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There’s a long tradition in theoretical
physics, which by no means affected
everyone but certanly affected me,
that said the strong interactions are
too complicated for the human mind.

-S. Weinberg



Indice

SOMMARIO 5
1 INTRODUZIONE 6
1.1 Cennistorici . . . . . . . . .. ... 6
1.1.1 Larivoluzione di gauge . . . . . . . . ... .. .. ... 8
1.1.2 CennidiQCD . . . . . ..o o 10
1.2 11 Deep Inelastic Scattering (DIS) . . . ... ... ... ... .. 11
1.3 11 Quark Parton Model (QPM) . . . ... ... ... ... .. 15
1.4 TImproved Quark Parton Model (IQPM) . . . . .. .. ... .. 18
1.5 11 DIS inclusivo polarizzato . . . . . . . . .. ... .. .. ... 21
1.6 Spin crisis . . . . . . ..o 28

2 TRASVERSITA E DISTRIBUZIONI PARTONICHE GE-
NERALIZZATE 31
2.1 Operator Product Expansion e definizione operativa di twist . 31
2.2 Quantizzazone Light-cone . . . . . . ... ... L. 34
2.3 Funzioni di distribuzione partoniche (PDF) al twist dominante 37
2.3.1 Trasversita e sue proprieta . . . . . . ... ... . ... 40
2.4 Distribuzioni partoniche generalizzate (GPD) . . .. ... .. 44

3 RAPPRESENTAZIONE A OVERLAP DELLE DISTRIBU-
ZIONI PARTONICHE GENERALIZZATE 47
3.1 Decomposizione degli stati alla Fock . . . . .. ... ... ... 47
3.2 Cinematica . . . . . . . . . ... 49
3.3 GPD di quark non polarizzata . . . . . . ... ... 51
33.1 Regione{<z<1 ... ... oo 52
3.32 Regione -1 <7T <= . ... ... .. o7
3.3.3 Regione £ <T <& ... L Lo o7
3.4 GPD di quark longitudinalmente polarizzata . . . . . .. . .. 60



4 TRASVERSITA NEL MODELLO A QUARK COSTITUEN-

TI 62
4.1 GPDs trasversalmente polarizzate . . . . . . .. .. ... ... 62
4.2 Funzioni d’onda light-cone nel modello relativistico a quark
costituenti . . . . . . .. Lo 72
4.2.1 Limite diagonale delle GPDs . . . . . . . ... ... .. 78
5 CONCLUSIONI 80
APPENDICE A 82
APPENDICE B 85
APPENDICE C 87
Bibliografia 106
Testi di Riferimento 109



SOMMARIO

In anni recenti la fisica dello spin degli adroni ha rappresentato una delle aree
pitt dinamiche e in evoluzione della fisica delle particelle. Allo stesso tempo
diversi interrogativi di natura fondamentale aspettano una risposta, come ad
esempio il problema di determinare nell’ambito della teoria delle interazioni
forti il contributo di ciascun costituente elementare allo spin del protone, che
rappresenta il 98% della materia osservata nell’'universo.

Questa tesi si inserisce in modo naturale negli studi riguardanti la fisica
adronica con particolare attenzione alla struttura partonica di spin del nu-
cleone. Piu esplicitamente si affronta il problema di costruire in un modello
la distribuzione partonica di spin trasverso, che contribuisce in modo deter-
minante alla suddetta struttura partonica del nucleone, ma che é tuttora
inesplorata. Una determinazione sperimentale delle sue peculiari caratteri-
stiche predette dalla teoria rappresenta un test formidabile della Cromodi-
namica Quantistica nel cosiddetto regime non perturbativo dove la simmetria
chirale ¢ spontaneamente rotta.

Lo strumento di calcolo principale utilizzato nella tesi é rappresentato
dalle cosiddette distribuzioni partoniche generalizzate (GPD), che si sono
affermate di recente come ’approccio pitl potente e versatile al problema del
legame tra spin degli adroni e polarizzazione dei suoi costituenti elementari.

Nel primo capitolo di questo lavoro vengono presentati, in successione
storica a partire dagli anni cinquanta, i principali risultati ottenuti dai fisici
nello studio delle interazioni forti descritte nell’ambito della Cromodinami-
ca Quantistica. Dopodiché nel capitolo 2 si descrivono dapprima la dis-
tribuzione di spin trasverso, le sue caratteristiche peculiari rispetto alle altre
distribuzioni partoniche, e le difficolta di estrazione da misure di asimme-
trie di spin. Poi si introducono le GPD, che estendono la definizione di
distribuzione partonica ad un dominio cinematico pitt ampio.

Nel terzo capitolo viene discussa in dettaglio la rappresentazione a overlap
per l'interpretazione probabilistica delle GPD: non polarizzate e polarizzate
longitudinalmente. Nel capitolo 4 si estende questa trattazione al caso della
polarizzazione trasversa con un contributo del tutto originale.

Infine nel capitolo 5 vengono presentati i risultati ottenuti.



Capitolo 1
INTRODUZIONE

1.1 Cenni storici

Negli anni cinquanta divenne evidente che l'idea di descrivere in modo uni-
ficato le quattro interazioni fondamentali mediante una teoria quantistica
di campo rinormalizzabile, presentava degli aspetti problematici. In parti-
colare, l'interazione elettromagnetica e quella forte dipendono da costanti
d’accoppiamento molto diverse.

Il fatto che a.,,, la cosiddetta “costante di struttura fine”, sia piccola é
cruciale per giustificare lo sviluppo in potenze di ag,, della teoria. Questo
sviluppo, chiamato “teoria delle perturbazioni”’, resta tuttora lo strumento
principale in teoria quantistica dei campi. La piccolezza di a.,, garantisce ai
fisici che la teoria delle perturbazioni sia un’affidabile approssimazione della
QED, calcolabile al livello di precisione desiderato.

In contrasto con la QED, le particelle fortemente interagenti, gli “adroni”
(dal greco adpov, cioé “forte”), hanno una costante d’accoppiamento grande,
quindi la teoria delle perturbazioni risulta inefficace al fine di predire lo spet-
tro. Di conseguenza il progresso nell’ambito delle interazioni forti si é rivelato
molto piu lento.

Negli anni quaranta, il primo determinante progresso nello studio delle
interazioni forti fu 'idea che la forza che tiene legato il nucleo potesse essere
mediata dallo scambio di particelle senza spin (i mesoni) chiamate pioni. La
previsione teorica, fornita da Yukawa [1], della massa e del range del mesone
m, basata su considerazioni riguardanti la scala di energia delle interazioni for-
ti, condusse Lattes, Occhialini e Powell nei loro esperimenti sui raggi cosmici
del 1947 alla scoperta del “pione” . Questa scoperta, tuttavia, venne smorza-



ta dal fatto che la costante d’accoppiamento pione-nucleo risulta maggiore
di uno. Sebbene, quindi, la mesodinamica pseudoscalare fosse nota come
teoria di campo rinormalizzabile, il modello di Yukawa non era calcolabile
attraverso la teoria delle perturbazioni.

Inoltre, la situazione sperimentale divenne ben presto confusa a causa
delle molte “risonanze” scoperte negli esperimenti agli acceleratori. Questo
ad indicare ancora una volta che la costante d’accoppiamento di qualche
sconosciuta teoria sottostante era grande, oltre la portata della convenzionale
teoria delle perturbazioni. Per questa ragione il progresso nello studio delle
interazioni forti fu lento per vari anni.

Diversi approcci alternativi vennero esplorati negli anni cinquanta e ses-
santa. L’approccio vincente fu la teoria dei “quark”. Gell-Mann, Ne'e-
man, and Zweig, ([2]-[5]) cercarono di spiegare lo spettro osservato degli
adroni ipotizzando delle strutture elementari sottostanti agli adroni, le quali
si combinassero rispettando la simmetria SU(3).

La composizione di tali particelle elementari, i quark, che si realizzano
in tre stati diversi (“up”, “down” e “strange”) con cariche frazionarie, poteva
infatti spiegare tutti gli adroni noti a quel tempo: tre quark insieme era-
no necessari per costruire un barione, come un protone od un neutrone (o
risonanze, del tipo A, =, , etc.), mentre una coppia quark-antiquark era
necessaria per dare un mesone, come il mesone m o K. Il modello a quark
poteva predirre con relativa facilita le masse e le proprieta di particelle che
non erano ancora state scoperte. La teoria era capace di fornire previsioni
qualitative anche al di fuori del suo range di applicabilita. Ma le particelle a
carica frazionaria non erano mai state scoperte negli esperimenti di scatter-
ing e quindi si pensava fossero solo artifici matematici, che riflettevano una
piu profonda realta fisica ancora ignota. Inoltre, dal momento che non es-
isteva nessuna teoria quantistica dei quark, non era noto quale potesse essere
la forza che li tenesse legati. Come conseguenza il modello risulto incapace
di spiegare perché certi stati di quark (detti “esotici”) non venissero trovati
sperimentalmente.

Verso la fine degli anni sessanta una nuova serie di esperimenti al lab-
oratorio SLAC (Stanford Linear Accelerator Center) presento risultati sor-
prendenti e sollevo un interrogativo. Negli esperimenti di Deep Inelastic
Scattering (DIS), un fascio di elettroni ad alta energia veniva fatto incidere

su una targhetta di protoni. Ad energie e momenti molto elevati (|q\2 >

2(Ge\//c)2), i fattori di forma del bersaglio perdevano la loro dipendenza
da alcuni parametri cinematici. Questo fenomeno venne chiamato scaling di
Bjorken dal nome dell’autore che l’aveva previsto [6]. L’esperimento di DIS
era ideale per poter analizzare la struttura del protone, dal momento che



la sonda elettromagnetica offre un’interazione relativamente “pulita” con gli
adroni.

Oltre allo scaling, gli esperimenti di SLAC presentavano anche un’altra
caratteristica peculiare: ovvero eventi ad alto angolo di diffusione, similmente
all’esperimento di Rutherford sullo scattering di particelle o da atomi. La
pit semplice spiegazione di questi risultati si ebbe grazie alla formulazione
del modello a partoni (Quark Parton Model, QPM) da parte di Feynman [7],
dove si assume che il protone sia costituito da un insieme di oggetti puntiformi
liberi che agiscono da centri diffusori.

Ma com’era possibile conciliare 1’idea del protone come costituito da tre
quark in una configurazione statica, mentre nel QPM invece lo si ipotizzava
composto da oggetti puntiformi addirittura liberi?

1.1.1 La rivoluzione di gauge

Nel 1971 una fondamentale scoperta fu fatta da Gerard 't Hooft [8], ancora
studente. Egli studio una vecchia teoria di Yang e Mills, la quale era una
generalizzazione della teoria di Maxwell della luce, basata pero su un grup-
po di simmetria piu grande. Partendo da una serie di lavori di Veltman,
Faddeev, Higgs e altri, 't Hooft dimostrd che la teoria di gauge di Yang-
Mills, anche quando il suo gruppo di simmetria era “spontaneamente rotto”,
risultava rinormalizzabile. Grazie a questo importante risultato, era ora di-
venuto possibile sia scrivere teorie rinormalizzabili delle interazioni deboli,
dove i bosoni mediatori erano rappresentati come campi di gauge, sia tentare
I'unificazione tra interazioni elettromagnetiche e deboli.

In poco tempo vennero ripresi in considerazione i pionieristici articoli
di Weinberg [9] e Salam [10] sulle interazioni deboli, viste come teorie di
gauge basate sul gruppo di simmetria SU(2)®U(1). Il punto essenziale, co-
munque, fu la rinormalizzabilita delle teorie di gauge. Infatti questo permise
di effettuare concrete predizioni numeriche di varie teorie e confrontarle con i
numerosi dati sperimentali. In alcuni anni, ’accordo tra il modello elettrode-
bole di Weinberg e Salam e i dati sperimentali si rivelo schiacciante. I dati
erano sufficientemente accurati per escludere ogni altra teoria e verificare la
correttezza delle previsioni del modello SU(2)® U (1).

La teoria di Weinberg-Salam raggruppava i leptoni, le particelle che in-
teragiscono in modo elettromagnetico e debole, in un modo semplice. Essa



postulava che i leptoni left handed (“sinistrorsi”, cioé in uno specifico stato
di elicitd) dovessero sistemarsi in accordo a SU(2) in tre differenti famiglie:

Ve \ v\, v,
( e )’ ( It ) < T ) (1.1)
e che le interazioni prodotte da questi leptoni fossero generate dai bosoni

vettori intermedi:
7 Wi, Z,. (1.2)

(Il problema del modello attualmente ancora aperto é quello di trovare riscon-
tro sperimentale all’ipotesi dell’esistenza del bosone di Higgs, il quale sarebbe
responsabile della rottura spontanea di simmetria che permetterebbe di fornire
le masse ai bosoni vettori intermedi.)

Nell’ambito delle interazioni forti, il progresso fu altrettanto rapido. La
rivoluzione di gauge rese possibile la formulazione della “Cromodinamica
Quantistica” (QCD), la quale divenne il principale candidato per una teo-
ria delle interazioni forti. Attraverso l'ipotesi di un nuovo grado di liberta,
il “colore”, le cui interazioni rispettassero la simmetria SU(3).!, la teoria di
Yang-Mills prevedeva l'esistenza di una nuova particella, il gluone (dall’in-
glese “glue”; colla), come mediatore dell’interazione tra due quark. In altre
parole, i quark posseggono i gradi di liberta di sapore e colore, ma solamente
il colore partecipa alla simmetria di gauge locale.

La QCD forni una spiegazione plausibile alla misteriosa assenza di eviden-
ze sperimentali dei quark. Si poté calcolare che la costante d’accoppiamento
effettiva di SU(3). diviene enorme a basse energie, “confinando” quindi per-
manentemente i quark all’interno degli adroni. In questa rappresentazione, se
si tentasse di separare i quark, i gluoni condensati si opporrebbero alla loro
separazione. Incrementando l'energia la stringa gluonica, che idealmente
tiene confinati i quark, si rompe producendo una coppia quark-antiquark,
cosi che un singolo quark non puo essere isolato (in analogia al caso di un
magnete, che quando viene rotto, si separa semplicemente in due magneti
pit piccoli, e non nei singoli monopoli).

Nel 1973 venne dimostrato che nelle teorie di gauge quantistiche non
abeliane rinormalizzabili, di cui la QCD é I'unico esempio quadridimensiona-
le, la costante d’accoppiamento dipende dall’energia, o meglio, diviene piccola
ad energie elevate. Questa proprieta, denominata “liberta asintotica” e di-
mostrata da Gross, Wilczek [11] e Politzer [12], permise di spiegare perché
alle alte energie (come per gli esperimenti di DIS) i quark si comportassero
come particelle libere. Inoltre la teoria forniva una possibile giustificazione

LQuesta nuova simmetria SU(3). non va in alcun modo confusa con la vecchia simmetria
SU(3) di Gell-Mann, Ne’eman e Zweig, che viene chiamata simmetria di “sapore” (flavor).



al fatto che il modello statico a quark di Gell-Mann fosse cosi efficace nel ri-
costruire lo spettro dei barioni. Nel limite di masse dei quark uguali, I’azione
della QCD possiede un simmetria globale, SU(N) per N gradi di liberta di
sapore. In prima approssimazione lo spettro degli adroni mostra una simme-
tria SU(2), che corrisponde a considerare solo i sapori “up” e “down” nella
lagrangiana di QCD. Poiché per il sapore “strange” la massa del quark é vici-
na a quella dei sapori “up” e “down”, rispetto al valore molto pit grande della
massa dei barioni, anche la simmetria SU(3) di sapore viene generalmente
rispettata nello spettro dei barioni.

1.1.2 Cenni di QCD

Per ottenere la lagrangiana di QCD occorre partire dalla lagrangiana di QED

Lapp = $()(ir" Dy — m)b(e) - FuF™, (1.9

dove 9 (x) ¢é il campo di Dirac,
D, =0, +ieA, (1.4)

é la derivata covariante che ingloba l'interazione tra campo di Dirac e campo
vettoriale del bosone mediatore attraverso la costante d’accoppiamento e
(accoppiamento minimale), mentre

F,, =0,A, —0,A, (1.5)

é il tensore del campo elettromagnetico, che risulta invariante per trasfor-
mazioni di gauge locali. L’invarianza per trasformazione di fase locale si
generalizza a invarianza per gruppo di simmetria continuo SU(3). (in Ap-
pendice A ¢é riportato un esempio di generalizzazione a SU(2)). Il gruppo
SU(3). implica otto generatori indipendenti ¢* con a=1-8 e di conseguenza
otto campi vettoriali A7, (gluoni). Il campo di Dirac diventa un tripletto di
colore di campi di Dirac

Y1(z)
() = | va() (1.6)
P3(z)
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e la trasformazione di gauge locale diviene

Y(x) — €Oy (z) = V(r)(o). (1.7)
I generatori appartengono ad un’algebra non commutativa, definita da
[t9,8°] = if e, (1.8)

dove £ sono le cosiddette costanti di struttura; di conseguenza la teoria di
gauge generata si dice non abeliana. La derivata covariante é definita come

= D, =0, —igAjt", (1.9)

dove g é la costante d’accoppiamento. La trasformazione dei campi di gauge
é data da

?
Al (z)t" — V(z) (AZ(x)t“ + 98M> Viz) (1.10)
e la nuova quantita invariante risulta essere
Fo,F*  con Fp, =0,A) —0,A% + gf*" A A, (1.11)
Quindi la lagrangiana di QCD é descritta dalla seguente espressione
n . 1 a auv
Locp = (@) (iv" Dy — m)(x) — TEE. (1.12)

La caratteristica del gruppo di simmetria di gauge locale di non essere
abeliano comporta notevoli differenze tra la QCD e la QED. Infatti nel pri-
mo caso i campi di gauge possono interagire con se stessi, generando quindi
vertici trilineari e quadrilineari. Di conseguenza 'effetto di “screening” della
carica che si ha per la QED nei diagrammi a loops fermioniche, viene annul-
lato dall’effetto di “antiscreening” dovuto alle loops gluoniche, che rinforza il
campo di forze di colore man mano che i due quark si allontanano, fornendo
una spiegazione al misterioso fenomeno del confinamento, ovvero che tutti
gli adroni osservati in natura hanno carica neutra di colore.

1.2 11 Deep Inelastic Scattering (DIS)

Sia k il momento dell’elettrone entrante nel processo di DIS elettrone-protone,
e k' quello dell’elettrone uscente. Si introducono le seguenti quantita:

g = k—F (1.13)
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p-q
_ b 1.14
v M (1.14)
2
g

Nel sistema di riferimento del laboratorio, in cui il protone € a riposo, si
hanno i seguenti quadrivettori:

p. = (M, 0, 0, 0); (1.16)
k, = (E,X); (1.17)
K= (F,K). (1.18)

Quindi, trascurando la massa dell’elettrone, si ha:

v = E—-F,
¢¢ = —4EE'sin?*(0/2) <0, (1.19)

che definiscono Ienergia e il momento trasferiti al bersaglio, dove 6 é 'angolo
di scattering. Dalla (1.19) si deduce che il quadrivettore momento trasferito
sia di tipo space-like.

Nella regione di regime di scattering profondamente inelastico, definita
da:

v — 00
Regione di DIS =< |¢*| — oo
rp cost.

: (1.20)

risulta 0 < zp < 1. Cioé l'invariante xp rappresenta il grado di elasticita
della reazione, con il limite elastico rappresentato da xp = 1.

Usando le regole di Feynman ¢ possibile costruire 'ampiezza di scattering
di un elettrone che collide con un protone di momento p e polarizzazione S,
emettendo uno stato incognito |n):

M, = [l o )y alk, ) ql ), 0)lp. )], (1.21)

dove J, é la corrente eletromagnetica e u rappresenta lo spinore dell’elettrone
di spin s.

Calcolando la sezione d’urto differenziale con i metodi usuali di teoria di
campo si ottiene

&K’
do, =
7 2M2E(27r 32k} || L H 27r 32p10
XZ S MPET) (p+ k=K — pa), (1.22)
S,s,s’
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dove p, = >, p; rappresenta la somma delle particelle stato finale adronico.
Ora, sommando su tutti i possibili stati finali adronici n, si ricava la
sezione d’'urto inclusiva:
d*o a? B

= — 4
I0dE ELWW , (1.23)

con o = €%/4r la costante di struttura fine e dove il tensore leptonico ¢ dato
da

1 2
L, = 2Tr(7ak: *y. 8k ) = Q(k'k + kK, + 5 gw,), (1.24)

mentre il tensore adronico risulta

oMW — %z;/n( zjfép )5 o~ p— )
< SO (41,019
3 [ oy, S\, 2O S). (125)

Nell’ultimo passaggio si é riscritto il prodotto delle due correnti come com-
mutatore, sfruttando il fatto che il termine J,(0).J,(z) sia nullo, perché
violerebbe la legge di conservazione del momento.

Dall’equazione di conservazione della corrente & noto che 9,J" = 0, cioé

q,uW}U/ = W;wqy = 0. (126)

Quindi, sviluppando W, sulla base di tutte le strutture tensoriali in-
dipendenti che possono essere costruite con i vettori indipendenti p e g,
e imponendo l'invarianza per parita e time-reversal, si ottiene la seguente
espressione:

B Quly P q p-q\ W
W;w - _(gwf q )Wl + ( quQ) <pu - QV(12>]\/[2a (127)

dove Wi e W5 sono funzioni di struttura che dipendono dagli invarianti che
si possono costruire con p e ¢, cioé ¢ e p-q ox v.

Inserendo la relazione appena ottenuta nell’equazione per la sezione d’urto
differenziale, si trova:

d*c 47Ta E’

d2dv W2 cos®(0/2) + 2W; sin®(0/2) . (1.28)

13



Sperimentalmente, fu scoperto che nella regione di DIS la dipendenza da
¢* e v veniva rimpiazzata da quella in xp = —¢*>/2Mv. Nelle funzioni di
struttura cio si esplicita come

MW1<q2,I/) — Fl(J,’B),
vWa(¢?v) — Fy(xp). (1.29)

Questa relazione venne chiamata scaling di Bjorken. L’osservazione speri-
mentale dello scaling é equivalente al segnale che nella cinematica DIS (cioé
|?|, v — oo, zp fissato) lo scattering si possa rappresentare come somma
incoerente di scattering elastici da costituenti puntiformi del bersaglio; da
qui ebbe origine il concetto di “partone”.

Prendendo in considerazione reazioni inclusive neutrino-nucleone:
v+ N —e +X, (1.30)

le quali coinvolgono interazioni deboli, ci si accorse che la struttura del tensore
adronico poteva essere pii ricca:

W = =Wig + Wapupy /M — iWsepn ™" /M? + Waquq, /M?
+Ws (p,uqu + pqu)/M2 + iWG(puqu - pugu)/M2v (1.31)

perché il tensore adronico poteva avere anche un contributo tensoriale an-
tisimmetrico. La sezione d'urto per lo scattering da neutrini coinvolge una
nuova funzione di struttura

Po""  GERE?[ 0 (0 (E+E) . 0
dQdE ~ 2n? [28”1 (5) W1+ cos® (5)We 3 = sin <2>W§} )
.32

dove il segno - (+) corrisponde allo scattering di (anti)neutrino e G ¢é la
costante di Fermi. Nel limite dello scaling di Bjorken, si trova:

vWs(¢?v) — Fi(zp). (1.33)

Abbiamo gia sottolineato come nel regime di scaling di Bjorken per i processi
di scattering leptone-adrone, il bersaglio adronico di momento p possa essere
rappresentato come un ensemble di n partoni virtuali quasi liberi con mo-
mento x;p, 0 < x; < 1,(i =1,...,n). Ogni stato virtuale ha vita media 7; > 0
nel sistema di riferimento dell’adrone, mentre nel sistema del centro di massa
si ha la dilatazione dei tempi; quindi la sonda leptonica attraversa il bersaglio

14



in un tempo t — 0, al crescere di ¢, vedendo una configurazione di partoni
“congelata”.

