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Abstract

This article reviews the history of J. von Neumann’s analysis of hidden variables in quantum mechanics and the subsequent analysis by
others. In his book The Mathematical Foundations of Quantum Mechanics, published in 1932, von Neumann performed an analysis of
the consequences of introducing hidden parameters (hidden variables) into quantum mechanics. He arrived at two principal conclusions:
first, hidden variables cannot be incorporated into the existing theory of quantum mechanics without major modifications, and second, if
they did exist, the theory would have already failed in situations where it has been successfully applied. This analysis has been taken as an
“incorrect proof” against the existence of hidden variables, possibly due to a mistranslation of the German word prufen. von Neumann'’s
so-called proof isn’t even wrong as such a proof does not exist, but it is an examination of the limitations imposed by internal consistency
of the Hilbert space formulation of the theory. One of the earliest attempts to eliminate uncertainty, by D. Bohm, requires a major
modification of quantum mechanics (observables are not represented by Hermitian operators), which supports von Neumann’s first
principal conclusion. However, testing the Bohm theory requires constructing a physically impossible initial state. As such, the theory
has no experimental consequences, so W. Pauli referred to it as an “uncashable check”. As there are no observable consequences, the
Bohm theory is possibly a counterexample to von Neumann’s second conclusion that hidden variables in particular would have already

led to a failure of the theory.
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1. Background

The Mathematical Foundations of Quantum Mechanics (MFQM)
by J. von Neumman, published in 1932, is a masterpiece of the-
oretical physics [1—-3]. (We refer to the 1955 English translation
except as noted.) In MFQM, von Neumann provided a complete
exposition of the fundamentals of quantum mechanics as a linear
operator theory, through Hermitean operators and Hilbert spaces.
von Neumann further applied mathematical analysis to the prob-
lems of quantum theory, such as quantum statistical mechanics
and the measurement processes, that continue to serve as the
basis of the theory.

One of von Neumann’s analyses in MFQM that has remained
of central interest for nearly a century is the consequences of
introducing hidden parameters (hidden variables) into quantum
mechanics to eliminate dispersion in simultaneous measurements
of non-commuting observables. He arrives at two principal con-
clusions: first, hidden variables (or equivalently, something to
eliminate dispersion) cannot be incorporated into the existing
theory of quantum mechanics without major modifications to
the fundamental theory, and second, if they did exist, quantum
mechanics would have already failed in situations where it has
been successfully applied.

One of the earliest attempts to eliminate dispersion, by D. Bohm
[4], represents a major modification of quantum mechanics, in
that it expands beyond Hilbert space and observables are no
longer the results of Hermitian operators. Bohm’s theory is com-
patible with von Neumann’s first principal conclusion. However,
testing Bohm’s theory requires constructing an initial state that
is physically impossible, as it would involve violating the quan-
tum mechanical uncertainty principle, and therefore, it has no
testable consequences. This is possibly a counterexample to von
Neumann’s second principal conclusion, which states that hidden
variables would lead to observable deviations from the usual form
of quantum mechanics. Since the Bohm theory has no experimen-
tal consequences, W. Pauli referred to it as an “uncashable check”.

To our knowledge, a successful hidden variable extension to
quantum mechanics or other means to eliminate dispersion with
testable consequences has not yet been produced, leading us to
conclude that von Neumann’s analysis is worthy of rehabilitation.

Our analysis follows a different tack than the recent work by Acufia
[5] who gives a detailed overview of the intense debate concerned
with the interpretation and validity of von Neumann’s work,
which has unfolded over several decades (see, e.g., [6, 7]). (Our
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discussion partly overlaps that of Jeffrey Bub [7].) He points
out that the Bohm theory abandons the notion that physical
observables are the result of Hermitian operators and therefore
expands quantum theory beyond its Hilbert space formulation.
That formulation is the foundational basis of von Neumann’s anal-
ysis and he did not consider the possibility of further expansion
which, as asserted, would be a major modification of the theory.
As such, von Neumann does not provide proof, but he provides
an investigation of the possible outcomes due to the introduction
of hidden parameters and other modifications within the Hilbert
space formulation of quantum mechanics, as we will discuss.

