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There's a long tradition in theoretical
physics, which by no means a�ected
everyone but certanly a�ected me,
that said the strong interactions are
too complicated for the human mind.

-S. Weinberg
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SOMMARIO

In anni recenti la �sica dello spin degli adroni ha rappresentato una delle aree
più dinamiche e in evoluzione della �sica delle particelle. Allo stesso tempo
diversi interrogativi di natura fondamentale aspettano una risposta, come ad
esempio il problema di determinare nell'ambito della teoria delle interazioni
forti il contributo di ciascun costituente elementare allo spin del protone, che
rappresenta il 98% della materia osservata nell'universo.

Questa tesi si inserisce in modo naturale negli studi riguardanti la �sica
adronica con particolare attenzione alla struttura partonica di spin del nu-
cleone. Più esplicitamente si a�ronta il problema di costruire in un modello
la distribuzione partonica di spin trasverso, che contribuisce in modo deter-
minante alla suddetta struttura partonica del nucleone, ma che è tuttora
inesplorata. Una determinazione sperimentale delle sue peculiari caratteri-
stiche predette dalla teoria rappresenta un test formidabile della Cromodi-
namica Quantistica nel cosiddetto regime non perturbativo dove la simmetria
chirale è spontaneamente rotta.

Lo strumento di calcolo principale utilizzato nella tesi è rappresentato
dalle cosiddette distribuzioni partoniche generalizzate (GPD), che si sono
a�ermate di recente come l'approccio più potente e versatile al problema del
legame tra spin degli adroni e polarizzazione dei suoi costituenti elementari.

Nel primo capitolo di questo lavoro vengono presentati, in successione
storica a partire dagli anni cinquanta, i principali risultati ottenuti dai �sici
nello studio delle interazioni forti descritte nell'ambito della Cromodinami-
ca Quantistica. Dopodiché nel capitolo 2 si descrivono dapprima la dis-
tribuzione di spin trasverso, le sue caratteristiche peculiari rispetto alle altre
distribuzioni partoniche, e le di�coltà di estrazione da misure di asimme-
trie di spin. Poi si introducono le GPD, che estendono la de�nizione di
distribuzione partonica ad un dominio cinematico più ampio.

Nel terzo capitolo viene discussa in dettaglio la rappresentazione a overlap
per l'interpretazione probabilistica delle GPD: non polarizzate e polarizzate
longitudinalmente. Nel capitolo 4 si estende questa trattazione al caso della
polarizzazione trasversa con un contributo del tutto originale.

In�ne nel capitolo 5 vengono presentati i risultati ottenuti.



Capitolo 1

INTRODUZIONE

1.1 Cenni storici

Negli anni cinquanta divenne evidente che l'idea di descrivere in modo uni-
�cato le quattro interazioni fondamentali mediante una teoria quantistica
di campo rinormalizzabile, presentava degli aspetti problematici. In parti-
colare, l'interazione elettromagnetica e quella forte dipendono da costanti
d'accoppiamento molto diverse.

Il fatto che αem, la cosiddetta �costante di struttura �ne�, sia piccola è
cruciale per giusti�care lo sviluppo in potenze di αem della teoria. Questo
sviluppo, chiamato �teoria delle perturbazioni�, resta tuttora lo strumento
principale in teoria quantistica dei campi. La piccolezza di αem garantisce ai
�sici che la teoria delle perturbazioni sia un'a�dabile approssimazione della
QED, calcolabile al livello di precisione desiderato.

In contrasto con la QED, le particelle fortemente interagenti, gli �adroni�
(dal greco αδρoν, cioè �forte�), hanno una costante d'accoppiamento grande,
quindi la teoria delle perturbazioni risulta ine�cace al �ne di predire lo spet-
tro. Di conseguenza il progresso nell'ambito delle interazioni forti si è rivelato
molto più lento.

Negli anni quaranta, il primo determinante progresso nello studio delle
interazioni forti fu l'idea che la forza che tiene legato il nucleo potesse essere
mediata dallo scambio di particelle senza spin (i mesoni) chiamate pioni. La
previsione teorica, fornita da Yukawa [1], della massa e del range del mesone
π, basata su considerazioni riguardanti la scala di energia delle interazioni for-
ti, condusse Lattes, Occhialini e Powell nei loro esperimenti sui raggi cosmici
del 1947 alla scoperta del �pione� . Questa scoperta, tuttavia, venne smorza-
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ta dal fatto che la costante d'accoppiamento pione-nucleo risulta maggiore
di uno. Sebbene, quindi, la mesodinamica pseudoscalare fosse nota come
teoria di campo rinormalizzabile, il modello di Yukawa non era calcolabile
attraverso la teoria delle perturbazioni.

Inoltre, la situazione sperimentale divenne ben presto confusa a causa
delle molte �risonanze� scoperte negli esperimenti agli acceleratori. Questo
ad indicare ancora una volta che la costante d'accoppiamento di qualche
sconosciuta teoria sottostante era grande, oltre la portata della convenzionale
teoria delle perturbazioni. Per questa ragione il progresso nello studio delle
interazioni forti fu lento per vari anni.

Diversi approcci alternativi vennero esplorati negli anni cinquanta e ses-
santa. L'approccio vincente fu la teoria dei �quark�. Gell-Mann, Ne'e-
man, and Zweig, ([2]-[5]) cercarono di spiegare lo spettro osservato degli
adroni ipotizzando delle strutture elementari sottostanti agli adroni, le quali
si combinassero rispettando la simmetria SU(3).

La composizione di tali particelle elementari, i quark, che si realizzano
in tre stati diversi (�up�, �down� e �strange�) con cariche frazionarie, poteva
infatti spiegare tutti gli adroni noti a quel tempo: tre quark insieme era-
no necessari per costruire un barione, come un protone od un neutrone (o
risonanze, del tipo Λ, Ξ, Ω, etc.), mentre una coppia quark-antiquark era
necessaria per dare un mesone, come il mesone π o K. Il modello a quark
poteva predirre con relativa facilità le masse e le proprietà di particelle che
non erano ancora state scoperte. La teoria era capace di fornire previsioni
qualitative anche al di fuori del suo range di applicabilità. Ma le particelle a
carica frazionaria non erano mai state scoperte negli esperimenti di scatter-
ing e quindi si pensava fossero solo arti�ci matematici, che ri�ettevano una
più profonda realtà �sica ancora ignota. Inoltre, dal momento che non es-
isteva nessuna teoria quantistica dei quark, non era noto quale potesse essere
la forza che li tenesse legati. Come conseguenza il modello risultò incapace
di spiegare perché certi stati di quark (detti �esotici�) non venissero trovati
sperimentalmente.

Verso la �ne degli anni sessanta una nuova serie di esperimenti al lab-
oratorio SLAC (Stanford Linear Accelerator Center) presentò risultati sor-
prendenti e sollevò un interrogativo. Negli esperimenti di Deep Inelastic
Scattering (DIS), un fascio di elettroni ad alta energia veniva fatto incidere
su una targhetta di protoni. Ad energie e momenti molto elevati

(
|q|2 ≥

2(GeV/c)2
)
, i fattori di forma del bersaglio perdevano la loro dipendenza

da alcuni parametri cinematici. Questo fenomeno venne chiamato scaling di
Bjorken dal nome dell'autore che l'aveva previsto [6]. L'esperimento di DIS
era ideale per poter analizzare la struttura del protone, dal momento che
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la sonda elettromagnetica o�re un'interazione relativamente �pulita� con gli
adroni.

Oltre allo scaling, gli esperimenti di SLAC presentavano anche un'altra
caratteristica peculiare: ovvero eventi ad alto angolo di di�usione, similmente
all'esperimento di Rutherford sullo scattering di particelle α da atomi. La
più semplice spiegazione di questi risultati si ebbe grazie alla formulazione
del modello a partoni (Quark Parton Model, QPM) da parte di Feynman [7],
dove si assume che il protone sia costituito da un insieme di oggetti puntiformi
liberi che agiscono da centri di�usori.

Ma com'era possibile conciliare l'idea del protone come costituito da tre
quark in una con�gurazione statica, mentre nel QPM invece lo si ipotizzava
composto da oggetti puntiformi addirittura liberi?

1.1.1 La rivoluzione di gauge

Nel 1971 una fondamentale scoperta fu fatta da Gerard 't Hooft [8], ancora
studente. Egli studiò una vecchia teoria di Yang e Mills, la quale era una
generalizzazione della teoria di Maxwell della luce, basata però su un grup-
po di simmetria più grande. Partendo da una serie di lavori di Veltman,
Faddeev, Higgs e altri, 't Hooft dimostrò che la teoria di gauge di Yang-
Mills, anche quando il suo gruppo di simmetria era �spontaneamente rotto�,
risultava rinormalizzabile. Grazie a questo importante risultato, era ora di-
venuto possibile sia scrivere teorie rinormalizzabili delle interazioni deboli,
dove i bosoni mediatori erano rappresentati come campi di gauge, sia tentare
l'uni�cazione tra interazioni elettromagnetiche e deboli.

In poco tempo vennero ripresi in considerazione i pionieristici articoli
di Weinberg [9] e Salam [10] sulle interazioni deboli, viste come teorie di
gauge basate sul gruppo di simmetria SU (2)⊗U (1). Il punto essenziale, co-
munque, fu la rinormalizzabilità delle teorie di gauge. Infatti questo permise
di e�ettuare concrete predizioni numeriche di varie teorie e confrontarle con i
numerosi dati sperimentali. In alcuni anni, l'accordo tra il modello elettrode-
bole di Weinberg e Salam e i dati sperimentali si rivelò schiacciante. I dati
erano su�cientemente accurati per escludere ogni altra teoria e veri�care la
correttezza delle previsioni del modello SU (2)⊗U (1).

La teoria di Weinberg-Salam raggruppava i leptoni, le particelle che in-
teragiscono in modo elettromagnetico e debole, in un modo semplice. Essa
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postulava che i leptoni left handed (�sinistrorsi�, cioè in uno speci�co stato
di elicità) dovessero sistemarsi in accordo a SU (2) in tre di�erenti famiglie:

(
νe

e

)
;

(
νµ

µ

)
;

(
ντ

τ

)
, (1.1)

e che le interazioni prodotte da questi leptoni fossero generate dai bosoni
vettori intermedi:

γ, W±
µ , Zµ. (1.2)

(Il problema del modello attualmente ancora aperto è quello di trovare riscon-
tro sperimentale all'ipotesi dell'esistenza del bosone di Higgs, il quale sarebbe
responsabile della rottura spontanea di simmetria che permetterebbe di fornire
le masse ai bosoni vettori intermedi.)

Nell'ambito delle interazioni forti, il progresso fu altrettanto rapido. La
rivoluzione di gauge rese possibile la formulazione della �Cromodinamica
Quantistica� (QCD), la quale divenne il principale candidato per una teo-
ria delle interazioni forti. Attraverso l'ipotesi di un nuovo grado di libertà,
il �colore�, le cui interazioni rispettassero la simmetria SU(3)c

1, la teoria di
Yang-Mills prevedeva l'esistenza di una nuova particella, il gluone (dall'in-
glese �glue�, colla), come mediatore dell'interazione tra due quark. In altre
parole, i quark posseggono i gradi di libertà di sapore e colore, ma solamente
il colore partecipa alla simmetria di gauge locale.

La QCD fornì una spiegazione plausibile alla misteriosa assenza di eviden-
ze sperimentali dei quark. Si poté calcolare che la costante d'accoppiamento
e�ettiva di SU (3)c diviene enorme a basse energie, �con�nando� quindi per-
manentemente i quark all'interno degli adroni. In questa rappresentazione, se
si tentasse di separare i quark, i gluoni condensati si opporrebbero alla loro
separazione. Incrementando l'energia la stringa gluonica, che idealmente
tiene con�nati i quark, si rompe producendo una coppia quark-antiquark,
così che un singolo quark non può essere isolato (in analogia al caso di un
magnete, che quando viene rotto, si separa semplicemente in due magneti
più piccoli, e non nei singoli monopoli).

Nel 1973 venne dimostrato che nelle teorie di gauge quantistiche non
abeliane rinormalizzabili, di cui la QCD è l'unico esempio quadridimensiona-
le, la costante d'accoppiamento dipende dall'energia, o meglio, diviene piccola
ad energie elevate. Questa proprietà, denominata �libertà asintotica� e di-
mostrata da Gross, Wilczek [11] e Politzer [12], permise di spiegare perché
alle alte energie (come per gli esperimenti di DIS) i quark si comportassero
come particelle libere. Inoltre la teoria forniva una possibile giusti�cazione

1Questa nuova simmetria SU (3)c non va in alcun modo confusa con la vecchia simmetria
SU (3) di Gell-Mann, Ne'eman e Zweig, che viene chiamata simmetria di �sapore� (�avor).
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al fatto che il modello statico a quark di Gell-Mann fosse così e�cace nel ri-
costruire lo spettro dei barioni. Nel limite di masse dei quark uguali, l'azione
della QCD possiede un simmetria globale, SU(N) per N gradi di libertà di
sapore. In prima approssimazione lo spettro degli adroni mostra una simme-
tria SU(2), che corrisponde a considerare solo i sapori �up� e �down� nella
lagrangiana di QCD. Poiché per il sapore �strange� la massa del quark è vici-
na a quella dei sapori �up� e �down�, rispetto al valore molto più grande della
massa dei barioni, anche la simmetria SU(3) di sapore viene generalmente
rispettata nello spettro dei barioni.

1.1.2 Cenni di QCD

Per ottenere la lagrangiana di QCD occorre partire dalla lagrangiana di QED

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1

4
FµνF

µν , (1.3)

dove ψ(x) è il campo di Dirac,

Dµ = ∂µ + ieAµ (1.4)

è la derivata covariante che ingloba l'interazione tra campo di Dirac e campo
vettoriale del bosone mediatore attraverso la costante d'accoppiamento e
(accoppiamento minimale), mentre

Fµν = ∂µAν − ∂νAµ (1.5)

è il tensore del campo elettromagnetico, che risulta invariante per trasfor-
mazioni di gauge locali. L'invarianza per trasformazione di fase locale si
generalizza a invarianza per gruppo di simmetria continuo SU (3)c (in Ap-
pendice A è riportato un esempio di generalizzazione a SU (2)). Il gruppo
SU (3)c implica otto generatori indipendenti ta con a=1-8 e di conseguenza
otto campi vettoriali Aa

µ (gluoni). Il campo di Dirac diventa un tripletto di
colore di campi di Dirac

ψ(x) =




ψ1(x)
ψ2(x)
ψ3(x)


 (1.6)
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e la trasformazione di gauge locale diviene
ψ(x) → eiαa(x)taψ(x) ≡ V (x)ψ(x). (1.7)

I generatori appartengono ad un'algebra non commutativa, de�nita da
[ta, tb] = ifabctc, (1.8)

dove fabc sono le cosiddette costanti di struttura; di conseguenza la teoria di
gauge generata si dice non abeliana. La derivata covariante è de�nita come

⇒ Dµ ≡ ∂µ − igAa
µt

a, (1.9)
dove g è la costante d'accoppiamento. La trasformazione dei campi di gauge
è data da

Aa
µ(x)ta −→ V (x)

(
Aa

µ(x)ta +
i

g
∂µ

)
V †(x) (1.10)

e la nuova quantità invariante risulta essere
F a

µνF
aµν , con F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (1.11)

Quindi la lagrangiana di QCD è descritta dalla seguente espressione

LQCD = ψ̄(x)
(
iγµDµ −m

)
ψ(x)− 1

4
F a

µνF
aµν . (1.12)

La caratteristica del gruppo di simmetria di gauge locale di non essere
abeliano comporta notevoli di�erenze tra la QCD e la QED. Infatti nel pri-
mo caso i campi di gauge possono interagire con se stessi, generando quindi
vertici trilineari e quadrilineari. Di conseguenza l'e�etto di �screening� della
carica che si ha per la QED nei diagrammi a loops fermioniche, viene annul-
lato dall'e�etto di �antiscreening� dovuto alle loops gluoniche, che rinforza il
campo di forze di colore man mano che i due quark si allontanano, fornendo
una spiegazione al misterioso fenomeno del con�namento, ovvero che tutti
gli adroni osservati in natura hanno carica neutra di colore.

1.2 Il Deep Inelastic Scattering (DIS)

Sia k il momento dell'elettrone entrante nel processo di DIS elettrone-protone,
e k′ quello dell'elettrone uscente. Si introducono le seguenti quantità:

q = k − k′ (1.13)
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ν =
p · q
M

(1.14)

xB = − q2

2Mν
. (1.15)

Nel sistema di riferimento del laboratorio, in cui il protone è a riposo, si
hanno i seguenti quadrivettori:

pµ = ( M, 0, 0, 0 ); (1.16)
kµ = (E,k); (1.17)
k′µ = (E ′,k′). (1.18)

Quindi, trascurando la massa dell'elettrone, si ha:

ν = E − E ′,

q2 = −4EE ′ sin2(θ/2) ≤ 0, (1.19)

che de�niscono l'energia e il momento trasferiti al bersaglio, dove θ è l'angolo
di scattering. Dalla (1.19) si deduce che il quadrivettore momento trasferito
sia di tipo space-like.

Nella regione di regime di scattering profondamente inelastico, de�nita
da:

Regione di DIS =





ν →∞
|q2| → ∞
xB cost.





, (1.20)

risulta 0 ≤ xB ≤ 1. Cioè l'invariante xB rappresenta il grado di elasticità
della reazione, con il limite elastico rappresentato da xB = 1.

Usando le regole di Feynman è possibile costruire l'ampiezza di scattering
di un elettrone che collide con un protone di momento p e polarizzazione S,
emettendo uno stato incognito |n〉:

Mn = [e2ū(k′, s′)γµu(k, s)]
(

1

q2

)
[〈n|Jµ(0)|p, S〉], (1.21)

dove Jµ è la corrente eletromagnetica e u rappresenta lo spinore dell'elettrone
di spin s.

Calcolando la sezione d'urto di�erenziale con i metodi usuali di teoria di
campo si ottiene

dσn =
d3k'

2M2E(2π)32k′0|ν|
n∏

i=1

d3pi

(2π)32pi0

×1

4

∑

S,s,s′
|M|2(2π)4δ4(p + k − k′ − pn), (1.22)
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dove pn =
∑

i pi rappresenta la somma delle particelle stato �nale adronico.
Ora, sommando su tutti i possibili stati �nali adronici n, si ricava la

sezione d'urto inclusiva:

d2σ

dΩdE ′ =
α2

q4

E ′

E
LµνW

µν , (1.23)

con α = e2/4π la costante di struttura �ne e dove il tensore leptonico è dato
da

Lµν =
1

2
Tr(γαk′αγµγβkβγν) = 2

(
k′µkν + kµk

′
ν +

q2

2
gµν

)
, (1.24)

mentre il tensore adronico risulta

2MW µν =
1

2π

∑

S

∑
n

∫ n∏

i=1

(
d3pi

(2π)32pi0

)
(2π)4δ4(pn − p− q)

×〈p, S|Jµ(0)|n〉〈n|Jν(0)|p, S〉
=

1

4M

∑

S

∫ d4x

2π
eiq·x〈p, S|[Jµ(x), Jν(0)]|p, S〉. (1.25)

Nell'ultimo passaggio si è riscritto il prodotto delle due correnti come com-
mutatore, sfruttando il fatto che il termine Jν(0)Jµ(x) sia nullo, perchè
violerebbe la legge di conservazione del momento.

Dall'equazione di conservazione della corrente è noto che ∂µJ
µ = 0, cioè

qµWµν = Wµνq
ν = 0. (1.26)

Quindi, sviluppando Wµν sulla base di tutte le strutture tensoriali in-
dipendenti che possono essere costruite con i vettori indipendenti p e q,
e imponendo l'invarianza per parità e time-reversal, si ottiene la seguente
espressione:

Wµν = −
(
gµν − qµqν

q2

)
W1 +

(
pµ − qµ

p · q
q2

)(
pν − qν

p · q
q2

)
W2

M2
, (1.27)

dove W1 e W2 sono funzioni di struttura che dipendono dagli invarianti che
si possono costruire con p e q, cioè q2 e p · q ∝ ν.

Inserendo la relazione appena ottenuta nell'equazione per la sezione d'urto
di�erenziale, si trova:

d2σ

dq2dν
=

4πα2

q4

E ′

E

[
W2 cos2(θ/2) + 2W1 sin2(θ/2)

]
. (1.28)
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Sperimentalmente, fu scoperto che nella regione di DIS la dipendenza da
q2 e ν veniva rimpiazzata da quella in xB = −q2/2Mν. Nelle funzioni di
struttura ciò si esplicita come

MW1(q
2, ν) → F1(xB),

νW2(q
2, ν) → F2(xB). (1.29)

Questa relazione venne chiamata scaling di Bjorken. L'osservazione speri-
mentale dello scaling è equivalente al segnale che nella cinematica DIS (cioè
|q2|, ν → ∞, xB �ssato) lo scattering si possa rappresentare come somma
incoerente di scattering elastici da costituenti puntiformi del bersaglio; da
qui ebbe origine il concetto di �partone�.

Prendendo in considerazione reazioni inclusive neutrino-nucleone:

ν + N → e− + X, (1.30)

le quali coinvolgono interazioni deboli, ci si accorse che la struttura del tensore
adronico poteva essere più ricca:

Wµν = −W1gµν + W2pµpν/M
2 − iW3εµνλρp

λqρ/M2 + W4qµqν/M
2

+W5(pµqν + pνqµ)/M2 + iW6(pµqν − pνqµ)/M2, (1.31)

perché il tensore adronico poteva avere anche un contributo tensoriale an-
tisimmetrico. La sezione d'urto per lo scattering da neutrini coinvolge una
nuova funzione di struttura

d2σν,ν̄

dΩdE ′ =
G2

F E ′2

2π2

[
2 sin2

(θ

2

)
W1 + cos2

(θ

2

)
W2 ∓ (E + E ′)

M
sin2

(θ

2

)
W3

]
,

(1.32)
dove il segno - (+) corrisponde allo scattering di (anti)neutrino e GF è la
costante di Fermi. Nel limite dello scaling di Bjorken, si trova:

νW3(q
2, ν) → F3(xB). (1.33)

Abbiamo già sottolineato come nel regime di scaling di Bjorken per i processi
di scattering leptone-adrone, il bersaglio adronico di momento p possa essere
rappresentato come un ensemble di n partoni virtuali quasi liberi con mo-
mento xip, 0 ≤ xi ≤ 1, (i = 1, ..., n). Ogni stato virtuale ha vita media τi > 0
nel sistema di riferimento dell'adrone, mentre nel sistema del centro di massa
si ha la dilatazione dei tempi; quindi la sonda leptonica attraversa il bersaglio
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in un tempo t → 0, al crescere di q2, vedendo una con�gurazione di partoni
�congelata�.

Per il principio d'indeterminazione lo scambio di un fotone γ∗ (in ap-
prossimazione di Born) tra leptone e partone avviene solo se il parametro
d'impatto, ovvero la separazione trasversa delle due traiettorie, risulta es-
sere minore di 1/Q con Q2 = −q2. Quindi la probabilità di trovare un altro
partone vicino, è data da

Area dello scattering hard leptone− partone

Superficie d′impatto del bersaglio
∼ 1/Q2

πR2
adrone

(1.34)

e svanisce al crescere di Q2.
Il leptone viene rivelato nello stato �nale, mentre i residui del bersaglio

adronico si ricombinano in adroni non osservati (somma inclusiva sugli stati
�nali). Il processo di adronizzazione avviene su scala temporale più lunga
rispetto allo scattering elementare leptone-partone, quindi è possibile con-
cludere che si ha una �fattorizzazione� tra processo di scattering hard
leptone-partone e processi soft tra partoni, che portano alla ricombinazione
degli stessi �no a formare adroni senza colore.

Questo risultato è una delle ipotesi fondamentali del Quark Parton Mo-
del. La descrizione dei processi hard che coinvolgono adroni nello stato �nale
o iniziale è separata nel processo elementare partonico, che prende vita a
corte distanze e brevi intervalli temporali, e nei processi soft adronici a più
lunghe distanze ed intervalli di tempo. Quindi i due fenomeni, in buona
approssimazione, si disaccoppiano. I primi sono calcolabili tramite la QCD
perturbativa (pQCD), in linea di principio con accuratezza arbitraria; i se-
condi, invece, vengono parametrizzati in forma di funzioni fenomenologiche
a priori sconosciute, e.g. funzioni di distribuzioni partoniche (Parton Dis-
tribution Functions) o ampiezze di distribuzione (Distribution Amplitudes).
Esse possono quindi essere estratte dal confronto con i dati sperimentali di
una certa misura, ed essere reinserite nel calcolo della sezione d'urto di un
altro processo hard per poter fare delle previsioni: in questo modo si mettono
alla prova le stesse ipotesi di fattorizzazione e universalità.

1.3 Il Quark Parton Model (QPM)

Come anticipato nella sezione precedente le ipotesi del Quark Parton Model
sono:
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• Per |q2| → ∞ in regime DIS, lo scattering hard leptone-adrone viene
descritto in approssimazione di Born.

• I partoni sono quasi on-shell e in uno stato virtuale congelato.

• Sussiste fattorizzazione tra scattering hard e processi soft tra partoni.