Per il principio d’indeterminazione lo scambio di un fotone 7* (in ap-
prossimazione di Born) tra leptone e partone avviene solo se il parametro
d’impatto, ovvero la separazione trasversa delle due traiettorie, risulta es-
sere minore di 1/Q con Q? = —¢*. Quindi la probabilita di trovare un altro
partone vicino, ¢ data da

Area dello scattering hard leptone — partone 1/Q?

1.34
Superficie d’impatto del bersaglio TR? ( )

adrone

e svanisce al crescere di Q2.

Il leptone viene rivelato nello stato finale, mentre i residui del bersaglio
adronico si ricombinano in adroni non osservati (somma inclusiva sugli stati
finali). Il processo di adronizzazione avviene su scala temporale piu lunga
rispetto allo scattering elementare leptone-partone, quindi é possibile con-
cludere che si ha una “fattorizzazione” tra processo di scattering hard
leptone-partone e processi soft tra partoni, che portano alla ricombinazione
degli stessi fino a formare adroni senza colore.

Questo risultato & una delle ipotesi fondamentali del Quark Parton Mo-
del. La descrizione dei processi hard che coinvolgono adroni nello stato finale
o iniziale é separata nel processo elementare partonico, che prende vita a
corte distanze e brevi intervalli temporali, e nei processi soft adronici a piu
lunghe distanze ed intervalli di tempo. Quindi i due fenomeni, in buona
approssimazione, si disaccoppiano. I primi sono calcolabili tramite la QCD
perturbativa (pQCD), in linea di principio con accuratezza arbitraria; i se-
condi, invece, vengono parametrizzati in forma di funzioni fenomenologiche
a priori sconosciute, e.g. funzioni di distribuzioni partoniche (Parton Dis-
tribution Functions) o ampiezze di distribuzione (Distribution Amplitudes).
Esse possono quindi essere estratte dal confronto con i dati sperimentali di
una certa misura, ed essere reinserite nel calcolo della sezione d’urto di un
altro processo hard per poter fare delle previsioni: in questo modo si mettono
alla prova le stesse ipotesi di fattorizzazione e universalita.

1.3 1l Quark Parton Model (QPM)

Come anticipato nella sezione precedente le ipotesi del Quark Parton Model
SONo:
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e Per |¢?| — oo in regime DIS, lo scattering hard leptone-adrone viene
descritto in approssimazione di Born.

e [ partoni sono quasi on-shell e in uno stato virtuale congelato.

e Sussiste fattorizzazione tra scattering hard e processi soft tra partoni.

4

Percio la sezione d’urto differenziale risulta essere data dalla convoluzione
tra il processo elementare (scattering hard) e la distribuzione di probabilita
dei partoni con flavor f nell’adrone h,

d20' el
J0dE P Z/ deE,(xp,q)qf( x), (1.35)

dove d?0¢ ¢ la sezione d’urto elementare del processo di scattering elastico
del leptone su un partone di momento zp, e ¢f(x) la probablita incognita
di trovare un partone f con frazione r del momento dell’adrone genitore.
Potendo calcolare d?c®, si ricavano informazioni su ¢;(z) dal confronto con
i dati sperimentali.

La sezione d'urto elementare di scattering elastico puo essere ricavata
immaginando il partone come una particella di Dirac massiva. Il tensore
adronico per una particella di momento p diventa quindi

1 dy
W = o 167r32pg(27)454(]9 +q—p)HW,  (1.36)
HW = eR2[p"p” + p"p" + g"(m® —p' - p)], (1.37)

mentre il tensore leptonico ¢ dato dalla (1.24). La sezione d’urto elementare
per un partone di momento xp risulta infine

d20.el
QdE = Mot ef +ef—tan (0/2)0(x — xp), (1.38)
dove
dov 2
O Mott — TE,Q COS (9/2) (139)

rappresenta lo scattering di Coulomb elastico da particella puntiforme.
Quindi sostituendo il risultato di equazione (1.38) in eq. (1.35) si ottiene:

d2 d2 el
J0dE P Z/ T oadp P 94 ()
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T
= aMottZef/ dzd(x — xp)ps(x) -
If

= o S [ ol (e8) + 57 tarP(0/2)6 2]

+ % tan2(¢9/2)]

— v [iFQ(:L‘B) + ]\24F1(:UB) tanQ(G/Z)}, (1.40)

dove, dal confronto con la (1.28) in regime DIS, si deduce

Fi( Zef¢f rp) e Fyxp)= xBZefc@(xB). (1.41)
ff I

Le funzioni di struttura, che parametrizzano lo scattering elasico, permettono
quindi di accedere alle distribuzioni partoniche negli adroni. Dalla (1.41) si
ricava inoltre, la relazione di Callan-Gross [13]

2:1:BF1($B) = FQ(Q?B). (142)

Nonostante le approssimazionmi del QPM, questo risultato venne successiva-
mente confermato dai dati sperimentali e, grazie a considerazioni riguardanti
il tensore adronico nella sua componente longitudinale e trasversa, divenne
possibile concludere che la validita di questa relazione sussiste solo se i par-
toni sono particelle a spin 1/2.

I1 QPM ha ricavato numerose altre conferme sperimentali, in particolar modo
da misure di Fy(xp) per DIS di elettroni su bersagli di protoni e neutroni.
L’elaborazione continua del modello e il confronto con i dati sperimentali
hanno introdotto nuovi concetti come la distribuzione di quark di valenza

q7(z) = qp(x) = 4p(x) (1.43)

(che rappresenta cio che rimane dopo aver rimosso i quark e gli antiquark
virtuali associati alla polarizzazione del vuoto) e del “mare” di Dirac, g;*(z),
che insieme alla distribuzione di valenza fornisce il contributo completo del
sapore f alla distribuzione gs(z):

qr(x) = qp(z) + G5 (2). (1.44)

Il quadro intuitivo che emerge ¢ semplice e allo stesso tempo efficace. 1l
nucleone si pud pensare, in prima approssimazione, come rappresentato da
tre quark di valenza le cui masse e cariche frazionarie determinano la massa
e la carica del nucleone stesso. I quark di valenza trasportano in media 1/3
del momento totale. Le loro distribuzioni in x hanno quindi un picco per
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x ~ 1/3 e sono l'unico contributo dominante per un certo sapore f quando
x — 1. A piccoli z, invece, il momento del nucleone puo essere suddiviso
tra tanti partoni: di valenza, del “mare” e gli antipartoni; per x — 0 questi
ultimi contributi divengono dominanti.

I limiti della descrizione basata sul QPM cominciarono ad emergere dal-
I’analisi sperimentale delle cosiddette regole di somma, che legano relazioni
integrali sulle funzioni di struttura a costanti note, come quelle di Gottfried
o Gross-Llewellyn-Smith [14] per lo scattering di (anti)neutrini. Il risultato
piu interessante € forse rappresentato dalla regola di somma di momento,

/ ‘o B (F5 () + F5 (@) — S (R7(a) + F" (@)
N/Oldxx(u+a+d+ci+s+§)i1—e, (1.45)

con u, d, s distribuzione di momento del quark per il relativo sapore; dove i
dati sperimentali indicano per € valori compresi tra 0.54--0.56. Quindi circa
meta del momento del nucleone é portato da partoni senza carica, che non
sono previsti dal QPM: i gluoni.

1.4 Improved Quark Parton Model (IQPM)

Vedremo piu avanti che anche nel caso di reazioni polarizzate il QPM mostra
tutti i suoi limiti nella descrizione della struttura di spin del nucleone. In
questo paragrafo accenniamo brevemente alle correzioni al QPM (Improved
QPM, IQPM) che trovano la loro giustificazione teorica nella teoria di campo
non abeliana per le interazioni forti, la QCD.

Per poter inglobare il QPM nella QCD occorre affrontare due fondamen-
tali problemi: la rinormalizzazione della teoria, ovvero la cancellazione delle
divergenze ultraviolette; e giustificare la fattorizzazione tra la sezione d’ur-
to elementare (processo hard) e la descrizione dei partoni (processo soft),
cioé inglobare le divergenze infrarosse dovute alla dinamica “soft” in funzioni
incognite che generalizzino le distribuzioni partoniche.

La cancellazione delle divergenze ultraviolette (UV) avviene schematica-
mente in questo modo. Ad una certa scala pg si ridefiniscono le quantita
fisiche quali massa, coupling e intensita dei campi attraverso la procedura
di rinormalizzazione, inserendo controtermini nella lagrangiana (dipendenti
da pg) in modo tale da cancellare le divergenze della teoria. Dall’invari-
anza della fisica dalla scala di rinormalizzazione si ottengono le relazioni di
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Callan|21]-Symanzik|[22]

d 0 0 0
—G=0 = — — —|G=0 1.46
g g B(g) ag 7(9) 99 , (1.46)
dove G ¢ la funzione di Green ad n punti, v la dimensione anomala dei campi
e la funzione 3 é data da:

4
dlog(q?)

Essa determina cioé I’andamento della costante d’accoppiamento oy al variare
della scala ¢2.

Per quanto riguarda, invece, il problema della fattorizzazione occorre di-
stinguere processo da processo.
Ad esempio per i processi di DIS inclusivo Collins, Soper e Sterman hanno
fornito il seguente teorema:

as(¢%) = Blay). (1.47)

Ldx g ¢° i
F1/2/3(I37q2): Z /0x01/2/3<$,2,57%(%))@(%#%#3)7
i:f,f,a :uR H’R

(1.48)

dove ¢;(z, pr, fir) sono una generalizzazione delle distribuzioni partoniche in
QPM, indipendenti da ¢° e «y, e quindi indipendenti dal tipo di processo. I
coefficienti C/y/3, detti coefficienti di Wilson, rappresentano una generaliz-
zazione delle funzioni di struttura Ff}2 di scattering elastico nel QPM.
Il termine pp rappresenta la scala di fattorizzazione a cui si distingue cio
che accade a brevi distanze (alte energie) e viene inglobato nei coefficienti di
Wilson C, da cio che é a lunghe distanze (basse energie) e viene assorbito
nella definizione dell’incognita ¢.

Nel calcolo di C'le correzioni da QCD sono dovute al fatto che un quark di
momento y pud irraggiare un gluone con momento (1 — z)y e riscalare il suo
momento ad = = zy; tale processo viene detto “vertice di Altarelli-Parisi|23]”.
Nel caso in cui z — 1 il calcolo presenta termini divergenti (detti divergenze
collineari) che possono essere riassorbiti in ¢ perché connessi alla dinamica
del singolo quark, indipendentemente dall’interazione con la sonda esterna.
Questo determina l’evoluzione in ¢ di ¢, ovvero il suo contributo partoni-
co al variare, appunto, della scala della sonda. Termini divergenti possono
comparire anche dai contributi di gluoni virtuali “soffici”, cioé per zp — 1;
tali divergenze non sono riassorbibili né in ¢, perché riguardano il gluone
nello stato finale, né in C, perché romperebbero la fattorizzazione; pero si
cancellano sistematicamente con le divergenze generate dai gluoni reali in
approssimazione collineare (Fattorizzazione Collineare).
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Il vertice di Altarelli-Parisi é descritto dalla cosiddetta funzione di split-
ting, che determina il contributo partonico della distribuzione ¢, discrim-
ina cioé cio che va inglobato in ¢ (off-shell < pp) da cid che va inglo-
bato in C' (off-shell > pur). Scegliendo per comodita |¢?| = wpr, al va-
riare di pup evoluzione in ¢? viene determinata da equazioni note come
equazioni DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)[23]. La scala
di partenza (e.g. ¢?2), cioé la condizione al contorno delle equazioni dif-
ferenziali accoppiate DGLAP é pero arbitraria; si ha percio la necessita di
definire uno schema in cui calcolare ’evoluzione e confrontarsi con i dati
consistentemente. Diverse scelte sono possibili, le pitt popolari sono:

e schema DIS (Altarelli, Ellis, Martinelli '79), che si basa sull’assunzione
che il QPM sia esatto a ¢3;

e schema MS (Bardeen et al., '78; Furmansky e Petronzio, ’82; Collins
e Soper, '82 ), dove le distribuzioni partoniche sono definite come
elementi di matrice di operatori numero su stati adronici.

Le equazioni DGLAP sono d’importanza fondamentale perché, noto il risul-
tato alla scala ¢2, forniscono il risultato a ¢* # ¢2. Inoltre in combinazione
col teorema di fattorizzazione permettono, una volta ricavata l'informazione
quantitativa da un certo esperimento, di fare predizioni per altre misure a di-
verse scale energetiche (pur nello stesso schema di fattorizzazione). Il potere
predittivo viene pertanto notevolmente ampliato.

Per i processi di DIS semi-inclusivo vale un teorema di fattorizzazione
analogo al DIS inclusivo purché il processo sia collineare, cioé i momenti
trasversi dei partoni siano integrati.

Nel caso ete inclusivo si ha il seguente teorema dovuto a Sterman (’76)

Ao 9 s o
Otot = NCTQQ Zef anas (q%), con sp=1, (1.49)
f n

con N, numero di colori; nel quale il primo termine fino alla sommatoria sui
sapori é interamente dovuto al QPM, e la seconda sommatoria rappresenta
il contributo fattorizzato dalle correzioni di QCD perturbative.

Per il processo alla Drell-Yan, cioé¢ p + p — [*l~ + X, abbiamo (per una
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rassegna si veda [24], pag.1):

do do.el T, To q2
dqude flzJ;Q/ dfl/ d&ady, (&1, MF)d Pdyd <§1 g - Q,as(,uF))
X b, (§2, ir) O(q?> (1.50)

1.5 II DIS inclusivo polarizzato

Prendendo in considerazione reazioni inclusive di scattering profondamente
inelastico su bersagli adronici polarizzati,

e +h—e +X, (1.51)

la struttura del tensore adronico si arricchisce di una parte antisimmetrica.
Per spin 1/2 il tensore W, puo essere al pit lineare nel quadri-pseudovettore
(di spin) S*. Quindi é possibile espanderlo sulla base delle matrici o di Pauli

1 /
Wiar = DS Wi poar = 5 Wi (14 P 0)aar (1.52)

aa’ aao!

dove poo € la matrice densita di spin del bersaglio e P; il vettore di polariz-

zazione definito da
P, =Tr(po;) =< 0; > . (1.53)

Il tensore adronico percio diviene
wWh =WE + W, (1.54)
dove WL & dato dalla (1.27) e
WA = i€ q,[A1S, + Aap,), (1.55)
con
A = MG+ PG,

A, = ¢, (1.56)



cioé il contributo scalare A; si accoppia con lo pseudovettore S e il contri-
buto pseudosacalare A, con il vettore p. Le funzioni G; e G5 rappresentano
le nuove funzioni di struttura collegate al nuovo grado di liberta di polariz-
zazione. La parte antisimmetrica del tensore adronico pud essere riscritta
come

. S
WAW _ iE“Vpgqug[MGl(V7 q2) + %C;&(;A q2)] — iE“VPqupUWqGQ(Vy q2)
= "7 qpe NG (v, @) + ie"”’””quLa(M Gi(r,°) + %GQ(V’ q2)) ’
(1.57)

dove A = M(S-q)/(p-q), rappresenta nel sistema di riferimento del bersaglio
(target rest frame, TRF) la proiezione dello spin lungo il momento trasferito,
ovvero 'elicita; mentre S} = (0, 51) ¢ lo spin trasverso.
Se nel processo DIS anche il leptone é polarizzato con elicitd h = 4, anche
il tensore leptonico analogamente a quello adronico acquista una componente
antisimmetrica
L. =L, +L, (1.58)

s
dove L7, ¢ dato dalla (1.24) e
LA, = i€y kK. (1.59)

La sezione d’urto si scompone anch’essa in due parti: una non polarizzata
e una polarizzata. La parte non polarizzata ¢ dovuta alla contrazione delle
parti simmetriche dei tensori; 1’altra, di conseguenza, alla contrazione delle
parti antisimmetriche:

do® 402
S v _ 2 202 2
L, W§" = B0 4 E (2 sin (9/2) W1 + cos (0/2) Wz), (1.60)
dAo" 20 F'
A 124 I / 2
L, Wi = Fr h 7 E{cosoz{(E—l— E cos@)MGl q Gé]

+E'sinfsin (MG, +2EG2)}. (1.61)

[’angolo « indica la direzione della polarizzazione del bersaglio rispetto al
fascio incidente; cioé a = 0 quando S || k, « = 7/2 quando S L k.

Dalle espressioni (1.60) e (1.61) ¢ possibile dedurre che le funzioni di
struttura indipendenti siano quattro: Wy, Ws, G e Gs.

Cio é dovuto alla seguente considerazione.
La sezione d’urto per assorbimento di un fotone virtuale (7*) con un nucleone
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bersaglio (IV), indicata con oy (7*N), per il teorema ottico risulta essere
proporzionale alla parte immaginaria dell’ampiezza di scattering Compton
in avanti:

Trot(VN) o Im[f(& = 0) (1.62)
Per via dei tre stati di polarizzazione £1,0 del v* e +1/2 di N, abbiamo

~v* Iniziale | N Iniziale | Stato Intermedio | v* Finale | N Finale
1 +1 +1/2 +3/2 +1 +1/2
2 +1 -1/2 +1/2 +1 -1/2
3 +1 -1/2 +1/2 0 +1/2
4 0 +1/2 +1/2 +1 -1/2
5 0 +1/2 +1/2 0 +1/2

Nonostante i casi possibili siano cinque le funzioni di struttura indipendenti

sono in realta quattro perche i casi 3 e 4 sono legati da una trasformazione

di “inversione temporale™?.

Riarrangiando le quattro combinazioni indipendenti ¢ possibile costruire
delle nuove quantita grazie alle quali poi definire le asimmetrie di elicita,
utilissime per il confronto sperimentale. Infatti si hanno

[(1,1/2) = (1,1/2)] + [(1,-1/2) = (1, -1/2)] = Wr=
=W, = 0?52 + UIT/Q;
(0,1/2) — (0,1/2) = W, =
=1+ v2/PAWo =W, = JlL/Q;
(1,1/2) = (1,1/2)] = [(1,-1/2) = (1,=1/2)] = Wrr =
= —vMG + ¢’Gy = 03?’/2 - 0?/2;
(1,—1/2) — (0,1/2) Wir =
=q(MG, +vGy) = JlL/Tz;

(1.63)

dove con gli indici L, T si sono indicate le polarizzazioni longitudinale e
trasversa del fotone e con TT e LT le possibili interferenze; mentre 1/2 e
3/2 indicano la componente (.J,) dello stato di spin intermedio.
Le asimmetrie di elicita sono definite come
‘71T/2 - ‘7::{/2 Wrr  vMGy — ¢*Gs

A = = — = s
! O'?/Q—F(Tgp WT W1

2E semplice notare come lo stato iniziale del caso 3 corrisponda allo stato finale del 4
e viceversa.
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A _ (Tf/g _ WLT _ Q(MGl —+ I/Gg) (1 64)
? o, +0l,  Wr W, ' '

Il vantaggio della definizione é piu che altro sperimentale perché rapporti
fra sezioni d’urto permettono di eliminare 'errore sistematico. Inoltre nel
rapporto tra differenze e somme di sezioni d’urto si enfatizzano i contributi
differenti nei vari canali, quindi in particolar modo le interferenze.

Le quantita accessibili sperimentalmente sono combinazioni lineari delle
asimmetrie d’elicita sopra definite:

e Per S| k—a=0

do" —do'l  E—F'e A+ €q
do't +do’T — E(1+€eR)" " E(l+€R)

A As,  (1.65)

dove o1 indica scattering tra elettroni e protoni longitudinalmente po-
larizzati e con spin paralleli, mentre o'! si riferisce al caso di spin
antiparalleli;

eperSLk—a=n/2
do'= — do'~ E—-Fe¢ —F——
+ do'=+do'= E(1+€R) (144
eq (1+¢€)?

A
TR rem)\ 26

(1.66)

dove 0!~ e ¢!~ indicano i due stati di polarizzazione trasversa del
protone rispetto a quella longitudinale dell’elettrone; inoltre

= {1 + 2;12 tan? (0/2)} - (1.67)

é la polarizzazione lineare trasversa di v* ed infine

WL V2 W2
R::(l )—1. 1.68
wr o @)W (1-68)
Dalla misura di ¢%, €, R, A e A, ¢ possibile ricavare A; e As.
Nel limite di DIS, cioé per v, Q* — oo con zp fisso, si ha il seguente
scaling:

MWl(’/an) - F1(33B) VWQ(VJJQ) —>F2(9CB)

M*vGi(v,¢*) — Gi(zp) Mv*Gy(v, ¢%) — Ga(zp).  (1.69)
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Quindi per le asimmetrie di elicita si ha

A - vMGi(v,¢*) — ¢°Ga(v,¢?)  Gi(zp) 2Muap Ga(ap)
1 = - -

Gl(LEB)

)

Wi (v, ¢?) Fi(zp) v Fi(zp)
)
(

MGi(v,¢*) + vGs(v, ¢%) \/méri-éQ
Ay = ¢ 5 — — 0.
Wl V7Q) v Fl(xB>

—

Fl(l'B)’

(1.70)

In sostanza dalla conoscenza delle asimmetrie teoriche in regime DIS posso

ricavare le funzioni di struttura polarizzate.

Nel QPM il collegamento tra funzioni di struttura él e ég e densita par-
toniche avviene nello stesso modo del caso non polarizzato. Dal prodotto
tensoriale L 4,, W4 si costruisce il contributo polarizzato alla sezione d’urto,
e lo si confronta con I'equazione (1.35), ovvero la convoluzione di un processo
elementare polarizzato e + ¢ — €’ 4+ ¢ con le distribuzioni partoniche.

Alternativamente si possono riscrivere 03?/2, alT/Q, alL/E e alL/2 in funzione delle
distribuzioni partoniche di quark polarizzati longitudinalmente nei due stati
possibili ¢ (+3) e ¢' (-1). Per conservazione del momento angolare, v*! in-
teragisce solamente con ¢' e viceversa (per quark collineari al fotone). Infatti

consideriamo dapprima gli stati polarizzati del quark,

con
1 0

T _ l

v=(o)o ()
Definiamo

- _ 0 04 ’y*l _ O o_

—O'+ 0 ’ —0_ O !

dove

oL = 5(035 +ioy),

é 'operatore di innalzamento/abbassamento di spin.
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L’azione di o4 sugli spinori y+ €

o = 0, o_x"=xh
oxt = ¥, o_x' =0. (1.75)
Cio implica
0 oy | ! .l )
Al o + _ [ Bim __
7l o, 0 | ( eyl ) ( e la)
0 oy ] X!
ATy o + — 10
7 o 0 _(EpijT> 10),
0 o | XT Pz Xl
1y — | Etm = ¢t
ey o« | 0T (e ) = () =,
0 o ] '
*Hg') o = |0). 1.76
v e | o 0_<Eizmxi> 10) (1.76)

Quindi, dal momento che per un bersaglio di protone polarizzato nello stato
p! si ha che

o3s = 7l o Y eday,
¥

ol =Pl o Y edq), (1.77)
17

Pasimmetria d’elicita A; pud essere riscritta come

_ 1 1 2
A — Tpohy Tud(n o) G . as) o
St Tppei(g )  Fils) files)
dove 1
91(xp) = 5 3¢t |aj(xn) — gj(ep)]. (1.79)
If

rappresenta la distribuzione d’elicita. Piu in generale, in QCD la distri-
buzione di elicita dipende anche da ¢*: g;(zp, ¢%).

