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Abstract: At finite isospin chemical potential µI , the tension between measured decays and partial

branching ratios of neutral and charged bosons as functions of dimuon mass squared and the

Standard Model (SM) isospin asymmetry can be analyzed in nonperturbative QCD-effective models,

for instance, the Polyakov linear sigma-model. With almost first-principle derivation of the explicit

isospin symmetry breaking, namely, σ̄3 = fK± − fK0 the isospin sigma field, and h3 = m2
a0
( fK± − fK0 )

the third generator of the matrix of the explicit symmetry breaking H = Taha. fK± and fK0 are decay

constants of K± and K0, respectively. ma0 is the mass of a0 meson. Accordingly, the QCD phase

structure could be extended to finite µI . With the thermal and density dependence of a0, fK± , and fK0 ,

σ̄3 and h3 are accordingly expressed in dependence on the temperatures and the chemical potentials.

We find that the resulting critical chiral temperatures Tχ decrease with the increase in µB and/or µI .

We conclude that the (Tχ − µI) boundary has almost the same structure as that of the (Tχ − µB) plane.

Keywords: chiral symmetries; chiral transition; chiral Lagrangian; isobaric spin

PACS: 11.30.Rd; 11.10.Wx; 12.39.Fe; 21.10.Hw

1. Introduction

At finite isospin chemical potential µI , the lattice Quantum ChromoDynamics (QCD)
simulations have real and positive action so that the Monte Carlo (MC) techniques are well
applicable [1]. On the other hand, at finite baryon chemical potential µB, the action becomes
complex, i.e., sign problem [2]. Both types of nonperturbative simulations share common
features, for example, deconfinement, hadronization, hadron-parton phase transition,
Silverblaze phenomenon, and Bose–Einstein condensations. Hence, even qualitative if not
quantitative conclusions on nonperturbative QCD, at finite µI , are of great importance [3].
This might go beyond the current limitations and offer a theoretical framework for the
Bose–Einstein condensations and the yet-still-hypothetical superconducting phases [4].
Thereby, the QCD phase diagram is enriched [5]. Characterizing the possible imbalance
between the charged pions degrees-of-freedom [6] in dense quark matter, such as the
neutron stars [7,8], is an astrophysical example of the chiral isospin asymmetry.

The QCD-like effective models, such as the Ployakov linear-sigma model (PLSM),
offer a complementary approach to the nonperturbative QCD [9–12]. The present script
introduces a novel study suggesting first-principle derivations of a new set of PLSM
parameters, namely, h3 and barσ3 the isospin sigma field. As a result of the spontaneous
symmetry breaking in the QCD-like effective nonperturbative QCD approach, the PLSM,
the mean value of the field Φ, 〈Φ〉, and that of its conjugate 〈Φ†〉 could be related to the
quantum numbers of the vacuum [13]. Therefore, while the mean values of π̄a vanish, that
of the quark condensates σ̄a remain finite. Concretely, σ̄0 6= σ̄3 6= σ̄8 6= 0 corresponding
to the diagonal generators U(3). On the other hand, the isospin symmetry is broken
in SU(2) though finite quark condensates σ̄3 [13] and finite Tr[H(Φ + Φ†) in the PLSM
Langrangian. Thus, the symmetry generators ha are conjectured to break the isospin

Phys. Sci. Forum 2023, 7, 22. https://doi.org/10.3390/ECU2023-14047 https://www.mdpi.com/journal/psf

https://doi.org/10.3390/ECU2023-14047
https://doi.org/10.3390/ECU2023-14047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://orcid.org/0000-0002-1679-0225
https://ecu2023.sciforum.net/
https://doi.org/10.3390/ECU2023-14047
https://www.mdpi.com/journal/psf
https://www.mdpi.com/article/10.3390/ECU2023-14047?type=check_update&version=1


Phys. Sci. Forum 2023, 7, 22 2 of 9

symmetry, as H = Ta ha. Therefore, the finite diagonal components of h0, h3, h8 lead to
finite condensates σ̄0, σ̄3 and σ̄8 corresponding to the three quark flavors. Accordingly,
the masses of the three quark flavors are no longer degenerate, i.e., mu 6= md 6= ms. It is
obvious that the nature likely prefers such a configuration. By converting the three quark
condensates through the orthogonal basis transformation from the original basis, σ0, σ3,
and σ8 to pure up (σu), down (σd), and strange (σs) quark flavor basis, we obtain,