⇓

Perciò la sezione d'urto di�erenziale risulta essere data dalla convoluzione
tra il processo elementare (scattering hard) e la distribuzione di probabilità
dei partoni con �avor f nell'adrone h,

d2σ

dΩdE ′ (p, q) =
∑

f,f̄

∫ 1

0
dx

d2σel

dΩdE ′ (xp, q)qf (x), (1.35)

dove d2σel è la sezione d'urto elementare del processo di scattering elastico
del leptone su un partone di momento xp, e qf (x) la probablità incognita
di trovare un partone f con frazione x del momento dell'adrone genitore.
Potendo calcolare d2σel, si ricavano informazioni su qf (x) dal confronto con
i dati sperimentali.

La sezione d'urto elementare di scattering elastico può essere ricavata
immaginando il partone come una particella di Dirac massiva. Il tensore
adronico per una particella di momento p diventa quindi

2mW elµν =
1

2π

∫ d3p′

16π32p′0
(2π)4δ4(p + q − p′)Helµν , (1.36)

Helµν = e2
f2[p′µpν + p′νpµ + gµν(m2 − p′ · p)], (1.37)

mentre il tensore leptonico è dato dalla (1.24). La sezione d'urto elementare
per un partone di momento xp risulta in�ne

d2σel

dΩdE ′ = σMott

[
e2

f

x

ν
+ e2

f

xB

m
tan2(θ/2)

]
δ(x− xB), (1.38)

dove
σMott =

4α2

q4
E ′2 cos2(θ/2) (1.39)

rappresenta lo scattering di Coulomb elastico da particella puntiforme.
Quindi sostituendo il risultato di equazione (1.38) in eq. (1.35) si ottiene:

d2σ

dΩdE ′ (p, q) =
∑

f,f̄

∫ 1

0
dx

d2σel

dΩdE ′ (xp, q)qf (x)
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= σMott

∑

f,f̄

e2
f

∫ 1

0
dxδ(x− xB)φf (x)

[
x

ν
+

xB

m
tan2(θ/2)

]

= σMott

∑

f,f̄

e2
f

[
xB

ν
φf (xB) +

1

M
tan2(θ/2)φf (xB)

]

= σMott

[
1

ν
F2(xB) +

2

M
F1(xB) tan2(θ/2)

]
, (1.40)

dove, dal confronto con la (1.28) in regime DIS, si deduce

F1(xB) =
1

2

∑

f,f̄

e2
fφf (xB) e F2(xB) = xB

∑

f,f̄

e2
fφf (xB). (1.41)

Le funzioni di struttura, che parametrizzano lo scattering elasico, permettono
quindi di accedere alle distribuzioni partoniche negli adroni. Dalla (1.41) si
ricava inoltre, la relazione di Callan-Gross [13]

2xBF1(xB) = F2(xB). (1.42)

Nonostante le approssimazionmi del QPM, questo risultato venne successiva-
mente confermato dai dati sperimentali e, grazie a considerazioni riguardanti
il tensore adronico nella sua componente longitudinale e trasversa, divenne
possibile concludere che la validità di questa relazione sussiste solo se i par-
toni sono particelle a spin 1/2.
Il QPM ha ricavato numerose altre conferme sperimentali, in particolar modo
da misure di F2(xB) per DIS di elettroni su bersagli di protoni e neutroni.
L'elaborazione continua del modello e il confronto con i dati sperimentali
hanno introdotto nuovi concetti come la distribuzione di quark di valenza

qv
f (x) ≡ qf (x)− q̄f (x) (1.43)

(che rappresenta ciò che rimane dopo aver rimosso i quark e gli antiquark
virtuali associati alla polarizzazione del vuoto) e del �mare� di Dirac, q̄sea

f (x),
che insieme alla distribuzione di valenza fornisce il contributo completo del
sapore f alla distribuzione qf (x):

qf (x) ≡ qv
F (x) + q̄sea

f (x). (1.44)

Il quadro intuitivo che emerge è semplice e allo stesso tempo e�cace. Il
nucleone si può pensare, in prima approssimazione, come rappresentato da
tre quark di valenza le cui masse e cariche frazionarie determinano la massa
e la carica del nucleone stesso. I quark di valenza trasportano in media 1/3
del momento totale. Le loro distribuzioni in x hanno quindi un picco per
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x ∼ 1/3 e sono l'unico contributo dominante per un certo sapore f quando
x → 1. A piccoli x, invece, il momento del nucleone può essere suddiviso
tra tanti partoni: di valenza, del �mare� e gli antipartoni; per x → 0 questi
ultimi contributi divengono dominanti.

I limiti della descrizione basata sul QPM cominciarono ad emergere dal-
l'analisi sperimentale delle cosiddette regole di somma, che legano relazioni
integrali sulle funzioni di struttura a costanti note, come quelle di Gottfried
o Gross-Llewellyn-Smith [14] per lo scattering di (anti)neutrini. Il risultato
più interessante è forse rappresentato dalla regola di somma di momento,

∫ 1

0
dx

[
9

2

(
F e−p

2 (x) + F e−n
2 (x)

)
− 3

4

(
F νp

2 (x) + F νn
2 (x)

)]

∼
∫ 1

0
dxx(u + ū + d + d̄ + s + s̄)

.
= 1− ε, (1.45)

con u, d, s distribuzione di momento del quark per il relativo sapore; dove i
dati sperimentali indicano per ε valori compresi tra 0.54÷0.56. Quindi circa
metà del momento del nucleone è portato da partoni senza carica, che non
sono previsti dal QPM: i gluoni.

1.4 Improved Quark Parton Model (IQPM)
Vedremo più avanti che anche nel caso di reazioni polarizzate il QPM mostra
tutti i suoi limiti nella descrizione della struttura di spin del nucleone. In
questo paragrafo accenniamo brevemente alle correzioni al QPM (Improved
QPM, IQPM) che trovano la loro giusti�cazione teorica nella teoria di campo
non abeliana per le interazioni forti, la QCD.

Per poter inglobare il QPM nella QCD occorre a�rontare due fondamen-
tali problemi: la rinormalizzazione della teoria, ovvero la cancellazione delle
divergenze ultraviolette; e giusti�care la fattorizzazione tra la sezione d'ur-
to elementare (processo hard) e la descrizione dei partoni (processo soft),
cioè inglobare le divergenze infrarosse dovute alla dinamica �soft� in funzioni
incognite che generalizzino le distribuzioni partoniche.

La cancellazione delle divergenze ultraviolette (UV) avviene schematica-
mente in questo modo. Ad una certa scala µR si ride�niscono le quantità
�siche quali massa, coupling e intensità dei campi attraverso la procedura
di rinormalizzazione, inserendo controtermini nella lagrangiana (dipendenti
da µR) in modo tale da cancellare le divergenze della teoria. Dall'invari-
anza della �sica dalla scala di rinormalizzazione si ottengono le relazioni di
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Callan[21]-Symanzik[22]

µR
d

dµR

G = 0 ⇒
[
µR

∂

∂µR

+ β(g)
∂

∂g
+ γ(g)

∂

∂g

]
G = 0, (1.46)

dove G è la funzione di Green ad n punti, γ la dimensione anomala dei campi
e la funzione β è data da:

d

d log(q2)
αs(q

2) = β(αs). (1.47)

Essa determina cioè l'andamento della costante d'accoppiamento αs al variare
della scala q2.

Per quanto riguarda, invece, il problema della fattorizzazione occorre di-
stinguere processo da processo.
Ad esempio per i processi di DIS inclusivo Collins, Soper e Sterman hanno
fornito il seguente teorema:

F1/2/3(xB, q2) =
∑

i=f,f̄ ,a

∫ 1

0

dx

x
C1/2/3

(
xB

x
,

q2

µ2
R

,
µ2

F

µ2
R

, αs(µ
2
R)

)
φi(x, µF , µR),

(1.48)
dove φi(x, µF , µR) sono una generalizzazione delle distribuzioni partoniche in
QPM, indipendenti da q2 e αs, e quindi indipendenti dal tipo di processo. I
coe�cienti C1/2/3, detti coe�cienti di Wilson, rappresentano una generaliz-
zazione delle funzioni di struttura F el

1/2 di scattering elastico nel QPM.
Il termine µF rappresenta la scala di fattorizzazione a cui si distingue ciò
che accade a brevi distanze (alte energie) e viene inglobato nei coe�cienti di
Wilson C, da ciò che è a lunghe distanze (basse energie) e viene assorbito
nella de�nizione dell'incognita φ.

Nel calcolo di C le correzioni da QCD sono dovute al fatto che un quark di
momento y può irraggiare un gluone con momento (1− z)y e riscalare il suo
momento ad x = zy; tale processo viene detto �vertice di Altarelli-Parisi[23]�.
Nel caso in cui z → 1 il calcolo presenta termini divergenti (detti divergenze
collineari) che possono essere riassorbiti in φ perchè connessi alla dinamica
del singolo quark, indipendentemente dall'interazione con la sonda esterna.
Questo determina l'evoluzione in q2 di φ, ovvero il suo contributo partoni-
co al variare, appunto, della scala della sonda. Termini divergenti possono
comparire anche dai contributi di gluoni virtuali �so�ci�, cioè per xB → 1;
tali divergenze non sono riassorbibili né in φ, perché riguardano il gluone
nello stato �nale, né in C, perché romperebbero la fattorizzazione; però si
cancellano sistematicamente con le divergenze generate dai gluoni reali in
approssimazione collineare (Fattorizzazione Collineare).
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Il vertice di Altarelli-Parisi è descritto dalla cosiddetta funzione di split-
ting, che determina il contributo partonico della distribuzione φ, discrim-
ina cioè ciò che va inglobato in φ (o�-shell < µF ) da ciò che va inglo-
bato in C (o�-shell > µF ). Scegliendo per comodità |q2| = µF , al va-
riare di µF l'evoluzione in q2 viene determinata da equazioni note come
equazioni DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)[23]. La scala
di partenza (e.g. q2

0), cioè la condizione al contorno delle equazioni dif-
ferenziali accoppiate DGLAP è però arbitraria; si ha perciò la necessità di
de�nire uno schema in cui calcolare l'evoluzione e confrontarsi con i dati
consistentemente. Diverse scelte sono possibili, le più popolari sono:

• schema DIS (Altarelli, Ellis, Martinelli '79), che si basa sull'assunzione
che il QPM sia esatto a q2

0;

• schema MS (Bardeen et al., '78; Furmansky e Petronzio, '82; Collins
e Soper, '82 ), dove le distribuzioni partoniche sono de�nite come
elementi di matrice di operatori numero su stati adronici.

Le equazioni DGLAP sono d'importanza fondamentale perché, noto il risul-
tato alla scala q2

0, forniscono il risultato a q2 6= q2
0. Inoltre in combinazione

col teorema di fattorizzazione permettono, una volta ricavata l'informazione
quantitativa da un certo esperimento, di fare predizioni per altre misure a di-
verse scale energetiche (pur nello stesso schema di fattorizzazione). Il potere
predittivo viene pertanto notevolmente ampliato.

Per i processi di DIS semi-inclusivo vale un teorema di fattorizzazione
analogo al DIS inclusivo purché il processo sia collineare, cioè i momenti
trasversi dei partoni siano integrati.

Nel caso e+e−inclusivo si ha il seguente teorema dovuto a Sterman ('76)

σtot = Nc
4πα2

3q2

∑

f

e2
f

∑
n

snαn
s (q2), con s0 = 1, (1.49)

con Nc numero di colori; nel quale il primo termine �no alla sommatoria sui
sapori è interamente dovuto al QPM, e la seconda sommatoria rappresenta
il contributo fattorizzato dalle correzioni di QCD perturbative.

Per il processo alla Drell-Yan, cioè p + p → l+l− + X, abbiamo (per una
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rassegna si veda [24], pag.1):

dσ

dq2dydΩ
=

∑

f1,f2

∫ 1

ξ1
dξ1

∫ 1

x2

dξ2φf1(ξ1, µF )
dσel

dq2dydΩ

(
x1

ξ1

,
x2

ξ2

,
q2

µ2
F

, Ω, αs(µF )
)

×φf2(ξ2, µF )±O
(

1

q2

)
. (1.50)

1.5 Il DIS inclusivo polarizzato
Prendendo in considerazione reazioni inclusive di scattering profondamente
inelastico su bersagli adronici polarizzati,

e− + ~h → e− + X, (1.51)

la struttura del tensore adronico si arricchisce di una parte antisimmetrica.
Per spin 1/2 il tensore Wµν può essere al più lineare nel quadri-pseudovettore
(di spin) Sµ. Quindi è possibile espanderlo sulla base delle matrici σ di Pauli

Wµν =
∑

αα′
Wαα′

µν ραα′ =
1

2

∑

αα′
W αα′

µν (1 + P · σ)αα′ , (1.52)

dove ραα′ è la matrice densità di spin del bersaglio e Pi il vettore di polariz-
zazione de�nito da

Pi = Tr(ρσi) =< σi > . (1.53)
Il tensore adronico perciò diviene

W µν = W µν
S + W µν

A , (1.54)

dove W µν
S è dato dalla (1.27) e

W µν
A = iεµνρσqρ[A1Sσ + A2pσ], (1.55)

con

A1 = MG1 +
p · q
M

G2

A2 =
S · q
M

G2, (1.56)
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cioè il contributo scalare A1 si accoppia con lo pseudovettore S e il contri-
buto pseudosacalare A2 con il vettore p. Le funzioni G1 e G2 rappresentano
le nuove funzioni di struttura collegate al nuovo grado di libertà di polariz-
zazione. La parte antisimmetrica del tensore adronico può essere riscritta
come

W µν
A = iεµνρσqρSσ[MG1(ν, q

2) +
p · q
M

G2(ν, q
2)]− iεµνρσqρpσ

S · q
M

G2(ν, q
2)

= iεµνρσqρpσλG1(ν, q
2) + iεµνρσqρS⊥σ

(
MG1(ν, q

2) +
p · q
M

G2(ν, q
2)

)
,

(1.57)

dove λ
.
= M(S ·q)/(p ·q), rappresenta nel sistema di riferimento del bersaglio

(target rest frame, TRF) la proiezione dello spin lungo il momento trasferito,
ovvero l'elicità; mentre Sµ

⊥ = (0, ~S⊥) è lo spin trasverso.
Se nel processo DIS anche il leptone è polarizzato con elicità h = ±, anche

il tensore leptonico analogamente a quello adronico acquista una componente
antisimmetrica

Lµν = LS
µν + LA

µν , (1.58)
dove LS

µν è dato dalla (1.24) e

LA
µν = 2iεµνρσk

ρk′σ. (1.59)

La sezione d'urto si scompone anch'essa in due parti: una non polarizzata
e una polarizzata. La parte non polarizzata è dovuta alla contrazione delle
parti simmetriche dei tensori; l'altra, di conseguenza, alla contrazione delle
parti antisimmetriche:

LS
µνW

µν
S ⇒ dσ0

dE ′dΩ
=

4α2

q4
E ′2

(
2 sin2

(
θ/2

)
W1 + cos2

(
θ/2

)
W2

)
, (1.60)

LA
µνW

µν
A ⇒ d∆σh

dE ′dΩ
= −h

2α2

q2

E ′

E

{
cos α

[(
E + E ′ cos θ

)
MG1 − q2G2

]

+E ′ sin θ sin α(MG1 + 2EG2)

}
. (1.61)

L'angolo α indica la direzione della polarizzazione del bersaglio rispetto al
fascio incidente; cioè α = 0 quando S ‖ k, α = π/2 quando S ⊥ k.

Dalle espressioni (1.60) e (1.61) è possibile dedurre che le funzioni di
struttura indipendenti siano quattro: W1, W2, G1 e G2.

Ciò è dovuto alla seguente considerazione.
La sezione d'urto per assorbimento di un fotone virtuale (γ∗) con un nucleone
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bersaglio (N), indicata con σtot(γ
∗N), per il teorema ottico risulta essere

proporzionale alla parte immaginaria dell'ampiezza di scattering Compton
in avanti:

σtot(γ
∗N) ∝ Im

[
f(θ = 0)

]
. (1.62)

Per via dei tre stati di polarizzazione ±1,0 del γ∗ e ±1/2 di N , abbiamo
γ∗ Iniziale N Iniziale Stato Intermedio γ∗ Finale N Finale

1 +1 +1/2 +3/2 +1 +1/2
2 +1 -1/2 +1/2 +1 -1/2
3 +1 -1/2 +1/2 0 +1/2
4 0 +1/2 +1/2 +1 -1/2
5 0 +1/2 +1/2 0 +1/2

Nonostante i casi possibili siano cinque le funzioni di struttura indipendenti
sono in realtà quattro perchè i casi 3 e 4 sono legati da una trasformazione
di �inversione temporale�2.

Riarrangiando le quattro combinazioni indipendenti è possibile costruire
delle nuove quantità grazie alle quali poi de�nire le asimmetrie di elicità,
utilissime per il confronto sperimentale. Infatti si hanno

[
(1, 1/2) → (1, 1/2)

]
+

[
(1,−1/2) → (1,−1/2)

] .
= WT =

= W1 = σT
3/2 + σT

1/2;

(0, 1/2) → (0, 1/2)
.
= WL =

= (1 + ν2/q2)W2 −W1 = σL
1/2;[

(1, 1/2) → (1, 1/2)
]
−

[
(1,−1/2) → (1,−1/2)

] .
= WTT =

= −νMG1 + q2G2 = σT
3/2 − σT

1/2;

(1,−1/2) → (0, 1/2)
.
= WLT =

= q(MG1 + νG2) = σLT
1/2;

(1.63)
dove con gli indici L, T si sono indicate le polarizzazioni longitudinale e
trasversa del fotone e con TT e LT le possibili interferenze; mentre 1/2 e
3/2 indicano la componente (Jz) dello stato di spin intermedio.

Le asimmetrie di elicità sono de�nite come

A1 =
σT

1/2 − σT
3/2

σT
1/2 + σT

3/2

= −WTT

WT

=
νMG1 − q2G2

W1

,

2È semplice notare come lo stato iniziale del caso 3 corrisponda allo stato �nale del 4
e viceversa.
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A2 =
σLT

1/2

σT
3/2 + σT

1/2

=
WLT

WT

=
q(MG1 + νG2)

W1

. (1.64)

Il vantaggio della de�nizione è più che altro sperimentale perché rapporti
fra sezioni d'urto permettono di eliminare l'errore sistematico. Inoltre nel
rapporto tra di�erenze e somme di sezioni d'urto si enfatizzano i contributi
di�erenti nei vari canali, quindi in particolar modo le interferenze.

Le quantità accessibili sperimentalmente sono combinazioni lineari delle
asimmetrie d'elicità sopra de�nite:

• Per ~S ‖ ~k → α = 0

A‖ =
dσ↑↓ − dσ↑↑

dσ↑↓ + dσ↑↑
=

E − E ′ε
E(1 + εR)

A1 +
εq

E(1 + εR)
A2, (1.65)

dove σ↑↑ indica scattering tra elettroni e protoni longitudinalmente po-
larizzati e con spin paralleli, mentre σ↑↓ si riferisce al caso di spin
antiparalleli;

• per ~S ⊥ ~k → α = π/2

A⊥ =
dσ↑← − dσ↑→

dσ↑← + dσ↑→
=

E − E ′ε
E(1 + εR)

√
2ε(1 + ε)A2

+
εq

E(1 + εR)

√
(1 + ε)3

2ε
A1,

(1.66)

dove σ↑→ e σ↑← indicano i due stati di polarizzazione trasversa del
protone rispetto a quella longitudinale dell'elettrone; inoltre

ε =
[
1 + 2

q2

q2
tan2

(
θ/2

)]−1

(1.67)

è la polarizzazione lineare trasversa di γ∗ ed in�ne

R =
WL

WT

=
(
1 +

ν2

q2

)
W2

W1

− 1. (1.68)

Dalla misura di q2, ε, R, A‖ e A⊥ è possibile ricavare A1 e A2.
Nel limite di DIS, cioè per ν, Q2 → ∞ con xB �sso, si ha il seguente

scaling:

MW1(ν, q
2) → F1(xB) νW2(ν, q

2) → F2(xB)

M2νG1(ν, q
2) → G̃1(xB) Mν2G2(ν, q

2) → G̃2(xB). (1.69)
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Quindi per le asimmetrie di elicità si ha

A1 =
νMG1(ν, q

2)− q2G2(ν, q
2)

W1(ν, q2)
→ G̃1(xB)

F1(xB)
− 2MxB

ν

G̃2(xB)

F1(xB)
−→ G̃1(xB)

F1(xB)
,

A2 = q
MG1(ν, q

2) + νG2(ν, q
2)

W1(ν, q2)
→

√
2MxB

ν

G̃1 + G̃2

F1(xB)
−→ 0. (1.70)

In sostanza dalla conoscenza delle asimmetrie teoriche in regime DIS posso
ricavare le funzioni di struttura polarizzate.

Nel QPM il collegamento tra funzioni di struttura G̃1 e G̃2 e densità par-
toniche avviene nello stesso modo del caso non polarizzato. Dal prodotto
tensoriale LAµνW

µν
A si costruisce il contributo polarizzato alla sezione d'urto,

e lo si confronta con l'equazione (1.35), ovvero la convoluzione di un processo
elementare polarizzato e + ~q → e′ + ~q con le distribuzioni partoniche.

Alternativamente si possono riscrivere σT
3/2, σT

1/2, σLT
1/2 e σL

1/2 in funzione delle
distribuzioni partoniche di quark polarizzati longitudinalmente nei due stati
possibili q↑ (+1

2
) e q↓ (-1

2
). Per conservazione del momento angolare, γ∗↑ in-

teragisce solamente con q↓ e viceversa (per quark collineari al fotone). Infatti
consideriamo dapprima gli stati polarizzati del quark,

|q↑〉 ∝
(

χ↑
pz

E+m
χ↑

)
,

|q↓〉 ∝
(

χ↓
pz

E+m
χ↓

)
,

(1.71)

con
χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)
. (1.72)

De�niamo

γ∗↑ =

(
0 σ+

−σ+ 0

)
, γ∗↓ =

(
0 σ−

−σ− 0

)
; (1.73)

dove
σ± =

1

2
(σx ± iσy), (1.74)

è l'operatore di innalzamento/abbassamento di spin.
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L'azione di σ± sugli spinori χ± è

σ+χ↑ = 0, σ−χ↑ = χ↓,

σ+χ↓ = χ↑, σ−χ↓ = 0. (1.75)

Ciò implica

γ∗↑|q↓〉 ∝
[

0 σ+

−σ+ 0

] (
χ↓

pz

E+m
χ↓

)
=

(
pz

E+m
χ↑

−χ↑

)
≡ |q↑〉,

γ∗↑|q↑〉 ∝
[

0 σ+

−σ+ 0

] (
χ↑

pz

E+m
χ↑

)
= |0〉,

γ∗↓|q↑〉 ∝
[

0 σ−
−σ− 0

] (
χ↑

pz

E+m
χ↑

)
=

(
pz

E+m
χ↓

−χ↓

)
≡ |q↓〉,

γ∗↓|q↓〉 ∝
[

0 σ−
−σ− 0

] (
χ↓

pz

E+m
χ↓

)
= |0〉. (1.76)

Quindi, dal momento che per un bersaglio di protone polarizzato nello stato
p↑ si ha che

σT
3/2 ↔ γ∗↑p↑ ∝ ∑

f,f̄

e2
fq
↓
f ,

σT
1/2 ↔ γ∗↓p↑ ∝ ∑

f,f̄

e2
fq
↑
f , (1.77)

l'asimmetria d'elicità A1 può essere riscritta come

A1 =
σT

1/2 − σT
3/2

σT
1/2 + σT

3/2

=

∑
f,f̄ e2

f

(
q↑f − q↓f

)

∑
f,f̄ e2

f

(
q↑f + q↓f

) =
G̃1(xB)

F1(xB)
.
=

g1(xB)

f1(xB)
, (1.78)

dove
g1(xB) =

1

2

∑

f,f̄

e2
f

[
q↑f (xB)− q↓f (xB)

]
, (1.79)

rappresenta la distribuzione d'elicità . Più in generale, in QCD la distri-
buzione di elicità dipende anche da q2: g1(xB, q2).
L'interesse riguardo la funzione g1(xB, q2) è dovuto al fatto che il suo primo
momento di Mellin

Γ1(q
2)

.
=

∫ 1

0
dxg1(x, q2) =

1

2

∑

f,f̄

e2
f

∫ 1

0
dx

(
q↑f (x, q2)− q↓f (x, q2)

)
=

1

2

∑

f,f̄

e2
f∆qf

(1.80)
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sia collegabile alla carica assiale gA del nucleone, cioè ad una quantità conser-
vata. Inoltre, la carica assiale è calcolabile su reticolo attraverso l'operatore
d'elicità:

〈p, S|q̄fγ
µγ5qf |p, S〉

∣∣∣
µ2

= Sµ∆qf (µ
2) ∝ gA (1.81)

per uno stato adronico con momento trasverso p e spin S. Il risultato è in-
oltre indipendente dalla scala di rinormalizzazione µ.

Nel caso in cui, invece, i partoni abbiano momento trasverso pT non nullo
rispetto al fotone virtuale incidente, lo stato di quark polarizzato si scrive

|q↑〉 ∝
(

χ↑
pz

E+m
χ↑ + px+ipy

E+m
χ↓

)
. (1.82)

Le combinazioni possibili sono maggiori, perché

γ∗↑|q↑〉 ∝
(

0 σ+

−σ+ 0

) (
χ↑

pz

E+m
χ↑ + px+ipy

E+m
χ↓

)
=

(
px+ipy

E+m
χ↑

0

)
6= |0〉,

(1.83)
ed analogamente per γ∗↓|q↓〉.