L’interesse riguardo la funzione g, (zp, ¢*) é dovuto al fatto che il suo primo
momento di Mellin

oot 1 1 1

Ty(q%) = /0 drgi(z,¢*) = 2 Z_ef’/o dw(q}(m,(f) - qu‘(x’QZ)) T2 Z_G?CA‘”
I i

(1.80)

26



sia collegabile alla carica assiale g4 del nucleone, cioé ad una quantita conser-
vata. Inoltre, la carica assiale é calcolabile su reticolo attraverso ’operatore
d’elicita:

= S"Aqy (i) o< ga (1.81)

(p, Slarvsqzlp, S) 2

per uno stato adronico con momento trasverso p e spin S. Il risultato é in-
oltre indipendente dalla scala di rinormalizzazione pu.

Nel caso in cui, invece, i partoni abbiano momento trasverso pr non nullo
rispetto al fotone virtuale incidente, lo stato di quark polarizzato si scrive

T
t X
) ( x| + Bty ) | (152

Le combinazioni possibili sono maggiori, perché

O o XT pz“l’ipyXT
#1141 + . —( B 0
! |q>o<<—0'+ 0 ><ETmXT+p2iiiyxl> ( o )7

(1.83)

ed analogamente per v*'|q').
Ad esempio considerando un bersaglio ideale costituito da un quark po-
larizzato ¢' con un solo sapore, si ha

T 1 Dz 2
ol = e = () +1
(1.84)
; 2 2
T _ STV 2 — Pz + 1Dy _ D7

Quindi se nel caso collineare pr = 0 abbiamo A; = 1, nel caso pr # 0 risulta

2

(E+m)2 +1- (E'+m) ]72 + (E +m)* — 2p3

Al —
= E 2
(E+m)2 +1+ (E+ (E+m)? + ( + m)
- 1 2p7 —1— 2p%
P+ (E+m)? E2—m?+ (E+m)?
2
Pr
l———— 1.
E(E+m)’ (1.85)

che é quantita minore di 1. Per le energie in gioco nel DIS il rapporto
p2/E? & molto piccolo, e ¢id ha portato per lunghi anni a ritenere che gli
effetti legati al momento trasverso intrinseco dei partoni (cioé non generati
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perturbativamente da correzioni radiative di QCD o dall’evoluzione DGLAP)
fossero trascurabili. Vedremo tuttavia che cio é sempre vero in relazione
soprattutto a stati di polarizzazione trasversi alla direzione del moto.

1.6 Spin crisis

Nel QPM la funzione d’onda del quark nel protone polarizzato p! viene
costruita per rispettare la simmetria SU(3) figpor @ SU(2) spin = SU(6). Limi-
tandoci ad utilizzare solo i quark di valenza (trascurando quindi il contributo
del quark strange nel protone) abbiamo

1
Ip) = (QUTqul—uTuldT—ulquT—l—permutazioni sulla posizione di d).

V18

(1.86)
Le probabilita di trovare i vari flavor nei due stati di polarizzazione sono
1 )
Pu') = —[4-2+1+1]-3=-
1 1
Plut) = —[1+1]-3=-
P(dT) = i[1+1]~3:1
18 3
2
Py = =
( ) 37

(1.87)

da cui si possono calcolare il primo membro della distribuzione d’elicita

) = [ deatlond?) = [ (o0 0) = (o)

_ 14 4+1( 1) —52028 (1.88)
219 3 9 3| 18 7 '



e la distribuzione di singoletto di sapore

1 1 2
AEiZAQfZAu—i-Ad:g—S—FS—?):l' (1.89)

f

Nel 1973 Ellis e Jaffe calcolarono con correzioni di pQCD le stesse quan-
tita nell’ipotesi di perfetta simmetria SU(3) e As = 0, ottenendo risultati
abbondantemente diversi:

1
() = /d:cgf(:c,q2):0.17io.o1
0
AY = 0.60=0.12,
(1.90)

per |¢?| = 10.7GeV?2. Dal confronto con i risultati della (1.88) e (1.89) si
deduce che nel QPM TI'} sia una quantita fissa e lo spin sia determinato
solo dai quark di valenza (AYX = 1), in realta le correzioni di QCD modifi-
cano radicalmente questo scenario, sottolineando che il ruolo dei quark del
“mare”, degli antiquark e dei gluoni (che non sono inclusi nel QPM) sia fon-
damentale. L’esperimento EMC (Cern, 1987), cioé lo scattering tra muoni
e protoni polarizzati a |¢?| = 10.7GeV? rivelod che sia le previsioni del QPM
che quelle della regola di somma di Ellis-Jaffe erano sbagliate. Infatti i valori
sperimentali trovati furono

I%(¢*) =0.126 £ 0.010£0.015 e AX =0.13£0.19,

con discrepanze maggiori di due deviazioni standard rispetto ai calcoli teorici.

Questo test sperimentale determino definitivamente l'inadeguatezza del
QPM nel fornire previsioni riguardo lo spin del nucleone. Si determiné cosi
quello stato di incertezza noto come spin crisis, la quale ebbe il suo apice con
altri esperimenti (SMC, E142, E143) che confermarono i risultati di EMC. Di-
verse altre misure (soprattutto regole di somma) rivelarono che la dinamica
dello spin del nucleone presenta aspetti cruciali di natura non perturbati-
va, cioé che non possono essere descritti con tecniche di QCD perturbativa
(vedi regola di somma di Gerasimov, Drell, Hearn, (Hosada e Yamamoto)
[18],[19],[20]). E comunque dimostrarono una volta di piu l'incompletez-
za della descrizione basata sul QPM. Ad esempio dalla regola di somma di
Bjorken polarizzata

[ oot ) - gi e, (191)

otteniamo nel QPM che 0.2777 = 5/18 = égA/gV, il che implica ga/gy = g,
dove g4, gy sono le cariche assiale e vettoriale del nucleone. Le correzioni di

29



QCD perturbativa danno invece

| o
94 (1 U O(ozs)> —0.191+0.002 = 4 —1.257+0.003.

6 gv T gv
(1.92)

Sperimentalmente invece si ottiene 0.209 4+ 0.003.

Dopo I'esperimento EMC, furono formulate numerose ipotesi teoriche nel
tentativo di fornire una spiegazione a quei risultati inaspettati (solo il 13%
dello spin del nucleone sembrava essere attribuibile ai quark di valenza). Qui
di seguito ne riportiamo alcuni:

e La violazione della simmetria SU(3). Sappiamo infatti che questa sim-
metria gioca un ruolo fondamentale nel determinare Au e Ad. Tuttavia
attualmente ¢ noto che non si tratta di una simmetria completamente
rispettata e cio potrebbe portare a correzioni significative dei risultati.

e [’incertezza nell’estrapolare i dati a  ~ 0. Il comportamento della
funzione zg;(z, ¢*) per x — 0 puo modificare la regola di somma.

e La possibile evoluzione non perturbativa di AXY. Siccome la corrente
assiale di non singoletto non é conservata per via dell’anomalia as-
siale, AY dipende dalla scala alla quale viene misurata; ¢ possibile che
sia grande per u ~ 1GeV, ma che assuma valori piccoli alle energie
dell’esperimento EMC.
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Capitolo 2

TRASVERSITA E
DISTRIBUZIONI PARTONICHE
GENERALIZZATE

2.1 Operator Product Expansion e definizione
operativa di twist

In questo paragrafo viene riportata una breve e non certo esaustiva trat-
tazione riguardo I’'Operator Product Expansion (OPE) e la definizione di
twist di un operatore; concetti che si riveleranno utili nel prosieguo di questa
tesi.

Considerando il processo
et +e — X, (2.1)

¢ possibile dimostrare (ved. Appendice B) che il contributo dominante al
tensore adronico

wee = [ dige<a(o][ 7€), 7 (0)] o), (2.2)

nel limite di Bjorken, ¢ dato dal contributo a corte distanze, cioé £ — 0. Ma
il prodotto di operatori nello stesso punto spazio-temporale non sempre é ben
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definito in teoria quantistica di campo. Ad esempio, per un campo scalare

()

O(10) = [ =B S 016(0)lp. .16 0)10)

(27)32p° <
| Gt 00O ) =N [ G5 — o (29

perché I’elemento di matrice, dipende solo da p?> = m? ed é costante. La pri-
ma congettura per ovviare a questo problema venne proposta da Wilson [25|
nel '69 con l'introduzione dell’Operator Product Expansion(OPE), di-
mostrato in seguito nel 73 da Zimmermann in teoria delle perturbazioni.
Dati un operatore A definito nel punto = ed un operatore B in un punto y,
il loro prodotto risulta

=3 Cile — )0, (“””’2“/) (2.4)

i=0
in cui:

e gli operatori locali O; sono regolari in (z 4+ y)/2Vi = 0,1,2,..;

e la divergenza per x — y € assorbita nei coefficienti C};

e i termini sono ordinati per singolarita decrescenti in C;, 1 = 0,1,2,...;

generalmente Oy = I, ma l'espressione esplicita dell’espansione va
trovata separatamente per ogni tipo di processo;

e ’OPE ¢é anche una definizione operativa perché puo essere usata per
definire un operatore composito regolare. Ad esempio: nella teoria ¢*,
I’operatore composito gb2(a:) puo essere costruito come

200 = i 2@0W) —Golz —y) _ 5
¢"(v) = lim O —y) O1(z). (2.5)

L’OPE purtroppo non puo essere applicato a tutti i tipi di processi, infat-
ti risulta dimostrabile solo per ete™ e DIS inclusivi. Questa limitazione é
dovuta essenzialmente al fatto che, mentre per i processi appena citati il ten-
sore adronico contiene il commutatore di due operatori di corrente (Ved. eq.

(2.2)), nei casi semi-inclusivi tra i prodotti degli operatori corrente compare
lo stato adronico finale incognito che impedisce di utilizzare la relazione di
completezza.
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Tuttavia questo problema puo essere aggirato attraverso una procedura
consistente nella classificazione dei contributi dominanti ai vari processi hard
attraverso lo studio sistematico dei diagrammi coinvolti, nota appunto con il
nome di diagrammatic approach. 1l diagrammatic approach consente infatti
di ritrovare i risultati del’OPE per quanto riguarda i processi inclusivi e di
generalizzare la ricerca del contributo dominante per i processi semi-inclusivi.

Per un generico operatore locale 0%} """ simmetrico a traccia nulla di spin

n e dimensione d, é possibile dimostrare il seguente risultato. L’elemento di
matrice dell’operatore su uno stato adronico |p) ha la seguente forma

M2
wbin d—n—2
(Pl O py ~ A4 p[“l...pW]An—i—O<QQ) (2.6)
dove le parentesi quadrate negli apici indicano la parte simmetrica e a traccia
nulla del tensore, il termine A, rappresenta una funzione di struttura non
perturbativa, e la potenza di M é regolata da questioni dimensionali.
Da questo risultato ¢ possibile ricavare la seguente forma per il tensore

adronico W,

M d—np—2 1 Nk
W13 () (LY, 27
2 M ; Q g Nk ( )
con t,, tensore di rango due (per esempio g,,) e @ = /—¢?. Dall’espres-
sione appena riportata ¢ semplice accorgersi che nel limite per Q? — oo
I'importanza di un operatore é determinata dalla quantita

t = d — n = dimensione — spin, (2.8)

nota in letteratura con il nome di “twist”, che assume valori > 2 (per t = 2 si
ha lo scaling in regime di DIS). Il twist di un operatore locale quindi é molto
importante per classificare i contributi dominanti.

Come abbiamo visto nella (2.2), nei vari processi le quantita coinvolte
riguardano operatori bilocali, ai quali pero la definizione di twist non é ap-
plicabile direttamente. Quindi per gli operatori bilocali non ¢é possibile effet-
tuare un’analisi in twist per determinarne i contributi dominanti se non dopo
aver applicato ’OPE e aver rappresentato 'operatore bilocale come una serie
infinita di operatori locali. Questo problema venne risolto da Jaffe nel 1995,
il quale forni una definizione operativa di twist anche per gli operatori bilocali
regolari. Il twist per un operatore bilocale risulta essere uguale alla potenza
dominante in M/Q a cui I’elemento di matrice dell’operatore contribuisce al
processo considerato nel limite di corte distanze. Le potenze di M necessarie
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si determinano decomponendo l’elemento di matrice in tensori di Lorentz,
costruiti con i vettori indipendenti del processo, e facendo un’analisi dimen-
sionale. La definizione operativa di Jaffe non coincide con quella data in eq.
(2.8), ma ¢ pit comoda e permette di stimare direttamente le correzioni di
potenze in 1/Q.

Come dimostrato in Appendice B per il processo I’annichilazione ete™,
anche per il processo di DIS (sia inclusivo che semi-inclusivo) il contributo
dominante al tensore adronico viene dalla regione cinematica &2 — 0. Di
conseguenza € utile quantizzare la teoria sul cono di luce, cioé¢ di imporre le
regole di quantizzazione su un iperpiano che si muove sul cono di luce (v = ¢)
a xt oc t + 2 costante, anziché definirle su un iperpiano a t = cost.

2.2 Quantizzazone Light-cone

Nel’ambito della quantizzazione light-cone (LC), un generico quadrivettore
z viene rappresentato come z* = [zt 27, z,], con componenti LC 2t =
(2° + 2%)/V/2 e parte trasversa z, — (z', z%). Il prodotto scalare di due
quadrivettori é determinato dal tensore metrico

01 0 0
, |10 0 0
7" = 00 -1 0 ’
00 0 -1
cioé
22 =y =g, =T T~y ) (2.9)
I versori light-like divengono quindi
ny =[1,0,0, ] en_=[0,1,0,], (2.10)
con ni =n> =0eny n_ = 1. Sfruttando questi nuovi versori possiamo

proiettare le componenti LLC dei vettori attraverso i seguenti prodotti scalari
2t =n_.z, 27 =ny -z (2.11)

Un boost di Lorentz lungo ’asse 2 a velocita v produce le trasformazioni

0 3 3 0
o_ T TUur =3 _ LU ~1 1 ~2 2

T = = T =ua, =z (2.12)

V1—02’ V1—02’
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Le stesse relazioni riscritte con notazione LC prendono la forma

Tt = a2t exp(v), T = exp(—v), T, ==z,. (2.13)
dove l'angolo iperbolico ¢ é dato da In[(1 — v)/(1 + v)]/2, cosicché v =
— tanh .

Un’altra trasformazione di Lorentz che tornera particolarmente utile é
il boost trasverso (crf e.g. |26]) che lascia la componente + del vettore z
invariata:

o= [2h, 27,2,
- _ z, - bJ_ Z+b2 Z+
— e[ 2] 2(b+;_2’ZL_bTbJ_ (2.14)
con
- _ ZL~bL Z+b2 Z+
32 = 22tz — 22t = +2z+2(b+;2—zi+2b—+zL~bL
2N 2
_(b+) bl =2zT2" — 23 =22 (2.15)

Boosts trasversi e rotazioni in genere non commutano. Infatti in entrambi
i casi una rotazione nelle coordinate spaziali produce lo stesso effetto sulle
componenti trasverse del momento. Ma una rotazione lascia invariata la com-
ponente legata all’energia e quindi produce una variazione della componente
LC +, mentre ci0 non avviene per il boost.

Si rivelera utile per il prosieguo definire i seguenti proiettori

1
Pi — Efy?f)/i (216)
con 1
+ 0 3
7= 5(7 +7%), (2.17)
tali che
PP =1, PP =P_P, =0, Pi = Ps, (2.18)
e
Pyt =P, Pyt =0, PiyL =7 Py. (2.19)

Il metodo canonico per quantizzare le teorie di campo consiste nell’im-
porre le regole di commutazione tra i campi dinamicamente indipendenti a
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tempi uguali, ad es. 2 = 0. Come diretta conseguenza dell’invarianza rispet-
to alle trasfomazioni di Lorentz ogni altra scelta dell’iperpiano space-like nel-
lo spazio di Minkowsky risulta essere equivalente. Un iperpiano light-front,
definito ad es. da 7" = 0, puo essere visto come caso limite di una sequenza
di iperpiani space-like.

Nel seguito considereremo la quantizzazione LC per campi fermionici ¢y
di flavor g e colore ¢ nel gauge in cui la componente del campo gluonico é
nulla, A™ = 0. Ad un dato tempo LC, z*=0, i gradi di liberta indipendenti
della QCD sono le cosiddette componenti LC “buone” dei campi, ovvero ¢
= Py, e le componenti trasverse del potenziale del gluone Ag, con a =
1,2 indice trasverso e c¢ indice di colore. I campi dipendenti, o componenti
“cattive” sono xy = P_1; e risultano sistematicamente soppressi almeno come
1/@Q; non possono quindi contribuire al tensore adronico al twist dominante.

Un metodo semplice per poter mostrare il differente ruolo delle compo-
nenti “buone” e “cattive” consiste nel proiettare con P I'equazione di Dirac,
ottenendo cosi due equazioni distinte (omettendo per semplicita gli indici di
colore e quark)

intD™¢ =17, - Dy x +my (2.20)
in" DY =iy, - D, ¢+ mo, (2.21)

dove D* = 0/02F + igA=. Solo 'equazione (2.20) descrive la propagazione
di gradi di liberta fisici.

I campi dinamici indipendenti a 2zt = 0 hanno la seguente espansione di
Fourier nello spazio dei momenti (vedi, e.g. [26], Appendix II)

ol dk*d*k
Gg(z7,21) = 16 O(k™)
X Y {bg(w)uy (k, p) exp(—ik* 2z~ + ik, - z))
o
+d2(w)'u+(k, w)exp(+iktz" — ik, - z)) (2.22)

per il campo di quark libero, e

o dk+dk
Aa(Z ,ZL) = W@(k’—i_)

X Y {a(w)eq(k, p) exp(—ik™z" +iky - z,)
I
+a'(w)er(k, p) exp(+ikT2™ — ik, -z,) (2.23)

per quanto riguarda il campo di gluone libero, dove ©(k™) ¢ l'usuale fun-
zione a gradino e w = (k1 k., u, ¢) raccoglie la dipendenza collettiva dalle
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componenti + e trasversa del momento del partone, dall’elicita e dal colore.
Gli operatori b e dT rispettivamente annichilano una componente “buona” dei
campi di quark e creano una componente “buona’ per i campi di antiquark;
inoltre uy (k, p) = Pru(k, p) e vi(k, ) = Prv(k, ) sono le proiezioni degli
spinori di quark e antiquark sulle componenti “buone”. Invece a e a' sono
gli operatori di annichilazione e creazione per la componente trasversa dei
gluoni, e €,(k, ;1) ¢ una componente trasversa del vettore di polarizzazione
del gluone. Gli operatori di quark e antiquark soddisfano le seguenti regole
di anticommutazione

{bg ('), 0)(w)} = {dy(w'), d}(w)}
= 167°k 0k — kT)6P (K L — k1 )0yg0upulee,(2.24)

e gli operatori di gluone soddisfano la regola di commutazione

la(w'), a’ (w)] = 167°kT 5 (K" — EM)0P (K| — k1 )00 (2.25)

2.3 Funzioni di distribuzione partoniche (PDF)
al twist dominante

Il tensore adronico per il DIS inclusivo puo essere approssimato nel seguente
modo

1 _
2MW™ ~ 53 g / dp~dp, Tr {q’(p, P, S)yHyTy" 4 ®(p, P, S)y 'y 4"

9
7 pr=zP+

(2.26)

con

B0 P.5) = [ GRSl OIP.S)

=3 [ eyapg P S O1Ps, Sx) (P Sxl¥O)P, 3P ~p ~ P

32P0
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il correlatore quark-quark, cioé un operatore bilocale nei campi di quark
e valutato su uno stato adronico di momento P e spin S, dove i partoni
trasportano la frazione LC di momento z = p™/P* e Py il momento dello
stato finale su cui si somma.

Nella sezione precedente si ¢ visto come nella cinematica light-cone le
componenti leading twist siano quelle “buone”; cioé non soppresse, € possono
essere isolate attraverso il proiettore Pt. Applicando lo stesso metodo al
correlatore della (2.27) si estraggono le distribuzioni partoniche al leading
twist. Infatti

7’*{ / dp=dp 1 ®(p, P, S)|p+—up+ }’W

ol [ psiewoirs) v e

dove S = (0,S), S = (A, Sr). Mediante I'operazione di traccia definita da

ol (z, ) = / dp~dp. Tr[®(p, P, ST - (2.29)

é possibile isolare tre funzioni partoniche al twist due:
fle) = @0 = [ B o POl (230)
Mnla) = B0 = [ Pl g (0)|P) (231)
Spha(a) = 897 = [ L (Pl (o 0 (0)P). (2.52)

Al variare di I" in una base di matrici di Dirac indipendenti (1,5, Y, Y5 Vs O )
si ricavano le espressioni per le distribuzioni partoniche (PDF) anche ai twist
soppressi. Ad esempio le distribuzioni al twist tre sono date da

M
1] - =
CI) (JI,S) - P+€(ZE),
i M
obel(z, 5) = ES%FQT(x)a
M

q)[i0+_75]<x’ S) = F)\hL(x)v

(2.33)

dove il termine M/P* ~ M/Q corrisponde al contributo soppresso secondo
la definizione di twist efficace.
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Diamo ora l'interpretazione probabilistica delle PDF al leading twist.

Le PDF denominati fi(x) e gi(z) sono quantita note. Infatti fi(z) rap-
presenta la probabilita di trovare un quark con una frazione x del momento
longitudinale dell’adrone genitore!; mentre g;(x) rappresenta la distribuzione
di elicita, cioé per un adrone polarizzato longitudinalmente con elicita A for-
nisce lelicita netta (cioé la differenza tra elicita parallele e opposte a A) di
quark longitudinalmente polarizzati con frazione z del momento dell’adrone
genitore. Questo risultato pud essere semplicemente dimostrato utilizzando
i proiettori di elicita

L£7
2

PR/L = R con |:7DR/L7 'Pi =0. (2.34)

Il correlatore quark-quark per fi(x) coinvolge la traccia su 4+ e quindi una
combinazione operatoriale del tipo

Pyt = YIPL = ¢
= 6'(Pr+PL)é = ¢ (P + PL) (Pr+PL)o
= ¢T ('P;PR + P}PL)gb =RR+ LL, (2.35)

che é proprio la distribuzione di momento sommata su tutte le elicita, cioe
non polarizzata. Per g;(z) si ha invece

DY st = VPPt = 6 (PR — Pr)o
= ¢! (PiPr — P[PL)¢ = RR - LL, (2.36)

cioé lo shilanciamento tra quark destrorsi e sinistrorsi rispetto alla direzione
definita da A, cioé lelicita netta g (z).

