplitude basis for these EFTs.
The package ABC4EFT can be downloaded from the HEPForge website.2

Acknowledgments

J.H.Y. is supported by the National Science Foundation of China under Grants No.
12022514, No. 11875003 and No. 12047503, and National Key Research and Develop-
ment Program of China Grant No. 2020YFC2201501, No. 2021YFA0718304, and CAS
Project for Young Scientists in Basic Research YSBR-006, the Key Research Program of
the CAS Grant No. XDPB15. M.-L.X. is supported in part by the U.S. Department of
Energy under contracts No. DE-AC02-06CH11357 at Argonne and No.DE-SC0010143 at
Northwestern. H.-L.L. is supported by F.R.S.-FNRS through the IISN convention “Theory
of Fundamental Interactions” (N : 4.4517.08).

A A non-trivial example for finding gauge M-basis

Here we present a non-trivial example for finding the gauge m-basis from candidates, where
the number of m-basis candidates is larger than that of independent ones. The type of

2https://abc4eft.hepforge.org.
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operator we will analyze is GALGBLGCLGDL . We can convert each field to the one with
fundamental indices only:

(G)a1a2a3 = (λA)aa2εaa1a3G
A
L ∼

a1 a2
a3

(A.1)

(G)b1b2b3 = (λB)bb2εbb1b3G
B
L ∼

b1 b2
b3

(A.2)

(G)c1c2c3 = (λC)cc2εcc1c3G
C
L ∼

c1 c2
c3

(A.3)

(G)d1d2d3 = (λD)dd2εdd1d3G
D
L ∼

d1 d2
d3

(A.4)

The overall conversion factor is:

CF = (λA)aa2εaa1a3(λB)ab2εbb1b3(λC)cc2εcc1c3(λD)dd2εdd1d3 (A.5)

The corresponding singlet Young tableaux and y-basis becomes is:

T y1 = εa1a3c2εa2b3c3εb1c1d2εb2d1d3 ∼
a1 a2 b1 b2
a3 b3 c1 d1
c2 c3 d2 d3

T y2 = εa1a3c2εa2b2c3εb1b3d2εc1d1d3 ∼
a1 a2 b1 c1
a3 b2 b3 d1
c2 c3 d2 d3

(A.6)

T y3 = εa1a3b3εa2c1c3εb1c2d2εb2d1d3 ∼
a1 a2 b1 b2
a3 c1 c2 d1
b3 c3 d2 d3

T y4 = εa1a3b2εa2b1b3εc1c3d2εc2d1d3 ∼
a1 a2 c1 c2
a3 b1 c3 d1
b2 b3 d2 d3

(A.7)

T y5 = εa1a3b3εa2b2c3εb1c2d2εc1d1d3 ∼
a1 a2 b1 c1
a3 b2 c2 d1
b3 c3 d2 d3

T y6 = εa1a3b3εa2b2c2εb1c3d2εc1d1d3 ∼
a1 a2 b1 c1
a3 b2 c3 d1
b3 c2 d2 d3

(A.8)

T y7 = εa1a3b2εa2b3c3εb1c2d2εc1d1d3 ∼
a1 a2 b1 c1
a3 b3 c2 d1
b2 c3 d2 d3

T y8 = εa1a3b2εa2b3c2εb1c3d2εc1d1d3 ∼
a1 a2 b1 c1
a3 b3 c3 d1
b2 c2 d2 d3

(A.9)
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After contraction with conversion factor, the y-basis gauge factor expressed with adjoint
and anti-fundamental indices becomes polynomials of invariant tensors:

CF ·T y1 = 8dABEdCDE +16δACδBD+ 16
3 δ

ABδCD−8idCDEfABE +8idABEfCDE

+8fABEfCDE ,

CF ·T y2 = −16dACEdBDE + 64
3 δ

ACδBD−16idBDEfACE−16idACEfBDE +16fACEfBDE ,

CF ·T y3 = −16dACEdBDE + 64
3 δ

ACδBD+16idBDEfACE +16idACEfBDE +16fACEfBDE ,

CF ·T y4 = 64δABδCD,

CF ·T y5 = 32dABEdCDE + 16
3 δ

ABδCD,

CF ·T y6 = 16dABEdCDE +−16
3 δABδCD+16idABEfCDE ,

CF ·T y7 = 16dABEdCDE + 32
3 δ

ABδCD+16idCDEfABE ,

CF ·T y8 = 8dABEdCDE +−32
3 δABδCD+8idCDEfABE +8idABEfCDE

−8fABEfCDE , (A.10)

from the above polynomials one can find 10 superficially different monomial invarant tensors
as our M-basis candidates:

Tmcan,1 = dABEdCDE , Tmcan,2 = dABEfCDE , Tmcan,3 = fABEfCDE , Tmcan,4 = δABδCD,

Tmcan,5 = dCDEfABE , Tmcan,6 = δACδBD, Tmcan,7 = dACEdBDE , Tmcan,8 = dACEfBDE ,

Tmcan,9 = dBDEfACE , Tmcan,10 = dCDEfABE (A.11)

Our algorithm can select 8 out of 10 from the above candidate by iteratively constructing
the metric tensor gij , finally our M-basis is:

Tm1 = dABEdCDE , Tm2 = dABEfCDE , Tm3 = fABEfCDE , Tm4 = δABδCD,

Tm5 = dCDEfABE , Tm6 = δACδBD Tm7 = dACEdBDE , Tm8 = dACEfBDE . (A.12)

B Group profile for SU(N) gauge symmetry

For the purposes of the symbolic and numerical manipulation of SU(N) gauge group invari-
ant tensors, we need a group profile file for each gauge group, it contains information for:

• The list names of basic invariant tensors stored in tList[group].
For example, for the SU(2) group we have:

tList[SU2] =
{
del2, eps2a, eps2f, τττ, del3n, eps3n

}
;

where del2 represents the Kronecker delta for the fundamental and anti-fundamental
indices, eps2a and eps2f represents 2nd-rank ε tensors with anti-fundamental and
fundamental indices, τττ represents SU(2) generator, del3n and eps3n represent Kro-
necker delta and 3n-rand ε tensor with adjoint indices.
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• The name list of totally anti-symmetric tensor stored in tasList[group].

For example, for SU(2) we have:

tasList[SU2] =
{
eps2a, eps2f, eps3n

}
;

• The tensor rank and tensor dimension of basic invariant tensors are stored in a global
variable tAssumptions.

For example, for the SU(2) generator (τ I)ji as a rank-3 Mathematica tensor:

In[12]:= τττ[I,i,j]

is registered in tAssumptions as:

In[13]:= AppendTo[tAssumptions, τττ ∈∈∈ Arrays[{3, 2, 2}, Reals]];

• The ordered indices type of basic invariant tensors stored in tRep[group].

As the example above, for the SU(2) generator τ as a rank-3 Mathematica tensor,
we register their indices type orders as:

In[14]:= tRep[τττ] = {{2}, {1}, {-1}};

meaning the first index transform as adjoint representation, the second index trans-
forms as fundamental representation, the last index transforms as anti-fundamental
representation.

• The relations between invariant tensors and their complex conjugate stored in
TensorConj[]. For example the SU(2) generators:

In[15]:= TensorConj[τττ[I_, a_, b_]] := τττ[I, b, a];

• Replacement rules stored in tSimp[group] for the contraction of basic invariant group
tensors such as Levi-Civita ε, Kronecker delta δ, group structure constant fabc and
generators (TA)ba. For example, for SU(2) group we have:

In[16]:= tSimp[SU2] = Hold[Block[{},
del2[i_, j_] del2[j_, k_] := del2[i, k];
del2[i_, i_] := 2;
del3n[i_, i_] := 3;
del3n[a_, c_] del3n[a_, b_] := del3n[c, b];
del3n[a_, b_] del3n[b_, c_] := del3n[a, c];
del3n[a_, c_] del3n[b_, c_] := del3n[a, b];
del3n[b_, c_] del3n[a_, b_] := del3n[a, c];
del3n[a_, b_]^2 := 3;
del2[a_, c_] τττ[J_, a_, b_] := τττ[J, c, b];
del2[c_, a_] τττ[J_, b_, a_] := τττ[J, b, c];
τττ[i_, j_, j_] := 0;
τττ[a_, i_, j_] τττ[a_, k_, l_] :=
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2 del2[l, i] del2[j, k] - del2[l, k] del2[j, i];
eps2a[x_, y_] eps2f[w_, z_] :=
del2[x, w] del2[y, z] - del2[x, z] del2[y, w];
eps3n[i_, j_, k_] eps3n[l_, m_, n_] :=
Det@Outer[del3n, i, j, k, l, m, n];
del3n[a_, d_] eps3n[a_, b_, c_] := eps3n[d, b, c];
del3n[a_, d_] eps3n[b_, a_, c_] := eps3n[b, d, c];
del3n[a_, d_] eps3n[c_, b_, a_] := eps3n[c, b, d];
eps2f[i_, j_] del2[i_, k_] := eps2f[k, j];
eps2f[i_, j_] del2[j_, k_] := eps2f[i, k];
eps2a[i_, j_] del2[k_, i_] := eps2a[k, j];
eps2a[i_, j_] del2[k_, j_] := eps2a[i, k]; ]]

they include contractions between and within Kronecker delta, contractions between
delta and generators, contractions between ε and Kronecker delta, Fierz identity for
generators, conversion of ε tensors to the δ products. In addition, there is one more
replacement rule need to be stored independently in the global variable tY2M, which is
used to reduce of the number of generators when the presence of the matrix product
of two generators:

In[17]:= AssociateTo[tY2M, {τττ[a_, j_, k_]τττ[b_, k_, m_] :→:→:→
Module[{dummy = Unique[]},
I eps3n[a, b, dummy] τττ[dummy, j, m] + del3n[a, b] del2[m, j]]
}];

Additionaly, the conversion from the structure tensors into trace of generators are
also useful in the simplification, therefore we individually store them in the global
variable tM2Y, for example, for SU(3) group we have:

In[18]:= AssociateTo[tM2Y, {fabc[a_, b_, c_] :→:→:→
Module[{d1 = Unique[], d2 = Unique[], d3 = Unique[]},

-(I/4) λλλ[a, d1,d2] (λλλ[b, d2, d3] λλλ[c, d3, d1] -λλλ[c, d2, d3] λλλ[b, d3, d1])],
dabc[a_, b_, c_] :→:→:→

Module[{d1 = Unique[], d2 = Unique[], d3 = Unique[]},
1/4 λλλ[a, d1,d2] (λλλ[b, d2, d3] λλλ[c, d3, d1] + λλλ[c,d2, d3] λλλ[b, d3, d1])]

}];

• The numerical values of these basic invariant tensors stored in tVal[group].

For example, for SU(2) group we have:

In[19]:= tVal[SU2] =
{
del2 →→→ IdentityMatrix[2], eps2f →→→ LeviCivitaTensor[2],

eps2a →→→ LeviCivitaTensor[2], τττ →→→ GellMann[2],
del3n →→→ IdentityMatrix[3], eps3n →→→ LeviCivitaTensor[3]

}
.

• The name of the Levi-Civita tensor used for translating colums of singlet Young
tableaux columns tYDcol[group].
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For example, for SU(2) group we have:

tYDcol[SU2] =
{
eps2a

}
;

as the indices in the Young tableaux are fundamental ones, we need use ε with anti-
fundamental indices to contract them.

• The additional tensors need to convert fundamental indices to non-fundamental ones
stored in CF[rep_,num_,ind_].

As we have shwon in eq. (3.11), the conversion prefactors such as εjk
(
τ I
)
k
i and

εacd
(
λA
)
d
b to contract the products of ε’s we obtained from the translation of the

singlet Young tableaux. The rep_ are the representation of the corresponding gauge
group expressed in Dynkin coefficients, which is needed to specified by user for each
representation (including fundamental and singlet representation for consistency).
For example, for the SU(2) group we have:

In[20]:= CF[{0}, num_, ind_] := 1
CF[{1}, num_, ind_] := del2[ind, Subscript[num, 1]]
CF[{-1}, num_, ind_] := eps2f[Subscript[num, 1], ind]
CF[{2}, num_, ind_] :=
TensorContract[eps2f⊗⊗⊗τττ, {{1, 5}}][Subscript[num, 1], ind, Subscript[num, 2]]

where we have specified the conversion factors for singlet, fundamental, anti-
fundamental and adjoint representations. On the right hand are of the form tensors
appended with free indices in order. num represents the position of the represen-
tation in a representation list ready to be analyzed, ind is the non-fundamental
indices. Take the last line, the convert factor for the adjoint representation as an
example, the right hand side corresponds to

(
τ I
)
k
i εjk, with correspondence I →ind,

i →Subscript[num,1] and j →Subscript[num,2], the dummy index k is formally
suppressed in the function TensorContract.

• The setting of output symbols for basic invariant tensors stored in tOut[group].

For example, again for the SU(2) generator τ we have:

In[21]:= tOut[τττ] =
PrintTensor[<|"tensor" →→→ PrintTensor[<|"tensor" →→→ "τττ", "upind" →→→ {#1}|>],
"upind" →→→ {#3}, "downind" →→→ {#2}|>]&;

This tells us that the printed format of τ should have a adjoint index in the superscript
of the τ with whatever label presented by #1, and additional lower and upper indices
represented by #2 and #3 for the grouped object τ and adjoint index.

• The generators for different irreducible representations stored in TGen[rep_].