Ad esempio considerando un bersaglio ideale costituito da un quark po-
larizzato q↑ con un solo sapore, si ha

σT
1/2 = |γ∗↓|q↑〉|2 =

(
pz

E + m

)2

+ 1,

(1.84)

σT
3/2 = |γ∗↑|q↑〉|2 =

∣∣∣∣
px + ipy

E + m

∣∣∣∣
2

=
p2

T

(E + m)2
.

Quindi se nel caso collineare pT = 0 abbiamo A1 = 1, nel caso pT 6= 0 risulta

A1 =

p2
z

(E+m)2
+ 1− p2

T

(E+m)2

p2
z

(E+m)2
+ 1 +

p2
T

(E+m)2

=
~p2 + (E + m)2 − 2p2

T

~p2 + (E + m)2

= 1− 2p2
T

~p2 + (E + m)2
= 1− 2p2

T

E2 −m2 + (E + m)2

= 1− p2
T

E(E + m)
, (1.85)

che è quantità minore di 1. Per le energie in gioco nel DIS il rapporto
p2

T /E2 è molto piccolo, e ciò ha portato per lunghi anni a ritenere che gli
e�etti legati al momento trasverso intrinseco dei partoni (cioè non generati

27



perturbativamente da correzioni radiative di QCD o dall'evoluzione DGLAP)
fossero trascurabili. Vedremo tuttavia che ciò è sempre vero in relazione
soprattutto a stati di polarizzazione trasversi alla direzione del moto.

1.6 Spin crisis

Nel QPM la funzione d'onda del quark nel protone polarizzato p↑ viene
costruita per rispettare la simmetria SU(3)flavor⊗SU(2)spin = SU(6). Limi-
tandoci ad utilizzare solo i quark di valenza (trascurando quindi il contributo
del quark strange nel protone) abbiamo

|p↑〉 =
1√
18

(
2u↑u↑d↓−u↑u↓d↑−u↓u↑d↑+permutazioni sulla posizione di d

)
.

(1.86)
Le probabilità di trovare i vari �avor nei due stati di polarizzazione sono

P (u↑) =
1

18
[4 · 2 + 1 + 1] · 3 =

5

3
,

P (u↓) =
1

18
[1 + 1] · 3 =

1

3
,

P (d↑) =
1

18
[1 + 1] · 3 =

1

3
,

P (d↓) =
2

3
,

(1.87)

da cui si possono calcolare il primo membro della distribuzione d'elicità

Γp
1(q

2) =
∫ 1

0
dxgp

1(x, q2) =
1

2

∫ 1

0
dx

[
4

9

(
u↑(x, q2)− u↓(x, q2)

)

+
1

9

(
d↑(x, q2)− d↓(x, q2)

)]
=

1

2

[
4

9
∆u +

1

9
∆d

]

=
1

2

[
4

9

(
5

3
− 1

3

)
+

1

9

(
1

3
− 2

3

)]

=
1

2

[
4

9
· 4

3
+

1

9
·
(
− 1

3

)]
=

5

18
∼= 0.28, (1.88)

28



e la distribuzione di singoletto di sapore

∆Σ
.
=

∑

f

∆qf = ∆u + ∆d =
5

3
− 1

3
+

1

3
− 2

3
= 1. (1.89)

Nel 1973 Ellis e Ja�e calcolarono con correzioni di pQCD le stesse quan-
tità nell'ipotesi di perfetta simmetria SU(3) e ∆s = 0, ottenendo risultati
abbondantemente diversi:

Γp
1(q

2) =
∫ 1

0
dxgp

1(x, q2) = 0.17± 0.01

∆Σ = 0.60± 0.12,

(1.90)

per |q2| = 10.7GeV 2. Dal confronto con i risultati della (1.88) e (1.89) si
deduce che nel QPM Γp

1 sia una quantità �ssa e lo spin sia determinato
solo dai quark di valenza (∆Σ = 1), in realtà le correzioni di QCD modi�-
cano radicalmente questo scenario, sottolineando che il ruolo dei quark del
�mare�, degli antiquark e dei gluoni (che non sono inclusi nel QPM) sia fon-
damentale. L'esperimento EMC (Cern, 1987), cioè lo scattering tra muoni
e protoni polarizzati a |q2| = 10.7GeV 2 rivelò che sia le previsioni del QPM
che quelle della regola di somma di Ellis-Ja�e erano sbagliate. Infatti i valori
sperimentali trovati furono

Γp
1(q

2) = 0.126± 0.010± 0.015 e ∆Σ = 0.13± 0.19,

con discrepanze maggiori di due deviazioni standard rispetto ai calcoli teorici.
Questo test sperimentale determinò de�nitivamente l'inadeguatezza del

QPM nel fornire previsioni riguardo lo spin del nucleone. Si determinò così
quello stato di incertezza noto come spin crisis, la quale ebbe il suo apice con
altri esperimenti (SMC, E142, E143) che confermarono i risultati di EMC. Di-
verse altre misure (soprattutto regole di somma) rivelarono che la dinamica
dello spin del nucleone presenta aspetti cruciali di natura non perturbati-
va, cioè che non possono essere descritti con tecniche di QCD perturbativa
(vedi regola di somma di Gerasimov, Drell, Hearn, (Hosada e Yamamoto)
[18],[19],[20]). E comunque dimostrarono una volta di più l'incompletez-
za della descrizione basata sul QPM. Ad esempio dalla regola di somma di
Bjorken polarizzata ∫ 1

0
dx

[
gp
1(x, q2)− gn

1 (x, q2)
]

(1.91)

otteniamo nel QPM che 0.2777 = 5/18 = 1
6
gA/gV , il che implica gA/gV = 5

3
,

dove gA, gV sono le cariche assiale e vettoriale del nucleone. Le correzioni di
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QCD perturbativa danno invece

1

6

gA

gV

(
1− αs(q

2)

π
+ O(αs)

)
= 0.191± 0.002 ⇒ gA

gV

= 1.257± 0.003.

(1.92)
Sperimentalmente invece si ottiene 0.209 ± 0.003.

Dopo l'esperimento EMC, furono formulate numerose ipotesi teoriche nel
tentativo di fornire una spiegazione a quei risultati inaspettati (solo il 13%
dello spin del nucleone sembrava essere attribuibile ai quark di valenza). Qui
di seguito ne riportiamo alcuni:

• La violazione della simmetria SU(3). Sappiamo infatti che questa sim-
metria gioca un ruolo fondamentale nel determinare ∆u e ∆d. Tuttavia
attualmente è noto che non si tratta di una simmetria completamente
rispettata e ciò potrebbe portare a correzioni signi�cative dei risultati.

• L'incertezza nell'estrapolare i dati a x −∼ 0. Il comportamento della
funzione xg1(x, q2) per x → 0 può modi�care la regola di somma.

• La possibile evoluzione non perturbativa di ∆Σ. Siccome la corrente
assiale di non singoletto non è conservata per via dell'anomalia as-
siale, ∆Σ dipende dalla scala alla quale viene misurata; è possibile che
sia grande per µ ∼ 1GeV , ma che assuma valori piccoli alle energie
dell'esperimento EMC.
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Capitolo 2

TRASVERSITÀ E
DISTRIBUZIONI PARTONICHE
GENERALIZZATE

2.1 Operator Product Expansion e de�nizione
operativa di twist

In questo paragrafo viene riportata una breve e non certo esaustiva trat-
tazione riguardo l'Operator Product Expansion (OPE) e la de�nizione di
twist di un operatore; concetti che si riveleranno utili nel prosieguo di questa
tesi.

Considerando il processo

e+ + e− → X, (2.1)

è possibile dimostrare (ved. Appendice B) che il contributo dominante al
tensore adronico

W µν =
∫

d4ξeiξ·q〈0|
[
Jµ(ξ), Jν(0)

]
|0〉, (2.2)

nel limite di Bjorken, è dato dal contributo a corte distanze, cioè ξ → 0. Ma
il prodotto di operatori nello stesso punto spazio-temporale non sempre è ben
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de�nito in teoria quantistica di campo. Ad esempio, per un campo scalare
φ(x)

〈0|φ(x)2|0〉 =
∫ d3p

(2π)32p0

∑
n

〈0|φ(0)|p, n〉〈p, n|φ(0)|0〉

≥
∫ d3p

(2π)32p0
|〈0|φ(0)|p, 1〉|2 ≡ N

∫ d3p

(2π)32p0
→∞, (2.3)

perché l'elemento di matrice, dipende solo da p2 = m2 ed è costante. La pri-
ma congettura per ovviare a questo problema venne proposta da Wilson [25]
nel '69 con l'introduzione dell'Operator Product Expansion(OPE), di-
mostrato in seguito nel '73 da Zimmermann in teoria delle perturbazioni.
Dati un operatore A de�nito nel punto x ed un operatore B in un punto y,
il loro prodotto risulta

Â(x)B̂(y) ≡
∞∑

i=0

Ci(x− y)Ôi

(
x + y

2

)
, (2.4)

in cui:

• gli operatori locali Ôi sono regolari in (x + y)/2 ∀ i = 0, 1, 2, ...;

• la divergenza per x → y è assorbita nei coe�cienti Ci;

• i termini sono ordinati per singolarità decrescenti in Ci, i = 0, 1, 2, ...;

• generalmente Ô0 = I, ma l'espressione esplicita dell'espansione va
trovata separatamente per ogni tipo di processo;

• l'OPE è anche una de�nizione operativa perché può essere usata per
de�nire un operatore composito regolare. Ad esempio: nella teoria φ4,
l'operatore composito φ2(x) può essere costruito come

φ2(x) ≡ lim
x→y

φ(x)φ(y)− C0(x− y)

C1(x− y)
= Ô1(x). (2.5)

L'OPE purtroppo non può essere applicato a tutti i tipi di processi, infat-
ti risulta dimostrabile solo per e+e− e DIS inclusivi. Questa limitazione è
dovuta essenzialmente al fatto che, mentre per i processi appena citati il ten-
sore adronico contiene il commutatore di due operatori di corrente

(
ved. eq.

(2.2)
)
, nei casi semi-inclusivi tra i prodotti degli operatori corrente compare

lo stato adronico �nale incognito che impedisce di utilizzare la relazione di
completezza.
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Tuttavia questo problema può essere aggirato attraverso una procedura
consistente nella classi�cazione dei contributi dominanti ai vari processi hard
attraverso lo studio sistematico dei diagrammi coinvolti, nota appunto con il
nome di diagrammatic approach. Il diagrammatic approach consente infatti
di ritrovare i risultati dell'OPE per quanto riguarda i processi inclusivi e di
generalizzare la ricerca del contributo dominante per i processi semi-inclusivi.

Per un generico operatore locale Oµ1...µn

d,n simmetrico a traccia nulla di spin
n e dimensione d, è possibile dimostrare il seguente risultato. L'elemento di
matrice dell'operatore su uno stato adronico |p〉 ha la seguente forma

〈p|Oµ1...µn

d,n |p〉 ∼ Md−n−2p[µ1 ...pµ2]An + O
(

M2

Q2

)
(2.6)

dove le parentesi quadrate negli apici indicano la parte simmetrica e a traccia
nulla del tensore, il termine An rappresenta una funzione di struttura non
perturbativa, e la potenza di M è regolata da questioni dimensionali.

Da questo risultato è possibile ricavare la seguente forma per il tensore
adronico Wµν ,

Wµν ∼ tµν

∑

k

(
M

Q

)d−nk−2( 1

xB

)nk

Ank
, (2.7)

con tµν tensore di rango due (per esempio gµν) e Q ≡ √−q2. Dall'espres-
sione appena riportata è semplice accorgersi che nel limite per Q2 → ∞
l'importanza di un operatore è determinata dalla quantità

t
.
= d− n = dimensione− spin, (2.8)

nota in letteratura con il nome di �twist�, che assume valori ≥ 2 (per t = 2 si
ha lo scaling in regime di DIS). Il twist di un operatore locale quindi è molto
importante per classi�care i contributi dominanti.

Come abbiamo visto nella (2.2), nei vari processi le quantità coinvolte
riguardano operatori bilocali, ai quali però la de�nizione di twist non è ap-
plicabile direttamente. Quindi per gli operatori bilocali non è possibile e�et-
tuare un'analisi in twist per determinarne i contributi dominanti se non dopo
aver applicato l'OPE e aver rappresentato l'operatore bilocale come una serie
in�nita di operatori locali. Questo problema venne risolto da Ja�e nel 1995,
il quale fornì una de�nizione operativa di twist anche per gli operatori bilocali
regolari. Il twist per un operatore bilocale risulta essere uguale alla potenza
dominante in M/Q a cui l'elemento di matrice dell'operatore contribuisce al
processo considerato nel limite di corte distanze. Le potenze di M necessarie
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si determinano decomponendo l'elemento di matrice in tensori di Lorentz,
costruiti con i vettori indipendenti del processo, e facendo un'analisi dimen-
sionale. La de�nizione operativa di Ja�e non coincide con quella data in eq.
(2.8), ma è più comoda e permette di stimare direttamente le correzioni di
potenze in 1/Q.

Come dimostrato in Appendice B per il processo l'annichilazione e+e−,
anche per il processo di DIS (sia inclusivo che semi-inclusivo) il contributo
dominante al tensore adronico viene dalla regione cinematica ξ2 → 0. Di
conseguenza è utile quantizzare la teoria sul cono di luce, cioè di imporre le
regole di quantizzazione su un iperpiano che si muove sul cono di luce (v = c)
a x+ ∝ t + x3 costante, anziché de�nirle su un iperpiano a t = cost.

2.2 Quantizzazone Light-cone
Nel'ambito della quantizzazione light-cone (LC), un generico quadrivettore
z viene rappresentato come zµ = [z+, z−, z⊥], con componenti LC z± =
(z 0 ± z 3)/

√
2 e parte trasversa z⊥ = (z 1, z 2). Il prodotto scalare di due

quadrivettori è determinato dal tensore metrico

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 ,

cioè
z · z′ = zµz′µ = gµνzµz

′
ν = z+z′− + z−z′+ − z⊥ · z′⊥. (2.9)

I versori light-like divengono quindi

n+ ≡ [1, 0,0⊥] e n− ≡ [0, 1,0⊥], (2.10)

con n2
+ = n2

− = 0 e n+ · n− = 1. Sfruttando questi nuovi versori possiamo
proiettare le componenti LC dei vettori attraverso i seguenti prodotti scalari

z+ = n− · z, z− = n+ · z. (2.11)

Un boost di Lorentz lungo l'asse ẑ a velocità v produce le trasformazioni

x̃0 =
x0 − vx3

√
1− v2

, x̃3 =
x3 − vx0

√
1− v2

, x̃1 = x1, x̃2 = x2. (2.12)

34



Le stesse relazioni riscritte con notazione LC prendono la forma

x̃+ = x+ exp(ψ), x̃− = x− exp(−ψ), x̃⊥ = x⊥. (2.13)

dove l'angolo iperbolico ψ è dato da ln[(1 − v)/(1 + v)]/2, cosicché v =
− tanh ψ.

Un'altra trasformazione di Lorentz che tornerà particolarmente utile è
il boost trasverso (crf e.g. [26]) che lascia la componente + del vettore z
invariata:

zµ = [z+, z−, z⊥]

−→ z̃µ =
[
z+, z− − z⊥ · b⊥

b+
+

z+b2
⊥

2(b+)2
, z⊥ − z+

b+
b⊥

]
(2.14)

con

z̃2 = 2z+z− − 2z+z⊥ · b⊥
b+

+ 2z+ z+b2
⊥

2(b+)2
− z2

⊥ + 2
z+

b+
z⊥ · b⊥

−
(

z+

b+

)2

b2
⊥ = 2z+z− − z2

⊥ = z2. (2.15)

Boosts trasversi e rotazioni in genere non commutano. Infatti in entrambi
i casi una rotazione nelle coordinate spaziali produce lo stesso e�etto sulle
componenti trasverse del momento. Ma una rotazione lascia invariata la com-
ponente legata all'energia e quindi produce una variazione della componente
LC +, mentre ciò non avviene per il boost.

Si rivelerà utile per il prosieguo de�nire i seguenti proiettori

P± =
1

2
γ∓γ± (2.16)

con
γ± =

1

2

(
γ0 + γ3

)
, (2.17)

tali che

P+P− = 1, P+P− = P−P+ = 0, P2
± = P±, (2.18)

e
P±γ∓ = γ∓P∓, P±γ± = 0, P±γ⊥ = γ⊥P±. (2.19)

Il metodo canonico per quantizzare le teorie di campo consiste nell'im-
porre le regole di commutazione tra i campi dinamicamente indipendenti a
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tempi uguali, ad es. z0 = 0. Come diretta conseguenza dell'invarianza rispet-
to alle trasfomazioni di Lorentz ogni altra scelta dell'iperpiano space-like nel-
lo spazio di Minkowsky risulta essere equivalente. Un iperpiano light-front,
de�nito ad es. da z+ = 0, può essere visto come caso limite di una sequenza
di iperpiani space-like.

Nel seguito considereremo la quantizzazione LC per campi fermionici ψc
q

di �avor q e colore c nel gauge in cui la componente del campo gluonico è
nulla, A+ = 0. Ad un dato tempo LC, z+=0, i gradi di libertà indipendenti
della QCD sono le cosiddette componenti LC �buone� dei campi, ovvero φc

q

≡ P+ψc
q, e le componenti trasverse del potenziale del gluone Ac

α, con α =
1, 2 indice trasverso e c indice di colore. I campi dipendenti, o componenti
�cattive� sono χc

q ≡ P−ψc
q e risultano sistematicamente soppressi almeno come

1/Q; non possono quindi contribuire al tensore adronico al twist dominante.
Un metodo semplice per poter mostrare il di�erente ruolo delle compo-

nenti �buone� e �cattive� consiste nel proiettare con P± l'equazione di Dirac,
ottenendo così due equazioni distinte (omettendo per semplicità gli indici di
colore e quark)

iγ+D−φ = i~γ⊥ ·D⊥χ + mχ (2.20)
iγ−D+φ = i~γ⊥ ·D⊥φ + mφ, (2.21)

dove D± = ∂/∂z∓ + igA±. Solo l'equazione (2.20) descrive la propagazione
di gradi di libertà �sici.

I campi dinamici indipendenti a z+ = 0 hanno la seguente espansione di
Fourier nello spazio dei momenti (vedi, e.g. [26], Appendix II)

φc
q(z

−, z⊥) =
∫ dk+d2k⊥

16π3k+
Θ(k+)

×∑
µ

{bq(w)u+(k, µ) exp(−ik+z− + ik⊥ · z⊥)

+d†q(w)v+(k, µ) exp(+ik+z− − ik⊥ · z⊥) (2.22)

per il campo di quark libero, e

Ac
α(z−, z⊥) =

∫ dk+d2k⊥
16π3k+

Θ(k+)

×∑
µ

{a(w)εα(k, µ) exp(−ik+z− + ik⊥ · z⊥)

+a†(w)ε∗α(k, µ) exp(+ik+z− − ik⊥ · z⊥) (2.23)

per quanto riguarda il campo di gluone libero, dove Θ(k+) è l'usuale fun-
zione a gradino e w = (k+,k⊥, µ, c) raccoglie la dipendenza collettiva dalle
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componenti + e trasversa del momento del partone, dall'elicità e dal colore.
Gli operatori b e d † rispettivamente annichilano una componente �buona� dei
campi di quark e creano una componente �buona' per i campi di antiquark;
inoltre u+(k, µ) ≡ P+u(k, µ) e v+(k, µ) ≡ P+v(k, µ) sono le proiezioni degli
spinori di quark e antiquark sulle componenti �buone�. Invece a e a† sono
gli operatori di annichilazione e creazione per la componente trasversa dei
gluoni, e εα(k, µ) è una componente trasversa del vettore di polarizzazione
del gluone. Gli operatori di quark e antiquark soddisfano le seguenti regole
di anticommutazione

{bq′(w
′), b†q(w)} = {dq′(w

′), d†q(w)}
= 16π3k+δ(k′+ − k+)δ(2)(k′⊥ − k⊥)δq′qδµ′µδc′c,(2.24)

e gli operatori di gluone soddisfano la regola di commutazione

[a(w′), a†(w)] = 16π3k+δ(k′+ − k+)δ(2)(k′⊥ − k⊥)δµ′µδc′c. (2.25)

2.3 Funzioni di distribuzione partoniche (PDF)
al twist dominante

Il tensore adronico per il DIS inclusivo può essere approssimato nel seguente
modo

2MW µν ∼ 1

2

∑

f

e2
f

∫
dp−dp⊥Tr

[
Φ(p, P, S)γµγ+γν + Φ̄(p, P, S)γνγ+γµ

]∣∣∣∣
p+=xP+

,

(2.26)

con

Φ(p, P, S) =
∫ d4ξ

(2π)4
e−ip·ξ〈P, S|ψ̄f (ξ)ψf (0)|P, S〉

=
∑

SX

∫ dPX

(2π)32P 0
X

〈P, S|ψ̄f (0)|PX , SX〉〈PX , SX |ψf (0)|P, S〉δ(P− p−PX)

(2.27)
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il correlatore quark-quark, cioè un operatore bilocale nei campi di quark
e valutato su uno stato adronico di momento P e spin S, dove i partoni
trasportano la frazione LC di momento x = p+/P+ e PX il momento dello
stato �nale su cui si somma.

Nella sezione precedente si è visto come nella cinematica light-cone le
componenti leading twist siano quelle �buone�, cioè non soppresse, e possono
essere isolate attraverso il proiettore P+. Applicando lo stesso metodo al
correlatore della (2.27) si estraggono le distribuzioni partoniche al leading
twist. Infatti

P+

{ ∫
dp−dp⊥Φ(p, P, S)|p+=xP+

}
γ+

= P+

{ ∫ dξ−

2π
eixP+ξ−〈P, S|ψ̄f (ξ

−)ψf (0)|P, S〉
∣∣∣∣
ξ+=ξ⊥

}
γ+, (2.28)

dove S = (0,S), S = (λ,ST ). Mediante l'operazione di traccia de�nita da

Φ[Γ](x, S) =
∫

dp−dp⊥Tr
[
Φ(p, P, S)Γ

]∣∣∣∣
p+=xP+

, (2.29)

è possibile isolare tre funzioni partoniche al twist due:

f1(x) = Φ[γ+] =
∫ dξ−

2π
eixP+ξ−〈P |ψ̄f (ξ

−)γ+ψf (0)|P 〉; (2.30)

λg1(x) = Φ[γ+γ5] =
∫ dξ−

2π
eixP+ξ−〈P |ψ̄f (ξ

−)γ+γ5ψf (0)|P 〉; (2.31)

Si
T h1(x) = Φ[iσi+γ5] =

∫ dξ−

2π
eixP+ξ−〈P |ψ̄f (ξ

−)iσi+γ5ψf (0)|P 〉.(2.32)

Al variare di Γ in una base di matrici di Dirac indipendenti (1, γ5, γµ, γ5γµ, σµν)
si ricavano le espressioni per le distribuzioni partoniche (PDF) anche ai twist
soppressi. Ad esempio le distribuzioni al twist tre sono date da

Φ[1](x, S) =
M

P+
e(x),

Φ[γiγ5](x, S) =
M

P+
Si

T gT (x),

Φ[iσ+−γ5](x, S) =
M

P+
λhL(x),

(2.33)

dove il termine M/P+ ∼ M/Q corrisponde al contributo soppresso secondo
la de�nizione di twist e�cace.
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Diamo ora l'interpretazione probabilistica delle PDF al leading twist.
Le PDF denominati f1(x) e g1(x) sono quantità note. Infatti f1(x) rap-

presenta la probabilità di trovare un quark con una frazione x del momento
longitudinale dell'adrone genitore1; mentre g1(x) rappresenta la distribuzione
di elicità, cioè per un adrone polarizzato longitudinalmente con elicità λ for-
nisce l'elicità netta (cioè la di�erenza tra elicità parallele e opposte a λ) di
quark longitudinalmente polarizzati con frazione x del momento dell'adrone
genitore. Questo risultato può essere semplicemente dimostrato utilizzando
i proiettori di elicità

PR/L =
1± γ5

2
, con

[
PR/L,P±

]
= 0. (2.34)

Il correlatore quark-quark per f1(x) coinvolge la traccia su γ+ e quindi una
combinazione operatoriale del tipo

ψ̄γ+ψ = ψ†P+ψ = φ†φ

= φ†
(
PR + PL

)
φ = φ†

(
PR + PL

)†(PR + PL

)
φ

= φ†
(
P†RPR + P†LPL

)
φ = R̄R+ L̄L, (2.35)

che è proprio la distribuzione di momento sommata su tutte le elicità, cioè
non polarizzata. Per g1(x) si ha invece

ψ̄γ+γ5ψ = ψ†P+γ5P+ψ = φ†
(
PR − PL

)
φ

= φ†
(
P†RPR − P†LPL

)
φ = R̄R − L̄L, (2.36)

cioè lo sbilanciamento tra quark destrorsi e sinistrorsi rispetto alla direzione
de�nita da λ, cioè l'elicità netta g1(x).