σ̄u

σ̄d

σ̄s



 =
1√
3





√
2 1 1√
2 −1 1

1 0 −
√

2









σ̄0

σ̄3

σ̄8



. (1)

In light of this, the masses of u-, d-, and s-quarks can be expressed as,

mu =
g

2
σu, md =

g

2
σd, ms =

g√
2

σs. (2)

In the present calculations, we introduce PLSM calculations for the thermodynamic
properties and thereby the chiral QCD phase structure, at finite isospin asymmetry. Firstly,
the effects of finite isospin asymmetry on differentiation between the nonstrange (light)
condensates of u- and d-quark shall be analyzed. Secondly, as a result of the isospin
symmetry breaking, σ̄3 should have a nonzero value because σu = σl + σ3 and σd = σl − σ3.
To this end, we estimate the pure mesonic potential for N f quark flavors, Equation (14), as
functions of temperatures and chemical potentials.

To the author’s best knowledge, there is so-far no reliable estimation for the generator
h3. Following the assumption of refs. [14,15], we first assume that the violation of the
isospin symmetry is negligibly small, i.e., h3 → 0, see Table 1. In this limit, one assumes
that the u- and d-quark condensates can be given as σu = σl + σ3 and σd = σl − σ3, where
σl is the nonstrange light condensate σl = (σu + σd)/2 for non-degenerated masses of the
light quarks, Equation (1). The main contribution of the present script is revising such an
assumption. Finite h3, the third generator of the matrix of the explicit symmetry breaking
H = Taha, and σ̄3, the isospin sigma field, considerably contribute to the isospin symmetry
breaking. We are not just assigning finite values to h3 and σ̄3. We rather introduce a
theoretical framework for the thermal and dense dependence of both h3 and σ̄3.

Table 1. Various LSM parameters fixed at mσ = 800 MeV and h3 = 0 [16].

mσ [MeV] c [MeV] hud [MeV3] h3 [MeV3] hs [MeV3] m2 [MeV2] λ1 λ2

800 4807.84 (120.73)3 0 (336.41)3 −(306.26)2 13.49 46.48

The present script is organized as follows. In Section 2, the formalism is outlined. The
effective nonperturbative QCD approach, the SU(3) Polyakov linear-sigma model (PLSM),
at vanishing h3, is introduced in Section 2.1. The isospin symmetry breaking based on
suggesting finite h3 is discussed in Section 2.2. In Section 3, we investigate the impacts
of the isospin asymmetry on the QCD phase transition(s). Last but not least, Section 4 is
devoted to the conclusions.

2. Formalism

The limitation of the MC techniques to vanishing baryon chemical potential in the
non-perturbative lattice QCD promotes the utilization of QCD-like effective approaches.
In the present study, we focus on the Polyakov linear-sigma model (PLSM). Various QCD
quantities, including the thermodynamics of conserved charges and chiral quark-hadron
phase transitions, can be estimated at least qualitatively [15,17–25].

Here, we aim at analyzing how the finite isospin asymmetry should be integrated in
the chiral models, PLSM, especially that the nonperturbative lattice QCD simulations—in
contrast to the finite baryon chemical potential—are reliable, at finite isospin chemical
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potential. Having done this allows the characterization of the thermodynamic properties
of the nonperturbative QCD and thereby the mapping out of the QCD phase diagram.
With finite isospin asymmetry, the generic chemical potentials of both light quarks are
no longer degenerate. The PLSM thermodynamics in thermal and dense medium shall
be confronted to the recent lattice QCD simulations. To this end, we aim at presenting a
general expression of the chiral limit, at finite isospin asymmetry.