These are used for getting j-basis operators. For example, for SU(2) group we have:

In[22]:= TGen[{1}] := 1/2 τττ[#1, #2, #3] &
TGen[{-1}] := -1/2 τττ[#1, #3, #2] &
TGen[{2}] := -I eps3n[#1, #2, #3] &
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where {1}, {-1}, {2} represents fundamental, anti-fundamental and adjoint repre-
sentation respectively. The returned generators must be a function of invariant tensor
with three arguments #1, #2 and #3, where #1 is the label for the generator, i.e. an
adjoint index, #3 is the index that contract with the index of the fields in the trans-
formation, i.e. an index of type of conjugate representation of rep, #2 is the free
index of the transformed fields, i.e. an index of type of rep. As an illustration, a
generator acting on a field of fundamental representation yields:

τ I ◦ ui → u′i = (τ I)jiuj , (B.1)

thus #1, #2, #3 corresponds to I, i and j respectively. The order of the position
should be consistent with the order of indices of those invariant tensors claimed in
tRep and tAssumptions.

Lastly, we comment on the addition of higher representation fields in the Model. If we
use only fundamenal indices to represents the field and leave the symmetry among indices
implicit, then the only piece of information that needs to be added to the group profile
file is a identity conversion factor in CF[rep_,num_,ind_]. For example, if we use ∆abc to
represents Quartet, with all three fundamental indices totally symmetrized, we need to add:

In[23]:= CF[{3}, num_, ind_] := 1

This is enough for the use of the function GetBasisForType, however the function
GetJBasisForType will not work properly in this setup. Alternatively, one may insist
on expressing the field of higher dimensional representation with a single index of that
representation, for example, one may use ∆I to express quartet. In this case, to ensure our
Young tablueax method work, we need to find the conversion factor as invariant tensor
ΓIabc such that ΓIabc∆I = ∆abc, then one need to register this new invariant tenor in tList
for its name, in tAssumptions for its shape, in tRep for its indices type, in TensorConj
for its conjugate tensor, in tVal its numerical value, in tOut its output string form. After
these registeration, one can set CF[rep_,num_,ind_] in the following:

In[24]:= CF[{3}, num_, ind_] := ΓΓΓ[ind, Subscript[num,1], Subscript[num,2], Subscript[num,3]]

To enable the function GetJBasisForType, one needed to register the generator of
quartet (named for example as Tq) as an another new invariant tensor with the same
procedures above, after the registration, one can add it to the TGen, to specify the action
of generators on the quartet field:

In[25]:= TGen[{3}] := Tq[#1, #2, #3] &
TGen[{-3}] := Tq[#1, #3, #2] &

C Auxiliary Mathematica functions

In this section, we present some auxiliary functions which might be useful for readers who
are interested in the internal structure of the code.
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The function LorentzList[dim_] enumerates all possible states at a given dimension.
These states by default contain particles with helicitis {0,±1

2 ,±1,±2}. People who need to
take more particles of different spins into account, may add the option HelicityInclude.

In[26]:= LorentzList[6]

Out[26]=
{

{{-1, -1, -1}, 0},
{{

-1/2,-1/2,-1/2,-1/2
}

,0
}

,
{{

-1,-1/2,-1/2,0
}

,0
}

,

{{-1,-1,0,0},0},
{{

-1/2,-1/2,1/2,1/2
}

,0
}

,
{{

-1/2,0,0,1/2
}

,1
}

,

{{0,0,0,0},2},
{{

-1/2,-1/2,0,0,0
}

,0
}

,{{0,0,0,0,0,0},0}
}

The function SSYT[state_,k_,OptionsPattern[]] enumerates the independent he-
licity amplitudes for a special state and derivatives.

In[27]:= SSYT[{1,1,0,0}, 2, OutMode→→→"amplitude"]

Out[27]=
{
ab[3,4] sb[1,2]2 sb[3,4], ab[3,4] sb[1,2] sb[1,3] sb[2,4]

}
In[28]:= SSYT[{1,1,0,0}, 2, OutMode→→→"amplitude output"]

Out[28]=
{

-[12]2s34, <34>[12][13][24]
}

Options OutMode→→→ could control the output format. Note that ab[i,j] and sb[i,j]
represent 〈ij〉 and [ij] respectively.

The function LorentzBasisAux[state_,k_,posRepeat_,OptionsPattern[]] obtain
the independent Lorentz m-basis in a given state and repeat fields. For instance, a complete
set of operators including 4 fermions with helicities h = −1/2 without derivatives is given by

In[29]:= LorentzBasisAux[{-1/2,-1/2,-1/2,-1/2},0,{{1,2},{3,4}}]

Out[29]= <|"basis"→{chψψψ[ψψψ1,1,ψψψ2] chψψψ[ψψψ3,1,ψψψ4], chψψψ[ψψψ1,1,ψψψ3] chψψψ[ψψψ2,1,ψψψ4]},

"Trans"→{{1,0},{0,1}}, "Ybasis"→{ab[1,2] ab[3,4], ab[1,3] ab[2,4]},

"generators"→<|{1,2}→{{{1,0},{1,-1}},{{1,0},{1,-1}}},

{3,4}→{{{1,0},{1,-1}},{{1,0},{1,-1}}}|>|>

Where LorentzBasisAux[state_,k_,posRepeat_]["Trans"] is
the conversion matrix between Lorentz m-basis and y-basis,
LorentzBasisAux[state_,k_,posRepeat_]["generators"] show the conversion matrix
after the permutations. One may add a option AlderZero->{__} to require that some
particles are soft.3

The function GaugeBasisAux[group_,replist_,posRepeat_] gives the gauge m-
basis of a list of representations for certain group, and the matrix representations of genera-
tors of Sm group on the gauge m-basis, where m is the number of repeated fields. For exam-
ple, consider the SU(2) gauge structure of H2H†2D4 and label the field as H1, H2, H

†
3 , H

†
4 .

3When we say particle i is soft, which means that amplitude vanishs when pi → 0, such as Goldstones.
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The SU(2) representations of fields are labeled by the Dynkin coefficients, but for the
SU(2), both fundamental representation and anti-fundamental representation are of the
Dynkin coefficient {1}, so we label the anti-fundamental representation as {-1} instead.
The repeated fields are H1, H2 and H†3 , H

†
4 .

In[30]:= GaugeBasisAux[SU2,{{1},{1},{-1},{-1}},{{1,2},{3,4}}]

Out[30]= <|"basis"→{del2[i,k] del2[j,l],del2[i,l] del2[j,k]},
"generators"→<|{1,2}→{{{0,1},{1,0}},{{0,1},{1,0}}},

{3,4}→{{{0,1},{1,0}},{{0,1},{1,0}}}|>|>

The outputs are the gauge m-basis of H2H†2D4, δikδ
j
l and δilδ

j
k, and the matrix represen-

tations of generators of the two S2 groups on the m-basis.
The function W2[amp_,ch_] evaluates the result of the W 2

I applied to an amplitude
In[31]:= W2[ab[1,2] sb[2,3], {1,2}]

Out[31]=
3
4

ab[1,2]2 sb[1,2] sb[2,3]

The function W2Diagonalize[state_,k_,ch_] enumerates the independent j-basis in
a given state.

In[32]:= W2Diagonalize[{1, 0, 1, 0}, 2, {1, 2}] //Ampform

Out[32]= <|"basis"→
{

[13]2s24, -[13]2s34
}

, "j"→{2, 1}, "transfer"→{{-4, 3}, {0, 1}},

"j-basis"→
{

-4 [13]2s24 -3 [13]2s34, - [13]2s34
}

|>

Where W2Diagonalize[state_,k_,ch_]["basis"] exhibits the Lorentz y-basis,
W2Diagonalize[state_,k_,ch_]["j-basis"] are the result for J-basis with an-
gular momentum showed in W2Diagonalize[state_,k_,ch_]["j"] respectively.
W2Diagonalize[state_,k_,ch_]["transfer"] is the convertion matrix from y-basis to
j-basis.

The function PWExpand[amp_,num_,ch_] calculates the partial wave expansion of local
amplitudes, with the input of particle number num_ and channel ch_.

In[33]:= PWExpand[ab[1,3]sb[1,3], 4, {1,2}]

Out[33]= <|"j"→ {1,0}, "j-basis"→ {-2 ab[2,4] sb[2,4] - ab[3,4] sb[3,4], ab[3,4] sb[3,4]},

"coeff"→ {-1/2, -1/2}|>

Where PWExpand[amp_,num_,ch_]["j-basis"] are the Lorentz J-basis in the same
dimension, along with angular momentum showed in PWExpand[amp_,num_,ch_]["j"].
PWExpand[amp_,num_,ch_]["coeff"] is the expansion coefficient.

D On-shell amplitude bases in the SMEFT

Here we list the on-shell amplitude bases in the SMEFT at the mass dimensions 6, 7, and
8. The on-shell amplitude bases are not in one-to-one correspondence with the operator
bases we listed before, for example, in ref. [5], but these are both complete and independent
bases connected by linear transformations.
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D.1 Dimension-6 on-shell amplitude basis

F 3
L

B3
L −〈12〉〈13〉〈23〉 (D.1)

BLW
2
L −δI2I3〈12〉〈13〉〈23〉 (D.2)

W 3
L −εI1I2I3〈12〉〈13〉〈23〉 (D.3)

BLG
2
L −δA2A3〈12〉〈13〉〈23〉 (D.4)

G3
L −fA1A2A3〈12〉〈13〉〈23〉 (D.5)

ψ4

dCeCu
2
C

C
[2]
f1,f2,f3f4

εa1a3a4〈13〉〈24〉
C

[1,1]
f1,f2,f3f4

εa1a3a4〈12〉〈34〉
(D.6)

eCLQuC

Cf1,f2,f3,f4δ
a3
a4 ε

i2i3〈12〉〈34〉
Cf1,f2,f3,f4δ

a3
a4 ε

i2i3〈13〉〈24〉
(D.7)

dCQ
2uC

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈12〉〈34〉
C

[2]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉
C

[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈12〉〈34〉
C

[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉

(D.8)

LQ3
C

[3]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉
C

[2,1]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉
C

[1,1,1]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉
(D.9)

FLψ
2φ

BLeCLH
† Cf2,f3δ

i3
i4
〈12〉〈13〉 (D.10)

BLdCQH
† Cf2,f3δ

a3
a2δ

i3
i4
〈12〉〈13〉 (D.11)

BLQuCH Cf2,f3δ
a2
a3 ε

i2i4〈12〉〈13〉 (D.12)

WLeCLH
† Cf2,f3

(
τ I1)i3i4 〈12〉〈13〉 (D.13)

WLdCQH
† Cf2,f3δ

a3
a2

(
τ I1)i3i4 〈12〉〈13〉 (D.14)

WLQuCH Cf2,f3δ
a2
a3

(
τ I1)i2k εi4k〈12〉〈13〉 (D.15)

GLdCQH
† Cf2,f3δ

i3
i4

(
λA1)a3

a2 〈12〉〈13〉 (D.16)

GLQuCH Cf2,f3

(
λA1)a2

a3 ε
i2i4〈12〉〈13〉 (D.17)
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F 2
Lφ

2

B2
LHH

† δi3i4 〈12〉2 (D.18)

BLWLHH
†
(
τ I2)i3i4 〈12〉2 (D.19)

W 2
LHH

† δi3i4δ
I1I2〈12〉2 (D.20)

G2
LHH

† δi3i4δ
A1A2〈12〉2 (D.21)

ψ2ψ̄2

e2
Ce
†
C

2 C
[2],[2]
f1f2,f3f4

〈12〉[34] (D.22)

eCLe
†
CL
† Cf1,f2,f3,f4δ

i2
i4
〈12〉[34] (D.23)

eCLd
†
CQ
† Cf1,f2,f3,f4δ

a3
a4δ

i2
i4
〈12〉[34] (D.24)

dCLd
†
CL
† Cf1,f2,f3,f4δ

a3
a1δ

i2
i4
〈12〉[34] (D.25)

LuCL
†u†C Cf1,f2,f3,f4δ

a4
a2δ

i1
i3
〈12〉[34] (D.26)

eCQe
†
CQ
† Cf1,f2,f3,f4δ

a2
a4δ

i2
i4
〈12〉[34] (D.27)

dCQe
†
CL
† Cf1,f2,f3,f4δ

a2
a1δ

i2
i4
〈12〉[34] (D.28)

L2L†2
C

[2],[2]
f1f2,f3f4

δi1i3δ
i2
i4
〈12〉[34]

C
[1,1],[1,1]
f1f2,f3f4

δi1i3δ
i2
i4
〈12〉[34]

(D.29)

dCeCd
†
Ce
†
C Cf1,f2,f3,f4δ

a3
a1 〈12〉[34] (D.30)

eCuCe
†
Cu
†
C Cf1,f2,f3,f4δ

a4
a2 〈12〉[34] (D.31)

d2
Cd
†
C

2 C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]

(D.32)

dCuCd
†
Cu
†
C

Cf1,f2,f3,f4δ
a3
a1δ

a4
a2 〈12〉[34]

Cf1,f2,f3,f4δ
a4
a1δ

a3
a2 〈12〉[34]

(D.33)

u2
Cu
†
C

2 C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]

(D.34)

eCuCQ
†2 C

[2]
f1,f2,f3f4

εa2a3a4εi3i4〈12〉[34] (D.35)

dCuCL
†Q† Cf1,f2,f3,f4εa1a2a4εi3i4〈12〉[34] (D.36)

LQd†Cu
†
C Cf1,f2,f3,f4ε

a2a3a4εi1i2〈12〉[34] (D.37)

Q2e†Cu
†
C C

[2]
f1f2,f3,f4

εa1a2a4εi1i2〈12〉[34] (D.38)

LQL†Q†
Cf1,f2,f3,f4δ

a2
a4δ

i1
i3
δi2i4 〈12〉[34]

Cf1,f2,f3,f4δ
a2
a4δ

i2
i3
δi1i4 〈12〉[34]