La terza PDF, h1(x), rappresenta in un adrone trasversalmente polarizza-
to la densità del numero di quark con frazione di momento x e polarizzazione
parallela a quella dell'adrone, meno la densità del numero di quark con la
stessa frazione di momento e polarizzazione antiparallela. L'interpretazione
probabilistica di questa PDF sulla base di elicità non è possibile perché

ψ̄iσi+γ5ψ = φ†
(
P†LγiPR − P†RγiPL

)
φ, (2.37)

1Equivalente alla notazione qf (x) la notazione f1(x) trova la sua giusti�cazione nel
rappresentare compattamente il fatto che il quark non è polarizzato -lettera f - e che il con-
tributo è dominante -indice 1-; per il caso polarizzato si usa la lettera g per polarizzazione
longitudinale e h per quella trasversa.
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che non è più un'espressione diagonale e mischia le componenti di elicità.
Tuttavia sulla base di spin trasverso, utilizzando i proiettori di spin trasverso
de�niti da

P↑/↓ =
1± γiγ5

2
, (2.38)

la traccia del correlatore quark-quark con l'operatore iσi+γ5 fornisce la seguente
espressione

ψ̄iσi+γ5ψ = φ†
(
P†↑P↑ − P†↓P↓

)
φ, (2.39)

quindi h1(x) può essere interpretata come distribuzione di spin trasverso del
protone, nota più comunemente con il nome di trasversità .

2.3.1 Trasversità e sue proprietà

La trasversità [27] venne introdotta per la prima volta nel 1979 da Ralston e
Soper in un lavoro riguardante il processo di Drell-Yan polarizzato, nel quale
era indicata come hT (x); dopodiché venne apparentemente dimenticata a
causa di un pregiudizio di�uso secondo il quale gli e�etti di spin trasverso
dovrebbero essere soppressi perché in approssimazione di quark senza massa
e per urti collineari la QCD proibisce processi che cambiano l'elicità. Fu
riscoperta solamente negli anni novanta, grazie ai lavori di Artru e Mekh�
(1990), che la chiamarono ∆1q(x), e di Ja�e e Ji [28] che la ribattezzarono
h1(x) (vedi nota di pag. precedente).

Dal punto di vista sperimentale la trasversità essendo una quantità che
non conserva l'elicità, non è facilmente testabile negli usuali processi di scat-
tering, che richiedono simmetria per trsformazioni di elicità. Ad esempio
non è accessibile nei processi di DIS inclusivo. Infatti nel QPM per il DIS
inclusivo si ha un parallelo tra le funzioni di struttura e le PDF f1(x) e g1(x)

f1(x) → F1(x) =
1

2

∑

f

e2
f [f

f
1 (xB) + f̄ f

1 (xB)] =
1

2

∑

f,f̄

e2
f [q

↑
f (xB) + q↓f (xB)],

g1(x) → G1(x) =
1

2

∑

f

e2
f [g

f
1 (xB) + ḡf

1 (xB)] =
1

2

∑

f,f̄

e2
f [q

↑
f (xB)− q↓f (xB)],

(2.40)

mentre h1(x) non ha controparte a livello di funzioni di struttura, perché per
il DIS inclusivo polarizzato, nel tensore adronico antisimmetrico W µν

A di eq.
(1.57) il contributo di G2 è legato alla polarizzazione trasversa dell'adrone,
ma è soppresso rispetto a quello di G1 in quanto contribuisce al twist 3.
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Per anni quindi i �sici hanno creduto che lo spin trasverso generasse
e�etti al twist 3, legando G2 alla PDF gT (vedi eq. (2.33)). In realtà, questo
pregiudizio si basa sulla confusione tra polarizzazione trasversa dell'adrone
(al twist 3 nel tensore adronico) e distribuzione di spin trasverso dei partoni,
che non necessariamente deve apparire solo al twist tre:

Φ[Γ] spin long. Φ[Γ] spin trasv.
twist 2 γ+γ5 λg1 iσi+γ5 Si

T h1

twist 3 iσi+γ5 λhL γiγ5 Si
T gT

In sostanza quindi h1(x) ha esattamente la stessa importanza di f1(x) e
g1(x) al twist 2. Infatti se, come visto, sulla base di elicità f1(x) e g1(x) sono
diagonali mentre h1(x) no, sulla base di trasversità la situazione è opposta.

Tutte le distribuzioni partoniche sono de�nite nel sistema di riferimen-
to detto �In�nite Momentum Frame� (IFM), in cui si considera un boost
di Lorentz in direzione z, per Q → ∞. Se ci mettessimo però in un rifer-
imento non relativistico le rotazioni di Galileo e i boosts commuterebbero
e di conseguenza g1 e h1 sarebbero la stessa cosa. Quindi dallo studio del-
la distribuzione di spin trasverso è possibile ottenere informazioni sul moto
relativistico dei quark nel nucleone.

Dal momento che h1 non conserva l'elicità (e quindi neanche la chiralità,
da cui il nome gergale di �chiral-odd� PDF), essa presenta proprietà peculiari
per quanto riguarda l'evoluzione. Per adroni genitori con spin 1/2 come il
nucleone, le variazioni d'elicità massime sono ∆λ = ±1. Pertanto h1, che
mischia le componenti di elicità, non può essere de�nita per oggetti come
i gluoni, che hanno elicità intera e possono presentare variazioni del tipo
∆λ = ±2. Durante l'evoluzione secondo le equazioni DGLAP, dunque la h1

di un quark non può ricevere contributi da gluoni radiativi. Inoltre il primo
momento di Mellin della trasversità, che risulta proporzionale alla carica
tensoriale, ha una struttura dispari per trasformazioni di carica. Quindi a
di�erenza di ciò che accade per l'elicità, l'evoluzione di h1(x,Q2) non riceve
contributi neppure da coppie del mare di Dirac. In sostanza è molto diversa
in linea di principio da quella delle altre PDF al twist dominante. Esplorare
tale comportamento è quindi un test probante della QCD in regime non
perturbativo.

Poiché le sezioni d'urto non mischiano l'elicità, sono cioè �chiral-even�, il
problema di estrarre la trasversità dai dati si traduce nel problema di trovare
al leading twist una combinazione che coinvolga la trasversità accoppiata ad
un'altra funzione partonica di tipo �chiral-odd�.

Il processo più semplice è la collisione di protoni trasversalmente polariz-
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zati nel proceso di Drell-Yan

p↑ + p↑ → l+l− + X, (2.41)

grazie al quale vengono calcolate le asimmetrie di spin

ATT =
dσ(p↑p↑)− dσ(p↑p↓)
dσ(p↑p↑) + dσ(p↑p↓)

∝ ∑

f,f̄

e2
f

h1(x1)
f h̄f

1(x2)

f f
1 (x1)f̄

f
1 (x2)

. (2.42)

In questo processo la trasversità è il partner �chiral-odd� di se stessa. Però
le asimmetrie sono molto piccole, circa l'1%, in quanto coinvolgono la dis-
tribuzione di spin trasverso per l'antiquark, che nel protone risulta soppressa.
In alternativa si possono considerare processi alla Drell-Yan con antiprotoni

p↑ + p̄↑ → l+l− + X, (2.43)

ma di questi esperimenti per ora esistono solamente progetti, perché ottenere
antiprotoni polarizzati trasversalmente è complicato.

Un altro processo da cui è possibile estrarre la trasversità è il DIS semi-
inclusivo polarizzato. Ad esempio, nello scattering su un bersaglio di protoni
trasversalmente polarizzati, se nello stato �nale si rivela una particella λ
trasversalmente polarizzata,

e + p↑ → e′ + Λ↑ + X, (2.44)

si può calcolare l'asimmetria di spin

DNN =
dσ(p↑Λ↑)− dσ(p↓Λ↓)
dσ(p↑Λ↑) + dσ(p↓Λ↓)

∝ ∑

f,f̄

e2
f

h1(x)fHf
1 (z)

f f
1 (x)Df

1 (z)
, (2.45)

dove Hf
1 (z) e Df

1 (z) sono funzioni che descrivono la frammentazione di un
quark polarizzato trasversalmente, oppure non polarizzato, nell'adrone λ.

Anche qui, però, si hanno dei problemi per estrarre h1(x). Infatti, Hf
1 ,

contiene informazioni sul meccanismo di trasferimento della polarizzazione
dal quark alla Λ, che non è non ancora ben noto.

Un'ulteriore possibilità che è stata presa in considerazione in tempi re-
centi, si basa sulla considerazione che nel processo di SIDIS i quadrivettori
momento indipendenti (nucleone iniziale, P , sonda esterna, q, e adrone �-
nale, Ph,) non sono tra loro collineari. Pertanto se la sezione d'urto rimane
di�erenziale rispetto ad esempio dPhT , allora si può avere sensibilità ai mo-
menti trasversi intrinseci dei partoni nel vertice hard. Questa osservazione
implica una struttura più ricca nelle PDF e FF al twist 2. In questo mo-
do la trasversità può accoppiarsi a diverse altre distribuzioni partoniche o
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funzioni di frammentazione, incrementando le opportunità per individuare
meccanismi di estrazione. Ad esempio il nuovo correlatore quark-quark, nel
caso dell'operatore iσi+γ5 diviene

Φ[iσi+γ5](x,pT , S) = Si
T h1T (x,p2

T ) +
pi

T

M

[
λh⊥1L(x,p2

T ) +
pT · ST

M
h⊥1T (x,p2

T )
]
.

(2.46)
Analogamente a quanto visto per le PDF, anche la struttura delle FF si
arricchisce e questo permette di studiare un e�etto non perturbativo legato
al momento angolare orbitale dei partoni, l'e�etto Collins [30], che interviene
nel processo

e + p↑ → e′ + π + X. (2.47)
Mantenendo la sezione d'urto di�erenziale in dPhT si può costruire un'asim-
metria del tipo

∫
dφsdPhT

|PhT |
Mh

sin(φc)
(
dσ↑ − dσ↓

)

∫
dφsdPhT

(
dσ↑ + dσ↓

) ∝ ∑

f,f̄

e2
f

zhf
1(x)H

⊥f(1)
1 (z)

f f
1 (x)Df

1 (z)
, (2.48)

dove φs è l'angolo azimutale della direzione di polarizzazione del protone
bersaglio al piano di scattering, e φc = φs + φh è l'angolo di Collins, con φh

angolo azimutale che identi�ca la direzione di Ph. H
⊥f(1)
1 (z) è data da

H
⊥f(1)
1 (z) =

∫
dkT

k2
T

2Mh

H⊥f
1 (z,k2

T ), (2.49)

dove H⊥f
1 (z,k2

T ) è la funzione di Collins, ovvero la funzione che descrive
la frammentazione di un quark trasversalmente polarizzato, di sapore f e
momento trasverso kT , in un adrone non polarizzato con frazione di energia
z. L'indice 1 segnala che la funzione è al twist 2, mentre il simbolo �⊥�
richiama la necessità di costruire asimmetrie pesate col momento PhT (vedi
eq. SSA Collins).

Questo e�etto consiste nel trasferire la polarizzazione del quark di fram-
mentazione non alla polarizzazione trasversa dell'adrone, ma al moto orbitale
di un adrone non polarizzato descritto dal suo momento trasverso PhT . Una
possibile congettura per l'interpretazione di questo e�etto è quella fornita
da Artru [31], secondo il quale se il fotone γ∗ colpisce un quark polariz-
zato nel nucleone, la stringa di colore tra il quark polarizzato e la coppia
di partoni �spettatori� ha un momento angolare orbitale determinato dalla
polarizzazione trasversa del nucleone bersaglio; quando la stringa si rompe,
viene generata una coppia qq̄, che possiede momento angolare e determina
l'asimmetria azimutale nell'emissione dell'adrone �nale osservato (vedi Fig.
2.1).
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Figura 2.1: Rappresentazione gra�ca dell'interpretazione di Artru all'e�etto
Collins

2.4 Distribuzioni partoniche generalizzate (GPD)

Per determinare come lo spin del nucleone viene costruito in base allo spin
dei suoi costituenti, le PDF non sono su�cienti, occorre introdurre uno stru-
mento teorico molto più potente: la distribuzione partonica generalizzata
(GPD) (per una rassegna ved. [32]). Essa interviene ad esempio nel calcolo
di processi di scattering Compton profondamente virtuali (Deeply Virtual
Compton Scattering, DVCS)

e + p → e′ + p′ + γ (2.50)

per regime cinematico Q2 → ∞, xB �sso e t = (p− p′)2 piccolo, ma diverso
da zero. Infatti per studiare i processi di DVCS, che sono non diagonali
nello stato adronico (p 6= p′), si introduce il correlatore quark-quark non
diagonale [29]

Φ′(P̄ , P, P ′, S, S ′) =
∫ d4z

(2π)4
eip̄·z〈P ′, S ′|ψ̄

(
− z

2

)
ψ

(
z

2

)
|P, S〉, (2.51)

con P̄ = (P + P ′)/2.
Analogamente al caso delle PDF, anche per le GPD è possibile e�ettuare

un'analisi in twist del correlatore. L'estrazione del contributo dominante

44



avviene esattamente come per le PDF, decomponendo il correlatore Φ′ in
termini delle strutture di Dirac e dei quadrivettori P , P ′, S, S ′, integrando
nella direzione LC − soppressa e proiettando le componenti LC �buone�
attraverso gli operatori γ+, γ+γ5, iσi+γ5:

Φ′[γ+] =
∫ dz−

(2π)
eixP̄+·z〈P ′, S ′|ψ̄

(
− z−

2

)
γ+ψ

(
z−

2

)
|P, S〉

∣∣∣∣
z+=z⊥=0

=
1

p̄+
ū(P ′, S ′)

{
γ+H(x, ξ, t) +

iσ+ν∆ν

2M
E(x, ξ, t)

}
u(P, S),

Φ′[γ+γ5] =
∫ dz−

(2π)
eixP̄+·z〈P ′, S ′|ψ̄

(
− z−

2

)
γ+γ5ψ

(
z−

2

)
|P, S〉

∣∣∣∣
z+=z⊥=0

=
1

p̄+
ū(P ′, S ′)

{
γ+γ5H̃(x, ξ, t) +

γ5∆
+

2M
Ẽ(x, ξ, t)

}
u(P, S),

Φ′[iσi+γ5] =
∫ dz−

(2π)
eixP̄+·z〈P ′, S ′|ψ̄

(
− z−

2

)
iσi+γ5ψ

(
z−

2

)
|P, S〉

∣∣∣∣
z+=z⊥=0

=
1

p̄+
ū(P ′, S ′)

{
σi+γ5HT (x, ξ, t) +

εi+αβ∆αP̄ β

2M
H̃T (x, ξ, t)

+
εi+αβ∆αγβ

2M
ET (x, ξ, t) +

εi+αβP̄αγβ

2M
ẼT (x, ξ, t)

}
u(P, S),

(2.52)
dove p̄+ = xP̄+ è il momento medio del partone. Osservando l'espressione
dei vari correlatori si vede che questi sono non diagonali anche nello spin
dell'adrone S 6= S ′, quindi è possibile modi�care l'elicità del nucleone. Di
conseguenza il numero delle GPD rispetto a quello delle PDF raddoppia o
quadruplica a seconda che si conservi o meno l'elicità del quark. Abbiamo
quindi, per il caso dei proiettori γ+ e γ+γ5, due GPD �chiral-even ciascuno�:
H, E e H̃, Ẽ; le funzioni E eẼ relative al cambio d'elicità del nucleone.
Invece per l'operatore σi+γ5 abbiamo quattro GPD chiral-odd: HT , ET , H̃T

e ẼT . Ciascuna GPD dipende, oltre che da x e t, dal parametro ξ = (p+ −
p′+)/(p+ + p′+), cioè dal cambio di momento longitudinale del partone.

Dal momento che il correlatore è non diagonale le GPD non sono densità
di probabilità come le PDF, ma ampiezze di interferenza tra due stati di�er-
enti, per questo non si ha la possibilità di un'immediata interpretazione dal
punto di vista probabilistico.

Per poter interpretare le GPD probabilisticamente bisogna ricorrere al-
la rappresentazione overlap ideata da Diehl et al. [33], che tratteremo in
dettaglio nel capitolo 3.

Le GPD sono uno strumento molto generale e �essibile, infatti prenden-
done il limite diagonale (forward) per ξ , t → 0 esse riproducono le PDF al
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twist due,

H(x, 0, 0) = f1(x) (2.53)
H̃(x, 0, 0) = g1(x), (2.54)

HT (x, 0, 0) = h1(x). (2.55)

Inoltre, calcolando il primo momento di Mellin delle GPD H e E si ottengono
i fattori di forma dell'adrone considerato. Ad esempio, per il nucleone

∫ 1

−1
dxH(x, ξ, t) = F1(t),

∫ 1

−1
dxE(x, ξ, t) = F1(t),

(2.56)

con F1/2 fattore di forma elettrico e magnetico. Analogamente, dal primo
momento di Mellin delle GPD H̃ e Ẽ si ottengono il fattore di forma assiale,
gA(t), e pseudoscalare, gP (t).

∫ 1

−1
dxH̃(x, ξ, t) = gA(t),

∫ 1

−1
dxẼ(x, ξ, t) = gP (t).

(2.57)
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Capitolo 3

RAPPRESENTAZIONE A
OVERLAP DELLE
DISTRIBUZIONI
PARTONICHE
GENERALIZZATE

3.1 Decomposizione degli stati alla Fock
L'ingrediente essenziale per l'interpretazione probabilistica delle funzioni fe-
nomenologiche coinvolte nella descrizione dei processi di scattering hard è
la decomposizione degli stati di Fock [26], i.e., la descrizione di uno stato
adronico attraverso una sovrapposizione di stati di Fock partonici contenenti
i quanti liberi delle componenti LC �buone� dei campi di (anti)quark e gluoni.
Gli autostati di momento del singolo quark, antiquark o gluone sono generati
dall'azione degli operatori b†, d † e a† sul vuoto perturbativo1,

|q; w〉 = b†q(w)|0〉,
|q; w〉 = d†q(w)|0〉,
|g; w〉 = a†q(w)|0〉, (3.1)

1Si assume un vuoto perturbativo �banale�, i.e., b|0〉 = d|0〉 = a|0〉, e vengono ignorati
possibili problemi dovuti ai modi di zero, che esulano dallo scopo di questa tesi.
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e grazie alle regole di (anti)commutazione (2.24) e (2.25) è possibile ottenere
la normalizzazione di questi stati

〈s′; w′|s; w〉 = 16π3k+δ(k′+ − k+)δ(2)(k′⊥ − k⊥)δs′sδµ′µδc′c (3.2)

per partoni s ' e s di ogni tipo. Un generico stato adronico di momento p e
elicità λ viene scritto

|H; p, λ〉 =
∑

N,β

∫
[dx]N [d2k⊥]NΨλ

N,β(r)|N, β; k1, ..., kN〉, (3.3)

dove Ψλ
N,β(r) è la funzione d'onda LC (LCWF) di momento dello stato di

Fock ad N -partoni |N, β; k1, ..., kN〉. L'indice β indica la sua composizione
partonica, oltre che il sapore, l'elicità e il colore di ogni partone.

I partoni sono caratterizzati, oltre che dai loro numeri quantici (sapore,
elicità e colore), dai loro momenti ki = [k+

i , k−i ,k⊥i]. Le LCWFs, d'altro
canto non dipendono dal momento dell'adrone, ma solo dalle coordinate di
momento del partone relative al momento dell'adrone; ovvero, in altre parole,
il moto del centro di massa può essere separato dal moto relativo dei par-
toni. Gli argomenti della LCWF r, cioè xi ≡ k+

i /p+ e il momento trasverso
k⊥i, possono venire identi�cati più facilmente in sistemi di riferimento in cui
l'adrone ha momento trasverso nullo. Questi tipi di riferimenti sono denom-
inati �Hadron-Frames� ed in essi viene nuovamente utilizzata una notazione
collettiva

ri = (xi,k⊥i), (3.4)
con la prescrizione che Ψλ

N,β(r) = Ψλ
N,β(r1, ..., rN) per gli argomenti delle

LCWFs. Uno stato ad N -partoni è de�nito come

|N, β; k1, ..., kN〉 =
1√
fN,β

∏

i

b†qi
(wi)

∏

j

d†qj
(wj)

∏

l

a†(wl)|0〉. (3.5)

A causa delle relazioni di (anti)commutazione (2.24) e (2.25) gli stati
|N, β; k1, ..., kN〉 sono completamente (anti)simmetrici per scambio dei mo-
menti k i dei gluoni (quark); quindi senza perdita di generalità è possibile
prendere Ψλ

N,β(r) con la stessa (anti)simmetria, rispetto alle permutazioni,
del momento corrispondente r i. Il fattore di normalizzazione f N,β nell'e-
quazione (3.5) contiene un fattore n! per ogni sottoinsieme di n partoni i cui
numeri quantici siano identici, in questo modo si ha

Ψ ∗λ
N,β′(r

′)Ψλ
N,β(r)〈N ′, β′; k′1, ..., k

′
N |N, β; k1, ..., kN〉

= |Ψλ
N,β(r)|2δN ′Nδβ′β

N∏

i

16π3k+δ(k′+i − k+
i )δ(2)(k′⊥i − k⊥i). (3.6)

48



La δβ′β implica che non occorre introdurre indici di�erenti per stati in cui i
numeri quantici per ogni partone di�eriscono solo per una permutazione. Da
ciò risulta che gli stati adronici sono così normalizzati

〈H; p′, λ′|H; p, λ〉 = 16π3p+δ(p′+i − p+
i )δ(2)(p′⊥i − p⊥i)δλ′λ, (3.7)

con ∑

N,β

∫ [
dx√

x

]

N
[d2k⊥]N |Ψλ

N,β(r)|2 = 1. (3.8)

Le misure d'integrazione che compaiono nelle equazioni (3.3) e (3.8) sono
de�nite attraverso le seguenti relazioni

[
dx√

x

]

N
≡

N∏

i=1

dxi√
xi

δ(1−
N∑

i=1

xi), (3.9)

[d2k⊥]N ≡ 1

(16π3)N−1

N∏

i=1

d2k⊥iδ
(2)(

N∑

i=1

k⊥i − p⊥). (3.10)

Va sottolineato che gli stati partonici (3.5) non si riferiscono speci�catamente
ad un adrone, piuttosto sono caratterizzati da un set β di numeri quantici. Il
loro combinarsi a uno stato adronico de�nito con determinati numeri quanti-
ci è assorbito nelle funzioni Ψλ

N,β(r). Ad esempio lo stato di Fock a tre quark
di valenza per un nucleone ha una sola LCWF indipendente per tutte le con-
�gurazioni dove le elicità partoniche si sommano a dare l'elicità dell'adrone.
Per stati di Fock più complicati ci sono, in generale, più LCWF indipendenti.

3.2 Cinematica
Dal momento che gli adroni sono massivi occorre speci�care gli stati d'elicità
che appaiono nella (3.3). A questo punto quello che si fa è introdurre la
funzione d'onda Ψλ

N,β(r) scrivendo la (3.3) per uno stato con p⊥ = 0, i.e.,
nel sistema di riferimento adronico. Nell'�hadron frame� gli stati d'elicità
|H; p, λ〉 sono de�niti nella maniera usuale, cioè con la direzione dello spin
allineata o antiallineata con il momento dell'adrone. Da questa si ottiene poi
la decomposizione degli stati di Fock per un adrone con p⊥ 6= 0 applicando
ad entrambi i membri della (3.3) un �boost trasverso� (2.14). Si può mostrare
che il vettore covariante di spin è dato da:

λ

m

[
p+,

p2
⊥ −m2

2p+
,p⊥

]
. (3.11)
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Nel limite m = 0, gli stati LC di elicità così de�niti coincidono con gli stati
d'elicità usuali. Per m 6= 0 non coincidono: per p⊥ 6= 0 essi non sono
autostati del momento angolare lungo la loro direzione di moto.

Gli stati adronici iniziali e �nali sono caratterizzati dai momenti p e p ′,
che vengono coinvolti nelle de�nizioni delle GPDs. Per parametrizzarli si
introduce il momento medio

p̄ =
1

2
(p + p′), (3.12)

scegliendo il 3-momento p̄ diretto lungo l'asse e3, e scrivendo

p =
[
(1 + ξ)p̄+,

M2 + ∆2
⊥/4

2(1 + ξ)p̄+
,−∆⊥

2

]
,

p′ =
[
(1− ξ)p̄+,

M2 + ∆2
⊥/4

2(1− ξ)p̄+
, +

∆⊥
2

]
(3.13)

(M massa del nucleone) con il vettore trasverso ∆⊥, la componente più p̄+

e ξ parametro di distorsione2

ξ =
(p− p′)+

(p + p′)+
, (3.14)

che descrive la variazione della componente + del momento. Il momento
trasferito assume la forma

∆ = p− p′ =
[
− 2ξp̄+,

ξ(M2 + ∆2
⊥/4)

(1− ξ2)p̄+
,∆⊥

]
, (3.15)

e dall'equazione (3.13) il suo quadrato diventa

t = ∆2 = −4ξ2M2 + ∆2

1− ξ2
. (3.16)

Va notato che la positività di ∆2
⊥ implica il valore minimo

−t0 =
4ξ2M2

1− ξ2
(3.17)

per −t ad un dato ξ, che può essere visto come un valore massimo di ξ
a dato t. Il momento del partone emesso all'adrone verrà indicato con k,
mentre il momento di quello assorbito con k ′; da questi viene introdotto,
in analogia con la (3.12), il momento partonico medio k̄ come (k + k ′)/2
e corrispondentemente la frazione di momento x̄ = k̄+/p̄+. La frazione di
momento x̄ è quella che XiangDong Ji indica con x nel suo articolo [29].