La terza PDF, hy(z), rappresenta in un adrone trasversalmente polarizza-
to la densita del numero di quark con frazione di momento x e polarizzazione
parallela a quella dell’adrone, meno la densita del numero di quark con la
stessa frazione di momento e polarizzazione antiparallela. L’interpretazione
probabilistica di questa PDF sulla base di elicita non ¢ possibile perché

viot s = ¢ (Pl Pr — Pl PL) ¢, (2.37)

!Equivalente alla notazione gf(x) la notazione fi(z) trova la sua giustificazione nel
rappresentare compattamente il fatto che il quark non & polarizzato -lettera f- e che il con-
tributo &€ dominante -indice 1-; per il caso polarizzato si usa la lettera g per polarizzazione
longitudinale e h per quella trasversa.
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che non é piu un’espressione diagonale e mischia le componenti di elicita.
Tuttavia sulla base di spin trasverso, utilizzando i proiettori di spin trasverso
definiti da

PT/l = —, (2.38)

la traccia del correlatore quark-quark con 'operatore io*™~y5 fornisce la seguente
espressione

vio' sy = of (PIP - P[P))9, (2.39)

quindi hq(z) puod essere interpretata come distribuzione di spin trasverso del
protone, nota pitt comunemente con il nome di trasversita.

2.3.1 Trasversita e sue proprieta

La trasversita [27] venne introdotta per la prima volta nel 1979 da Ralston e
Soper in un lavoro riguardante il processo di Drell-Yan polarizzato, nel quale
era indicata come hr(x); dopodiché venne apparentemente dimenticata a
causa di un pregiudizio diffuso secondo il quale gli effetti di spin trasverso
dovrebbero essere soppressi perché in approssimazione di quark senza massa
e per urti collineari la QCD proibisce processi che cambiano l'elicita. Fu
riscoperta solamente negli anni novanta, grazie ai lavori di Artru e Mekhfi
(1990), che la chiamarono Aqg(z), e di Jaffe e Ji [28] che la ribattezzarono
hi(x) (vedi nota di pag. precedente).

Dal punto di vista sperimentale la trasversita essendo una quantita che
non conserva l’elicita, non é facilmente testabile negli usuali processi di scat-
tering, che richiedono simmetria per trsformazioni di elicitd. Ad esempio
non é accessibile nei processi di DIS inclusivo. Infatti nel QPM per il DIS
inclusivo si ha un parallelo tra le funzioni di struttura e le PDF fi(x) e g,(2)

fi(z) — Fi(z Zef f1 TR +f1 rp)] Zef (zp ‘I'Qf(fUB)]

g1(r) — Gy(x Zef (xp) —|—g1 xp)] Zef (xp —qf(:L'B)]
(2.40)

mentre hy(x) non ha controparte a livello di funzioni di struttura, perché per
il DIS inclusivo polarizzato, nel tensore adronico antisimmetrico W4" di eq.
(1.57) il contributo di G, ¢é legato alla polarizzazione trasversa dell’adrone,
ma € soppresso rispetto a quello di G; in quanto contribuisce al twist 3.
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Per anni quindi i fisici hanno creduto che lo spin trasverso generasse
effetti al twist 3, legando G» alla PDF gr (vedi eq. (2.33)). In realta, questo
pregiudizio si basa sulla confusione tra polarizzazione trasversa dell’adrone
(al twist 3 nel tensore adronico) e distribuzione di spin trasverso dei partoni,
che non necessariamente deve apparire solo al twist tre:

®T | spin long. | @17 | spin trasv.
twist 2 | 775 A1 ity Sthy
twist 3 | i0* T s A, Yys St.gr

In sostanza quindi h;(z) ha esattamente la stessa importanza di fi(x) e
g1(z) al twist 2. Infatti se, come visto, sulla base di elicita fi(z) e g1(z) sono
diagonali mentre hy(x) no, sulla base di trasversita la situazione & opposta.

Tutte le distribuzioni partoniche sono definite nel sistema di riferimen-
to detto “Infinite Momentum Frame” (IFM), in cui si considera un boost
di Lorentz in direzione z, per ) — 00. Se ci mettessimo perd in un rifer-
imento non relativistico le rotazioni di Galileo e i boosts commuterebbero
e di conseguenza g; e hy sarebbero la stessa cosa. Quindi dallo studio del-
la distribuzione di spin trasverso é possibile ottenere informazioni sul moto
relativistico dei quark nel nucleone.

Dal momento che h; non conserva elicita (e quindi neanche la chiralita,
da cui il nome gergale di “chiral-odd” PDF), essa presenta proprieta peculiari
per quanto riguarda I’evoluzione. Per adroni genitori con spin 1/2 come il
nucleone, le variazioni d’elicita massime sono AA = +1. Pertanto hy, che
mischia le componenti di elicita, non puo essere definita per oggetti come
i gluoni, che hanno elicita intera e possono presentare variazioni del tipo
AX = +2. Durante ’evoluzione secondo le equazioni DGLAP, dunque la hy
di un quark non puo ricevere contributi da gluoni radiativi. Inoltre il primo
momento di Mellin della trasversita, che risulta proporzionale alla carica
tensoriale, ha una struttura dispari per trasformazioni di carica. Quindi a
differenza di cio che accade per lelicita, ’evoluzione di h;(z, Q*) non riceve
contributi neppure da coppie del mare di Dirac. In sostanza é molto diversa
in linea di principio da quella delle altre PDF al twist dominante. Esplorare
tale comportamento ¢ quindi un test probante della QCD in regime non
perturbativo.

Poiché le sezioni d’urto non mischiano ’elicita, sono cioé “chiral-even”; il
problema di estrarre la trasversita dai dati si traduce nel problema di trovare
al leading twist una combinazione che coinvolga la trasversita accoppiata ad
un’altra funzione partonica di tipo “chiral-odd”.

Il processo piu semplice é la collisione di protoni trasversalmente polariz-
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zati nel proceso di Drell-Yan
pl+pl =M+ X, (2.41)

grazie al quale vengono calcolate le asimmetrie di spin

_do(p'p') —da(p pl » ha(1) ] (o)
Arr = do(p'p') + do(p'p Z K @) fl ()

In questo processo la trasversita é il partner “chiral-odd” di se stessa. Pero
le asimmetrie sono molto piccole, circa 1'1%, in quanto coinvolgono la dis-
tribuzione di spin trasverso per I'antiquark, che nel protone risulta soppressa.
In alternativa si possono considerare processi alla Drell-Yan con antiprotoni

(2.42)

pl+p =M+ X, (2.43)

ma di questi esperimenti per ora esistono solamente progetti, perché ottenere
antiprotoni polarizzati trasversalmente é complicato.

Un altro processo da cui ¢ possibile estrarre la trasversita ¢ il DIS semi-
inclusivo polarizzato. Ad esempio, nello scattering su un bersaglio di protoni
trasversalmente polarizzati, se nello stato finale si rivela una particella A
trasversalmente polarizzata,

ed+pl — e+ A+ X, (2.44)
si puo calcolare ’asimmetria di spin

Dyy = oW = do(piAY) o o () H ()
MY do(pT AT 4 do(ptAL) 7 flf(:c)D{()

(2.45)

dove H{(z) e D{(z) sono funzioni che descrivono la frammentazione di un
quark polarizzato trasversalmente, oppure non polarizzato, nell’adrone \.

Anche qui, pero, si hanno dei problemi per estrarre hy(x). Infatti, HY,
contiene informazioni sul meccanismo di trasferimento della polarizzazione
dal quark alla A, che non é non ancora ben noto.

Un’ulteriore possibilita che é stata presa in considerazione in tempi re-
centi, si basa sulla considerazione che nel processo di SIDIS i quadrivettori
momento indipendenti (nucleone iniziale, P, sonda esterna, ¢, e adrone fi-
nale, P,) non sono tra loro collineari. Pertanto se la sezione d’urto rimane
differenziale rispetto ad esempio dPjr, allora si puo avere sensibilita ai mo-
menti trasversi intrinseci dei partoni nel vertice hard. Questa osservazione
implica una struttura piu ricca nelle PDF e FF al twist 2. In questo mo-
do la trasversita puo accoppiarsi a diverse altre distribuzioni partoniche o
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funzioni di frammentazione, incrementando le opportunita per individuare
meccanismi di estrazione. Ad esempio il nuovo correlatore quark-quark, nel
caso dell’operatore io"" ;5 diviene

io? i pi pr-S
ol (2, pyr, S) = Shhar(z, py) + MT Ahip(z, pr) + TM (e, P2T)]
(2.46)

Analogamente a quanto visto per le PDF, anche la struttura delle FF si
arricchisce e questo permette di studiare un effetto non perturbativo legato
al momento angolare orbitale dei partoni, l'effetto Collins [30], che interviene
nel processo

et+p —e+T+X (2.47)

Mantenendo la sezione d’urto differenziale in dPp7 si puod costruire un’asim-
metria del tipo

S dostPia Bl sin(o) (do! —do') . a0
J ddPyr(dot + do) =" H@D{()

dove ¢s é I'angolo azimutale della direzione di polarizzazione del protone

bersaglio al piano di scattering, e ¢. = ¢5 + ¢, ¢ I’angolo di Collins, con ¢y,
angolo azimutale che identifica la direzione di Py, Hff(l)(z) ¢ data da

(2.48)

i

HHW () = / dkr gy

Hi (2,%2), (2.49)
dove Hi' (2,k%) ¢ la funzione di Collins, ovvero la funzione che descrive
la frammentazione di un quark trasversalmente polarizzato, di sapore f e
momento trasverso kr, in un adrone non polarizzato con frazione di energia
z. L’indice 1 segnala che la funzione é al twist 2, mentre il simbolo “_1”
richiama la necessita di costruire asimmetrie pesate col momento Ppp (vedi
eq. SSA Collins).

Questo effetto consiste nel trasferire la polarizzazione del quark di fram-
mentazione non alla polarizzazione trasversa dell’adrone, ma al moto orbitale
di un adrone non polarizzato descritto dal suo momento trasverso P,r. Una
possibile congettura per l'interpretazione di questo effetto é quella fornita
da Artru [31], secondo il quale se il fotone +* colpisce un quark polariz-
zato nel nucleone, la stringa di colore tra il quark polarizzato e la coppia
di partoni “spettatori” ha un momento angolare orbitale determinato dalla
polarizzazione trasversa del nucleone bersaglio; quando la stringa si rompe,
viene generata una coppia g, che possiede momento angolare e determina

I'asimmetria azimutale nell’emissione dell’adrone finale osservato (vedi Fig.
2.1).
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Figura 2.1: Rappresentazione grafica dell'interpretazione di Artru all’effetto
Collins

2.4 Distribuzioni partoniche generalizzate (GPD)

Per determinare come lo spin del nucleone viene costruito in base allo spin
dei suoi costituenti, le PDF non sono sufficienti, occorre introdurre uno stru-
mento teorico molto piu potente: la distribuzione partonica generalizzata
(GPD) (per una rassegna ved. [32]). Essa interviene ad esempio nel calcolo
di processi di scattering Compton profondamente virtuali (Deeply Virtual
Compton Scattering, DVCS)

e+p—e+p+7y (2.50)

per regime cinematico Q? — oo, xp fisso e t = (p — p’)? piccolo, ma diverso
da zero. Infatti per studiare i processi di DVCS, che sono non diagonali
nello stato adronico (p # p'), si introduce il correlatore quark-quark non
diagonale [29]

d*z

(2m)

¥(P,P.P.5,8) = | eiﬁ'2<P',s'|qz< _ ;)¢<;>|P, Sy, (2.51)

con P = (P+ P")/2.

Analogamente al caso delle PDF, anche per le GPD é possibile effettuare
un’analisi in twist del correlatore. L’estrazione del contributo dominante
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avviene esattamente come per le PDF, decomponendo il correlatore ¢’ in
termini delle strutture di Dirac e dei quadrivettori P, P’, S, S’, integrando
nella direzione LC — soppressa e proiettando le componenti LC “buone”
attraverso gli operatori v, Y5, 10" s:

bt — /dz eixP+-z<P/75/|,(Z( z > +¢( )|P S)

(27T> z+=7Z,=0
1 iotv
dz - 2z~
Mrtys] sz* roQr
¢ /(27r) P SW( 2 >7 75@/)( 2 )'P Nz o
1 . A+
- (P, s>{v+%H<x,g,t>+”§M Ble, &0 ul.5),
i dz -
fic"Tys] sz+ roar _ i+
P /(27?) <P S|?/)< 2 >ZU 7577b< >|P S> =7, =0
I oA PP
= WU(P’S){UZ+75HT($'7€’1;) IM HT(QT 5 t)
H_OCBAQ i—&-oaﬁPa B
+#ET(x7£7t) + #ET(xa f,t)}U(P, S)a
(2.52)

dove p* = zPT ¢ il momento medio del partone. Osservando ’espressione
dei vari correlatori si vede che questi sono non diagonali anche nello spin
dell’adrone S # S’, quindi & possibile modificare 'elicitd del nucleone. Di
conseguenza il numero delle GPD rispetto a quello delle PDF raddoppia o
quadruplica a seconda che si conservi o meno l'elicita del quark. Abbiamo
quindi, per il caso dei proiettori v© e ytvs5, due GPD “chiral-even ciascuno™
H, E ¢ H, F; le funzioni E eFE relative al cambio d’elicita del nucleone.
Invece per I'operatore ot+5 abbiamo quattro GPD chiral-odd: Hry, Er, Hr
e Er. Ciascuna GPD dipende, oltre che da x e t, dal parametro £ = (p™ —
P )/ (pt +p'™"), cioé dal cambio di momento longitudinale del partone.

Dal momento che il correlatore é non diagonale le GPD non sono densita
di probabilita come le PDF, ma ampiezze di interferenza tra due stati differ-
enti, per questo non si ha la possibilita di un’immediata interpretazione dal
punto di vista probabilistico.

Per poter interpretare le GPD probabilisticamente bisogna ricorrere al-
la rappresentazione overlap ideata da Diehl et al. [33], che tratteremo in
dettaglio nel capitolo 3.

Le GPD sono uno strumento molto generale e flessibile, infatti prenden-
done il limite diagonale (forward) per £ , ¢ — 0 esse riproducono le PDF al
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twist due,

{I(m,0,0) = fi(x) (2.53)
H(z,0,0) = gi(x), (2.54)
Hp(2,0,0) = hi(z). (2.55)

Inoltre, calcolando il primo momento di Mellin delle GPD H e E si ottengono
i fattori di forma dell’adrone considerato. Ad esempio, per il nucleone

/11 deH(z,6,1) = Fi(b),

/_llde(x,f,t) = Fi(t),
(2.56)

con [, fattore di forma elettrico e magnetico. Analogamente, dal primo
momento di Mellin delle GPD H e FE si ottengono il fattore di forma assiale,
ga(t), e pseudoscalare, gp(t).

[ et = g,

[ 11 deE(z,6,8) = gp(t).
(2.57)
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Capitolo 3

RAPPRESENTAZIONE A
OVERLAP DELLE
DISTRIBUZIONI
PARTONICHE
GENERALIZZATE

3.1 Decomposizione degli stati alla Fock

L’ingrediente essenziale per I'interpretazione probabilistica delle funzioni fe-
nomenologiche coinvolte nella descrizione dei processi di scattering hard ¢
la decomposizione degli stati di Fock [26], i.e., la descrizione di uno stato
adronico attraverso una sovrapposizione di stati di Fock partonici contenenti
i quanti liberi delle componenti LC “buone” dei campi di (anti)quark e gluoni.
Gli autostati di momento del singolo quark, antiquark o gluone sono generati
dall’azione degli operatori b, d' e a' sul vuoto perturbativo’,

lgyw) = bl(w)[0),
gw) = di(w)|0),
lg;w) = af(w)]0), (3.1)

1Si assume un vuoto perturbativo “banale”, i.e., b|0) = d|0) = a|0), e vengono ignorati
possibili problemi dovuti ai modi di zero, che esulano dallo scopo di questa tesi.
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e grazie alle regole di (anti)commutazione (2.24) e (2.25) & possibile ottenere
la normalizzazione di questi stati

(s w'|s;w) = 16m°kTS (KT — ET)0P (K| — k1 )0y e6ubere (3.2)

per partoni s’ e s di ogni tipo. Un generico stato adronico di momento p e
elicita A viene scritto

\Hip,\) = %/[dm]NWkL]N B3 5NN, B by, oy i), (3.3)

dove W3 45(r) ¢ la funzione d’onda LC (LCWF) di momento dello stato di
Fock ad N-partoni |N, 3;kq,...,ky). L’indice [ indica la sua composizione
partonica, oltre che il sapore, l'elicita e il colore di ogni partone.

I partoni sono caratterizzati, oltre che dai loro numeri quantici (sapore,
elicita e colore), dai loro momenti k; = [k, k; ,ky;]. Le LCWFs, d’altro
canto non dipendono dal momento dell’adrone, ma solo dalle coordinate di
momento del partone relative al momento dell’adrone; ovvero, in altre parole,
il moto del centro di massa puo essere separato dal moto relativo dei par-
toni. Gli argomenti della LCWF r, cioé ; = k' /p* e il momento trasverso
k | ;, possono venire identificati pin facilmente in sistemi di riferimento in cui
I’adrone ha momento trasverso nullo. Questi tipi di riferimenti sono denom-
inati “Hadron-Frames” ed in essi viene nuovamente utilizzata una notazione
collettiva

r; = (.Ti, kJ_i), (34)
con la prescrizione che Wy 5(r) = W 4(r1,...,ry) per gli argomenti delle
LCWFs. Uno stato ad N-partoni é definito come

1
[N, Bs ks i) = N [T 8} o I df, (wp) [T a (wi)]0).  (3.5)
NG i j 1

A causa delle relazioni di (anti)commutazione (2.24) e (2.25) gli stati

|N, B; k1, ..., kn) sono completamente (anti)simmetrici per scambio dei mo-
menti k; dei gluoni (quark); quindi senza perdita di generalita & possibile
prendere %’}”@(r) con la stessa (anti)simmetria, rispetto alle permutazioni,
del momento corrispondente r;. Il fattore di normalizzazione fy g nell’e-
quazione (3.5) contiene un fattore n! per ogni sottoinsieme di n partoni i cui
numeri quantici siano identici, in questo modo si ha

Uy (r) R 5 (P (N, B3 KL, o KN, B ko Koy

N
= |03 5()Ponndps [[167° K0 (kT — k)62 (K 1i — k1) (3.6)
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La dg s implica che non occorre introdurre indici differenti per stati in cui i
numeri quantici per ogni partone differiscono solo per una permutazione. Da
cio risulta che gli stati adronici sono cosi normalizzati

(H;p/ . N|H;p,\) = 167°p"0(p" — p )6 (D' L; — P1i)dwa, (3.7)

con

S [ [Ga] i eome =1 (3.5

Le misure d’integrazione che compaiono nelle equazioni (3.3) e (3.8) sono
definite attraverso le seguenti relazioni

dx N dr; N
— = —L5(1 — i), 3.9
), = Lm0 =30 (3.9)
1 N N
[dsz_]N = W H d2ki15(2)(z kJ_Z' — pJ_). (310)
=1 =1

Va sottolineato che gli stati partonici (3.5) non si riferiscono specificatamente
ad un adrone, piuttosto sono caratterizzati da un set § di numeri quantici. Il
loro combinarsi a uno stato adronico definito con determinati numeri quanti-
ci é assorbito nelle funzioni d'/j\\,ﬂ(r). Ad esempio lo stato di Fock a tre quark
di valenza per un nucleone ha una sola LCWF indipendente per tutte le con-
figurazioni dove le elicita partoniche si sommano a dare I’elicita dell’adrone.
Per stati di Fock pitt complicati ci sono, in generale, pit LCWF indipendenti.

3.2 Cinematica

Dal momento che gli adroni sono massivi occorre specificare gli stati d’elicita
che appaiono nella (3.3). A questo punto quello che si fa ¢ introdurre la
funzione d’onda LD]’\\W(T) scrivendo la (3.3) per uno stato con p;, = 0, i.e.,
nel sistema di riferimento adronico. Nell**hadron frame” gli stati d’elicita
|H; p, \) sono definiti nella maniera usuale, cioé con la direzione dello spin
allineata o antiallineata con il momento dell’adrone. Da questa si ottiene poi
la decomposizione degli stati di Fock per un adrone con p, # 0 applicando
ad entrambi i membri della (3.3) un “boost trasverso” (2.14). Si pud mostrare
che il vettore covariante di spin & dato da:

A p2 —m?
— p+7 +
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Nel limite m = 0, gli stati LC di elicita cosi definiti coincidono con gli stati
d’elicita usuali. Per m # 0 non coincidono: per p;, # 0 essi non sono
autostati del momento angolare lungo la loro direzione di moto.

Gli stati adronici iniziali e finali sono caratterizzati dai momenti p e p’,
che vengono coinvolti nelle definizioni delle GPDs. Per parametrizzarli si
introduce il momento medio

1

=50+ (312

scegliendo il 3-momento p diretto lungo 'asse es, e scrivendo

M2+ A2/4 A
= [(14+&pT, L=

b [( O Sarop 2
L MP+AT/A A

po= [(1—6)19 Sa—ep T

Y

(3.13)

(M massa del nucleone) con il vettore trasverso A, la componente pin p*
e £ parametro di distorsione?
— )t
g= o (314
(p+1)
che descrive la variazione della componente + del momento. Il momento
trasferito assume la forma

M? + A% /4)
Acpp = [ ot & =LA 1
p—p &pT, a—epr AL (3.15)
e dall’equazione (3.13) il suo quadrato diventa
4§2M2 + A2
t=A’=-—>"—" = 3.16
— (3.16)
Va notato che la positivita di A? implica il valore minimo
462 M
= > 1
0=7 e (3.17)

per —t ad un dato &, che puo essere visto come un valore massimo di &
a dato ¢. Il momento del partone emesso all’adrone verra indicato con &,
mentre il momento di quello assorbito con k’; da questi viene introdotto,
in analogia con la (3.12), il momento partonico medio k come (k + £’)/2
e corrispondentemente la frazione di momento Z = k*/p*. La frazione di
momento Z é quella che XiangDong Ji indica con z nel suo articolo [29].