(D.39)
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dCQd
†
CQ
† Cf1,f2,f3,f4δ

a3
a1δ

a2
a4δ

i2
i4
〈12〉[34]

Cf1,f2,f3,f4δ
a2
a1δ

a3
a4δ

i2
i4
〈12〉[34]

(D.40)

QuCQ
†u†C

Cf1,f2,f3,f4δ
a1
a2δ

a4
a3δ

i1
i3
〈12〉[34]

Cf1,f2,f3,f4δ
a4
a2δ

a1
a3δ

i1
i3
〈12〉[34]

(D.41)

Q2Q†2

C
[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈12〉[34]

C
[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈12〉[34]

C
[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈12〉[34]

C
[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈12〉[34]

(D.42)

Dψφ2ψ̄

eCHH
†e†CD Cf1,f4δ

i2
i3
〈13〉[34] (D.43)

LHH†L†D
Cf1,f4δ

i1
i3
δi2i4 〈13〉[34]

Cf1,f4δ
i2
i3
δi1i4 〈13〉[34]

(D.44)

dCH
†2u†CD Cf1,f4εi2i3δ

a4
a1 〈13〉[34] (D.45)

dCHH
†d†CD Cf1,f4δ

a4
a1δ

i2
i3
〈13〉[34] (D.46)

uCHH
†u†CD Cf1,f4δ

a4
a1δ

i2
i3
〈13〉[34] (D.47)

uCH
2d†CD Cf1,f4δ

a4
a1 ε

i2i3〈13〉[34] (D.48)

QHH†Q†D
Cf1,f4δ

a1
a4δ

i1
i3
δi2i4 〈13〉[34]

Cf1,f4δ
a1
a4δ

i2
i3
δi1i4 〈13〉[34]

(D.49)

D2φ4

H2H†2D2 −δ
i1
i3
δi2i4s34

δi1i3δ
i2
i4
s24

(D.50)

ψ2φ3

eCLHH
†2 Cf1,f2δ

i2
i4
δi3i5 〈12〉 (D.51)

dCQHH
†2 Cf1,f2δ

a2
a1δ

i2
i4
δi3i5 〈12〉 (D.52)

QuCH
2H† Cf1,f2δ

a1
a2δ

i4
i5
εi1i3〈12〉 (D.53)

φ6

H3H†3 δi1i4δ
i2
i5
δi3i6 (D.54)
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D.2 Dimension-7 on-shell amplitude basis

Dψ3ψ̄

dCL
2u†CD C

[2]
f1,f2f3,f4

δa4
a1 ε

i2i3〈13〉〈23〉[34] (D.55)

d2
CLQ

†D C
[2]
f1f2,f3,f4

εa1a2a4δ
i3
i4
〈13〉〈23〉[34] (D.56)

d3
Ce
†
CD C

[3]
f1f2f3,f4

εa1a2a3〈13〉〈23〉[34] (D.57)

D2ψ2φ2

L2H2D2 −C
[2]
f1f2

εi1i3εi2i4〈12〉s34

C
[2]
f1f2

εi1i3εi2i4〈13〉〈24〉[34]
(D.58)

ψ4φ

eCL
3H

C
[3]
f1,f2f3f4

εi2i4εi3i5〈12〉〈34〉
C

[2,1]
f1,f2f3f4

εi2i4εi3i5〈12〉〈34〉
C

[1,1,1]
f1,f2f3f4

εi2i4εi3i5〈12〉〈34〉
(D.59)

d3
CLH

† C
[2,1]
f1f2f3,f4

εa1a2a3δ
i4
i5
〈12〉〈34〉 (D.60)

d2
CLuCH

C
[2]
f1f2,f3,f4

εa1a2a4ε
i3i5〈13〉〈24〉

C
[1,1]
f1f2,f3,f4

εa1a2a4ε
i3i5〈12〉〈34〉

(D.61)

dCL
2QH

C
[2]
f1,f2f3,f4

δa4
a1 ε

i2i4εi3i5〈12〉〈34〉
C

[2]
f1,f2f3,f4

δa4
a1 ε

i2i4εi3i5〈13〉〈24〉
C

[1,1]
f1,f2f3,f4

δa4
a1 ε

i2i4εi3i5〈12〉〈34〉
C

[1,1]
f1,f2f3,f4

δa4
a1 ε

i2i4εi3i5〈13〉〈24〉

(D.62)

FLψ
2φ2

BLL
2H2 C

[1,1]
f2f3

εi2i4εi3i5〈12〉〈13〉 (D.63)

WLL
2H2 C

[2]
f2f3

(
τ I1)i3m εi2i5εi4m〈12〉〈13〉

C
[1,1]
f2f3

(
τ I1)i3m εi2i5εi4m〈12〉〈13〉

(D.64)
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ψ2φψ̄2

L2HQ†u†C
C

[2]
f1f2,f4,f5

δa5
a4δ

i1
i4
εi3i2〈12〉[45]

C
[1,1]
f1f2,f4,f5

δa5
a4δ

i1
i4
εi3i2〈12〉[45]

(D.65)

dCLHe
†
Cu
†
C Cf1,f2,f4,f5δ

a5
a1 ε

i2i3〈12〉[45] (D.66)

dCLHQ
†2 C

[2]
f1,f2,f4f5

εa1a4a5δ
i2
i4
δi3i5 〈12〉[45]

C
[1,1]
f1,f2,f4f5

εa1a4a5δ
i2
i4
δi3i5 〈12〉[45]

(D.67)

d2
CHe

†
CQ
† C

[2]
f1f2,f4,f5

εa1a2a5δ
i3
i5
〈12〉[45] (D.68)

eCuCH
†d†CL

† Cf1,f2,f4,f5εi3i5δ
a4
a2 〈12〉[45] (D.69)

eCQH
†d†C

2 C
[2]
f1,f2,f4f5

δi2i3 ε
a2a4a5〈12〉[45] (D.70)

QuCH
†L†2

C
[2]
f1,f2,f4f5

εi5i3δ
a1
a2δ

i1
i4
〈12〉[45]

C
[1,1]
f1,f2,f4f5

εi5i3δ
a1
a2δ

i1
i4
〈12〉[45]

(D.71)

Q2H†d†CL
† C

[2]
f1f2,f4,f5

δi1i3δ
i2
i5
εa1a2a4〈12〉[45]

C
[1,1]
f1f2,f4,f5

δi1i3δ
i2
i5
εa1a2a4〈12〉[45]

(D.72)

Dψφ3ψ̄

eCH
†3L†D Cf1,f5εi2i4εi3i5〈14〉[45] (D.73)

LH3e†CD Cf1,f5ε
i1i3εi2i4〈14〉[45] (D.74)

ψ2φ4

L2H3H† C
[2]
f1f2

δi4i6 ε
i3i1εi5i2〈12〉 (D.75)

D.3 Dimension-8 on-shell amplitude basis

F 4
L

B4
L 〈12〉2〈34〉2 (D.76)

B2
LW

2
L
δI3I4〈12〉2〈34〉2

δI3I4〈13〉2〈24〉2
(D.77)

W 4
L
δI1I3δI2I4〈12〉2〈34〉2

δI1I3δI2I4〈13〉2〈24〉2
(D.78)

B2
LG

2
L
δA3A4〈12〉2〈34〉2

δA3A4〈13〉2〈24〉2
(D.79)

G2
LW

2
L
δA1A2δI3I4〈12〉2〈34〉2

δA1A2δI3I4〈13〉2〈24〉2
(D.80)

BLG
3
L dA2A3A4〈12〉2〈34〉2 (D.81)

– 59 –



J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

G4
L

dEA1A2dEA3A4〈12〉2〈34〉2

dEA1A2dEA3A4〈13〉2〈24〉2

fEA1A2fEA3A4〈13〉2〈24〉2
(D.82)

DF 2
Lψψ

†

B2
LeCe

†
CD Cf3,f4〈12〉〈13〉〈23〉[34] (D.83)

B2
LLL

†D Cf3,f4δ
i3
i4
〈12〉〈13〉〈23〉[34] (D.84)

B2
LdCd

†
CD Cf3,f4δ

a4
a3 〈12〉〈13〉〈23〉[34] (D.85)

B2
LuCu

†
CD Cf3,f4δ

a4
a3 〈12〉〈13〉〈23〉[34] (D.86)

B2
LQQ

†D Cf3,f4δ
a3
a4δ

i3
i4
〈12〉〈13〉〈23〉[34] (D.87)

BLWLLL
†D Cf3,f4

(
τ I2)i3i4 〈12〉〈13〉〈23〉[34] (D.88)

BLWLQQ
†D Cf3,f4δ

a3
a4

(
τ I2)i3i4 〈12〉〈13〉〈23〉[34] (D.89)

W 2
LeCe

†
CD Cf3,f4δ

I1I2〈12〉〈13〉〈23〉[34] (D.90)

W 2
LLL

†D Cf3,f4

(
τK)i3i4 ε

I1I2K〈12〉〈13〉〈23〉[34] (D.91)

W 2
LdCd

†
CD Cf3,f4δ

a4
a3δ

I1I2〈12〉〈13〉〈23〉[34] (D.92)

W 2
LuCu

†
CD Cf3,f4δ

a4
a3δ

I1I2〈12〉〈13〉〈23〉[34] (D.93)

W 2
LQQ

†D Cf3,f4δ
a3
a4

(
τK)i3i4 ε

I1I2K〈12〉〈13〉〈23〉[34] (D.94)

BLGLdCd
†
CD Cf3,f4

(
λA2)a4

a3 〈12〉〈13〉〈23〉[34] (D.95)

BLGLuCu
†
CD Cf3,f4

(
λA2)a4

a3 〈12〉〈13〉〈23〉[34] (D.96)

BLGLQQ
†D Cf3,f4δ

i3
i4

(
λA2)a3

a4 〈12〉〈13〉〈23〉[34] (D.97)

GLWLQQ
†D Cf3,f4

(
λA1)a3

a4

(
τ I2)i3i4 〈12〉〈13〉〈23〉[34] (D.98)

G2
LeCe

†
CD Cf3,f4δ

A1A2〈12〉〈13〉〈23〉[34] (D.99)

G2
LLL

†D Cf3,f4δ
i3
i4
δA1A2〈12〉〈13〉〈23〉[34] (D.100)

G2
LdCd

†
CD Cf3,f4f

CA1A2
(
λC)a4

a3 〈12〉〈13〉〈23〉[34] (D.101)

G2
LuCu

†
CD Cf3,f4f

CA1A2
(
λC)a4

a3 〈12〉〈13〉〈23〉[34] (D.102)

G2
LQQ

†D Cf3,f4δ
i3
i4
fCA1A2

(
λC)a3

a4 〈12〉〈13〉〈23〉[34] (D.103)

D2ψ4

dCeCu
2
CD

2
C

[2]
f1,f2,f3f4

εa1a3a4〈13〉〈24〉s24

−C [1,1]
f1,f2,f3f4

εa1a3a4〈12〉〈34〉s34

C
[1,1]
f1,f2,f3f4

εa1a3a4〈13〉〈24〉s24

(D.104)
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eCLQuCD
2
−Cf1,f2,f3,f4δ

a3
a4 ε

i2i3〈12〉〈34〉s34

Cf1,f2,f3,f4δ
a3
a4 ε

i2i3〈13〉〈24〉s24

−Cf1,f2,f3,f4δ
a3
a4 ε

i2i3〈13〉〈24〉s34

(D.105)

dCQ
2uCD

2

−C [2]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈12〉〈34〉s34

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉s24

−C [2]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉s34

−C [1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈12〉〈34〉s34

C
[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉s24

−C [1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4 ε

i2i3〈13〉〈24〉s34

(D.106)

LQ3D2

−C [3]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉s34

−C [2,1]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉s34

C
[2,1]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈13〉〈24〉s24

−C [1,1,1]
f1,f2f3f4

εa2a3a4εi1i3εi2i4〈12〉〈34〉s34

(D.107)

D2FLψ
2φ

BLeCLH
†D2 −Cf2,f3δ

i3
i4
〈12〉〈13〉s34

Cf2,f3δ
i3
i4
〈13〉2〈24〉[34]

(D.108)

BLdCQH
†D2 −Cf2,f3δ

a3
a2δ

i3
i4
〈12〉〈13〉s34

Cf2,f3δ
a3
a2δ

i3
i4
〈13〉2〈24〉[34]

(D.109)

BLQuCHD
2 −Cf2,f3δ

a2
a3 ε

i2i4〈12〉〈13〉s34

Cf2,f3δ
a2
a3 ε

i2i4〈13〉2〈24〉[34]
(D.110)

WLeCLH
†D2 −Cf2,f3

(
τ I1)i3i4 〈12〉〈13〉s34

Cf2,f3

(
τ I1)i3i4 〈13〉2〈24〉[34]

(D.111)

WLdCQH
†D2 −Cf2,f3δ

a3
a2

(
τ I1)i3i4 〈12〉〈13〉s34

Cf2,f3δ
a3
a2

(
τ I1)i3i4 〈13〉2〈24〉[34]

(D.112)

WLQuCHD
2 −Cf2,f3δ

a2
a3

(
τ I1)i2k εi4k〈12〉〈13〉s34

Cf2,f3δ
a2
a3

(
τ I1)i2k εi4k〈13〉2〈24〉[34]

(D.113)

GLdCQH
†D2 −Cf2,f3δ

i3
i4

(
λA1)a3

a2 〈12〉〈13〉s34

Cf2,f3δ
i3
i4

(
λA1)a3

a2 〈13〉2〈24〉[34]
(D.114)

GLQuCHD
2 −Cf2,f3

(
λA1)a2

a3 ε
i2i4〈12〉〈13〉s34

Cf2,f3

(
λA1)a2

a3 ε
i2i4〈13〉2〈24〉[34]