2Questo parametro, in inglese skewedness, inizialmente dava il nome alle GPDs. Le
quali, infatti, venivano chiamate Skewed Parton Distributions (SPDs).
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3.3 GPD di quark non polarizzata
In questo paragrafo si deriva la rappresentazione �overlap� [33] per le GPDs
al leading-twist. Per chiarezza viene studiato il caso di quark non polariz-
zati all'interno del protone, prendendo, quindi, in considerazione elementi
di matrice di protone della componente più di operatori bilocali di campo
di quark sommati sul colore. La generalizzazione al caso di altri adroni è
banale. Seguendo Ji [29], si de�niscono le GPDs Hq(x̄, ξ; t) e Eq(x̄, ξ; t) per
un quark di sapore q attraverso la relazione

Hq
λ′λ

.
=

1

2

∑
c

∫ dz−

2π
eix̄p̄+z−〈p′, λ′|ψ̄c

q(−z̄/2)γ+ψc
q(z̄/2)|p, λ〉

=
ū(p′, λ′)γ+u(p, λ)

2p̄+
Hq(x̄, ξ; t) +

ū(p′, λ′)iσ+α∆αu(p, λ)

2p̄+
Eq(x̄, ξ; t)

(3.18)
dove λ, λ′ denotano le elicità del protone, e z̄ è una notazione abbreviata di
[0, z−,0⊥]. Per le diverse combinazioni dell'elicità del protone si trova

Hq
++ = Hq

−− =
√

1− ξ2Hq − ξ2

√
1− ξ2

Eq,

Hq
−+ = −(Hq

+−)∗ = η

√
t0 − t

2m
Eq, (3.19)

con t0 de�nito nell'eq. (3.17) e

η =
∆1 + i∆2

|∆⊥| . (3.20)

Un punto fondamentale per poter ricavare la formula �overlap� è l'osser-
vazione che l'operatore bilocale di campo di quark nella de�nizione (3.18)
possa essere riscritto come un operatore densità, in termini delle componenti
LC �buone�, sfruttando l'idempotenza e l'hermeticità del proiettore P+:

ψ̄c
q(−z̄/2)γ+ψc

q(z̄/2) = ψc†
q (−z̄/2)γ0γ+ψc

q(z̄/2) =√
2ψc†

q (−z̄/2)P+ψc
q(z̄/2) =

√
2ψc†

q (−z̄/2)P2
+ψc

q(z̄/2) =√
2ψc†

q (−z̄/2)P†+P+ψc
q(z̄/2) =

√
2[P+ψc

q(−z̄/2)]†[P+ψc
q(z̄/2)]

=
√

2φc†
q (−z̄/2)φc

q(z̄/2). (3.21)
Inserendo l'espansione nello spazio di momento (2.22) del campo nella de�ni-
zione diHq

λ′λ, per la trasformata di Fourier della (3.18) si ottiene l'espressione
∑

c

∫ dz−

2π
eix̄p̄+z−ψ̄c

q(−z̄/2)γ+ψc
q(z̄/2)
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= 2
√

2
∫ dk′+d2k′⊥

16π3k′+
Θ(k′+)

∫ dk+d2k⊥
16π3k+

Θ(k+)

× ∑

µ,µ′;c,c′
δcc′

{
δ(2x̄p̄+ − k+ − k′+)b†q(w

′)bq(w)u†+(k′, µ′)u+(k, µ)

+δ(2x̄p̄+ − k+ + k′+)dq(w
′)bq(w)v†+(k′, µ′)u+(k, µ)

+δ(2x̄p̄+ + k+ − k′+)b†q(w
′)d†q(w)u†+(k′, µ′)v+(k, µ)

+δ(2x̄p̄+ − k+ − k′+)dq(w
′)d†q(w)v†+(k′, µ′)v+(k, µ)

}
,

(3.22)

che permette l'interpretazione delle GPDs nel modello a partoni ( [34], [36]).
Quale dei quattro termini nella (3.22) contribuisca all'elemento di matrice è
determinato dalle condizioni di positività k+ ≥ 0 e k′+ ≥ 0 per i momenti
dei partoni, insieme alla conservazione del momento, che impone k+ − k′+ =
p+ − p′+ = 2ξp̄+. Qui di seguito si considera il caso ξ > 0, utile per l'appli-
cazione delle GPDs nei processi hard; in questo modo il termine b†(w′)d†(w)
nell'eq. (3.22), che descrive l'assorbimento di una coppia quark-antiquark,
non contribuisce. Nella regione ξ < x̄ < 1 le GPDs descrivono l'emissione
di un quark dal nucleone con una frazione di momento x̄ + ξ e il suo rias-
sorbimento con x̄ − ξ. Per quanto riguarda la regione −1 < x̄ < −ξ si ha
l'emissione di un antiquark con momento −(x̄ + ξ) e il suo riassorbimento
con momento −(x̄ − ξ). Invece la terza regione −ξ < x̄ < ξ rappresenta
l'emissione di una coppia quark-antiquark (ved. Figura 3.1).

3.3.1 Regione ξ < x < 1

La decomposizione alla Fock (3.3) degli stati conduce ad una rappresen-
tazione dell'elemento di matrice Hq

λ′λ come somma su contributi di stati di
Fock separati.

Hq
λ′λ =

∑

N

Hq(N→N)
λ′λ , (3.23)

con

Hq(N→N)
λ′λ =

1√
2

∑
c

∑

β,β′

∫ [
dx̃√

x̃

]

N
[d2k̃⊥]N

[
dx̂′√

x̂′

]
[d2k̂′⊥]NΨ ∗λ′

N,β′(r̂
′)Ψλ

N,β(r̃)

×
∫ dz−

2π
eix̄p̄+z−〈N, β′; k′1, ..., k

′
N |φc†

q (−z̄/2)φc
q(z̄/2)|N, β; k1, ..., kN〉.

(3.24)

Ora è possibile esprimere gli stati ad N-partoni e l'operatore bilocale φc†
q φc

q

in termini di operatori di creazione e distruzione attraverso le equazioni (3.5)
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Figura 3.1: Rappresentazione overlap delle GPDs nelle di�erenti regioni
cinematiche, nel caso ξ > 0.

e (3.22), e valutare poi l'elemento di matrice sul vuoto usando le regole di
(anti)commutazione.

Quello che si ottiene è il prodotto di due anticommutatori contenenti
gli operatori di creazione e di distruzione da φc†

q φc
q , i quali possono essere

riscritti come elemento di matrice degli operatori di campo per i quark attivi,
e il prodotto di N - 1 (anti)commutatori per i partoni spettatori, esprimibile
attraverso elementi di matrice ad un partone come nella (3.2). Dal momento
poi, che i numeri quantici per i quark attivi e per i quark spettatori devono
�match-arsi�, si ha che i labels β e β′ degli stati di Fock devono essere uguali.

Per partoni identici nello stato di Fock gli anticommutatori diversi da
zero generano un numero di termini corrispondente alle possibilità di asso-
ciare i partoni nello stati �nale e iniziale. Questi termini sono, comunque,
tutti uguali a causa della (anti)simmetria delle funzioni d'onda per la permu-
tazione dei momenti r i per particelle identiche. Il numero di questi termini è
esattamente uguale al fattore di normalizzazione

√
fN,β′fN,β; quindi si arriva

ad avere un unico termine. L'elemento di matrice che compare nella (3.24)
può essere riscritto come

〈N, β′; k′1, ..., k
′
N |φc†

q (−z̄/2)φc
q(z̄/2)|N, β; k1, ..., kN〉

53



=
N∑

j=1

〈s′j; w′
j|φc†

q (−z̄/2)φc
q(z̄/2)|sj; wj〉

N∏
i=1
i 6=j

〈s′i; w′
i|si; wi〉. (3.25)

Gli stati partonici sono caratterizzati dal loro momento e dalla loro eli-
cità, w i. I momenti dei partoni appartenenti all'adrone entrante e uscente
vengono denotati con lettere non primate e primate rispettivamente. D'al-
tro canto le LCWFs dipendono dalle coordinate relative di momento rispetto
all'adrone parente, r i e l'identi�cazione degli argomenti delle LCWFs risul-
ta più agevole quando come sistemi di riferimento vengono presi i sistemi
adronici. Per questo si adotta la convenzione di de�nire il sistema in cui
l'adrone entrante/uscente ha momento trasverso nullo �hadron-in�/�hadron-
out�. Nel proseguio della tesi le quantità nel sistema hadron-in verranno
indicate con una tilde, mentre quelle nel sistema hadron-out con un cap-
puccio. Inoltre verrà usato il nome �average-frame� per un sistema in cui i
momenti adronici siano parametrizzati secondo le equazioni (3.13). Per ot-
tenere una formulazione simmetrica nelle quantità entranti ed uscenti è utile
de�nire come variabili ausiliarie le medie dei momenti partonici entranti e
uscenti nel sistema di riferimento medio

k̄i =
1

2
(ki + k′i), x̄i =

k̄+
i

p̄+
(3.26)

le quali soddisfano le condizioni
N∑

i=1

x̄i =
1

p̄+

N∑

i=1

k̄+
i = 1,

N∑

i=1

k̄⊥i = p̄⊥ = 0⊥. (3.27)

I partoni emessi e poi riassorbiti dall'adrone sono detti �attivi� e indicati
con j ; tutti gli altri partoni i 6= j giocano il ruolo di �spettatori�. I partoni
attivi portano una frazione x̄j + ξ del momento medio p̄+ quando escono dal
protone, e una frazione x̄j − ξ quando rientrano. Il momento trasverso del
partone attivo è k⊥j = k̄⊥j − ∆⊥/2 prima, e k′⊥j = k̄⊥j + ∆⊥/2 dopo il
processo di scattering partonico.

Gli argomenti della LCWF per l'adrone entrante sono ottenuti attraverso
un boost trasverso de�nito in eq.(2.14) con parametri b+ = (1+ ξ)p̄+ e b⊥ =
−∆⊥/2, che porta dall'average-frame al hadron-in frame. Analogamente,
un boost trasverso con parametri b+ = (1 − ξ)p̄+ e b⊥ = +∆⊥/2 permette
di passare dal sistema di riferimento medio al sistema hadron-out. Dalla
conservazione del momento e dalla condizione di spettatore

k′i = k̄i = ki, per i 6= j, (3.28)
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si ottiene che gli argomenti della LCWF per l'adrone entrante (i.e., i momen-
ti dei partoni appartenenti all'adrone entrante nel sistema hadron-in) sono
legati ai momenti nell'average-frame dalle relazioni

x̃i =
x̄i

1 + ξ
, k̃⊥i = k̄⊥i +

x̄i

1 + ξ

∆⊥
2

, per i 6= j,

x̃j =
x̄j + ξ

1 + ξ
, k̃⊥j = k̄⊥j − 1− x̄j

1 + ξ

∆⊥
2

. (3.29)

Allo stesso modo gli argomenti della LCWF per l'adrone uscente (i.e., i mo-
menti dei partoni appartenenti all'adrone uscente nel sistema hadron-out)
sono legati ai momenti nell'average-frame dalle relazioni

x̂′i =
x̄i

1− ξ
, k̂′⊥i = k̄⊥i +

x̄i

1− ξ

∆⊥
2

, per i 6= j,

x̂′j =
x̄j − ξ

1− ξ
, k̂′⊥j = k̄⊥j − 1− x̄j

1− ξ

∆⊥
2

. (3.30)

Utilizzando le relazioni precedenti è possibile esprimere la normalizzazione
degli stati partonici (3.2) attraverso gli argomenti della LCWF

〈s′i; w′
i|si; wi〉 = 16π3x̂′iδ

(
x̂′i − x̃i

1 + ξ

1− ξ

)

×δ(2)
(
k̂′⊥i − k̃′⊥i +

x̃i

1− ξ
∆⊥

)
δs′isi

δµ′iµi
δc′ici

, (3.31)

dove si sono usate le relazioni in eq. (3.29) e (3.30) per esprimere le varia-
bili w i e w ′

i in termini delle quantità del sistema adronico e cioè in termini
delle variabili di integrazione [ved. eq.(3.24)]. A questo punto combinando
l'espansione (3.22) per l'operatore densità, cui contribuisce solo il termine
b†(w′)b(w), e la de�nizione di stato di quark singolo (3.1) si ottiene

∑
c

∫ dz−

2π
eix̄p̄+z−〈s′j; w′

j|φc†
q (−z̄/2)φc

q(z̄/2)|sj; wj〉

=
1

p̄+
δ(x̄− x̄j)u

†
+(k′j, µ

′
j)u+(kj, µj)δsjqδs′jsj

δc′jcj
. (3.32)

A questo risultato si perviene in modo agevole, basta infatti utilizzare le
regole di anticommutazione (2.24) e usare la relazione (3.26) per riscrivere
l'argomento della delta che compare nel risultato.

Hq(N→N)
λ′λ =

1

p̄+
√

2

(√
1− ξ

1 + ξ

)1−N ∑

β,β′

N∑

j=1

∫
[dx̃]N [d2k̃⊥]Ndx̂′jd

2k̂′⊥j
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×δ

(
x̂′j − 1 +

∑

i6=j

x̂′j
1 + ξ

1− ξ

)
δ(2)

(
k̂′⊥j +

∑

i 6=j

(
k̃⊥i − x̃i

1 + ξ

1− ξ
∆⊥

))

×δ(x̄− x̄j)u
†
+(k′j, µ

′
j)u+(kj, µj)δsjqδs′jsj

δc′jcj

∏
i=1
i6=j

δs′isi
δc′ici

δµ′iµi

×Ψ ∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃)√

x̂′jx̃j

. (3.33)

Il prodotto degli spinori risulta

u†+(k′j, µ
′
j)u+(kj, µj) =

1√
2
ū(k′j, µ

′
j = 1/2)γ+u(kj, µj = 1/2)

=
√

2(1− ξ2)x̂′jx̃j p̄
+δµ′jµj

(3.34)

La delta di Kronecker per le elicità nell'equazione precedente avrebbe potuto
essere anticipata dalla struttura di Dirac dell'operaratore ψ̄c

qγ
+ψc

q nella (3.22).
De�nendo le proiezioni dei campi right- e left-handed, φc

q,R/L ≡ PR/LP+ψc
q,

con PR/L = (1± γ5)/2) e usando P±γ5 = γ5P± è facile vedere che

ψ̄c
qγ

+ψc
q =

√
2φc†

q (PR + PL)φc
q =

√
2(φc†

qRφc
qR + φc†

qLφc
qL). (3.35)

Dal momento che per quark non massivi la chiralità e l'elicità sono identiche,
le elicità su entrambe le linee di quark devono essere le stesse.

Per presentare i risultati in modo simmetrico le misure d'integrazione
vanno riscritte in termini delle quantità medie con l'ausilio della (3.30)

[dx̃]N =
( 1

1 + ξ

)N−1
[dx̄]N , [dk̃⊥]N = [dk̄⊥]N . (3.36)

Arrivando così alla rappresentazione overlap della GPD di quark nella regione
ξ < x̄ < 1:

Hq(N→N)
λ′λ =

(√
1− ξ

)2−N(√
1 + ξ

)2−N ∑

β=β′

∑

j

δsjq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄− x̄j)Ψ
∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃) (3.37)

con gli argomenti r̃(r̂′) della LCWF per il protone entrante (uscente) legati
alle variabili d'integrazione x̄i e k̄⊥i tramite le relazioni (3.29) e (3.30), rispet-
tivamente. Per ottenere l'espressione totale Hq

λ′λ basta sommare su tutte le
con�gurazioni partoniche di N (ved. (3.23)) l'espressione appena ricavata.
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3.3.2 Regione −1 < x < −ξ

Per gli antiquark �attivi� la derivazione della rappresentazione overlap delle
GPDs procede in totale analogia al caso precedente. Le di�erenze compaiono
quando si utilizza la decomposizione di Fourier (3.22) per ottenere l'analoga
della formula (3.32), dal momento che in questa nuova regione il termine
che contribuisce è d(w′)d†(w). Lo scambio dell'operatore di creazione e dis-
truzione comporta la presenza di un segno meno a fattore, e la funzione δ
nell'analoga di eq. (3.32) ora fornisce il vincolo x̄j = −x̄. Quindi il risultato
�nale per la regione -1 < x̄ < −ξ è

Hq(N→N)
λ′λ = −

(√
1− ξ

)2−N(√
1 + ξ

)2−N ∑

β=β′

∑

j

δs̄jq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄ + x̄j)Ψ
∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃), (3.38)

con gli argomenti della LCWF r̃ e r̂′ dati da (3.29) e (3.30), rispettivamente.

3.3.3 Regione −ξ < x < ξ

Consideriamo ora il range cinematico −ξ < x̄ < ξ. Sapendo che ξ > 0, le
GPDs di quark in questa regione descrivono l'emissione di una coppia quark-
antiquark da parte del protone entrante. Quindi nella decomposizione dello
stato di Fock dei protoni iniziale e �nale occorre considerare solo termini
dove lo stato iniziale ha lo stesso contenuto partonico dello stato �nale con
l'aggiunta di una coppia quark-antiquark. Perciò si ha

Hq
λ′λ =

∑

N

Hq(N+1→N−1)
λ′λ . (3.39)

Partendo dalla de�nizione (3.18) delle GPDs per quark di sapore q e
sostituendo lo stato adronico con la sua decomposizione dello stato di Fock
(3.3), il contributo della transizione N + 1 → N - 1 all'elemento di matrice
Hq

λ′λ risulta

Hq(N+1→N−1)
λ′λ =

1√
2

∑
c

∑

β,β′

∫ [
dx̃√

x̃

]

N+1
[d2k̃⊥]N+1

[
dx̂′√

x̂′

]

N−1
[d2k̂′⊥]N−1

×Ψ ∗λ′
N−1,β′(r̂

′)Ψλ
N+1,β(r̃)

∫ dz−

2π
eix̄p̄+z−

×〈N − 1, β′; k′1, ..., k
′
N−1|φc†

q (−z̄/2)φc
q(z̄/2)|N + 1, β; k1, ..., kN+1〉.

(3.40)
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Sfruttando nuovamente le relazioni di (anti)commutazione per gli operatori
di creazione e distruzione, l'elemento di matrice partonico può essere riscritto
come

〈N − 1, β′; k′1, ..., k
′
N−1|φc†

q (−z̄/2)φc
q(z̄/2)|N + 1, β; k1, ..., kN+1〉

=
N+1∑

j,j′=1

1√
njn′j

〈0|φc†
q (−z̄/2)φc

q(z̄/2)|sj, wj; s
′
j, w

′
j〉

N+1∏
i=1

i6=j,j′

〈s′i; w′
i|si; wi〉, (3.41)

dove si sono indicizzate le coppie quark-antiquak con j per il quark e con
j' per l'antiquark, e si è indicato con |sj, wj; s

′
j, w

′
j〉 = b†sj

(wj)d
†
s′j

(w′
j)|0〉 il

corrispondente stato a due partoni. nj (n′j) è il numero di (anti)quark nella
funzione d'onda del protone iniziale Ψλ

N+1,β(r) con gli stessi numeri quantici
discreti del (anti)quark �attivo�. Questo fattore compare perché il prodotto√

fN+1,βfN−1,β′ dei fattori di normalizzazione degli stati partonici (3.5) non
è uguale al numero di possibilità di associare i partoni nello stato iniziale e
nello stato �nale di protone, in contrasto con la situazione che si aveva per
le altre regioni.

Al �ne di sempli�care la notazione si utilizza la stessa numerazione per i
partoni spettatori nelle LCWFs dello stato di protone iniziale e �nale. quindi
gli N - 1 partoni nel protone uscente non saranno numerati con i = 1,...,N -
1, ma con i = 1,...,N + 1 con j e j ′ omessi. Partendo dai momenti dei par-
toni spettatori k i e k ′i (i 6= j, j′) vengono nuovamente introdotte le variabili
ausiliarie de�nite dall'eq. (3.26). Per j e j ′ si ha

k̄j =
1

2
(kj − k

′
j), x̄j =

k̄+
j

p̄+
. (3.42)

Dalla conservazione del momento e dalla condizione di spettatore

k′i = k̄i = ki, per i 6= j, j′ (3.43)

si ottiene che gli argomenti della LCWF per l'adrone entrante sono legate al
momento del partone nel sistema di riferimento medio attraverso le seguenti
relazioni

x̃i =
x̄i

1 + ξ
, k̃⊥i = k̄⊥i +

x̄i

1 + ξ

∆⊥
2

, per i 6= j, j′,

x̃j =
x̄j + ξ

1 + ξ
, k̃⊥j = k̄⊥j − 1− x̄j

1 + ξ

∆⊥
2

,

x̃
′
j = − x̄j − ξ

1 + ξ
, k̃⊥j

′ = −k̄⊥j − 1 + x̄j

1 + ξ

∆⊥
2

, (3.44)
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e che gli argomenti delle LCWF per l'adrone uscente sono dati da

x̂′i =
x̄i

1− ξ
, k̂′⊥i = k̄⊥i − x̄i

1− ξ

∆⊥
2

, per i 6= j, j′. (3.45)

Le formule (3.44) e (3.45) possono essere usate per scrivere 〈s′; w′|s; w〉 come
nella (3.31), e per valutare l'elemento di matrice della coppia quark-antiquark
si sfutta l'espansione di Fourier (3.22), tenendo conto del fatto che in questa
regione l'unico termine a contribuire è d(w′)b(w). Dopodiché applicando
la de�nizione dello stato a due partoni introdotta nella (3.41), e le usuali
regole di anticommutazione (2.24), la trasformata di Fourier dell'elemento di
matrice nella (3.40) diviene

∑
c

∫ dz−

2π
eix̄p̄+z−〈0|φc†

q (−z̄/2)φc
q(z̄/2)|sj, wj; sj′ , wj′〉

=
1

p̄+
δ(x̄− x̄j)v

†
+(kj′ , µj′)u+(kj, µj)δs̄j′sj

δsjqδcj′cj
. (3.46)

Si arriva quindi all'espressione

Hq(N+1→N−1)
λ′λ =

1− ξ

p̄+
√

2

(√
1 + ξ

1− ξ

)N ∑

β,β′

N+1∑

j′=1

1√
njnj′

∫
[dx̃]N+1[d

2k̃⊥]N+1

×16π3δ

(
1− 1 + ξ

1− ξ

N+1∑
i=1

i6=j,j′

x̃i

)
δ(2)

(
∆⊥
1 + ξ

−
N+1∑
i=1

i6=j,j′

k̃⊥i

)

×δ(x̄− x̄j)v
†
+(kj′ , µj′)u+(kj, µj)δs̄j′sj

δsjqδcj′cj

×
N+1∏
i=1

i 6=j,j′

δs′isi
δc′ici

δµ′iµi

Ψ ∗λ′
N−1,β′(r̂

′)Ψλ
N+1,β(r̃)√

x̃jx̃j′
. (3.47)

Il prodotto di spinori in questo caso risulta

v†+(kj′ , µj′)u+(kj, µj) =
1√
2
v̄(kj′, µj′ = 1/2)γ+u(kj, µj = 1/2)

=
√

2x̃jx̃j′(1 + ξ)p̄+δµj′−µj
. (3.48)

Le integrazioni su x̃j′ e k̃⊥j′ possono essere eseguite, e riscrivendo le restanti
integrazioni in termini delle variabili ausiliarie si arriva alla rappresentazione
a overlap di Hq

λ′λ nella regione −ξ < x̄ < ξ per la transizione N + 1 → N -
1:

Hq(N+1→N−1)
λ′λ =

(√
1− ξ

)3−N(√
1 + ξ

)1−N ∑

β=β′

N+1∑

j,j′=1

δs̄j′sj
δsjq√

njnj′
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× δcj′cj
δµj′−µj

N+1∏
i=1

i6=j,j′

δs′isi
δc′ici

δµ′iµi

∫
dx̄j

N+1∏
i=1

i6=j,j′

dx̄iδ

(
1− ξ −

N+1∑
i=1

i6=j,j′

x̄i

)

×
∫

d2k̄⊥j

N+1∏
i=1

i6=j,j′

d2k̄⊥i(16π3)1−Nδ(2)

(
∆⊥
2
−

N+1∑
i=1

i 6=j,j′

k̄⊥i

)

× δ(x̄− x̄j)Ψ
∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃) (3.49)

Gli argomenti r̃ e r̂′ delle funzioni d'onda sono dati in termini di x̄i e k̄⊥i

dalla (3.44) e (3.45), e nj, nj′ sono de�niti dopo l'eq. (3.40). Come aspettato,
l'operatore ∑

c ψ̄c
qγ

+ψc
q nella (3.22) �proietta� coppie qq̄ singoletto di colore

con elicità totale zero nella LCWF iniziale di protone.

3.4 GPD di quark longitudinalmente polariz-
zata

In questo paragrafo viene derivata l'espressione delle distribuzioni generaliz-
zate di quark, H̃q(x̄, ξ; t) e Ẽq(x̄, ξ; t), de�nite dalla trasformata di Fourier
dell'elemento di matrice

H̃q
λ′λ

.
=

1

2

∑
c

∫ dz−

2π
eix̄p̄+z−〈p′, λ′|ψ̄c

q(−z̄/2)γ+γ5ψ
c
q(z̄/2)|p, λ〉

=
ū(p′, λ′)γ+γ5u(p, λ)

2p̄+
H̃q(x̄, ξ; t) +

ū(p′, λ′)∆+γ5u(p, λ)

4Mp̄+
Ẽq(x̄, ξ; t).