2.1. PLSM at Finite Chemical Potential

In flat Minkowski space, the Lagrangian of the linear-sigma model (LSM) with N f

quark flavors and Polyakov-loop potential would be summarized as

LPLSM = Lψ + Lm − U (φ, φ̄, T), (3)

where Lψ represent the quarks (fermions), while Lm represents the mesons (bosons), and
U (φ, φ̄, T) represents the Polyakov-loop potential contributions. For Nc, the color degrees
of freedom, the contributions of the quarks (fermions) read

Lψ = ∑
f

ψ f (iγ
µDµ − g Ta(σa + iγ5πa))ψ f , (4)

where ψ are the Dirac spinor fields; f = [u, d, s] are the quark flavors; and Dµ, µ, γµ and g,
respectively, represent the covariant derivative, Lorentz index, chiral spinors, and Yukawa
coupling constant. The contributions of the mesons (bosons) are given as,

Lm = Tr(∂νΦ†∂νΦ − m2Φ†Φ)− λ1 [Tr (Φ†Φ)]2

− λ2 Tr(Φ†Φ)2 + c[Det(Φ) + Det(Φ†)] + Tr[H(Φ + Φ†)], (5)

where Φ is the nonet meson (3 × 3)-matrix,

Φ̄ =

N2
f −1

∑
a=0

Ta(σ̄a + iπ̄a). (6)

and Ta = λ̂a/2 is a generator operator in U(3) algebra. Ta can be determined from the
Gell–Mann matrices λ̂a with a = 0, · · · , 8 [26].

So far, we have various LSM parameters to be fixed, namely, m2, hl , hs, λ1, λ2, and
c. They are strongly dependent on the mass of the sigma meson mσ [16]. In the present
calculations, we assumed that mσ = 800 MeV. Table 1 summarizes all these parameters [16].
The present script aims at determining another set of parameters, namely, h3 and σ̄3, the
third generator of the matrix of the explicit symmetry breaking H and isospin sigma
field, respectively. In this regard, we recall that the same symbol h3 was used in refs.
Refer to [27,28] for the dimensionless coupling constant distinguishing between u and d
quark flavors.

The third type of contributions to the PLSM Lagrangian, Equation (3), represents the
Polyakov-loop potential responsible for the gluonic degrees of freedom and the dynamics
of the quark-gluon interactions, U (φ, φ̄, T). The Polyakov-loop potentials are suggested to
characterize the QCD symmetries in pure-gauge theory [18,19,23,29,30]. For example, based
on strong coupling simulations and by including higher-order Polyakov-loop variables,
we have

UFuku(φ, φ̄, T) = −b T
[

54 φ φ̄ exp(−a/T) + ln(1 − 6φφ̄ − 3(φφ̄)2 + 4(φ3 + φ̄3))
]

. (7)
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In temporal space, the thermal expectation value of the color traced Wilson loop, also
known as the Polyakov-loop variable, reads

φ = (Trc P)/Nc, (8)

φ̄ = (Trc P†)/Nc, (9)

where P are the Polyakov loops.
Then, in the mean-field approximation, the PLSM grand-canonical potential can be

expressed as

Ω(T, µ f ) =
−T · ln [Z ]

V
= Ωψ̄ψ(T, µ f ) + U(σu, σd, σs) + UFuku(φ, φ̄, T), (10)

where µ f are the chemical potentials of the three quark flavors. For the conserved charge
baryon B, strangeness S, electric charge Q, and isospin I, the quark chemical potentials are
composed as

µu =
µB

3
+

2µQ

3
+

µI

2
, (11)

µd =
µB

3
− µQ

3
− µI

2
, (12)

µs =
µB

3
− µQ

3
− µS, (13)

accordingly, the mesonic contributions to the LSM potential U(σu, σd, σs) can be determined
by substituting Equation (6), the mesonic field, into Equation (5)

U(σu, σd, σs) =
m2

4

[

σ2
u + σ2

d + 2σ2
s

]

− c

2
√

2
σu σd σs +

λ1

16

(

σ2
u + σ2

d + 2σ2
s

)2

+
λ2

16

(

σ4
u + σ4

d + 4σ4
s

)

− hud
σu + σd

2
− h3

σu − σd

2
− hsσs, (14)

where h3 shall be derived in Section 2.2.
The contributions of quarks and antiquarks to the PLSM potential are given as [18,31–33]

Ωψ̄ψ(T, µ f ) = −2 T ∑
f=u,d,s

∫ ∞

0

d3~P

(2π)3
ln
[

1 + nq, f (T, µ f )
]

+ ln
[

1 + nq̄, f (T, µ f )
]

. (15)

It is evident that nq̄, f (T, µ f ) is identical to nq, f (T, µ f ) with a double replacement, namely,
−µ f by +µ f and the order parameter of the Ployakov-loop field φ by its conjugate φ̄ or
vice versa.

