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1 Introduction

What is flavour? It is known that the fermions in the Standard Model appear
in three generations. Each generation differs from the others only by the masses
of the particles. The particle of a certain generation is said to have a certain
flavour. For example the charged leptons in the standard model are electron,
muon and tau. These are the flavours of the charged leptons. The particle with
certain flavour has a well defined mass. So the flavour is just a quantity that
states the particle in question. For each flavour a flavour number can be defined.
It counts the number of certain flavour in the system, so that the particle gives
a positive contribution and the antiparticle negative. In a flavour violating
process that number is violated, i.e. the initial state has different number of a
particular flavour than the final state.

Table 1: Flavour quantum numbers of leptons

Particle Flavour

e− (e+) +1e (−1e)

νe (ν̄e) +1e (−1e)

µ− (µ+) +1µ (−1µ)

νµ (ν̄µ) +1µ (−1µ)

τ− (τ+) +1τ (−1τ )

ντ (ν̄τ ) +1τ (−1τ )

Search for charged lepton flavour violation began at early 1940’s after the
muon was identified as a separate particle [108]. Despite numerous experimen-
tal searches, the charged lepton flavour violating processes have never been
observed. It is well known that the quark flavour is violated. Also the neutrino
oscillations clearly show that also the neutrino flavour is not conserved. Only
in the charged leptons, electron e, muon µ, and tau τ , there has been no exper-
imental evidence of flavour violation. Since all other fermions in the standard
model of particle physics (SM) have flavour violation, it would be natural that
also the charged leptons could mix.

It is known that if the neutrinos were massive and they mixed, the mixing
would be transferred to charged leptons as well due to the fact that the neutral
and the charged leptons share a coupling (νl-e-W ). The neutrinos are definitely
massive according to the experiment and they mix, so the mixing should exist
on the charged leptons as well. The SM, however, considers the neutrinos to
be absolutely massless. This clearly contradicts the experiments. The SM has
therefore to be extended to include massive neutrinos. The question is how are
they introduced? The easiest way is to assume that the neutrino masses are
generated the same way as all the other SM fermion masses are: in the Higgs
mechanism. This would mean the addition of neutrino Yukawa couplings in to
the theory. This method is simple, but it has a serious problem: fine-tuning.
The neutrino mass is experimentally known to be smaller than approximately
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Table 2: The current experimental bounds of CLFV processes.

Observable Upper limit

BR(µ→ eγ) 5.7× 10−13 [91]

BR(τ → eγ) 3.3× 10−8 [92]

BR(τ → µγ) 4.4× 10−8 [92]

BR(µ→ eee) 1.0× 10−12 [93]

BR(τ → eee) 3.0× 10−8 [92]

BR(τ → µµµ) 2.0× 10−8 [92]

BR(τ− → µ−e+e−) 1.7× 10−8 [94]

BR(τ− → e−µ+µ−) 2.7× 10−8 [94]

BR(τ− → e+µ−µ−) 1.7× 10−8 [94]

BR(τ− → µ+e−e−) 1.5× 10−8 [94]

CR(µ-e, T i) 4.3× 10−12 [95]

CR(µ-e,Au) 7.0× 10−13 [96]

1eV. This forces the neutrino Yukawa coupling to be about 10−12, which clearly
is a very precise number. The SM extended with massive Dirac neutrinos,
will also predict unobservably small rates for charged lepton flavour violating
(CLFV) processes, for example BR(µ → eγ) < 10−54. The small rates are in
principle not a problem, they are in an agreement with the experiments, but
the need of fine-tuning is considered a serious problem. Some other model for
neutrino mass generation is therefore needed.

There is a popular method to generate neutrino masses to SM, which avoids
the neutrino Yukawa fine-tuning problem. This model is called the seesaw mech-
anism (type-I). Seesaw-I mechanism one assumes the neutrino to have a Dirac
mass and also a right-handed Majorana mass. This allows the left-handed neu-
trino mass to be tiny (∼eV) and the right-handed mass to be very large (order
of the GUT scale ∼ 1016Gev). This also allows the neutrino Yukawa coupling
to be natural (∼ 1). Despite its merits, the SM extended with the seesaw-I,
still predicts unobservably small ratios for CLFV processes, which is depressing
since we would like to find proof of their existence. The observation of charged
lepton flavour violating processes would be a clear sign of the existense of the
physics beyond the Standard Model (BSM) or its simpler extensions (i.e. just
the addition of massive neutrinos).

We have only considered SM extensions that add massive neutrinos and
nothing else. They fail to produce observable CLFV rates. The SM can of
course be extended more radically. One of the best motivated SM extensions are
supersymmetric models. Supersymmetry assumes that for every particle in the
theory there is a partner with otherwise the same properties, but with different
statistics. So for electron there should be a particle with the same electric
charge and mass, but with spin-0. These kind of superpartners have never been
observed so the supersymmetry, if it exists, must be a broken symmetry.
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The simplest supersymmetric extension of the SM is the so called Mini-
mal Supersymmetric Standard Model (MSSM). The MSSM assumes for every
SM particle there is a superpartner and it also assumes a second Higgs dou-
blet to avoid anomalies. In the MSSM the supersymmetry breaking mech-
anism is not spelled out and the breaking is parametrized by the so called
soft supersymmetry-breaking terms. The soft terms offer new possible sources
of flavour violation. These include off-diagonal sfermion mass terms and off-
diagonal terms in the trilinear scalar couplings. Since there is no supersymme-
try breaking method spesified in the MSSM, the flavour violating off-diagonal
terms can be as big as the diagonal ones. This would lead to huge rates for
flavour violating processes, which is impossible, since the flavour violating pro-
cesses are extremely suppressed. The off-diagonal have therefore to be zero or
very close to it. It is usually assumed that the off-diagonal soft terms are zero.
This means that in the MSSM there can be no charged lepton flavour violation,
since also the neutrinos are massless in it just as in the SM. The quark flavour
is violated in MSSM as in the SM, since it is due to Yukawa couplings only.

The MSSM has also to be extended to include massive neutrinos. This can
also be done by seesaw-I mechanism, as in the SM. Both the SM extended
with the seesaw-I and the MSSM produce unobservably small rates of charged
lepton flavour violating processes. But when one combines the MSSM and the
seesaw-I, interesting things happen. In MSSM the off-diagonal soft terms are
(usually) assumed to be zero, but that holds only at the input scale, i.e. the scale
where the supersymmetry breaks. The SUSY-breaking scale is assumed to be
very high and the quantum corrections can drastically change the values of the
soft parameters as they are run from the input scale down to the electroweak
scale, where the experiments are done. In MSSM the renormalization group
running does not make the off-diagonal terms non-zero at the electroweak scale,
but when MSSM is extended with the seesaw-I, the off-diagonal soft terms can
deviate from zero at the electroweak scale due to the non-diagonal terms in the
neutrino Yukawa coupling. The soft terms generated in this way, produce such
rates for CLVF that are observable in the near future.

1.1 Neutrino oscillations

The neutrinos are spin-1/2 particles and have no electric charge. They interact
only via the weak interaction. The neutrinos are therefore leptons. There are
also electrically charged leptons in the Standard Model, called electron, e; muon,
µ and tau, τ ; of which the electron is the lightest and the tau the heaviest.
There are also three neutrinos in the Standard Model, called electron neutrino,
νe; muon neutrino, νµ, and tau neutrino, ντ . The neutrinos are named like
that, because in the SM when the W−- boson decays into a charged lepton, it
is always accompanied by an antineutrino of same flavour :

W− → li + ν̄i, where i = e, µ, τ. (1)

In the Standard Model of particle physics the neutrinos are assumed to
be massless. They are also assumed to be Dirac-particles, which means that
they have distinct antiparticles. The zero mass forces the neutrino flavour to be
absolutely conserved, since the flavour mixing is due to the non-zero off-diagonal
terms in the mass matrix. So according to the Standard Model, there can be
no neutrino mixing.
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However, it is experimentally known that different neutrino flavours can
mix to each other [74]. In neutrino mixing a neutrino that started out with
a definite flavour (νe, νµ or ντ ), can be found with a different flavour after
some propagation. This is possible, because the neutrinos taking part in the
interactions are not the mass eigenstates, i.e. the states with a definite flavour,
but linear combinations of them.

Neutrino mixing has undeniably been verified in ”disappearence” experi-
ments with athmospheric and accelerator neutrinos (νµ 9 νµ and ν̄µ 9 ν̄µ),
solar neutrinos (νe 9 νe) and reactor neutrinos (ν̄e 9 ν̄e) and in ”appearence”
experiments with solar neutrinos (ν → νµ,τ )[5]. This kind of mixing is only
possible when neutrinos are massive and their masses are different. Since the
discovery of the Higgs boson in the LHC [6], the origin of mass of the charged
fermions appears to be found. However, the origin of the neutrino masses
remains unknown. There are many suggestions concerning the generation of
neutrino mass. The structure of the neutrino mixing matrix, Pontecorvo-Maki-
Nakagawa-Sakata matrix (PMNS matrix), differs greatly from that of Cabibbo-
Kobayashi-Maskawa matrix which describes the mixing of quarks. This suggests
that maybe the neutrino masses are not generated in the same way as the masses
of quarks and charged leptons, that is when the Higgs field acquires the vacuum
expectation value (VEV). One of the suggestions of the neutrino mass genera-
tion is the seesaw mechanism (there are many of them). It is not even known
whether the neutrinos are Majorana or Dirac fermions (Majorana particles are
particles that are their own antiparticles).

Anyway, the neutrino oscillations clearly show that the neutrinos have non-
zero masses, and therefore that the Standard Model is not the complete descrip-
tion of nature. The SM has to be extended to include the massive neutrinos.
The method of their introduction affects the magnitude of charged lepton flavour
violation.

In this thesis I will study lepton flavour violation in charged lepton sector.
The outlook of this thesis is as follows. In Chapter 2 I will review flavour
and flavour violation in the context of the Standard Model. In the Chapters
3 and 4 I will study charged lepton flavour violation in the most general way,
using effective theory approach. The Chapter 5 is reserved for the general
dicussion about charged lepton flavour violation in supersymmetry in general
and specifically in MSSM extended with seesaw-I. In the Chapter 6 I will discuss
the following CLFV processes, l → l′l′′l′′, l → l′γ and e-µ conversion, in the
MSSM extended with the seesaw-I. Finally in Chapter 7 I will priefly discuss
about the search for the CLFV that is conducted in the LHC.
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2 Standard Model and Lepton Flavour

Let us review how the lepton and quark flavours are treated in the Standard
Model of particle physics. In this thesis we are of course mainly interested in
the flavour violation in the charged leptons, but it is instructive to review also
the mixing of quarks, since their mixing is understood a lot better than that of
leptons. We will need only a part of the Standard Model in our discussion, and
we will only consider topics we need.

The Standard Model gauge group is SU(3)C × SU(2)L × U(1)Y , where
SU(3)C is the gauge group describing the strong interaction and the SU(2)L ×
U(1) is the gauge group describing the electroweak interaction. At low energies
where humans live, the SU(2)L × U(1) has been spontaneously broken due to
the Higgs field VEV at ∼ 246 GeV, resulting into separate weak and electro-
magnetic interactions. The strong, weak and the electromagnetic interactions
are so called gauge interactions, i.e. they are mediated by spin-1 gauge bosons.
There is still one interaction remaining in the Standard Model, but it is not
a gauge interaction. The remaining interaction is the Higgs-fermion Yukawa
interaction. It applies in the energies higher than the electroweak scale, where
the Higgs field has not acquired vacuum expectation value.

According to the SM, the neutrinos know only the weak interaction. The
charged leptons know the weak interaction as well, and also the electromagnetic
interaction due to their electric charge. The quarks know all the interactions:
weak, strong and the electromagnetic.

Since only the quarks know the strong interaction and that they don’t con-
tribute to the flavour changing processes, we do not discuss it in the rest of this
thesis. We are particularly interested in the weak interaction and the Yukawa
interaction, since they combined are responsible for the flavour violation in the
Standard Model. We will next review the Weinberg-Salam model that treats
the topics relevant for us: electroweak and Yukawa interactions.

2.1 Weinberg-Salam model

In the Weinberg-Salam model (named after Nobel laureates Steven Weinberg
and Abdus Salam) the weak and electromagnetic interaction are unified under
one gauge group, SU(2)L × U(1)Y . This is the gauge symmetry exact at the
energies larger than the electroweak scale, ∼ 100 GeV. At the energies that
high all the fermions and gauge bosons are massless. When SU(2)L × U(1)Y
gauge symmetry breaks spontaneously, charged leptons, quarks and W±- and
Z0-bosons acquire masses. The neutrinos and the photon remain massless after
the breaking. Let us look into this more closely. First we will describe the
general structure of the electroweak interactions and after that we will see how
the electroweak SU(2) × U(1) symmetry is broken and particularly how the
fermion masses are created. The fermion mass generation is really important,
since it contains the key for understanding the flavour violation.

Before the spontaneous symmetry breaking the Weinberg-Salam Lagrangian
divides into three parts:

LWS = LG + LF + LH ,
where LG, LF and LH are gauge boson, fermion and Higgs interaction La-
grangians, respectively. Let us next see what they contain.
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2.1.1 Gauge fields

The LG describes the kinetic terms of the gauge bosons of the Weinberg-Salam
model and also the interactions between the gauge bosons themselves. There
are four gauge boson fields ~Wµ = (W 1

µ ,W
2
µ ,W

3
µ) and Bµ in this model. The

vector fields W 1
µ ,W

2
µ and W 3

µ correspond to the three generators, τ1, τ2 and τ3
1,

of the SU(2)L gauge group and the vector field Bµ corresponds to the gauge
group U(1)Y . These fields are the gauge eigenstates. These states are those
that appear in the Lagrangian.

The gauge part of the electroweak Lagrangian is

LG = −1

4
Fµνi F iµν −

1

4
BµνBµν , (2)

where F iµν is the SU(2)L field strength tensor

F iµν = ∂µW
i
ν − ∂νW i

µ − g2ε
ijkW j

µW
k
ν , i = 1, 2, 3,

g2 the SU(2)L gauge coupling and Bµν is the U(1)Y field strength tensor

Bµν = ∂µBν − ∂νBµ.

When the SU(2)L×U(1)Y gauge symmetry spontaneously breaks, the gauge
bosons W 1

µ ,W
2
µ , W 3

µ and Bµ acquire masses. Before the symmetry breaking the
gauge bosons are massless (no mass terms in (2)), and the gauge eigenstates
W 1
µ ,W

2
µ , W 3

µ and Bµ are also mass eigenstates, i.e. states with definite mass.
When the gauge fields become massive, the gauge eigenstates no longer are the
same thing as the mass eigenstates. After the symmetry breaking one usually
wants to use the mass eigenstates instead of gauge eigenstates, since the mass
eigenstates are the physical fields that are seen in the experiments. Even though
we are going to talk about Higgs mechanism later, we are now going to reveal
what the mass eigenstates of the gauge fields are. The later Section concerning
Higgs mechanism is reserved for the fermion mass generation, of which we are
mainly interested. The physical mass eigenstates are the familiar W±-bosons,
Z0-boson, and the photon. These mass eigenstates can be expressed in terms
of the gauge eigenstates in the following way:

W±µ = 1√
2
(W 1

µ ∓ iW 2
µ),

Zµ = cosθWW
3
µ − sinθWBµ,

Aµ = sinθWW
3
µ + cosθWBµ.

(3)

where W±µ stands for W±-bosons, Zµ for Z-boson and Aµ stands for the photon.
The θW is the so called Weinberg angle. In the Higgs mechanism the W±- and
the Z-bosons acquire masses by absorbing the degrees of freedom from the three
Goldstone-bosons. The photon remains massless.

Now that we have dealt with the gauge bosons of the electroweak theory, we
are ready to introduce the matter fields: the fermions of the Standard Model.

1The generators of SU(2) group are the Pauli-matrices τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
. The Pauli-matrices satisfy the SU(2) algebra: [τi, τj ] = 2iεijkτk.
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2.1.2 Fermion fields

The Standard Model fermions can be divided into two categories: quarks and
leptons. There are six quarks and six leptons. Three of the quarks has the
electric charge +2/3 and they are called: up, u; charm, c and top, t. The rest
three quarks have the electric charge −1/3 and they are called: down, d; strange,
s and bottom, b. Three of the leptons have the electric charge −1 and they are
called: electron, e; muon, µ and tau, τ . The rest three leptons are electrically
neutral and they are called: electron neutrino, νe; muon neutrino, νµ and tau
neutrino, ντ . Every fermion of certain electric charge are said to exist in three
generations. The fermion fields appearing in the electroweak Lagrangian are in
the gauge basis. Let us denote gauge eigenstates by prime:

e′i = (e′, µ′, τ ′)
ν′i = (ν′e, ν

′
µ, ν
′
τ )

u′i = (u′, c′, t′)
d′i = (d′, s′, b′),

where i is the generation index or equivalently flavour index, which run from 1
to 3. We have chosen to use prime in the names of the fields, because the gauge
eigenstates are in general different from the mass eigenstates. Even though
the fermions are massless when the SU(2)L × U(1)Y gauge symmetry is exact,
the fermions will become massive in the electroweak symmetry breaking. The
unprimed symbols are reserved for more fundamental, physically observable
mass eigenstates.

Let us now see how the fermions couple to the electroweak gauge bosons.
The electroweak interactions treat fermions of different handedness differently.
The SU(2)L gauge bosons, W 1

µ ,W
2
µ and W 3

µ , couple only to the left-handed
fermions and the U(1)Y gauge boson Bµ couples to both left- and right-handed
fermions.

Left-handed fermions reside in the weak isospinors and right-handed fermions
reside in weak isosinglets. The weak isodoublets are

l′i,L =

(
ν′i
e′i

)
L

and q′i,L =

(
u′i
d′i

)
L

(4)

and weak isosinglets are ei,R, ui,R and di,R. Two quantum numbers are now
defined for the fermions: the weak isospin third component, I3, and the weak
hypercharge, Y . The upper field, in the weak isodoublets in (4) have the weak
isospin third component 1/2 and the lower ones have −1/2. So the left-handed
fermions have weak isospin third component either 1/2 or −1/2. The right-
handed fermions are defined to have isospin 0. We define the weak hypercharge
of a particle as2:

Y = 2(Q− I3), (5)

where Q is the electric charge of the particle in question. The weak isospins
and weak hypercharges of the Standard Model fermions are given in the Table
3. Note that there is no right-handed neutrino in the Standard Model, since
the Standard Model treats the neutrino as an absolutely massless particle, even
after the electroweak symmetry breaking.

2Sometimes the weak hypercharge is defined as Y = Q− I3.
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Table 3: Hypercharges and isospins

Particle I3 Y

ei,L -1/2 -1
ei,R 0 -2
νi,L 1/2 -1
ui,L 1/2 1/3
ui,R 0 4/3
di,L -1/2 1/3
di,R 0 -2/3

The fermion part of the Lagrangian is:

LF =
∑
ψL

ψ̄Li /DψL +
∑
ψR

ψ̄Ri /DψR, (6)

where the first sum sums over all the left-handed weak isodoublets and the
second sum sums over all the right-handed weak isosinglets. The /D represents
the covariant derivative. As usual, the covariant derivative contains the possible
gauge interactions the fermions have. The right-handed fermions don not couple
to weak isospin so their covariant derivative is simpler than that of the left-
handed fermions. The covariant derivative of the right-handed fermions is

DµψR = (∂µ + i
g1

2
YWBµ)ψR, (7)

where g1 is the U(1) coupling constant. As we see from (7), the right-handed
fermions couple only to the Bµ-boson.

The covariant derivative of the left-handed fermions is

DµψL =

(
I(∂µ + i

g1

2
YWBµ) + ig2

~τ

2
· ~Wµ

)
ψL, (8)

where I and the 2× 2 matrices ~τ are the Pauli matrices. As is evident from (8),
the left-handed fermions couple both to the gauge bosons W 1

µ , W 2
µ and W 3

µ , as
well as to the Bµ-boson. Now that we know all the possible electroweak gauge
interactions, we are fit to deal with the only non-gauge interaction in the: the
interaction with the spin-0 Higgs boson.

2.1.3 The Higgs sector

We have already discussed about the fermions and the vector bosons of the
electroweak theory. There is however two complex-scalar fields in the Standard
Model, electrically charged and electrically neutral Higgses: φ+ and φ0. The
Higgs fields are assigned to the weak isospinor:

Φ =

(
φ+

φ0

)
. (9)
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So the charged Higgs has I3 = 1/2 and the neutral Higgs has I3 = −1/2.
Therefore they have the weak hypercharge Y = 1.

The Higgs field couples both to the fermions and the gauge bosons. Therefore
the Higgs sector Lagrangian divides into two parts, the Higgs-gauge part and
the Higgs-fermion part:

LH = LHG + LHF .

The Higgs-gauge part can be written as

LHG = (DµΦ)†DµΦ− V (Φ), (10)

where the Dµ is the covariant derivative for Higgs fields and the V (Φ) is the
Higgs self-interaction potential

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, (11)

with positive µ2 and λ parameters. This Higgs scalar potential is the most
important ingredient, when one considers the electroweak symmetry breaking.
We will come to this in the next section.

The covariant derivative can be written as:

DµΦ = (I(∂µ + i
g1

2
Bµ) + ig2

~τ

2
· ~Wµ)Φ. (12)

The Higgs doublet couples to all of the electroweak gauge bosons.
The Higgs-fermion part describes the Yukawa-type interaction between the

Higgs fields and the Standard Model fermions. In general Yukawa couplings
couple one scalar field to two fermion fields. The Higgs-fermion part of the
electroweak Lagrangian is given by:

−LHF =

3∑
i=1

3∑
j=1

(yiju q̄
′
i,LΦ̃u′j,R + yijd q̄

′
i,LΦd′j,R + yije l̄

′
i,LΦe′j,R) + h.c., (13)

where yiju , yijd and yije are arbitrary, dimensionless, Yukawa-coupling constants.
Primes denote gauge eigenstates. We have also employed charge conjugation to
Φ:

Φ̃ = iτ2Φ∗,

where τ2 is the second Pauli matrix.
Note that there is no term

yijν l̄
′
i,lΦ̃ν

′
j,R (14)

in (13). It is so, because neutrinos are assumed massless in the Standard Model
and there can not therefore be any right-handed neutrinos. It is, however,
experimentally known that the neutrinos are massive. The Standard Model
could be trivially extended to include massive neutrinos by adding the term (14)
to the Standard Model. This however leads ot unwanted properties. We talk
more about this in the next section, where we dive into the Higgs mechanism.
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2.2 The Higgs mechanism

The Weinberg-Salam lagrangian is invariant under SU(2)L×U(1)Y gauge trans-
formation. However, the ground state of the Higgs field (9) is not invariant
under SU(2)L×U(1)Y gauge transformation. More specifically the groundstate
of the Higgs field is not invariant under SU(2)L transformation. It still must be
invariant under U(1) electromagnetic gauge transformation in order to ensure
zero photon mass and the conservation of the electric charge [3]. Because the
groundstate is not invariant under SU(2)L × U(1)Y gauge transformation the
system is subject to spontaneous symmetry breaking. Let us look into this more
closely.

The minimum of the Higgs field corresponds to the minimum of its scalar
potential (11):

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (15)

One easily finds out that the minimum of the potential is:

Φ†Φ = |φ+|2 + |φ0|2 =
µ2

2
.

To ensure that only neutral component breaks we demand that the Higgs field
vacuum expectation value 〈Φ〉 is:

〈Φ〉 =

(
0
v√
2

)
,

where v is:

v =

√
µ2

λ
.

So the vacuum expectation value of the charged Higgs is zero. If it differed
from zero, the Yukawa terms would then contain terms that would break the
conservation of the electric charge, which clearly contradicts the experimental
evidence.

The masses of all the fermions and the gauge bosons are determined by
substituting the Higgs field by its vacuum expectation value in the Weinberg-
Salam Lagrangian. Gauge boson masses are obtained from the Higgs-gauge part
of the Lagrangian (10). Fermion masses are obtained from the Higgs-fermion
Yukawa coupling (13). Thus the fermion mass Lagrangian is

−LF,mass = 〈−LHF 〉
= v√

2
yiju ū

′
i,Lu

′
j,R + v√

2
yijd d̄

′
i,Ld

′
j,R + v√

2
yije ē

′
i,Le
′
j,R + h.c.