(D.115)
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D2F 2
Lφ

2

B2
LHH

†D2 −δi3i4 〈12〉2s34 (D.116)

BLWLHH
†D2 −

(
τ I2)i3i4 〈12〉2s34(

τ I2)i3i4 〈12〉〈13〉〈24〉[34]
(D.117)

W 2
LHH

†D2 −δ
i3
i4
δI1I2〈12〉2s34(

τK)i3i4 ε
I1I2K〈12〉〈13〉〈24〉[34]

(D.118)

G2
LHH

†D2 −δi3i4δ
A1A2〈12〉2s34 (D.119)

F 2
LF

2
R

B2
LB

2
R 〈12〉2[34]2 (D.120)

B2
LW

2
R δI3I4〈12〉2[34]2 (D.121)

BLWLBRWR δI2I4〈12〉2[34]2 (D.122)

W 2
LB

2
R δI1I2〈12〉2[34]2 (D.123)

B2
LG

2
R δA3A4〈12〉2[34]2 (D.124)

BLGLBRGR δA2A4〈12〉2[34]2 (D.125)

G2
LB

2
R δA1A2〈12〉2[34]2 (D.126)

BLWLW
2
R εI2I3I4〈12〉2[34]2 (D.127)

W 2
LBRWR εI1I2I4〈12〉2[34]2 (D.128)

W 2
LW

2
R
δI1I3δI2I4〈12〉2[34]2

δI1I2δI3I4〈12〉2[34]2
(D.129)

W 2
LG

2
R δA3A4δI1I2〈12〉2[34]2 (D.130)

GLWLGRWR δA1A3δI2I4〈12〉2[34]2 (D.131)

G2
LW

2
R δA1A2δI3I4〈12〉2[34]2 (D.132)

BLGLG
2
R dA2A3A4〈12〉2[34]2 (D.133)

G2
LBRGR dA1A2A4〈12〉2[34]2 (D.134)

G2
LG

2
R

dEA1A2dEA3A4〈12〉2[34]2

δA1A2δA3A4〈12〉2[34]2

δA1A3δA2A4〈12〉2[34]2
(D.135)

DFLFRψψ
†

BLeCe
†
CBRD Cf2,f3〈12〉〈13〉[34]2 (D.136)
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BLLL
†BRD Cf2,f3δ

i2
i3
〈12〉〈13〉[34]2 (D.137)

BLLL
†WRD Cf2,f3

(
τ I4)i2i3 〈12〉〈13〉[34]2 (D.138)

WLLL
†BRD Cf2,f3

(
τ I1)i2i3 〈12〉〈13〉[34]2 (D.139)

BLdCd
†
CBRD Cf2,f3δ

a3
a2 〈12〉〈13〉[34]2 (D.140)

BLuCu
†
CBRD Cf2,f3δ

a3
a2 〈12〉〈13〉[34]2 (D.141)

BLdCd
†
CGRD Cf2,f3

(
λA4)a3

a2 〈12〉〈13〉[34]2 (D.142)

BLuCu
†
CGRD Cf2,f3

(
λA4)a3

a2 〈12〉〈13〉[34]2 (D.143)

GLdCd
†
CBRD Cf2,f3

(
λA1)a3

a2 〈12〉〈13〉[34]2 (D.144)

GLuCu
†
CBRD Cf2,f3

(
λA1)a3

a2 〈12〉〈13〉[34]2 (D.145)

BLQQ
†BRD Cf2,f3δ

a2
a3δ

i2
i3
〈12〉〈13〉[34]2 (D.146)

BLQQ
†WRD Cf2,f3δ

a2
a3

(
τ I4)i2i3 〈12〉〈13〉[34]2 (D.147)

WLQQ
†BRD Cf2,f3δ

a2
a3

(
τ I1)i2i3 〈12〉〈13〉[34]2 (D.148)

BLQQ
†GRD Cf2,f3δ

i2
i3

(
λA4)a2

a3 〈12〉〈13〉[34]2 (D.149)

GLQQ
†BRD Cf2,f3δ

i2
i3

(
λA1)a2

a3 〈12〉〈13〉[34]2 (D.150)

WLeCe
†
CWRD Cf2,f3δ

I1I4〈12〉〈13〉[34]2 (D.151)

WLLL
†WRD

Cf2,f3

(
τK)i2i3 ε

I1I4K〈12〉〈13〉[34]2

Cf2,f3δ
i2
i3
δI4I1〈12〉〈13〉[34]2

(D.152)

WLdCd
†
CWRD Cf2,f3δ

a3
a2δ

I1I4〈12〉〈13〉[34]2 (D.153)

WLuCu
†
CWRD Cf2,f3δ

a3
a2δ

I1I4〈12〉〈13〉[34]2 (D.154)

WLQQ
†WRD

Cf2,f3δ
a2
a3

(
τK)i2i3 ε

I1I4K〈12〉〈13〉[34]2

Cf2,f3δ
a2
a3δ

i2
i3
δI4I1〈12〉〈13〉[34]2

(D.155)

WLQQ
†GRD Cf2,f3

(
λA4)a2

a3

(
τ I1)i2i3 〈12〉〈13〉[34]2 (D.156)

GLQQ
†WRD Cf2,f3

(
λA1)a2

a3

(
τ I4)i2i3 〈12〉〈13〉[34]2 (D.157)

GLeCe
†
CGRD Cf2,f3δ

A1A4〈12〉〈13〉[34]2 (D.158)

GLLL
†GRD Cf2,f3δ

i2
i3
δA1A4〈12〉〈13〉[34]2 (D.159)

GLdCd
†
CGRD

Cf2,f3d
CA1A4

(
λC)a3

a2 〈12〉〈13〉[34]2

Cf2,f3f
CA1A4

(
λC)a3

a2 〈12〉〈13〉[34]2

Cf2,f3δ
a3
a2δ

A1A4〈12〉〈13〉[34]2
(D.160)
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GLuCu
†
CGRD

Cf2,f3d
CA1A4

(
λC)a3

a2 〈12〉〈13〉[34]2

Cf2,f3f
CA1A4

(
λC)a3

a2 〈12〉〈13〉[34]2

Cf2,f3δ
a3
a2δ

A1A4〈12〉〈13〉[34]2
(D.161)

GLQQ
†GRD

Cf2,f3δ
i2
i3
dCA1A4

(
λC)a2

a3 〈12〉〈13〉[34]2

Cf2,f3δ
i2
i3
fCA1A4

(
λC)a2

a3 〈12〉〈13〉[34]2

Cf2,f3δ
a2
a3δ

i2
i3
δA1A4〈12〉〈13〉[34]2

(D.162)

D2FRψ
2φ

eCLH
†BRD

2 Cf1,f2δ
i2
i3
〈13〉〈23〉[34]2 (D.163)

eCLH
†WRD

2 Cf1,f2

(
τ I4)i2i3 〈13〉〈23〉[34]2 (D.164)

dCQH
†BRD

2 Cf1,f2δ
a2
a1δ

i2
i3
〈13〉〈23〉[34]2 (D.165)

dCQH
†WRD

2 Cf1,f2δ
a2
a1

(
τ I4)i2i3 〈13〉〈23〉[34]2 (D.166)

dCQH
†GRD

2 Cf1,f2δ
i2
i3

(
λA4)a2

a1 〈13〉〈23〉[34]2 (D.167)

QuCHBRD
2 Cf1,f2δ

a1
a2 ε

i1i3〈13〉〈23〉[34]2 (D.168)

QuCHWRD
2 Cf1,f2δ

a1
a2

(
τ I4)i1k εi3k〈13〉〈23〉[34]2 (D.169)

QuCHGRD
2 Cf1,f2

(
λA4)a1

a2 ε
i1i3〈13〉〈23〉[34]2 (D.170)

D2ψ2ψ†2

e2
Ce
†
C

2D2 −C
[2],[2]
f1f2,f3f4

〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

〈13〉〈24〉[34]2
(D.171)

eCLe
†
CL
†D2 −Cf1,f2,f3,f4δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
i2
i4
〈13〉〈24〉[34]2

(D.172)

eCLd
†
CQ
†D2 −Cf1,f2,f3,f4δ

a3
a4δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a3
a4δ

i2
i4
〈13〉〈24〉[34]2

(D.173)

dCLd
†
CL
†D2 −Cf1,f2,f3,f4δ

a3
a1δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a3
a1δ

i2
i4
〈13〉〈24〉[34]2

(D.174)

LuCL
†u†CD

2 −Cf1,f2,f3,f4δ
a4
a2δ

i1
i3
〈12〉[34]s34

Cf1,f2,f3,f4δ
a4
a2δ

i1
i3
〈13〉〈24〉[34]2

(D.175)

eCQe
†
CQ
†D2 −Cf1,f2,f3,f4δ

a2
a4δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a2
a4δ

i2
i4
〈13〉〈24〉[34]2

(D.176)

dCQe
†
CL
†D2 −Cf1,f2,f3,f4δ

a2
a1δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a2
a1δ

i2
i4
〈13〉〈24〉[34]2

(D.177)
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J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

L2L†2D2

−C [2],[2]
f1f2,f3f4

δi1i3δ
i2
i4
〈12〉[34]s34

C
[2],[2]
f1f2,f3f4

δi1i3δ
i2
i4
〈13〉〈24〉[34]2

−C [1,1],[1,1]
f1f2,f3f4

δi1i3δ
i2
i4
〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

δi1i3δ
i2
i4
〈13〉〈24〉[34]2

(D.178)

dCeCd
†
Ce
†
CD

2 −Cf1,f2,f3,f4δ
a3
a1 〈12〉[34]s34

Cf1,f2,f3,f4δ
a3
a1 〈13〉〈24〉[34]2

(D.179)

eCuCe
†
Cu
†
CD

2 −Cf1,f2,f3,f4δ
a4
a2 〈12〉[34]s34

Cf1,f2,f3,f4δ
a4
a2 〈13〉〈24〉[34]2

(D.180)

d2
Cd
†
C

2D2

−C [2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]s34

C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈13〉〈24〉[34]2

−C [1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈13〉〈24〉[34]2

(D.181)

dCuCd
†
Cu
†
CD

2

−Cf1,f2,f3,f4δ
a3
a1δ

a4
a2 〈12〉[34]s34

Cf1,f2,f3,f4δ
a3
a1δ

a4
a2 〈13〉〈24〉[34]2

−Cf1,f2,f3,f4δ
a4
a1δ

a3
a2 〈12〉[34]s34

Cf1,f2,f3,f4δ
a4
a1δ

a3
a2 〈13〉〈24〉[34]2

(D.182)

u2
Cu
†
C

2D2

−C [2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]s34

C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2 〈13〉〈24〉[34]2

−C [1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2 〈13〉〈24〉[34]2

(D.183)

eCuCQ
†2D2 −C

[2]
f1,f2,f3f4

εa2a3a4εi3i4〈12〉[34]s34

C
[1,1]
f1,f2,f3f4

εa2a3a4εi3i4〈13〉〈24〉[34]2
(D.184)

dCuCL
†Q†D2 −Cf1,f2,f3,f4εa1a2a4εi3i4〈12〉[34]s34

Cf1,f2,f3,f4εa1a2a4εi3i4〈13〉〈24〉[34]2
(D.185)

LQd†Cu
†
CD

2 −Cf1,f2,f3,f4ε
a2a3a4εi1i2〈12〉[34]s34

Cf1,f2,f3,f4ε
a2a3a4εi1i2〈13〉〈24〉[34]2

(D.186)

Q2e†Cu
†
CD

2 −C
[2]
f1f2,f3,f4

εa1a2a4εi1i2〈12〉[34]s34

C
[1,1]
f1f2,f3,f4

εa1a2a4εi1i2〈13〉〈24〉[34]2
(D.187)

LQL†Q†D2

−Cf1,f2,f3,f4δ
a2
a4δ

i1
i3
δi2i4 〈12〉[34]s34

Cf1,f2,f3,f4δ
a2
a4δ

i1
i3
δi2i4 〈13〉〈24〉[34]2

−Cf1,f2,f3,f4δ
a2
a4δ

i2
i3
δi1i4 〈12〉[34]s34

Cf1,f2,f3,f4δ
a2
a4δ

i2
i3
δi1i4 〈13〉〈24〉[34]2

(D.188)
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J
H
E
P
0
4
(
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0
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)
1
4
0

dCQd
†
CQ
†D2

−Cf1,f2,f3,f4δ
a3
a1δ

a2
a4δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a3
a1δ

a2
a4δ

i2
i4
〈13〉〈24〉[34]2

−Cf1,f2,f3,f4δ
a2
a1δ

a3
a4δ

i2
i4
〈12〉[34]s34

Cf1,f2,f3,f4δ
a2
a1δ

a3
a4δ

i2
i4
〈13〉〈24〉[34]2

(D.189)

QuCQ
†u†CD

2

−Cf1,f2,f3,f4δ
a1
a2δ

a4
a3δ

i1
i3
〈12〉[34]s34

Cf1,f2,f3,f4δ
a1
a2δ

a4
a3δ

i1
i3
〈13〉〈24〉[34]2

−Cf1,f2,f3,f4δ
a4
a2δ

a1
a3δ

i1
i3
〈12〉[34]s34

Cf1,f2,f3,f4δ
a4
a2δ

a1
a3δ

i1
i3
〈13〉〈24〉[34]2

(D.190)

Q2Q†2D2

−C [2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈12〉[34]s34

C
[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈13〉〈24〉[34]2

−C [2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈12〉[34]s34

C
[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈13〉〈24〉[34]2

−C [1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i1
i3
δi2i4 〈13〉〈24〉[34]2

−C [1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈12〉[34]s34

C
[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4δ

i2
i3
δi1i4 〈13〉〈24〉[34]2

(D.191)