2Questo parametro, in inglese skewedness, inizialmente dava il nome alle GPDs. Le
quali, infatti, venivano chiamate Skewed Parton Distributions (SPDs).
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3.3 GPD di quark non polarizzata

In questo paragrafo si deriva la rappresentazione “overlap” |33| per le GPDs
al leading-twist. Per chiarezza viene studiato il caso di quark non polariz-
zati all’interno del protone, prendendo, quindi, in considerazione elementi
di matrice di protone della componente piu di operatori bilocali di campo
di quark sommati sul colore. La generalizzazione al caso di altri adroni é
banale. Seguendo Ji [29], si definiscono le GPDs H'(z, &; t) e E'(z, &; t) per
un quark di sapore ¢ attraverso la relazione

. 1 dZ_ TPtz /.0 \!]|,].C = cl(z
Hg\’)\ = 52/?6 p+ <P7)\Wq(_Z/Q)’Yerq(Z/Q)’P, )‘>

a(p, N)ytu(p, A) a(p, Nic™™ A u(p, A)
2p 2p

HY(z,&5t) + Ei(z,&5t)
(3.18)

dove A, ) denotano le elicita del protone, e z ¢ una notazione abbreviata di
[0,27,0,]. Per le diverse combinazioni dell’elicita del protone si trova

2
H3_+ - HZ_ - 1 - £2Hq - \/16_752Eq,

Vig—1
HI, = —(HL )" =n 20m E°, (3.19)

con ty definito nell’eq. (3.17) e
AN HA?
Al

Un punto fondamentale per poter ricavare la formula “overlap” é 1’osser-
vazione che loperatore bilocale di campo di quark nella definizione (3.18)
possa essere riscritto come un operatore densita, in termini delle componenti
LC “buone”, sfruttando I'idempotenza e 'hermeticita del proiettore P.:

P2/ e(2/2) = v (—2/27 T (z/2) =
Vaud(—2/2)Payi(z/2) = V2uel(—z/2)P2uc(z/2) =
Vayet(=2/2)PLPuc(2/2) = V2[Pui(—2/2) [Pivi(2/2)]
= V20 (—2/2)¢5(2/2). (3.21)

Inserendo 'espansione nello spazio di momento (2.22) del campo nella defini-
zione di H$,,, per la trasformata di Fourier della (3.18) si ottiene I’espressione

B A C e

(3.20)
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U dk*d?k |
—9 / B [ et
V2 16m3k/+ o O 16m3k+ Ok")
x> Ger {0220t — K — KB (w)bg (w)ul, (K, 1 u (k, 1)
TN

+8(2zp" — k1 + K d, (w)by(
+6(22pt 4+ kT — K] (w)dl (w)ul (K, @Yo (k, 1)
+0(22p" — kT — ) d,(w')df (w)ol

&
4

++
=
t\
=
+

=

(3.22)

che permette l'interpretazione delle GPDs nel modello a partoni ( [34], [36]).
Quale dei quattro termini nella (3.22) contribuisca all’elemento di matrice &
determinato dalle condizioni di positivita A7 > 0 e ¥ > 0 per i momenti
dei partoni, insieme alla conservazione del momento, che impone k¥ — ¥t =
pt — P/t =2£pT. Qui di seguito si considera il caso £ > 0, utile per 'appli-
cazione delle GPDs nei processi hard; in questo modo il termine b'(w’)d"(w)
nell’eq. (3.22), che descrive I'assorbimento di una coppia quark-antiquark,
non contribuisce. Nella regione £ < * < 1 le GPDs descrivono I'emissione
di un quark dal nucleone con una frazione di momento x + & e il suo rias-
sorbimento con = — £. Per quanto riguarda la regione —1 < z < —¢ si ha
I'emissione di un antiquark con momento —(Z + ) e il suo riassorbimento
con momento —(Z — ). Invece la terza regione —§ < T < & rappresenta
I'emissione di una coppia quark-antiquark (ved. Figura 3.1).

3.3.1 Regione £ <T <1

La decomposizione alla Fock (3.3) degli stati conduce ad una rappresen-
tazione dell’elemento di matrice H%,, come somma su contributi di stati di
Fock separati.

Hi = ZHK']AV_)N)’ (3.23)
con
NN di’ A (7 r
I 20 o) | L NG AN CANE ARG
¢ B8

X / ?eiiﬁ+Z7 <N7 6/; kia ey k;V’¢ZT(_2/2>¢g(2/2)‘N7 6? kl? s kN>
(3.24)

Ora ¢ possibile esprimere gli stati ad N-partoni e 'operatore bilocale ¢2T¢2
in termini di operatori di creazione e distruzione attraverso le equazioni (3.5)
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Figura 3.1: Rappresentazione overlap delle GPDs nelle differenti regioni
cinematiche, nel caso £ > 0.

e (3.22), e valutare poi 'elemento di matrice sul vuoto usando le regole di
(anti)commutazione.

Quello che si ottiene ¢é il prodotto di due anticommutatori contenenti
gli operatori di creazione e di distruzione da QSZTQZ)Z , 1 quali possono essere
riscritti come elemento di matrice degli operatori di campo per i quark attivi,
e il prodotto di N - 1 (anti)commutatori per i partoni spettatori, esprimibile
attraverso elementi di matrice ad un partone come nella (3.2). Dal momento
poi, che i numeri quantici per i quark attivi e per i quark spettatori devono
“match-arsi”, si ha che i labels 5 e 3’ degli stati di Fock devono essere uguali.

Per partoni identici nello stato di Fock gli anticommutatori diversi da
zero generano un numero di termini corrispondente alle possibilita di asso-
ciare i partoni nello stati finale e iniziale. Questi termini sono, comunque,
tutti uguali a causa della (anti)simmetria delle funzioni d’onda per la permu-
tazione dei momenti r; per particelle identiche. Il numero di questi termini ¢
esattamente uguale al fattore di normalizzazione |/ fx g fn g; quindi si arriva
ad avere un unico termine. L’elemento di matrice che compare nella (3.24)
puo essere riscritto come

(N, B kY, s Ryl 0G (—=2/2)05(2/2)|N, Bi K, ooy ki)
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N N
Z wilos (—2/2)6¢(2/2)] 553 w;) T] (84 whlss; ws). (3.25)
o

Gli stati partonici sono caratterizzati dal loro momento e dalla loro eli-
citd, w;. I momenti dei partoni appartenenti all’adrone entrante e uscente
vengono denotati con lettere non primate e primate rispettivamente. D’al-
tro canto le LCWFs dipendono dalle coordinate relative di momento rispetto
all’adrone parente, r; e I'identificazione degli argomenti delle LOCWFs risul-
ta piu agevole quando come sistemi di riferimento vengono presi i sistemi
adronici. Per questo si adotta la convenzione di definire il sistema in cui
I’adrone entrante/uscente ha momento trasverso nullo “hadron-in”/“hadron-
out”. Nel proseguio della tesi le quantita nel sistema hadron-in verranno
indicate con una tilde, mentre quelle nel sistema hadron-out con un cap-
puccio. Inoltre verra usato il nome “average-frame” per un sistema in cui i
momenti adronici siano parametrizzati secondo le equazioni (3.13). Per ot-
tenere una formulazione simmetrica nelle quantita entranti ed uscenti é utile
definire come variabili ausiliarie le medie dei momenti partonici entranti e
uscenti nel sistema di riferimento medio

Fi = S+ ) o (3.26)
i = S \Ki i) Ti = —- .
2 ‘ pt
le quali soddisfano le condizioni
N 1N N
Zﬁﬁrqzyj:L Zﬁmsz:m, (3.27)

I partoni emessi e poi riassorbiti dall’adrone sono detti “attivi” e indicati
con 7; tutti gli altri partoni ¢ # j giocano il ruolo di “spettatori”. I partoni
attivi portano una frazione z; + ¢ del momento medio p* quando escono dal
protone, e una frazione z; — { quando rientrano. Il momento trasverso del
partone attivo é k,; = l_qj — A, /2 prima, e k' |; = l_gj + A, /2 dopo il
processo di scattering partonico.

Gli argomenti della LCWF per 'adrone entrante sono ottenuti attraverso
un boost trasverso definito in eq.(2.14) con parametri b* = (1+&)pT e b, =
—A /2, che porta dall’average-frame al hadron-in frame. Analogamente,
un boost trasverso con parametri bt = (1 — &)p* e by = +A /2 permette
di passare dal sistema di riferimento medio al sistema hadron-out. Dalla
conservazione del momento e dalla condizione di spettatore

ki=ki=ki,  peri#j (3.28)
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si ottiene che gli argomenti della LCWF per 'adrone entrante (i.e., i momen-
ti dei partoni appartenenti all’adrone entrante nel sistema hadron-in) sono
legati ai momenti nell’average-frame dalle relazioni

. T ~ = T, A .
T = 1+ kuzku+1+£7;, per i # j,
- z;+ ¢ ; T 1—2; A,
= ki =k, — — 3.29
Zj 1+¢° L 1j 1+¢ 2 ( )

Allo stesso modo gli argomenti della LCWF per I’adrone uscente (i.e., i mo-
menti dei partoni appartenenti all’adrone uscente nel sistema hadron-out)
sono legati ai momenti nell’average-frame dalle relazioni

N T > - T Ay L
2 = —¢ ,J_i:kLi—i_ﬁTa per i # j,
N jj_g WA 1_j7jAL

Utilizzando le relazioni precedenti é possibile esprimere la normalizzazione
degli stati partonici (3.2) attraverso gli argomenti della LCWF

1
(spwilsisws) = 16w3@;5(A;_@1+'§>

X(5(2) <A/J_1 — 1~{/J_1 -+ 1:L‘_i£AJ_>6s;si5u;M§cgcia (331)

dove si sono usate le relazioni in eq. (3.29) e (3.30) per esprimere le varia-
bili w; e w) in termini delle quantita del sistema adronico e cioé in termini
delle variabili di integrazione |ved. eq.(3.24)]. A questo punto combinando
I'espansione (3.22) per I'operatore densita, cui contribuisce solo il termine
bi (w')b(w), e la definizione di stato di quark singolo (3.1) si ottiene

dz~ izpt T C = c(=z
S [ s e (—2/2)05(2/2) s )
. _
= 2575(90 — & )ul (K, 1) us (R 115)85,405 5,0t (3.32)
A questo risultato si perviene in modo agevole, basta infatti utilizzare le

regole di anticommutazione (2.24) e usare la relazione (3.26) per riscrivere
I’argomento della delta che compare nel risultato.

N [T RS ol [ R N
M\ — p+\/§ 1+£ TN J_ij 17

B,8" j=1
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(@;—Hzplfg)(s@)( —l—Z(ku 1t§AL>>

i#j i#j
XO(2 — 2 ul (K 1) (7 105)0,00. 0,001, TT Ot
o
Wi (F1) Wy (7
x;-xj

Il prodotto degli spinori risulta

I _
ul (K, gy (kj ) = ﬁu%’”; = 1/2)v"ulky, py = 1/2)

Y/ 2(1 - 52)£;jj]5+5u;uj (3.34)

La delta di Kronecker per le elicita nell’equazione precedente avrebbe potuto
essere anticipata dalla struttura di Dirac dell’operaratore 7,537*@03 nella (3.22).
Definendo le proiezioni dei campi right- e left-handed, ¢f »,;, = Pr/LP+¢y,
con Pr/r = (1 £5)/2) e usando Pyys = 5P+ ¢ facile vedere che

Do e = V265 (Pr + PL)6t = V2(5hdn + 65105,). (3.35)

Dal momento che per quark non massivi la chiralita e I'elicita sono identiche,
le elicita su entrambe le linee di quark devono essere le stesse.

Per presentare i risultati in modo simmetrico le misure d’integrazione
vanno riscritte in termini delle quantita medie con l'ausilio della (3.30)

(dily = (lig)Nl[d:z]N, (k] = [dK ). (3.36)

Arrivando cosi alla rappresentazione overlap della GPD di quark nella regione
(<<t

2

HY = (Vime) (Vv T e,

p=p"J
x / (AT a2 | nO(F — 7)) U (F) 0 4(F)  (3.37)
con gli argomenti 7(7') della LCWF per il protone entrante (uscente) legati
alle variabili d’integrazione z; e k,; tramite le relazioni (3.29) e (3.30), rispet-

tivamente. Per ottenere I’espressione totale H$,, basta sommare su tutte le
configurazioni partoniche di N (ved. (3.23)) I’espressione appena ricavata.
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3.3.2 Regione —1 <7 < —¢

Per gli antiquark “attivi” la derivazione della rappresentazione overlap delle
GPDs procede in totale analogia al caso precedente. Le differenze compaiono
quando si utilizza la decomposizione di Fourier (3.22) per ottenere I’analoga
della formula (3.32), dal momento che in questa nuova regione il termine
che contribuisce é d(w’)d'(w). Lo scambio dell’operatore di creazione e dis-
truzione comporta la presenza di un segno meno a fattore, e la funzione
nell’analoga di eq. (3.32) ora fornisce il vincolo Z; = —Z. Quindi il risultato
finale per la regione -1 <z < —¢ ¢

HAY = —(Vi=e) (Vire) XY

B=p" J
X / AT N [d2F L N0 (T + 5) WY () 0 4(F),  (3.38)

con gli argomenti della LCWF 7 e 7/ dati da (3.29) e (3.30), rispettivamente.

3.3.3 Regione - <7 < ¢

Consideriamo ora il range cinematico —§ < & < £. Sapendo che £ > 0, le
GPDs di quark in questa regione descrivono I’emissione di una coppia quark-
antiquark da parte del protone entrante. Quindi nella decomposizione dello
stato di Fock dei protoni iniziale e finale occorre considerare solo termini
dove lo stato iniziale ha lo stesso contenuto partonico dello stato finale con
I’aggiunta di una coppia quark-antiquark. Percio si ha

(N+1-N-1)
=2 (3.39)

Partendo dalla definizione (3.18) delle GPDs per quark di sapore ¢ e
sostituendo lo stato adronico con la sua decomposizione dello stato di Fock
(3.3), il contributo della transizione N + 1 — N - 1 all’elemento di matrice
H$/, risulta

g(N+1-N-1) _

)\’)\
o ob oy N MR e e
c B3 N+1 ' IN-1

/ dz™ ooy
XU () O o(7) [ e

X<N - 17 6/; kia ey k;V—1’¢ZT(_Z/2>¢g(2/2)‘N + 176) kl? ) kNJrl)'
(3.40)
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Sfruttando nuovamente le relazioni di (anti)commutazione per gli operatori
di creazione e distruzione, I’elemento di matrice partonico puo essere riscritto
come

(N — 1,5’; Ky o k05T (—2/2)85(2/2)|N + 1, B Ky, . kv
N+1 N+1
(015 (=2/2)¢5(2/2) ], w;s s wh) T (s wilsizwi), (3.41)

= Z T q Jr g
i1—1 i=1
3.3 in i#4,4’

dove si sono indicizzate le coppie quark-antiquak con j per il quark e con
j7 per antiquark, e si ¢ indicato con |s;, wy; 85, wh) = b} (w])dT (w})]0) il

corrispondente stato a due partoni. n; (n}) ¢ il numero di (antl)quark nella
funzione d’onda del protone iniziale W3, 4(r) con gli stessi numeri quantici
discreti del (anti)quark “attivo”. Questo fattore compare perché il prodotto
v/ [ni1,8fn-1,p del fattori di normalizzazione degli stati partonici (3.5) non
¢ uguale al numero di possibilita di associare i partoni nello stato iniziale e
nello stato finale di protone, in contrasto con la situazione che si aveva per
le altre regioni.

Al fine di semplificare la notazione si utilizza la stessa numerazione per i
partoni spettatori nelle LCWFs dello stato di protone iniziale e finale. quindi
gli N - 1 partoni nel protone uscente non saranno numerati con ¢ = 1,...,N -
1, maconi—1,.,N + 1conjej omessi. Partendo dai momenti dei par-
toni spettatori k; e k; (i # j, ') vengono nuovamente introdotte le variabili
ausiliarie definite dall’eq. (3.26). Per j e j' si ha

_ ]_ ’ _ /
b=y — ), 7= (3.42)

Dalla conservazione del momento e dalla condizione di spettatore

si ottiene che gli argomenti della LCWF per 'adrone entrante sono legate al
momento del partone nel sistema di riferimento medio attraverso le seguenti

relazioni
- Z; ~ T, A R
i — kl_k’L A 7/7
T T+¢ i TRl v per i # 4,
_ z;+€& ~ 11—z, A
ZL'J — 1'7+€’ kJ_j_kJ_] 1+£.7 27
~! .f']_f ~ — 1+£]AJ_
= k,o=—-k,;, — —_— 3.44
l‘j 1+€, 1j 1y 1_{_5 27 ( )



e che gli argomenti delle LOCWF per ’adrone uscente sono dati da

N i’i " - i'i AJ_ . -
;= 1—¢ K=k~ 1—¢ 2 per i # j, 7. (3.45)

Le formule (3.44) e (3.45) possono essere usate per scrivere (s'; w'|s; w) come
nella (3.31), e per valutare I’elemento di matrice della coppia quark-antiquark
si sfutta l'espansione di Fourier (3.22), tenendo conto del fatto che in questa
regione 'unico termine a contribuire ¢ d(w’)b(w). Dopodiché applicando
la definizione dello stato a due partoni introdotta nella (3.41), e le usuali
regole di anticommutazione (2.24), la trasformata di Fourier dell’elemento di
matrice nella (3.40) diviene

dz~ TPz C > c(z
3 [ S eI (/20652 w1 )
p+6< ) jrF(kj'? :uj/)UJr(kJ? MJ)(SS 18] 65jq60jlcj' (346)

Si arriva quindi all’espressione

N f( 1+¢& )
A VAV Zﬁ:

N+ N+1
><167r3(5<1—1i_£ ) ( — Z ku)

175” i#5,5!
x0(z — xj)vl(k’j s by U (Kj 185)0515,05,90c )
phs VR () PR 0,6(7)

(3.47)

< T 0sgs.0cc,0, \/ﬁ
i=1 : s/
i#5,4" I

Il prodotto di spinori in questo caso risulta

. r ., .
(kg g Yu (kj, ) = ﬁv(kj’,uj’ = 1/2)v"u(ky, py = 1/2)

= 2225 (14 )P Ojr—p,- (3.48)

Le integrazioni su Z; e k| j possono essere eseguite, e riscrivendo le restanti
integrazioni in termini delle variabili ausiliarie si arriva alla rappresentazione
a overlap di HS,, nella regione —¢ < T < £ per la transizione N + 1 — N -
1:

1— N+1 5

W = (i) (Vi) g

55185 sjq
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N+1 N+1 N+1
S R | IO / dz; [[ de’i(5<
=1 i=1

=1

1-¢—- > =

)

i£j,5 i#5,5 i#5,5'
N+l A, N+1
X /kou H koLz’(wW?’)l_N‘S@) <2 - Z ku)
o s
X 0(z — 2;) Uy (F) R 4(7) (3.49)

Gli argomenti 7 e 7' delle funzioni d’onda sono dati in termini di z; e ky;
dalla (3.44) e (3.45), e n;, nj sono definiti dopo l'eq. (3.40). Come aspettato,
Poperatore >, z/;gfﬁwg nella (3.22) “proietta” coppie ¢q singoletto di colore
con elicita totale zero nella LCWF iniziale di protone.

3.4 GPD di quark longitudinalmente polariz-
zata

In questo paragrafo viene derivata I’espressione delle distribuzioni generaliz-
zate di quark, H9(z,&;t) e E9(Z,&;t), definite dalla trasformata di Fourier
dell’elemento di matrice

"~ . 1 dZ_ TPtz /.0 \!|,].C = cl=
HY, = 52/?6 Pt <P7)\!¢q(—z/2)7+75%(2/2)’]% A)

a(p’, )y ysu(p, A) u(p', N) At ysu(p, A)

H(z, &t E1(z,&:1).
(3.50)
Per le differenti combinazioni d’elicita di protone si trova
~ ~ ~ 52 ~
3__;'_ - _Hq__ == ]. — €2Hq - ﬁEq?
. . Vi —1 ~
HY, = (i) =ne¥2 _"po (3.51)

2m

La derivazione della rappresentazione a overlap procede in modo del tutto
analogo al caso delle GPDs di quark non polarizzate. Occorre solamente
trovare ’appropriata conversione da operatore di campo di quark a den-
sita di campi LC. Esprimendo 'operatore bilocale all’interno in termini delle
proiezioni left- e right-handed si ottiene

E(—2/27 T sve(2/2) = v (—2/2)7 v Tsil(2/2) =
V22Ut (—2/2)Piysii(2/2) = V20t (—2/2)Piysui(z/2) =
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VUL (—2/2)PLPiysvi(2/2) = ﬁ[ﬂw;(—z/mmmwg(z/m]:
Vgt (—2/2)565(2/2) = V2(ih(—2/2)85R(2/2) — ¢l (—2/2)65.(2/2))
(3.52)

e la nuova espressione per la trasformata di Fourier del caso longitudinal-
mente polarizzato, in analogia alla (3.22), diventa

3 [ e 2 2 e (a2)

I+ 2k/ + 2k
_2\/—/d/€ dk/+ @(k/-i-) dk™d J‘@(/{?+)

167m3k+
X Z 5@/{ 2zpt — k1 — k’ﬂbg(w’)bq(w)ul(ls', W) ysug (k)
o’
+0(225 — kY + K ) dy (w )by (w)vl (K, i1 )ysus (k, )
+6(22p" + kT — KO)b] (w)dl (w)ul (K, 1 )ysv (s 1)
+0(22p" — kT — K )dy(w)db (w)ol, (', 1 )ysvy (k, 1)}

(3.53)

Ripetendo ora tutti i passi percorsi nel calcolo della (3.37) si trova la rappre-

sentazione overlap del contributo dello stato di Fock a N particelle alla GPD

di quark polarizzato longitudinalmente di sapore ¢ nella regione £ < = < 1
2-N

g = (Veme) (Vi) X e,

p=p"Jj
x [ldalldhulno(z - ) U5 () 0 p(F) (354)

dove gli argomenti delle LCWEFs sono dati dalle relazioni (3.29) e (3.30).
L’unica differenza tra l'eq. (3.54) e 'eq. (3.37) ¢ la funzione segno dell’elicita
del quark attivo.