= ū′i,L(m′u)iju′j,R + d̄′i,L(m′d)
ijd′j,R + ē′i,L(m′e)

ije′j,R + h.c.,

(16)

where we have identified the fermion mass matrices:

m′i =
v√
2
yi i = u, d, e. (17)

The neutrino masses are not generated like this in the Standard Model since
the neutrinos are assumed to be massless in Standard Model. Their masses
could however be generated like this if the neutrinos have distinct antiparticles
i.e. they are Dirac particles. We would only have to add term
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yijν l̄
′
i,LΦ̃ν′j,R,

to the Higgs-fermion part (13) of the Weinberg-Salam Lagrangian. When Higgs
field acquires VEV, this term would become the neutrino Dirac-mass term:

v√
2
yijν ν̄

′
i,Lν

′
j,R = ν̄′i,L(m′ν)ijν′j,R (18)

This seems unnatural, however. According to measurements the neutrino
masses less than 1eV [12]. This would need unsatisfactory fine-tuning:

gν . 10−12 ≪ ge.

It would be more natural if the coupling would be closer to the order of one.
This need of fine tuning of neutrino Yukawa coupling could suggest, that the
neutrino masses are not generated in this way. It is not even known whether
the neutrinos are their own antiparticles or not. The particles, that are their
own antiparticles, are called Majorana particles. The Standard Model treats the
neutrinos as Dirac particles. The Standard Model has to be extended to have
massive neutrinos. One of the popular methods to give the mass to the neutrino
is the seesaw-I mechanism. This allows the neutrino to have a natural Yukawa
coupling. The seesaw-I mechanism is discussed in the Appendix C. Next we see
how the fermions mix with each other in the Standard Model.

2.3 Fermion mixing

When electroweak symmetry breaks the Higgs-fermion interaction terms (13)
become the fermion mass terms:

−LF,mass = ū′Lm′uu
′
R + d̄′Lm′dd

′
R + ē′Lm′ee

′
R + h.c.

There is no reason why fermion mass matrices, m′u, m′e and m′e, should be di-
agonal in gauge basis (denoted by prime). We want to make the mass matrices
diagonal, since the physical particles we observe have well defined masses. The
mass matrices can be made diagonal in mass basis (unprimed). The diagonal-
ization can done by introducing the following 3× 3 unitary matrices:

Sαi α = u, d, e and i = L,R,

and insert them next to appropriate fermion fields. The mass terms, that were
originally in gauge basis (16) can now be written in mass basis:

−LFmass = ū′LSuLSu†L m′uS
u
RSu†R u

′
R + d̄′LSdLSd†L m′dS

d
RSd†R d

′
R

+ē′LSeLSe†L m′eS
e
RSe†R e

′
R + h.c.

= ūLmuuR + d̄LmddR + ēLmeeR + h.c.

= ūmuu+ d̄mdd+ ēmee.

The matrices SαL,R are absorbed into the definitions of mass eigenstates:

uL = Su†L u
′
L, dL = Sd†L d

′
L, eL = Se†L e

′
L

uR = Su†R u
′
R, dR = Sd†R d

′
R, eR = Se†R e

′
R.

(19)
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Here we use notation

ui,L =
∑

j=1,2,3

(Su†L )iju
′
j,L ūi,L =

∑
j=1,2,3

ū′j,L(SuL)ji (20)

for matrix multiplication in (19). Here we see that the different generations
are mixed into each other. According to (20), an up-type quark ui,L is a linear
combination of gauge eigenstates of every generation. This mixing will be visible
in the interaction Lagrangian, and allow flavour violating processes to take place.

The diagonalizations of mass matrices m′u, m′e and m′e therefore are:

m′u = SuLmuS
u†
R , m′d = SdLmdS

d†
R , m′e = SuLmeS

u†
R .

The diagonal mass matrices then are:

mu =

 mu 0 0
0 mc 0
0 0 mt

 , md =

 md 0 0
0 ms 0
0 0 mb

 , me =

 me 0 0
0 mµ 0
0 0 mτ

 .

The electroweak theory was originally expressed in terms of gauge eigen-
states. In order to be able to compare calculations to observations, we should
express theory in terms of observed fields i.e. the mass eigenstates. This can
be done by using equations (19). The introduction of mass eigenstates leads to
modifications in electroweak currents. Also for a general theory, the currents
can be divided into neutral and charged currents. Neutral currents couple to
the neutral gauge bosons and the charged currents couple to the electrically
charged gauge bosons.

We are interested in the flavour violation. In the Standard Model the flavour
violation can only occur after the electroweak symmetry breaking, when the
fermion masses are generated. The off-diagonal mass terms act as sources for
the flavour violation. We will also express the neutral and charged current
Lagrangians in terms of physical gauge bosons: W±µ , Zµ and Aµ.

2.3.1 Electroweak neutral current

The structure of electroweak neutral current does not change when we write the
current in terms of mass eigenstates. The neutral weak current Lagrangian is
[1]:

LNC = g2J
′3
µW

3µ +
1

2
g1J
′Y
µ B′µ

= eJ ′emµ Aµ +
g2

cosθW
J ′0µ Z

µ,

where J ′emµ is the electromagnetic current, which contains both left- and right-
handed fields 3:

J ′emµ =

3∑
i=1

qiē
′
iγ
µe′i +

3∑
i=1

qiū
′
iγ
µu′i +

3∑
i=1

qid̄
′
iγ
µd′i, (21)

3PL + PR = 1
2

(1− γ5) + 1
2

(1 + γ5) = 1
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and J ′0µ is the current which couples to the Z0-boson:

J ′0µ = J ′3µ − sin2θWJ
′em
µ .

The prime in the names of the currents signifies, that they are written in terms
of the gauge eigenstate fermions.
Neutral weak current J ′3µ is:

J ′3µ =
1

2

3∑
i=1

l̄′i,Lγµτ
3l′i,L +

1

2

3∑
i=1

q̄′i,Lγµτ
3q′i,L,

=

3∑
i=1

ν̄′i,Lγµν
′
i,L −

3∑
i=1

ē′i,Lγµe
′
i,L +

3∑
i=1

ū′i,Lγµu
′
i,L −

3∑
i=1

d̄′i,Lγµd
′
i,L.

Neutral currents J ′emµ and J ′0µ retain their form when we express them in
terms of mass eigenstates (19), since unitary matrices SαL,R cancel. To show
this, let us write leptonic part of the electromagnetic current (21) in terms of
mass eigenstates (19):

J ′emµ,lepton =

3∑
i=1

qiē
′
iγµe

′
i =

3∑
i=1

qiē
′
i,Lγµe

′
i,L +

3∑
i=1

qiē
′
i,Rγµe

′
i,R

=

3∑
i=1

qi(ēLSe†L )iγµ(SeLeL)i +

3∑
i=1

qi(ēRSe†R )iγµ(SeReR)i.

We can commute SαL,R and γµ because they operate in different spaces: SαL,R op-
erates in flavour space and γµ operates in spin space. Therefore due to unitarity
of SαL,R :

J ′emµ,lepton =

3∑
i=1

qiēi,Lγµei,L +

3∑
i=1

qiēi,Rγµei,R

=

3∑
i=1

qiēiγµei ≡ Jemµ,lepton.

So indeed electromagnetic current retains its structure when we express
gauge eigenstates in terms of mass eigenstates. That is because each term
in the electromagnetic current contains both a field and the adjoint of the same
field. Also neutral weak current has this property. However that is not the case
with the charged current as we shall see.

2.3.2 Electroweak charged current and quark mixing

The charged weak currents are [1]:

J+
µ =

3∑
i=1

ν̄′i,Lγµe
′
i,L +

3∑
i=1

ū′i,Lγµd
′
i,L

J−µ =

3∑
i=1

ē′i,Lγµν
′
i,L +

3∑
i=1

d̄′i,Lγµu
′
i,L.
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The neutral currents hold their form, whether one represents them in the
gauge or the mass basis, so they can not be responsible for flavour violation in
the Standard Model. In fact, the charged currents are those responsible. Let us
show that for the quarks. The charged current J+

µ for quarks can be written in
terms of mass eigenstates (19) as follows:

J+
µ,quark =

3∑
i=1

ū′i,Lγµd
′
i,L = ūLSu†L γµSdLdL

= ūLγµSu†L SdLdL =

3∑
i=1

ūi,Lγµd
′′
i,L,

where we have denoted

d′′i,L ≡
3∑
j=1

Vijdj,L, (22)

and

V ≡ Su†L SdL.

The matrix V is called Cabibbo-Kobayashi-Maskawa matrix, abbreviated as
CKM matrix. It describes the mixing of quarks. Because the quark gauge
eigenstates differ from mass eigenstates, which is experimentally known, the
physically observed quarks (i.e. the mass eigenstates) are linear combinations
of gauge eigenstates. Traditionally the mixing matrix V is added to the lower
generations da, but it can of course be added to the upper generations uA instead
of the lower ones.

The double primed state in equation (22) is called weak eigenstate, since
it is the field that directly couples to the W±-bosons. So the physical mass
eigenstates do not directly couple to the charged current, but they couple to it
as a linear combination (22).

Since the electroweak neutral currents retained their form when we switched
from the gauge eigenstates to the mass eigenstates, the flavour is not violated
by them. It is said that there is no flavour changing neutral currents (FCNC)
at the Lagrangian level. This means that the flavour cannot change in any
process, which has only neutral gauge boson (photon and Z-boson) exchanges.
The flavour can only change in processes where charged gauge bosons (W±)
are exchanged. There can be flavour changing neutral currents in Standard
Model beyond Lagrangian level, i.e. in diagrams containing loops. The flavour
changing neutral current are however highly suppressed in the Standard Model
due to the GIM-mechanism.

2.3.3 Possibility of charged lepton mixing?

In the Standard Model charged leptons cannot mix, because the neutrinos are
massless in it. It is, however, known that the neutrinos have mass and that they
mix. Could the charged leptons mix? It is known that quark generations mix
to each other. The mixing is often associated to the lower fields in the SU(2)L
doublet, but the mixing could as well be associated to the upper fields in the
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doublet. Based on the quark mixing case, we then expect that the neutrino mix-
ing matrix could be associated to the charged lepton fields instead of neutrino
fields.

If neutrinos were Dirac fermions, their masses could be generated through
Higgs mechanism. Then the neutrinos would have a mass term (18). The
neutrino mass matrix in (18) could be diagonalized in the same fashion as in
the equation (19), by introducing a unitary matrices SνL,R. With these we could
represent the neutrino mass eigenstates in terms of gauge eigenstates:

νL = Sν†L ν
′
L νR = Sν†R ν

′
R.

We could now introduce lepton mixing in a same way as in the previous
section, by writing charged weak current in terms of mass eigenstate leptons
instead of gauge eigenstates. The lepton mixing would not be possible without
neutrino mass: mixing matrix could always be taken as unit matrix.

J+
µ,lepton =

3∑
i=1

ν̄′i,Lγµe
′
i,L = ν̄LSν†L γµSeLeL

= ν̄LγµSν†L SeLeL = ν̄LSν†L SeLγµeL.

So the mixing of neutrinos could suggest that also the charged leptons e, µ
and τ could mix. As we have already noted the Dirac-neutrinos would require
unsatisfactory fine-tuning of neutrino Yukawa-coupling. So the Standard Model
is preferably not extended in this way. But as a conclusion to our Standard
Model section, we can say that there are no charged lepton flavour violating
processes in the Standard Model. So any observation of charged lepton flavour
violating process would prove the existence of physics beyond the Standard
Model.
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3 CLFV in effective theories

3.1 Effective theories

The Standard Model Lagrangian consists of renormalizable terms only, i.e. the
constant coefficients of every term in the Lagrangian have non-negative mass
dimensions. Also all the terms are invariant under the Standard Model gauge
group SU(3)C × SU(2)L × U(1)Y . If one abandons the requirement of renor-
malizability, the Standard Model can be extended by including gauge invariant
effective operators with mass dimensions larger than four. These operators are
remnants of the higher theory in the low energy limit. The propagators of the
heavy particles reduce into points in the low momentum limit leaving behind
only the contact interactions. The vertex function of this new vertex is called an
effective operator. Let us now briefly study an example of this kind of effective
operator.

Let us study the decay of a muon, µ → νµeν̄e, in the standard theory of
weak interactions. At the tree level there is only one diagram contributing to
this process and it is displayed at Figure 1 (a). The Feynman amplitude for this
process at tree level is therefore [3]:

M = −g2
W [ēγα(1− γ5)νe]

i(−gαβ +
kαkβ
m2
W

)

k2 −m2
W + iε

[ν̄µγ
β(1− γ5)µ], (23)

where gW is related to weak coupling constant g2 as gW = g2
2
√

2
.

However, when the energy is small compared to the mass of the W -boson,
the W boson propagator reduces to a much simpler form:

lim
mW→∞

i(−gαβ +
kαkβ
m2
W

)

k2 −m2
W + iε

=
i

m2
W

gαβ .

At this low energy limit the Feynman amplitude (23) becomes:

M = −i g
2
W

m2
W

[ēγα(1− γ5)νe][ν̄µγα(1− γ5)µ]. (24)

This corresponds to a contact interaction shown in figure 2 (b).

µ− νµ

W− e−

ν̄e

Figure 1: (a)

µ−
νµ

e−

ν̄e

Figure 2: (b)
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So when the energy scale is much lower than the scale of the weak interac-
tions, mW , the propagator of the heavy high energy scale particle (W -boson)
contracts to a suppression factor ∼ 1/m2

W . It is said that the heavy degrees
of freedom have been ”integrated out” (the term comes from the path integral
formalism where the heavy fields are got rid of by performing a functional in-
tegration over the heavy fields) . This is the fundamental idea of effective field
theories: at energies much lower than the energy scale of the higher theory, the
propagators of the heavy particles become factors which are suppressed by the
energy scale of the higher theory.

At lower energies than the scale of the higher energy theory the heavy high
energy theory particles cannot be produced in collisions or in decays, so they
are absent in the external states. The heavy fields are, however, still present
as virtual particles. Therefore the effects of the heavy fields are still there even
though the heavy fields themselves are not detected. This is how the effects of
the electroweak theory were first detected, as virtual effects beyond QED, which
was the Standard Model at the time. The nuclear beta decays were detected
and they seemed to happen as the contact interaction presented in our example.
The heavy field mediating the process, W boson, was detected later.

At low energies compared to the scale of the higher theory the heavy particles
effectively vanish. As a result two vertices of the original high energy theory
merge into a one vertex. This usually ruins the renormalizability of the effective
theory. As the propagator disappears more fields accumulate to that one vertex
making mass dimension of the effective coupling constant negative. This is
exactly what happens in our example: once the W -boson propagator vanishes
four fermion fields get connected in the same vertex. The mass dimension of a
fermion field is 3/2 so the total mass dimension of the fermion fields is 6, making
the mass dimension of the effective coupling constant, g2

W /m
2
W , -2.

We would have obtained the expression (24) if we had used the interaction
Lagrangian

LFint = −
(
gW
mW

)2

[ēγα(1− γ5)νe][ν̄µγ
β(1− γ5)µ].

This is the contact interaction which Fermi proposed in 1934 to describe nuclear
β-decay process n→ p+ e− + ν̄e [3][41].

The effective theories (effective QFT) can be used in two ways. If the La-
grangian of the full theory is known, the low energy situations of that theory
can be expressed in a much simpler form by integrating out the heavy degrees of
freedom. When the full high energy theory is not known, which is the case now
when one tries to study the physics beyond SM, the effective field theory can
be used to give the phenomenology of the high energy physics. It is straightfor-
ward to use an effective field theory at tree level, but at loop level complications
arise, since the higher dimensional operators are not renormalizable. In gen-
eral these non-renormalizable interactions give divergent results. However using
appropriate techniques one can scrape together a finite result [?].

In the most New Physics theories the Standard Model is recovered by de-
coupling the heavy degrees of freedom whose mass scale is Λ�MZ . This kind
of decoupling is possible because of the Appelquist-Carazzone theorem which
states that heavy fields decouple at low momenta except for their contribution
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to renormalization effects [28]. When low momentum limit is taken from a new
physics model the propagators in diagrams containing heavy new physics parti-
cles wither, leaving only contact interactions. This gives rise to so called higher
dimensional operators i.e. operators whose mass dimension is greater than four.
The new physics effective Lagrangian at low energy limit can be written as a
sum of the Standard Model Lagrangian and the effective higher dimensional
operators:

Lnewphys = LSM +
1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
,

where Cnk ’s are dimensionless coupling constants known as Wilson coefficients
and Qn’s are the n-dimensional effective operators.

New physics can be studied in a model independent way by studying the
Standard Model extended with gauge invariant effective higher dimensional op-
erators. When we have chosen our New Physics model, we can calculate the
Wilson coefficients. However, in the following three Sections we want to study
lepton flavour violation in charged lepton sector without specifying the model.
This can then be done using higher dimensional effective operators. We assume
so called ”Minimal Flavour Violation hypothesis” (MFV) [27]. It assumes that
the Standard Model Yukawa couplings are the only sources of lepton flavour
symmetry breaking. This means that effective higher dimensional operators
describing lepton flavour violation contain only Standard Model fields.

In general two different high energy theories will both produce the same
effective higher dimensional operators. The two models differ in the Wilson
coefficients.

3.2 Effective operators

In the following sections we will take a closer look into three kinds of processes
which violate charged lepton flavour. These processes are li → lj , li → ljγ and
li → lj lkll. We will study properties of these reactions by examining the effective
Lagrangians for given processes. The effective Lagrangians we use to generate
charged lepton flavour violation consist of dimension-six effective operators at
electroweak scale. There is only one dimension five operator, the Weinberg
operator [30], and it only contributes to the neutrino masses. The mixing of
neutrino masses gives a source of flavour violation in charged lepton sector,
due to the fact that the neutrinos couple to the charged leptons. The effect is
unobservably small however. We don’t need to include the Weinberg operator
in our studies then. The dimension-seven operators are order O

(
1/Λ3

)
and

are therefore contributing very little compared to the dimension-six operators
which are suppressed only by O

(
1/Λ2

)
. The dimension-six operators are then

the only ones we need.
We will first study µ → e. It is in some sense more general than closely

related µ→ eγ. Vertex (or vertices) that contain photon exists in both reactions.
In µ→ eγ the photon is on mass shell but µ→ e can contain a photon that is
virtual.

Then we will concentrate on li → lj lkll which has many different properties
compared to previous ones. But before we can go to examine specific reactions,
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we have to review some of the effective operators that are relevant to our discus-
sion. The complete list of independent dimension-5 and dimension-6 operators
which are constructed from the SM fields and which also are invariant under
SM gauge group SU(3)C×SU(2)L×U(1)Y was first derived by W. Buchmuller
and D. Wyler in 1985 [42]. That list was not irreducible however. The classical
equations of motion can be used to get rid of redundant operators [46]. In this
thesis minimal reducible set of dimension-six operators is used [43].

Let us now list the effective dimension-six operators that contribute to the
charged lepton flavour violating processes at tree-level or at the 1-loop level
(after the heavy fields are integrated out). Operators listed here are the ones
that give the main contribution to lepton flavour violating processes. We have
omitted operators which give only the contribution to the flavour violating Higgs
boson coupling since they are suppressed by higher orders of ml/mh0 [14].

Table 4: Effective dimension-six operators with leptons [14]

llll llXφ llφφD

Qll = (l̄iγµlj)(l̄kγ
µll) QeW = (l̄iσ

µνej)τ
IφW I

µν Q
(1)
φl = (φ†i

↔
Dµ φ)(l̄iγ

µlj)

Qee = (ēiγµej)(ēkγ
µel) QeB = (l̄iσ

µνej)φBµν Q
(3)
φl = (φ†i

↔
D
I

µ φ)(l̄iτ
Iγµlj)

Qle = (l̄iγµlj)(ēkγ
µel) Qφe = (φ†i

↔
Dµ φ)(ēiγ

µej)

Table 5: Effective dimension-six operators with leptons and quarks [14]

llqq

Q
(1)
lq = (l̄iγµlj)(q̄kγ

µql) Qld = (l̄iγµlj)(d̄kγ
µdl) Qlu = (l̄iγµlj)(ūkγ

µul)

Q
(3)
lq = (l̄iγµτ

I lj)(q̄kγ
µτ Iql) Qed = (ēiγµej)(d̄kγ

µdl) Qeu = (ēiγµej)(ūkγ
µul)

Qeq = (ēiγµej)(q̄kγ
µql) Qledq = (l̄ai ej)(d̄kq

a
l ) Q

(1)
lequ = (l̄ai ej)εab(q̄

b
kul)

Q
(3)
lequ = (l̄ai σµνej)εab(q̄

b
kσ

µνul)

Indices i, j, k and l are flavour indices. These operators are the basis from
which the effective Lagrangians are constructed. In the case of operators, QeW
and QeB , which contain gauge eigenstates ~Wµ = (W 1

µ ,W
2
µ ,W

3
µ) and Bµ it is

customary to use the mass eigenstates W+
µ , W−µ , Zµ and Aµ instead. The

relation between mass eigenstates and gauge eigenstates is given by (3).
The operators listed in Tables 4 and 5 give rise to lepton flavour violating

effective vertices. The effective vertices are represented in Figures 5-16. The
operators which contribute to a given vertex are written in to the captions of
the figures. In the Appendix E we have written the effective operators explicitly
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in terms of the fields. The Feynman rules associated to these vertices can be
found in [14]. The reason why we are assuming so small energy, that the Higgs
can be neglected, is that the processes li → lj , li → ljγ and li → lj lkll are
predominantly searched in the low-energy experiments [75]-[86].

γ

l̄j

li

Figure 3:
QeW , QeB

Z

l̄j

li

Figure 4:

QeW , QeB , Q
(1)
φl , Q

(3)
φl , Qφe

W

li

ν̄j

Figure 5:

QeW , Q
(3)
φl

Z

νi

ν̄j

Figure 6: Q
(1)
φl , Q

(3)
φl

W

γ li

ν̄j

Figure 7: QeW

W

Z li

ν̄j

Figure 8: QeW

W

W li

l̄j

Figure 9: QeW

li lj

lk ll

Figure 10:
Qll, Qee, Qle

li lj

νk νl

Figure 11: Qll, Qle

νi νj

νk νl

Figure 12: Qll
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li lj

uk ul

Figure 13:

Q
(1)
lq , Q

(3)
lq , Qeq, Qlu, Qeu, Q

(1)
lequ, Q

(3)
lequ

li lj

dk dl

Figure 14:

Q
(1)
lq , Q

(3)
lq , Qeq, Qld, Qed, Qledq

νi νj

uk ul

Figure 15: Q
(1)
lq , Q

(3)
lq , Qlu

νi νj

dk dl

Figure 16: Q
(1)
lq , Q

(3)
lq , Qld

By taking into account all the operators in the Tables 4 and 5 we can write
the most general charged lepton flavour violating Lagrangian to one loop order:

LCLFV = LllXφ + Lllll + Lllqq + Lllφ2D

=
1

Λ2

∑
ij

(
CijeWQ

ij
eW + CijeBQ

ij
eB

)
+

1

Λ2

∑
ij

(
CijφlQ

(1)ij
φl + CijφlQ

(3)ij
φl + CijφeQ

ij
φe

)
+

1

Λ2

∑
ijkl,i≥k,j≥l

(
Cijklll Qijklll + Cijklee Qijklee

)
+

1

Λ2

∑
ijkl

(
Cijklle Qijklle

)
+

1

Λ2

∑
ijkkl

(
Cijkllq Q

(1)ijkl
lq + Cijkllq Q

(3)ijkl
lq + Cijkleq Qijkleq + Cijklld Qijklld + Cijkled Qijkled

+CijklledqQ
ijkl
ledq + Cijkllu Qijkllu + Cijkleu Qijkleu + CijkllequQ

(1)ijkl
lequ + CijkllequQ

(3)ijkl
lequ

)
, (25)

where the C’s are the Wilson coefficients and Λ is the some energy scale where
the new physics enters. In the four-lepton part of the Lagrangian we have
required that i ≥ j and j ≥ l to avoid counting the same operator multiple
times [14].

Depending on the relative size of the Wilson coefficients, different operators
can dominate the others. The operators in Tables 4 and 5 are the leftovers
of the higher energy diagrams where the heavy particles have been integrated
out. Some of the higher energy diagrams contained loops, some didn’t. If the
effective operator is a leftover from a tree level diagram, it is called tree-generated
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(TG) and if it is a leftover from a loop diagram it is called loop-generated (LG)
[33]. But since we don’t know what is the theory beyond Standard Model, we
don’t really know if a operator is tree-generated or not. Therefore one uses
usually term potential tree-generated operator (PTG) instead of tree-generated
operator. The Wilson coefficients of PTG operators are generically larger than
the Wilson coefficients of the LG operators. Therefore one might expect that
LG operators give smaller contribution compared to the PTG operators. In the
next section we will study the CLFV processes li → ljγ, li → lj lkll and the li-lj
conversion in the effective theory approach.