D2FLFRφ
2

BLHH
†BRD

2 δi2i3 〈13〉2[34]2 (D.192)

BLHH
†WRD

2
(
τ I4)i2i3 〈13〉2[34]2 (D.193)

WLHH
†BRD

2
(
τ I1)i2i3 〈13〉2[34]2 (D.194)

WLHH
†WRD

2

(
τK)i2i3 ε

I1I4K〈13〉2[34]2

δi2i3δ
I4I1〈13〉2[34]2

(D.195)

GLHH
†GRD

2 δi2i3δ
A1A4〈13〉2[34]2 (D.196)

D3ψφ2ψ†

eCHH
†e†CD

3 −Cf1,f4δ
i2
i3
〈13〉[34]s34

Cf1,f4δ
i2
i3
〈13〉[34]s24

(D.197)

LHH†L†D3

−Cf1,f4δ
i1
i3
δi2i4 〈13〉[34]s34

Cf1,f4δ
i1
i3
δi2i4 〈13〉[34]s24

−Cf1,f4δ
i2
i3
δi1i4 〈13〉[34]s34

Cf1,f4δ
i2
i3
δi1i4 〈13〉[34]s24

(D.198)

dCH
†2u†CD

3 −Cf1,f4εi2i3δ
a4
a1 〈13〉[34]s34 (D.199)

dCHH
†d†CD

3 −Cf1,f4δ
a4
a1δ

i2
i3
〈13〉[34]s34

Cf1,f4δ
a4
a1δ

i2
i3
〈13〉[34]s24

(D.200)
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uCHH
†u†CD

3 −Cf1,f4δ
a4
a1δ

i2
i3
〈13〉[34]s34

Cf1,f4δ
a4
a1δ

i2
i3
〈13〉[34]s24

(D.201)

uCH
2d†CD

3 −Cf1,f4δ
a4
a1 ε

i2i3〈13〉[34]s34 (D.202)

QHH†Q†D3

−Cf1,f4δ
a1
a4δ

i1
i3
δi2i4 〈13〉[34]s34

Cf1,f4δ
a1
a4δ

i1
i3
δi2i4 〈13〉[34]s24

−Cf1,f4δ
a1
a4δ

i2
i3
δi1i4 〈13〉[34]s34

Cf1,f4δ
a1
a4δ

i2
i3
δi1i4 〈13〉[34]s24

(D.203)

D4φ4

H2H†2D4
δi1i3δ

i2
i4
s2

34

δi1i3δ
i2
i4
s2

24

−δi1i3δ
i2
i4
s24s34

(D.204)

FLψ
4

BLdCeCu
2
C

C
[2]
f2,f3,f4f5

εa2a4a5〈12〉〈14〉〈35〉
C

[2]
f2,f3,f4f5

εa2a4a5〈13〉〈14〉〈25〉
C

[1,1]
f2,f3,f4f5

εa2a4a5〈12〉〈13〉〈45〉
(D.205)

BLeCLQuC

Cf2,f3,f4,f5δ
a4
a5 ε

i3i4〈12〉〈13〉〈45〉
Cf2,f3,f4,f5δ

a4
a5 ε

i3i4〈12〉〈14〉〈35〉
Cf2,f3,f4,f5δ

a4
a5 ε

i3i4〈13〉〈14〉〈25〉
(D.206)

BLdCQ
2uC

C
[2]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈12〉〈13〉〈45〉
C

[2]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈12〉〈14〉〈35〉
C

[2]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈13〉〈14〉〈25〉
C

[1,1]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈12〉〈13〉〈45〉
C

[1,1]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈12〉〈14〉〈35〉
C

[1,1]
f2,f3f4,f5

δa4
a2δ

a3
a5 ε

i3i4〈13〉〈14〉〈25〉

(D.207)

BLLQ
3

C
[3]
f2,f3f4f5

εa3a4a5εi2i4εi3i5〈12〉〈13〉〈45〉
C

[2,1]
f2,f3f4f5

εa3a4a5εi2i4εi3i5〈12〉〈13〉〈45〉
C

[2,1]
f2,f3f4f5

εa3a4a5εi2i4εi3i5〈13〉〈14〉〈25〉
C

[1,1,1]
f2,f3f4f5

εa3a4a5εi2i4εi3i5〈12〉〈13〉〈45〉

(D.208)

WLeCLQuC

Cf2,f3,f4,f5δ
a4
a5

(
τ I1)i3k εi4k〈12〉〈13〉〈45〉

Cf2,f3,f4,f5δ
a4
a5

(
τ I1)i3k εi4k〈12〉〈14〉〈35〉

Cf2,f3,f4,f5δ
a4
a5

(
τ I1)i3k εi4k〈13〉〈14〉〈25〉

(D.209)
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(
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C
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f2,f3f4f5

(
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C

[2,1]
f2,f3f4f5
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C
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(
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C
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f2,f3f4f5

(
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d εa3a5dεi2i4εi3i5〈13〉〈14〉〈25〉
C
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f2,f3f4f5

(
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d εa3a5dεi2i3εi4i5〈12〉〈13〉〈45〉
C
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(
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d εa3a5dεi2i4εi3i5〈12〉〈13〉〈45〉
C
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f2,f3f4f5

(
λA1)a4

d εa3a5dεi2i4εi3i5〈13〉〈14〉〈25〉

(D.215)

F 2
Lψ

2φ

B2
LeCLH

† Cf3,f4δ
i4
i5
〈12〉2〈34〉 (D.216)

B2
LdCQH

† Cf3,f4δ
a4
a3δ

i4
i5
〈12〉2〈34〉 (D.217)

B2
LQuCH Cf3,f4δ

a3
a4 ε

i3i5〈12〉2〈34〉 (D.218)

BLWLeCLH
† Cf3,f4

(
τ I2)i4i5 〈12〉2〈34〉

Cf3,f4

(
τ I2)i4i5 〈12〉〈13〉〈24〉

(D.219)

BLWLdCQH
† Cf3,f4δ

a4
a3

(
τ I2)i4i5 〈12〉2〈34〉

Cf3,f4δ
a4
a3

(
τ I2)i4i5 〈12〉〈13〉〈24〉

(D.220)

BLWLQuCH
Cf3,f4δ

a3
a4

(
τ I2)i3k εi5k〈12〉2〈34〉

Cf3,f4δ
a3
a4

(
τ I2)i3k εi5k〈12〉〈13〉〈24〉

(D.221)

W 2
LeCLH

† Cf3,f4δ
i4
i5
δI1I2〈12〉2〈34〉

Cf3,f4

(
τK)i4i5 ε

I1I2K〈12〉〈13〉〈24〉
(D.222)

W 2
LdCQH

† Cf3,f4δ
a4
a3δ

i4
i5
δI1I2〈12〉2〈34〉

Cf3,f4δ
a4
a3

(
τK)i4i5 ε

I1I2K〈12〉〈13〉〈24〉
(D.223)

W 2
LQuCH

Cf3,f4δ
a3
a4δ

I1I2εi3i5〈12〉2〈34〉
Cf3,f4δ

a3
a4

(
τK)i3k εI1I2Kεi5k〈12〉〈13〉〈24〉

(D.224)

BLGLdCQH
† Cf3,f4δ

i4
i5

(
λA2)a4

a3 〈12〉2〈34〉
Cf3,f4δ

i4
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λA2)a4

a3 〈12〉〈13〉〈24〉
(D.225)

BLGLQuCH
Cf3,f4
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λA2)a3

a4 ε
i3i5〈12〉2〈34〉

Cf3,f4
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λA2)a3

a4 ε
i3i5〈12〉〈13〉〈24〉

(D.226)

GLWLdCQH
† Cf3,f4
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a3
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(D.228)

G2
LeCLH

† Cf3,f4δ
i4
i5
δA1A2〈12〉2〈34〉 (D.229)

G2
LdCQH

†
Cf3,f4δ

a4
a3δ

i4
i5
δA1A2〈12〉2〈34〉

Cf3,f4δ
i4
i5
dCA1A2
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λC)a4

a3 〈12〉2〈34〉
Cf3,f4δ

i4
i5
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λC)a4

a3 〈12〉〈13〉〈24〉
(D.230)

G2
LQuCH

Cf3,f4δ
a3
a4δ

A1A2εi3i5〈12〉2〈34〉
Cf3,f4d

CA1A2
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λC)a3

a4 ε
i3i5〈12〉2〈34〉

Cf3,f4f
CA1A2
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λC)a3

a4 ε
i3i5〈12〉〈13〉〈24〉

(D.231)

F 3
Lφ

2

B3
LHH

† δi4i5 〈12〉〈13〉〈23〉 (D.232)

B2
LWLHH

†
(
τ I3)i4i5 〈12〉〈13〉〈23〉 (D.233)

BLW
2
LHH

†
(
τK)i4i5 ε

I2I3K〈12〉〈13〉〈23〉 (D.234)

W 3
LHH

† δi4i5δ
I2LεI3I1L〈12〉〈13〉〈23〉 (D.235)

BLG
2
LHH

† δi4i5δ
A2A3〈12〉〈13〉〈23〉 (D.236)

G2
LWLHH

† δA1A2
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LHH

† δi4i5f
A1A2A3〈12〉〈13〉〈23〉 (D.238)

FLψ
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†
C

2 C
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f2f3,f4f5

〈12〉〈13〉[45] (D.239)

BLeCLe
†
CL
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i3
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〈12〉〈13〉[45] (D.240)

BLeCLd
†
CQ
† Cf2,f3,f4,f5δ

a4
a5δ

i3
i5
〈12〉〈13〉[45] (D.241)

BLdCLd
†
CL
† Cf2,f3,f4,f5δ

a4
a2δ

i3
i5
〈12〉〈13〉[45] (D.242)

BLLuCL
†u†C Cf2,f3,f4,f5δ

a5
a3δ

i2
i4
〈12〉〈13〉[45] (D.243)

BLeCQe
†
CQ
† Cf2,f3,f4,f5δ

a3
a5δ

i3
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〈12〉〈13〉[45] (D.244)

BLdCQe
†
CL
† Cf2,f3,f4,f5δ

a3
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i3
i5
〈12〉〈13〉[45] (D.245)

BLL
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C
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δi2i4δ
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C
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f2f3,f4f5
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(D.246)

BLdCeCd
†
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†
C Cf2,f3,f4,f5δ

a4
a2 〈12〉〈13〉[45] (D.247)
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Cu
†
C Cf2,f3,f4,f5δ

a5
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δa4
a2δ

a5
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(D.249)

BLdCuCd
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Cf2,f3,f4,f5δ
a4
a2δ
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a4
a3 〈12〉〈13〉[45]

(D.250)

BLu
2
Cu
†
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2 C
[2],[1,1]
f2f3,f4f5

δa4
a2δ

a5
a3 〈12〉〈13〉[45]

C
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f2f3,f4f5

δa4
a2δ

a5
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(D.251)

BLeCuCQ
†2 C
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f2,f3,f4f5
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BLdCuCL
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BLLQd
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C Cf2,f3,f4,f5ε

a3a4a5εi2i3〈12〉〈13〉[45] (D.254)

BLQ
2e†Cu

†
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[2]
f2f3,f4,f5

εa2a3a5εi2i3〈12〉〈13〉[45] (D.255)

BLLQL
†Q†

Cf2,f3,f4,f5δ
a3
a5δ

i2
i4
δi3i5 〈12〉〈13〉[45]

Cf2,f3,f4,f5δ
a3
a5δ

i3
i4
δi2i5 〈12〉〈13〉[45]

(D.256)

BLdCQd
†
CQ
† Cf2,f3,f4,f5δ

a4
a2δ

a3
a5δ

i3
i5
〈12〉〈13〉[45]

Cf2,f3,f4,f5δ
a3
a2δ

a4
a5δ

i3
i5
〈12〉〈13〉[45]

(D.257)

BLQuCQ
†u†C

Cf2,f3,f4,f5δ
a2
a3δ

a5
a4δ

i2
i4
〈12〉〈13〉[45]

Cf2,f3,f4,f5δ
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a4δ

i2
i4
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(D.258)

BLQ
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f2f3,f4f5

δa2
a4δ

a3
a5δ
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i4
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δa2
a4δ

a3
a5δ
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δa2
a4δ

a3
a5δ
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δa2
a4δ
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(D.259)

WLeCLe
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τ I1)i3i5 〈12〉〈13〉[45] (D.260)
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† Cf2,f3,f4,f5δ

a4
a5
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τ I1)i3i5 〈12〉〈13〉[45] (D.261)

WLdCLd
†
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† Cf2,f3,f4,f5δ

a4
a2

(
τ I1)i3i5 〈12〉〈13〉[45] (D.262)

WLLuCL
†u†C Cf2,f3,f4,f5δ

a5
a3

(
τ I1)i2i4 〈12〉〈13〉[45] (D.263)
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† Cf2,f3,f4,f5δ

a3
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(
τ I1)i3i5 〈12〉〈13〉[45] (D.264)
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a3
a2

(
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(D.266)

WLeCuCQ
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f2,f3,f4f5

εa3a4a5εi5k
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τ I1)ki4 〈12〉〈13〉[45] (D.267)

WLdCuCL
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(
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(D.272)

WLQuCQ
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(D.273)
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a4δ
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C
[1,1],[1,1]
f2f3,f4f5

δa2
a4δ

a3
a5δ

i3
i5

(
τ I1)i2i4 〈12〉〈13〉[45]

(D.274)

GLeCLd
†
CQ
† Cf2,f3,f4,f5δ

i3
i5

(
λA1)a4

a5 〈12〉〈13〉[45] (D.275)

GLdCLd
†
CL
† Cf2,f3,f4,f5δ

i3
i5

(
λA1)a4

a2 〈12〉〈13〉[45] (D.276)