Dieks [6] writes, “According to what has become a standard
history of quantum mechanics, in 1932 von Neumann persuaded
the physics community that hidden variables are impossible as a
matter of principle, after which leading proponents of the Copen-
hagen interpretation put the situation to good use by arguing
that the completeness of quantum mechanics was undeniable.
This state of affairs lasted, so the story continues until Bell in
1966 exposed von Neumann’s proof as obviously wrong”. Much
earlier, Grete Hermann criticized von Neumann’s analysis and
raised objections similar to Bell’s, although her work was only
later fully appreciated [8].

In fact, in MFQM, von Neumann showed that adding hidden pa-
rameters to the existing theory leads to a logical contradiction. His
analysis is essentially a reductio ad absurdum argument: if hid-
den variables exist, it would be possible to construct dispersion-
free coordinate states, after showing that such states are not
possible within the existing Hilbert space framework of quantum
mechanics. He concluded that the present quantum theory would
have already given false predictions if hidden variables existed.
However, he left open the possibility of hidden parameters while
recognizing that they would require a vastly modified theory.

In this article, we summarize von Neumann’s discussion and
suggest some new ways of looking at the situation. It is noted that
the presentations in MFQM are sometimes rather opaque.

We have retained the page numbers of MFQM throughout the
article. A mistranslation of the German original occurs on p. 210
of MFQM, with the original being, “Bis uns eine genauere Analyse
der Aussagen der Quantenmechanik nicht in die Lage versetzen
wird, die Moglichkeit der Einfiirung verborgener Parameter ob-
jektiv zu priifen, was am oben erfolgen wird, wollen wir auf diese
Erklarungsmoglichkeit verzichten,” for which the relevant part
was translated to English as “prove objectively the possibility of
the introduction of hidden parameters” (see p. 109 of the 1932
edition [1—3]). Priifen does not mean prove, but it should be
translated as “examine” or “test”, which is precisely what von
Neumann does in MFQM. (It should be noted that Hermann
read the original German, so it is difficult to assess the overall
consequences of the mistranslations.)

2. von Neumann's analysis of hidden
parameters

2.1. Overview

von Neumann’s analysis progresses in several steps and is cen-
tered on the density matrix. In MFQM, he placed quantum me-
chanics on a firm mathematical footing based on operators and
vectors in Hilbert space and showed that it did not need to rely

on the then mathematically dubious delta-function introduced
by Dirac. He also put considerable effort into the discussion of
the possibility that the statistical behavior associated with the
quantum states might be due to fluctuations in some unknown
parameters (hidden variables), whose variations would lead to
random behavior, just as averaging over the positions and veloci-
ties of the individual molecules leads to the statistical behavior in
classical statistical mechanics.

von Neumann considers quantum mechanics to be characterized
by the relation for the expectation value of a physical variable
represented by the Hermitian operator R, in the state represented
by the Hilbert space vector |¢):

(R) = (¢|R[¢). (®
This is the inner product of the state |¢) with the state R |¢) .

We expand |¢) in a complete orthonormal set |1;):

o) =21 (Wl 8) , (2)
j
so that
(6 |R|¢) = Z (0] ¥3) (% R [9) (vl @) (3)
Z (Wl @) (D] ¥y) (i R|w) )

Zwupw] (W Ry = piRie  (5)
Jik Jik

=Tr(pR) = (R), (6)
where p is the projection operator onto the state |¢) given by

p=10) (¢l 7

The operator p is called the density matrix or statistical operator
and represents all the information available about the quantum
state, equivalent to the wave function. It allows the introduction
of statistical mixtures of different states.