Per quanto riguarda la regione —1 < z < —¢ si ha

HIY Y = (V1= N1+ PN 303 sign(uy)ds,g

B=p"J
X / (7] (@2 O (7 + 2,) WY (7)) U 4(F).  (3.55)

In contrasto con il caso non polarizzato, qui non si ha il segno meno a fattore,
questo infatti viene “mangiato” dalla funzione sign(y;) che si riferisce all’elici-
ta dell’antiquark. Nella regione centrale I’overlap non-diagonale HK,JAVH_)N b
risulta identico a quello di equazione (3.49) eccetto per il fattore sign(p;),

che compare anche in questa regione.
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Capitolo 4

TRASVERSITA NEL MODELLO
A QUARK COSTITUENTI

4.1 GPDs trasversalmente polarizzate

Il caso delle GPDs di quark trasversalmente polarizzate ( [35], [29]) risulta
differente da quello delle GPDs longitudinalmente polarizzate [33] a causa
del diverso “proiettore” all’interno della loro definizione:

1 27 o - n — i [~
5 Z / ?emjﬁz <p/7 XW;(—Z/Q)UJF 75wq<z/2)|pa )\> |z+:07Z¢:0

E-&-iaﬁAaﬁﬂ N E—HaﬁAa’Yﬁ

L +i "
= QP?U’(plv )‘,) [H%U V5 + HC(ZJ“ M2 E% IM
. tiaBs
+E T u(p.y),  (41)

dove ¢ = 1,2 é un indice trasverso.
L’operatore bilocale ¥ic'T 51 puo essere riscritto in termini delle matrici

in modo tale da rendere piu agevole il calcolo della trasformata di Fourier
della definizione (4.1)

Ve(—2/2)io T su(2/2) = U5 (=2/2 0 ys05(2/2)
:wg*(—z/zw%é[vi,f]%w;(z/m = Pg (=2/2)7 v 05 (2/2)
= V2ul(=2/2)P  sy(2/2) = V2[Pg(=2/2)] "y [Py (2/2)]
= V201(=2/2)y"s05(2/2).  (4.2)
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Dall’articolo di Diehl [35] ¢ noto che la definizione (4.1) possa essere riscritta
in termini di combinazioni lineari di determinati elementi di matrice

Aswn = [ Gt N O o Voo (1)
per certe elicitd partoniche p e g/, dove il simbolo O, indica gli operatori
O_y = —i/4y(—2/2)0" (1 +75)¥5(2/2),

Or = i/40E(—2/2)0 (1 — 15)UE(3/2). (4.4)

Calcoli espliciti, svolti lavorando nel sistema di riferimento in cui p'e p’ giac-
ciono nel piano z-z, forniscono le espressioni degli elementi di matrice Ay, 5,
in termini delle GPDs con “flip” dell’elicita:

Vo=t Ed + EX.
App o = € Wi (HT+(1_§>2>7
T o F B
A = g (M),
to—1 ~ £? £ -
Ay = \/1—52(H%+4M2H%— bt 1_€2E%),

oty — 1 ~

dove con ty si ¢ indicato il valore minimo di ¢ a fissato £ (ved. eq. (3.17) e
(3.16)) e con € il sign(D'), con D' componente z di

D* = PTA* — At P2, (4.6)
Invertendo le equazioni (4.5) é possibile ottenere quattro relazioni che legano

le quattro GPDs trasversalmente polarizzate alle combinazioni di elementi di
matrice Ay au

. 2M 1 1
e (e (R
8M2 A*++77
(to —)(1 - &)v1-¢&
. 2M 1 1
Er = e\/u)——t((l—ﬁ)A++’+ (eI )
8M2¢
- na-giog
¢ 1 2M¢& _
Hp = \/1—752(A++’__+A_+’+_>+e\/to——t(1—§2) (A—+,—— A++,+—>7

HY = \/1_7_;%; 5 <A_+7+_>. (4.7)
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Dall’invarianza per parita si ha la seguente relazione per gli elementi di
matrice

A—X—M,—A—u — (_1))\/_u/_)\+uA>\,H,’>\W (4.8)

sfruttando la quale é possibile scrivere

1
App - +A 4= §[A++,77 +A L +A AL L] (49)

Utilizzando le definizioni (4.3, 4.4) per esplicitare il calcolo si ottiene

1 rdz= .-
A++,** + A*+,+* = 5 ﬁelzp-‘rz |:<p/7 +|O+,*‘p7 _> + <p/7 _|O+7*|p7 +> +
=104 ) + (7, 4O 1p, )]
1 rdz= v -
— 5 [ e W IO+ O-llp =) + (05 + O lp, +)]
dz™ .- (- 1 -
— o iTpT 2 / 7 +1 o (A +1
e[+ = S0 asulp, =) + 0 —| - o aseln, 4]
(4.10)
Da cui, sapendo che
be(—z/2)ic T r505(2/2) = V205 (—2/2)7 " 1s65(2/2), (4.11)
si ha ) ]
Z —
1#}50“%% = Tﬂcb?vlvscb; (4.12)

A questo punto sostituendo le definizioni degli operatori di campo di quark
si ottiene

>/ C (2 2) (- (e 2)

dz~ wwptzT e — 1 c(=
= ¥ [ 5T E2G 5 0065 (2)
1 dk"Td?k’' | dkTd*k

. /4
V2 16wk O*™) 1673k

x> Ger {022t — kY — KB (W) by (w)ul (K, 1)y s (K, ) |-

/. /
Hp756,C

ok

(4.13)

Quindi gli elementi di matrice che compaiono in eq.(4.10) assumono la seguente
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espressione

1 dk'Td*k’ | dktd?k
<p’,/\’|\/§/W®(k;’+) W@(H)ZZ%'

! /
IR

x6(22p" — kT — K)bL o (Kb (R)ul (K, 1)y ysus (K, 1) Ip, A). (4.14)

Per esplicitare i prodotti degli spinori si procede riscrivendo le definizioni di
uy(k,£1/2) [37] in termini dei vettori di spin x4+ e poi, dopo aver svolto
i prodotti, traducendo i risultati in termini delle matrici v che compaiono
nella definizione degli operatori O [ved. eq.(4.4), pag. 63]:

1
uy (k,1/2) = \/k+ /2 ? :\/k+/\/§{ ( ii ) } (4.15)
0
0
ug (k,—1/2) = \Vk+/V/2 - k+/\/§{ ( _X;_ ) } (4.16)
—1
w=(o) = w=(9) (117
b (K, 4127 wy (k, =1/2) = —V2RFEH X p0ux 1),
b (K, =1/2)7 wy (b, +1/2) = V2RHEH XY 0uxa 0],
b (K, +1/2)7" y5uy (k, =1/2) = V2R X p0ux 12,
ul (', =1/2)y ysuy (k, +1/2) = V2R kXY pouxije). (4.18)

Quindi prendendo in considerazione la combinazione operatoriale di eq.(4.10)
si trova

ub (K 1 = +1/2) [y yslu (b, = =1/2) = V2R Xy 000 X172,
ub (K1 = —1/2) [y ys)u (b, = +1/2) = v Qk'JrkJrXL':—l/Q%Xu:l/m

(4.19)
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dove XL/:]_/QO—IX}L=71/2 = XL/:_l/QUquzl/Q =1

Ora sostituendo questo risultato nell’equazione (4.14), quest’ultima diviene

%Y / dk’*ko’ dkTd*k,

16 3kl+ ) 167T3k'+ @(k+) Z(Scc’(s(ij—i_ - k]“r — k’;+)

XV k/+k+{b = 1/2c<k/>bsu:—1/2c<k) + bLu:1/2c(kl>bsu1/2c(k>}’pv A).
(4.20)

Il passo successivo consiste nell’effettuare una trasformazione di base per gli
operatori di creazione e distruzione “b” e “b”

bejac(k) = [as1c(k) + asic(K)],

b871/20(k) = [asTc(k) - aslc(k)]' (4'21)

Sl =Sl

Quindi

bll/?c(k/)bs_l/QC(k> + bi—l/Zc(k/)b51/20(k) = ach(k/)asTC(k) - a’ilc(k,)aSlC(k)

= > sign(pt)alﬂtc(kf')aswc(k’),

ut

(4.22)

dove ' = £1/2 sono le componenti di spin del quark lungo I’asse z. Notiamo
che 'operatore ottenuto corrisponde alla differenza degli operatori densita a
un corpo nello spazio dei momenti con proiezione parallela e antiparallela
dello spin del quark rispetto alla direzione trasversa £. A questo punto pren-
dendo la combinazione degli elementi di matrice che compare in eq. (4.10)
ed effettuendo la seguente trasformazione di base sugli stati di nucleone

pt) = j§[|m>+|p,i>1,
p,—) = jinp,w—mm, (4.23)

si ottiene una nuova espressione per l'eq. (4.10)

dz" ot [, /
5 [ S5 [ 104+ O-llp ) = (L [Os,- + O ]Ip. )
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1 rd
= Z zxp z 2<p THO+ +O ”p>T>7

2] on
(4.24)
dove si é sfruttata la relazione
dz™ .+ -
[ S L 1[04+ O ]lp ) =
dz~ v
— ] 5 @10+~ +O_4]lp, 1) (4.25)

Considerando ora una nuova combinazione degli elementi di matrice A si
ottiene

1
Aip o —A - = §[A++,+— —A A AL ]
1 rdz iTptz— |/ /
— 5 [ e WO + O-llp+) = (04 + O lp, ).

(4.26)

Ci si puo facilmente accorgere che 'operatore in parentesi quadre é esatta-
mente lo stesso che si era ottenuto in equazione (4.10), quindi calcolandolo
esplicitamente in termini di operatori di creazione e distruzione e cambian-
do la base si ricava nuovamente il risultato (4.22). Cambiando ora la base
degli stati di nucleone attraverso le relazioni in equazione (4.23), I’espressione
(4.26) diventa

dz~

5 [ S [ Ho+,,+a,+up,l>+<pw 04 +O_.]Ip,T)

dz~

= [ 2 1104+ Ol 1),

(4.27)

dove si é usato il fatto che

0, LO1 - +0_lp, 1) = @, 1[04 - +O_4]lp, 1) (4.28)

Perseguendo lo scopo di rendere chiaro e semplice il formalismo risulta
conveniente definire

Tl = WV [ e 0 0 N, (420)
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che analogamente all’eq. (3.55) del caso polarizzato, risulta essere dato da
Ty, = ST, (4.30)
N

con
2

(N*)N) -N . t
TY Z Z Slgn(ug‘)(ssjq

= () (Ve 2
x / (AT) N [d2k N6 (E — ) Wit (F) U 4(F),  (4.31)

ovvero ’equivalente, nello spazio di spin trasverso, dell’espressione 7%3, ) che
si aveva per il caso polarizzato longitudinalmente. Inoltre, dalle equazioni
(4.7), (4.9), (4.10), (4.24), (4.26) e (4.27) si trova l'espressione generale per
la GPD H}

L 2ME
VI=& T el —i(1—¢€2)

£? § -
T, = ./1_52[H%—1_€2E%+1_52E%,

Vio—1
oM

in perfetta analogia al caso di polarizzazione longitudinale.

HY = T?_, (4.32)

con

TI_ = ¢ [—¢E% + B4 (4.33)

Le altre combinazioni di elementi di matrice A che vanno prese in con-
siderazione per poter ricostruire il sistema delle GPDs trasversalmente pola-
rizzate sono

1
Apr i +A L = §[A++,+— —A A A ]
1 pdz™ .-
= 5[5  [WHIOs — O llp )

Hp, 1[0+ — O-]Ip. )]
dz~ P 7 -
_ TPz / ° +1
/ o € [(p,+‘4¢0 @D‘Pa +>

+<p/7 _|i1;0+1¢|l)7 _>:|
(4.34)
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1
Ay —A 44 = §[A++,—— +A A AL L
1 dzi TPz
= 5[5 W o - 0 )
(¢, =04~ = O-]Ip.+)
dz’ b — 7 -
— o iTpTz / - +1 .
5 € {<p,+|4¢0 Ylp, =)

_<p/a _|i¢0+1¢|p7 +>} :
(4.35)

Cambiando base per gli stati di nucleone grazie alle equazioni (4.23) si ottiene

1 pde v -
5 [ S [ 4O = O lp +) + = I[Os- = O- i ]lp, )
1 rdzm 4 -
=35 ﬁemﬁz 2[(p/,T [04,- — O ]lp, T)},
(4.36)
dove si é sfruttata la seguente relazione
dz= .+ -
/?ewwz W, L0+ =0_]Ip, 1)
dz= . -
- /ﬁemlﬁz P T0+- = O0_{Ip, 1). (4.37)
Analogamente
1 rds

LS 0, 101~ 0 lp )~ IO~ O ]

1 rdz™ 4 - /
=Ll L0, -~ 0],
(4.38)
dove questa volta
dz= .- /
a1 [[Os = Ol 1)
T
dz= .- /
T ﬁewwz 104~ = O0_4llp, 1)
(4.39)
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Percio come per i casi precedenti ¢ conveniente introdurre

T . dz~ ixpT 2T
5 = (P/»)\H/?@ 70— O Ip A, (4.40)

dove
0.~ O = o [(1=m) + (140 = 2doy. (441)

Quindi riutilizzando i risultati (4.18) I'analoga di equazione (4.20) in questo
caso risulta

dk'Td?’k’ | dktd? kl N
1673kt O™ ) 16wkt o) Z(SCC

x6(2Tp" — ki — K )\ KTk
{ B bzf‘/zl/?C<k/>b5N:—1/26(k)XL’:1/2090XM:—1/2

"’b;u:—1/2c(k,)bsu=1/2c(k) w=—1/20xXpu= 1/2} 1D, Ae)

T;];)\t = <p/’ >\:5| -

(4.42)

Effettuando nuovamente la trasformazione di base (4.21) si ottiene

b e (K Ybutj2c (k) = by (K Vb (k) = aly (K )asiolk) — af o (Ko (),
(4.43)
In questo caso, a differenza dell’operatore in eq. (4.22), l'operatore ¢ dato
dagli elementi non diagonali nello spazio di spin trasverso della matrice den-
sita a un corpo. Di conseguenza, 1’elemento di matrice di tale operatore tra
gli stati di nucleone descrive 'ampiezza di probabilita di avere flip di spin

trasverso del quark dallo stato iniziale allo stato finale.
Dalla (4.43) si ha

- k’+d2k’ dk*d?k |
q _ /
Bare = X / 167 3k’+ K) 16m3k+

x Zacc,a (225" — kf — kﬁ)«/k;*kj

c,c!

ek au1clk) = alyo(K)aurelk) . 1)

O(k™)

(4.44)
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Anche ora vale un’equazione simile alla (4.30)

T, Tf/ (V=) (4.45)

quindi la “overlap representation” di T:\IQ(/]\\Z_’N) ¢ data da

2

~ 2—N —-N
T;\’;(i\t’*N) — (,/1 - g) (\/1 + f) > Z‘Suf—u;Sign(ﬂz‘)‘s%q

B=p" J
x / (TN [d2F N O(F — 25) Wi () U2 5(7), (4.46)

e le espressioni di 77, e 7Y in termini di GPDs risultano

Vio—t

T, = 2H! + B — B

—++ € 2M [ + 5 T]?

- to—t ~ £2 £

T!, = \/1—52{H%+ e H} — 1_£2Eq + 1_€2Eq (4.47)

Grazie alle equazioni (4.7), (4.32), (4.33) e (4.47) ¢ semplice ricavare le
espressioni generali per tutte e quattro le GPDs trasversalmente polarizzate

oMe 1 oM
EL = T?
T R t(1—&2)

g
T++

e/lg—t1—¢2 "
AM? .
C(to—t)VI-E(1-¢2) (T3+ - TL)’

Bt = g (T €TL)
2
v (T )
R = (i
i = M e gy, (4.48)

(to —t)v/1 = &2
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4.2 Funzioni d’onda light-cone nel modello re-
lativistico a quark costituenti

I modelli relativistici a quark costituenti (CQM) sono modelli quantomecca-
nici con un numero fisso di costituenti e consistenti con la relativita, che si
fondano su due ipotesi fondamentali:

e la dominanza dei quark di valenza, cioé lo sviluppo di Fock per lo stato
di nucleone,

W) = \I’3q|qqq> + \1’3q9|qqqg> + \Ij3q(q§)’3q(qq)> + . (4.49)

é saturato dalla configurazione dei quark di valenza;

e i quark costituenti rappresentano in maniera efficace i gradi di liberta
del sistema.

Nei modelli a quark costituenti la relativita puo essere incorporata in modo
abbastanza naturale utilizzando il teorema di Bakamjian-Thomas ([38], [39])
per la costruzione dell’hamiltoniana di un sistema di particelle interagenti. In
questo approccio le funzioni d’onda del CQM possono essere calcolate risol-
vendo l'equazione agli autovalori della Hamiltoniana nella “instant form”[IF|,
nella quale la coordinata temporale ¢ 2° e I'istante iniziale fissato a t = to,
e venire legate alle autofunzioni in un’altra forma di dinamica relativistica
mediante un’opportuna trasformazione unitaria. Infatti le diverse forme di di-
namica relativistica differiscono per la diversa scelta dell’ipersuperficie su cui
specificare le condizioni iniziali del sistema e per la diversa classificazione dei
generatori del gruppo di Poincaré in operatori cinematici, indipendenti dalla
dinamica del sistema, e operatori Hamiltoniani, responsabili dell’evoluzione
del sistema.

In questa tesi viene presa in considerazione la connessione tra la dinamica
nella IF e quella nella “light-front form” [LF]|, dove la coordinata temporale
¢ costituita da 7 = 2 4+ 23 e viene fissata a t + 2° = 0.

La connessione delle LCWFs nel CQM in instant form e quelle nel CQM in
light-front form puo essere stabilita partendo dalle equazioni agli autovalori
nelle differenti rappresentazioni:

d [IF ] M|M7jcnuc>c = [MO + V”Mvjcaluc>c = M|M7jcvﬂc>c con MO =

®  \/k? +m? operatore libero di massa e V operatore interazione,

indipendente da P e invariante per rotazione (condizioni necessarie per
poter utilizzare il risultato di Bakamjian-Thomas);
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o [LF | M|M, js, pus)s = [Mo+ VI|M, js, pup)y = MM, js, pis)s-

Quindi
M=RIMR = My+RVR (4.50)

M, g, pig) s = RYM, Je, pre)e (4.51)

dove R = [T3_, Ryr(ky i, 7, m;) & una rotazione di Melosh generalizzata.
Di conseguenza la connessione tra la funzione d’onda di nucleone LF e
quella IF é

1/2
. Wi1wow .
Wy = (s I g)y = | S22 S (ORI 5,
1o

(4.52)
Una derivazione molto piu dettagliata ed esaustiva di questa connessione ¢
stata derivata da Boffi, Pasquini e Traini negli articoli ([40], [41]).

Il modello preso in considerazione in questa tesi € il “modello ipercentrale”
introdotto da Giannini, Santopinto, et al. nel 1995 [42] in versione non
relativistica e reso relativistico da Faccioli, Traini e Vento nel 1999 [43], la
cui hamiltoniana ¢ data da

3

H=SJk+m2— — {2+ L, 453
; 3 m’l \/m z ( )

con i 9
ry — I I o — 4T3
zZ = e l=—"—"———. 4.54
V2 VG 454

Questo modello dipendente da due parametri, 7 e k, a dispetto della sua sem-
plicita presenta numerosi pregi: ¢ infatti in grado di riprodurre in maniera
soddisfacente le caratteristiche principali dello spettro a bassa energia e allo
stesso tempo fornisce una buona descrizione delle proprieta elettromagnetiche
del nucleone, tra cui i fattori di forma. Per questo ¢ molto interessante esplo-
rare la connessione tra le GPDs e il modello a CQM nella regione cinematica
per x — 1, nella quale i gradi di liberta efficaci sono solo quelli legati ai quark
di valenza.Infatti le GPDs calcolate nella regione cinematica permessa sono
ottenute con un approccio covariante e esibiscono il corretto limite “forward”
riproducendo la distribuzione partonica con il supporto corretto e soddis-
facendo automaticamente le regole di somma per il numero di particelle e
il momento. Inoltre nel modello preso in considerazione la funzione d’onda
del nucleone é costruita come prodotto della parte spaziale in onda S e della
parte di spin e isospin, SU(6) simmetrica.
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La funzione d’onda light-cone nello spazio di spin trasverso risulta dunque
definita come

1/2
t W1
Wy = 16W3[1”] Ulki, ko ks) 3 D24 (Rarlhn) ) DAL (R k) )

J]1$2$3MO {ﬂf}

xDigfjg (RM(k3)>cI>§§V2m ({;ﬁ}{T}) (4.55)

e (ki ko, k3) parte spaziale, soluzione dell’Hamiltoniana IF nel modello
ipercentrale;

dove:

Difit(RM(kzl)> = (1/2, X'|Ry(x, k1, Mp)[1/2, ")
m—l—xMO—Z'&‘.(gka) t
1/2
[(m 4+ 2Mp)? + k2 ]1/2 11/2, ")
(4.56)

= (1/2,X]

rotazione di Melosh nello “spazio di spin trasverso”, dove gli stati di
spin sono autostati dell’operatore “o,™

1 1
/2. N = 75 ( 1 ) 11/2: DNpmee = 75 < ~1 ) ;
[ J
1 - -
‘I’fgfm - W[CI)%V (AL AL AN)DY (1,72, 73) +
+ 4&31\3\7()\%,)\?,A?)&)}_N(Tl,’rg,’rg)], (457)

rappresenta la funzione d’onda per la parte di spin-isospin, con

O = D0 (1/2,A5:1/2, \5]S12Ms,, ) (S12 My 1/2, A5[1/2, X'). (4.58)

Ms,

Specializzando le formule ottenute per 'ampiezza di scattering Ty, e
t>‘t

Tf\]; ), al modello relativistico a quark costituenti si ottengono i seguenti risul-
tati
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3 1 1 LA 500N o
T)(\J’)\t iﬁ 1671'3 Z/Hda:ﬁ(l—;xl) (5(&3-1’3)
3

J T (S ) 0 AL Dt )

xaw{ X0 (K k) Oy + SXN, (K B)[Br1 2 + 207,112}
(4.59)

con

Xs,lfft” = Y sign(\;)
MAsAs

{ ) Diﬂ( k))Difg(RM(/%;))Digig(R (k’))fbxw}

f1fi2fi3 NTN
{3 DI (R ) DY (R ) D2 (st )0,
Hip2p3

(4.60)

e dove i contributi di spin e isospin alle ampiezze di scattering nello spazio
di spin trasverso forniscono (ved. Appendice C per i dettagli riguardo alla
derivazione) le seguenti espressioni

Re (X%, (K. %)) = —Re (X% (¥.k))
= ﬁN_l(’%i)N‘l(%i)[(AlAﬁél-EQ)AP,}, (4.61)
Re (X0 F) = —Re (X210 ) = [TV N (k)

x3[ = (A1As + By - By — 4By . By) As
+2(A1 By, + Ao B13) B3,
+2(By,4Bs, + B1,.B2 ) B3,
+2(B12Bay + B1yBa)Bs.:), (4.62)

Re (X*, (K',k)) = Re (XOO (K, /2:))

= HN N7YE)[(AiAs + By - By)Bs,), (4.63)
Re (XM, (K, k)) = Re (X} (¥,F)) 1:[N—1(1%;)N—1(i@)



x3[(=A1Ay = By - By + 4By . B, ) By,
+2(A1Bsy, + AsB1 ) B3,
+2(B1 o Ba. + By . By ) As
+2(B1yBaz + Bi:Bay)Bs.). (4.64)
(4.65)

Nelle equazioni precedenti, N(/%), A; e B;, con i = 1,2, sono definiti come
nella Ref. [40] e li riportiamo qui per comodita

N(k) = [(m+&Mo)* + k]2, (4.66)
A = (m+ EM)(m+ 3 M) + &, iy + K i, (4.67)
Bi, = —(m+1; M')k‘w + (m+:1:ZMO)k:Zy, (4.68)
Biy = (m+#M)ki, — (m+ &Mk, (4.69)
B;. = k;x];ly - k;yi{i,azv (4.70)

mentre As e Bs sono dati da

As = (m+ @M (m+ E5Mo) + Ky Ky — kS s o, (4.
Bs, = (m+@4M)ks, — (m+ 2;3Mo)k, (4.72
(4.73

(

4.74

)
)
Bs, = —(m+ :E3M')k3 . — (m+ $3M0)k’;,),7$7 )
Bs, = —k’é’wk’g,y - kf&yk’g’x. )

Analogamente, le GPDs dispari per trasformazioni di elicita con flip della
polarizzazione trasversa del quark attivo sono ottenute da differenti elementi
di matrice dell’ampiezza T/‘\JQ 5, Che ha lespressione

T}m = ;)\/1% 16;3 - / ﬁd@é (1 _123:1%> §( — T3)
(Zku) S L) B ()

Xy {Xg?At(k’ k) 612+ gth(z%', B)[0ry1 /2 + 20751 /2]} :
(4.75)

con

51251 .
Koo = X stenlx)

A1A22A3
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{ )3 Diﬂ(

A1fi2fi3

{ )3 Diﬂ(

M1 2 43
(4.76)
Per la quale si trovano
Re (X1 (', F)) Re (5(00 (K, /%))
H N7 !k )[(A1A2 + B - B2>:|A37 (4.77)
3
Re (X1, (K, k) Re (X' (K, k)) = [] N"'(E))N (k)
=1
X%|:(3A1A2 — él : EQ)A
+2(A1 By, + AyBy ) Bs
+2(A1 By + A3 By, ) 3.y
+2(A1 By, + A2 By 2) 34, (4.78)
Re (f(g%r(k’, k:)) —Re (X?ro_(k’, l;))
3
H N7Y( '(ki)[(A1Az + By - Ba)Bs,|, (4.79)
Re (X, (K, k) ~Re (X} (K, k) = H N (k)
x3[(=A1Ay = By - By + 4By, By,) Bs,
2<Bl,xBQ,y + BZ,zBl,E/)BS,x
+2(A1Byy + AsBy ) As
+2(B1yBa: + B1:Bay)Bs.:|, (4.80)
dove
Ay = K (m+ysMo) — ks (m + ys Mp), (4.81)
Bso = —kj ksy — ki ksa, (4.82)
Bs, = (m+y,M, )(m +ysMo) — kS ksy + K ks, (4.83)
Bg’z = —(m + y3M6)k37y — (TTL + ngo)k?é,y. (484)
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4.2.1 Limite diagonale delle GPDs

In questo paragrafo viene riportato un interessante risultato ottenuto nel
calcolo del limite diagonale (“forward”, £,;t — 0 cioé p = p’) delle GPDs HY,
H% e HY grazie al quale si ritrovano le tre PDFs al leading twist (2.53) Infatti
osservando le espressioni per H?(x,0,0) e HZ(x,0,0)

Hq<x7 0, 0) = gtll(x) = Z Z 5T]’quign()\j)

AiTi j=1

X /[di’}g[dkL]g,é([E - xj)‘w/[\f] (mi,kh; )\i,Ti)

2

Y

3
HY(2,0,0) = Ki(x) = 33 4,,,sign(x)

)\ETZ‘ j=1

X /[d(ﬂg[dkj_]g(%ﬂ? — ZL'])‘QXJ/[\];] (l'i,kj_i; )\2,7})

2
)

(4.85)

si puo notare la loro completa analogia.