GLLuCL
†u†C Cf2,f3,f4,f5δ

i2
i4

(
λA1)a5

a3 〈12〉〈13〉[45] (D.277)

GLeCQe
†
CQ
† Cf2,f3,f4,f5δ

i3
i5

(
λA1)a3

a5 〈12〉〈13〉[45] (D.278)

GLdCQe
†
CL
† Cf2,f3,f4,f5δ

i3
i5

(
λA1)a3

a2 〈12〉〈13〉[45] (D.279)

GLdCeCd
†
Ce
†
C Cf2,f3,f4,f5

(
λA1)a4

a2 〈12〉〈13〉[45] (D.280)

GLeCuCe
†
Cu
†
C Cf2,f3,f4,f5

(
λA1)a5

a3 〈12〉〈13〉[45] (D.281)

GLd
2
Cd
†
C

2

C
[2],[2]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[2],[1,1]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[1,1],[2]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[1,1],[1,1]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]

(D.282)

GLdCuCd
†
Cu
†
C

Cf2,f3,f4,f5δ
a4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a4
a3

(
λA1)a5

a2 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a5
a3

(
λA1)a4

a2 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a5
a2

(
λA1)a4

a3 〈12〉〈13〉[45]

(D.283)
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H
E
P
0
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2
0
2
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)
1
4
0

GLu
2
Cu
†
C

2

C
[2],[2]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[2],[1,1]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[1,1],[2]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]
C

[1,1],[1,1]
f2f3,f4f5

δa4
a2

(
λA1)a5

a3 〈12〉〈13〉[45]

(D.284)

GLeCuCQ
†2 C

[2]
f2,f3,f4f5

εa3a5dεi4i5

(
λA1)da4 〈12〉〈13〉[45]

C
[1,1]
f2,f3,f4f5

εa3a5dεi4i5

(
λA1)da4 〈12〉〈13〉[45]

(D.285)

GLdCuCL
†Q†

Cf2,f3,f4,f5εa2a5dεi4i5

(
λA1)da3 〈12〉〈13〉[45]

Cf2,f3,f4,f5εa3a5dεi4i5

(
λA1)da2 〈12〉〈13〉[45]

(D.286)

GLLQd
†
Cu
†
C

Cf2,f3,f4,f5

(
λA1)a4

d εa3a5dεi2i3〈12〉〈13〉[45]
Cf2,f3,f4,f5

(
λA1)a3

d εa4a5dεi2i3〈12〉〈13〉[45]
(D.287)

GLQ
2e†Cu

†
C

C
[2]
f2f3,f4,f5

(
λA1)a3

d εa2a5dεi2i3〈12〉〈13〉[45]
C

[1,1]
f2f3,f4,f5

(
λA1)a3

d εa2a5dεi2i3〈12〉〈13〉[45]
(D.288)

GLLQL
†Q†

Cf2,f3,f4,f5δ
i2
i4
δi3i5

(
λA1)a3

a5 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

i3
i4
δi2i5

(
λA1)a3

a5 〈12〉〈13〉[45]
(D.289)

GLdCQd
†
CQ
†

Cf2,f3,f4,f5δ
a4
a2δ

i3
i5

(
λA1)a3

a5 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a4
a5δ

i3
i5

(
λA1)a3

a2 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a3
a2δ

i3
i5

(
λA1)a4

a5 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a3
a5δ

i3
i5

(
λA1)a4

a2 〈12〉〈13〉[45]

(D.290)

GLQuCQ
†u†C

Cf2,f3,f4,f5δ
a2
a4δ

i2
i4

(
λA1)a5

a3 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a5
a4δ

i2
i4

(
λA1)a2

a3 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a2
a3δ

i2
i4

(
λA1)a5

a4 〈12〉〈13〉[45]
Cf2,f3,f4,f5δ

a5
a3δ

i2
i4

(
λA1)a2

a4 〈12〉〈13〉[45]

(D.291)

GLQ
2Q†2

C
[2],[2]
f2f3,f4f5

δa2
a5δ

i2
i4
δi3i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[2],[2]
f2f3,f4f5

δa2
a5δ

i3
i4
δi2i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[2],[1,1]
f2f3,f4f5

δa2
a5δ

i2
i4
δi3i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[2],[1,1]
f2f3,f4f5

δa2
a5δ

i3
i4
δi2i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[1,1],[2]
f2f3,f4f5

δa2
a5δ

i2
i4
δi3i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[1,1],[2]
f2f3,f4f5

δa2
a5δ

i3
i4
δi2i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[1,1],[1,1]
f2f3,f4f5

δa2
a5δ

i2
i4
δi3i5

(
λA1)a3

a4 〈12〉〈13〉[45]
C

[1,1],[1,1]
f2f3,f4f5

δa2
a5δ

i3
i4
δi2i5

(
λA1)a3

a4 〈12〉〈13〉[45]

(D.292)
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H
E
P
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4
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F 2
Lφψ

†2

B2
LH
†Q†u†C Cf4,f5εi3i4δ

a5
a4 〈12〉2[45] (D.293)

B2
LHe

†
CL
† Cf4,f5δ

i3
i5
〈12〉2[45] (D.294)

B2
LHd

†
CQ
† Cf4,f5δ

a4
a5δ

i3
i5
〈12〉2[45] (D.295)

BLWLH
†Q†u†C Cf4,f5εi4kδ

a5
a4

(
τ I2)ki3 〈12〉2[45] (D.296)

BLWLHe
†
CL
† Cf4,f5

(
τ I2)i3i5 〈12〉2[45] (D.297)

BLWLHd
†
CQ
† Cf4,f5δ

a4
a5

(
τ I2)i3i5 〈12〉2[45] (D.298)

W 2
LH
†Q†u†C Cf4,f5εi3i4δ

a5
a4δ

I1I2〈12〉2[45] (D.299)

W 2
LHe

†
CL
† Cf4,f5δ

i3
i5
δI1I2〈12〉2[45] (D.300)

W 2
LHd

†
CQ
† Cf4,f5δ

a4
a5δ

i3
i5
δI1I2〈12〉2[45] (D.301)

BLGLH
†Q†u†C Cf4,f5εi3i4

(
λA2)a5

a4 〈12〉2[45] (D.302)

BLGLHd
†
CQ
† Cf4,f5δ

i3
i5

(
λA2)a4

a5 〈12〉2[45] (D.303)

GLWLH
†Q†u†C Cf4,f5εi4k

(
λA1)a5

a4

(
τ I2)ki3 〈12〉2[45] (D.304)

GLWLHd
†
CQ
† Cf4,f5

(
λA1)a4

a5

(
τ I2)i3i5 〈12〉2[45] (D.305)

G2
LH
†Q†u†C

Cf4,f5εi3i4δ
a5
a4δ

A1A2〈12〉2[45]
Cf4,f5εi3i4d

CA1A2
(
λC)a5

a4 〈12〉2[45]
(D.306)

G2
LHe

†
CL
† Cf4,f5δ

i3
i5
δA1A2〈12〉2[45] (D.307)

G2
LHd

†
CQ
† Cf4,f5δ

a4
a5δ

i3
i5
δA1A2〈12〉2[45]

Cf4,f5δ
i3
i5
dCA1A2

(
λC)a4

a5 〈12〉2[45]
(D.308)

Dψ3φψ†

e2
CLH

†e†CD

C
[2]
f1f2,f3,f5

δi3i4 〈12〉〈34〉[45]
−C [1,1]

f1f2,f3,f5
δi3i4 〈13〉〈23〉[35]

C
[1,1]
f1f2,f3,f5

δi3i4 〈13〉〈24〉[45]
(D.309)

eCL
2H†L†D

C
[2]
f1,f2f3,f5

δi2i4δ
i3
i5
〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

δi2i4δ
i3
i5
〈13〉〈23〉[35]

C
[2]
f1,f2f3,f5

δi2i4δ
i3
i5
〈13〉〈24〉[45]

C
[1,1]
f1,f2f3,f5

δi2i4δ
i3
i5
〈12〉〈34〉[45]

−C [1,1]
f1,f2f3,f5

δi2i4δ
i3
i5
〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

δi2i4δ
i3
i5
〈13〉〈24〉[45]

(D.310)
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J
H
E
P
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1
4
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dCeCLH
†d†CD

Cf1,f2,f3,f5δ
a5
a1δ

i3
i4
〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a5
a1δ

i3
i4
〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a5
a1δ

i3
i4
〈13〉〈24〉[45]

(D.311)

eCLuCH
†u†CD

Cf1,f2,f3,f5δ
a5
a3δ

i2
i4
〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a5
a3δ

i2
i4
〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a5
a3δ

i2
i4
〈13〉〈24〉[45]

(D.312)

dCeCQH
†e†CD

Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
〈13〉〈24〉[45]

(D.313)

eCLuCHd
†
CD

Cf1,f2,f3,f5δ
a5
a3 ε

i2i4〈12〉〈34〉[45]
−Cf1,f2,f3,f5δ

a5
a3 ε

i2i4〈13〉〈23〉[35]
Cf1,f2,f3,f5δ

a5
a3 ε

i2i4〈13〉〈24〉[45]
(D.314)

eCQuCHe
†
CD

Cf1,f2,f3,f5δ
a2
a3 ε

i2i4〈12〉〈34〉[45]
−Cf1,f2,f3,f5δ

a2
a3 ε

i2i4〈13〉〈23〉[35]
Cf1,f2,f3,f5δ

a2
a3 ε

i2i4〈13〉〈24〉[45]
(D.315)

dCeCuCH
†Q†D

Cf1,f2,f3,f5εa1a3a5εi4i5〈12〉〈34〉[45]
−Cf1,f2,f3,f5εa1a3a5εi4i5〈13〉〈23〉[35]
Cf1,f2,f3,f5εa1a3a5εi4i5〈13〉〈24〉[45]

(D.316)

d2
CuCH

†L†D

−C [2]
f1f2,f3,f5

εa1a2a3εi4i5〈13〉〈23〉[35]
C

[2]
f1f2,f3,f5

εa1a2a3εi4i5〈13〉〈24〉[45]
C

[1,1]
f1f2,f3,f5

εa1a2a3εi4i5〈12〉〈34〉[45]
(D.317)

eCu
2
CHQ

†D

C
[2]
f1,f2f3,f5

εa2a3a5δ
i4
i5
〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

εa2a3a5δ
i4
i5
〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

εa2a3a5δ
i4
i5
〈12〉〈34〉[45]

(D.318)

dCu
2
CHL

†D

C
[2]
f1,f2f3,f5

εa1a2a3δ
i4
i5
〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

εa1a2a3δ
i4
i5
〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

εa1a2a3δ
i4
i5
〈12〉〈34〉[45]

(D.319)

eCLQH
†Q†D

Cf1,f2,f3,f5δ
a3
a5δ

i2
i4
δi3i5 〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a3
a5δ

i2
i4
δi3i5 〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a3
a5δ

i2
i4
δi3i5 〈13〉〈24〉[45]

Cf1,f2,f3,f5δ
a3
a5δ

i3
i4
δi2i5 〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a3
a5δ

i3
i4
δi2i5 〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a3
a5δ

i3
i4
δi2i5 〈13〉〈24〉[45]

(D.320)
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H
E
P
0
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2
0
2
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)
1
4
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dCLQH
†L†D

Cf1,f2,f3,f5δ
a3
a1δ

i2
i4
δi3i5 〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a3
a1δ

i2
i4
δi3i5 〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a3
a1δ

i2
i4
δi3i5 〈13〉〈24〉[45]

Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
δi2i5 〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
δi2i5 〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a3
a1δ

i3
i4
δi2i5 〈13〉〈24〉[45]

(D.321)

d2
CQH

†d†CD

C
[2]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈12〉〈34〉[45]

−C [2]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈13〉〈23〉[35]

C
[2]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈13〉〈24〉[45]

C
[1,1]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈12〉〈34〉[45]

−C [1,1]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈13〉〈23〉[35]

C
[1,1]
f1f2,f3,f5

δa3
a1δ

a5
a2δ

i3
i4
〈13〉〈24〉[45]

(D.322)

dCQuCH
†u†CD

Cf1,f2,f3,f5δ
a2
a1δ

a5
a3δ

i2
i4
〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a2
a1δ

a5
a3δ

i2
i4
〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a2
a1δ

a5
a3δ

i2
i4
〈13〉〈24〉[45]

Cf1,f2,f3,f5δ
a5
a1δ

a2
a3δ

i2
i4
〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a5
a1δ

a2
a3δ

i2
i4
〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a5
a1δ

a2
a3δ

i2
i4
〈13〉〈24〉[45]

(D.323)

LQuCHL
†D

Cf1,f2,f3,f5δ
a2
a3δ

i1
i5
εi4i2〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a2
a3δ

i1
i5
εi4i2〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a2
a3δ

i1
i5
εi4i2〈13〉〈24〉[45]

Cf1,f2,f3,f5δ
a2
a3δ

i4
i5
εi1i2〈12〉〈34〉[45]

−Cf1,f2,f3,f5δ
a2
a3δ

i4
i5
εi1i2〈13〉〈23〉[35]

Cf1,f2,f3,f5δ
a2
a3δ

i4
i5
εi1i2〈13〉〈24〉[45]

(D.324)

dCQuCHd
†
CD

Cf1,f2,f3,f5δ
a2
a1δ

a5
a3 ε

i2i4〈12〉〈34〉[45]
−Cf1,f2,f3,f5δ

a2
a1δ

a5
a3 ε

i2i4〈13〉〈23〉[35]
Cf1,f2,f3,f5δ

a2
a1δ

a5
a3 ε

i2i4〈13〉〈24〉[45]
Cf1,f2,f3,f5δ

a5
a1δ

a2
a3 ε

i2i4〈12〉〈34〉[45]
−Cf1,f2,f3,f5δ

a5
a1δ

a2
a3 ε

i2i4〈13〉〈23〉[35]
Cf1,f2,f3,f5δ

a5
a1δ

a2
a3 ε

i2i4〈13〉〈24〉[45]