24



4 CLFV processes in effective theories

In the this section we will study CLFV processes, li → ljγ, li → lj lkll and the li-
lj conversion, in terms of effective operators. We will consider the contribution
of all the effective operators in the first order they appear. If the operator enters
already at tree level, the same operator is not taken into the account at the loop
level, since the tree level should always dominate the loop level diagrams. All the
operators enter not later than at the one loop level. When we begin our study
of each process we assume that the energy scale ∼MZ , so that the electroweak
symmetry has been broken and draw all the relevant Feynman diagrams to the
given process.

4.1 li → lj effectively

We will now study charged lepton conversion process, li → lj , that is a process
where a charged lepton li changes to a different charged lepton lj . This con-
version process however can’t happen without involving other external particles
due to four-momentum conservation. So actually we are considering processes
where also other particles appear in the initial and final states. The term ”lepton
- lepton” conversion is therefore somewhat misleading.

We must now decide what other particles than the converting leptons we
include to our process. Lepton decay to lepton and photon, li → ljγ, is studied
in the next section, so we can’t include a photon. We can’t include other charged
leptons either since in the section 4.3 we are considering li → lj lkll which already
contains leptons.
The particles we are left with are quarks (or composite structures formed by
them: hadrons). Experimentally interesting processes are the expected lepton-
lepton conversions near the nucleus of an atom. In those a heavy charged
lepton (muon or tau) orbiting the nucleus converts into another charged lepton
by interacting with the quarks in the nucleus. Therefore we wish to study
processes

li + q → lj + q,

where q is a quark. The quark is the same in the initial and the final states. The
lepton conversion near the nucleus, where the nucleus does not change is called
coherent conversion. Let us next study coherent conversion at the tree-level of
the effective theory.

4.1.1 li + q → lj + q at the tree level

The coherent conversion li + q → lj + q can happen already at tree level. The
Feynman diagrams contributing to this in the effective theory, are constructed
by using the vertices listed in the Figures 5-16. At the tree-level the possible
diagrams are:
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li lj

γ

q q

Figure 17: Lepton
conversion with

quarks mediated by
a photon

(QeW , QeB)

li lj

Z

q q

Figure 18: Lepton
conversion with

quarks mediated by
Z boson

(QeW , QeB)

li lj

q q

Figure 19: Lepton
conversion with

quarks as a contact
interaction (llll

class)

Process in Figure 17 contains a lepton flavour violating liljγ-vertex. It is gener-
ated by LG operators QeW and QeB . Processes in the Figure 18 contain lepton
flavour violating vertex (liljZ) which is generated by LG operators QeW and

QeB but also by PTG operators Q
(1)
φl , Q

(3)
φl and Qφe . The contact interaction

in Figure 19 is generated by PTG operators in llqq-class.
The processes mediated by gauge bosons are generated when heavy new

physics particles are integrated out. The diagram in Figure 17 could be gener-
ated for example from the following penguin-diagram:

li Φ lj

Ψ Ψ′

γ
q q

Figure 20: Penguin
diagram containing New

Physics particles

The diagram in Figure 20 contains New Physics particles: Ψ (fermion), Ψ′

(fermion) and Φ (scalar). In Supersymmetric models the Ψ and Ψ′ could be
gauginos (the fermionic partners of the gauge bosons) and the Φ could be the
scalar partner of some neutrino.

The four-lepton contact interaction in the Figure 19 could be generated from
the following box diagram:
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li Φ lj

Ψ Ψ′

q Φ′ q

Figure 21: New Physics
box diagram

In a supersymmetric model the Ψ and Ψ′ could be some gauginos, Φ the scalar
partner of some lepton and the Φ′ could be the scalar partner of some quark.

We have not used all of the effective CLFV operators at the tree-level, so we
must also study the one-loop level to get all the possible CLFV contributions.

4.1.2 li + q → lj + q at one-loop level

The other operators also contribute to process li+q → lj +q, but at loop order.
We are interested in the leading order contribution to the process. It would
be tempting to stick with the tree level, discarding the loops as higher order
contributions. This is not acceptable however. We do not know what is the
New Physics theory which allows CLFV. We don’t therefore know which CLFV
operators are generated and which aren’t. In order to be consistent one must
include contributions from all CLFV operators at the lowest order they enter.
If some operator enters already at tree level we ignore the same operator at one
loop level, since the tree level contribution should always dominate.

The operators in classes llXφ, llφφD and llqq (in the Table 4) may enter at
tree level. So the only remaining operators that enter at one-loop order are the
operators of the llll class (Table 4). The only one-loop diagrams that introduce
new operators are the diagrams in the Figures 22 and 23 involving lepton self
energy contributions and the diagrams in the Figures 25 and 26.

li
lj

lj

γ, Z

q q

Figure 22: li → lj with lepton self
energy (a)

li
li

lj

γ, Z

q q

Figure 23: li → lj with lepton self
energy (b)

The gray blob is the following charged lepton flavour violating self energy dia-
gram:
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li

lj

lk, νk

Figure 24: Self
energy generated

by CLFV operators
in llll class

li lj

lk

Z, γ
q q

Figure 25: llll
operator

contribution

li lj

νk

Z
q q

Figure 26: Qll, Qle
contribution

At a first glance the gray blobs in the diagrams in the Figures 22 and 23 look
like corrections to external leg, making the diagram not one particle irreducible
(1PI). However it is the gray blob that contains the flavour changing effective
vertex (Figure 24); cutting off the gray blob does not reduce to the same process,
making the diagrams in the Figures 22 and 23 1PI.

All the effective diagrams describing CLFV process li + q → lj + q in this
section contain only one effective CLFV vertex. The CLFV processes are exper-
imentally known to be extremely rare: they have never been observed. Even one
effective CLFV vertex comes from a loop constructed from heavy new physics
particles or only from the situation where heavy virtual particle has been inte-
grated out. Latter case gives suppression by mass (squared) in case on boson
(fermion) and the former gives loop suppression, (16π2)−1, on top of that. This
is why we can safely take only one effective CLFV vertex, two is negligible.
In the following sections we will continue allow only one CLFV vertex in the
effective diagrams.

4.1.3 li + q → lj + q at low energy limit

The experimentally interesting li → lj -conversion is the µ-e conversion in a
muonic atom. In the muonic atom muon has replaced an electron in an ordinary
atom. Tau has so short life time that the similar structure formed by it and the
nucleus is not experimentally significant. We will therefore focus on
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µ → e conversion in a muonic atom. Normally the muon decays on orbit,
µ− → e−νµν̄e, or is captured by the nucleus

µ− + (A,Z)→ νµ + (A,Z − 1),

where A is the mass number and Z is the atomic number of the nucleus [31]. In
the context of charged lepton flavour violation the conversion,

µ− + (A,Z)→ e− + (A,Z),

is expected. This kind of conversion where the nucleus remains unchanged is
coherent conversion. In process li + q → lj + q the quark remains the same and
therefore also the nucleus.

Conversions of muons to electrons (or taus to muons and electrons) are low
energy processes (in order the atom to stay together), so the heavy Z-boson can
be ignored as mediator of the conversion process. Then only the diagrams with
virtual photon and contact interaction remain. The diagrams in Figures 22, 23
and 25 contain lepton loops. Since we are at low energy we consider them as
corrections to liljγ vertex. So there are only two diagrams: photon mediated
and contact interaction.

So at the low energies the conversion process li → lj can be described by two
interactions: lepton flavour violating virtual photon exchange with the quarks
in the nucleus as in Figure 17 and the liljqq-contact interaction as in Figure 19.
The CLFV process µ+ q → e+ q that can happen through a photon mediation
and a contact interaction is described by the following Lagrangian [31]

Lµ→e = Lµ→eγ + Lnon−photoµ→e

= Aµ̄Rσ
µνeLFµν +Bµ̄Lσ

µνeRFµν +
∑

q=u,d,s...

[
(gLS ēLµR) + (gRS ēRµL)q̄q

+(gLP ēLµR + gRP ēRµL)q̄γ5q + (gLV ēLγ
µµL + gRV ēRγ

µµR)q̄γµq

(gLAēLγµL+gRAēRγ
µµR)q̄γµγ5q+

1

2
(gLT ēLσ

µνµR+gRT ēRσ
µνµL)q̄σµνq+h.c.

]
,

where the A, B, gLS , gRS , gLP , gRP , gLV , gRV , gLA, gRA, gLT and gRT are
dimensionful coupling constants.

It depends on the New Physics model which dominates: photonic or the
non-photonic interaction. Non-photonic mechanism is important when process
li + q → lj + q can happen at tree level in the New Physics model. In the
models with extended gauge groups the lepton conversion can happen through
exchange of new gauge boson Z ′ [37], which is not flavour diagonal. Similarly
the charged lepton conversion can happen at the tree level in models with non-
diagonal Higgs coupling [38]. In supersymmetric models with broken R-parity
the lepton conversion can also happen at tree level [39].

We have now discussed enough about charged lepton conversion. It is time
to study the charged lepton decay into a lighter charged lepton and a photon:
li → ljγ.
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4.2 li → ljγ effectively

Let us now consider process li → ljγ where a heavier charged lepton li decays
into a lighter charged lepton lj by emitting an on-shell photon. There are three
different decays: τ → µγ, τ → eγ and µ → eγ. In one-loop order the effective
Lagrangian (25) describes the process li → ljγ. The process can happen already
at tree level in the effective theory due to operators QeW and QeB :

li lj

γ

Figure 27: Tree level contribution
to li → ljγ generated by operators

QeW and QeB

Again it might feel good to stay at the tree level to avoid nasty loops and
difficult integrals associated with them, but it would be cheating. We again
can’t know for sure what effective operators are actually generated when the
New Physics contributions are integrated out. We must consider all the possi-
ble CLFV operators in order to be consistent. We consider those loop diagrams
where the CLFV operators first appear, and reject diagrams containing opera-
tors that have already appeared at the tree level.

The other CLFV operators contribute at one-loop level through the following
diagrams:

li
lj

lj

γ

Figure 28: li → ljγ generated by
lepton self energy

(Q
(1)
φl , Q

(3)
φl , Qφe, llll, llqq)

li
li

lj

γ

Figure 29: li → ljγ generated by
lepton self energy

(Q
(1)
φl , Q

(3)
φl , Qφe, llll, llqq)

γ

Z

li lj

Figure 30: li → ljγ
generated by gauge boson

self energy (Q
(1)
φl , Q

(3)
φl , Qφe)

γ

li lj

lk,dk,uk

Figure 31: li → ljγ
generated by vertex
correction (llll, llqq)
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li
Z

lj

lk lk

γ

Figure 32: li → ljγ
generated by vertex

correction (Q
(1)
φl , Q

(3)
φl , Qφe)

li
νk

lj

W W

γ

Figure 33: li → ljγ
generated by vertex

correction (Q
(3)
φl )

The diagrams in Figures 28-33 divide into two categories. The Figures 28-30
are corrections to particle propagators and the Figures 31-33 are corrections to
the photon-lepton vertex. In the next two subsections we look into these more
closely.

4.2.1 Self-energy contributions to li → ljγ

The gray blob in diagrams in the Figures 28 and 29 represents the fermion self
energy given by the diagrams in the Figures 34, 35 and 36. These fermion self
energy diagrams each contain one CLFV vertex. The diagram in Figure 34

contains a CLFV liljZ-vertex which is generated by operators Q
(1)
φl , Q

(3)
φl and

Qφe. The liljZ-vertex could also be generated by operators QeW and QeB , but
since they appear already at the tree level, they are omitted at loop level.

In the diagram in the Figure 35 the violation of charged lepton flavour is

introduced by the liνjW -vertex, which is generated by the operator Q
(3)
φl . This

vertex could also be generated by the operator QeW , but this is again neglected
since it appears at the tree level already.

The self energy diagram in the Figure 36 contains a charged lepton flavour
violating four-lepton vertex, which is generated by the operators in the classes
llll and llqq.

li

lk

lj

Z

Figure 34: Lepton
Z-self-energy

(Q
(1)
φl , Q

(3)
φl , Qφe)

li

νk

lj

W

Figure 35: Lepton
W -self-energy

(Q
(3)
φl )

li lj

lk, νk, dk, uk

Figure 36: Lepton
fermion loop
self-energy

(llll, llqq-classes)

The gray blob in the Figure 30 contains Standard Model Z-photon self-
energies where virtual particles contain W -bosons, charged ghosts and charged
fermions. The violation of the charged lepton flavour is introduced by the Zlilj-

31



vertex which is generated by the operators Q
(1)
φl , Q

(3)
φl and Qφe. We are again

omitting operators QeW and QeB .

4.2.2 Vertex correction contributions to li → ljγ

Let us now examine the corrections to the liljγ-vertex. The vertex corrections
are represented in Figures 31, 32 and 33. The diagram in the Figure 31 contains
charged fermion loop and it violates charged lepton flavour through four-fermion
vertex, which is generated by the diagrams in the llll and llqq classes.

The diagram 32 contains one CLFV vertex liljZ generated by the operators

Q
(1)
φl , Q

(3)
φl and Qφe. The photon vertex lklkγ is SM-like; operators QeW and

QeB have already appeared at tree level.
Finally the diagram in the Figure 33 contains CLFV vertex liνjW which is

generated by operator Q
(3)
φl . The same vertex could also be generated by the

operator QeW but as said it appears already at the tree level.

4.2.3 li → ljγ in a low energy limit

When we study li → ljγ at energies lower than weak scale, the fermion self
energies (Figures 34, 35 and 36) become insignificant (the gauge boson masses
suppress in the Figures 34 and 35 and the corrections to the liljγ vertex (Figures
31, 32 and 33) merge into one vertex. So at the low energy where all the heavy
new physics particles and the usual Standard Model gauge bosons have been
integrated out, the process li → ljγ can be studied as a simple tree level process
as in Figure 27.

In general the Feynman amplitude of the process li → ljγ can be written in
a form :

M = l̄fV
fiµ
llγ liεµ,

where the photon-lepton vertex V fiµllγ is [14]:

V fiµllγ = i
Λ2

[
γµ(F fiV LPL + F fiV RPR)

+(F fiSLPL + F fiSRPR)qµ + (F fiTLiσ
µνPL + F fiTRiσ

µνPR)qν

]
.

(26)

The factors F ijab are form factors and qµ is the momentum of the photon. We are
studying process li → ljγ where the photon is real. This gives restrictions to the
form of the vertex. The gauge invariance of the electromagnetism states that
qµJemµ = 0, which means that the form factors F fiV L and F fiV R must vanish. For
an on-shell photon εµqµ = 0, so the term proportional to qµ must vanish as well.
This means that we are only left with magnetic transition term proportional to
σµν :

M = l̄f
i

Λ2
(F fiTLiσ

µνPL + F fiTRiσ
µνPR)qν liεµ.
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The branching ratio of the li → ljγ can now be expressed in terms of the

form factors F fiTL and F fiTR [14]:

Br[li → ljγ] =
m3
li

16πΛ4Γli

(
|F fiTR|

2 + |F fiTL|
2
)
,

where Γli is the decay width of the muon or the tau. The contributions to the

form factors F fiTL and F fiTR from the different diagrams are given in the Appendix
F.
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4.3 li → ljlkll effectively

Finally we study processes li → lj lkll, that is processes where a charged lepton
decays into three leptons so that individual lepton flavour is violated.

This process can happen already at tree level of the effective theory through
following diagrams:

li

lj

lk

l̄l

Figure 37: li → lj lkll with 4-lepton
vertex generated by operators in

llll-class

li

lj

lk

l̄l

γ

Figure 38: li → lj lkll
mediated by a photon

(QeW , QeB)

li

lj

lk

l̄l

Z

Figure 39: li → lj lkll
mediated by a Z

(QeW , QeB , Q
(1)
φl , Q

(3)
φl , Qφe)

The diagram in the Figure 37 contains one CLFV vertex which is generated
by PTG operators in the llll-class. The two other tree level contributions are
mediated by neutral gauge bosons γ and Z through charged lepton flavour
violating liljγ and liljZ couplings, which are generated by LG operators QeW

and QeB (diagrams in Figures 38 and 39) and PTG operators Q
(1)
φl , Q

(3)
φl and Qφe

(diagram in Figure 39). There is only one CLFV vertex at the Figures 38 and
39. The CLFV processes are highly suppressed even if they contain only one
CLFV vertex. Diagrams containing more than one CLFV vertex are negligible.

Tree level has exhausted all the dimension-six operators but the operators
of the llqq class. To be completely general we also have to take the llqq opera-
tors into account, even though the llqq operators enter at the loop level. If the
fundamental beyond the Standard Model theory does not generate charged lep-
ton flavour violating effective gauge boson couplings the llqq effective vertices
might be generated and they are now taken care of. When the New Physics
model contains both gauge and llqq-effective CLFV vertices the llqq contribu-
tions can be dropped since they appear only at the loop level in li → lj lkll. The
llqq operators enter at one-loop level through the Feynman diagrams in Figures
40-43.
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The diagrams in the Figures 40-43, contain only normal SM gauge boson
vertices. We don’t take the CLFV gauge boson couplings into the account at
the loop level since if the CLFV gauge couplings are significant, the tree level
contribution of those couplings will dominate.

li
li

lj

lk

l̄k

Z, γ

q

Figure 40: li → lj lkll
mediated by llqq vertex

li

li

lk

lj

l̄k

Z, γ

q

Figure 41: li → lj lkll mediated
by llqq vertex (non-physical)

li

lj

q

Z, γ

lk

l̄k

Figure 42: li → lj lkll
mediated by llqq vertex

(1PI)

li

li

Z, γ

q

lj

l̄k

Figure 43: li → lj lkll
mediated by llqq vertex

(1PI) (non-physical)

A particle can decay only to particles which are together lighter than the
decaying particle itself due to four-momentum conservation and Lorentz invari-
ance. That is in case of 3-body lepton decay li → lj lkll, mi > mj + mk + ml.
Since the differences in lepton masses (Table 6) are so big, the decay li → lj lkll
is allowed whenever all the decay products individually are lighter than the
decaying particle.

Table 6: Charged lepton masses

Particle mass

e 0, 511MeV

µ 105, 6 MeV

τ 1, 776 GeV

The diagrams in the Figures 41 and 43 contain liliγ or liliZ vertices where
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the initial decaying lepton is involved. This vertex is normal SM vertex and
preserves the lepton flavour. This means that the decay products contain the
decaying particle itself and that the diagrams in the Figures 41 and 43 are non
physical.

The possible charged lepton flavour violating 3-body decays can be classified
into three categories [14]:

(A) τ± → e±e+e−, τ± → µ±µ+µ− and µ± → e±e+e−.

(B) τ± → e±µ+µ− and τ± → µ±e+e−.

(C) τ± → e∓µ±µ± and τ± → µ∓e±e±.

The category (A) contains processes l±i → l±j l
±
j l
∓
j , where the final state

contains leptons of the same flavour. All the diagrams 37-39, 40 and 42 are
contributing to these processes. The category (B) contains processes l±i →
l±j l
±
k l
∓
k , with all the three charged leptons present. All the diagrams 37- 39,

40 and 42 are also contributing to these processes. The category (C) contains
exotic processes l±i → l∓j l

±
k l
∓
k with two leptons of the same electric charge and

flavour and one with different flavour and electric charge. Only the four-lepton
contact interaction in Figure 37 contributes to the processes in this category,
due to the fact that we only allow one effective CLFV vertex per diagram.

It is now possible to calculate the branching ratios to the processes in these
categories. The loop diagrams 40 and 42 are neglected. The decaying lepton is
always much heavier than it’s decay products, so one can neglect the masses of
the decay products. When one uses the standard expression for 3-particle phase
space [45], the branching ratio can be obtained [14]:

Br(li → lj lkll) =
NcM

5

6144π3Λ4Γli

[
4(|CV LL|2 + |CV RR|2 + |CV LR|2 + |CV RL|2)

+|CSLL|2 + |CSRR|2 + |CSLR|2 + |CSRL|2

+48(|CTL|2 + |CTR|2) +Xγ

]
, (27)

where Nc = 1/2 if two of the final state leptons are the same and Nc = 1
otherwise and M is the mass of the initial lepton. The quantities CX and Xγ

are combinations of the Wilson coefficients and their explicit expressions are
given in the Appendix G. The quantity Γli is the total decay width of the
initial lepton li

4.
The quantities C describe the contributions of the Wilson coefficients of the

effective operators to the amplitude of the process. When the amplitude to the
process in question was calculated in [14], the non-photonic part was expressed
in the following basis of quadrilinears:

4Γµ =
G2
Fm

5
µ

192π3
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OV XY = γµPX × γµPY
OSXY = PX × PY
OTX = σµν × σµνPX ,

where the X and Y represent the chiralities L and R. The C are contributions
corresponding to those operators.

This concludes our review of the charged lepton flavour violating processes.
It is now time to move on and specify the new physics model, in order to make
more accurate predictions about the CLFV observables. The supersymmetric
models are still one of the most promising candidates for the theories beyond
the Standard Model, even though the superpartners have eluded detection so
far. We will therefore choose the theory beyond SM to be supersymmetric.
Supersymmetric models allow many new potential sources for the charged lepton
flavour violation. In the next section we will discuss about charged lepton flavour
violation in the supersymmetry context in general and then in section 5.2 we
will make a more specific choise.
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5 CLFV and SUSY

In the Standard Model of particle physics the lepton flavour is absolutely con-
served. If SM is extended to include supersymmetry5 in a minimal way i.e. that
one adds a superpartner for every particle in the theory and also adds a second
Higgs doublet, one gets the so called Minimal Supersymmetric Standard Model
(MSSM). The lepton flavour will be conserved also in the MSSM. However it is
known that the neutrinos actually are massive unlike in SM and its extension
MSSM. The mass matrix of the neutrinos is not diagonal and the neutrinos are
allowed and known to mix with each other, that is the lepton flavour is not ab-
solutely conserved. As explained in the introduction, the mixing of neutrinos or
”neutrino oscillations” could also induce flavour violation in the charged lepton
sector.

The SM must be extended to include massive neutrinos. If one tried to in-
clude the massive neutrino in the SM as a Dirac particle and to suggest that
it gets its mass in the spontaneous breaking of the electroweak symmetry, one
would run into fine-tuning problem with the neutrino Yukawa coupling: it would
have to be of the order of 10−12. A popular way of introducing massive neu-
trinos without introducing an unnecessary fine-tuning, is the so called Seesaw
Mechanism (type-I)6. In the Seesaw mechanism one assumes that neutrino has
a right-handed Majorana mass as well as a Dirac mass. The effective mass of the
left-handed neutrino becomes very small (around 1 eV) and the effective mass
becomes huge (near ΛGUT ∼ 1016 GeV scale). MSSM can also be extended to
have massive neutrinos through seesaw mechanism. When the SM is extended
to have massive neutrinos through seesaw mechanism it has two sources of lep-
ton flavour violation: the electron and the neutrino Yukawa couplings fe and fν
(both of them are needed for the realization of charged lepton flavour violation).

The MSSM has supersymmetry incorporated in it which means that every
particle has a superpartner of different statistics (boson’s partner is fermion
and fermion’s boson). These superpartners have the same masses and quantum
numbers as the original particles, except that their spins differ by 1/2. We are
not observing this kind of particles so if the supersymmetry is to be a true
symmetry of nature, the supersymmetry must be broken. The MSSM does not
give the explicit mechanism of SUSY symmetry breaking, but parametrizes it
in the so called soft SUSY-breaking terms [48]:

Lsoft = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.)

−
(˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeQ̃Hd + c.c.

)
−Q̃†m2

Q̃
Q̃− L̃†m2

L̃
L̃− ˜̄u†m2˜̄u˜̄u− ˜̄d†m2˜̄d˜̄d− ˜̄e†m2˜̄e˜̄e

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c.). (28)

The soft part consists of the gaugino mass terms (M1, M2 and M3), sfermion

mass terms (m2
x, x = Q̃, L̃, ũ, d̃, ẽ), (scalar)3 interaction terms (au, ad, ae)

and the supersymmetry breaking contributions to the Higgs potential at the

5The basic properties of supersymmetric models are presented in the Appendix B
6The non-SUSY seesaw-I mechanism is presented in the Appendix C
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last line. The soft terms give the masses to all gaugino and scalar fields in the
theory and violate supersymmetry since the terms don’t contain fields and also
their superpartners. The soft terms are not present at high energy where the
supersymmetry is realized. They are created when the supersymmetry breaks
at a very high energy.