Questo risultato era atteso ed ¢ un’ulteriore conferma di quanto detto in
precedenza a proposito della differenza tra la distribuzione di elicita e trasver-
sita. Come noto la loro differenza nasce puramente per effetti relativistici,
che nel nostro modello sono contenuti nelle rotazioni di Melosh utilizzate
per la costruzione delle LCWFs nello spazio di spin trasverso. Quindi, nelle
formule in eq. (4.85), la differenza tra le due distribuzioni ¢ nascosta all'in-

terno dell’espressione per le funzioni d’onda light-cone w&ﬂ (:Ui,kh; Ais TZ'> e
L{} (xz" ki >\§7 Ti)-

Nell’ambito del limite “forward” le GPDs trasversalmente polarizzate pos-
seggono un’altra importante proprieta.

Applicando una trasformazione di inversione temporale all’equazione (4.1)
si ricavano [35] le seguenti relazioni

Hi(z,&t) = Hi(z, =& ),
Hi(z,&,t) = Hi(x, =&, 1),
Ef(x,§,t) = Ef(z, =, 1),
Ei(x,&,t) = —Ei(x, =&, 1). (4.86)

Da quest’ultime deduciamo che nel limite diagonale si ricava che la GPD E%
si annulla, mentre le altre GPDs sono diverse da zero. D’altra parte, dall’e-
spressione in eq. (4.48), notiamo che le GPD E7. e H nel limite diagonale si
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disaccoppiano dall’ampiezza di scattering, in quanto moltiplicate per un fat-
tore cinematico che si annulla per p = p’. Di conseguenza solo H7. puo essere
misurata nel limite diagonale, dove si riduce alla distribuzione di trasversita,
che é attualmente al centro di numerose attivita sperimentali a HERMES,
COMPASS e RHIC (ved. [27] e referenze in esso contenute).
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Capitolo 5

CONCLUSIONI

La ricostruzione dello spin del protone in termini dei momenti angolari dei
suoi cosituenti elementari é tuttora un problema che non ha ricevuto soluzioni
adeguate e soddisfacenti nell’ambito della Cromodinamica Quantistica, cioé
la teoria che descrive il settore delle interazioni forti nel Modello Standard.
Poiché il protone ¢ la particella pitt comune nell’universo, capire la dinamica
della sua struttura partonica di spin € un obbiettivo di importante rilevanza.

In questa tesi si ¢ affrontato il problema di costruire un modello per la
distribuzione partonica di spin trasverso, che contribuisce in modo determi-
nante alla struttura partonica di cui sopra, ma che é tuttora inesplorata. Una
determinazione sperimentale delle sue peculiari caratteristiche rappresenta
un test formidabile della Cromodinamica Quantistica nel cosiddetto regime
non perturbativo, dove la simmetria chirale ¢ spontaneamente rotta. La dis-
tribuzione di spin trasverso, o trasversitd, é stata introdotta per la prima
volta da Ralston e Soper nel 1979 ed ¢ oggetto di studio in numerosi centri di
ricerca sia dal punto di vista teorico che sperimentale (DESY, CERN, JLAB,

Lo strumento di calcolo utilizzato in questa tesi é rappresentato dalle dis-
tribuzioni partoniche generalizzate (GPD), che si sono affermate di recente
come l'approccio piul potente e versatile al problema del legame tra spin degli
adroni e polarizzazione dei suoi costituenti elementari. Le GPD inglobano le
distribuzioni partoniche e ne generalizzano la definizione ad un regime cine-
matico pitt ampio; ma al tempo stesso contengono anche 'informazione for-
nita dai fattori di forma degli adroni. Esse rappresentano cioé un formalismo
potente per descrivere consistentemente processi esclusivi e (semi-)inclusivi.
Dalla definizione si evinced che le GPD, al contrario delle distribuzioni par-
toniche, sono ampiezze di probabilita che descrivono interferenze tra canali
diversi. Pertanto esse non hanno una naturale interpretazione probabilistica.

In questo lavoro si € studiato la rappresentazione overlap delle GPD,
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che rappresenta un metodo efficace per ottenere tale 'interpretazione pro-
babilistica. In particolare partendo dai risultati esistenti in letteratura per
le GPD non polarizzate e polarizzate longitudinalmente, si é costruita la
rappresentazione overlap per le GPD trasversalmente polarizzate. In tale
rappresentazione le GPD sono direttamente connesse alla matrice densita a
un corpo nello spazio dei momenti, e quindi si sono ottenute come sovrappo-
sizione di funzioni d’onda relativistiche sul cono di luce (LCWF). In questo
lavoro, utilizzando tale rappresentazione overlap, si ¢ messo in evidenza come
le diverse GPD (non polarizzate, polarizzate longitudinalmente e trasver-
salmente) siano ottenute da diverse proiezioni nello spazio di spin della ma-
trice densita.

Inoltre questo studio fornisce tutte le basi per una futura analisi numerica
dettagliata e rappresenta un calcolo originale in letteratura, che ha perme-
sso di ottenere interessanti riscontri riguardo la trasversita. Infatti, come
ampiamente descritto all’interno del capitolo 2, le GPD nel cosiddetto li-
mite diagonale forniscono esattamente le distribuzioni partoniche al leading
twist. In particolare la GPD trasversa Hp nel suo limite diagonale fornisce
proprio la trasversita, in una maniera simile a quella per cui la GPD longitu-
dinalmente polarizzata, H, ricade nella distribuzione di elicita. E stato cosi
possibile mettere in luce gli effetti relativistici che spiegano la diversita tra
trasversita e chiralita.

Nel nostro calcolo per la costruzione delle funzione d’onda sul cone luce
abbiamo utilizzato un modello relativistico a quark costituenti. In tale mo-
dello é possibile studiare le GPD nella regione cinematica, in cui i gradi di
liberta efficaci sono quelli legati ai quark di valenza. Gli effetti relativisti-
ci contenuti nella costruzione della LCWF sono essenziali per ottenere un
approccio covariante, capace di soddisfare le condizioni del corretto supporto
nel limite diagonale delle distribuzioni partoniche, e le regole di somma per
il numero di particelle e per il momento.
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APPENDICE A

Generalizzazione di SU(2)

Il gruppo SU(2) ha tre generatori indipendenti, le matrici di Pauli ¢* i=1-3.
L’invarianza per trasformazioni di gauge locali di SU(2) implica esistenza
di tre campi vettoriali AL . Il campo di Dirac diventa un doppietto di campi

di Dirac
o =( 0 )

e la trasformazione di gauge locale diviene

o (2)( % _
(z) —e (5 >¢($) = V(z)(z). (2)
I generatori appartengono ad un’algebra non commutativa, infatti

[0, 07] = %eijkak, (3)

di conseguenza generano una teoria di gauge non abeliana. Analogamente al
caso della QED si introduce il comparatore

Uly,z) = W), U(z,x) =1, (4)
il quale per la QCD si trasforma attraverso la seguente relazione
Uy, ) = V(y)U(y, )V (). ()

Per spostamenti infinitesimi
i

Ulx+en,z) =1+ igen“AZ(x)% + O(é?). (6)



Definiamo la derivata covariante

n'D,(z) = ll_r% - w(x +en) —U(x + en,x)Y(x }
= ll—r%i @/J(m) +ent0, ) (x) — (1 + ge% : Aﬁ%")gﬁ(m)]
ir "
— liy e (9(a) g - Ab(@))].
= Du(a) = 9u() —igg - A(a) (7)

La trasformazione dei campi di gauge si ottiene partendo dalle proprieta

del comparatore

Uz +en,x) — V(z +en)U(x + en, 2)V(2)
o~ (V(x) + en“@MV>U(x + en, )V (x)

(V(x) + 671“8#‘/) (1 + ige% : /Ln“) Viz) ~ 1+ igeV% : [fun“VT
+ent(9,V )V

J o o g 7 i(.7
5 A, = (1 +i— a(:v)>2 Au<1 i5 a(x)) = <22 auog<:lj')>
J g g ., .0 16 _ _
X (1 — iy oz(x)) =5 A+ [ alx), 5" Au] 72 0,0(x)



La trasformazione per la derivata covariante ¢ data da

+g%-AM%-6Z(1') ++g E : &(ar%g-ffu} —Z% @u@(w>}¢(f>
= {o+iS a0, -] A+ 0T 4,7 a0 bt
— {(1“%.(52@))8#— <1+ig-0—5($) Zgg-f‘fu}w(x)
_ <1+i0-62(x))(0u @gg-ffu)w(x)
— VDu(x). (10)

Questa trasformazione é analoga a quella per il campo di Dirac; il termine
cinetico risulta quindi essere

(@)in" Dyip(w), (11)

con D, che ingloba l'interazione attraverso ’accoppiamento minimale de-

[19ps)]

scritto dalla costante d’accoppiamento “g”.



APPENDICE B

Contributo dominante in eTe™ inclusivo

Partendo dalla definizione di tensore adronico abbiamo

W= /(Qi)fz);g(?ﬂ)%(q—Px)<0|J“(0>|PX><Px|J”(O)|O>

= [ [ ORGPl 0)1)

dPX i P
= [t [ oy OO 1) (P17 0)1)

P Lo oA
= [ [y O 0 P (P (0))

= [ [ LR 0 OIP PO

_ / d* e 1(0]J(€)J7(0)]0) =
Poiché

[ a0 (0)()l0)

d*P
= [ a'e | Gaympye e O PPl ©)l0),

/ (27?;)5139( (2m)*d(q + Px) (0] (0)|Px)(Px]J*(£)[0), (12)




questo implica ¢° = v = —P9 che ¢ ovviamente impossibile; quindi
questo contributo deve essere uguale a zero e puo essere sommato a quello

precedente per ottenere
W . = [dee<a(0][1(€), 7 (0)] 0}
Nel limite di Bjorken (che implica ¥ — 00), sapendo che per |g - &| — oo

il termine €7 oscilla fortemente e i conrtibuti all’integrale si cancellano,
abbiamo

q-& = qoﬁo—(ff:Véo—%f\ﬂiﬁo—r\/ﬂi—q?

2

v(& —r) —rMaxp < cost.

che implica

cost. cost.

€ — 7| < e r<—, (13)
1% B
cioé ;
cost.
¢ < + 7 (14)
Infine, poiché r2 = ||
2 cost. cost. - cost.
() < = +2Tr 2 <P+ =, (15)
v v vrp
e quindi
2 - cost.
(&) - 1P =¢ <——0. (16)
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APPENDICE C

Contributo di spin e isospin alle ampiezze di
scattering nello spazio trasverso

In questa appendice si illustrano in un certo dettaglio i passaggi relativi al
calcolo delle componenti di spin e isospin che compaiono nelle ampiezze di
scattering Tq; A € Tq; », el modello relativistico a quark costituenti.

Contributo di isospin

Esplicitando la somma sulle variabili di isospin in equazione (4.58) si ottiene

S T (7)o, = Y Y Y 1/2,5 12 Tt )

i T1 T2 T3 Ti12 7'12

><<1/2:7'13 1/2,72\T12;T12><T1/2,7{23 1/27'3|1/2§7'N><T12:7-12; 1/277'3|1/2;7'N>573,rq

= > > (T2, m121/2,73]1/2, 75 ) (T2, T12; 1/2, 73|1/2; TN )y 1,

T3 T12

= Or0{ Z Oryirg (0,0 1/2, 75]1/2; 7o) |7}

+5T121{25737qzy (1,712 1/2,7]1/2; 7v) |}

T12

Dal momento che

<07 07 1/27 7—3’1/27 TN> = 57’37TN (18)

(17)



(1,712;1/2,13]1/2; 77) = 5737%(_1) [3 —627N] 1/2 ) 5T3’7% [3 +627.N] 1/27
(19)
si ha
ZX;équl,ﬁz;1/2,¢3|1/2;TN>|2 —
-
— 5747%5“, , [3 —6271\/ +oa, 7%57%% {3 —|—627N]
RRERE {3 _62TN T O30y -4 [3 +62TN}

=0, 1{0,,1(1/3)+ 5, _

~— =

=06, 1 {(1/3)3, 1+ (2/3)5, 1} + 0., 1{(2/3)6, 1+ (1/3)5, 1}
(20)
Quindi, se il bersaglio é un protone
0715,007, 1 + 01151 (1/3)[0,, 1 420, 1], (21)
in caso, invece, sia un neutrone
5T12,05Tq,7% +01,,1(1/3) [2(5%% + (5%7%]. (22)
Dalla somma sulle variabili di isospin si deduce
Tis = S = Tjp = St = { . (23)

Contributo di spin

. . . . .. . .. S12S
In questa sezione riportiamo il calcolo esplicito dei coefficienti X ,\'11 '
t

I1 calcolo di X§?, corrisponde alla seguente espressione
t

X, = % sim(h)

A1A2A3
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o 3 D (i) D2 () D3 (R0 %, . )

R1f2 (43

X Z D,l\{fjl( k ))Diéﬂ (R (k )) Diﬁg (RM(/;?)))‘i)gN(Ml,Mz,M:s)
K123
(24)
e Relazioni utili:

1 .
(1/2, 13 1/2, 1210 0)(0, 0; 1/2, u3|1/2; Ny) = 5#3/\Nﬁ<1/2a/~L2|20-y|1/2nul>

(25)
Infatti

—_

| oy = TvE Per 2=
2t 0) = {0

H1=75
1 0 1 1 1 1
; ~~~ -
ult/Zm) = \/§<—10><1> 2(—1>’
H1=—

o 2 (0 1)(4) ()

) _1 er —
(1/2, polioy|1/2, 1) = { per 2 -

N | =

-

S

1/21 B m+ My +id - (5 x k)
DVI(RulB) = (/2 Al e e )

= (2 AL RI20, @)
1/2 -\ m+ &My —id - (2 x k)
D3 ()| = 2R R
= (/2 plRa B2, @)

Utilizzando le relazioni appena viste I'equazione (24) diviene

IYYYY X 172, i R (B 112,012, A Bl ()l 12, )|

p1 o p2 p1 g2 A1

x| D2{1/2, ol Rar (k5)11/2, Ao (1/2, Ao Rhy (o) |1/2, o)

A2

(12, ] = |12, fia) (12, palin |12, )|
xS sign(Ag)(1/2, Nb| Rar (k5)[1/2, Aa)(1/2, Ag| Rh, (s) [ 1/2, My ) (31)

A3
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S (172, i Ras (B])11/2, A)(1/2, M| RY, (R)[1/2, 1)
A1

= <1/27:?1|RM(]%~1)R}[\/[(]~€1)’1/27:u1>
= N7HRON T (B)(1/2, fin| Ay + 06 - By[1/2, ) (32)

Dim.:

(1/2, Alfﬂw(%) Rl (k)[1/2,) i
= NTURINTHR)(1/2, X ][m + 3/ My — i6' - (2 x K]
[m—i—xMo +id - (2 x k1 )|[1/2,\)
= NN (@WQMWHﬁMMmem
(m + &' My)a - (2 ><~kL) —i(m+2My)a - (2 xK/|)
+6 - (2 x K )7 - (2 x k1)[1/2,0) )
= NTUKINTHR)(1/2, N|(m + &' Mo)(m + M)
+i(m + &' My)a - (2 x k1) —i(m + EMy)d - (2 x K
+(2xK)) - (2 xky)+id[(2 x K|) x (2 xk)]|1/2,\)
= (1/2,N|Ras (k) Ry (Rr)[1/2, A)
= N YE)YNYk)(1/2,N|A+id - B|1/2,\),

con
A= (m+ 2/ My)(m + xMy) + ff;]%y + kL ks,

B, =—(m+ x']\%)l;y + (m + x]\;_fo)l%;,
By, = (m + 2’ M)k, + (m + x M)k,
B, = k.,k, — kk,.
Sfruttando la relazione (32) appena dimostrata 1’equazione (31) puo
essere riscritta nel seguente modo

; > sign(As)(1/2, AR Ras (k5)[1/2, As)(1/2, Aa| Rl (ks)[1/2, Ay)

) N“HEON ()N~ (k)N (k)

x ZZZZﬂ/Q?ﬂl’Al +i5'§l’1/2>ﬂl>

g1 p2 g1 M2
) (112, ] — 0y [1/2, o) (1/2, iz Az + 6 - Bal1/2, pta)
X<1/2,p2|i0'y|1/2,/l1>, (38)

90



e dal momento che vale questa proprieta
(1/2, | Ay + i - §1|1/27M1> = (1/2, Ay +i5" - §1|1/27/~71>7 (39)
si ha

—Zs1gn A3)(1/2, A%IRM(kr’)H/? As)(1/2, )\3|RJr (/f3)|1/2 )
A3

XN EDN T (k)N (k) N (k)

S OSTSTS1/2, | Ay + 06 Bi1/2, )

p1r o p2 p1o g2
X(1/2, | = ioy[1/2, [2)(1/2, [iz| A2 4 id - Ba|1/2, ia)
X (12, polioy|1/2, )

= 7251gn A3)(1/2, N | Rar(K3)1/2, As) (1/2, As| RY, (s)|1/2, Ax)
XN YN (k)N (Ry) N (k)
xTr{(Ay +i" - Bi)oy(A; +i6 - Ba)oy }. (40)

A questo punto ricordando le proprieta della “traccia” e delle matrici
o:

Tr{(/h+i6*§1)ay(A2+i5§2)ay} Tr{(AQ—HUBQ)ay (A +i0” B1 }
1

(41)
0,0y = 050y = —0y04, (42)
0,0y = —0,0,=—1, (43)
oioy, = 0,0, = —0,0, (44)
si ha
Tr{(A; + i5 - Ba)oy(Ay +i" - Bi)o, |
= Tr{(Ay +i6 - By)(A1 —i6 - B1)} = 2[A1 Ay + By - Byl.
(45)

L’equazione (40) diventa

NTYEDN T (k)N (RN (k) Y sign(As)(1/2, Ny | Rar(k5)|1/2, As)

x(1/2, As|RY; (k3)|1/2, An)[A1As + B - By).
(46)

e Calcolo di “S,, sign(As)(1/2, N | Rar(E5)[1/2, As) (1/2, As| R, (3)[1/2, \y,)™
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1)

1 1
)\iN — )\N — +*, T++ — —T__ :> T++ — §[T++ —T__

2
(47)

[E—

~

—1(7s —1/(7. R
NZUINTED 5 {1 p2,1/24m -+ ity — i3 - (5 %K) 11/2,0)
A3

x(1/2, Ag|m + EsMy +id - (2 x ky 3)|1/2,1/2)sign(\s)
—(1/2,=1/2|m + @M — id - (2 x K 5)[1/2, Xs)
X (1/2, Xs|m + @My + i - (2 x ki 5)[1/2,-1/2)sign(Ns) },  (48)

utilizzando il risultato in eq.(33), si ha

N (k)N (ks)
2 ~

1/2,1/2]i7 - (2 x k1 5)[1/2,1/2)

m+ #3Mo)(1/2,1/2| — id - (2 x K 5)[1/2,1/2)

1/2,1/2]6 - (2 x K| 5)[1/2,1/2)(1/2,1/2|5 - (2 x k1 3)[1/2,1/2)

1/2,1/2| - (2 x k' 5)|1/2, —1/2)

1/2,-1/2|6 - (2 x k1 5)[1/2,1/2)

m + &5 My)(m + #3Mo) + (m + &4 M)

1/2,-1/2iG - (2 x ky 3)[1/2, —1/2)

m -+ Z3Mo)(1/2,—1/2| —i5 - (2 x K| 5)[1/2,—1/2)

1/2,-1/2|G - (¢ x k| 3)|1/2, —1/2)

1/2,-1/2|G - (2 x k. 5)[1/2,—1/2)

1/2,-1/2|G - (2 x k| 3)|1/2,1/2)

1/2,1/206 - (2 x k1 3)[1/2,-1/2)}. (49)

{(m + #MG) (m + &3 Mo) + (m + & M)

+ + X

X 4+ + X + X

P N e N e e e e e e

X

Siccome
(1/2,1/2]iG - (2 x K| 5)|1/2,1/2) = —ik}(1/2,1/2|0,[1/2,1/2)
= —ik]
(1/2,—1/2i5 - (2 x K 5)[1/2,-1/2) = ..=ik]
(1/2,1/2]i5 - (2 x K 9)[1/2,=1/2) = ik, (1/2,1/20,[1/2,-1/2)
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(1/2,-1/2]ig - (2 x K| 3)[1/2,1/2) = .=k

e
(1/2,1/2]7 - (2 x K 3)[1/2,1/2) = —k,
(1/2,-1/2(5 - (2 x K\ 5)[1/2,-1/2) = Kk,
(1/2,1/206 - (2 x K/ 4)|1/2,-1/2) = ik,
(1/2,-1/27 - (2 x K )[1/2,1/2) = —ik, (50)
I'equazione (49) assume la forma
N (k)N (k - S, -
( 3)2 ( 3>{2(m+9§§M6)(m+9§3Mg) —Zk’y,g(m—i—féMé)
ikl 5 (m + B3 M) + ky 3kl 5 — ko skl 5 + ik, 5(m + 25 M)
_il%;,g(m + f:sMo) + ffy,?)%,g — %,3727;,3}7
(51)
ovvero, effettuando le opportune semplificazioni
N EO N (ks) [(m + @MY (m 4 T3 M) + ky skl 5 — ];7%3]%;73} .
(52)
Quindi il risultato finale per il contributo di “spin” e “isospin” nel
caso Sip = S}, =0, T1o = T}, = 0 risulta:
0ryot TINT (RN (ks) | (m + M) (m + 5 Mo)
thy skl g — ke akl, 5] [A1 A2 + By - By (53)
2)
, 1 1
/\N = +—= )\N = —57 T+_ = T_+ = T+_ = §[T+_+T_+]
(54)