Equation (7) holds when the system is in a single quantum state,
called a pure state. In the case when the system is described by
a statistical ensemble consisting of systems in various states |¢;)
with probabilities w;, what is called a mixed state, the density
operator is given by

p= wild) (¢l - (®)

If Eq. (1) is considered an assumption it can never be disproved,
so von Neumann took one step back and replaced Eq. (1) by a
set of assumptions, which can lead to Eq. (6). Without specifying
a definite method for calculating expectation values, he listed
several properties he would expect to be features of such a method.
Among these are (where (...) represents the expectation value)

(aR) = a (R), (9)
where « is a number and
RASHT+-) =R+ (S) +(T) +---, (10)

von Neumann was well aware of the problem connected with
the addition of operators that do not commute (see, e.g., MFQM
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[1—3], p. 298; we refer to the English translation). Equation (10) is
certainly valid in quantum mechanics since it follows from Eq. (6),
but to cover the more general case, von Neumann defined the sum
of the operators R + S + T + ... to be that operator, which had
the expectation value given by the right-hand side (RHS) of Eq.
(10) (i.e., an implicit definition). Indeed, he considered explicitly
the case of the Hamiltonian for the electron in a hydrogen atom,

in which
2 2
/P _ €
(H) = <2m r >

_ <(P§+p§+P§)>_ e? (1)
2m VE+ R +2 )

Measurement of the first term on the RHS of Eq. (11) requires
a momentum measurement, while that of the second term is a
coordinate measurement. The sum is measured in an entirely
different way. Each measurement requires an entirely different
apparatus. The variables p; and x; (and hence functions of them)
cannot be simultaneously and precisely determined due to their
noncommutativity. Nonetheless, as in the present case of the
hydrogen atom, the sum of p?>/2m and —1/r is defined and has a
precise value, which is the energy. The role of a hidden variable
theory is to allow the determination of the values of p and r
without any statistical fluctuations, as can be done in classical
mechanics, and provide an internal framework that corresponds
to classical expectations. In such a theory, quantum mechanical
uncertainty would arise simply due to our inability to see these
hidden parameters or variables.

E

von Neumann then proceeded to derive Eq. (6) from Egs. (9), (10),
and several other assumptions as follows.

Obviously Eq. (10) follows from the trace rule (Eq. 6) so that in any
case where Eq. (10) fails, Eq. (6) and hence quantum mechanics
will also not be valid.

In a simplified approach, we start with the representation of an
operator by its matrix elements:

R=3|m)(m|Rn)(n| =73 |m) (n| Rm, (12)

mn

von Neumann takes the expectation value of both sides (note
that this applies to any method of taking expectation values that
satisfies Egs. (9) and (10)):

<R>_.<§:|m)OﬂRmn>-E:(Mﬂ<nDRmn (13)

mn

= pumRmn =Tr (pR), (14)
where we defined p.m = (Jm) (n|) as the physical quantity

represented by that operator |m) (n|.

2.2, Implications of hidden variables

If the statistical variations in experimental results were due to
averaging over unknown “hidden variables”, the ensembles de-
scribed by quantum states would consist of separate subensem-
bles, each with some exact value of all physical variables. These
values would have to be eigenvalues of the corresponding oper-
ators for the results to agree with observations, which are found
to always yield eigenvalues, in agreement with the current version

of quantum mechanics. In addition, it would be possible, at least
in principle, to separate these subensembles, so that each of the
separate ensembles would have the property that all variables had
exact values and there would be no scatter in the measured values
of observables. von Neumann called such states dispersion-free
states, he called the resulting subensembles homogeneous ensem-
bles. A “homogeneous ensemble” is an ensemble that can only
be divided into subensembles that are identical to the original
ensemble. If the statistical behavior associated with the quantum
states was due to hidden variables, these quantum states would
represent “inhomogeneous ensembles”.