The soft terms contain many potential sources of LFV at electroweak scale
(at high SUSY scale the soft terms vanish and the LFV due to them disappears).
The (scalar)3 terms become sfermion mass terms when the Higgs fields acquire
VEVs. Without any principle to tell otherwise, the scalar-coupling matrices are
off-diagonal and have entries with same order of magnitude. The same goes
with the sfermion mass matrices (m2

x). The off-diagonal terms which are of the
same size as the diagonal ones pose a big problem. The transition rates for
flavour violating processes would be huge and contradicting the experimental
observations. The off-diagonal terms should be almost non-existent to match
with the experiments. The problem is that it is known that the flavour violation
effects are extremely small and there is no explanation to that even though there
are many sources of flavour violation in the soft SUSY-breaking terms. This is
called the flavour problem.

There are many possible ”solutions” to the flavour problem: one can make
assumptions of the SUSY-breaking terms, such that the CLFV processes be-
come suppressed. One could allow large off-diagonal soft SUSY-breaking terms
if one assumes that the sfermions are heavy. Then the flavour violating processes
would be heavily suppressed. In flavour universality scenario the sfermion mass
matrix is proportional or almost proportional to unit matrix and in the align-
ment scenario the sfermion mass matrix is proportional or almost to the lepton
mass matrix. But these are just assumptions. Even though they produce the
desired result of small CLFV rates, there should be a mechanism that produces
them, i.e. there should be a supersymmetry-breaking mechanism.

One of the most popular properties of the SUSY breaking models is that
it is flavour blind i.e. it produces the flavour universality scenario. In that
scenario the only source of flavour violation is due to the Yukawa couplings of
the theory, which is also called Minimal Flavour Violation (we assumed this in
previous sections where we discussed CLFV in effective theories). So in this case
the soft terms don’t cause any additional contributions to the flavour violation
and the various mass and coupling matrices are flavour diagonal in the basis of
the fermion mass eigenstates, e.g.,

m2
Q̃

= m2
Q̃

1, m2˜̄u = m2˜̄u1, m2˜̄d = m2˜̄d1, m2
L̃

= m2
L̃
1, m2˜̄e = m2˜̄e1

au = Au0yu, ad = Ad0yd, ae = Ae0ye,

in some high energy scale Q0, where the supersymmetry breaks. The yu, yd

and ye are the SM Yukawa couplings.
Even though these are true at the input scale Q0, they do not hold at

the electroweak scale anymore. Renormalization group evolution can make the
non-diagonal soft terms to differ from zero even though they were absolutely
zero at the input scale. We have a discussion about renormalization group
evolution in the Appendix D. Next we will briefly discuss general properties of
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SUSY-breaking and then we will review two of the most popular SUSY-breaking
models: gravity- and gauge-mediated supersymmetry-breaking models.

5.1 SUSY-breaking models

In SUSY it is hard to do generic analysis with the free parameters of the theory
because there is so many of them (124 [49]). Therefore one has to often rely on
analysis using a specific model which restricts the number of free parameters.
We will now concentrate our attention to two specific models of supersymmetry-
breaking: gauge and gravity mediated supersymmetry breaking mechanisms. In
them the SUSY-breaking is spontaneous.

Models in which the spontaneous symmetry breaking of SUSY is due to
spontaneous breaking in the F- and/or D-terms are called the ”visible sector”
SUSY-breaking models7. In them the SUSY is broken by known SUSY parti-
cles and there is no need of introduction of new particles to break SUSY. These
kind of models however fail to give out acceptable particle mass spectrum. Some
other kind of a model is therefore needed. Because the SUSY breaking in the
visible sector (the known MSSM particles) fails to deliver the viable SUSY part-
ner masses, one could suggest that the SUSY breaking is due to yet unknown
particles, called the ”hidden sector”. There should not be any renormalizable
couplings between the visible and the hidden sector. The symmetry breaking
is communicated to the visible sector by the ”messenger fields”. Those inter-
actions should be highly suppressed which could suggest that the scale of the
SUSY breaking is larger than the TeV scale. When the SYSY-breaking is com-
municated to the visible sector by the messenger fields, the soft SUSY-breaking
terms, Lsoft, are generated. The SUSY-breaking scale is so large that one needs
to use renormalization group running to obtain the low-energy values for the
soft parameters.

The different SUSY breaking mechanisms differ in how the SUSY breaking
is mediated to the observable sector. In the gravity mediation the soft terms
are generated by couplings which vanish as mpl →∞, i.e. there is no quantum
gravity at the low energy scale. In gauge mediation the soft terms arise due
to loop diagrams which contain new fields that couple both to the hidden and
to the visible sectors. Let us now look into gravity-mediated SUSY-breaking
model more closely.

5.1.1 Gravity mediated supersymmetry breaking

In globally supersymmetric models the parameter of the supersymmetric trans-
formations is the same in every point in space-time. When one promotes the
SUSY transformation parameter to be a function of space-time, and demands
that the supersymmetry transformation still is a symmetry of the theory, one
obtains supersymmetric theory of gravitation. The supersymmetry transforma-
tion represents now the general coordinate transformation and by demanding
that the physics remains invariant under it, leads to quantum gravity, analogous
to classical Einstein’s gravity.

One usually assumes that the theory contains only one supersymmetry and
then the local supersymmetry is called N = 1 supergravity. The N = 1 super-
gravity is not renormalizable however, so it is only an effective field theory of

7The F- and D-terms are discussed in more detail in the Appendix B
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gravity. Gravity couples to all particles so it mediates the SUSY-breaking from
the hidden sector to the visible sector. So in the gravity mediated supersymme-
try breaking the supersymmetry is spontaneously broken in the hidden sector
and it is communicated to the visible sector by non-renormalizable contact in-
teractions. The true renormalizable theory of gravitation should be realized at
the Planck scale so the interactions which mediate the SUSY-breaking must be
suppressed by the Planck-scale.

If the supersymmetry is broken by the F-term VEV 〈F 〉 in the hidden sector
the soft supersymmetry breaking masses should be approximately:

msoft ∼
〈F 〉
MPl

.

The soft terms should vanish when the supersymmetry is not broken. At
Planck scale the supersymmetry must not be broken and indeed when the grav-
ity becomes insignificant (MPl →∞) the soft terms vanish (at the limit where
the gravity vanishes there is no interaction that could mediate the SUSY-
breaking to the visible sector). Also when the supersymmetry is not broken
(〈F 〉 → 0) the soft mass terms vanish.

Let us discuss supergravity in the context of supersymmetry breaking briefly.
Gravitational interactions are non-renormalizable. The Lagrangian describing
non-renormalizable interactions is more general than the Lagrangian describing
only the renormalizable ones. The non-renormalizable Lagrangian describing
the gravity will be invariant under (local)supersymmetry and the gauge trans-
formations8. Let us assume that one F-term of the hidden sector chiral super-
fields acquires a VEV. This breaks the supersymmetry. Let the chiral superfield
responsible for supersymmetry breaking be X. Then the superpotential, Kähler
potential and the gauge kinetic function for supersymmetry breaking scenario
are [48]:

W = WMSSM −
1

MPl

(
1

6
yXijkXΦiΦjΦk +

1

2
µXijXΦiΦj

)
+ . . . (29)

K = Φ∗iΦi +
1

MPl
(njiX + n̄jiX

∗)Φ∗iΦj −
1

M2
Pl

kjiXX
∗Φ∗iΦj + . . . (30)

fab =
δab
g2
a

(
1− 2

MPl
faX + . . .

)
. (31)

The fields Φi are the chiral superfields of the MSSM or its extension. Parameters
yXijk, kij , n

i
j , n̄

u
j and fa are dimensionless couplings and the µXij has dimension

of mass. When the auxiliary fields of Φi’s are integrated out and the F-term of
X has acquired a VEV the supersymmetry breaking Lagrangian becomes [48]:

8The most general Lagrangian describing non-renormalizable supersymmetry, respecting

gauge invariant interactions is: L = [K(Φi,
∼
Φ
∗i

)]D +
([
fab(Φi)ŴaŴb +W (Φi)

]
F

+ c.c.
)

.

This depends on three quantities: superpotential W , Kähler potential K and the gauge kinetic
function Fab(Φi). In general the superpotential is a holomorphic fuction of chiral superfields.
In general Kähler potential is a function of chiral and antichiral superfield, and it does not
have to be polynomial. The gauge kinetic function is in general a holomorphic function of the
chiral superfields.
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Lsoft =

(
− 〈FX〉

2MPl
faλ

aλa − 〈FX〉
6MPl

yXijkφiφjφk −
〈FX〉
2MPl

µXijφiφj (32)

−〈FX〉
MPl

njiφjW
i
MSSM + c.c.

)
− |〈FX〉|

2

M2
Pl

(kij + nipn̄
p
j )φ
∗jφi, (33)

where the φi and λa are the scalar and the gaugino fields of MSSM or its
extension. One can now compare this to the general soft terms (90) and acquire
the soft SUSY-breaking parameters:

Ma =
〈FX〉
MPl

fa, (34)

aijk =
〈FX〉
MPl

(yXijk + nipy
pjk + njpy

pik + nkpy
pij), (35)

bij =
〈FX〉
MPl

(µXij + nipµ
pj + njpµ

pi), (36)

(m2)ij =
|〈FX〉|2

M2
Pl

(kij + nipn̄
p
j ). (37)

The soft SUSY-breaking parameters depend on arbitrary parameters yXijk,
kij , n

i
j , n̄

u
j , fa and µXij , because supergravity is only an effective theory. The

fundamental theory of quantum gravity is not known so there is no way of cal-
culating these parameters from the theory. These parameters can therefore have
whatever magnitude. This is not phenomenologically viable. The soft SUSY-
breaking parameters aijk and (m2)ij have off-diagonal terms of the sfermion mass
matrices, which are sources of flavour violation. Since these off-diagonal terms
can be in principle as large as the diagonal ones, the rates of flavour violating
processes could be huge. This is clearly violating the observational fact that
the flavour violating processes among both leptons and quarks are extremely
suppressed. The off-diagonal terms in the squark and the slepton mass matrices
should be very close to zero, in order to the predictions match the experiments.

In order to get the phenomenologically desirable negligible off-diagonal soft
SUSY-breaking terms one has to make assumptions. Usually one assumes that
the kji = kδji and nji = nδji , with k and n real; a common fa = f for all
the gauginos and that the couplings yXijk and µXij are proportional to the
corresponding superpotential parameters: yXijk = αyijk and µXij = βµij ,
where the parameters α and β are real and common to all particles. The scenario
in which one makes these assumptions to the soft terms is commonly called the
minimal supergravity (MSUGRA). With these assumptions we find that there
are only four parameters describing the soft SUSY-breaking terms. By using
equations (34) and our assumptions we can define the following parameters:
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m1/2 ≡ f
FX
MPl

(38)

m2
0 ≡ (k + n2)

|〈FX〉|2

m2
Pl

(39)

A0 ≡ (α+ 3n)
〈FX〉
MPl

(40)

B0 ≡ (β + 2n)
〈FX〉
MPl

. (41)

These parameters determine the soft SUSY-breaking masses and couplings
in (34). We see that in MSUGRA all the gauginos have same masses and also
all the scalars have same masses. The trilinear couplings will be proportional to
the corresponding Yukawa couplings and the parameter b will be proportional
to the superpotential parameter µ. These can be summarized in the following
equations:

M3 = M2 = M1 = m1/2, (42)

m2
Q̃

= m2˜̄u = m2˜̄d = m2
L̃

= m2˜̄e = m2
01, (43)

m2
Hu = m2

Hd
= m2

0, (44)

au = A0yu, ad = A0yd, ae = A0ye, (45)

b = B0µ. (46)

These equations hold at the input scale, from which they have to be RG evolved
down to the electroweak scale in order to compare them with the experiments.
The input scale is usually taken to be the the GUT scale rather than the Planck
scale. Why the input scale is not set to Planck scale then? In MSSM the SM
gauge couplings can be unified at the GUT scale, MGUT ≈ 2×1016 GeV. The RG
evolution is clear up to this point, but not so clear between the GUT scale and
the Planck scale. The lack of knowledge is the reason to start the RG evolution
from lower energy, even though it gives error proportional to ln(MPl/MGUT ).

The explicit supersymmetry-breaking models are used when one wants to
explain the smallness of the off-diagonal soft SUSY-breaking terms. If one
uses gravity mediated SUSY-breaking models, one does not immediately acquire
the wanted flavour violating parameters. One again has to make assumptions
about the parameters of the supergravity model used, in order to get the wanted
negligible off-diagonal soft terms. So the gravity mediated models by themselves
do not ensure the universality (equations (42)-(46)) or the flavourblindness of
the SUSY-breaking terms. Maybe in the future the full theory of quantum
gravity is known and the soft SUSY-breaking terms can be calculated, but at
this moment it is not possible.

The gravity-mediated SUSY-breaking model was the first supersymmetry
breaking model (1982)[87]. Even though it successfully breaks the supersym-
metry, it leaves the question of flavour problem unanswered. We would like to
have a SUSY-breaking model that would naturally produce the negligible off-
diagonal soft mass terms of the sfermions. This kind of a model exists, and it is
one of the most popular SUSY-breaking models. It is called the gauge-mediated
supersymmetry-breaking model and it is our next topic.
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5.1.2 Gauge mediated supersymmetry breaking

In gauge mediated supersymmetry-breaking models the supersymmetry is bro-
ken by a non-zero scalar VEV in the hidden sector. The hidden sector particles
do not interact with the visible sector particles (or interact very weakly). In the
gauge mediated models one additional sector is assumed. This sector is called
the messenger sector. Messenger sector particles couple both to the hidden
sector as well as the SM gauge fields. The supersymmetry-breaking is com-
municated to the visible sector by radiative corrections. The supersymmetry
is unbroken in the MSSM sector at the tree-level. This ensures that the mass
sum rule (Appendix B, 89) holds at the tree-level and that we don’t get prob-
lems with the superpartner mass spectrum. The supersymmetry breaking is
communicated to the visible sector by radiative corrections involving messenger
fields in the loops to the visible sector particle propagators. This is how the soft
SUSY-breaking terms are generated. The gaugino masses are generated at the
one-loop order and the soft scalar masses are generated at the two-loop order.
The trilinear couplings are also generated at the two-loop order.

The gaugino and soft scalar mass terms are generated as radiative corrections
to the propagators of those particles. The messenger sector directly couples to
the gauginos, which allows them to get mass terms at one-loop level through
the following diagram:

B̃, W̃ , g̃

〈FS〉

〈S〉

B̃, W̃ , g̃

Figure 44: The gaugino propagator

The soft scalar masses are generated at two-loops9. The trilinear scalar
couplings soft terms are effective operators generated at two-loop level.

In the simplest gauge mediated model the messenger fields are left-handed
chiral supermultiplets q, q̄, l and l̄ that transform under MSSM gauge group
SU(3)C × SU(2)L × U(1) as:

q ∼ (3,1,−1

3
), q̄ ∼ (3̄,1,

1

3
), l ∼ (1,2,

1

2
), l̄ ∼ (1,2,−1

2
).

The fermions and scalars in these supermultiplets are called messenger quarks
ψq, ψq̄, messenger squarks q̃, ¯̃q, messenger leptons ψl, ψl̄ and messenger sleptons

l̃,
¯̃
l. These messenger fields couple to the hidden sector gauge-singlet chiral

multiples S via the following superpotential [52], [48]:

Wmess = y2Sll̄ + y3Sqq̄. (47)

9The eight contributing diagrams are sketched in [48].
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The supersymmetry is spontaneously broken when the scalar component of S
and its auxiliary field both acquire VEVs. Since S is chiral superfield,VEV of
its auxiliary field corresponds to a F-term breaking. The messenger fields get
masses when the supersymmetry is spontaneousy broken10. The fermion and
scalar messenger masses become:

l, l̄ : m2
fermion = |y2〈S〉|2, m2

scalar = |y2〈S〉|2 ± |y2〈FS〉|,

q, q̄ : m2
fermion = |y3〈S〉|2, m2

scalar = |y3〈S〉|2 ± |y3〈FS〉|,

Since now the messenger fields are massive, the loop corrections to gaugino
and scalar propagators, involving messenger fields, are not zero. When one
computes the diagram in Figure 44 one gets the gaugino mass:

Ma =
g2
a

16π2

〈FS〉
〈S〉

, (a = 1, 2, 3).

There are no one-loop corrections to the MSSM scalars so the scalars get
their masses at the two-loop diagrams. When one calculates the loops one gets
the scalar masses:

m2
φi = 2

〈FS〉2

〈S〉2

[(
g2

1

16π2

)2

C1(i) +

(
g2

2

16π2

)2

C2(i) +

(
g2

3

16π2

)2

C3(i)

]
,

where the Ca(i)’s are the quadratic Casimir invariants. The scalar squared
masses contain extra loop factor g2

a/16π2 compared to the gaugino masses.
These are however scalar squared masses so the scalar mass has the same order
of magnitude as the gaugino mass. Because the gauge interactions are flavour
blind the soft mass matrices created are flavour diagonal. The scalar masses are
not universal (as in the gravity mediated case) however: the masses of different
generations of squarks are the same for example, but that mass is not the same
as the mass of the charged sleptons for example.

The trilinear scalar couplings au,ad and ae are generated at the two-loop
level. The trilinear scalar couplings contain one additional loop factor g2

a/16π2

compared to the gaugino masses. One can therefore approximate au = ad =
ae = 0 to a good accuracy at the messenger scale. Even though the trilinear
couplings are zero at the input scale the RG evolution will generate non-zero
trilinear couplings as one runs them from the input scale down to the electroweak
scale11.

The hidden sector also of course couples to the gravity as well. The gravity
is however much weaker than the gauge interactions so it can be neglected in
the gauge mediated supersymmetry-breaking.

So the gauge-mediation produces completely diagonal sfermion mass matri-
ces. If there is no other source of flavour violation present, the fermion flavour

10The superpotential (47) determines the masses of the messengers. Messenger fermion
masses are determined from the mass term Lagrangian Lmass = −y2Sψlψl̄−y3ψqψq̄+c.c. The

scalar messenger masses are determined by the following scalar potential: V =
∣∣∣ δWmessδl

∣∣∣2 +∣∣∣ δWmess
δl̄

∣∣∣2 +
∣∣∣ δWmessδq

∣∣∣2 +
∣∣∣ δWmessδq̄

∣∣∣2 +
∣∣∣ δδS (Wmess +Wbreaking)

∣∣∣2
11The RG evolution of SUSY parameters is discussed in the Appendix D
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will be absolutely conserved at low energies, like in MSSM. However the neu-
trinos are known to be massive and those masses must be incorporated into
the supersymmetric extension of the Standard Model. The addition of neu-
trino masses does not change the soft SUSY-breaking terms that result from
the gauge-mediation, but they might change the renormalization group evolu-
tion of the off-diagonal slepton mass terms, making them to deviate from zero
at the low energy scale. This is our next topic.

5.2 CLFV in supersymmetric seesaw-I model

As we have said the MSSM does not contain massive neutrinos which we know to
exist. In the Standard Model the neutrinos are massless and there is no source of
lepton flavour violation. In MSSM the same is true. In supersymmetric theories
the soft SUSY-breaking terms contain potential sources for lepton flavour viola-
tion in the slepton mass matrices. If the slepton mass matrices are off-diagonal
the lepton flavour is violated because in supersymmetric models the leptons
couple to the their scalar partners, sleptons, through the lepton-slepton-gaugino
vertices:

λ

l
∼
l

Figure 45: lepton-
slepton-gaugino

vertex

It is however experimentally known that the lepton flavour violating pro-
cesses are highly suppressed. This gives stringent constraints to the off-diagonal
SUSY-breaking terms, leading to the flavour problem. In order to get out the
phenomenologically correct highly suppressed LFV interactions the off-diagonal
SUSY-breaking terms must be close to zero or they can be proportional to the
diagonal entries as long as the slepton masses are very heavy so that they ef-
fectively decouple. There should be some kind of mechanism that produces the
wanted phenomenological outcome. There is no consensus about the mechanism
which produces the small CLFV parameters.

5.2.1 Extension of MSSM via seesaw-I mechanism

The massive neutrinos can be incorporated into the MSSM using e.g. the seesaw
type-I mechanism, though many other ways exist. In this model the massive
neutrinos are introduced by adding three right-handed Majorana masses mM1

,
mM2

and mM3
. The right handed neutrinos couple to the lepton doublets via

a new Yukawa coupling Yν . The soft SUSY-breaking terms will now also in-
volve new trilinear coupling aν and new soft mass matrix, m2

Ñ
, for right-handed

neutrinos. So new terms must be added to the MSSM superpotential W and
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to the MSSM soft terms Lsoft. The leptonic part of the MSSM superpotential
WMSSM and the soft terms LMSSM are:

WMSSM = EcYlLH1

LMSSM = −L̃†mL̃L̃− ẽ
†mẽẽ+ (−ẽ†aeL̃H1 + h.c.).

The new terms needed are:

∆W = N cYνLH2 +
1

2
N cmMN c

∆L = −Ñ cmÑÑ
c† + (−Ñ caνL̃H2 + h.c.) + (−1

2
Ñ cbνÑ

c + h.c.).

The fields are in the basis where the charged lepton Yukawa matrix Yl and
right-handed Majorana mass matrix mM = diag(mM1 ,mM2 ,mM3) are diagonal.
They can be made diagonal by performing unitary transformations of L, E and
N . When we choose to diagonalize Yl and mM, the neutrino Yukawa coupling
Yν can not be diagonalized and is therefore off-diagonal in general. This gives
rise to lepton flavour violation.

In the seesaw-I mechanism there are two different sources of mass: the Dirac
mass term, which appears when the electroweak symmetry breaks spontaneously
and the right-handed Majorana mass term. After the electroweak symmetry
breaking, the charged lepton and the Dirac neutrino mass matrices can be writ-
ten in a form [53]:

ml = Ylv1, mD = Yνv2,

where v1 and v2 are the vacuum expectation values of the neutral Higgs scalars:

v1 = v cosβ v2 = v sinβ, v = 174 GeV.

There are six neutrino masses: three Dirac masses and three Majorana
masses. Together they form a 6× 6 neutrino mass matrix:

Mν =

(
0 mD

T

mD mM

)
.

Only the right-handed neutrinos are assumed to have Majorana masses, hence
the zero in the upper left corner. The physical neutrino masses are the eigen-
values of this mass matrix. There will be three light, νi and three heavy, Ni
physical neutrinos. In the seesaw-I one assumes that the neutrino Majorana
mass is very high, order of grand unification scale 1016GeV. The neutrino Dirac
mass is therefore much smaller than the Majorana mass. One can therefore
approximate the physical light neutrino masses as [55]:

mν ≈ −mD
TmM

−1mD. (48)

Our basis was so that the mM is diagonal so the heavy eigenstates are also
diagonal:

mN = diag(mN1
,mN2

,mN3
) ≈mM.

The light neutrino states are those that are observed in the experiments. The
heavier neutrinos are so heavy that they effectively decouple and are therefore
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not seen in the experiments. Since the light neutrino states are physically ob-
servable, the light neutrino mass matrix can be diagonalized using the standard
Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix) [88],[89]:

mν
diag = UT

PMNSmνUPMNS = diag(mν1 ,mν2 ,mν3).

The Dirac mass of the neutrino can be solved from the equation (48) [60]:

mD = i
√

mN
diagR

√
mν

diagU†PMNS . (49)

The matrix R is 3× 3 complex orthogonal matrix and it represents the possible
mixing in the right-handed neutrino sector (The PMNS matrix UPMNS repre-
sents the mixing in the left-handed sector). The matrix R can be parametrized
in terms of three complex angles θi, (i = 1, 2, 3) as

R =

 c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3
c2s3 −c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2

 , (50)

where ci = cos θi and si = sin θi.
Now that we have specified our SUSY model, we can study what kind of

possibilities it has regarding the charged lepton flavour violation.

5.2.2 CLFV in SUSY seesaw-I

The new terms in the superpotential and the soft terms have significant im-
plications. One sees that the theory contains massive right-handed neutrinos
and sneutrinos even though the supersymmetry is not broken. The new terms
modify the renormalization group equations so that even though the soft slep-
ton masses are diagonal at the GUT scale, the individual lepton number will
not be conserved if there are right-handed neutrinos below the GUT scale. The
right-handed neutrinos allow the lepton number to be violated. However the
right-handed neutrinos are very heavy and they will decouple at energies much
lower than their masses. So if the soft slepton mass matrices are diagonal at
GUT scale the presence of right-handed neutrinos modifies the renormalization
group equations so that lepton flavour violating off-diagonal slepton mass terms
are generated. The effect of right-handed neutrinos is only temporary since at
energies much lower than the mass of the lightest right-handed neutrino, the
right-handed neutrinos decouple. So the the right-handed neutrinos give contri-
bution to the lepton flavour violation in the region between the GUT scale to
the mass scale of the lightest right-handed neutrino. In supersymmetric mod-
els the right-handed neutrinos give significant contribution to LFV processes
because there are soft slepton masses to which the right-handed neutrinos can
affect through renormalization group equations and create lepton flavour vio-
lating off-diagonal slepton masses. To see more explicitly how the off-diagonal
slepton mass matrices are generated we will examine the renormalization group
equations for slepton squared masses. The RG equations for MSSM extended
with right-handed neutrinos are presented in the Appendix D. Let us study
the left handed scalar squared masses m2

L. Its renormalization group equation
(Appendix D, equation (121)) can be written in a form:
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dm2
L̃

dt
=

(
dm2

L̃

dt

)
Yν=0

(51)

+
1

16π2
(YνY

†
νm

2
L +m2

LYνY
†
ν + 2Yνm

2
NY
†
ν + 2(m2

Hu)YνY
†
ν + 2aνa

†
ν).