(3.50)

Per le di�erenti combinazioni d'elicità di protone si trova

H̃q
++ = −H̃q

−− =
√

1− ξ2H̃q − ξ2

√
1− ξ2

Ẽq,

H̃q
−+ = (H̃q

+−)∗ = ηξ

√
t0 − t

2m
Ẽq. (3.51)

La derivazione della rappresentazione a overlap procede in modo del tutto
analogo al caso delle GPDs di quark non polarizzate. Occorre solamente
trovare l'appropriata conversione da operatore di campo di quark a den-
sità di campi LC. Esprimendo l'operatore bilocale all'interno in termini delle
proiezioni left- e right-handed si ottiene

ψ̄c
q(−z̄/2)γ+γ5ψ

c
q(z̄/2) = ψc†

q (−z̄/2)γ0γ+γ5ψ
c
q(z̄/2) =√

2ψc†
q (−z̄/2)P+γ5ψ

c
q(z̄/2) =

√
2ψc†

q (−z̄/2)P2
+γ5ψ

c
q(z̄/2) =
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√
2ψc†

q (−z̄/2)P†+P+γ5ψ
c
q(z̄/2) =

√
2[P+ψc

q(−z̄/2)]†γ5[P+ψc
q(z̄/2)] =√

2φc†
q (−z̄/2)γ5φ

c
q(z̄/2) =

√
2
(
φc†

qR(−z̄/2)φc
qR(z̄/2)− φc†

qL(−z̄/2)φc
qL(z̄/2)

)

(3.52)

e la nuova espressione per la trasformata di Fourier del caso longitudinal-
mente polarizzato, in analogia alla (3.22), diventa

∑
c

∫ dz−

2π
eix̄p̄+z−ψ̄c

q(−z̄/2)γ+γ5ψ
c
q(z̄/2)

= 2
√

2
∫ dk′+d2k′⊥

16π3k′+
Θ(k′+)

∫ dk+d2k⊥
16π3k+

Θ(k+)

× ∑

µ,µ′;c,c′
δcc′

{
δ(2x̄p̄+ − k+ − k′+)b†q(w

′)bq(w)u†+(k′, µ′)γ5u+(k, µ)

+δ(2x̄p̄+ − k+ + k′+)dq(w
′)bq(w)v†+(k′, µ′)γ5u+(k, µ)

+δ(2x̄p̄+ + k+ − k′+)b†q(w
′)d†q(w)u†+(k′, µ′)γ5v+(k, µ)

+δ(2x̄p̄+ − k+ − k′+)dq(w
′)d†q(w)v†+(k′, µ′)γ5v+(k, µ)

}
.

(3.53)

Ripetendo ora tutti i passi percorsi nel calcolo della (3.37) si trova la rappre-
sentazione overlap del contributo dello stato di Fock a N particelle alla GPD
di quark polarizzato longitudinalmente di sapore q nella regione ξ < x̄ < 1

H̃q(N→N)
λ′λ =

(√
2− ξ

)2−N(√
1 + ξ

)2−N ∑

β=β′

∑

j

sign(µj)δsjq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄− x̄j)Ψ
∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃) (3.54)

dove gli argomenti delle LCWFs sono dati dalle relazioni (3.29) e (3.30).
L'unica di�erenza tra l'eq. (3.54) e l'eq. (3.37) è la funzione segno dell'elicità
del quark attivo.
Per quanto riguarda la regione −1 < x̄ < −ξ si ha

H̃q(N→N)
λ′λ = (

√
1− ξ)2−N(

√
1 + ξ)2−N

∑

β=β′

∑

j

sign(µj)δs̄jq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄ + x̄j)Ψ
∗λ′
N,β′(r̂

′)Ψλ
N,β(r̃). (3.55)

In contrasto con il caso non polarizzato, qui non si ha il segno meno a fattore,
questo infatti viene �mangiato� dalla funzione sign(µj) che si riferisce all'elici-
tà dell'antiquark. Nella regione centrale l'overlap non-diagonaleHq(N+1→N−1)

λ′λ
risulta identico a quello di equazione (3.49) eccetto per il fattore sign(µj),
che compare anche in questa regione.
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Capitolo 4

TRASVERSITÀ NEL MODELLO
A QUARK COSTITUENTI

4.1 GPDs trasversalmente polarizzate
Il caso delle GPDs di quark trasversalmente polarizzate ( [35], [29]) risulta
di�erente da quello delle GPDs longitudinalmente polarizzate [33] a causa
del diverso �proiettore� all'interno della loro de�nizione:

1

2

∑
c

∫ dz−

2π
eix̄p̄+z−〈p′, λ′|ψ̄c

q(−z̄/2)σ+iγ5ψ
c
q(z̄/2)|p, λ〉|z+=0,z⊥=0

=
1

2p̄+
ū(p′, λ′)

[
Hq

T σ+iγ5 + H̃q
T

ε+iαβ∆αp̄β

M2
+ Eq

T

ε+iαβ∆αγβ

2M

+Ẽq
T

ε+iαβ p̄αγβ

M

]
u(p, λ), (4.1)

dove i = 1, 2 è un indice trasverso.
L'operatore bilocale ψ̄iσi+γ5ψ può essere riscritto in termini delle matrici γ
in modo tale da rendere più agevole il calcolo della trasformata di Fourier
della de�nizione (4.1)

ψ̄c
q(−z̄/2)iσi+γ5ψ

c
q(z̄/2) = ψc†

q (−z̄/2)γ0iσi+γ5ψ
c
q(z̄/2)

= ψc†
q (−z̄/2)γ0i

i

2

[
γi, γ+

]
γ5ψ

c
q(z̄/2) = ψc†

q (−z̄/2)γ0γ+γiγ5ψ
c
q(z̄/2)

=
√

2ψc†
q (−z̄/2)P+γiγ5ψ

c
q(z̄/2) =

√
2[P+ψc

q(−z̄/2)]†γiγ5[P+ψc
q(z̄/2)]

=
√

2φc†
q (−z̄/2)γiγ5φ

c
q(z̄/2). (4.2)
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Dall'articolo di Diehl [35] è noto che la de�nizione (4.1) possa essere riscritta
in termini di combinazioni lineari di determinati elementi di matrice

Aλ′µ′,λµ =
∫ dz−

2π
eix̄p̄z−〈p′, λ′|Oµ′,µ(z)|p, λ〉|z+=0,z⊥=0, (4.3)

per certe elicità partoniche µ e µ′, dove il simbolo Oµ,µ′ indica gli operatori
O−,+ = −i/4ψ̄c

q(−z̄/2)σ+1(1 + γ5)ψ
c
q(z̄/2),

O+,− = i/4ψ̄c
q(−z̄/2)σ+1(1− γ5)ψ

c
q(z̄/2). (4.4)

Calcoli espliciti, svolti lavorando nel sistema di riferimento in cui ~p e ~p′ giac-
ciono nel piano x-z, forniscono le espressioni degli elementi di matrice Aλ′µ′,λµ

in termini delle GPDs con ��ip� dell'elicità:

A++,+− = ε

√
t0 − t

2M

(
H̄q

T + (1− ξ)
Eq

T + Ẽq
T

2

)
,

A−+,−− = ε

√
t0 − t

2M

(
H̄q

T + (1 + ξ)
Eq

T − Ẽq
T

2

)
,

A++,−− =
√

1− ξ2

(
Hq

T +
t0 − t

4M2
H̃q

T −
ξ2

1− ξ2
Eq

T +
ξ

1− ξ2
Ẽq

T

)
,

A−+,+− = −
√

1− ξ2
t0 − t

4M2
H̃q

T , (4.5)

dove con t0 si è indicato il valore minimo di t a �ssato ξ (ved. eq. (3.17) e
(3.16)) e con ε il sign(D1), con D1 componente x di

Dα = P+∆α −∆+Pα. (4.6)
Invertendo le equazioni (4.5) è possibile ottenere quattro relazioni che legano
le quattro GPDs trasversalmente polarizzate alle combinazioni di elementi di
matrice Aλ′µ′,λµ:

Eq
T =

2M

ε
√

t0 − t

(
1

(1− ξ)
A++,+− +

1

(1 + ξ)
A−+,−−

)

+
8M2

(t0 − t)(1− ξ2)
√

1− ξ2
A−+,+−,

Ẽq
T =

2M

ε
√

t0 − t

(
1

(1− ξ)
A++,+− − 1

(1 + ξ)
A−+,−−

)

+
8M2ξ

(t0 − t)(1− ξ2)
√

1− ξ2
A−+,+−,

Hq
T =

1√
1− ξ2

(
A++,−− + A−+,+−

)
+

2Mξ

ε
√

t0 − t(1− ξ2)

(
A−+,−− −A++,+−

)
,

H̃q
T =

−4M2

√
1− ξ2(t0 − t)

(
A−+,+−

)
. (4.7)
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Dall'invarianza per parità si ha la seguente relazione per gli elementi di
matrice

A−λ′−µ′,−λ−µ = (−1)λ′−µ′−λ+µAλ′µ′,λµ, (4.8)
sfruttando la quale è possibile scrivere

A++,−− + A−+,+− =
1

2
[A++,−− + A−+,+− + A−−,++ + A+−,−+]. (4.9)

Utilizzando le de�nizioni (4.3, 4.4) per esplicitare il calcolo si ottiene

A++,−− + A−+,+− =
1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|O+,−|p,−〉+ 〈p′,−|O+,−|p, +〉+

+〈p′,−|O−,+|p, +〉+ 〈p′, +|O−,+|p,−〉
]

=
1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− +O−,+]|p,−〉+ 〈p′,−|[O+,− +O−,+]|p, +〉

]

=
∫ dz−

2π
eix̄p̄+z−

[
〈p′, +| − i

4
ψ̄σ+1γ5ψ|p,−〉+ 〈p′,−| − i

4
ψ̄σ+1γ5ψ|p, +〉

]
.

(4.10)

Da cui, sapendo che

ψ̄c
q(−z̄/2)iσ1+γ5ψ

c
q(z̄/2) =

√
2φc†

q (−z̄/2)γ1γ5φ
c
q(z̄/2), (4.11)

si ha
i

4
ψ̄c

qσ
+1γ5ψ

c
q =

1

2
√

2
φc†

q γ1γ5φ
c
q. (4.12)

A questo punto sostituendo le de�nizioni degli operatori di campo di quark
si ottiene

∑
c

∫ dz−

2π
eix̄p̄+z−ψ̄c

q(−z̄/2)(− i

4
σ+1γ5)ψ

c
q(z̄/2)

=
∑

c

∫ dz−

2π
eix̄p̄+z−φc†

q (−z̄/2)(
1

2
√

2
γ1γ5)φ

c
q(z̄/2)

=
1√
2

∫ dk′+d2k′⊥
16π3k′+

Θ(k′+)
∫ dk+d2k⊥

16π3k+
Θ(k+)

× ∑

µ,µ′;c,c′
δcc′

{
δ(2x̄p̄+ − k+ − k′+)b†q(w

′)bq(w)u†+(k′, µ′)γ1γ5u+(k, µ)
}
.

(4.13)

Quindi gli elementi di matrice che compaiono in eq.(4.10) assumono la seguente
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espressione

〈p′, λ′| 1√
2

∫ dk′+d2k′⊥
16π3k′+

Θ(k′+)
∫ dk+d2k⊥

16π3k+
Θ(k+)

∑

µ,µ′

∑

c,c′
δcc′

×δ(2x̄p̄+ − k+
j − k′+j )b†sµ′c(k

′)bsµc(k)u†+(k′, µ′)γ1γ5u+(k, µ)|p, λ〉. (4.14)

Per esplicitare i prodotti degli spinori si procede riscrivendo le de�nizioni di
u+(k,±1/2) [37] in termini dei vettori di spin χ± e poi, dopo aver svolto
i prodotti, traducendo i risultati in termini delle matrici γ che compaiono
nella de�nizione degli operatori O [ved. eq.(4.4), pag. 63]:

u+(k, 1/2)
.
=

√
k+/

√
2




1
0
1
0


 =

√
k+/

√
2

{ (
χ+

χ+

) }
, (4.15)

u+(k,−1/2)
.
=

√
k+/

√
2




0
1
0
−1


 =

√
k+/

√
2

{ (
χ−
−χ−

) }
, (4.16)

con
χ+ =

(
1
0

)
e χ− =

(
0
1

)
, (4.17)

u†+(k′, +1/2)γ1u+(k,−1/2) = −
√

2k′+k+[χ†1/2σxχ−1/2],

u†+(k′,−1/2)γ1u+(k, +1/2) =
√

2k′+k+[χ†−1/2σxχ1/2],

u†+(k′, +1/2)γ1γ5u+(k,−1/2) =
√

2k′+k+[χ†1/2σxχ−1/2],

u†+(k′,−1/2)γ1γ5u+(k, +1/2) =
√

2k′+k+[χ†−1/2σxχ1/2]. (4.18)

Quindi prendendo in considerazione la combinazione operatoriale di eq.(4.10)
si trova

u†+(k′, µ′ = +1/2)[γ1γ5]u+(k, µ = −1/2) =
√

2k′+k+χ†µ′=1/2σxχµ=−1/2,

u†+(k′, µ′ = −1/2)[γ1γ5]u+(k, µ = +1/2) =
√

2k′+k+χ†µ′=−1/2σxχµ=1/2,

(4.19)
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dove χ†µ′=1/2σxχµ=−1/2 = χ†µ′=−1/2σxχµ=1/2 = 1.

Ora sostituendo questo risultato nell'equazione (4.14), quest'ultima diviene

〈p′, λ′|
∫ dk′+d2k′⊥

16π3k′+
Θ(k′+)

∫ dk+d2k⊥
16π3k+

Θ(k+)
∑

c,c′
δcc′δ(2x̄p̄+ − k+

j − k′+j )

×
√

k′+k+

{
b†sµ′=1/2c(k

′)bsµ=−1/2c(k) + b†sµ′=−1/2c(k
′)bsµ=1/2c(k)

}
|p, λ〉.

(4.20)

Il passo successivo consiste nell'e�ettuare una trasformazione di base per gli
operatori di creazione e distruzione �b†� e �b�

bs1/2c(k) =
1√
2
[as↑c(k) + as↓c(k)],

bs−1/2c(k) =
1√
2
[as↑c(k)− as↓c(k)]. (4.21)

Quindi

b†s1/2c(k
′)bs−1/2c(k) + b†s−1/2c(k

′)bs1/2c(k) = a†s↑c(k
′)as↑c(k)− a†s↓c(k

′)as↓c(k)

=
∑

µt

sign(µt)a†sµtc(k
′)asµtc(k),

(4.22)

dove µt = ±1/2 sono le componenti di spin del quark lungo l'asse x. Notiamo
che l'operatore ottenuto corrisponde alla di�erenza degli operatori densità a
un corpo nello spazio dei momenti con proiezione parallela e antiparallela
dello spin del quark rispetto alla direzione trasversa x̂. A questo punto pren-
dendo la combinazione degli elementi di matrice che compare in eq. (4.10)
ed e�ettuendo la seguente trasformazione di base sugli stati di nucleone

|p, +〉 =
1√
2
[|p, ↑〉+ |p, ↓〉],

|p,−〉 =
1√
2
[|p, ↑〉 − |p, ↓〉], (4.23)

si ottiene una nuova espressione per l'eq. (4.10)

1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, ↑ |[O+,− +O−,+]|p, ↑〉 − 〈p′, ↓ |[O+,− +O−,+]|p, ↓〉

]
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=
1

2

∫ dz−

2π
eix̄p̄+z−2〈p′, ↑ |[O+,− +O−,+]|p, ↑〉,

(4.24)

dove si è sfruttata la relazione
∫ dz−

2π
eix̄p̄+z−〈p′, ↓ |[O+,− +O−,+]|p, ↓〉 =

−
∫ dz−

2π
eix̄p̄+z−〈p′, ↑ |[O+,− +O−,+]|p, ↑〉. (4.25)

Considerando ora una nuova combinazione degli elementi di matrice A si
ottiene

A++,+− −A−+,−− =
1

2
[A++,+− −A−+,−− −A−−,−+ + A+−,++]

=
1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− +O−,+]|p, +〉 − 〈p′,−|[O+,− +O−,+]|p,−〉

]
.

(4.26)

Ci si può facilmente accorgere che l'operatore in parentesi quadre è esatta-
mente lo stesso che si era ottenuto in equazione (4.10), quindi calcolandolo
esplicitamente in termini di operatori di creazione e distruzione e cambian-
do la base si ricava nuovamente il risultato (4.22). Cambiando ora la base
degli stati di nucleone attraverso le relazioni in equazione (4.23), l'espressione
(4.26) diventa

1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, ↑ |[O+,− +O−,+]|p, ↓〉+ 〈p′, ↓ |[O+,− +O−,+]|p, ↑〉

]

=
1

2

∫ dz−

2π
eix̄p̄+z−2〈p′, ↑ |[O+,− +O−,+]|p, ↓〉,

(4.27)

dove si è usato il fatto che

〈p′, ↓ |[O+,− +O−,+]|p, ↑〉 = 〈p′, ↑ |[O+,− +O−,+]|p, ↓〉. (4.28)

Perseguendo lo scopo di rendere chiaro e semplice il formalismo risulta
conveniente de�nire

T q
λ′tλt

.
= 〈p′, λ′t|

∫ dz−

2π
eix̄p̄+z− [O+,− +O−,+]|p, λt〉, (4.29)
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che analogamente all'eq. (3.55) del caso polarizzato, risulta essere dato da

T q
λ′tλt

=
∑

N

T
q(N→N)
λ′tλt

, (4.30)

con

T
q(N→N)
λ′tλt

=
(√

1− ξ
)2−N(√

1 + ξ
)2−N ∑

β=β′

∑

j

sign(µt
j)δsjq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄− x̄j)Ψ
∗λ′t
N,β′(r̂

′)Ψλt
N,β(r̃), (4.31)

ovvero l'equivalente, nello spazio di spin trasverso, dell'espressione H̃q
λ′λ che

si aveva per il caso polarizzato longitudinalmente. Inoltre, dalle equazioni
(4.7), (4.9), (4.10), (4.24), (4.26) e (4.27) si trova l'espressione generale per
la GPD Hq

T

Hq
T =

1√
1− ξ2

T q
++ −

2Mξ

ε
√

t0 − t(1− ξ2)
T q

+−, (4.32)

con

T q
++ =

√
1− ξ2

[
Hq

T −
ξ2

1− ξ2
Eq

T +
ξ

1− ξ2
Ẽq

T

]
,

T q
+− = ε

√
t0 − t

2M
[−ξEq

T + Ẽq
T ] (4.33)

in perfetta analogia al caso di polarizzazione longitudinale.

Le altre combinazioni di elementi di matrice A che vanno prese in con-
siderazione per poter ricostruire il sistema delle GPDs trasversalmente pola-
rizzate sono

A++,+− + A−+,−− =
1

2
[A++,+− −A−−,−+ + A−+,−− −A+−,++]

=
1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− −O−,+]|p, +〉

+〈p′,−|[O+,− −O−,+]|p,−〉
]

=
∫ dz−

2π
eix̄p̄+z−

[
〈p′, +| i

4
ψ̄σ+1ψ|p, +〉

+〈p′,−| i
4
ψ̄σ+1ψ|p,−〉

]

(4.34)
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e

A++,−− −A−+,+− =
1

2
[A++,−− + A−−,++ −A−+,+− −A+−,−+]

=
1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− −O−,+]|p,−〉

−〈p′,−|[O+,− −O−,+]|p, +〉
]

=
∫ dz−

2π
eix̄p̄+z−

[
〈p′, +| i

4
ψ̄σ+1ψ|p,−〉

−〈p′,−| i
4
ψ̄σ+1ψ|p, +〉

]
.

(4.35)

Cambiando base per gli stati di nucleone grazie alle equazioni (4.23) si ottiene

1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− −O−,+]|p, +〉+ 〈p′,−|[O+,− −O−,+]|p,−〉

]

=
1

2

∫ dz−

2π
eix̄p̄+z−2

[
〈p′, ↑ |[O+,− −O−,+]|p, ↑〉

]
,

(4.36)

dove si è sfruttata la seguente relazione
∫ dz−

2π
eix̄p̄+z−〈p′, ↓ |[O+,− −O−,+]|p, ↓〉

=
∫ dz−

2π
eix̄p̄+z−〈p′, ↑ |[O+,− −O−,+]|p, ↑〉. (4.37)

Analogamente

1

2

∫ dz−

2π
eix̄p̄+z−

[
〈p′, +|[O+,− −O−,+]|p,−〉 − 〈p′,−|[O+,− −O−,+]|p, +〉

]

=
1

2

∫ dz−

2π
eix̄p̄+z−2

[
〈p′, ↓ |[O+,− −O−,+]|p, ↑〉

]
,

(4.38)

dove questa volta
∫ dz−

2π
eix̄p̄+z−〈p′, ↓ |[O+,− −O−,+]|p, ↑〉

= −
∫ dz−

2π
eix̄p̄+z−〈p′, ↑ |[O+,− −O−,+]|p, ↓〉.

(4.39)
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Perciò come per i casi precedenti è conveniente introdurre

T̃ q
λ′tλt

.
= 〈p′, λ′t|

∫ dz−

2π
eix̄p̄+z− [O+,− −O−,+]|p, λt〉, (4.40)

dove

O+,− −O−,+ =
i

4
ψ̄σ+1

[
(1− γ5) + (1 + γ5)

]
ψ =

i

2
ψ̄σ+1ψ. (4.41)

Quindi riutilizzando i risultati (4.18) l'analoga di equazione (4.20) in questo
caso risulta

T̃ q
λ′tλt

= 〈p′, λ′t| −
∫ dk′+d2k′⊥

16π3k′+
Θ(k′+)

∫ dk+d2k⊥
16π3k+

Θ(k+)
∑

c,c′
δcc′

×δ(2x̄p̄+ − k+
j − k′+j )

√
k′+j k+

j{
− b†sµ′=1/2c(k

′)bsµ=−1/2c(k)χ†µ′=1/2σxχµ=−1/2

+b†sµ′=−1/2c(k
′)bsµ=1/2c(k)χ†µ′=−1/2σxχµ=1/2

}
|p, λt〉

(4.42)

E�ettuando nuovamente la trasformazione di base (4.21) si ottiene

b†s−1/2c(k
′)bs1/2c(k)− b†s1/2c(k

′)bs−1/2c(k) = a†s↑c(k
′)as↓c(k)− a†s↓c(k

′)as↑c(k),
(4.43)

In questo caso, a di�erenza dell'operatore in eq. (4.22), l'operatore è dato
dagli elementi non diagonali nello spazio di spin trasverso della matrice den-
sità a un corpo. Di conseguenza, l'elemento di matrice di tale operatore tra
gli stati di nucleone descrive l'ampiezza di probabilità di avere �ip di spin
trasverso del quark dallo stato iniziale allo stato �nale.

Dalla (4.43) si ha

T̃ q
λ′tλt

= −〈p′, λ′t|
∫ dk′+d2k′⊥

16π3k′+
Θ(k′+)

∫ dk+d2k⊥
16π3k+

Θ(k+)

×∑

c,c′
δcc′δ(2x̄p̄+ − k+

j − k′+j )
√

k′+j k+
j

{
a†s↑c(k

′)as↓c(k)− a†s↓c(k
′)as↑c(k)

}
|p, λt〉.

(4.44)
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Anche ora vale un'equazione simile alla (4.30)

T̃ q
λ′tλt

=
∑

N

T̃
q(N→N)
λ′tλt

, (4.45)

quindi la �overlap representation� di T̃
q(N→N)
λ′tλt

è data da

T̃
q(N→N)
λ′tλt

=
(√

1− ξ
)2−N(√

1 + ξ
)2−N ∑

β=β′

∑

j

δµ′tj −µt
j
sign(µt

j)δsjq

×
∫

[dx̄]N [d2k̄⊥]Nδ(x̄− x̄j)Ψ
∗λ′t
N,β′(r̂

′)Ψλt
N,β(r̃), (4.46)

e le espressioni di T̃ q
++ e T̃ q

−+ in termini di GPDs risultano

T̃ q
++ = ε

√
t0 − t

2M
[2H̃q

t + Eq
T − ξẼq

T ],

T̃ q
−+ =

√
1− ξ2

[
Hq

T +
t0 − t

2M2
H̃q

t −
ξ2

1− ξ2
Eq

T +
ξ

1− ξ2
Ẽq

T

]
. (4.47)

Grazie alle equazioni (4.7), (4.32), (4.33) e (4.47) è semplice ricavare le
espressioni generali per tutte e quattro le GPDs trasversalmente polarizzate

Eq
T =

2Mξ

ε
√

t0 − t

1

1− ξ2
T q

+− +
2M

ε
√

t0 − t(1− ξ2)
T̃ q

++

− 4M2

(t0 − t)
√

1− ξ2(1− ξ2)

(
T̃ q
−+ − T q

++

)
,

Ẽq
T =

2M

ε
√

t0 − t(1− ξ2)

(
T q

+− + ξT̃ q
++

)

− 4M2ξ

(t0 − t)
√

1− ξ2(1− ξ2)

(
T̃ q
−+ − T q

++

)
,

Hq
T =

1√
1− ξ2

T q
++ −

2Mξ

ε
√

t0 − t(1− ξ2)
T q

+−,

H̃q
T =

2M2

(t0 − t)
√

1− ξ2
(T̃ q
−+ − T q

++). (4.48)
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4.2 Funzioni d'onda light-cone nel modello re-
lativistico a quark costituenti

I modelli relativistici a quark costituenti (CQM) sono modelli quantomecca-
nici con un numero �sso di costituenti e consistenti con la relatività, che si
fondano su due ipotesi fondamentali:

• la dominanza dei quark di valenza, cioè lo sviluppo di Fock per lo stato
di nucleone,

|Ψ〉 = Ψ3q|qqq〉+ Ψ3qg|qqqg〉+ Ψ3q(qq̄)|3q(qq̄)〉+ ..., (4.49)

è saturato dalla con�gurazione dei quark di valenza;

• i quark costituenti rappresentano in maniera e�cace i gradi di libertà
del sistema.