2.3. “Dispersion-free” states and homogeneous
ensembles in quantum mechanics

Starting with Eq. (6), von Neumann wrote the dispersion (mean
square fluctuation; cast in modern notation by James Albertson
[9]) of the variable represented by the operator R as

o® = Tr [o(R — (R))*] = Tr [p(R® — (R)?)] = (R*) - (R)* (15)

because (R) is a number. o2 is, in general, non-zero. It is zero if
R|¢) = R|¢), which means that |¢) is an eigenstate of R, and the
system is in that eigenstate.

We call a state “dispersion-free” when from Eq. (15)
Tr [pR?] = (Tr [pR])? (16)

for all Hermitian measurement operators R.

von Neumann then considered R to be the projection operator
onto a state |¢), so that R = P, = |¢)(¢|. When P4 operates on
any state | ¥) that is formed from a complete set of eigenfunctions
that include |¢),

(Po)V [ W) = Py|T) = c4l9) (17)

which means that the same result is obtained when Py is applied
multiple times.

With R = Py in Eq. (16) (note: Tr [P, ] =(¢|p|¢)),

Tr [pR?] = (Tr[pR])> =Tr [pP},]
= Tr[pPy] = (Tr [pPy])° (18)
(Blpld) = (¢lple)? (19)
for all |¢). Therefore,
(Blpld) =0 or (dlpl¢) =1. (20)

This should hold for any normalized state |¢). Taking ¢ = c1|é1)+
cz2|¢2), we vary c; and ¢, in a continuous manner, so that |¢)
starts at |¢1) and ends at |¢2) (MFQM, pp. 320—321). During this
process, the relation (¢|p|¢) = 0 or 1 must hold over the entire
variation, and we therefore conclude that

p=0orp=1 (21)

for a dispersion-free ensemble. This means that p is a diagonal
matrix with elements all o or all 1. The case of all zero diagonal
elements is trivial because in this case (R) = 0 always, which is
not possible in a realistic system.

The obvious dispersion-free case of p being in a pure state of
the R basis is possible for one or even for several measurement
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operators R, but it cannot simultaneously be true for all measure-
ment operators since some of them do not commute. Thus, such
a state would not be dispersion-free because it would still show
dispersion in the measurements of some observables.

In the case of p = 1, von Neumann tells us (top of MFQM, p. 321)
that there is a normalization problem, in that

Tr (p) = N — oo, (22)

where N is the number of elements (dimension of the state space).
However, this sum should be unity if p represents the system aver-
age density matrix. This is because the diagonal matrix elements
are the probabilities of being in each eigenstate, and

S wa=1=Tr(p). (23)

This would seem to preclude the possibility of constructing a
general density matrix with p = 1 because it obviously cannot be
normalized. However, we read (MFQM, p. 310, where Exp[R] is
the expectation value):

... we shall admit not only (R) = Exp(R) functions
representing expectation values, but also functions cor-
responding to relative values — i.e. we allow the nor-
malization condition (Exp(1) = 1) to be dropped.
....(Exp(1) = o0) is an entirely different matter and it
is actually for this sake that we want this extension...

and (MFQM, p. 320, and U = p in our notation) that “It is for an
infinite Tr(U) only that we have essentially relative probabilities
and expectation values.” So it seems infinite traces are not a priori
forbidden. This together with the fact that p = 1 is not dispersion-
free, while it is supposed to be a solution for zero dispersion, raises
some questions about the relevance of this solution. If instead
of considering the dispersion for an observable represented by a
projection operator, we focus on a general operator with R? # R,
the only solution to Eq. (16) valid for all R is p = 0.

Thus, von Neumann concluded that if the assumptions Egs. (9)
and (10) hold, dispersion-free states do not exist. The impos-
sibility of dispersion-free states is related to the Heisenberg
uncertainty principle. Non-commuting observables cannot be
dispersion-free in the same state and the commutation relations
prescribe a limit to the possible accuracy of their measurement.