nq, f (T, µ f ) = 3

(

φ + φ̄e−
E f −µ f

T

)

× e−
E f −µ f

T + e−3
E f −µ f

T . (16)

E f = (~P2 + m2
f )

1/2 gives the energy-momentum dispersion relation corresponding to the

quark and antiquark, where m f is the mass of f th quark flavor. Equation (10) expresses the
grand canonical potential, which in mean-field approximation derives the various physical
quantities characterizing the QCD thermodynamics and thereby the QCD phase structure
in thermal and dense medium.
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2.2. Isospin Asymmetry and Meson Potential

As discussed in the previous section, the isospin asymmetry SU(2) is broken, at finite
σ̄3 [13], not only σ̄3, which breaks the isospin symmetry, but also the potential of pure
mesonic contributions in SU(N f ), which can be rewritten as [14],

U(σ̄) =

(

m2

2
− ha

)

σ̄a − 3Gabcσ̄b σ̄c −
4

3
Fabcd σ̄b σ̄cσ̄d, (17)

where the coefficients Gabc and Fabcd are given as [14]

Gabc =
c

6

[

dabc −
3

2
(d0bcδa0 + da0cδb0 + dab0δc0) +

9

2
d000δa0δb0δc0

]

, (18)

Fabcd =
λ1

4
[δabδcd + δadδcd + δacδbd] +

λ2

8
[dabndncd + dadndnbc + dacndnbd]. (19)

We notice that the explicitly symmetry breaking terms, h0, h3, and h8, can be determined by
minimizing the potential, Equation (17), on tree level, ∂U(σ̄)/∂σ̄a = 0. Concretely, both h0

and h8 can be determined from the partially conserved axial current (PCAC) relations.
The generator operator T̂a = λ̂a/2 in U(3) is obtained from Gell–Mann matrices λ̂a [26]

with the indices running as a = 0, · · · , 8. From U(3) algebra, we have

[

T̂a, T̂b

]

= i fabcT̂c, (20)
{

T̂a, T̂b

}

= idabcT̂c, (21)

where fabc and dabc, respectively, are the standard antisymmetric and symmetric structure
constants of SU(3). In this regard, the symmetric structure constant dabc can be defined as

dabc =
1

4
Tr
[{

λ̂a, λ̂b

}

λ̂c

]

, (22)

dab0 =

√

2

3
δab. (23)

In PCAC relation, the decay constant fa is related to the symmetric structure constant as

fa = daabσ̄a. (24)

Accordingly, the decay constants of the charged and neutral pion mesons ( fπ± = f1,
fπ0 = f3) and the kaon meson ( fK± = f4, fK0 = f6) are given as

fπ0 = fπ± =

√

2

3
σ̄0 +

1√
3

σ̄8, (25)

fK± =

√

2

3
σ̄0 +

1

2
σ̄3 −

1

2
√

3
σ̄8, (26)

fK0 =

√

2

3
σ̄0 −

1

2
σ̄3 −

1

2
√

3
σ̄8, (27)

where the isospin sigma field, σ̄3, is the difference between the decay constants of neutral
and charged kaon mesons as

σ̄3 = fK± − fK0 . (28)
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From the experimental and recent lattice review on physical constants [34–36], fπ± =
fπ0 = 92.4 MeV and fK± = 113 MeV, fK0 = 113.453 MeV. Then, we suggest expressions
for both h0 and h8,

h0 =
1√
6

(

m2
π fπ + 2m2

K fK

)

, (29)

h8 =
2√
3

(

m2
π fπ − m2

K fK

)

. (30)

The explicit symmetry breaking term, h3, the third generator of the matrix of the
explicit symmetry breaking H = Taha, can be deduced from ∂U(σ̄)/∂σ̄3 = 0,

h3 =

[

m2 +
c√
6

σ̄0 −
c√
3

σ̄8 + λ1

(

σ̄0
2 + σ̄3

2 + σ̄8
2
)

+

λ2

(

σ̄0
2 +

σ̄3
2

2
+

σ̄8
2

2
+
√

2σ̄0σ̄8

)]

σ̄3, (31)

where the square brackets [· · · ] is the squared mass of the a0 meson, Equation (28). Then,
h3 can be expressed as

h3 = m2
a0
( fK± − fK0), (32)

As discussed in the Introduction, the finite isospin asymmetry leads to degenerate masses
of the quark flavors, namely, mu 6= md 6= ms. At nonvanishing h3, the PLSM parameters
listed in Table 1 are revised, Table 2.