The first term in the right-hand side represents the terms that do not contain
neutrino Yukawa couplings, i.e. the terms of the MSSM RG equations. The
terms in the second line contain neutrino Yukawa couplings and they are addi-
tions to the MSSM renormalization group equations due to seesaw-I mechanism
we have employed to generate neutrino masses. If we assume that the soft
terms are universal at the input scale like in MSUGRA (equations (42)-(46)),
the charged slepton masses are the same as the sneutrino masses mL = mν = m0

and the trilinear scalar couplings are proportional to the corresponding Yukawa
couplings, aL = A0YL and aν = A0Yν at the input scale which can be taken to
be Mgut. Using these assumptions equation (51) becomes much simpler:

dm2
L̃

dt
=

(
dm2

L̃

dt

)
Yν=0

+
1

8π2
(3m0 +A2

0)[YνY
†
ν ].

In the basis where the charged lepton Yukawa couplings are diagonal, the
first term on the right-hand side is also diagonal. When one runs the energy
scale from the Mgut to the lightest right-handed neutrino mass mNi , the neu-
trino Yukawa couplings generate the off-diagonal terms to scalar squared mass
matrices (the neutrino Yukawa matrices can not be diagonalized simultaneously
with the charged lepton Yukawa matrix). To a leading log approximation the
off-diagonal terms are

(m2
L)ij ≈ −

1

8π2
log

(
Mgut

Mi

)
(3m2

0 +A2
0)[YνY

†
ν ]ij , i 6= j. (52)

The rest of the charged lepton flavour violating soft parameters, namely the
off-diagonal entries in trilinear coupling ae and the right-handed charged slepton
mass squared m2

Ẽ
, are given in the leading log approximation as:

(al)ij ≈ − 3

16π2
log

(
Mgut

Mi

)
A0Yli(Y

†
ν Yν)ij , i 6= j, and (53)

(m2
Ẽ

)ij ≈ 0, i 6= j. (54)

The MSSM extended with the seesaw mechanism can not generate lepton flavour
violation in (m2

Ẽ
)ij due to the fact that its RG equation does not contain the

neutrino Yukawa term Y †ν Yν .
When we study different CLFV processes, different off-diagonal soft terms

are relevant. When we are working in a mass insertion approximation [57],
[58], only the corresponding matrix elements matter. For example if we study
µ → eγ, only the elements (m2

L)21 and (al)21 matter. One can use the mass
insertion approximation to identify the dominant contributions.

Now that we know how the charged lepton flavour violation is introduced
in MSSM extended via seesaw-I mechanism (we abbreviate this now on as
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MSSMν), we can stydy more closely the processes li → ljγ, li → lj lkll and
the li-lj conversion.
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6 CLFV reactions in SUSY

In this section we will go through charged lepton flavour violating processes
li → ljγ, li → lj lkll and li-lj conversion in the context of MSSM extended with
the seesaw-I mechanism (MSSMν). In the following three subsections we will
first deal with the general properties of a given process and then we will review
different results obtained for these processes in the literature. Before we jump
into the processes themselves, let us discuss some of the common properties
they have in the MSSMν.

6.1 General properties

In the MSSM extended with the seesaw-I mechanism, the lepton flavour vio-
lating processes li → ljγ, li → lj lkll and li-lj conversions all are, at the lowest
order, mediated by two kinds of diagrams: penguins and boxes. The penguin
diagrams include photon-, Z-boson and Higgs-penguins (in MSSM there are
three physical neutral Higgs bosons: two CP-even H0 and h0, and one CP-odd
A0). In MSSM there is huge number of free parameters coming from the soft
SUSY-breaking terms. It is not practically possible to do numerical analysis for
one hundred or so parameters. Therefore the parameters must be constrained
somehow. Here we will use couple of different constraints (MSUGRA/CMSSM,
NUHM), when we do comparisons between them. There are also other ways of
constraining the soft parameters, like phenomenological minimal supersymmet-
ric standard model (pMSSM), but we do not consider the further.

Moreover in MSSMν there is only one source of charged lepton flavour vi-
olation (neutrino Yukawa coupling). Because of the unique source of flavour
violation, it is espected that the LFV observables exhibit some correlation [97].

6.2 µ – e conversion in SUSY

We start with the electron-muon conversion in the vicinity of a nucleus. The
muon orbiting the nucleus will interact with the quarks in the nucleus. In pre-
vious section we have studied the charged lepton conversion in effective theory
context, using effective operators. We don’t have to do that now, since we
are working in a specific BSM model (MSSMν) where all the interactions are
known. In MSSMν the µ–e conversion in the nuclei can happen by the following
schematic diagrams at the one loop order:

li lj

γ

q q

Figure 46: SUSY photon-penguin

li lj

Z

q q

Figure 47: SUSY Z-penguin
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li lj

H
q q

Figure 48: Higgs-penguin

li lj

q q

Figure 49: Box-diagram

The explicit diagrams contributing to the conversion are given in the Appendix
H. The analytical calculation of this process is done in [53].

It is common in the literature to assume that the photon-penguin contribu-
tion is dominant and the Z-boson and Higgs-penguins and the boxes are sub-
dominant. In MSSM with universal SUSY-breaking soft terms this is definitely
so ([53], [62]). With different soft parameters the photon-contribution might be
rivaled by some of the other contributions. Let us look this more closely. Let us
first look into the most popular scenario: MSSM with universal soft parameters.

6.2.1 Constrained MSSM

Let us first study how much different kinds of diagrams, penguins and boxes
contribute to the conversion rate of µ–e. Extensive analysis on muon-electron
conversion in MSSMν was performed in [53]. They calculated first the conver-
sion rate analytically, taking into account all the contributions from photon-,
Higgs- and Z-penguins and the box diagrams to one-loop order. Using the
complete analytical result they plotted the muon-electron conversion rate in
titanium nuclei for each contribution (γ, Z, H and box) separately using the
following assumptions: the heavy neutrinos are hierarchical with the masses
mNi = (1010, 1011, 1014)GeV and that the light neutrino mixing angle θ13 = 5◦,
and that the other mixing angles (for heavy and light neutrinos) are zero. Using
these assumptions the conversion ratio CR(µ − e, T i) was plotted in two dif-
ferent ways: first as a fuction of tanβ with the universal soft parameters were
chosen to be M0 = M1/2 = 250 GeV and A0 = 0. The results are plotted in the
Figure 50.

It was found that the photon penguin utterly dominates the conversion pro-
cess: it is at least two orders of magnitude larger than the second largest contri-
bution. The Z- boson and box diagram contributions are observed to be almost
constants for whole tanβ range considered. The Higgs-penguin contribution ex-
periences rapid growth as tanβ grows, almost seven orders of magnitude. This
strong dependence is in agreement with the approximation of Higgs contribu-
tion:

CR(µ− e, T i) ' O(10−12)

(
115GeV

mH0

)4(
tanβ

50

)6

(55)

which holds for large tanβ [53]. At low tanβ the Higgs contribution is the
smallest, but it becomes the second largest in the large tanβ, but it is still far
behind the photon-contribution.
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Figure 50: The contributions to CR(µ→ e, T i): total, γ-penguins (diamonds),
Z-penguins (asterisks), H-penguins (crosses) and box diagrams (times) as a

function of tanβ [53]

Conversion ratio was also plotted as a function of M0 = M1/2 (Figure 51,
assuming that A0 = 0 and that tanβ = 30.
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Figure 51: The contributions to CR(µ→ e, T i): total, γ-penguins (diamonds),
Z-penguins (asterisks), H-penguins (crosses) and box diagrams (times) as a

function of SUSY mass scale [53]

The result is that the all the contributions decrease as the SUSY mass scale
grows as is expected, the photon-penguin contribution being most dominant:
three orders of magnitude larger than the Z-contribution, which is the second
largest. One could say that the dependence on tanβ is the more interesting
one, since it affects the relative order between the magnitudes of the different
contributions. So as a conclusion one could state that in the CMSSM case the
photon-penguin is the only contribution one has to take into account when one
considers conversion µ–e. Because universal soft terms is so simple assumption,
the photon domination is also very popular assumption. Let us next look into
different case: assume that the SUSY-breaking soft terms are not completely
universal.
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6.2.2 NUHM MSSM

In CMSSM the photon-penguin clearly dominates the conversion process. This
is challenged when one allows some of the soft scalar masses to differ from the
rest. There is one scalar mediating the conversion process: the Higgs boson
(actually there are two of them, heavy and light; the CP-odd Higgs doesn’t
contribute to the coherent conversion). If the Higgs mass were to be small
compared to the rest of the SUSY masses, the Higgs-penguin would be enhanced
with respect to the other contributions, due to smaller suppression coming from
the Higgs propagator. The case where all the soft terms are universal, except
the Higgs masses, which differ from the rest of the scalar masses, is called
the Non-Universal Higgs Mass scenario (NUHM). So in the NUHM scenario
there is seven parameters: M0,M1/2, A0, tanβ, sign(µ),MH1

and MH2
. The

MH1
and MH2

are the massparameters of the neutral CP-even Higgses. The
departure from universality in NUHM scenario is parametrized in terms of the
non-vanishing parameters δ1 and δ2:

M2
H1

= M2
0 (1 + δ1), M2

H2
= M2

0 (1 + δ2).

In [53] the different contributions to CR(µ − e, T i) were studied with non-
universal Higgs masses. Large tanβ (= 50) and small Higgs masses were chosen
to show the interesting behaviour of the NUHM case. The muon-electron con-
version ratio in titanium was plotted as a function of M0 = M1/2 (masses of the
SUSY particles other than Higgses) for photon, Z- and Higgs penguins and box
diagrams separately assuming that θ13 = 5◦, θi = 0, δ1 = −1.8 and δ2 = 0.
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Figure 52: The contributions to the CR(µ→ e): total, γ-penguins (diamonds),
Z-penguins (asterisks), H-penguins (crosses) and box diagrams (times) as a

function of SUSY mass scale [53]

Very interesting results were obtained. With small SUSY masses the photon-
contribution dominated as in the CMSSM case. All the contributions decrease
at first but for large SUSY masses the Higgs contribution starts to increase and
Higgs-contribution eventually becomes larger than the photon contribution by
an order of magnitude. So in NUHM scenario it is possible for the Higgs to rival
the photon contribution and even dominate the whole conversion process!
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Similar results were obtained in [62], where the muon-electron conversion was
also studied in NUHM scenario. They obtained an approximation for photon-
and Higgs-contributions in µ− e conversion in aluminum for large tanβ:

CR(µAl→ eAl)γ ∼ O(10−13)

(
1000GeV

mS

)4(
tanβ

60

)2

, (56)

CR(µAl→ eAl)H0 ∼ O(10−13)

(
200GeV

mH0

)4(
tanβ

60

)6

, (57)

where mH0 is the heavy Higgs mass and mS ≡M0 = M1/2 is the universal scalar
mass. From these we notice the different behaviour of the Higgs- and photon-
mediated processes. For tanβ & 60 and mH0 �MS the Higgs-mediation starts
to dominate the process. But if tanβ . 60 and mH0 � MS the photon-
mediation clearly dominates the process.

So according to papers [53] and [62], the photon mediation utterly dominates
the µ-e conversion when one assumes universal soft scalar masses in MSSM ex-
tended with seesaw-I mechanism and the other contributions could be neglected.

The Higgs mediation can become important however if one relaxes the uni-
versality of scalar masses, and allows the Higgs bosons to have different masses.
The Higgs mediation can then dominate in the limit of really large tanβ and
small heavy Higgs mass. We will next study the three-body lepton decay
li → lj lj lj . It has many similar properties with the charged lepton conversion.

6.3 l→ l′l′′l′′′ in SUSY

The process li → lj lkll can proceed at one loop order through box- and penguin-
diagrams. For simplicity let us consider process li → lj lj lj . It can proceed at
one-loop level through the diagrams presented in the Appendix I.

In the literature the photon contribution is usually assumed to be dominant.
Let us find out why.

6.3.1 Numerical result for the li → lj lj lj

In paper [56] the charged lepton flavour violating processes li → lj lj lj are studied
in MSSM extended with seesaw-I mechanism. The soft parameters are assumed
to be universal in the MSUGRA scheme. In [56] analytical calculations for
li → lj lj lj are conducted, and the results are later utilized in the numerical
analysis. The full set of one-loop contributions are considered: photon-, Z- and
Higgs-penguins and the box-diagrams. The numerical analysis was done in two
kinds of cases: a) the quasi-degenarate light neutrinos and degenerate heavy
neutrinos, b) hierarchical light and heavy neutrinos. Let us now review the two
cases a) and b).

a): Degenerate case. The following processes were studied: τ− → µ−µ−µ+,
τ− → e−e−e+, µ− → e−e−e+. The branching ratio of the process τ− →
µ−µ−µ+ was plotted as the function of tanβ, with the following assumptions:
mN = 1014GeV, M0 = 400GeV, M1/2 = 300GeV, A0 = 0 and sign(µ) > 0. The
result is plotted in the Figure 53.

As is evident from the Figure 53, the photon-penguin utterly dominates the
process BR(τ− → µ−µ−µ+): the photon contribution hardly differs from the
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Figure 53: The BR(τ → 3µ) as the function of tanβ in the case of degenerate
heavy neutrinos [56].

total decay rate. The photon contribution goes approximately as (tanβ)2. The
Z-penguin contribution is the second largest with the small tanβ, but still over
an order of magnitude smaller than the photon-contribution. Also te Z-penguin
and the box contributions are observed not to depend significantly on the tanβ.
They change approximately only an order of magnitude. The contribution of
the Higgs-penguins has the most dramatic behaviour however: it becomes the
second largest at the large tanβ due to the approximate tan6 β-dependence.
Both the lepton conversion of the previous section and the three-body decay
proceed through similar diagrams: penguins and boxes. Due to the similar
diagram structure the different contributions, boxes, photon-, Z- and Higgs-
penguins have similar behaviour. The Z-penguins and the box diagrams of the
lepton conversion and the three-body decay both depend little about the tanβ.
Also the photon- and the Higgs-contributions of the lepton conversion and the
three-body decay have the similar behaviour: the photon contributions behave
as (tanβ)2 and the Higgs-contributions behave as (tanβ)6 (equations (56) and
(57)).

Even though the Higgs-contribution has significant enhancement at the large
tanβ, it is still four orders of magnitude smaller than the the photon-contribution
at the largest tanβ(= 50) studied. As a summary one could deduce that the
leading photon-penguin approximation works extremely well for large tanβ. We
have now established that the photon contribution dominates the process what-
ever the tanβ is. So next in the case of hierarchical heavy neutrinos we set
tanβ = 50.

b): Hierarchical case. The same processes as in the case a) are studied
here, but now the heavy neutrinos are strictly hierarchical and their masses
are chosen to be (mN1

,mN2
,mN3

) = (108, 2 × 108, 1014)GeV. They are picked
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so because this choise generates a proper rate for baryogenesis via leptogenesis
in the hierarchical case [63]. The branching ratios were studied as fuctions of
neutrino mixing angles |θ1|, |θ2| and |θ3|. First the BR(τ− → µ−µ−µ+) and
BR(τ → µγ) were studied as a fuction of mixing angle |θ2| (figure 54). The other
mixing angles are kept zero and Arg(θ2) = π/4. The MSUGRA parameters are
chosen to be the same as in the degenerate case: tanβ = 50, M0 = 400GeV,
M1/2 = 300GeV, A0 = 0 and sign(µ) > 0.

0 0.5 1 1.5 2 2.5 3

mod(theta2)

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

BR(tau -> 3mu)

Total
Photon
Z
Boxes
Higgs bosons

Figure 54: The contributions to BR(τ → 3µ) as the function of |θ2| in the case
of hierarchical heavy neutrinos [56].

It is again noticed that the photon-contribution completely dominates the
process BR(τ− → µ−µ−µ+). The Higgs-contribution is the second largest (be-
cause of the choice tanβ = 50). The relative size of the box- and Z-contributions
change with respect to the degenerate case: the Z-contribution is now the small-
est contribution. The branching ratio in question stays under the experimental
upper limit for all |θ2|. The branching ratios were also plotted for different
phases Arg(θ2) for processes BR(l−j → l−i l

−
i l

+
i ). The branching ratios behave

smoothly for complex θ2, but experience a dip for real θ2. The branching ratios
BR(l−j → l−i l

−
i l

+
i ) stay within the experimental limits.

Then the BR(l−j → l−i l
−
i l

+
i ) are studied as a function of |θ1|. Now we get

more severe limits from the experiments. The branching ratios are plotted for
different phases of θ1 as a function of |θ1|. One notices that the BR(µ→ 3e) is
mostly much larger than the experimental upper limit, except for a small region.
The BR(τ → 3e) and the BR(τ → 3µ) stay within the upper bounds.

Finally the branching ratios BR(l−j → l−i l
−
i l

+
i ) are studied as a function

of |θ3|. It was noticed that the branching ratios stay almost constant with
the angle θ3. So for tanβ = 50, M0 = 400GeV, M1/2 = 300GeV, A0 = 0 and
sign(µ) > 0 the branching ratios are approximately: BR(τ → 3µ) = 2.6×10−10,
BR(τ → 3e) = 8.8× 10−15 and BR(µ→ 3e) = 1.8× 10−14.
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6.4 l→ l′γ in SUSY

Let us now concentrate on the process li → ljγ. This process differs from the
decay li → lj lkll and conversion µ− e in that it does not contain penguins and
boxes whereas previous ones have. It will be related to the two other processes
we are considering as we shall see. Let us now discuss about general properties
of li → ljγ in MSSMν.

6.4.1 General properties

The general form of the amplitude of li → ljγ is given by [60]:

T = εα l̄jmlj iσαβq
β(ALPL +ARPR)li, (58)

where AL is the coefficient of the amplitude when the incoming lepton li is
left-handed and the AR is the coefficient of the amplitude when the incoming
lepton is right-handed12. The branching ratio is then given by

BR(li → ljγ) =
12π2

G2
F

(
|AL|2 + |AR|2

)
. (59)

The process li → ljγ violates chiral symmetries lRk → eiαk lRk, i.e. the initial
and final leptons have different chiralities. We have assumed that the soft terms
are universal, so only the Yukawa couplings can be the source of this chirality
violation. The AL must be proportional to the mass of the right-handed lepton,
ljR, involved and the AR must be proportional to the mass of the liR. The mass
of the initial lepton is always much larger than the final lepton, m2

lj << m2
li, so

the right-handed amplitude dominates, |AL|2 << |AR|2.
To the one loop order the process li → ljγ is given by the two diagram types

presented in the Figures 55 and 56. In those Figures the external photon vertex
is not specified. The external photon vertex can be inserted to any propagator
of a charged particle, that is to external leptons li; intermediate slepton l̃x,
x = 1, ..., 6 or to the intermediate chargino χ̃−B , B = 1, 2, in a similar way as
in our Rξ loop-calculation example in the Appendix A. The lepton-sneutrino-
chargino vertex and the lepton-slepton-neutralono vertex are responsible for the
charged lepton flavour violation.

li lj
ν̃x

γ
χ̃−B

Figure 55: Chargino-sneutrino loop

li lj
l̃x

γ
χ̃0
A

Figure 56: Neutralino-slepton loop

In order to get insight of the physics involved, one can use mass insertion
approximation ([57], [58]) to find the dominant contribution to this process. In
mass insertion approximation the folloving diagram describes our process:

12The expressions for AL and AR can be found in [90].
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li lj
L̃i L̃j

γ

M2
Lij

χ̃A

Figure 57: Mass-insertion diagram, contributing to
li → ljγ. The L̃i is slepton doublet in the basis where
the gauge interactions and the charged lepton Yukawa

couplings are flavour diagonal.

In the mass insertion approximation one treats the mass terms as interaction
terms. In this case we are interested in the charged lepton flavour violation, so
the only mass terms contributing are the off-diagonal slepton masses. Using the
mass insertion approximation one gets the folloving branching ratio [60]:

BR(li → ljγ) ' 12π2

G2
F

|AR|2 ∼
α3

G2
F

|m2
Lij |2

m8
S

tan2 β. (60)

The branching ratio is highly dependent of the corresponding off-diagonal slep-
ton mass termm2

Lij . The soft SUSY-breaking terms are assumed to be universal,
so that the slepton mass matrices are diagonal at the input scale. The RG run-
ning, however, generates the off-diagonal terms to the slepton mass matrices as
one evolves the parameters from the input scale down to the electroweak scale.
Using the equation (52) for the off-diagonal terms one gets:

BR(li → ljγ) ∼ α3

G2
Fm

8
S

∣∣∣∣ −1

8π2
(3m0 +A2

0) log
Mx

M

∣∣∣∣2 ∣∣(Y†νYν)ij
∣∣2 tan2 β, (61)

where the MSUGRA soft parameters are assumed. The branching ration is en-
hanced by tanβ: for large values of tanβ the branching ratio can be significant.
Let us next review some results in the literature.

6.4.2 Results from numeral calculations in the literature

Let us now review numerical results the literature contains. The properties of
li → ljγ are calculated in [56]. The li → ljγ is not numerically that interesting
since it has no rivaling contributions as opposed to three-body lepton decay and
conversion where there are contributions from photon-, Z- and Higgs penguins
and boxes. More interesting is the connection of li → ljγ and the two other
process types. Let us nonetheless review some numerical properties of li → ljγ.
The process is studied in MSSM assuming MSUGRA soft parameters. The
branching ratios for τ → µγ, τ → eγ and µ → eγ are plotted as functions
of different SUSY parameters: tanβ, M0 and M1/2. It was found that the
branching ratios for all of the processes grow as the function of tanβ, which
is to be expected by the approximation (61). All of the branching ratios were
observed to decrease as the parameters m0 and M1/2 were raised, which again
is in line with the approximation (61).
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More interesting observations are made when the branching ratios of li → ljγ
and li → 3lj are compared to each other. Under the assumption that the photon-
contribution dominates the process li → 3lj , one can get the following relation
between the BR(li → ljγ) and BR(li → 3lj) [56]:

BR(lj → 3li)

BR(lj → liγ)
=

α

3π

(
log

m2
lj

m2
li

− 11

4

)
. (62)

From this one gets the following approximate values: 1
440 , 1

94 and 1
163 for (lj li) =

(τµ), (τe) and (µe). Therefore one expects the li → ljγ to have higher ratios
than the corresponding li → 3lj in MSSMν.

6.5 Comparison to R-parity violating models

We have now discussed about the charged lepton flavour violating processes
li → ljγ, li → lj lkll and µ-e conversion in the nuclei, in the context of MSSM
extended to have massive neutrinos via seesaw-I mechanism. We have noticed
that photon mediation nearly always utterly dominates each of these processes.
In other supersymmetric models this might not be the case. We will now briefly
study another supersymmetric model, trilinear R-parity violating model, in the
context of CLFV and compare the results to the previous.

In trilinear R-parity violating model the MSSM superpotential is extended
by the folloving lepton flavour violating trilinear terms13:

W/R =
1

2
λijkL̂iL̂jÊ

c
k +

1

2
λ′ijkL̂iQ̂jD̂

c
k. (63)

The R-parity violating models only add new interactions to the MSSM. This
is crucial for our discussion.

It is common in literature to assume that the photon mediation dominates
the CLFV processes, and that the other contributions can be safely ignored,
except for the large tanβ regime where the Higgs-contribution could become
important, as noted in the previous papers we reviewed. In MSSM extended
only with right-handed neutrinos via seesaw-I mechanism this is so. When
trilinear R-parity violation is introduced, things change: Z-boson contribution
acquires significant enhancement, so big that it can even surpass the photon-
contribution. Let us discuss why this happens.

In MSSM extended via seesaw-I mechanism the processes li → lj lkll and
li-lj conversions can proceed though Z-boson exchange (Appendix I), but these
are overshadowed by the photon exchange diagrams. But this is only because
of MSSM interactions and particle content (it is okay to add right-handed neu-
trinos). If either one of them is extended, the Z-boson exchange might prevail.