Nei modelli a quark costituenti la relatività può essere incorporata in modo
abbastanza naturale utilizzando il teorema di Bakamjian-Thomas ([38], [39])
per la costruzione dell'hamiltoniana di un sistema di particelle interagenti. In
questo approccio le funzioni d'onda del CQM possono essere calcolate risol-
vendo l'equazione agli autovalori della Hamiltoniana nella �instant form�[IF],
nella quale la coordinata temporale è x0 e l'istante iniziale �ssato a t = t0,
e venire legate alle autofunzioni in un'altra forma di dinamica relativistica
mediante un'opportuna trasformazione unitaria. Infatti le diverse forme di di-
namica relativistica di�eriscono per la diversa scelta dell'ipersuper�cie su cui
speci�care le condizioni iniziali del sistema e per la diversa classi�cazione dei
generatori del gruppo di Poincarè in operatori cinematici, indipendenti dalla
dinamica del sistema, e operatori Hamiltoniani, responsabili dell'evoluzione
del sistema.

In questa tesi viene presa in considerazione la connessione tra la dinamica
nella IF e quella nella �light-front form� [LF], dove la coordinata temporale
è costituita da x+ = x0 + x3 e viene �ssata a t + x3 = 0.

La connessione delle LCWFs nel CQM in instant form e quelle nel CQM in
light-front form può essere stabilita partendo dalle equazioni agli autovalori
nelle di�erenti rappresentazioni:

• [IF ] M |M, jc, µc〉c = [M0 + V ]|M, jc, µc〉c = M |M, jc, µc〉c con M0 =
∑3

i=1

√
k2

i + m2
i operatore libero di massa e V operatore interazione,

indipendente da ~P e invariante per rotazione (condizioni necessarie per
poter utilizzare il risultato di Bakamjian-Thomas);
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• [LF ] M|M, jf , µf〉f = [M0 + V ]|M, jf , µf〉f = M |M, jf , µf〉f .

Quindi
M = R†MR = M0 +R†VR (4.50)

e
|M, jf , µf〉f = R†|M, jc, µc〉c (4.51)

dove R =
∏3

i=1 RM(k⊥,i, xi,mi) è una rotazione di Melosh generalizzata.
Di conseguenza la connessione tra la funzione d'onda di nucleone LF e

quella IF è

Ψf
3q = 〈{xi,k⊥,i, λi}|M, jf , µf〉f =

[
ω1ω2ω3

x1x2x3M0

]1/2 ∑

{λ′i}
〈{λi}|R†|{λ′i}〉Ψc

3q.

(4.52)
Una derivazione molto più dettagliata ed esaustiva di questa connessione è
stata derivata da Bo�, Pasquini e Traini negli articoli ([40], [41]).

Il modello preso in considerazione in questa tesi è il �modello ipercentrale�
introdotto da Giannini, Santopinto, et al. nel 1995 [42] in versione non
relativistica e reso relativistico da Faccioli, Traini e Vento nel 1999 [43], la
cui hamiltoniana è data da

H =
3∑

i=1

√
k2

i + m2
i −

τ√
z2 + l2

+ k
√

z2 + l2, (4.53)

con
z =

r1 − r2√
2

e l =
r1 + r2 − 2r3√

6
. (4.54)

Questo modello dipendente da due parametri, τ e k, a dispetto della sua sem-
plicità presenta numerosi pregi: è infatti in grado di riprodurre in maniera
soddisfacente le caratteristiche principali dello spettro a bassa energia e allo
stesso tempo fornisce una buona descrizione delle proprietà elettromagnetiche
del nucleone, tra cui i fattori di forma. Per questo è molto interessante esplo-
rare la connessione tra le GPDs e il modello a CQM nella regione cinematica
per x → 1, nella quale i gradi di libertà e�caci sono solo quelli legati ai quark
di valenza.Infatti le GPDs calcolate nella regione cinematica permessa sono
ottenute con un approccio covariante e esibiscono il corretto limite �forward�
riproducendo la distribuzione partonica con il supporto corretto e soddis-
facendo automaticamente le regole di somma per il numero di particelle e
il momento. Inoltre nel modello preso in considerazione la funzione d'onda
del nucleone è costruita come prodotto della parte spaziale in onda S e della
parte di spin e isospin, SU(6) simmetrica.
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La funzione d'onda light-cone nello spazio di spin trasverso risulta dunque
de�nita come

Ψ
λt

N

[f ] = 16π3

[
ω1ω2ω3

x1x2x3M0

]1/2

ψ(k1,k2,k3)
∑

{µt
i}

D
1/2†
λt
1µt

1

(
RM(k1)

)
D

1/2†
λt
2µt

2

(
RM(k2)

)

×D
1/2†
λt
3µt

3

(
RM(k3)

)
ΦS12

λt
N τN

({
µt

i

}{
τi

})
, (4.55)

dove:

• ψ(k1,k2,k3) parte spaziale, soluzione dell'Hamiltoniana IF nel modello
ipercentrale;

•

D
1/2
λtµt

(
RM(k1)

)
= 〈1/2, λt|RM(x,k⊥,M0)|1/2, µt〉

= 〈1/2, λt|m + xM0 − i~σ · (ẑ × k⊥)

[(m + xM0)2 + k2
⊥]1/2

|1/2, µt〉
(4.56)

rotazione di Melosh nello �spazio di spin trasverso�, dove gli stati di
spin sono autostati dell'operatore �σx�:

|1/2, ↑〉↘µt=1/2
→ 1√

2

(
1
1

)
|1/2, ↓〉↘µt=−1/2

→ 1√
2

(
1
−1

)
;

•

ΦS12

λt
N τN

=
1√
2
[Φ̃0

λt
N
(λ1

t , λ
2
t , λ

3
t )Φ̃

0
τN

(τ1, τ2, τ3) +

+ 4Φ̃1
λt

N
(λ1

t , λ
2
t , λ

3
t )Φ̃

1
τN

(τ1, τ2, τ3)], (4.57)

rappresenta la funzione d'onda per la parte di spin-isospin, con

Φ̃S12

λt
N

=
∑

MS12

〈1/2, λt
1; 1/2, λ

t
2|S12MS12〉〈S12MS12 ; 1/2, λ

t
3|1/2, λt〉. (4.58)

Specializzando le formule ottenute per l'ampiezza di scattering T q
λ′tλt

e
T̃ q

λ′tλt
al modello relativistico a quark costituenti si ottengono i seguenti risul-

tati
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T q
λ′tλt

=
3

2

1√
1− ξ2

1

(16π3)2

∫ 3∏

1=1

dxi δ

(
1−

3∑

i=1

xi

)
δ(x− x3)

×
∫ 3∏

i=1

d2k̄⊥,i δ

(
3∑

i=1

k̄⊥,i

)
ψ̃∗({x̂′i}, {k̂′⊥,i}) ψ̃({x̃i}, {k̃⊥,i})

×δτqτ3

{
X00

λ′tλt
(k̂′, k̃) δτ31/2 + 1

3
X11

λ′tλt
(k̂′, k̃)[δτ31/2 + 2δτ3−1/2]

}
,

(4.59)

con

X
S12S′12
λ
′t
Nλt

N

=
∑

λ1λ2λ3

sign(λ3)

×
{ ∑

µ̄1µ̄2µ̄3

D
1/2†
λt
1µt

1

(
RM(k̂′1)

)
D

1/2†
λt
2µt

2

(
RM(k̂′2)

)
D

1/2†
λt
3µt

3

(
RM(k̂′3)

)
Φ

S′12
λ
′t
N τ ′N

}∗

×
{ ∑

µ1µ2µ3

D
1/2†
λt
1µt

1

(
RM(k̃1)

)
D

1/2†
λt
2µt

2

(
RM(k̃2)

)
D

1/2†
λt
3µt

3

(
RM(k̃3)

)
ΦS12

λt
N τN

}
,

(4.60)

e dove i contributi di spin e isospin alle ampiezze di scattering nello spazio
di spin trasverso forniscono (ved. Appendice C per i dettagli riguardo alla
derivazione) le seguenti espressioni

Re
(
X00

++(k̂′, k̃)
)

= −Re
(
X00
−−(k̂′, k̃)

)

=
3∏

i=1

N−1(k̂′i)N
−1(k̃i)

[
(A1A2 + ~B1 · ~B2)A3

]
, (4.61)

Re
(
X11

++(k̂′, k̃)
)

= −Re
(
X11
−−(k̂′, k̃)

)
=

3∏

i=1

N−1(k̂′i)N
−1(k̃i)

×1
3

[
− (A1A2 + ~B1 · ~B2 − 4B1,xB2,x)A3

+2(A1B2,x + A2B1,x)B3,x

+2(B1,xB2,z + B1,zB2,x)B3,y

+2(B1,xB2,y + B1,yB2,x)B3,z

]
, (4.62)

Re
(
X00
−+(k̃′, k̂)

)
= Re

(
X00

+−(k̂′, k̃)
)

=
3∏

i=1

N−1(k̂′i)N
−1(~ki)

[
(A1A2 + ~B1 · ~B2)B3,y

]
, (4.63)

Re
(
X11
−+(k̃′, k̂)

)
= Re

(
X11

+−(k̂′, ~k)
)

=
3∏

i=1

N−1(k̂′i)N
−1(k̃i)
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×1
3

[
(−A1A2 − ~B1 · ~B2 + 4B1,zB2,z)B3,y

+2(A1B2,z + A2B1,z)B3,x

+2(B1,xB2,z + B1,zB2,x)A3

+2(B1,yB2,z + B1,zB2,y)B3,z

]
, (4.64)

(4.65)

Nelle equazioni precedenti, N(k̃), Ai e ~Bi, con i = 1, 2, sono de�niti come
nella Ref. [40] e li riportiamo qui per comodità

N(k̃) = [(m + x̃M̃0)
2 + k̃2

⊥]1/2. (4.66)
Ai = (m + x̂′iM̂

′
0)(m + x̃iM̃0) + k̂′i,yk̃i,y + k̂′i,xk̃i,x, (4.67)

Bi,x = −(m + x̂′iM̂
′
0)k̃i,y + (m + x̃iM̃0)k̂

′
i,y, (4.68)

Bi,y = (m + x̂′iM̂
′
0)k̃i,x − (m + x̃iM0)k̂

′
i,x, (4.69)

Bi,z = k̂′i,xk̃i,y − k̂′i,yk̃i,x, (4.70)

mentre A3 e ~B3 sono dati da

A3 = (m + x̂′3M̂
′
0)(m + x̃3M̃0) + k̂′3,yk̃3,y − k̂′3,xk̃3,x, (4.71)

B3,x = (m + x̂′3M̂
′
0)k̃3,y − (m + x̃3M̃0)k̂

′
3,y, (4.72)

B3,y = −(m + x̂′3M̂
′
0)k̃3,x − (m + x̃3M0)k̂

′
3,x, (4.73)

B3,z = −k̂′3,xk̃3,y − k̂′3,yk̃3,x. (4.74)

Analogamente, le GPDs dispari per trasformazioni di elicità con �ip della
polarizzazione trasversa del quark attivo sono ottenute da di�erenti elementi
di matrice dell'ampiezza T̃ q

λ′tλt
che ha l'espressione

T̃ q
λ′tλt

=
3

2

1√
1− ξ2

1

(16π3)2

∫ 3∏

1=1

dxi δ

(
1−

3∑

i=1

xi

)
δ(x− x3)

×
∫ 3∏

i=1

d2k̄⊥,i δ

(
3∑

i=1

k̄⊥,i

)
ψ̃∗({x̂′i}, {k̂′⊥,i}) ψ̃({x̃i}, {k̃⊥,i})

×δτqτ3

{
X̃00

λ′tλt
(k̂′, k̃) δτ31/2 + 1

3
X̃11

λ′tλt
(k̂′, k̃)[δτ31/2 + 2δτ3−1/2]

}
,

(4.75)

con

X̃
S12S′12
λ
′t
Nλt

N

=
∑

λ1λ2λ3

sign(λ3)
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×
{ ∑

µ̄1µ̄2µ̄3

D
1/2†
λt
1µt

1

(
RM(k̂′1)

)
D

1/2†
λt
2µt

2

(
RM(k̂′2)

)
D

1/2†
−λt

3µt
3

(
RM(k̂′3)

)
Φ

S′12
λ
′t
N τ ′N

}∗

×
{ ∑

µ1µ2µ3

D
1/2†
λt
1µt

1

(
RM(k̃1)

)
D

1/2†
λt
2µt

2

(
RM(k̃2)

)
D

1/2†
−λt

3µt
3

(
RM(k̃3)

)
ΦS12

λt
N τN

}
.

(4.76)

Per la quale si trovano

Re
(
X̃00

++(k̂′, k̃)
)

= Re
(
X̃00
−−(k̂′, k̃)

)

=
3∏

i=1

N−1(k̂′i)N
−1(k̃i)

[
(A1A2 + ~B1 · ~B2)

]
Ã3, (4.77)

Re
(
X̃11

++(k̂′, k̃)
)

= Re
(
X11
−−(k̂′, k̃)

)
=

3∏

i=1

N−1(k̂′i)N
−1(k̃i)

×1
3

[
(3A1A2 − ~B1 · ~B2)Ã3

+2(A1B2,x + A2B1,x)B̃3,x

+2(A1B2,y + A2B1,y)B̃3,y

+2(A1B2,z + A2B1,z)B̃3,z

]
, (4.78)

Re
(
X̃00
−+(k̂′, k̃)

)
= −Re

(
X̃00

+−(k̂′, k̃)
)

=
3∏

i=1

N−1(k̂′i)N
−1(k̃i)

[
(A1A2 + ~B1 · ~B2)B̃3,y

]
, (4.79)

Re
(
X̃11
−+(k̂′, k̃)

)
= −Re

(
X̃11

+−(k̂′, k̃)
)

=
3∏

i=1

N−1(k̂′i)N
−1(k̃i)

×1
3

[
(−A1A2 − ~B1 · B̂2 + 4B1,yB2,y)B̃3,y

+2(B1,xB2,y + B2,xB1,y)B̃3,x

+2(A1B2,y + A2B1,y)Ã3

+2(B1,yB2,z + B1,zB2,y)B̃3,z

]
, (4.80)

dove

Ã3 = k′3,x(m + y3M0)− k3,x(m + y′3M
′
0), (4.81)

B̃3,x = −k′3,xk3,y − k′3,yk3,x, (4.82)
B̃3,y = (m + y′3M

′
0)(m + y3M0)− k′3,yk3,y + k′3,xk3,x, (4.83)

B̃3,z = −(m + y′3M
′
0)k3,y − (m + y3M0)k

′
3,y. (4.84)
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4.2.1 Limite diagonale delle GPDs

In questo paragrafo viene riportato un interessante risultato ottenuto nel
calcolo del limite diagonale (�forward�, ξ,t → 0 cioè p = p′) delle GPDs Hq,
H̃q e Hq

T grazie al quale si ritrovano le tre PDFs al leading twist (2.53) Infatti
osservando le espressioni per H̃q(x, 0, 0) e Hq

T (x, 0, 0)

H̃q(x, 0, 0) = gq
1(x) =

∑

λiτi

3∑

j=1

δτjτqsign(λj)

×
∫

[dx̄]3[dk⊥]3δ(x− xj)
∣∣∣ψ[f ]

λ

(
xi,k⊥i; λi, τi

)∣∣∣
2
,

Hq
T (x, 0, 0) = hq

1(x) =
∑

λt
iτi

3∑

j=1

δτjτqsign(λt
j)

×
∫

[dx̄]3[dk⊥]3δ(x− xj)
∣∣∣ψ[f ]

λt

(
xi,k⊥i; λ

t
i, τi

)∣∣∣
2
,

(4.85)
si può notare la loro completa analogia.
Questo risultato era atteso ed è un'ulteriore conferma di quanto detto in
precedenza a proposito della di�erenza tra la distribuzione di elicità e trasver-
sità. Come noto la loro di�erenza nasce puramente per e�etti relativistici,
che nel nostro modello sono contenuti nelle rotazioni di Melosh utilizzate
per la costruzione delle LCWFs nello spazio di spin trasverso. Quindi, nelle
formule in eq. (4.85), la di�erenza tra le due distribuzioni è nascosta all'in-
terno dell'espressione per le funzioni d'onda light-cone ψ

[f ]
λ

(
xi,k⊥i; λi, τi

)
e

ψ
[f ]
λt

(
xi,k⊥i; λ

t
i, τi

)
.

Nell'ambito del limite �forward� le GPDs trasversalmente polarizzate pos-
seggono un'altra importante proprietà.

Applicando una trasformazione di inversione temporale all'equazione (4.1)
si ricavano [35] le seguenti relazioni

Hq
T (x, ξ, t) = Hq

T (x,−ξ, t),

H̃q
T (x, ξ, t) = H̃q

T (x,−ξ, t),

Eq
T (x, ξ, t) = Eq

T (x,−ξ, t),

Ẽq
T (x, ξ, t) = −Ẽq

T (x,−ξ, t). (4.86)
Da quest'ultime deduciamo che nel limite diagonale si ricava che la GPD Ẽq

T

si annulla, mentre le altre GPDs sono diverse da zero. D'altra parte, dall'e-
spressione in eq. (4.48), notiamo che le GPD Eq

T e H̃q
T nel limite diagonale si
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disaccoppiano dall'ampiezza di scattering, in quanto moltiplicate per un fat-
tore cinematico che si annulla per p = p′. Di conseguenza solo Hq

T può essere
misurata nel limite diagonale, dove si riduce alla distribuzione di trasversità,
che è attualmente al centro di numerose attività sperimentali a HERMES,
COMPASS e RHIC (ved. [27] e referenze in esso contenute).
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Capitolo 5

CONCLUSIONI

La ricostruzione dello spin del protone in termini dei momenti angolari dei
suoi cosituenti elementari è tuttora un problema che non ha ricevuto soluzioni
adeguate e soddisfacenti nell'ambito della Cromodinamica Quantistica, cioè
la teoria che descrive il settore delle interazioni forti nel Modello Standard.
Poiché il protone è la particella più comune nell'universo, capire la dinamica
della sua struttura partonica di spin è un obbiettivo di importante rilevanza.

In questa tesi si è a�rontato il problema di costruire un modello per la
distribuzione partonica di spin trasverso, che contribuisce in modo determi-
nante alla struttura partonica di cui sopra, ma che è tuttora inesplorata. Una
determinazione sperimentale delle sue peculiari caratteristiche rappresenta
un test formidabile della Cromodinamica Quantistica nel cosiddetto regime
non perturbativo, dove la simmetria chirale è spontaneamente rotta. La dis-
tribuzione di spin trasverso, o trasversità, è stata introdotta per la prima
volta da Ralston e Soper nel 1979 ed è oggetto di studio in numerosi centri di
ricerca sia dal punto di vista teorico che sperimentale (DESY, CERN, JLAB,
...).

Lo strumento di calcolo utilizzato in questa tesi è rappresentato dalle dis-
tribuzioni partoniche generalizzate (GPD), che si sono a�ermate di recente
come l'approccio più potente e versatile al problema del legame tra spin degli
adroni e polarizzazione dei suoi costituenti elementari. Le GPD inglobano le
distribuzioni partoniche e ne generalizzano la de�nizione ad un regime cine-
matico più ampio; ma al tempo stesso contengono anche l'informazione for-
nita dai fattori di forma degli adroni. Esse rappresentano cioè un formalismo
potente per descrivere consistentemente processi esclusivi e (semi-)inclusivi.
Dalla de�nizione si evinced che le GPD, al contrario delle distribuzioni par-
toniche, sono ampiezze di probabilità che descrivono interferenze tra canali
diversi. Pertanto esse non hanno una naturale interpretazione probabilistica.

In questo lavoro si è studiato la rappresentazione overlap delle GPD,
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che rappresenta un metodo e�cace per ottenere tale l'interpretazione pro-
babilistica. In particolare partendo dai risultati esistenti in letteratura per
le GPD non polarizzate e polarizzate longitudinalmente, si è costruita la
rappresentazione overlap per le GPD trasversalmente polarizzate. In tale
rappresentazione le GPD sono direttamente connesse alla matrice densità a
un corpo nello spazio dei momenti, e quindi si sono ottenute come sovrappo-
sizione di funzioni d'onda relativistiche sul cono di luce (LCWF). In questo
lavoro, utilizzando tale rappresentazione overlap, si è messo in evidenza come
le diverse GPD (non polarizzate, polarizzate longitudinalmente e trasver-
salmente) siano ottenute da diverse proiezioni nello spazio di spin della ma-
trice densità.

Inoltre questo studio fornisce tutte le basi per una futura analisi numerica
dettagliata e rappresenta un calcolo originale in letteratura, che ha perme-
sso di ottenere interessanti riscontri riguardo la trasversità. Infatti, come
ampiamente descritto all'interno del capitolo 2, le GPD nel cosiddetto li-
mite diagonale forniscono esattamente le distribuzioni partoniche al leading
twist. In particolare la GPD trasversa HT nel suo limite diagonale fornisce
proprio la trasversità, in una maniera simile a quella per cui la GPD longitu-
dinalmente polarizzata, H̃, ricade nella distribuzione di elicità. È stato così
possibile mettere in luce gli e�etti relativistici che spiegano la diversità tra
trasversità e chiralità.

Nel nostro calcolo per la costruzione delle funzione d'onda sul cone luce
abbiamo utilizzato un modello relativistico a quark costituenti. In tale mo-
dello è possibile studiare le GPD nella regione cinematica, in cui i gradi di
libertà e�caci sono quelli legati ai quark di valenza. Gli e�etti relativisti-
ci contenuti nella costruzione della LCWF sono essenziali per ottenere un
approccio covariante, capace di soddisfare le condizioni del corretto supporto
nel limite diagonale delle distribuzioni partoniche, e le regole di somma per
il numero di particelle e per il momento.
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APPENDICE A

Generalizzazione di SU(2)

Il gruppo SU (2) ha tre generatori indipendenti, le matrici di Pauli σi i=1-3.
L'invarianza per trasformazioni di gauge locali di SU(2) implica l'esistenza
di tre campi vettoriali Ai

µ . Il campo di Dirac diventa un doppietto di campi
di Dirac

ψ(x) =

(
ψ1(x)
ψ2(x)

)
(1)

e la trasformazione di gauge locale diviene

ψ(x) → e
iαi(x)

(
σi

2

)
ψ(x) ≡ V (x)ψ(x). (2)

I generatori appartengono ad un'algebra non commutativa, infatti

[σi, σj] =
i

2
εijkσk, (3)

di conseguenza generano una teoria di gauge non abeliana. Analogamente al
caso della QED si introduce il comparatore

U(y, x) = eiφ(y,x), U(x, x) = 1, (4)
il quale per la QCD si trasforma attraverso la seguente relazione

U(y, x) → V (y)U(y, x)V †(x). (5)
Per spostamenti in�nitesimi

U(x + εn, x) = 1 + igεnµAi
µ(x)

σi

2
+ O(ε2). (6)



De�niamo la derivata covariante

nµDµψ(x) = lim
ε→0

1

ε

[
ψ(x + εn)− U(x + εn, x)ψ(x)

]

= lim
ε→0

1

ε

[
ψ(x) + εnµ∂µψ(x)−

(
1 + gε

~σ

2
· ~Aµn

µ
)
ψ(x)

]

= lim
ε→0

1

ε

[
εnµ

(
∂µψ(x)− ig

~σ

2
· ~Aµψ(x)

)]
,

⇒ Dµψ(x) = ∂µψ(x)− ig
~σ

2
· ~Aµψ(x). (7)

La trasformazione dei campi di gauge si ottiene partendo dalle proprietà
del comparatore

U(x + εn, x) → V (x + εn)U(x + εn, x)V †(x)

−∼
(
V (x) + εnµ∂µV

)
U(x + εn, x)V †(x)

(
V (x) + εnµ∂µV

)(
1 + igε

~σ

2
· ~Aµn

µ
)
V †(x) −∼ 1 + igεV

~σ

2
· ~Aµn

µV †

+εnµ
(
∂µV

)
V †

⇒ ~σ

2
· ~A′

µ = V
~σ

2
· ~AµV

† − i

g

(
∂µV

)
V † = V

~σ

2
· ~AµV

† +
i

g
V ∂µV

†.

(8)

Per V in�nitesima, cioè α piccolo, risulta V (x) −∼
(
1 + i~σ

2
· ~α(x)

)
e quindi

~σ

2
· ~A′

µ =
(
1 + i

~σ

2
· ~α(x)

)
~σ

2
· ~Aµ

(
1− i

~σ

2
· ~α(x)

)
− i

g

(
i
~σ

2
· ∂µ~α(x)

)

×
(
1− i

~σ

2
· ~α(x)

)
=

~σ

2
· ~Aµ + i

[
~σ

2
· ~α(x),

~σ

2
· ~Aµ

]
+

1

g

~σ

2
· ∂µ~α(x).