2.4. No hidden variables “theorem”

After investigating the possibility of dispersion-free states, von
Neumann studied uniform or homogeneous ensembles, that is,
ensembles that can be divided into subensembles, which would
all give the same expectation value for every physical quantity. In
other words, all physical quantities would have the same proba-
bility distribution in every subensemble. He then shows that such
ensembles exist and they are pure quantum states and hence not
dispersion-free. As this argument does not seem to have been
challenged, we have placed it in an the Supplementary materials.
If the dispersion shown in the homogeneous ensembles (quantum
states) was due to some hidden variables with different values, it
would be possible to separate them into subensembles according
to the different values of these hidden variables in contradiction
to their property of being homogeneous. Either of the two results

would rule out hidden variables coexisting with quantum mechan-
ics. Dispersion-free states are impossible and the quantum states
are homogeneous ensembles so it is impossible, according to
quantum mechanics, to break up a quantum mechanical ensemble
into subensembles with different physical properties. According
to von Neumann:

But this [the existence of hidden variables] is impossible
for two reasons: First, because then the homogeneous
ensemble in question could be represented as a mixture
of two different ensembles, contrary to its definition.
Second, because the dispersion-free ensembles, which
would have to correspond to the “actual” states (i.e.,
which consist only of systems in their own “actual”
states), do not exist. (MFQM, p. 324)

von Neumann summarizes his argument:

It should be noted that we need not go any further into
the mechanism of the “hidden parameters” since we
now know that the established results of quantum me-
chanics can never be rederived with their help. In fact,
we have even ascertained that it is impossible that the
same physical quantities exist with the same functional
connections, if other variables (i.e., “hidden parame-
ters”) should exist in addition to the wave functions. Nor
would it help if there existed other, as yet undiscovered,
physical quantities, in addition to those represented
by the operators in quantum mechanics, because the
relations assumed by quantum mechanics (i.e., L., I1.)
would have to fail already for the currently known quan-
tities, those that we discussed above. It is therefore not,
as is often assumed, a question of a re-interpretation of
quantum mechanics,—the present system of quantum
mechanics would have to be objectively false, in order
that another description of the elementary processes
than the statistical one be possible. [MFQM (1), p. 324.
Relations I. and II. are found on pp. 313—314 of MFQM
(1) and correspond to our Egs. (9) and (10). It is clear
that von Neumann implies that he is employing all
previously used conditions, A’., B’., o), 3) defined on
pp. 311—312 of MFQM(1), in addition to I. and II., as
stated on p. 323.]

3. Reactions to von Neumann's
discussion of hidden variables

von Neumann’s discussion of hidden variables unleashed a vigor-
ous debate that has lasted almost a hundred years. A reasonably
comprehensive summary has been given by Acufa [5].

A year after the publication of MFQM, Grete Hermann, a philos-
ophy student who was defending the philosophical tradition that
causality was a necessary constituent for any scientific view of the
world, produced a criticism of von Neumann’s argument [8]; how-
ever, the current popular notion that the development of quantum
mechanics would have followed a different course had her works
been appreciated is not supported by further development of her
views. She’d had extensive discussions with Heisenberg, and with
von Weizsédcker (for details see [6]; she eventually came to accept
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the statistical nature of the theory). Hermann called attention to
the fact that the assumption

Exp[aR + bS] = aExp[R] + bExp[S]

fails for quantities that are not simultaneously measurable (their
operators do not commute). She then noted that von Neumann
had recognized this fact and implicitly defined the operator for
the sum of physical quantities as that operator whose expectation
value was the sum of the expectation values on the RHS. She
deduces from this that von Neumann needs another “proof for
quantum mechanics”. Then she claimed that he finds this in the
use of
(R) = Exp[R] = (¢[R|¢)

for the expectation value of R in the state |¢). For this definition,
the expectation value of a sum is given by the sum of the expecta-
tion values. However, this only holds for those ensembles whose
definition depends only on those physical quantities that are
considered in the present quantum theory, those quantities that
determine the state |¢). She states that von Neumann’s argument
for the necessity of dispersion applies only to such ensembles.
It has not been shown that the expectation value has the above
form for ensembles that agree not only in the state |¢) but also
in possibly yet to be discovered, presently unknown, quantities
(hidden variables). A physicist who only knows a given system by
its Schrodinger wave function is bound to find themself limited
by the uncertainty principle. For the von Neumann proof to hold,
we must assume that (¢|R|¢) represents the average value of
measurements in any ensemble whose elements agree with each
other not only with respect to |¢) but also with respect to arbitrary
as yet undiscovered quantities. Hermann stated,