In MSSM(ν) the amplitudes of photon- and Z-boson penguins for li → 3lj

13One could also include R-parity violating term 1/2λ′′ijkÛiD̂jD̂k, but since we are studying

lepton flavour violation, this term is neglegted.
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are given in the equations (64) and (65).

Tγ−penguin = ūi(p1)[q2γµ(AL1 PL +AR1 PR) + imljσµνq
ν(AL2 PL +AR2 PR)]uj(p)

×e
2

q2
ūi(p2)γµvi(p3)− (p1 ↔ p2), (64)

TZ0−penguin =
1

m2
Z

ūi(p1)[γµ(FLPL − FRPR)]uj(p)

×ūi(p2)
[
γµ
(
Z

(l)
L PL + Z

(l)
R PR

)]
vi(p3)− (p1 ↔ p2). (65)

By dimensional analysis one can understand why the Z-boson exchange could
dominate. The total decay width Γ(li → 3lj) is proportional tom5

li
[64]. One can

therefore deduce that the form factors A and F must have dimensions of inverse
mass squared. Both photon and the Z-boson contributions have the same mass
dimension, so the question is what are the mass scales of the A and F? The mass
scale of the F is of course determined by the Z-boson mass so F ∼ m−2

Z . Because
the photon is massless the only mass scale in the form factors A is the mass
scale of the supersymmetry, mSUSY . So A ∼ mSUSY . Since mZ � mSUSY the
Z-contribution could very well dominate the photon-contribution. In MSSM the
photon exchange dominates the processes in numerical calculations. How can
this be? The reason is that there is cancellation among Z-exchange diagrams in
MSSM, and that results in the suppression of the Z-boson penguins [65]. There
are two things that can spoil the cancellation among the Z-penguins: extended
particle content or new couplings. The latter of these happens in trilinear R-
parity violating model where new lepton flavour violating interactions (63) are
added to those of the MSSM. The new interactions lead to new loop diagrams
that don’t experience the cancellation as the MSSM ones. A new diagram
containing R-parity violating vertices is for example:

li lj
lk

Z

ν̃m ν̃m

lj

l̄j

Figure 58: R-parity violating diagram

The lepton conversion near nucleus can proceed through the same kind of a
diagram, one only has to change two external leptons to quarks. The processes
li → ljγ do not get any enhancement from the Z-boson penguins at one-loop
level.

Let us now review the numerical results obtained in [64] for trilinear R-
parity violating model. As noted before the photon- and Z-contributions should
behave differently as the SUSY mass scale is changed. The photon-contributions
should be diminished with respect to Z-contribution as the SUSY mass scale is
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raised. At one-loop order the li → 3lj decay and the li-lj conversion acquire
boost from the Z-contribution. The decay li → ljγ does not however. Therefore
as the SUSY scale is raised the rates of li → 3lj and li-lj conversion should be
increased relative to li → ljγ.

This was indeed noticed. The branching ratios of li → ljγ and li → 3lj were
plotted as a function of λ∗231λ232 which is a combination of R-parity violating
couplings, with different benchmark points. For a smaller SUSY scale the ratio
of li → ljγ was larger. But at larger SUSY mass scale the li → 3lj slightly
surpassed the li → ljγ. This is remarkable as in the MSSM BR(li → ljγ) >
li → 3lj [64].
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7 Charged lepton flavour violation at LHC

The LHC (Large Hadron Collider) can search charged lepton flavour violation
through many different decay modes. In our discussion we divide the searched
decay modes into two categories: modes including only SM particles in the final
states and modes that include supersymmetric particles in the final states.

7.1 CLFV with only SM particles

The LHC can search for charged lepton flavour violating tau lepton decays,
lepton flavour and baryon number violating B- meson decays and charged lepton
flavour violating Z-boson decays. Tau is the only charged lepton whose CLFV
decay can be detected in LHC. The LHC will produce W- and Z-bosons and
B-mesons. Their decays will produce tau-leptons which would yield muons as
final state particles. The tau decays with electrons in the final state are also
possible of course (e.g. τ → 3e), but they are experimentally almost impossible
to detect:

The LHC produces a large number of B- and D-mesons and W- and Z-bosons
in its proton-proton collisions [67]. The taus in the LHC are predominantly
produced in the decay of these particles. The tau mass is close to the masses on
B- and D-mesons. Therefore the decays of taus from heavy mesons are difficult
to trigger due to small transverse momenta of resulting muons.

Tau is so heavy it can decay into hadrons. At LHCb the decays τ− → p̄µ+µ−

and τ− → pµ−µ− are searched [70]. Also the charged lepton flavour violating
B-meson decays, B+ → π−µ+µ+ and B+ → K−µ+µ+ are searched at the LHC
[71].

The search for CLFV at the LHC is just beginning, but there are already
first results obtained from the LHC run at

√
s = 7TeV. The LHCb has reported

(2012) of the upper limits obtained for the processes τ− → µ+µ−µ−, τ− →
p̄µ+µ− and τ− → pµ−µ−, using data obtained during 2011 at

√
s = 7 TeV by

LHCb [70]:

BR(τ− → µ+µ−µ−) < 7.8(6.3)× 10−8

BR(τ− → p̄µ+µ−) < 4.5(3.4)× 10−7

BR(τ− → pµ−µ−) < 6.0(4.6)× 10−7,

at 97% (90%) confidence level. LHCb has also reported (2012) of limits for
B-meson decays B+ → K−µ+µ+ and B+ → π−µ+µ+, that were obtained from
the data collected during 2010 at the LHCb [71]:

BR(B+ → K−µ+µ−) < 5.4× 10−8

BR(B+ → π−µ+µ+) < 5.8× 10−8,

at 95% confidence level.
The ATLAS and CMS should be able to search for τ → µγ and τ → µµµ,

and LHCb will continue the search for CLFV decays involving hadrons.

7.2 CLFV with supersymmetric particles

The LHC should be able to produce supersymmetric particles when it starts its
operation again in early 2015 with higher centre-of-mass energy

√
s = 14TeV.
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So LHC can also search for charged lepton flavour violating decays that involve
supersymmetric particles in the initial and final states. The possible way to
produce the CLFV process with SUSY particles in the LHC is through the
following decay chain [69]:

pp → q̃aq̃b, g̃q̃a, g̃g̃, (66)

q̃a(g̃) → χ̃0
2qa(g), (67)

χ̃0
2 → l̃αlβ , (68)

l̃α → χ̃0
1lβ , (69)

where a and b run over all squark mass eigenstates and α and β are lep-
ton/slepton mass(flavour) eigenstates. So first squarks (q̃a) and gluinos (g̃)
are produced in the proton collision (66). Then the squarks and gluinos decay
into quarks and gluons with second lightest neutralino χ̃0

2 (67). The searched
charged lepton flavour violation can occur when the χ̃0

2 decays into a slepton-
lepton pair with possibly different flavours (68) or when the slepton decays into
the lightest neutralino χ̃0

1 and a lepton with possibly a different flavour.
Also one can detect flavoured slepton mass splittings, defined as [73]:

∆ml̃

ml̃

(l̃i, l̃j) =
|ml̃i
−ml̃j

|
〈ml̃i

,ml̃j
〉
.

In many SUSY models the slepton masses are assumed to be universal at the
input scale, i.e. the sleptons have equal masses. The renormalization group evo-
lution however changes those masses as one runs the energy scale from the input
scale down to the electroweak scale. The slepton masses of different generations
evolve differently due to different Yukawa couplings between generations. When
one assumes that the neutrino masses are generated by the seesaw-I mechanism
the RG equations of the slepton masses get additional contribution from the
neutrino Yukawa couplings. The LHC can detect the mass splittings and it can
be used to probe whether the seesaw-I is the source of neutrino masses, even if
CLFV is not detected [97].
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8 Conclusions

The charged lepton flavour violating processes have never been observed, de-
spite numerous experimental searches. The present upper bounds (Table 2) for
the CLFV processes are already quite stringent. There are several ongoing and
future experiments trying to improve the sensitivity. For µ → eee decay, the
sensitivity of 10−16 is expected [101], which is four orders of magnitude more
sensitive than the present bound. The next phase of MEG experiment is ex-
pected to reach BR(µ→ eγ) ≤ 6×10−14 [91], [102]. Also for the µ-e conversion
in the nuclei improvements are expected [103]-[107]. Also the LHC should start
its next run in early 2015, with higher centre-of-mass energy

√
s = 14TeV.

In this thesis we have studied the CLFV, in effective theories, and as an ex-
plicit example, in the context of MSSM extended with the seesaw-I mechanism.
This model assumes two unconfirmed things: the existence of supersymmetry
and neutrino mass generation via seesaw-I mechanism. The LHC can search for
superpartners, and if it finds charged sleptons, it can deduce from their mass
splittings whether or not the seesaw-I mechanism is the source of the neutrino
masses. But maybe in this case the more important thing would be the confir-
mation of supersymmetry. Also it would be nice if the existence of CLFV itself
could be confirmed in the LHC or in the low energy experiments after over 70
years of search.

The charged lepton flavour violating processes are extremely important due
to the restrictions they impose on the BSM theories. Many BSM models like su-
persymmetric models, contain sources of charged lepton flavour violation. The
strict bounds for the CLFV processes give severe restrictions on the parameters
of the new physics models. The thing is that charged lepton flavour violation
becomes more important if it is not found. The more stringent the bounds on
CLFV rates become, the more the parameters of new physics models are con-
strained. The restrictions the CLFV gives, helps to find the true BSM model.
So actually when one studies the charged lepton flavour violation, one actually
studies the theories beyond the Standard Model. Charged lepton flavour viola-
tion is just a point of view which one has taken. The true explanation of the
charged lepton flavour violation (or its absence) is the true theory beyond the
Standard Model.
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A An example of Rξ-gauge calculation

I now give an explicit example of a calculation in Rξ-gauge. I follow the proce-
dure of Cheng&Li [1]. I will calculate the ”scalar diagram” , involving Goldstone
bosons, which contributes to the process µ→ eγ in Rξ-gauge.

µ e

γ

Figure 59: li → ljγ

We shall assume that the neutrinos are not massless so that process µ→ eγ
is mediated by neutrino oscillations

να =
∑
i

Uαiνi α = e, µ, τ ; i = 1, 2, 3,

where να denote weak eigenstates and νi denote mass eigenstates. The lowest
order diagrams contributing to the process µ→ eγ in Rξ-gauge are:

µ−
νi

e−

W W

γ

Figure 60: (a)

µ−
νi

e−

φ− W

γ

Figure 61: (b)

µ−
νi

e−

W φ−

γ

Figure 62: (c)

µ−
νi

e−

φ− φ−

γ

Figure 63: (d)

µ−
νi

e− e−

W
γ

Figure 64: (e1)

µ−
νi

e− e−

φ−
γ

Figure 65: (e2)
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µ− µ−
νi

e−

W
γ

Figure 66: (e3)

µ− µ−
νi

e−

φ−
γ

Figure 67: (e4)

The Feynman amplitude of the general process µ → eγ, presented in the
figure (59), can be written in a form

M(µ→ eγ) = ūe(p−q) [iqνσλν(A+Bγ5) + γλ(C +Dγ5) + qλ(E + Fγ5)]uµ(p)ελ,

where A,B,C,D,E and F are some constants or ”form factors”. The object
inside the square brackets is the electromagnetic current Jµem. This most general
form can be simplified however. First we can use the gauge invariance of the
quantum electrodynamics:

∂µJ(x)µem = 0,

or rather it’s momentum space counterpart:

qµJ(q)µem = 0.

By using that we deduce that C = D = 0.
We also notice that because

qµε
µ = 0,

for a on-shell photon, the ”E − F”-term in the amplitude vanishes. So we are
only left with magnetic transition term:

M(µ→ eγ) = ue(p− q)[iqνσλν(A+Bγ5)]uµ(p)ελ. (70)

We also make the approximation me = 0. This means that the outgoing
electron must be left-handed. This is only possible if A = B. Then the Feynman
amplitude for the process is [1]

M(µ→ eγ) = Aue(p− q)(1 + γ5)(2p · ε−mµγ · ε)uµ(p), (71)

where we have used Gordon decomposition. We know that the final amplitude
must have the form of a magnetic transition (70) so we only have to concentrate
on p · γ term when calculating the invariant amplitude A. The γ · ε term is
canceled by the diagrams (e1), (e2), (e3) and (e4).

We want to find out the contribution to the invariant amplitude A coming
from the ”scalar diagram” (d). We use the following momentum assignment.
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p

p+ k

p− q

k k + q

q

Figure 68: Momentum assignments
in diagram (d)

We proceed as follows. First we write down the corresponding Feynman
amplitude using generalized Feynman rules in Rξ-gauge which allow neutrino
mixing. Then we extract terms that are proportional to p · γ only and discard
terms proportional to ε · γ. Finally we just compare the result with (71) and
recognize the coefficient in front as invariant amplitude A.

By using Feynman rules we can write the Feynman amplitude for mass
eigenstate i as:

T (d) = −i
∫

d4k

(2π4

{
ue(p− q)

(
ig

2
√

2M

)
U∗ei[mi(1 + γ5)−me(1− γ5)]

×i /p+ /k +mi

(p+ k)2 −m2
i

(
ig

2
√

2M

)
[mi(1− γ5)−mµ(1 + γ5)]uµ(p)

}
× i

k2 − ξM2

i

(k + q)2 − ξM2
ie(2k · ε) (72)

To simplify this we set me = 0, commute /p’s to uµ(p) and use Dirac equation
for a spinor:

(/p−m)u(p) = 0

In order to get the contribution from all of the intermediate mass eigenstates
we sum them over:∑

i

Ti(d) = i

(
g2

8M2

)∫
d4k

2π4

1

k2 − ξM2

1

(k + q)2 − ξM2
e(2k · ε)

×
∑
i

U∗eiUµiue(p− q)
2m2

i (1 + γ5)/k

(p+ k)2 −m2
i

uµ(p). (73)

By using the approximation:∑
i

U∗eiUµi
(p+ k)2 −m2

i

'
∑
i

U∗eiUµim
2
i

(p+ k)2
, (74)

we get that:∑
i

Ti(d) = i
c

M2

∫
d4k

2π4

1

k2 − ξM2

1

(k + q)2 − ξM2

1

(p+ k)2

68



×(2k · ε)ue(p− q)(1 + γ5)/kuµ(p), (75)

where c is:

c =
eg2

M2

∑
i

U∗eiUµim
2
i .

Next we must calculate the integral over k. We do this by employing Feyn-
man parametrization:

1

(p+ k)2(k2 − ξM2)((k + q)2 − ξM2)
= 2!

∫ 1

0

dz1

∫ 1−z1

0

dz3
1

D3
, (76)

where denominator D is:

D = (p+ k)2z1 + (k2 − ξM2)(1− z1 − z3) + ((k + q)2 − ξM2)z3

= (k + z1p+ z3q)
2 − (z1p+ z3q)

2 + z1p
2 − ξM2(1− z1) ≡ l2 − a2. (77)

We take l = k+ z1 + z3q as the new integration variable in (75) and it becomes:

∑
i

Ti(d) =
4ic

M2

∫ 1

0

dz1

∫ 1−z1

0

dz3ue(p− q)(1 + γ5)× I × uµ(p), (78)

where I is:

I =

∫
d4l

(2π)4

(/l − (z1 + z3)mµ)(εν l
ν − z1ε · p)

(l2 − a2)3
.

=

∫
d4l

(2π)4

(
γαεν l

αlν

(l2 − a2)3
+
z1(z1 + z3)mµε · p

(l2 − a2)3

)
. (79)

We are interested only in terms proportional to ε · p so we discard the first
integral in the second line of (79) since it is proportional to ε·γ 14. The remaining
integral in (79) is well known15. Then (78) becomes:∑

i

Ti(d)

−−−−−−→
ε · p only

cmµ(ε · p)
8π2M2

ue(p− q)(1 + γ5)

∫ 1

0

dz1

∫ 1−z1

0

dz3
z1(z1 + z3)

a2
uµ(p).

In order to calculate the remaining integral over Feynman parameters, we
need to approximate a2. We have defined a2 in (77). Since M ≡MW � mµ we
can make the approximation:

1

a2
=

1

ξM2(1− z1) + (z1p+ z3q)2 − z1p2
' 1

ξM2(1− z1)
.

By using this approximation the integral over Feynman parameters becomes
trivial and we get:

14symmetry allows one to replace [2]: lµlν → 1
4
l2gµν

15[3]:
∫
d4l 1

(l2−s)3 = − iπ
2

2s
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∑
i

Ti(d) =
5c

96π2
(ε · p)ue(p− q)(1 + γ5)uµ(p)

mµ

ξM4
.

When we compare this to (71), we finally get the invariant amplitude A:

A =
c

36π2

(mµ

M4

) 5

6ξ
.

B Supersymmetry

Supersymmetry is a space-time symmetry which relates bosons and fermions
to each other. The particles of supersymmetric theory reside in irreducible
representations of supersymmetry algebra, called supermultiplets. A supermul-
tiplet contains both boson and fermion states which are said to be superpartners
of each other. A supersymmetry transformation transforms fermions to their
bosonic superpartners and vice versa. Standard Model particles and their sup-
posed superpartners (they have never been observed) fit in two kinds of super-
multiplets: chiral supermultiplets and vector supermultiplets. Chiral supermul-
tiplets contain the SM spin-1/2 fermions, quarks and leptons, and their spin-0
superpartners. Also Higgs boson resides in chiral supermultiplet along with it’s
spin-1/2 superpartner. Vector supermultiplet contains the gauge bosons and
their spin-1/2 superpartners.

In supersymmetry it is convenient to use so called Weyl spinors instead of
the usual Dirac spinors. The Weyl representation of gamma matrices are

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, µ=0,1,2,3

where
σµ ≡ (I2,σ)
σ̄µ ≡ (I2,−σ) = σµ.

In this representation Dirac spinor ΨD can be written in terms of it’s left- and
right-handed parts as follows:

ΨD = ΨL + ΨR =

(
ψα
0

)
+

(
0
χ̄α̇

)
.

The two component objects ψα (α = 1, 2) and χ̄α̇ (α̇ = 1̇, 2̇) are called left-
and right-handed Weyl spinors respectively. We have two sets of spinor indices:
dotted and undotted. They represent the fact that first two components (un-
dotted) transform inder a different representation of the Lorentz group than the
last three components (dotted). The four-component Dirac representation of the
Lorentz group is not irreducible, but the two component chiral representation
is. One can define:

ψ̄α̇ ≡ (ψα)∗, χα ≡ (χ̄α̇)∗.

Weyl spinors anticommute:

{ψ, χ} = {ψ̄, χ̄} = {ψ, χ̄}.

Simple supersymmetry algebra is:
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
[Qα, P

µ] = [Q̄α̇, P
µ] = 0

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0.

Operator Qα is Weyl spinor generator. This algebra holds for so called N = 1
supersymmetry, where the theory contains only one supersymmetry, i.e. there
is only one supersymmetry generator Qα. In general one could add more su-
persymmetries in the theory in which case there would be more supersymmetry
generators: QAα, A = 1, 2, ..., N . This theory would contain N different super-
symmetries. Even though one could add arbitrarily many supersymmetries in
the theory, it is not usually wise if one wants to avoid complications. If the
N exceeds 8, the theory must contain particles whose spin is greater than two,
which is unpleasant.

B.1 Weyl spinor notation

B.1.1 Chiral supermultiplets

Chiral supermultiplets contain all scalar fields of the theory and their spin-
1/2 fermionic superpartners (also the vector supermultiplet contains spin-1/2
fermions which are superpartners of the vector bosons). The degrees of free-
dom of the bosons and the fermions must always match in the supermultiplets,
whether they are on-shell or off-shell. In chiral supermultiplet one has to add a
non-propagating auxiliary field F in order the bosonic and fermionic degrees of
freedom to match.

The free non-interacting part of the Lagrangian for the chiral supermultiplet
is:

Lchiral,free = −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi + F ∗iFi,

where the index i is summed over and it represents the different chiral super-
multiplets of the theory.

There are also interactions between the particles of the chiral superfields
(and these don’t include gauge interactions). The interactions of the supermul-
tiplets are derived from the function called the superpotential W , which is a
holomorphic function of the scalar fields φi:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk,

where the Li is a parameter with dimension [mass]2, M ij is a symmetric mass
matrix for the fermion fields and yijk is a Yukawa coupling of scalar φk and the
fermions ψi and ψj . The interaction Lagrangian for chiral superfields is:

Lchiral,int = −1

2

∂2W

∂φi∂φj
ψiψj −

1

2

∂2W ∗

∂φ∗i ∂φ
∗
j

ψ̄iψ̄j +
∂W

∂φi
Fi +

∂W ∗

∂φ∗i
F ∗i .

The complete Lagrangian for chiral supermultiplets is Lchiral = Lchiral,free +
Lchiral,int. The auxiliary field F is non-propagating field that was introduced
just to get right match of degrees of freedom. Since auxiliary field doesn’t have
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derivative term in the Lagrangian it’s classical equation of motion is just an
algebraic equation:

Fi = −∂W
∗

∂φ∗i
F ∗i = −∂W

∂φi
.

The Lagrangian for the chiral supermultiplets therefore is:

Lchiral = −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi

−1

2

∂2W

∂φi∂φj
ψiψj −

1

2

∂2W ∗

∂φ∗i ∂φ
∗
j

ψ̄iψ̄j −
∂W

∂φi

∂W ∗

∂φ∗i
. (80)

Supersymmetry transformation is

δξφi = ξψi, δξφ
∗i = ξ̄ψ̄i

δξ(ψi)α = −i(σµξ)α∂µφi + ξαFi, δξ(ψ̄
i)α̇ = i(ξσµ)α̇∂µφ

∗i + ξ̄α̇F
∗i

δξFi = −iξ̄σ̄µ∂µψi, δξF
∗i = i∂µψ̄

iσ̄µξ,

where ξ is an infinitesimal anticommuting Weyl spinor that characterizes the
supersymmetry transformation and φ is a complex scalar field, ψ is a left-handed
Weyl spinor field and F is a non-propagating complex auxiliary field that ensures
that supersymmetry algebra closes off-shell.

B.1.2 Vector supermultiplets

Vector supermultiplets contain all the gauge bosons of the theory and their
spin-1/2 superpartners called the gauginos. As in the case of chiral supermulti-
plets, also here the degrees of freedom between fermions and bosons must match
both on- and off-shell. One has to add one real pseudoscalar auxiliary field Da

to vector supermultiplet, in order the degrees of freedom to match [11]. The
Lagrangian for the vector or gauge multiplet is:

Lgauge = −1

4
F aµνF

µνa + iλ̄aσ̄µ∇µλa +
1

2
DaDa, (81)

where

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

is the Yang-Mills field strength. The λa’s are the two-component Weyl spinors
describing the gauginos, and the a runs over the adjoint representation of the
gauge group in question16.
The covariant derivative of the gaugino field is:

∇µλa = ∂µλ
a + gfabcAbµλ

c.

The Lagrangian (81) is invariant in the following gauge transformation:

16For gluons and gluinos the gauge group is SU(3)C and a = 1, 2, ...8. For SU(2)L gauge
bosons and their superpartners a = 1, 2, 3. For U(1)Y a = 1.
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Aaµ → Aaµ + ∂µΛa + gabcAbµΛc (82)

λa → λa + gfabcλbΛc. (83)

It is also invariant under supersymmetry transformation (up to a total deriva-
tive) which we don’t state here.

B.1.3 Supersymmetric gauge interactions

We have now reviewed the properties of the chiral and vector multiplets sepa-
rately. It is now time to put these together. The fermions in the chiral super-
multiplet are the SM fermions: quarks and leptons. The quarks know all the
interactions and the leptons know the electroweak interactions. The scalar su-
perpartners of the SM fermions have the same quantum numbers as the original
particles, with the exception of spin, which differs by 1/2. The scalar super-
partners therefore have the same gauge couplings as their SM counterparts and
know exactly the same interactions. The gauge interactions of the particles in
the chiral supermultiplets must be incorporated to the theory somehow. It can
be done by changing the normal derivatives in the chiral Lagrangian (80) into
the following covariant derivatives:

∇µφi = ∂µφi − igAaµ(T aφ)i (84)

∇µφ∗i = ∂µφ
∗
i + igAaµ(φ∗T a)i (85)

∇µψi = ∂µψi − igAaµ(T aψ)i. (86)

There are also other interactions however. The gauge fields Aaµ couple to scalars
φi and fermions ψi, but so do gaugino fields λa and auxiliary fields Da. So we get
the most general supersymmetric Lagrangian when we combine the gauge field
Lagrangian (81) , the chiral Lagrangian (80) in which the derivatives are replaced
with the covariant derivatives (84), (85), (86), and the possible renormalizable
interaction terms involving scalars, their fermionic partners, gauginos and the
auxiliary fields Da:

L = Lgauge + Lchiral

−
√

2g(φ∗T aψ)λa −
√

2gλ̄a(ψ̄T aφ) + g(φ∗T aφ)Da. (87)

The auxiliary field Da can be expressed algebraically in terms of the scalar fields
of the theory as Da = −g(φ∗T aφ).