(D.325)
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Qu2
CHu

†
CD

C
[2]
f1,f2f3,f5

δa1
a2δ

a5
a3 ε

i1i4〈12〉〈34〉[45]
−C [2]

f1,f2f3,f5
δa1
a2δ

a5
a3 ε

i1i4〈13〉〈23〉[35]
C

[2]
f1,f2f3,f5

δa1
a2δ

a5
a3 ε

i1i4〈13〉〈24〉[45]
C

[1,1]
f1,f2f3,f5

δa1
a2δ

a5
a3 ε

i1i4〈12〉〈34〉[45]
−C [1,1]

f1,f2f3,f5
δa1
a2δ

a5
a3 ε

i1i4〈13〉〈23〉[35]
C

[1,1]
f1,f2f3,f5

δa1
a2δ

a5
a3 ε

i1i4〈13〉〈24〉[45]

(D.326)

LQ2H†u†CD

C
[2]
f1,f2f3,f5

δi1i4 ε
a2a3a5εi3i2〈12〉〈34〉[45]

C
[2]
f1,f2f3,f5

δi3i4 ε
a2a3a5εi1i2〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

δi3i4 ε
a2a3a5εi1i2〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

δi1i4 ε
a2a3a5εi3i2〈12〉〈34〉[45]

−C [1,1]
f1,f2f3,f5

δi1i4 ε
a2a3a5εi3i2〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

δi3i4 ε
a2a3a5εi1i2〈12〉〈34〉[45]

(D.327)

LQ2Hd†CD

C
[2]
f1,f2f3,f5

εa2a3a5εi1i3εi2i4〈12〉〈34〉[45]
−C [2]

f1,f2f3,f5
εa2a3a5εi1i3εi2i4〈13〉〈23〉[35]

C
[2]
f1,f2f3,f5

εa2a3a5εi1i3εi2i4〈13〉〈24〉[45]
C

[1,1]
f1,f2f3,f5

εa2a3a5εi1i3εi2i4〈12〉〈34〉[45]
−C [1,1]

f1,f2f3,f5
εa2a3a5εi1i3εi2i4〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

εa2a3a5εi1i3εi2i4〈13〉〈24〉[45]

(D.328)

Q3He†CD

C
[3]
f1f2f3,f5

εa1a2a3εi1i3εi2i4〈12〉〈34〉[45]
−C [2,1]

f1f2f3,f5
εa1a2a3εi1i3εi2i4〈13〉〈23〉[35]

C
[2,1]
f1f2f3,f5

εa1a2a3εi1i3εi2i4〈13〉〈24〉[45]
C

[1,1,1]
f1f2f3,f5

εa1a2a3εi1i3εi2i4〈12〉〈34〉[45]

(D.329)

dCQ
2H†Q†D

C
[2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈13〉〈23〉[35]

C
[2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈13〉〈24〉[45]

C
[2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈12〉〈34〉[45]

−C [2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈13〉〈23〉[35]

C
[2]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈13〉〈24〉[45]

C
[1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈12〉〈34〉[45]

−C [1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i2
i4
δi3i5 〈13〉〈24〉[45]

C
[1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈12〉〈34〉[45]

−C [1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈13〉〈23〉[35]

C
[1,1]
f1,f2f3,f5

δa3
a1δ

a2
a5δ

i3
i4
δi2i5 〈13〉〈24〉[45]

(D.330)

– 77 –



J
H
E
P
0
4
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2
0
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2
)
1
4
0

Q2uCHQ
†D

C
[2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈12〉〈34〉[45]

−C [2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈13〉〈23〉[35]

C
[2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈13〉〈24〉[45]

C
[2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈12〉〈34〉[45]

−C [2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈13〉〈23〉[35]

C
[2]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈13〉〈24〉[45]

C
[1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈12〉〈34〉[45]

−C [1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈13〉〈23〉[35]

C
[1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i1
i5
εi4i2〈13〉〈24〉[45]

C
[1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈12〉〈34〉[45]

−C [1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈13〉〈23〉[35]

C
[1,1]
f1f2,f3,f5

δa1
a3δ

a2
a5δ

i4
i5
εi1i2〈13〉〈24〉[45]

(D.331)

DFLψφ
2ψ†

BLeCHH
†e†CD

Cf2,f5δ
i3
i4
〈12〉〈14〉[45]

−Cf2,f5δ
i3
i4
〈12〉〈13〉[35]

(D.332)

BLLHH
†L†D

Cf2,f5δ
i2
i4
δi3i5 〈12〉〈14〉[45]

−Cf2,f5δ
i2
i4
δi3i5 〈12〉〈13〉[35]

Cf2,f5δ
i3
i4
δi2i5 〈12〉〈14〉[45]

−Cf2,f5δ
i3
i4
δi2i5 〈12〉〈13〉[35]

(D.333)

BLdCH
†2u†CD Cf2,f5εi3i4δ

a5
a2 〈12〉〈14〉[45] (D.334)

BLdCHH
†d†CD

Cf2,f5δ
a5
a2δ

i3
i4
〈12〉〈14〉[45]

−Cf2,f5δ
a5
a2δ

i3
i4
〈12〉〈13〉[35]

(D.335)

BLuCHH
†u†CD

Cf2,f5δ
a5
a2δ

i3
i4
〈12〉〈14〉[45]

−Cf2,f5δ
a5
a2δ

i3
i4
〈12〉〈13〉[35]

(D.336)

BLuCH
2d†CD Cf2,f5δ

a5
a2 ε

i3i4〈12〉〈14〉[45] (D.337)

BLQHH
†Q†D

Cf2,f5δ
a2
a5δ

i2
i4
δi3i5 〈12〉〈14〉[45]

−Cf2,f5δ
a2
a5δ

i2
i4
δi3i5 〈12〉〈13〉[35]

Cf2,f5δ
a2
a5δ

i3
i4
δi2i5 〈12〉〈14〉[45]

−Cf2,f5δ
a2
a5δ

i3
i4
δi2i5 〈12〉〈13〉[35]

(D.338)

WLeCHH
†e†CD

Cf2,f5

(
τ I1)i3i4 〈12〉〈14〉[45]

−Cf2,f5

(
τ I1)i3i4 〈12〉〈13〉[35]

(D.339)
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J
H
E
P
0
4
(
2
0
2
2
)
1
4
0

WLLHH
†L†D

Cf2,f5δ
i2
i5

(
τ I1)i3i4 〈12〉〈14〉[45]

−Cf2,f5δ
i2
i5

(
τ I1)i3i4 〈12〉〈13〉[35]

Cf2,f5δ
i3
i5

(
τ I1)i2i4 〈12〉〈14〉[45]

−Cf2,f5δ
i3
i5

(
τ I1)i2i4 〈12〉〈13〉[35]

Cf2,f5δ
i3
i4

(
τ I1)i2i5 〈12〉〈14〉[45]

−Cf2,f5δ
i3
i4

(
τ I1)i2i5 〈12〉〈13〉[35]

(D.340)

WLdCH
†2u†CD Cf2,f5εi4kδ

a5
a2

(
τ I1)ki3 〈12〉〈14〉[45] (D.341)

WLdCHH
†d†CD

Cf2,f5δ
a5
a2

(
τ I1)i3i4 〈12〉〈14〉[45]

−Cf2,f5δ
a5
a2

(
τ I1)i3i4 〈12〉〈13〉[35]

(D.342)

WLuCHH
†u†CD

Cf2,f5δ
a5
a2

(
τ I1)i3i4 〈12〉〈14〉[45]

−Cf2,f5δ
a5
a2

(
τ I1)i3i4 〈12〉〈13〉[35]

(D.343)

WLuCH
2d†CD Cf2,f5δ

a5
a2

(
τ I1)i3k εi4k〈12〉〈14〉[45] (D.344)

WLQHH
†Q†D

Cf2,f5δ
a2
a5δ

i2
i5

(
τ I1)i3i4 〈12〉〈14〉[45]

−Cf2,f5δ
a2
a5δ

i2
i5

(
τ I1)i3i4 〈12〉〈13〉[35]

Cf2,f5δ
a2
a5δ

i3
i5

(
τ I1)i2i4 〈12〉〈14〉[45]

−Cf2,f5δ
a2
a5δ

i3
i5

(
τ I1)i2i4 〈12〉〈13〉[35]

Cf2,f5δ
a2
a5δ

i3
i4

(
τ I1)i2i5 〈12〉〈14〉[45]

−Cf2,f5δ
a2
a5δ

i3
i4

(
τ I1)i2i5 〈12〉〈13〉[35]

(D.345)

GLdCH
†2u†CD Cf2,f5εi3i4

(
λA1)a5

a2 〈12〉〈14〉[45] (D.346)

GLdCHH
†d†CD

Cf2,f5δ
i3
i4

(
λA1)a5

a2 〈12〉〈14〉[45]
−Cf2,f5δ

i3
i4

(
λA1)a5

a2 〈12〉〈13〉[35]
(D.347)

GLuCHH
†u†CD

Cf2,f5δ
i3
i4

(
λA1)a5

a2 〈12〉〈14〉[45]
−Cf2,f5δ

i3
i4

(
λA1)a5

a2 〈12〉〈13〉[35]
(D.348)

GLuCH
2d†CD Cf2,f5

(
λA1)a5

a2 ε
i3i4〈12〉〈14〉[45] (D.349)

GLQHH
†Q†D

Cf2,f5δ
i2
i4
δi3i5

(
λA1)a2

a5 〈12〉〈14〉[45]
−Cf2,f5δ

i2
i4
δi3i5

(
λA1)a2

a5 〈12〉〈13〉[35]
Cf2,f5δ

i3
i4
δi2i5

(
λA1)a2

a5 〈12〉〈14〉[45]
−Cf2,f5δ

i3
i4
δi2i5

(
λA1)a2

a5 〈12〉〈13〉[35]

(D.350)
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H
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P
0
4
(
2
0
2
2
)
1
4
0

D2ψ2φ3

eCLHH
†2D2

−Cf1,f2δ
i2
i4
δi3i5 〈12〉s45

Cf1,f2δ
i2
i4
δi3i5 〈12〉s35

−Cf1,f2δ
i2
i4
δi3i5 〈12〉s34

Cf1,f2δ
i2
i4
δi3i5 〈14〉〈25〉[45]

−Cf1,f2δ
i2
i4
δi3i5 〈13〉〈25〉[35]

Cf1,f2δ
i2
i4
δi3i5 〈13〉〈24〉[34]

(D.351)

dCQHH
†2D2

−Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈12〉s45

Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈12〉s35

−Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈12〉s34

Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈14〉〈25〉[45]

−Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈13〉〈25〉[35]

Cf1,f2δ
a2
a1δ

i2
i4
δi3i5 〈13〉〈24〉[34]

(D.352)

QuCH
2H†D2

−Cf1,f2δ
a1
a2δ

i1
i5
εi4i3〈12〉s45

Cf1,f2δ
a1
a2δ

i1
i5
εi4i3〈14〉〈25〉[45]

Cf1,f2δ
a1
a2δ

i1
i5
εi4i3〈13〉〈24〉[34]

−Cf1,f2δ
a1
a2δ

i4
i5
εi1i3〈12〉s45

−Cf1,f2δ
a1
a2δ

i4
i5
εi1i3〈12〉s34

Cf1,f2δ
a1
a2δ

i4
i5
εi1i3〈14〉〈25〉[45]

(D.353)

D2FLφ
4

BLH
2H†2D2 −δi2i4δ

i3
i5
〈13〉〈15〉[35] (D.354)

WLH
2H†2D2 δ

i2
i5

(
τ I1)i3i4 〈14〉〈15〉[45]

−δi2i5
(
τ I1)i3i4 〈13〉〈15〉[35]

(D.355)

ψ4φ2

e2
CL

2H†2
C

[2],[2]
f1f2,f3f4

δi3i5δ
i4
i6
〈12〉〈34〉

C
[1,1],[1,1]
f1f2,f3f4

δi3i5δ
i4
i6
〈13〉〈24〉

(D.356)

dCeCu
2
CHH

† C
[2]
f1,f2,f3f4

εa1a3a4δ
i5
i6
〈13〉〈24〉

C
[1,1]
f1,f2,f3f4

εa1a3a4δ
i5
i6
〈12〉〈34〉

(D.357)

dCeCLQH
†2 Cf1,f2,f3,f4δ

a4
a1δ

i3
i5
δi4i6 〈12〉〈34〉

Cf1,f2,f3,f4δ
a4
a1δ

i3
i5
δi4i6 〈13〉〈24〉

(D.358)
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J
H
E
P
0
4
(
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1
4
0

eCLQuCHH
†

Cf1,f2,f3,f4δ
a3
a4δ

i2
i6
εi5i3〈12〉〈34〉

Cf1,f2,f3,f4δ
a3
a4δ

i2
i6
εi5i3〈13〉〈24〉

Cf1,f2,f3,f4δ
a3
a4δ

i5
i6
εi2i3〈12〉〈34〉

Cf1,f2,f3,f4δ
a3
a4δ

i5
i6
εi2i3〈13〉〈24〉

(D.359)

d2
CQ

2H†2

C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2δ

i3
i5
δi4i6 〈12〉〈34〉

C
[2],[2]
f1f2,f3f4

δa3
a1δ

a4
a2δ

i3
i5
δi4i6 〈13〉〈24〉

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2δ

i3
i5
δi4i6 〈12〉〈34〉

C
[1,1],[1,1]
f1f2,f3f4

δa3
a1δ

a4
a2δ

i3
i5
δi4i6 〈13〉〈24〉

(D.360)

dCQ
2uCHH

†

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i2
i6
εi5i3〈12〉〈34〉

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i2
i6
εi5i3〈13〉〈24〉

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i5
i6
εi2i3〈12〉〈34〉

C
[2]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i5
i6
εi2i3〈13〉〈24〉

C
[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i2
i6
εi5i3〈12〉〈34〉

C
[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i2
i6
εi5i3〈13〉〈24〉

C
[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i5
i6
εi2i3〈12〉〈34〉

C
[1,1]
f1,f2f3,f4

δa3
a1δ

a2
a4δ

i5
i6
εi2i3〈13〉〈24〉

(D.361)