N-YE)N-L(k . .
BSINT0S) 5 {1 2,12+ 4085 — i3 - (5 R g)[1/2. )
A3

X (1/2, As|m + EsMy + i - (2 x k1 3)|1/2, —1/2)sign(As)
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+(1/2,—1/2m + 5 My — iG - (2 x K 5)[1/2, As)
X (1/2, Xg|m + @sMo + i - (2 x ki )[1/2,1/2)sign(Xs) }

N_l(’%%N_l(’%?’){( + N (1/2,1/2]i6 - (2 x k1 5)[1/2,-1/2)

+(m + 33Mp)(1/2,1/2[i5 - (2 x K| 5)[1/2, —1/2)

—(1/2,1/2[i7 - (2 x K 3)[1/2,1/2)(1/2,1/2[i - (2 x k. 5)|1/2,1/2)
<1/2,1/2|i5 (2 x K 9)[1/2,-1/2)(1/2,-1/2]id ( x ki 3)[1/2,-1/2)
—(m+ #M)(1/2,—1/2]iG - (2 x k1 3)|1/2,1/2)
—(
{
(

+

m+ &3 Mp)(1/2,—1/2[iG - (¢ x K 5)[1/2,1/2)
—(1/2,—1/2id - (2 x k1 3)[1/2,1/2)(1/2,1/2ic - (¢ x k. 5)[1/2,1/2)
+(1/2,—1/2[iG - (2 x K 5)[1/2, —1/2)(1/2, —1/2]i& - (2 x ki 3)[1/2, 1/2)}

- (ks) ( 3){(m+ng6)(—km’3)+(m—|—a73M')(—k;’3) — iky 3z 3

2
_“27;,3];7%3 — (m+ %M/)(]%x 3) — (m+ st/)(kz 8) F Z']%;c,sify,i% + Zl%;:s]:?mi%}
= N ()N (ks)| = K s(m + 2505) — K, 5(m + 3 Mo)|. (55)

Quindi il risultato finale per il contributo di “spin” e “isospin” nel caso
)\N = —)\EV, 512 = Siz = 0 risulta:

Gryi- 491120 [L N T RN R | = Rl o+ 005) = Ko (m + 222 )

x[A1 Ay + By By). (56)

b) Si2 =5, =1

> (1/2, A5 1/2, Xo| 1, My, )(1, My,,51/2X3]1/2, Ay)

M312
1
- (per Ay = 2)(1/2,/\1;1/2,/\2|1,0)(1,0;1/2>\3|1/2,1/2>
= Onang s (= V1/6) + 00 (1/2+ M )6y, 14/2/3,  (57)

> (1/2,A151/2, Xo|1, My, )(1, M55 1/2X3]1/2, Ay)

M,

= V1/63°(1/2, Miliogoy |1/2, ){1/2, alors[1/2, M)
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- \/%{Q/Q,>\1|iaway|1/2,/\2>(1/2,)\3|ax|1/2,1/2>
(12, M lioy oy |1/2, M) (1/2, A2 ]1/2,1/2)

10172, Mlionoy|1/2, M) (1/2, Aslo | 1/2, 1/2)}
- \/%{u/z, M = 021/2, 0008, 1 + i3y by, 3 (—)
H(1/2, Al\axu/Q,AzmAM}
_ M{ S SN VR VAI NP NUIPRTID N N /gsign()\l)}

= 4/ 1/6{ — 5)\1’_)\25&,1/2 + 25)\17)\25>\37_1/2(/\1 + 1/2)}, (58)

per ottenere la quale sono state sfruttate le seguenti relazioni:

o.1/2,1/2) = 12 ( o ) ( ' ) = 12 ( - ) —[1/2,-1/2):

1 1 0 1 1 1
0.11/2,-1/2) = 7 ( 0 —1 > < 1 ) =7 < ] ) =1/2,1/2);
1 0 —1 1 1 —1 .
o,1/2,1/2) = 2( ;0 ) ( ] ) = 2( ; ) = —i|l1/2,-1/2);
1 0 —1 1 1 1 .
o,|1/2,—-1/2) = 2( C ) ( . ) = > ( Z. ) = i[1/2,—1/2).
(59)
Quindi 'analoga di equazione (24) in questo caso diventa
> sign(As)
A Az hs
o 3 D (i) D2 () D3 (R0 ) 4, . )
p1p2fi3
X Z Diﬁl( k ))Diﬁz (R (k? ))Diéz (RM(%3)>§)}\N(M17M27M3)
p1p2pi3

= % Z sign A3{ S (/2 Ml Rh(RD[1/2, ) (1/2, Ao Rhy () [1/2, jio)

>\1>\2>\3 p1pi2p3 gl

><<1/2,A3|RL</%;,>\1/2,a3><1/2,mwajfoyu/z,ﬁ2><1/2,ﬂ3|aj/|1/2,m}

{ S0 D (1/2 A Ry (k) 1/2, 1) (1/2, Ao | R} (R2) /2, pre)

H1p2H13 g
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< (12, Mol Ry (R 1/2, 1) (1/2, sl o, [1/2, 1o {12, iglor | 1/2, AN>}.
(60)

Utilizzando la proprieta, qui di seguito riportata,
{(1/2, MRy ()12, 1) (1/2, Mo Ry (R5)[1/2, 1) (1/2, Xs | Ry, (R5)[1/2, )

(12 iy 12712 el 12,0 |
X <1/27 ﬂ2| - Z'O-ygj’|1/27 ﬂ1><1/2’ )‘lngj’ll/2’ ﬂ3>, (61)
I'equazione (60) diventa

5 55 SR /20002 MR )12

[1f243 U1 243 A1

X{ D (172, fial R (k) [1/2, Aa)(1/2, Ao R} (R)[1/2, u2>}

A2

{ S sign(h) (12 il Rar ()]1/2, A {12, AgrRL<f%g>|1/2,u3>}
A3
X Z<1/27 ﬂ2| - i0y0j1|1/2, ﬂ1><1/2, /\/]V|Uj'|1/27 ﬂ3>
37
X<1/2,/1,1’?:O'j0'y’1/2, ILL2> X <1/2, ILL3‘O']|1/2, )\N>

= NN N N ()N ()N ()

XD { 202 > (12, A+ iBy - &[1/2, 1) (1/2, i liojo,[1/2, j1a)

33’ K1 p2 p1 2

X (1/2, fia| As + iBy - 3|1/2, p2) (1/2, jua| — icy0]1/2, m)}

X DD (172, Nyloy|1/2, jis)(1/2, jis| As + iBs - 3|1/2, ps)(1/2, us|o;|1/2, Aw).
o (62)

Ricordando I'equazione (39), 'equazione (62) pud essere riscritta come

]_ ~ ~ — —
8 TN " (E)N" (k) ZTr{(Al +iBy - 0)ojo,(Ay +iBs - J*)ayaj/}
i 37

X<1/2,)\/]V|0']/(A3+2§35)0’”1/2,)\]\[) (63)
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Calcolo della “traccia’:

%

&* = —o,60,, con o’ =1, (64)

Tr{(Al +iB - 7)o;(Ay — iB, - a)oj }

_ Tr{AlAQUjaJ iMy0,(Bs - &)y +iAs(Br - 3)os05 — (Br - 8)oy (B 5)%-,}

- Tr{AlAzéjj, — i1 By (g + 6 - (& x €)) + iAsBrson (83 + 6 - (& x 7))
By Baa (3 + 6 - (@ x &) (3 + 6 - (& x eg-,))}

_ Tr{AlAQCSjj, + Avo[3- (Byx )] - 45 Bi)[5- (& x &)

(65)
Siccome
& (Bex &) = By-(&yx&)=—Ba- (& x ),
B- (& x &) Bi€jje,
(By X &) - (Byx &) = By-Byd;;y — By jyBaj,
(66)

I'equazione (65) diviene

Tr{[A1A2 — By Bolb;y + BiyBay + BuyBay + [AiBs + AsBi] - (@ x gj)}
_ 2{[A1A2 By Bal6,y + BiyBay + BiyBa, + [ABs + AsB1] - (€ x gj)},

(67)

sostituendo questo risultato in eq. (63) si ottiene

1 - I
3 [IN RN (k) {[A1A2 — By - By]d;j + B1;Baji + By jiBa
i i’
By + ABy] - (6 x gj)}<1/2 Nylos(As +iBs - 3)05]1/2, Aw),
(68)
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ovvero
1 N ~ R
11 NTRINT (k) Do { {A1A2 — B BQ} 035 + Bu;Bay
i Jj 7

+B1j B + Z [Alek + Ay By,
k

o X[/l /2.

A3
x(1/2, fis|m + &5 My — io - (2 x k' 5)|1/2, \s)
X (1/2, As|m + EsMy + io - (2 x ko 3)|1/2, ps)(1/2, ps|o;]1/2, )\N)sign()\g)} }
(69)
1)
. 1 1
AN = Ay = +§> Iiy=-T- = Ti,= B {T++ - T——]
(70)

Sviluppando le somme su j e j' nei vari termini z,y e z e ricordando
'azione delle matrici di Pauli ricavata in equazione (50) il contributo
per T’ . risulta essere dato da:

1 ~ ~ S S
XL = 511 N‘l(k;g)N‘l(ki){ — [A142 + By - By — 4By, Ba, | A3
+2 [Alex + AQle] Bs, +2 [leBzz + BlzBZx} Bs,

+2 [BM;BQy + BlyB2a::| 33z}7

(71)
dove
o Ay = (m+ @4 My) (m + EsMo) + k) sy s — k) ghes;
o Bus = (m+a4Mp)kys — (m + @My )k,
o Bys=—(m+a4N)kos — (m+ &Mk, o
o By = k. 3ky5 — k) 3k.5.
2)
Ny = +; Ay = —;, T..=T., = T, = ;[ﬁ_ + T
(72)
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Il contributo per 7', _ risulta essere dato da:
Xi= HN (ki ){ {(AlAQ — By By) + 2B, - By — 4B1. By,

X

(m + iéMO) l;?x’g + (m + igMg) /2:;73} + [/thz + AzB1Z-

X

2(m -+ &40 ) eys — 2(m -+ B3 Mo ) K,

+ |:B1xB2z + BlzBQx

X |2(m + &3 M) (m + 25 M) — 2K, 3k, 5 + 2k, 3k, 5

+ [Blszz + Blngy] [ — 2K/ sk, 5 — 212:;731%%3} }
(73)
cioé

1 A ~ - o

S 11 N‘l(k;)N‘l(k:i){ — [A14; + By - By — 4B1.By.| By,
+2 {A132z + A2B1z} B3, +2 [BlzBQZ + BlzBQx} Az

+2 {BlyBZZ + BIZBQy} B3z}

(74)

Somma sulle variabili di spin nel caso polarizzato

Nel calcolo di T/\Gv Ay le matrici di rotazioni coinvolte sono

> sign Ag{ > Dy (Rar k’>)D§giz(RMu%@)Di/f;pg(RM<z%g>)ci>§¢<ﬂ1,n2,ng>}

A1 23 1 p2(3
X Z Df\ﬁﬁ( k ))Dz,z; (RM(]%Q))DZZE (RM(];S))&)%\?(NDM%MS)
1243
(75)

dove Si2 = 0,1. L’unica differenza rispetto a prima é che cambia il segno di
A3 nella matrice di rotazione in parentesi graffa.

Dalla definizione delle matrici di rotazione D/\/ i (RM(k:’ )) (4.56) e della

101
funzione @fﬁl\f (4.57), per
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a) Sip = Si, = 0; 'equazione (75) diviene

*ZZZZ

1o p2 p1 g2

Z 1/27ﬂ1|RM(75’1)\1/2,>\1><1/2,MRM%)H/?,M]

x| Y (172, fio| Ras(K5)|1/2, A2)(1/2, Aa| RY (2)[1/2, o)
A2

X(1/2, | = 0,12, ) (1/2, palicn |12, )|

% 3" sign(As) (1/2, Ny | Rar () [1/2, —Aa) (1/2, s Bl (Rs)[1/2, —Ax) (76)
A3

Usando, ora, i risultati [(32) < (37)] si ottiene
—ngn (Aa)(1/2, A% |RM(k,)|1/2 —A3)(1/2, >‘3|RM(k3>|1/2 AN)

X N“HE)N™ (k:l) BN (k) SONN ST (1/2, | Ay 446 - Bil1/2, 1)

[p1 p2 g1 2
X(1/2, | —ioy|1/2, fiz) (1/2, fia] As + i - Ba|1/2, pi2)(1/2, pialiory |1/2, ju) (77)
La quale, ricordando le equazioni dalla (39) alla (45), assume la forma
N U E)N (BN ()N () 3 sian()(1/2, N Rar(B)]1/2, )
A3

x(1/2, As| R, (k3)|1/2, M) [A1 Ay + B, - Bo].(78)

e Calcolo di“Y",, sign(A3)(1/2, \% R (RS [1/2, = As)(1/2, As| R, (ks)[1/2, Aoy )™

1)
, 1 5 5 . 1r- 3
)\N:)\N :+§, T++ :T,, = T++ = §|:T+++T,,:|
(79)
N—l 7./ N—l 7. R
= (’“3)2 ) 5~ {(1/2 1/2lm + @0 — it - (5 x K\_3)[1/2, =s)

A3
X (1/2, Xs|m + EsMy + i - (2 x ky 3)|1/2,1/2)sign(\s)
+(1/2,—1/2|m + &, M} — i - (zka3)|1/2 A3)

><<1/2,)\3]m+:i’3M0 +Z& (Z X kJ_g)‘l/2 —1/2 81gn )\3

_ Nl(l%é)le(%){u/z 1/2|m + @My — i - (2 x K 5)[1/2,-1/2)
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x(1/2,1/2/m + Z3My + i5 - (2 x k1 3)[1/2,1/2)
+(1/2,=1/2|m + @M} — i - (2 x K 5)|1/2, —1/2)
x(1/2,1/2/m + Z3My + i5 - (2 x k1 5)[1/2,—1/2)
—(1/2,1/2|m + &4 M) — id - (¢ x k', 3)[1/2,1/2)
x(1/2, —1/2|m + &My +id - (2 x ky 3)|1/2,1/2)
—(1/2,—1/2|m + &4 M} — iG - (2 x K 3)[1/2,1/2)

(
x(1/2,=1/2|m + EsMy + i7 - (2 x ky 3)|1/2,—1/2)

= { — (m+ 33M,)(1/2,1/2|i5 - (2 x k' 3)[1/2,—1/2)

+(1/2,1/2]6 - (2 x K 5)|1/2, —1/2)
x(1/2,1/2|G - (¢ x ki 3)[1/2,1/2)

+(m + 2 M) (1/2,1/2]i7 - (2 x k1 5)[1/2,—1/2)
+(1/2,-1/2[6 - (£ x K 5)[1/2,—1/2)
x(1/2,1/2|G - (2 x ki 3)|1/2,—1/2)

—(m + FM)(1/2,—1/2iG - (2 x k1 3)[1/2,1/2)
—(1/2,1/2]7 - (£ x K/ 5)[1/2,1/2)
x(1/2,—1/2|5 - (2 x ky1.3)[1/2,1/2)
+(m + 3 Mp)(1/2,—1/2]iG - (2 x k' 5)|1/2,1/2)
—(1/2,-1/2|6 - (2 x K/ 5)[1/2,1/2)

(1/2,—1/2]5 - (5 x &1 )[1/2,—1/2)
_ N (k)N (kg){(m—i—i‘é]\%)[(l/l1/2|i0 (2 x ko )[1/2,-1/2)

>
—(1/2,—1/2i5 - (5 x k13)|1/2,1/2)

+(m+f:3M0)[— (1/2,1/2]i5 - (2 x K,)[1/2,~1/2)

(12, ~1/2]iF - (5 x K, ,)|1/2. 1/2]

+(1/2,1/2]G - (2 x K )|1/2,-1/2)(1/2,1/2|5 - (¢ x k1 3)|1/2,1/2)
+(1/2,-1/2|7 - (¢ x K| 3)[1/2,—1/2)(1/2,1/2|¢ - (¢ x k1 3)[1/2,—1/2)
—(1/2,1/2|6 - (2 x K 3)[1/2,1/2)(1/2, —-1/2|5 - (¢ x k1 3)|1/2,1/2)
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—(1/2,-1/2|6 - (¢ x K 5)|1/2,1/2)(1/2,—1/2| - (2 x ki 3)[1/2, —1/2>}.

A questo punto sostituendo le relazioni ottentute in equazione

(50), l'espressione (80) diviene:

N~ (k) N~ (ky)
2

{(m + M) { - 27%,3] + (m + F3Mo) [2]%;3]

ikl sk — ik, sky s — ik, skes + z'/%;gl%y,g},(&)

N—l(k;g)N—l(k;g){(m + :1:@,1\20)/2;;673 — (m+ :&gMg))l%m,g}. (82)

Quindi il risultato finale per il contributo di “spin” T++ nel caso
Sis = S|, = 0 risulta essere:

X [AlAQ + Bl . Bg]
(83)

1 1 1r- ~

(84)

S {(1/2,1/2lm + # MG — i - (2 x K 5)[1/2,=Xs)
A3

X (1/2, As|m + EsMy + 17 - (2 x ky 3)|1/2, —1/2)sign(\s)
—(1/2,=1/2|m + &My — i - (2 x K 5)[1/2, —Xs)
X (1/2, Ng|m + &5 Mo + i - (2 x k1 3)[1/2,1/2)sign(Ns) }
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N—l 7. N—l 7. ~ -~
_ (’“3)2 (ks) {(1/2, 1/2|m + &3Mg —ic - (£ x K| 5)[1/2,-1/2)

x(1/2,1/2m + Z3My + i7 - (2 x k1 5)[1/2,—1/2)
—(1/2, —1/2|m + &M} — i6 - (2 x K| 3)[1/2,-1/2)
x(1/2,1/2|m + #3My + i - (2 x k, 3)[1/2,1/2)
—(1/2,1/2|m + &M} — i5 - (2 x K| 3)[1/2,1/2)
x(1/2, —1/2|m + #3Mo + i - (2 x k1 3)|1/2, —1/2)
)

A

+(1/2,=1/2|m + &M}, —id - (2 x k| 3)[1/2,1/2
x(1/2,=1/2|m + E5My + iG - (2 x ky 3)[1/2,1/2)

= N o o+
+(1/2,1/2|5 - (2 x K 5)|1/2, —1/2)

x(1/2,1/2|7 - (2 x ki 3)]1/2,—1/2)

—(m 4 #M)(1/2,1/2)iG - (2 x ki 3)[1/2,1/2)
+(m + 33Mo)(1/2,—1/2]ic - (2 x K| 5)[1/2,—1/2)
—(1/2,-1/2|7 - (2 x K 3)|1/2,-1/2)
x(1/2,1/2|3 - (5 x k1.3)[1/2,1/2)
)

)

)

)

)

—(m + 2, M) (m + &3 M

—(m+ #M(1)2,—1/2]id - (2 x k1 5)|1/2, —1/2
+(m + #3M)(1/2,1/2]iG - (2 x K| 3)[1/2,1/2
—(1/2,1/2|¢ - (2 x K 3)[1/2,1/2
x(1/2,—1/2|G - (2 x ky.3)[1/2,-1/2
+(1/2,-1/2]7 - (2 x K, 3)[1/2,1/2)

x(1/2,—1/2|F - (2 x k.3)|1/2,1/2) }

_ {(m+m3M’)[— (1/2,1/2/i5 - (2 x K.1.)[1/2,1/2)
—(1/2,-1/2i5 - (2 x k1 3)[1/2, —1/2]
)

+(m+:i3]\~40){<1/27—1/2]i5-(2><k 5)[1/2,—1/2
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+(1/2,1/2]i6 - (2 x K _3)[1/2, 1/2>]
+(1/2,1/2/5 - (2 x K/ 4 )!1/2 —1/2)(1/2,1/2|5 - (2 x k1 3)|1/2, —1/2)
(12, —1/20F - (2 x K, )[1/2,~1/2)(1/2,1/2]5 - (3 x k. 5)[1/2,1/2)
—(1/2,1/2]5 - (£ x lA&s)!l/l1/2>(1/27—1/2|<7 (2 x ki 5)|1/2,-1/2)

(2 x K\ 3)[1/2,1/2)(1/2,-1/2|7 - (£ x k1 3)[1/2, 1/2)}.

H(1/2,-1/2|5 -
(85)

Ora utilizzando le relazioni (50) si ha

N=Y(ky) N~ (k - - i
)V () { = 2(m + &4305)(m + 56o) + (m+ $5005) [ ik — By

ot o) [ — K] — B — Ko + By + Koy }

A3 1k {(m + ig]\}[é)(m —+ i’gMg) + /%;73]:3%3 — ]%;73]:7173}.

Quindi il risultato finale per il contributo di “spin” T, _ in questo caso
risulta essere:

XP = I k 1(7@-){ — (m + 25 Mg) (m + 3Mo) + k), 5kys — /%;,312:%3}

X [AlAg + Bl : BQ]
(87)

Il caso in cui S12 = S5 = 1 puod svolto essere in modo totalmente analogo
al casi, precedentemente visti, basta tenere conto del fatto che ora

I’equazione di partenza ¢ data da
1 - . .
6 H N_l _l(k?i) Z TI‘{ (Al + 10 - Bl>0'j0'y<A2 + 10 - BQ)Uij}

X S0 S/ N0 12 ) (12, fislm + #4005 — i - (2 x K3 )]1/2, —Ag)
(88)

M3 [3 A3

(1/2, Xs|m + 3My —io - (5 x ks 1 )|1/2, ps)(1/2, ps|o;|1/2, \y)
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Ripercorrendo quindi, i passi effettuati nel calcolo dei contributi prece-
denti, per T{, si ottiene

3 ~
Xio= TN RN (k)
i=1

X [(3141142 — él . Z§‘2)f13
+2(A1 By + Ay B ) By,

)
+2(A1BQ,y + A2B1,y)B3 y
)

+2(A1Bs, + AsB; . B3,z}7 (89)
dove
Ay = K (m+ 33My) — ks o (m + 25MY), (90)
Bs, = —kj ksy — Ky ks, (91)
Bsy = (m+ 25MY)(m+ Zsm) — kb sy + Ky ks, (92)
B3,z = —(m + i’gMé)lzig’y - (m + i‘gMo)l%ghy. (93)

Mentre per il caso di 7%, si ha
~ 3 ~ ~
Xioo= [INT RN (k)
X [(—AlAg — él . BQ + 4Bl,yB2,y)BB,y
+2(B1,;EB2,y + B2,xBl,y)B3,m

+2(A1Byy + Ay By ) As
+2(B1yBa: + Bi:Bay)Bs.|. (94)
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