Table 2. The revised values of the LSM parameters, Equation (5), at mσ = 800 MeV [16].

mσ [MeV] c [MeV] hud [MeV3] h3 [MeV3] hs [MeV3] m2 [MeV2] λ1 λ2

800 4807.84 (120.73)3 −(78.31)3 (336.41)3 −(306.26)2 13.49 46.48

3. Results and Discussion

For a reliable differentiation between u- and d-quark condensates, the influences of
the finite isospin asymmetry on the corresponding PLSM chiral condensates and on the
deconfinement order parameters should be estimated [37]. It was pointed out that the
impacts of finite isospin asymmetry enhances the PLSM thermodynamics, especially with
the increase in temperatures. The dependence of the PLSM critical chiral temperatures on
the isospin asymmetry obviously maps out the QCD phase structure. The critical chiral
temperature decreases as the isospin asymmetry increases. We also conclude that the
PLSM results on the critical temperatures reproduce the recent lattice QCD simulations
well [38,39], Figure 1 For a reliable comparison, both temperature and isospin chemical
potential are normalized to the critical temperature and the pion mass, respectively, as

follows. For lattice QCD: mπ = 400.0 MeV and T
µI=0
χ = 164 MeV. For PLSM: mπ = 138 MeV

and T
µI=0
χ = 210 MeV.

At finite µI , the potential impacts of barσ3 and h3 are taken into consideration. The
procedure to determine the critical chiral temperature goes as follows.

• Both u- and d-quark chiral condensates become distinguishable. As the temperature
approaches a critical value, the normalized nonstrange condensates are split into two
different curves. At this point, the critical chiral temperatures, Tχ, can be at least
qualitatively estimated. We notice that the value of the resulting Tχ decreases with
increasing µI .

• Both Ployakov-loop variables φ and φ̄ also become distinguishable. Increasing µI

decreases φ̄ but increases φ. Moreover, both φ and φ̄ become more distinguishable
with a further increase in µI .
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• Both nonstrange quark susceptibilities become distinguishable as well. The critical
chiral temperature Tχ is positioned in the middle of the deconfinement phase transition.
The resulting Tχ decreases with the increase in µI .

The Figure 1 illustrates that similar to the lattice QCD simulations [38,39], the critical
temperature decreases with increasing µI . Because the PLSM results reproduce the available
lattice QCD calculations well, it is possible to predict the tendency at larger µI . Furthermore,
when comparing our results for Figure 1, with the QCD phase structure in (Tχ-µB) plane
reported in refs. [10,40–42], good similarity can be concluded.

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

T
/T

χ

µ
I
/ m

π
 

Phys. Rev. D  97, 054514 (2018)
     Phys. Rev. D 85, 094512 (2012)

PLSM

Figure 1. The QCD phase diagram at vanishing baryon chemical potential but finite isospin chem-

ical potential. The PLSM results (solid curves) are confronted to recent lattice QCD calculations

(symbols) [38,39].

4. Conclusions

We have studied the Ployakov linear-sigma model with three quark flavors and U(1)A

anomaly, at finite isospin asymmetry. The finite isospin asymmetry emerges nonvanishing
diagonal generators σ0 6= σ3 6= σ8 6= 0 of the mean sigma-fields σ̄a. This means that the
SU(2) isospin asymmetry is broken through σ3, i.e., σu = σl + σ3 and σd = σl − σ3 [14,43,44].

From the thermal and dense dependence of the quark condensates σu, σd, and σs, and
the Polyakov-loop variables φ and φ̄, fruitful information, especially about the QCD chiral
phase transition, becomes available. All of these quantities can be estimated by minimizing
the real part of thermodynamic potential, Re [Ω(T, µ f )], Equation (10). We conclude the
chiral QCD phase transition, the dependence of the critical chiral temperatures on the
isospin chemical potential, looks very similar to the QCD phase transition, the dependence
of the critical temperatures on the baryon chemical potential, i.e., the (Tχ-µI) plane looks
very similar to the (Tχ-µB) plane. We conclude that the critical chiral temperatures are
not universally constant. This apparently depends on the quark flavors and the isospin
chemical potentials.
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