Finally we discuss about the scalar potential of the general supersymmetric
Lagrangian (87). The scalar potential in the Lagrangian of the chiral multiplet is
determined by the auxiliary fields F and F ∗ as F ∗iF i. Also the scalar potential
coming from the ”extra” interaction terms in (87) and (81) is determined by the
auxiliary field Da as 1

2D
aDa. So the complete scalar potential of supersymmetry

is:

V (φ, φ∗) = F ∗i Fi +
1

2

∑
a

DaDa = |∂W
∂φi
|2 +

1

2

∑
a

g2
a(φ∗T aφ)2. (88)

The first term is called the ”F”-term and the second term is called the ”D”-term.
These terms are important when one studies the spontaneous supersymmetry
breaking.
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B.1.4 Supersymmetry-breaking

Theory can have spontaneously broken symmetry only if scalar potential of
the theory has a non-zero VEV. The potential (88) is the most general scalar
potential of the supersymmetric theory so if the supersymmetry were to break
spontaneously, one of the auxiliary fields must get a non-zero VEV. Model in
which the SUSY-breaking happens by the D-term VEV is called Fayet-Iliopoulos
supersymmetry breaking model. Model in which the SUSY-breaking is due to
F-term VEV is called the O’Raifeartaigh supersymmetry breaking model. At
tree-level the following relation holds for supertrace STr(m2):

STr(m2) ≡
∑
i

(−1)2j(2j + 1)Tr(m2
j ) = 0. (89)

The supertrace sums over all the particles in the theory. This relation restricts
the mass spectrum of the theory. If one applies the F- and D-term breakings
to MSSM one notices that the relation (89) requires implausible masses of the
superpartners [49]. The supersymmetry therefore can not be spontaneously
broken by F- and D-terms of the MSSM fields. The way around this is to
assume new field that interact very weakly with the MSSM particles. This new
sector is called the hidden sector. In hidden sector models the supersymmetry
is spontaneously broken by the scalar fields of the hidden sector. The breaking
is then communicated to the visible sector (MSSM or its extension) by the
messenger fields. There are many supersymmetry-breaking models involving a
separate SUSY-breaking sector. They have different ways of communicating the
SUSY-breaking to the visible sector. The most popular models are the gravity-
and gauge-mediated models. These are discussed in the section 5.1.

Whatever the supersymmetry-breaking mechanism is, the result of the break-
ing can be parametrized in the so called soft supersymmetry-breaking terms. The
soft SUSY-breaking terms have couplings whose mass dimensions are positive.
This maintains the hierarchy between the electroweak scale and the Planck scale
[48]. The soft terms for general supersymmetric theory are:

Lsoft = −
(

1

2
Maλ

2λ2 +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi.

(90)

The parameters are gaugino massesMa, scalar squared masses (m2)ji and bij , tri-

linear scalar couplings aijk and cjki , and the ”tadpole” coupling ti. Softly broken
supersymmetric theory that has this kind of soft terms, has no quadratic diver-
gences in correction to the scalar squared masses to all orders of perturbation
theory, as was shown in [51]. This is why they are called ”soft” supersymmetry
breaking terms.

When the supersymmetry is spontaneously broken potentially all the scalars
and gauginos acquire masses (the mass parameters can in principle be zero).
These mass parameters can be quite large, which is in a agreement with the
experiments: superpartners have never been observed (at time of writing, early
2015). LHC starts its experimets again in early 2015 with higher 13 TeV collision
energy and it should be more than capable of producing superpartners.

In general these soft terms involve sources of lepton flavour violation. The
scalar masses and trilinear couplings can in principle contain non-diagonal terms
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and they are of the same order of magnitude as the diagonal ones if there is no
principle to tell otherwise. This is a serious problem since from the experiments
we know that the lepton flavour violating processes are extremely suppressed.
Large off-diagonal soft terms could give too large transition rates for CLFV pro-
cesses. To explain the phenomenologically wanted small off-diagonal terms, one
can use some explicit supersymmetry breaking model which generates the small
off-diagonal soft terms. These kind of models are minimal supergravity mod-
els and gauge mediated SUSY-breaking models for example (but to be honest
the gravity-mediation does not really produce small off-diagonal terms without
radical assumptions).

B.2 Superfield notation

Supersymmetry can also be formulated using more sophisticated superfield -
notation. In superspace we have linear representation of supersymmetry algebra
[48]: {

Qα = i ∂
∂θα − σ

µ
αα̇θ̄

α̇∂µ
Q̄α̇ = i ∂

∂θ̄α̇
− σ̄µα̇αθα∂µ.

An ordinary field is a function of the space-time coordinate xµ only, but a
superfield S(x, θ, θ) is also a function of anticommuting Grassmann variables
θα and θα̇. A general superfield can therefore be expanded in a power series in
Grassmann variables:

S(x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄+ θθm(x) + θ̄θ̄n(x)
θσµθ̄Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x),

where f,m, n, d are scalar fields, Vµ is a vector field and φ, ψ, χ̄, λ̄ are Weyl spinor
fields. This superfield contains more degrees of freedom than chiral and vector
supermultiplets. This is therefore a reducible representation of supersymmetry.
In order to construct chiral and vector superfields we have to impose constraints
on the general superfield.

We define chiral covariant derivative as:

Dα = ∂
∂θα − iσ

µ
αα̇θ̄

α̇∂µ
D̄α̇ = ∂

∂θ̄α̇
− iσ̄µα̇αθα∂µ.

This is used to define left- and right-handed chiral superfields Φ and Φ†:

D̄α̇Φ = 0
DαΦ† = 0

A general left-handed chiral superfield can be written as:

Φ(xµ, θ, θ) = φ+
√

2θψ + θθF + iθ̄σ̄µθ∂µφ− i√
2
θθθ̄σ̄µ∂µψ + 1

4θθθ̄θ̄∂µ∂
µφ,

where φ and F are complex scalar fields and ψ is a left-handed Weyl spinor
field. Product of any left-handed chiral superfields is also a left-handed chiral
superfield. The coefficient of θθ is referred as the F -term and the coefficient of
θθθ̄θ̄ is referred as the D-term. These are important when studying spontaneous
breaking of supersymmetry.
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A vector superfield V is a superfield that satisfies the condition:

V = V ∗,

which implies

f = f∗, φ̄ = ξ̄, m = n∗, Vν = V ∗ν , λ̄ = ψ̄, d = d∗.

A general vector superfield therefore is:

V (x, θ, θ̄) = f(x) + φ(x)θ + φ̄(x)θ̄ +m(x)θθ +m∗(x)θ̄θ̄

θσµθ̄Vµ(x) + λ̄(x)θθθ̄ + λ(x)θ̄θ̄θ + d(x)θθθ̄θ̄.

B.3 Charginos and neutralinos

After the electroweak SU(2)L × U(1)Y symmetry breaks spontaneously, the
gauge eigenstates no longer are the mass eigenstates. This imposes mixing
among the particles with same quantum numbers. This happens in SM with
U(1)Y gauge boson B and the SU(2)L gauge bosons W 1, W 2 and W 3. The B
and W 3 mix together and the mass eigenstates are the neutral photon and the
Z0 boson. Also the W 1 and W 2 mix and the resulting mass eigenstates are the
charged W -bosons, W− and W+.

The superpartners of B, W 1, W 2 and W 3, namely the Bino
∼
B Winos

∼1

W ,
∼2

W

and
∼3

W , experience the similar mixing. However in case of gauge boson super-
partners the mixing involves more particles. The certain spin-1/2 superpartners
of Higgs bosons ψh0

u
, ψh0

d
, ψh+

u
and ψh−

d
share quantum numbers with certain

gauginos. The neutral gauginos
∼
B and

∼3

W mix with the neutral Higgsinos ψh0
u

and ψh0
d

to form four mass eigenstates called neutralinos,
∼0
χA, A = 1, 2, 3, 4. The

negatively charged Higgsino ψh−
d

mixes with the super partner of W−,
∼
W −, to

form negatively charged charginos,
∼
χ −
A, A = 1, 2. The positively charged Hig-

gsino in turn mixes with the
∼
W + to form positively charged charginos,

∼
W

+
A,

A = 1, 2.
At low energies the calculations are conducted using the mass eigenstates,

the neutralinos and charginos. In supersymmetric theories with exactly con-
served R-parity quantum number, like MSSM, there can be no mixing between
the Standard Model particles and the Higgs bosons (R-parity +1), and their
superpartners (R-parity-1), because the mixing particles must have the exactly
the same quantum numbers.

The fermion-sfermion-gaugino vertices are possibly responsible for flavour
violations. After the electroweak symmetry breaking the gauginos however
mix with the Higgsinos and the possibly flavour violating fermion-sfermion-
gaugino vertices become fermion-sfermion-neutralino and fermion-sfermion-
chargino vertices. The Lagrangian for fermion-sfermion-neutralino interaction
is [54]:

Lneutralino = f̄i(N
R(f)
iAX PR +N

L(f)
iAX PL)χ̃0

Af̃X + h.c.. (91)

The fi is the fermion in mass eigenstate with the generation index i = 1, 2, 3 and
f̃X is the sfermion in the mass eigenstate. The X = 1, 2, 3 for sneutrinos ν̃ (these
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are partners of the light neurinos; the heavy neutrino states are effectively de-
coupled at the electroweak scale and don’t therefore affect to fermion-sfermion-
neutralino vertices). The X = 1, ..., 6 for other fermions. The neutralino index

A runs from 1 to 4. The coefficients N
R(f)
iAX and N

L(f)
iAX depend on the mixing

among the neutralinos and among the sfermions. Their explicit form (in the con-
text of right-handed neutrinos) is given in the reference [54]. The Lagrangian
for the fermion-sfermion-chargino interaction can be written as [54]:

Lchargino = l̄i(C
R(l
iAXPR + C

L(l)
iAXPL)χ̃−Aν̃X + ν̄i(C

R(ν
iAXPR + C

L(ν)
iAX PL)χ̃+

A l̃X (92)

+d̄i(C
R(d
iAXPR + C

L(d)
iAXPL)χ̃−AũX + ūi(C

R(u
iAXPR + C

L(u)
iAX PL)χ̃+

Ad̃X + h.c., (93)

where the neutralino index a runs from 1 to 2. The explicit form of the co-
efficients (in the context of right-handed neutrinos) is given in the reference
[54].
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C Seesaw mechanism

As we have said many times in the main text, the Standard Model treats the
neutrinos as massless Dirac particles that is they have distinct antiparticles.
Experimentally the neutrinos are known to have masses and the Dirac nature of
neutrinos is not proven. These should be clear in the extension of the Standard
Model. We will now concentrate on the seesaw-I mechanism, which is one of
the most popular methods of introducing the neutrino masses in to the simple
extensions of the Standard Model. The seesaw-I can also be generalized to the
supersymmetric theories to generate the neutrino masses in them (as discussed
in the section 5.2.2). Before we can review the seesaw-I, we need to state some
notation.

There are two types of mass terms that can be written for a fermion that
are renormalizable and gauge invariant: Dirac and Majorana mass terms. Dirac
mass term can be written as:

LD = −mDψ̄ψ = −mD(ψ̄L + ψ̄R)(ψL + ψR) = −mD(ψ̄LψR + ψ̄RψL).

To define Majorana mass terms we have to define charge conjugation:{
ψc ≡ Cγ0ψ∗ = (−iγ0γ2)γ0ψ∗ = iγ2ψ∗

ψ̄c ≡ ψTC . (94)

The charge conjugation matrix C has the following properties:

CT = C† = −C = C−1.

There are left- and right-handed Majorana mass terms defined as:

LML = −mL

2

[
(ψL)cψL + ψ̄L(ψL)c

]
LMR = −mR

2

[
(ψR)cψR + ψ̄R(ψR)c

]
It is possible that Dirac and Majorana mass terms exist simultaneously.
This combined mass term can be written using identity:17

ψ̄c1ψ
c
2 = ψ̄2ψ1.

Using this we can write Dirac mass term as

LD = −mD

2
(ψ̄RψL + ψ̄LψR + (ψL)c(ψR)c + (ψR)c(ψL)c).

The combined mass term can now be written as a product of matrices:

Lm = LD + LML + LMR = −mDψ̄RψL −
mL

2
ψ̄cLψL −

mR

2
ψ̄Rψ

c
R + h.c.

17proof: using (94): ψ̄c1ψ
c
2 = −(ψ1)T γ0ψ∗2 = −(ψ̄2ψ1)T . The spinor components anticom-

mute [3]: {ψ(x), ψ̄(y)} = iS(x− y) (when x = y). Now the minus cancels when the left- and
right-handed spinors are switched and the transpose is canceled when the spinors are switched
again.
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= −1

2

(
(ψL)c ψ̄R

)( mL mD

mD mR

)(
ψL

(ψR)c

)
+ h.c.

Majorana mass terms are only possible for neutral fermions, whereas Dirac
mass terms are allowed to all. In the SM there are only three neutral fermions:
the neutrinos. In the Standard Model the neutrinos are assumed to be massless
and Dirac particles (i.e. have distinct antiparticles). It is however experimen-
tally known that neutrinos have tiny masses. The upper limit of electron neu-
trino is experimentally known to be . 1eV . The explanation of such a small
mass is a huge problem. If one tries to suggest that the neutrinos gain their
masses in ordinary Higgs mechanism like the other fermions, one stumbles to
the so called hierarchy problem, as explained bellow. When the electroweak
symmetry breaks spontaneously the Yukawa interaction terms become fermion
mass terms as in equation (17):

m′i =
v√
2
fi i = u, d, e. (95)

Now if neutrinos were given their masses in similar fashion the electron neutrino
mass would be

mνe =
v√
2
fνe

where the neutrino Yukawa matrix is assumed diagonal. If one assumes v =
246GeV and that mνe . 1eV , one gets for the electron neutrino Yukawa cou-
pling:

fνe . 10−12 ≪ fe.

This seems unnatural. The neutrino Yukawa coupling would have to be fine-
tuned to a precise value by multiple orders of magnitude. The Yukawa coupling
should be ∼ 1 to be natural. To explain the tiny value of neutrino mass, the
Seesaw mechanism was created [7].

In seesaw mechanism one introduces a right-handed neutrino through com-
bined mass term:

Lseesaw = LD + LML + LMR =

−1

2

(
(νL)c ν̄R

)( 0 mD

mD mR

)(
νL

(νR)c

)
+ h.c.

≡ −1

2
NcMN + h.c.

The right-handed neutrino has right-handed Majorana mass term, and is a
gauge singlet, i.e. it does not know gauge interactions. It is also called sterile
neutrino, since it does not interact with the Standard Model particles. The left-
handed neutrino is not given a left-handed Majorana mass, because it would
lead to inconsistencies and one would be required to add new particles to the
theory just to get rid of them.

The masses of the physical neutrinos are the eigenvalues of the mass matrix
M:

det

(
−λ mD

mD mR − λ

)
= 0
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⇒ λ =
1

2
mR

(
1±

√
1 +

4m2
D

m2
R

)
In seesaw-I mechanism it is assumed that the Majorana mass of the right-

handed neutrino, mR, is much larger than the neutrino Dirac mass, mD, which
is common to both left- and right-handed neutrino: mD � mR. In this case
one can approximate the eigenvalues18:

λ1 ≈ mR, and λ2 ≈ −
m2
D

mR
.

One notices that as the Majorana mass is raised the other eigenvalue grows,
whereas the other grows smaller. Hence the name Seesaw mechanism.

It is usually assumed that the Majorana mass mR is close to the Grand
Unification energy scale ΛGUT ∼ 1016. Then if one assumes that the Dirac
mass of the neutrino is at the order of electroweak scale v, the mass of the
left-handed neutrino would be:

mνL = −λ2 ∼
v2

ΛGUT
≈ 0.01eV.

This removes the necessity of the fine-tuning of the neutrino Yukawa coupling,
it is now allowed to be ∼ 1 since the Dirac mass is around the electroweak scale
v.

Even though the seesaw mechanism ensures the naturalness of the neutrino
Yukawa coupling, it does not solve the hierarchy problem. The Dirac mass of the
neutrino is of the order of the electroweak scale, v = 174 GeV, and the Majorana
mass mR is the order of 1016GeV. There is an enormous gap between the EW
scale and the mR scale leads to the hierarchy problem: tree level Higgs boson
has the mass of the order of v, but the radiative corrections drive it to extremely
high values, since the physical cut-off must be at least the scale of the Majorana
mass mR. Luckily the supersymmetry will solve this hierarchy problem by
introducing superpartners, which will cancel the quadratic corrections to the
Higgs mass.

The Standard Model can be extended to include effective operators with
mass dimensions greater than four, as we have discussed in section 3. In that
section we only considered dimension six operators, discarding the only existing
dimension five operator, the Weinberg-operator:

QWeinberg = εabεcdφ
aφc(lbi )

TCldj ,

since it only contributed to the neutrino masses. But now it is all about neutrino
masses. The Weinberg operator is an effective operator which is a left over of
some higher theory diagram whose heavy new physics fields have been integrated
out. There is only three possible models that produce the Weinberg operator
as the heavy fields are integrated out at the tree-level [98]. Those models are
called seesaw-I, II and III. In the seesaw-I the SM is extended to have three
heavy scalar fields, right-handed neutrinos, to generate small neutrino masses.
In seesaw-II the SM is extended to have a heavy scalar triplet (ξ++, ξ+, ξ0) [99],
[100] and in the seesaw-III the SM is extended with a heavy fermion triplet
(Σ+,Σ0,Σ−) [100].

18
√

1 + x ≈ 1 + x
2

80



D Renormalization group evolution

As we know from standard quantum field theory, masses and coupling constants
acquire corrections from the higher orders of perturbation theory. Therefore the
masses and the couplings change as the energy varies. One must always use the
correct values for the masses and the couplings, i.e. one must use the values at
the energy the physics under consideration happens. One can encapsulate the
energy dependence of parameters in renormalization group equations.

D.1 Renormalization group equations in MSSM extended
with massive neutrinos

The MSSM renormalization group equations are as follows [49]. These will in-
clude the right-handed neutrinos, so these equations actually describe extended
MSSM. Renormalization group equations for the gauge couplings to two-loop
order are:

dga
dt

=
g3
a

16π2
ba +

g3
a

(16π2)2

 3∑
b=1

B
(2)
ab g

2
b −

1

16π2

∑
x=u,d,e,ν

Cxa
16π2

Tr(Y †x Yx)

 ,
where t = ln(Q/Q0) (Q is the renormalization scale in the MS scheme and Q0

is the high energy input scale), ba = ( 33
5 , 1,−3), and

B
(2)
ab =

 199
25

27
5

88
5

9
5 25 24
11
5 9 14

 ,

and

Cu,d,eνa =

 26
5

14
5

18
5

6
5

6 6 2 2
4 4 0 0

 .

The Yukawa matrix Yν for neutrinos is of course zero in the MSSM.
The renormalization group equations for the gaugino masses to two-loop

order in DR scheme19 are:

dMa

dt
=

2g2
a

16π2
baMa +

2g2
a

(16π2)2

3∑
b=1

B
(2)
ab g

2
b (Ma +Mb)

+
2g2
a

(16π2)2

∑
x=u,d,e,ν

Cxa
(
Tr[Y †x ax]−MaTr

[
Y †x Yx

])
,

19In SM the most popular regularization method is dimensional regularization (DREG).
One can not use DREG in supersymmetry however, since when the space-time dimensions are
continued from 4 to 4 − 2ε, the SUSY will be violated because the numbers of gauge boson
decrees of freedom and the gaugino degrees of freedom do not match off-shell anymore. The
regularization by dimensional reduction (DRED) preserves the supersymmetry. In DRED
the momentum integrals are performed in d − 2ε dimensions, but the gauge boson field Aaµ
Lorentz, µ, index is still 4-dimensional, not 4 − 2ε. The modified minimal subtraction in
DREG is called MS and in DRED it is called DR.
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where the ax = A0Yx is the trilinear scalar coupling.
The Yukawa coupling RG equations to one-loop order are:

dYu
dt

=
1

16π2
[Nq · Yu + Yu ·Nu + (NHu) · Yu] (96)

dYd
dt

=
1

16π2
[Nq · Yd + Yd ·Nd + (NHd) · Yd] (97)

dYν
dt

=
1

16π2
[Nl · Yν + Yν ·Nν + (NHu) · Yν ] (98)

dYe
dt

=
1

16π2
[Nl · Ye + Ye ·Ne + (NHd) · Ye] (99)

where

Nq = YuY
†
u − (

8

3
g2

3 +
3

2
g2

2 +
1

30
g2

1)1 (100)

Nu = 2Y †uYu − (
8

3
g2

3 +
8

15
g2

1)1 (101)

Nd = 2Y †d Yd − (
8

3
g2

3 +
2

15
g2

1)1 (102)

Nl = YeY
†
e + YνY

†
ν − (

3

2
g2

2 +
3

10
g2

1)1 (103)

Ne = 2Y †e Ye −
6

5
g2

11 (104)

Nν = 2Y †ν Yν (105)

NHu = 3Tr(Y †uYu) + Tr(Y †ν Yν)− (
3

2
g2

2 +
3

10
g2

1) (106)

NHd = 3Tr(Y †d Yd) + Tr(Y †e Ye)− (
3

2
g2

2 +
3

10
g2

1). (107)

The one-loop RG equation for µ-parameter is

dµ

dt
=

1

16π2
[NHu +NHd ]µ. (108)

The RG equations for soft trilinear couplings ax are:

dau
dt

=
1

16π2
[Nq · au + au ·Nu + (NHu)au + 2Pq · Yu + 2Yu · Pu + 2(PHu)Yu]

dad
dt

=
1

16π2
[Nq · ad + ad ·Nd + (NHd)ad + 2Pq · Yd + 2Yd · Pd + 2(PHd)Yd]

daν
dt

=
1

16π2
[Nl · aν + aν ·Nν + (NHu)aν + 2Pl · Yν + 2Yν · Pν + 2(PHu)Yν ]

dae
dt

=
1

16π2
[Nl · ae + ae ·Ne + (NHd)ae + 2Pl · Ye + 2Ye · Pe + 2(PHd)Ye],

where
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Pq = (
8

3
g2

3M3 +
3

2
g2

2M2 +
1

30
g2

1M1)1 + auY
†
u + adY

†
d (109)

Pu = (
8

3
g2

3M3 +
8

15
g2

1M1)1 + 2Y †u au (110)

Pd = (
8

3
g2

3M3 +
2

15
g2

1M1)1 + 2Y †d ad (111)

Pl = (
3

2
g2

2M2 +
3

10
g2

1M1)1 + aeY
†
e + aνY

†
ν (112)

Pe =
6

5
g2

1M11 + 2Y †e ae (113)

Pν = 2Y †ν aν (114)

PHu = (
3

2
g2

2M2 +
3

10
g2

1M1) + 3Tr(Y †u au) + Tr(Y †ν aν) (115)

PHd = (
3

2
g2

2M2 +
3

10
g2

1M1) + 3Tr(Y †d ad) + Tr(Y †e ae). (116)

The b term RG equation is:

db

dt
=

1

16π2
[(NHu +NHd)b+ 2(PHu + PHd)µ]. (117)

The renormalization group equations for soft scalar squared-masses are:

dm2
Q

dt
=

1

8π2
[−2(

8

3
g2

3 |M3|2 +
3

2
g2

2 |M2|2 +
1

30
g2

1 |M1|2 −
1

10
g2

1S)1 (118)

+(
1

2
YuY

†
um

2
Q +

1

2
m2
QYuY

†
u + Yum

2
UY
†
u + (m2

Hu)YuY
†
u + aua

†
u)

+(
1

2
YdY

†
dm

2
Q +

1

2
m2
QYdY

†
d + Ydm

2
DY
†
d + (m2

Hd
)YdY

†
d + ada

†
d)

dm2
U

dt
=

1

8π2
[−2(

8

3
g2

3 |M3|2 +
8

15
g2

1 |M1|2 +
2

5
g2

1S)1 (119)

+2(
1

2
YuY

†
um

2
U +

1

2
m2
UY
†
uYu + Y †um

2
QYu + (m2

Hu)Y †uYu + a†uau)

dm2
D

dt
=

1

8π2
[−2(

8

3
g2

3 |M3|2 +
2

15
g2

1 |M1|2 −
1

5
g2

1S)1 (120)

+2(
1

2
YdY

†
dm

2
D +

1

2
m2
DY
†
d Yd + Y †dm

2
QYd + (m2

Hd
)Y †d Yd + a†dad)

dm2
L

dt
=

1

8π2
[−2(

3

2
g2

2 |M2|2 +
3

10
g2

1 |M1|2 +
3

10
g2

1S)1 (121)

+(
1

2
YeY

†
em

2
L +

1

2
m2
LYeY

†
e + Yem

2
EY
†
e + (m2

Hd
)YeY

†
e + aea

†
e)

+(
1

2
YνY

†
νm

2
L +

1

2
m2
LYνY

†
ν + Yνm

2
NY
†
ν + (m2

Hu)YνY
†
ν + aνa

†
ν)

83



dm2
E

dt
=

1

8π2
[−2(

6

5
g2

1 |M1|2 −
3

5
g2

1S)1 (122)

+2(
1

2
Y †e Yem

2
E +

1

2
m2
EY
†
e Ye + Y †em

2
LYe + (m2

Hd
)Y †e Ye + a†eae)]

dm2
N

dt
=

1

8π2
[2(

1

2
Y †ν Yνm

2
N +

1

2
m2
NY
†
ν Yν + Y †νm

2
LYν + (m2

Hu)Y †ν Yν + a†νaν)]

(123)

dm2
Hu

dt
=

1

8π2
[−2(

3

2
g2

2 |M2|2 +
3

10
g2

1 |M1|2 −
3

10
g2

1S) (124)

+3(Tr(Yum
2
QY
†
u ) + Tr(Yum

2
UY
†
u ) + (m2

Hu)Tr(YuY
†
u ) + Tr(aua

†
u))

+(Tr(Yνm
2
LY
†
ν ) + Tr(Yνm

2
NY
†
ν ) + (m2

Hu)Tr(YνY
†
ν ) + Tr(aνa

†
ν))]

dm2
Hd

dt
=

1

8π2
[−2(

3

2
g2

2 |M2|2 +
3

10
g2

1 |M1|2 +
3

10
g2

1S) (125)

+3(Tr(Ydm
2
QY
†
d ) + Tr(Ydm

2
DY
†
d ) + (m2

Hd
)Tr(YdY

†
d ) + Tr(ada

†
d))

+(Tr(Yem
2
LY
†
e ) + Tr(Yem

2
EY
†
e ) + (m2

Hd
)Tr(YeY

†
e ) + Tr(aea

†
e))]

where

S = m2
Hu −m

2
Hd

+ Tr(m2
Q −m2

L − 2m2
U +m2

D +m2
E).