That all these ensembles have the same average value
is an assumption justified neither by previous experi-
ence nor by the hitherto confirmed theory of quantum
mechanics. Without it, the proof of indeterminism col-
lapses.

This argument was repeated in a slightly different form in
her “Natural-Philosophical Foundations of Quantum Mechanics”
whose English translation has been published in Chapter 15 of [8].
Later, Hermann came to accept that indeterminism as a necessary
consequence of quantum mechanics, and that the statistical dis-
tribution can be precisely calculated. It is now recognized that the
topic of Hermann’s work that has drawn the most popular atten-
tion (the critique of von Neumann’s no hidden variable proof) was
not actually a primary motivation, nor a major conclusion [10].

This work remained largely unknown and the von Neumann
proof was generally accepted as providing strong support for the
Copenhagen interpretation of quantum mechanics until in 1952
David Bohm [4] reinvented a theory that had been proposed by
de Broglie in 1927. For details of these theories, see [11, 12]. The
Bohm theory treats the position of a particle as exactly know-
able, but determining this with more accuracy than allowed by
quantum mechanics requires an initial state that violates the
uncertainty principle. Because of this, Pauli called it a “check that
can’t be cashed” ([13], Pauli to Bohm, Dec. 3, 1953, p. 436, no. 13).

Bohm’s theory led to an outbreak of papers analyzing and criti-
cizing von Neumann’s “proof.” The most influential of these was
a series of papers by John Bell. His reaction to reading Bohm’s

paper was as follows:

But in 1952 I saw the impossible done. It was in papers
by David Bohm. Bohm showed explicitly how param-
eters could indeed be introduced into nonrelativistic
wave mechanics, with the help of which the indetermin-
istic description could be transformed into a determin-
istic one. More importantly, in my opinion, the subjec-
tivity of the orthodox version, the necessary reference to
the “observer” could be eliminated [14]. This [assump-
tion (10)] is true for quantum mechanical states, it is
required by von Neumann of the hypothetical disper-
sion free states also [emphasis added]. At first sight,
the required additivity of expectation values seems very
reasonable, and it is the non-additivity of allowed values
(eigenvalues) which requires explanation. Of course,
the explanation is well known: A measurement of a sum
of noncommuting variables cannot be made by com-
bining trivially the results of separate operations on the
two terms—it requires a quite distinct experiment. For
example the measurement of o, for a magnetic particle
might be made with a suitably oriented Stern-Gerlach
magnet. The measurement of o, would require a dif-
ferent orientation and the measurement of (ox + o) a
third and different orientation. But this explanation of
the non-additivity of allowed values also established the
non-triviality of the additivity of expectation values”.

In another paper [15], Bell writes,

The latter [our Eq. (10)] is a quite peculiar property of
quantum mechanical states, not to be expected a priori.
There is no reason to demand it individually of the
hypothetical dispersion-free states, whose function it
is to reproduce the measurable properties of quantum
mechanics when averaged over. [emphasis added]

David Mermin [16] characterized the assumption (Eq. 10) as
“silly” and quoted Bell in a published interview:

Yet the von Neumann proof, if you actually come to
grips with it, falls apart in your hands! There is nothing
toit. It’s not just flawed, it’s silly! . .. When you translate
[his assumptions] into terms of physical disposition,
they’re nonsense. The proof of von Neumann is not
merely false but foolish! [17]

Bell’s point, quoted above with emphasis, is correct: In dispersion-
free states, the expectation value of a variable would have to
be one of the eigenvalues of the corresponding operator, and so
Eq. (10) could not apply. But contrary to Bell’s point above, von
Neumann’s argument does not require Eq. (10) to be true for
dispersion-free states.