Q2u2
CH

2

C
[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4 ε

i1i5εi2i6〈12〉〈34〉
C

[2],[2]
f1f2,f3f4

δa1
a3δ

a2
a4 ε

i1i5εi2i6〈13〉〈24〉
C

[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4 ε

i1i5εi2i6〈12〉〈34〉
C

[1,1],[1,1]
f1f2,f3f4

δa1
a3δ

a2
a4 ε

i1i5εi2i6〈13〉〈24〉

(D.362)

LQ3HH†

C
[3]
f1,f2f3f4

δi1i6 ε
a2a3a4εi3i4εi5i2〈12〉〈34〉

C
[3]
f1,f2f3f4

δi4i6 ε
a2a3a4εi3i1εi5i2〈13〉〈24〉

C
[2,1]
f1,f2f3f4

δi1i6 ε
a2a3a4εi3i4εi5i2〈13〉〈24〉

C
[2,1]
f1,f2f3f4

δi4i6 ε
a2a3a4εi3i1εi5i2〈12〉〈34〉

C
[2,1]
f1,f2f3f4

δi3i6 ε
a2a3a4εi4i2εi5i1〈12〉〈34〉

C
[1,1,1]
f1,f2f3f4

δi1i6 ε
a2a3a4εi3i4εi5i2〈13〉〈24〉

C
[1,1,1]
f1,f2f3f4

δi4i6 ε
a2a3a4εi3i1εi5i2〈12〉〈34〉

(D.363)
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J
H
E
P
0
4
(
2
0
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4
0

FLψ
2φ3

BLeCLHH
†2 Cf2,f3δ

i3
i5
δi4i6 〈12〉〈13〉 (D.364)

BLdCQHH
†2 Cf2,f3δ

a3
a2δ

i3
i5
δi4i6 〈12〉〈13〉 (D.365)

BLQuCH
2H† Cf2,f3δ
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a3δ
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i6
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WLeCLHH
†2 Cf2,f3δ

i3
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(
τ I1)i4i5 〈12〉〈13〉

Cf2,f3δ
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(
τ I1)i3i5 〈12〉〈13〉
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a2δ
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(
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i6

(
τ I1)i3i5 〈12〉〈13〉
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(
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(
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i2i5〈12〉〈13〉
(D.369)

GLdCQHH
†2 Cf2,f3δ

i3
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δi4i6

(
λA1)a3

a2 〈12〉〈13〉 (D.370)

GLQuCH
2H† Cf2,f3δ

i5
i6

(
λA1)a2

a3 ε
i2i4〈12〉〈13〉 (D.371)

F 2
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4

B2
LH

2H†2 δi3i5δ
i4
i6
〈12〉2 (D.372)

BLWLH
2H†2 δi3i6

(
τ I2)i4i5 〈12〉2 (D.373)

W 2
LH

2H†2

(
τ I1)i3i5

(
τ I2)i4i6 〈12〉2

δi4i5δ
i3
i6
δI1I2〈12〉2

(D.374)
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2H†2 δi3i5δ
i4
i6
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CHH

†e†C
2 C

[2],[2]
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δi3i4 〈12〉[56] (D.376)

eCLH
†2Q†u†C Cf1,f2,f5,f6εi5i3δ
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i4
〈12〉[56] (D.377)

dCLH
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i4
〈12〉[56] (D.378)

eCLHH
†e†CL

† Cf1,f2,f5,f6δ
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i4
δi3i6 〈12〉[56]

Cf1,f2,f5,f6δ
i3
i4
δi2i6 〈12〉[56]
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i3
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(D.380)

dCLHH
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i4
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(D.381)

LuCHH
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†e†CQ
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i4
δi3i6 〈12〉[56]
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i3
i4
δi2i6 〈12〉[56]

(D.383)

dCQHH
†e†CL

† Cf1,f2,f5,f6δ
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a1δ

i2
i4
δi3i6 〈12〉[56]

Cf1,f2,f5,f6δ
a2
a1δ

i3
i4
δi2i6 〈12〉[56]

(D.384)

L2HH†L†2

C
[2],[2]
f1f2,f5f6

δi1i4δ
i2
i5
δi3i6 〈12〉[56]

C
[2],[2]
f1f2,f5f6

δi3i4δ
i2
i5
δi1i6 〈12〉[56]

C
[2],[1,1]
f1f2,f5f6

δi1i4δ
i2
i5
δi3i6 〈12〉[56]

C
[1,1],[2]
f1f2,f5f6

δi1i4δ
i2
i5
δi3i6 〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δi1i4δ
i2
i5
δi3i6 〈12〉[56]

(D.385)

dCeCH
†2e†Cu

†
C Cf1,f2,f5,f6εi3i4δ

a6
a1 〈12〉[56] (D.386)

dCeCH
†2Q†2 C

[1,1]
f1,f2,f5f6

εa1a5a6εi3i5εi4i6〈12〉[56] (D.387)

d2
CH
†2L†Q† C

[1,1]
f1f2,f5,f6

εa1a2a6εi3i5εi4i6〈12〉[56] (D.388)

dCeCHH
†d†Ce

†
C Cf1,f2,f5,f6δ

a5
a1δ

i3
i4
〈12〉[56] (D.389)

eCuCHH
†e†Cu

†
C Cf1,f2,f5,f6δ

a6
a2δ

i3
i4
〈12〉[56] (D.390)

d2
CHH

†d†C
2 C

[2],[2]
f1f2,f5f6

δa5
a1δ

a6
a2δ

i3
i4
〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δa5
a1δ

a6
a2δ

i3
i4
〈12〉[56]

(D.391)

dCuCHH
†d†Cu

†
C

Cf1,f2,f5,f6δ
a5
a1δ

a6
a2δ

i3
i4
〈12〉[56]

Cf1,f2,f5,f6δ
a6
a1δ

a5
a2δ

i3
i4
〈12〉[56]

(D.392)

u2
CHH

†u†C
2 C

[2],[2]
f1f2,f5f6

δa5
a1δ

a6
a2δ

i3
i4
〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δa5
a1δ

a6
a2δ

i3
i4
〈12〉[56]

(D.393)

eCuCHH
†Q†2

C
[2]
f1,f2,f5f6

εa2a5a6εi6i4δ
i3
i5
〈12〉[56]

C
[1,1]
f1,f2,f5f6

εa2a5a6εi6i4δ
i3
i5
〈12〉[56]

(D.394)

dCuCHH
†L†Q†

Cf1,f2,f5,f6εa1a2a6εi6i4δ
i3
i5
〈12〉[56]

Cf1,f2,f5,f6εa1a2a6εi5i6δ
i3
i4
〈12〉[56]

(D.395)

eCuCH
2d†Ce

†
C Cf1,f2,f5,f6δ

a5
a2 ε

i3i4〈12〉[56] (D.396)

LuCH
2d†CL

† Cf1,f2,f5,f6δ
a5
a2δ

i4
i6
εi1i3〈12〉[56] (D.397)

QuCH
2e†CL

† Cf1,f2,f5,f6δ
a1
a2δ

i4
i6
εi1i3〈12〉[56] (D.398)

u2
CH

2L†Q† C
[1,1]
f1f2,f5,f6

εa1a2a6δ
i3
i5
δi4i6 〈12〉[56] (D.399)

LQH†2u†C
2 C

[1,1]
f1,f2,f5f6

δi1i3δ
i2
i4
εa2a5a6〈12〉[56] (D.400)

LQHH†d†Cu
†
C

Cf1,f2,f5,f6δ
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i4
εa2a5a6εi3i2〈12〉[56]

Cf1,f2,f5,f6δ
i3
i4
εa2a5a6εi1i2〈12〉[56]
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C
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f1f2,f5,f6

δi1i4 ε
a1a2a6εi3i2〈12〉[56]

C
[1,1]
f1f2,f5,f6

δi1i4 ε
a1a2a6εi3i2〈12〉[56]

(D.402)

LQHH†L†Q†

Cf1,f2,f5,f6δ
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a6δ
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i4
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i6
〈12〉[56]

Cf1,f2,f5,f6δ
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a6δ
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i4
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i6
〈12〉[56]
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i6
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i6
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(D.403)
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[1,1]
f1,f2,f5f6

εa2a5a6εi1i3εi2i4〈12〉[56] (D.404)

Q2H2d†Ce
†
C C
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f1f2,f5,f6

εa1a2a5εi1i3εi2i4〈12〉[56] (D.405)

dCQH
†2Q†u†C

Cf1,f2,f5,f6εi5i3δ
a2
a1δ

a6
a5δ

i2
i4
〈12〉[56]

Cf1,f2,f5,f6εi5i3δ
a6
a1δ

a2
a5δ

i2
i4
〈12〉[56]

(D.406)

dCQHH
†d†CQ

†

Cf1,f2,f5,f6δ
a5
a1δ

a2
a6δ

i2
i4
δi3i6 〈12〉[56]

Cf1,f2,f5,f6δ
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a1δ

a2
a6δ

i3
i4
δi2i6 〈12〉[56]

Cf1,f2,f5,f6δ
a2
a1δ
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a6δ

i2
i4
δi3i6 〈12〉[56]

Cf1,f2,f5,f6δ
a2
a1δ

a5
a6δ

i3
i4
δi2i6 〈12〉[56]

(D.407)

QuCHH
†Q†u†C

Cf1,f2,f5,f6δ
a1
a2δ

a6
a5δ

i1
i4
δi3i5 〈12〉[56]

Cf1,f2,f5,f6δ
a1
a2δ

a6
a5δ

i3
i4
δi1i5 〈12〉[56]

Cf1,f2,f5,f6δ
a6
a2δ
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a5δ

i1
i4
δi3i5 〈12〉[56]

Cf1,f2,f5,f6δ
a6
a2δ

a1
a5δ

i3
i4
δi1i5 〈12〉[56]

(D.408)

QuCH
2d†CQ

† Cf1,f2,f5,f6δ
a1
a2δ

a5
a6δ

i4
i6
εi1i3〈12〉[56]

Cf1,f2,f5,f6δ
a5
a2δ

a1
a6δ

i4
i6
εi1i3〈12〉[56]

(D.409)

Q2HH†Q†2

C
[2],[2]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi2i5δ

i3
i6
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C
[2],[2]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i3
i4
δi2i5δ

i1
i6
〈12〉[56]

C
[2],[2]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi3i5δ

i2
i6
〈12〉[56]

C
[2],[1,1]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi2i5δ

i3
i6
〈12〉[56]

C
[2],[1,1]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi3i5δ

i2
i6
〈12〉[56]

C
[1,1],[2]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi2i5δ

i3
i6
〈12〉[56]

C
[1,1],[2]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi3i5δ

i2
i6
〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i1
i4
δi2i5δ

i3
i6
〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δa1
a5δ

a2
a6δ

i3
i4
δi2i5δ

i1
i6
〈12〉[56]

C
[1,1],[1,1]
f1f2,f5f6

δa1
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a6δ
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i4
δi3i5δ
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〈12〉[56]
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Dψφ4ψ†

eCH
2H†2e†CD Cf1,f6δ

i2
i4
δi3i5 〈15〉[56] (D.411)

LH2H†2L†D

Cf1,f6δ
i1
i4
δi2i5δ

i3
i6
〈15〉[56]

−Cf1,f6δ
i1
i4
δi2i5δ

i3
i6
〈14〉[46]

Cf1,f6δ
i1
i4
δi2i5δ

i3
i6
〈13〉[36]

Cf1,f6δ
i3
i4
δi2i5δ

i1
i6
〈15〉[56]

(D.412)

dCHH
†3u†CD Cf1,f6εi5i3δ

a6
a1δ

i2
i4
〈15〉[56] (D.413)

dCH
2H†2d†CD Cf1,f6δ

a6
a1δ

i2
i4
δi3i5 〈15〉[56] (D.414)

uCH
2H†2u†CD Cf1,f6δ

a6
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i2
i4
δi3i5 〈15〉[56] (D.415)

uCH
3H†d†CD −Cf1,f6δ
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a1δ

i2
i5
εi4i3〈14〉[46] (D.416)

QH2H†2Q†D

Cf1,f6δ
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a6δ

i1
i4
δi2i5δ

i3
i6
〈15〉[56]

−Cf1,f6δ
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a6δ

i1
i4
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i3
i6
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i6
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i3
i4
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i6
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H3H†3D2 −δ
i1
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i3
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−δi1i4δ
i2
i5
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(D.418)
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eCLH
2H†3 Cf1,f2δ

i2
i5
δi3i6δ

i4
i7
〈12〉 (D.419)

dCQH
2H†3 Cf1,f2δ

a2
a1δ

i2
i5
δi3i6δ

i4
i7
〈12〉 (D.420)

QuCH
3H†2 C

[3],[2]
f1,f2

δa1
a2δ

i5
i6
δi3i7 ε

i1i4〈12〉 (D.421)
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H4H†4 δi1i5δ
i2
i6
δi3i7δ

i4
i8

(D.422)
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