D.2 Simple RG equations for MSSM

Let us now look more closely to the physical significance of the renormalization
group equations. In order to do this, we well make some simplifications. The RG
equations of the previous section can be greatly simplified when one takes into
account only one-loop corrections and assumes that only the Yukawa couplings
of the third family quarks and leptons are important:

Yu ≈

 0 0 0
0 0 0
0 0 yt

 , Yd ≈

 0 0 0
0 0 0
0 0 yb

 , Ye ≈

 0 0 0
0 0 0
0 0 yτ

 .

(126)
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D.2.1 RG equations for supersymmetry respecting parameters

The supersymmetry respecting MSSM Lagrangian contains SM Yukawa cou-
plings; SM gauge couplings, g1, g2, g3 and the Higgs mass parameter µ as
parameters. The one-loop RG equations for Standard Model gauge couplings
g1, g2 and g3 are20 [48]:

d

dt
ga =

1

16π2
bag

3
a, (b1, b2, b3) =

{
(41/10,−19/6,−7) SM
(33/5, 1,−3) MSSM

Both in SM and MSSM the U(1) coupling g1 has positive β-function so the
coupling g1 grows as the energy scale grows. Also in both SM and MSSM the
SU(3) gauge coupling g3 has negative β-function so the coupling g3 becomes
smaller as the energy scale grows. The SU(2) gauge coupling behaves differently
in SM and MSSM. In SM it has negative β-function so it shrinks as the energy
scale grows but in MSSM g2 has positive β-function so it grows as the energy
grows.
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Figure 69: Renormalization group evolution of the inverse gauge couplings
α−1
a (Q) in the SM (dashed lines) and in the MSSM (solid lines). [48]

The MSSM coefficients are larger because the MSSM contains more particles
and therefore there are more possible loops. The MSSM particle content is such
that the three different couplings can unify at a scale MU ∼ 2×1016 GeV. Since
the couplings seem to unify nicely at high energy one might be motivated to
believe that there are no new physics between TeV scale and MU -scale and that
the MSSM will be valid up to MU . This gap with no new physics between TeV
scale and gauge coupling unification scale is called the desert. When one uses

20The gauge couplings g1 and g2 are related to the conventional electroweak couplings g
and g′ with e = g sin θW = g′ cos θW as: g2 = g and g1 =

√
5/3g′.
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RG equations in MSSM one evolves the parameters from the input scale down to
electroweak scale assuming that there are no new physics contributions between
the input scale and the electroweak scale. Otherwise the evolution would be
different (for example in supersymmetric seesaw mechanism massive neutrinos
appear between the input scale and the electroweak scale, thus changing the
evolution of parameters).

The one-loop renormalization group equations for the relevant third gener-
ation Yukawa couplings are [48]:

d

dt
yt =

yt
16π2

[6y∗t yt + y∗byb −
16

3
g2

3 − 3g2
2 −

13

15
g2

1 ], (127)

d

dt
yb =

yb
16π2

[6y∗byb + y∗t yt + y∗τyτ −
16

3
g2

3 − 3g2
2 −

7

15
g2

1 ], (128)

d

dt
yτ =

yτ
16π2

[4y∗τyτ + 3y∗byb − 3g2
2 −

9

5
g2

1 ]. (129)

The Higgs mass parameter obeys the following renormalization group equa-
tion:

d

dt
µ =

µ

16π2
[3y∗t yt + 3y∗byb + y∗τyτ − 3g2

2 −
3

5
g2

1 ]. (130)

One notices that the β functions of all the supersymmetry respecting param-
eters is proportional to the parameter itself. This is because of supersymmetric
non-renormalization theorem [50]. It states that all the quadratic divergences
cancel and that the worst divergence is logarithmic. The parameter µ for ex-
ample will get only small corrections in MSSM in contrast to unacceptably
large corrections in SM. The RG equations for the supersymmetry respecting
parameters are not affected by the presence of soft supersymmetry-breaking.

D.2.2 RG equations for supersymmetry-breaking parameters

Let us now deal with the RG evolution of the soft supersymmetry-breaking
parameters: gaugino masses, trilinear scalar couplings and scalar masses. The
one-loop RG equations for gaugino masses are [48]:

d

dt
Ma =

1

8π2
bag

2
aMa, (ba = 33/5, 1,−3),

where a = 1, 2, 3. The coefficient ba is the same that appears in the RG equa-
tion for gauge coupling ga in MSSM. The rations of gaugino masses and the
associated gauge couplings squares

Ma

g2
a

, a = 1, 2, 3

turn out to be constants up to a two-loop corrections [48]. The gauge couplings
unify at MU = 2× 1016 GeV, so it is frequently assumed that also the gaugino
masses unify at the scale near the gauge coupling unification. So then at any
RG scale

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
m1/2

g2
U

,
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up to two-loop corrections.
One usually assumes that the supersymmetry-breaking is universal i.e. that

the soft scalar masses and trilinear couplings obey the following equations at
the input scale:

m2
Q̃

= m2
Q̃

1, m2˜̄u = m2˜̄u1, m2˜̄d = m2˜̄d1, m2
L̃

= m2
L̃
1, m2˜̄e = m2˜̄e1

au = Au0yu, ad = Ad0yd, ae = Ae0ye, (131)

The trilinear terms are initially proportional to the Yukawa couplings and the
RG evolution does not change that [48]. So using (126) and (131) the trilinear
couplings can be written as:

au ≈

 0 0 0
0 0 0
0 0 at

 , ad ≈

 0 0 0
0 0 0
0 0 ab

 , ae ≈

 0 0 0
0 0 0
0 0 aτ

 ,

at any RG scale. The couplings at, ab and aτ , and the parameter b will obey
the following RG equations [48]:

16π2 d

dt
at = at[18y∗yyt + y∗byb −

16

3
g2

3 − 3g2
2 −

13

15
g2

1 ] + 2aby
∗
byt

+yt[
32

3
g2

3M3 + 6g2
2M2 +

26

15
g2

1M1] (132)

16π2 d

dt
ab = ab[18y∗byb + y∗t yt + y∗τyτ −

16

3
g2

3 − 3g2
2 −

7

15
g2

1 ] + 2aty
∗
t yb

+2aτy
∗yb + yb[

32

3
g2

3M3 + 6g2
2M2 +

14

15
g2

1M1] (133)

16π2 d

dt
aτ = aτ [12y∗τyτ + 3y∗byb − 3g2

2 −
9

5
g2

1 ] + 6aby
∗
byτ

+yτ [6g2
2M2 +

18

5
g2

1M1] (134)

16π2 d

dt
b = b[3y∗t yt + 3y∗byb + y∗τyτ − 3g2

2 −
3

5
g2

1 ]

+µ[6aty
∗
t + 6aby

∗
b + 2aτy

∗
τ + 6g2

2M2 +
6

5
g2

1M1]. (135)

We see that the β-functions of the trilinear couplings and parameter b are
not proportional to the coupling itself. For supersymmetry respecting param-
eters the β-function is always proportional to parameter itself, but since the
trilinear scalar couplings and the parameter b violate the supersymmetry they
are not protected by non-renormalization theorem, and can have sizable quan-
tum corrections. Even if the scalar couplings at, ab and aτ are zero at the input
scale (as is the case in gauge mediated SUSY-breaking), the RG evolution makes
sure that they are not zero at the electroweak scale. The terms proportional to
gaugino masses in equations (132), (133), (134) and (135) do not vanish when
the parameters them selves are zero.

Let us finally consider the RG evolution of the soft scalar masses. We will use
the approximation (126), which means that the first and second generation only
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know the gauge interactions and the third generation knows also the Yukawa
interactions. So the RG evolution of the first two generations differs from that of
the third one. We assume that the supersymmetry-breaking is flavour diagonal
so that (131) holds. So the scalar masses are initially the same among gener-
ations. Initially at the input scale the scalar mass matrices are proportional
to unit matrix, but the RG evolution deviates the masses of first and second
families from the third generation. In MSSM there are no flavour violating ef-
fects between the input scale and the electroweak scale so the RG evolution will
maintain the diagonality of the scalar mass matrices (Yukawa couplings contain
non-diagonal elements but they are negligible. Actually the Yukawa matrices
can be diagonalized simultaneously. In case of majorana masses of neutrinos
that is not the case however.). So the scalar mass matrices for sleptons at any
RG scale can be written approximately in the form

m2
L ≈

 m2
L1

0 0
0 m2

L1
0

0 0 m2
L3

 , m2
ē ≈

 m2
ē1 0 0

0 m2
ē1 0

0 0 m2
ē3

 .

The scalar mass matrices for quarks are of a same form. The first two
generations of sfermions obey the following RG equations.

16π2 d

dt
m2
φi = −

∑
a=1,2,3

8Ca(i)g2
a|Ma|2 +

6

5
Yig

2
1S,

where φi’s are the first and second generation squarks and sleptons, Ca(i) is the
Casimir invariant21 and

S ≡ Tr[Yjm2
φj ] = m2

Hu −m
2
Hd

+ Tr[m2
Q −m2

L − 2m2
ū + m2

d̄ + m2
ē ].

In most realistic models the S-term is small [48]. The terms proportional to the
gaugino masses Ma will then dominate. The β-function will then be negative,
because the terms proportional to the gaugino masses are negative. This means
that the masses of the first two generations of sfermions will grow as the RG-
scale is lowered from the input scale sown to the electroweak scale.

The third family sfermions and the Higgs scalars get contribution from the
gauge interactions, but from the Yukawa couplings as well. The RG equations
for the third family sfermion squared masses are:

21Quadratic Casimir invariants Ca(i) of the group are defined in terms of the corresponding

Lie algebra generators Ta: (TaTa)i j = Ca(i)δ ji . The MSSM Casimirs are: C3(i) = 4/3 for
Q, ū, d̄; C3(i) = 0 for L, ē,Hu, Hd; C2(i) = 3/4 for Q,L,Hu, Hd; C2(i) = 0 for ū, d̄, ē and
C1(i) = 3Y 2

i /5 for each field with hypercharge Yi.
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16π2 d

dt
m2
Q3

= Xt +Xb −
32

3
g2

3 |M3|2 − 6g2
2 |M2|2 −

2

15
g2

1 |M1|2 +
1

5
g2

1S,

16π2 d

dt
m2
ū3

= 2Xt −
32

3
g2

3 |M3|2 −
32

15
g2

1 |M1|2 −
4

5
g2

1S,

16π2 d

dt
m2
d̄3

= 2Xb −
32

3
g2

3 |M3|2 −
8

15
g2

1 |M1|2 +
2

5
g2

1S,

16π2 d

dt
m2
L3

= Xτ − 6g2
2 |M2|2 −

6

5
g2

1 |M1|2 −
3

5
g2

1S,

16π2 d

dt
m2
ē3 = 2Xτ −

24

5
g2

1 |M1|2 +
6

5
g2

1S,

where

Xt = 2|yt|2(m2
Hu +m2

Q3
+mū3) + |at|2, (136)

Xb = 2|yb|2(m2
Hd

+m2
Q3

+md̄3) + |ab|2, (137)

Xτ = 2|yτ |2(m2
Hd

+m2
L3

+mē3) + |aτ |2. (138)

The terms (136), (137) and (138) describe the contribution from the Yukawa
couplings and the soft trilinear couplings.

The terms containing the gaugino masses are negative in the beta functions
of the sfermion RGEs, whereas the terms involving the Yukawa couplings are
positive. The negative terms drive the sfermion masses up and the positive
drive them down as one runs the energy scale from the input scale down to
the electroweak scale. The sleptons do not know the strong interaction as the
squarks do. Therefore the squarks have more more negative beta functions
compared to that of sleptons and the squark masses will be larger than the
slepton masses at the electroweak scale. The left-handed first generation squark
will be the heaviest, since it knows all the gauge interactions and has smallest
Yukawa coupling among the squarks. The lightest charged sfermion is probably
a right-handed stau, since it couples only to U(1) and has the largest Yukawa
coupling among the sleptons.

The Higgs scalar squared masses satisfy the following RG equations.

16π2 d

dt
m2
Hu = 3Xt − 6g2

2 |M2|2 −
6

5
g2

1 |M1|2 +
3

5
g2

1S (139)

16π2 d

dt
m2
Hd

= 3Xb +Xτ − 6g2
2 |M2|2 −

6

5
g2

1 |M1|2 −
3

5
g2

1S (140)
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Figure 70: The RGE running in MSSM [48]

The terms Xt, Xb and Xτ are positive, so they effectively decrease the Higgs
scalar masses as the RG scale is run down from the input scale to the electroweak
scale. The top quark mass is the largest of the SM fermions. This suggests that
the top Yukawa coupling is the largest Yukawa coupling. This means that Xt is
much larger than Xb and Xτ . The m2

Hu
will therefore become much smaller than

the m2
Hd

as the RG scale is evolved down from the input scale to the electroweak
scale. It is even possible that m2

hu
becomes negative near the electroweak scale,

which would help the linear combination of Hu and Hd to acquire VEV and
thus explain the electroweak symmetry breaking.

There is a dangerous possibility with the squared masses of the third family
sfermions: what if they run negative as the RG scale is evolved down to the
electroweak scale and acquire VEV’s? (If the scalar fermions would get VEV’s
there would then be vertices where the electric charge would not be conserved,
which would be disturbing.) The positive terms Xt, Xb and Xτ have the effect of
making the sfermion mass squares smaller at smaller energies. Luckily the terms
proportional to gaugino masses are negative, and they affect to the evolution of
sfermion mass squares so that they don’t become negative at the electroweak
scale.
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E Explicit effective operators

The effective operators represented in Tables 4 and 5 give the effective vertices
for the effective theory of the New Physics. In order to obtain the vertices
we have to expand the effective operators in terms of the fields. We will use
relations (4), (3) and notations

φ†i
↔
Dµ φ ≡ iφ†

(
Dµ−

←
Dµ

)
φ and φ†i

↔
Dµ

I

φ ≡ iφ†
(
τ IDµ−

←
Dµ τ

I

)
φ,

with φ†
←
Dµ φ ≡ (Dµφ)†φ, where Dµ is the covariant derivative of the Higgs

field as in (12).
We will consider the charged lepton flavour violation after spontaneous sym-

metry breaking so we assume that the Higgs field has acquired it’s vacuum ex-
pectation value. The effective operators written explicitly in terms of the fields
are given in the Tables 7, 8 and 9.

Table 7: Effective dimension-six operators with leptons only

llll

Qll = (l̄iγµlj)(l̄kγ
µll)

= (ν̄iγµνj)(ν̄kγ
µνl) + (ν̄iγµνj)(ēLkγ

µeLl)

+(ēLiγµeLj)(ν̄kγ
µνl) + (ēLiγµeLj)(ēLkγ

µeLl)

Qee = (ēiγµej)(ēkγ
µel) = (ēRiγµeRj)(ēRkγ

µeRl)

Qle = (l̄iγµlj)(ēkγ
µel) = (ν̄iγµνj)(ēRkγ

µeRl) + (ēLiγµeLj)(ēRkγ
µeRl)

Table 8: Effective dimension-six operators with photons

llXφ

QeW = (l̄iσ
µνej)τ

IφW I
µν

= v (ν̄iσ
µνeRj)

(
∂µW

+
ν − igW+

µ (cosθWZν + sinθWAν)
)

−v (ν̄iσ
µνeRj)

(
∂νW

+
µ − igW+

ν (cosθWZµ + sinθWAµ)
)

− v√
2
(ēRiσ

µνeRj)[∂µ(cosθWZν + sinθWAν)− ∂ν(cosθWZµ + sinθWAµ)

+gW+
µ W

−
ν − igW−µ W+

ν ]

QeB = (l̄iσ
µνej)φBµν

= v√
2
(ēLiσ

µνeRj)[∂µ(−sinθWZν + cosθWAν)− ∂ν(−sinθWZµ + cosθWAµ)
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Table 9: Effective dimension-six operators without photons

llφφD

Q
(1)
φl = (φ†i

↔
Dµ φ)(l̄iγ

µlj) = v2

2 g2
1

cosθW
Zµ(ν̄iγ

µνj + ēLiγ
µeLj)

Q
(3)
φl = (φ†i

↔
D
I

µ φ)(l̄iτ
Iγµlj) = − v2√

2
g2(W+

µ ν̄iγ
µeLj +W−µ ēLiγνj)

−v
2

2 g2
1

cosθW
Zµ(ν̄iγ

µνj − ēLiγµeLj)

Qφe = (φ†i
↔
Dµ φ)(ēiγ

µej) = v2

2 g2
1

cosθW
Zµ(ēRiγ

µeRj)

We notice that llXφ-operators are the only ones to contain photon field. In
llφφD-operators the photon field is canceled away, which cannot be seen directly
from the compact form.
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F Effective form factors for li → ljγ

Involving Z boson:

FZTL
fi

=

4e

[(
C

(1)
φl

fi
+ C

(3)
φl

fi
)
mf (1 + s2

W )− Cfiφemi(
3
2 − s

2
W )

]
3(4π)2

FZTR
fi

=

4e

[(
C

(1)
φl

fi
+ C

(3)
φl

fi
)
mi(1 + s2

W )− Cfiφemf ( 3
2 − s

2
W )

]
3(4π)2

Involving W boson:

FWTL
fi

= −
10emfC

(3)
φl

fi

3(4π)2

FWTR
fi

= −
10emiC

(3)
φl

fi

3(4π)2

From four-fermion contact interaction:

F 4f
TL

fi
= − 16e

3(4π)2

3∑
j=1

C
(3)
lequ

fiff∗
muj

(
∆− log

m2
uj

µ2

)

F 4f
TR

fi
= − 16e

3(4π)2

3∑
j=1

C
(3)
lequ

fiff
muj

(
∆− log

m2
uj

µ2

)
From four-lepton contact interaction:

F 4l
TL

fi
=

2e

(4π)2

3∑
j=1

Cfjjile mj

F 4l
TR

fi
=

2e

(4π)2

3∑
j=1

Cjifjle mj
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G Wilson coefficient combinations for li → ljlkll

The coefficients CX in the branching ratio expression (27) are linear combina-
tions of the Wilson coefficients.

G.1 (A)

CV LL = 2
(

(2s2
W − 1)

(
C

(1)ji
φl + C

(3)ji
φl

)
+ Cjijjll

)
CV RR = 2(2s2

WC
ji
φe + Cjijjee )

CV LR = −1

2
CSRL = 2s2

W

(
C

(1)ji
φl + C

(3)ji
φl

)
+ Cjijjle

CV RL = −1

2
CSLR = (2s2

W − 1)Cjiφe + Cjjjile

CSLL = CSRR = CTL = CTR = 0

CγL =
√

2Cij∗γ

CγR =
√

2Cijγ

X(A)
γ = −16v

M
Re

[(
2CV LL + CV LR −

1

2
CSLR

)
C∗γR +

(
2CV RR + CV RL −

1

2
CSRL

)
CγL

]
+

64v2

M2

(
log

M2

m2
− 11

4

)
(|CγL|2 + |CγR|2)

G.2 (B)

CV LL =
(

(2s2
W − 1)

(
C

(1)ji
φl + C

(3)ji
φl

)
+ Cjikkll

)
CV RR = 2s2

WC
ji
φe + Cjikkee

CV LR = 2s2
W

(
C

(1)ji
φl + C

(3)ji
φl

)
+ Cjikkle

CV RL = (2s2
W − 1)Cjiφe + Cjkkile

CSLR = −2Cjkkile

CSRL = −2Cjikkle

CSLL = CSRR = CTL = CTR = 0

CγL =
√

2Cij∗γ

CγR =
√

2Cijγ −
16v

M
Re[(CV LL + CV LR)C∗γR + (CV RR + CV RL)C∗γL]

+
32v2

M2

(
log

M2

m2
− 3

)
(|CγL|2 + |CγR|2)
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G.3 (C)

CV LL = 2Ckikjll

CV RR = 2Ckikjee

CV LR = −1

2
CSRL = Ckikjle

CV RL = −1

2
CSRL = Ckjkile

CSLL = CSRR = CTL = CTR = 0

CγL = CγR = 0

X(C)
γ = 0
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H Diagrams contributing to e-µ conversion in
MSSM

Here are the diagrams contributing to the e-µ conversion in MSSM. The l̃X
(X = 1, .., 6) represents the charged sleptons, ν̃x (x = 1, 2, 3) the sneutrinos,
χ̃−A (A = 1, 2) the charginos, χ̃0

A (A = 1, .., 4) the neutralinos and Hp (p =
h0, H0, A0) the Higgses.

H.1 Photon-penguins contributing to e-µ conversion
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l̃X l̃X

e

γ

q q

Figure 71: Photon 1
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Figure 72: Photon 2
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Figure 73: Photon 3
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Figure 74: Photon 4
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q q

χ̃0
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Figure 75: Photon 5
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Figure 76: Photon 6
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H.2 Z-penguins contributing to e-µ conversion
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Figure 77: Z 1
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Figure 84: Z 8
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H.3 Higgs-penguins contributing to e-µ conversion
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H.4 Box diagrams contributing to e-µ conversion
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Figure 93: Box 1
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Figure 96: Box 4
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I Diagrams contributing to li → 3lj in MSSM

Here are the diagrams contributing to the process li → 3lj in MSSM. The l̃X
(X = 1, .., 6) represents the charged sleptons, ν̃x (x = 1, 2, 3) the sneutrinos,
χ̃−A (A = 1, 2) the charginos, χ̃0

A (A = 1, .., 4) the neutralinos and Hp (p =
h0, H0, A0) the Higgses.

I.1 Photon-penguins contributing to li → 3lj
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Figure 97: Photon 1

li
ν̃x

χ̃−A

χ̃−A

lj

γ lj

l̄j

Figure 98: Photon 2
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Figure 100: Photon 4
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Figure 101: Photon 5
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Figure 102: Photon 6
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I.2 Z-penguins contributing to li → 3lj
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I.3 Higgs-penguins contributing to li → 3lj
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Figure 111: Higgs 1
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I.4 Box diagrams contributing to li → 3lj
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