To reiterate, von Neumann’s logical argument, which has the
appearance of circularity (sort of a reductio ad absurdum), is
based on the following three propositions:

A. The sum of expectation values assumption, Eq. (10).

B. (R) = Tr(pR), Eq. (14) that is, the trace of p times an
operator gives the expectation value of that operator.

C. Dispersion-free states do NOT exist.
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von Neumann has shown that A = B = C. If this conclusion
is taken as the argument against hidden variables, then Bell,
Hermann, and others are correct because A does not hold for
dispersion-free states, and it is, therefore, a circular, silly argu-
ment [6]. However, let uslook at the logic. It is obvious that B = A
so that if A were false (which is the case for a dispersion-free
state), B would have to be false, that is, the predictions of quantum
mechanics would have to fail for already known quantities as von
Neumann stated. Moreover, assumption A is only necessary for
deriving B. But nobody would deny that B represents the essence
of quantum mechanics. Since B = C, if C were false, that is, there
were dispersion-free states, B would have to be false and again the
conclusion is that quantum mechanics would have to fail with the
existence of hidden parameters.

4. Conclusions

We have shown that examination of the logic of von Neumann’s
argument leads to the conclusion that the existence of hidden
variables capable of allowing the exact prediction of all physical
quantities would mean that quantum mechanics in its present
form would have to be false, that is, the existence of hidden
variables would contradict quantum mechanics, and their inclu-
sion requires a vastly modified theory. Of course, this follows
already from the fact that physical quantities represented by non-
commuting operators must satisfy an uncertainty relation.

Another powerful argument against hidden variables has been
presented by Pauli. In a letter to Fierz he wrote ([18, 19] Pauli to
Fierz, Jan. 6, 1952, p. 499, no 1337):

Iwant to call special attention to the thermodynamics of
ensembles, consisting of the same type of subensembles
(Einstein-Bose or Fermi-Dirac statistics). What is im-
portant to me is not the energy values but the statistical
weights, further the indifference of the thermodynamic-
statistical reasoning to the “wave-particle” alternative
and Gibbs’ point that identical or only similar states
behave qualitatively differently. If hidden parameters
exist, not only on paper, but determine a really differ-
ent behavior of different single systems (e.g.particles)—
according to their “real” values—so must—completely
independent of the question of the technical measur-
ability of the parameters—the Einstein-Bose or Fermi-
Dirac statistics be completely disrupted. Since there is
no basis to assume that the thermodynamic weights
should be determined by only half (or a part of) “re-
ality”. Either two states are identical or not (there is
no “similar”) and if the ¢ function is not a complete
description of single systems, states with the same
function will not be identical. Every argument with
the goal of saving the Einstein-Bose and Fermi-Dirac
statistics from the causal parameter mythology must
fail because it - taking into account the usual theory
in which the + function is a complete description of a
state—declares the other half of reality to be unreal.

In the case of Bohm’s theory, each particle follows its own tra-
jectory, and the wavefunction is in 3N dimensional space and is
even or odd under particle exchange. The hidden variable is the
initial position of each particle, which is not an additional degree

of freedom because in ordinary quantum mechanics the particle
positions are already considered the degrees of freedom. For iden-
tical particles, when the initial wavefunction is specified, the even
or odd superposition results from the creation of a multiparticle
state at each initial position. Overall, there is no surprise that the
system evolution is indistinguishable from the usual formulation
of quantum mechanics.

In the Supplementary materials, we review von Neumann’s sec-
ond attempt to eliminate dispersion by decomposition of the den-
sity matrix into sub-assemblies. However, this approach also fails
because the homogeneous ensembles are considered quantum
states and, therefore, are not dispersion-free.
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