(9)



La trasformazione per la derivata covariante è data da
(
Dµψ(x)

)′
=

(
∂µ − ig

~σ

2
· A′

µ

)
ψ′ = D′

µV ψ(x) −∼ D′
µ

(
1 + i

~σ

2
· ~α(x)

)
ψ(x)

=

[
∂µ − ig

(
~σ

2
· Aµ +

[
~σ

2
· ~α(x),

~σ

2
· ~Aµ

]
+

1

g

~σ

2
· ∂µ~α(x)

)]

(
1 + i

~σ

2
· ~α(x)

)
ψ(x)

=

{
∂µ + i

~σ

2
· ∂µ~α(x) + i

~σ

2
· ~α(x)∂µ − ig

~σ

2
· Aµ

+g
~σ

2
· Aµ

~σ

2
· ~α(x) + +g

[
~σ

2
· ~α(x),

~σ

2
· ~Aµ

]
− i

~σ

2
· ∂µ~α(x)

}
ψ(x)

=

{
∂µ + i

~σ

2
· ~α(x)∂µ − ig

~σ

2
· ~Aµ + g

~σ

2
· Aµ

~σ

2
· ~α(x)

}
ψ(x)

=

{(
1 + i

~σ

2
· ~α(x)

)
∂µ −

(
1 + i

~σ

2
· ~α(x)

)
ig

~σ

2
· ~Aµ

}
ψ(x)

=
(
1 + i

~σ

2
· ~α(x)

)(
∂µ − ig

~σ

2
· ~Aµ

)
ψ(x)

= V Dµψ(x). (10)

Questa trasformazione è analoga a quella per il campo di Dirac; il termine
cinetico risulta quindi essere

ψ̄(x)iγµDµψ(x), (11)

con Dµ che ingloba l'interazione attraverso l'accoppiamento minimale de-
scritto dalla costante d'accoppiamento �g�.



APPENDICE B

Contributo dominante in e+e− inclusivo

Partendo dalla de�nizione di tensore adronico abbiamo

W µν =
∫ d3PX

(2π)32P 0
X

(2π)4δ(q − PX)〈0|Jµ(0)|PX〉〈PX |Jν(0)|0〉

=
∫

d4ξeiξ·(q−PX)
∫ d3PX

(2π)32P 0
X

〈0|Jµ(0)|PX〉〈PX |Jν(0)|0〉

=
∫

d4ξeiξ·q
∫ d3PX

(2π)32P 0
X

〈0|Jµ(0)e−iξ·P̂ |PX〉〈PX |Jν(0)|0〉

=
∫

d4ξeiξ·q
∫ d3PX

(2π)32P 0
X

〈0|eiξ·P̂ Jµ(0)e−iξ·P̂ |PX〉〈PX |Jν(0)|0〉

=
∫

d4ξeiξ·q
∫ d3PX

(2π)32P 0
X

〈0|Jµ(ξ)|PX〉〈PX |Jν(0)|0〉

=
∫

d4ξeiξ·q〈0|Jµ(ξ)Jν(0)|0〉 = ...

Poiché ∫
d4ξeiξ·q〈0|Jν(0)Jµ(ξ)|0〉

=
∫

d4ξ
∫ d3PX

(2π)32P 0
X

eiξ·qeiξ·PX 〈0|Jν(0)|PX〉〈PX |Jµ(ξ)|0〉,

∫ dPX

(2π)32P 0
X

(2π)4δ(q + PX)〈0|Jν(0)|PX〉〈PX |Jµ(ξ)|0〉, (12)



questo implica q0 = ν = −P 0
x , che è ovviamente impossibile; quindi

questo contributo deve essere uguale a zero e può essere sommato a quello
precedente per ottenere

W µν = ... =
∫

d4ξeiξ·q〈0|
[
Jµ(ξ), Jν(0)

]
|0〉.

Nel limite di Bjorken (che implica ν →∞), sapendo che per |q · ξ| → ∞
il termine eiξ·q oscilla fortemente e i conrtibuti all'integrale si cancellano,
abbiamo

q · ξ = q0ξ
0 − ~q · ~ξ = νξ0 − ~q · ~ξ

|~q| |~q|
.
= νξ0 − r

√
ν2 − q2

= νξ0 − rν

√
1− q2

ν2
∼= νξ0 − rν(1− 1

2

q2

ν2
) = ν(ξ0 − r) + r

q2

2ν
∼= ν(ξ0 − r)− rMxB ≤ cost.

che implica

|ξ0 − r| ≤ cost.

ν
e r ≤ cost.

xB

, (13)

cioè
ξ0 ≤ cost.

ν
+ r. (14)

In�ne, poiché r2 = |~ξ|2
(
ξ0

)2 ≤ cost.

ν2
+ 2

cost.

ν
r + r2 ≤ |~ξ|2 +

cost.

νxB

, (15)

e quindi (
ξ0

)2 − |~ξ|2 = ξ2 ≤ cost.

νxB

−→ 0. (16)



APPENDICE C

Contributo di spin e isospin alle ampiezze di
scattering nello spazio trasverso

In questa appendice si illustrano in un certo dettaglio i passaggi relativi al
calcolo delle componenti di spin e isospin che compaiono nelle ampiezze di
scattering T q

λ′tλt
e T̃ q

λ′tλt
nel modello relativistico a quark costituenti.

Contributo di isospin

Esplicitando la somma sulle variabili di isospin in equazione (4.58) si ottiene
∑
τi

ΦT ′12
τN

(τi)Φ
T12
τN

(τi)δτ3,τq =
∑
τ1

∑
τ2

∑
τ3

∑
τ12

∑

τ ′12

〈1/2, τ1; 1/2, τ2|T ′
12; τ

′
12〉

×〈1/2, τ1; 1/2, τ2|T12; τ12〉〈T ′
12, τ

′
12; 1/2τ3|1/2; τN〉〈T12, τ12; 1/2, τ3|1/2; τN〉δτ3,τq

=
∑
τ3

∑

τ12

〈T12, τ121/2, τ3|1/2, τN〉〈T12, τ12; 1/2, τ3|1/2; τN〉δτ3,τq

= δT12,0

{ ∑
τ3

δτ3,τq |〈0, 0; 1/2, τ3|1/2; τN〉|2
}

+δT12,1

{ ∑
τ3

δτ3,τq

∑
τ12

|〈1, τ12; 1/2, τ3|1/2; τN〉|2
}
.

(17)

Dal momento che

〈0, 0; 1/2, τ3|1/2; τN〉 = δτ3,τN
(18)



e

〈1, τ12; 1/2, τ3|1/2; τN〉 = δτ3, 1
2
(−1)

[
3− 2τN

6

]1/2

+ δτ3,− 1
2

[
3 + 2τN

6

]1/2

,

(19)

si ha
∑
τ3

∑

τ12

δτ3,τq |〈1, τ12; 1/2, τ3|1/2; τN〉|2 =

= δτq , 1
2
δτN , 1

2

[
3− 2τN

6

]
+ δτq ,− 1

2
δτN , 1

2

[
3 + 2τN

6

]

+δτq , 1
2
δτN ,− 1

2

[
3− 2τN

6

]
+ δτq ,− 1

2
δτN ,− 1

2

[
3 + 2τN

6

]

= δτq , 1
2

{
δτN , 1

2
(1/3) + δτN ,− 1

2
(2/3)

}
+ δτq ,− 1

2

{
δτN

1
2
(2/3) + δτN ,− 1

2
(1/3)

}

= δτN , 1
2

{
(1/3)δτq , 1

2
+ (2/3)δτq ,− 1

2

}
+ δτN− 1

2

{
(2/3)δτq , 1

2
+ (1/3)δτq ,− 1

2

}
.

(20)

Quindi, se il bersaglio è un protone

δT12,0δτq , 1
2

+ δT12,1(1/3)[δτq , 1
2

+ 2δτq ,− 1
2
], (21)

in caso, invece, sia un neutrone

δT12,0δτq ,− 1
2

+ δT12,1(1/3)[2δτq , 1
2

+ δτq ,− 1
2
]. (22)

Dalla somma sulle variabili di isospin si deduce

T12 = S12 = T ′
12 = S ′12 =

{
0
1

. (23)

Contributo di spin

In questa sezione riportiamo il calcolo esplicito dei coe�cienti X
S12S′12
λ′tλt

.

Il calcolo di X00
λ′tλt

corrisponde alla seguente espressione

X00
λ′tλt

=
∑

λ1λ2λ3

sign(λ3)
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×
{ ∑

µ̄1µ̄2µ̄3

D
1/2†
λ1µ̄1

(
RM(k̂′1)

)
D

1/2†
λ2µ̄2

(
RM(k̂′2)

)
D

1/2†
λ3µ̄3

(
RM(k̂′3)

)
Φ̃0

λ′N
(µ̄1, µ̄2, µ̄3)

}∗

× ∑
µ1µ2µ3

D
1/2†
λ1µ1

(
RM(k̃1)

)
D

1/2†
λ2µ2

(
RM(k̃2)

)
D

1/2†
λ3µ3

(
RM(k̃3)

)
Φ̃0

λN
(µ1, µ2, µ3)

(24)

• Relazioni utili:
〈1/2, µ1; 1/2, µ2|0; 0〉〈0, 0; 1/2, µ3|1/2; λt

N〉 = δµ3λN

1√
2
〈1/2, µ2|iσy|1/2, µ1〉

(25)
Infatti

〈1/2, µ1; 1/2, µ2|0; 0〉 =
{ − 1√

2
per µ2 = −1

2
1√
2

per µ2 = 1
2

, (26)

iσy|1/2, µ1〉
µ1= 1

2︷︸︸︷
=

1√
2

(
0 1
−1 0

) (
1
1

)
=

1√
2

(
1
−1

)
,

iσy|1/2, µ1〉
µ1=− 1

2︷︸︸︷
=

1√
2

(
0 1
−1 0

) (
1
−1

)
=

1√
2

(
−1
−1

)
, (27)

〈1/2, µ2|iσy|1/2, µ1〉 =
{ −1 per µ2 = −1

2

1 per µ1 = 1
2

. (28)

D
1/2†
λµ

(
RM(k̃)

)
= 〈1/2, λ|m + x̃M̃0 + i~σ · (ẑ × k̃⊥)

[(m + x̃M̃0)2 + k̃2
⊥]1/2

|1/2, µ〉

= 〈1/2, λ|R†
M(k̃)|1/2, µ〉, (29)

[
D

1/2†
λµ

(
RM(k̃)

)]∗
= 〈1/2, µ|m + x̃M̃0 − i~σ · (ẑ × k̃⊥)

[(m + x̃M̃0)2 + k̃2
⊥]1/2

|1/2, λ〉

= 〈1/2, µ|RM(k̃)|1/2, λ〉. (30)

Utilizzando le relazioni appena viste l'equazione (24) diviene
1

2

∑

µ̄1

∑

µ̄2

∑
µ1

∑
µ2

[ ∑

λ1

〈1/2, µ̄1|RM(k̂′1)|1/2, λ1〉〈1/2, λ1|R†
M(k̃1)|1/2, µ1〉

]

×
[ ∑

λ2

〈1/2, µ̄2|RM(k̂′2)|1/2, λ2〉〈1/2, λ2|R†
M(k̃2)|1/2, µ2〉

×〈1/2, µ̄1| − iσy|1/2, µ̄2〉〈1/2, µ2|iσy|1/2, µ1〉
]

×∑

λ3

sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†
M(k̃3)|1/2, λt

N〉.(31)
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∑

λ1

〈1/2, µ̄1|RM(k̂′1)|1/2, λ1〉〈1/2, λ1|R†
M(k̃1)|1/2, µ1〉

= 〈1/2, µ̄1|RM(k̂′1)R
†
M(k̃1)|1/2, µ1〉

= N−1(k̂′1)N
−1(k̃1)〈1/2, µ̄1|A1 + i~σ · ~B1|1/2, µ1〉 (32)

Dim.:

〈1/2, λ′|RM(k̂′)R†
M(k̃)|1/2, λ〉

= N−1(k̂′)N−1(k̃)〈1/2, λ′|[m + x̂′M̃0 − i~σ · (ẑ × k′⊥)]

×[m + x̃M̃0 + i~σ · (ẑ × k̃⊥)]|1/2, λ〉
= N−1(k̂′)N−1(k̃)〈1/2, λ′|(m + x̂′M̃0)(m + x̃M̃0)

+i(m + x̂′M̃0)~σ · (ẑ × k̃⊥)− i(m + x̃M̃0)~σ · (ẑ × k′⊥)

+~σ · (ẑ × k′⊥)~σ · (ẑ × k̃⊥)|1/2, λ〉
= N−1(k̂′)N−1(k̃)〈1/2, λ′|(m + x̂′M̃0)(m + x̃M̃0)

+i(m + x̂′M̃0)~σ · (ẑ × k̃⊥)− i(m + x̃M̃0)~σ · (ẑ × k′⊥)

+(ẑ × k′⊥) · (ẑ × k̃⊥) + i~σ[(ẑ × k′⊥)× (ẑ × k̃⊥)]|1/2, λ〉
= 〈1/2, λ′|RM(k̂′1)R

†
M(k̃1)|1/2, λ〉

= N−1(k̂′)N−1(k̃)〈1/2, λ′|A + i~σ · ~B|1/2, λ〉,
(33)

con
A = (m + x′M̃0)(m + xM̃0) + k̂′yk̃y + k̂′xk̃x, (34)

Bx = −(m + x′M̃0)k̃y + (m + xM̃0)k̂
′
y, (35)

By = (m + x′M̃0)k̃x + (m + xM̃0)k̂
′
x, (36)

Bz = k̂′xk̃y − k̂′yk̃x. (37)

Sfruttando la relazione (32) appena dimostrata l'equazione (31) può
essere riscritta nel seguente modo

1

2

∑

λ3

sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†
M(k̃3)|1/2, λt

N〉

×N−1(k̂′1)N
−1(k̃1)N

−1(k̂′2)N
−1(k̃2)

×∑

µ̄1

∑

µ̄2

∑
µ1

∑
µ2

〈1/2, µ̄1|A1 + i~σ · ~B1|1/2, µ1〉

×〈1/2, µ̄1| − iσy|1/2, µ̄2〉〈1/2, µ̄2|A2 + i~σ · ~B2|1/2, µ2〉
×〈1/2, µ2|iσy|1/2, µ1〉, (38)

90



e dal momento che vale questa proprietà
〈1/2, µ̄1|A1 + i~σ · ~B1|1/2, µ1〉 = 〈1/2, µ1|A1 + i~σ∗ · ~B1|1/2, µ̄1〉, (39)

si ha
1

2

∑

λ3

sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†
M(k̃3)|1/2, λt

N〉

×N−1(k̂′1)N
−1(k̃1)N

−1(k̂′2)N
−1(k̃2)

×∑

µ̄1

∑

µ̄2

∑
µ1

∑
µ2

〈1/2, µ1|A1 + i~σ∗ · ~B1|1/2, µ̄1〉

×〈1/2, µ̄1| − iσy|1/2, µ̄2〉〈1/2, µ̄2|A2 + i~σ · ~B2|1/2, µ2〉
×〈1/2, µ2|iσy|1/2, µ1〉

=
1

2

∑

λ3

sign(λ3)〈1/2, λ′N |RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†
M(k̃3)|1/2, λN〉

×N−1(k̂′1)N
−1(k̃1)N

−1(k̂′2)N
−1(k̃2)

×Tr
{
(A1 + i~σ∗ · ~B1)σy(A2 + i~σ · ~B2)σy

}
. (40)

A questo punto ricordando le proprietà della �traccia� e delle matrici
σ:
Tr

{
(A1+i~σ∗ ~B1)σy(A2+i~σ ~B2)σy

}
= Tr

{
(A2+i~σ ~B2)σy(A1+i~σ∗ ~B1)σy

}
,

(41)
σ∗xσy = σ∗xσy = −σyσx, (42)
σ∗yσy = −σyσy = −1, (43)
σ∗zσy = σzσy = −σyσz, (44)

si ha
Tr

{
(A2 + i~σ · ~B2)σy(A1 + i~σ∗ · ~B1)σy

}

= Tr
{
(A2 + i~σ · ~B2)(A1 − i~σ · ~B1)

}
= 2[A1A2 + ~B1 · ~B2].

(45)
L'equazione (40) diventa
N−1(k̂′1)N

−1(k̃1)N
−1(k̂′2)N

−1(k̃2)
∑

λ3

sign(λ3)〈1/2, λ′N |RM(k̂′3)|1/2, λ3〉

×〈1/2, λ3|R†
M(k̃3)|1/2, λN〉[A1A2 + ~B1 · ~B2].

(46)

• Calcolo di �∑λ3
sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†

M(k̃3)|1/2, λt
N〉�:
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1)

λ′N = λN = +
1

2
, T++ = −T−− ⇒ T++ =

1

2

[
T++−T−−

]

(47)

N−1(k̂′3)N
−1(k̃3)

2

∑

λ3

{
〈1/2, 1/2|m + x′3M̂

′
0 − i~σ · (ẑ × k′⊥,3)|1/2, λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉sign(λ3)

−〈1/2,−1/2|m + x̂′3M̂
′
0 − i~σ · (ẑ × k′⊥,3)|1/2, λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉sign(λ3)
}
, (48)

utilizzando il risultato in eq.(33), si ha

N−1(k̂′3)N
−1(k̃3)

2

{
(m + x̂′3M̂

′
0)(m + x̃3M̃0) + (m + x̂′3M̂

′
0)

× 〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+ (m + x̃3M̃0)〈1/2, 1/2| − i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
+ 〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
− 〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
× 〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+ (m + x̂′3M̂

′
0)(m + x̃3M̃0) + (m + x̂′3M̂

′
0)

× 〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
+ (m + x̃3M̃0)〈1/2,−1/2| − i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
+ 〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
× 〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
− 〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
× 〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

}
. (49)

Siccome

〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉 = −ik̂′y〈1/2, 1/2|σx|1/2, 1/2〉
= −ik̂′y

〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉 = ... = ik̂′y

〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉 = ik̂′x〈1/2, 1/2|σy|1/2,−1/2〉
= −k̂′x
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〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉 = ... = k̂′x,

e

〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉 = −k̂′y

〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉 = k̂′y

〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉 = ik̂′x

〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉 = −ik̂′x, (50)

l'equazione (49) assume la forma

N−1(k̂′3)N
−1(k̃3)

2

{
2(m + x̂′3M̂

′
0)(m + x̃3M̃0)− ik̃y,3(m + x̂′3M̂

′
0)

+ik̂′y,3(m + x̃3M̃0) + k̃y,3k̂
′
y,3 − k̃x,3k̂

′
x,3 + ik̃y,3(m + x̂′3M̂

′
0)

−ik̂′y,3(m + x̃3M̃0) + k̃y,3k̂
′
y,3 − k̃x,3k̂

′
x,3

}
,

(51)

ovvero, e�ettuando le opportune sempli�cazioni

N−1(k̂′3)N
−1(k̃3)

[
(m + x̂′3M̂

′
0)(m + x̃3M̃0) + k̃y,3k̂

′
y,3 − k̃x,3k̂

′
x,3

]
.

(52)

Quindi il risultato �nale per il contributo di �spin� e �isospin� nel
caso S12 = S ′12 = 0, T12 = T ′

12 = 0 risulta:

δτq ,− 1
2

∏

i

N−1(k̂′i)N
−1(k̃i)

[
(m + x̂′3M̂

′
0)(m + x̃3M̃0)

+k̃y,3k̂
′
y,3 − k̃x,3k̂

′
x,3

]
[A1A2 + B̄1 · B̄2] (53)

2)

λ′N = +
1

2
λN = −1

2
, T+− = T−+ ⇒ T+− =

1

2

[
T+−+T−+

]

(54)

N−1(k̂′3)N
−1(k̃3)

2

∑

λ3

{
〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉sign(λ3)
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+〈1/2,−1/2|m + x̂′3M̂
′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉sign(λ3)
}

=
N−1(k̂′3)N

−1(k̃3)

2

{
(m + x̂′3M̂

′
0)〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

+(m + x̃3M̃0)〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
−〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
−(m + x̂′3M̂

′
0)〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉

−(m + x̃3M̃0)〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
−〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉

}

=
N−1(k̂′3)N

−1(k̃3)

2

{
(m + x̂′3M̂

′
0)(−k̃x,3) + (m + x̂′3M̂

′
0)(−k̂′x,3)− ik̂′y,3k̃x,3

−ik̂′x,3k̃y,3 − (m + x̂′3M̂
′
0)(k̃x,3)− (m + x̂′3M̂

′
0)(k̂

′
x,3) + ik̂′x,3k̃y,3 + ik̂′y,3k̃x,3

}

= N−1(k̂′3)N
−1(k̃3)

[
− k̃x,3(m + x̂′3M̂

′
0)− k̂′x,3(m + x̃3M̃0)

]
. (55)

Quindi il risultato �nale per il contributo di �spin� e �isospin� nel caso
λN = −λ′N , S12 = S ′12 = 0 risulta:

δτq ,− 1
2
δT12,0

∏

i

N−1(k̂′i)N
−1(k̃i)

[
− k̃x,3(m + x̂′3M̂

′
0)− k̂′x,3(m + x̃3M̃0)

]

×[A1A2 + B̄1 · B̄2]. (56)

b) S12 = S ′12 = 1
∑

Ms12

〈1/2, λ1; 1/2, λ2|1,Ms12〉〈1,Ms12 ; 1/2λ3|1/2, λN〉

=
(
per λN =

1

2

)
〈1/2, λ1; 1/2, λ2|1, 0〉〈1, 0; 1/2λ3|1/2, 1/2〉

+〈1/2, λ1; 1/2, λ2|1, 1〉〈1, 1; 1/2λ3|1/2, 1/2〉
= δλ1,λ2δλ3, 1

2

(
−

√
1/6

)
+ δλ1,λ2

(
1/2 + λ1

)
δλ3,− 1

2

√
2/3, (57)

∑

Ms12

〈1/2, λ1; 1/2, λ2|1,Ms12〉〈1,Ms12 ; 1/2λ3|1/2, λN〉

=
√

1/6
∑

j

〈1/2, λ1|iσjσy|1/2, λ2〉〈1/2, λ3|σj|1/2, λN〉
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=
√

1/6
{
〈1/2, λ1|iσxσy|1/2, λ2〉〈1/2, λ3|σx|1/2, 1/2〉

+〈1/2, λ1|iσyσy|1/2, λ2〉〈1/2, λ3|σz|1/2, 1/2〉
+〈1/2, λ1|iσzσy|1/2, λ2〉〈1/2, λ3|σz|1/2, 1/2〉

}

=
√

1/6
{
〈1/2, λ1| − σz|1/2, λ2〉δλ3, 1

2
+ iδλ1,λ2δλ3,− 1

2
(−i)

+〈1/2, λ1|σx|1/2, λ2〉δλ3,− 1
2

}

=
√

1/6
{
− δλ1,−λ2δλ3,1/2 + δλ1,λ2δλ3,−1/2 + δλ1,λ2δλ3,−1/2sign(λ1)

}

=
√

1/6
{
− δλ1,−λ2δλ3,1/2 + 2δλ1,λ2δλ3,−1/2(λ1 + 1/2)

}
, (58)

per ottenere la quale sono state sfruttate le seguenti relazioni:

σz|1/2, 1/2〉 =
1√
2

(
1 0
0 −1

) (
1
1

)
=

1√
2

(
1
−1

)
= |1/2,−1/2〉;

σz|1/2,−1/2〉 =
1√
2

(
1 0
0 −1

) (
1
−1

)
=

1√
2

(
1
1

)
= |1/2, 1/2〉;

σy|1/2, 1/2〉 =
1√
2

(
0 −i
i 0

) (
1
1

)
=

1√
2

(
−i
i

)
= −i|1/2,−1/2〉;

σy|1/2,−1/2〉 =
1√
2

(
0 −i
i 0

) (
1
−1

)
=

1√
2

(
i
i

)
= i|1/2,−1/2〉.

(59)

Quindi l'analoga di equazione (24) in questo caso diventa
∑

λ1λ2λ3

sign(λ3)

×
{ ∑

µ̄1µ̄2µ̄3

D
1/2†
λ1µ̄1

(
RM(k̂′1)

)
D

1/2†
λ2µ̄2

(
RM(k̂′2)

)
D

1/2†
λ3µ̄3

(
RM(k̂′3)

)
Φ̃1

λ′N
(µ̄1, µ̄2, µ̄3)

}∗

× ∑
µ1µ2µ3

D
1/2†
λ1µ1

(
RM(k̃1)

)
D

1/2†
λ2µ2

(
RM(k̃2)

)
D

1/2†
λ3µ3

(
RM(k̃3)

)
Φ̃1

λN
(µ1, µ2, µ3)

=
1

6

∑

λ1λ2λ3

sign(λ3)

{ ∑

µ̄1µ̄2µ̄3

∑

j′
〈1/2, λ1|R†

M(k̂′1)|1/2, µ̄1〉〈1/2, λ2|R†
M(k̂′2)|1/2, µ̄2〉

×〈1/2, λ3|R†
M(k̂′3)|1/2, µ̄3〉〈1/2, µ̄1|iσj′σy|1/2, µ̄2〉〈1/2, µ̄3|σj′|1/2, λ′N〉

}∗

{ ∑
µ1µ2µ3

∑

j

〈1/2, λ1|R†
M(k̃1)|1/2, µ1〉〈1/2, λ2|R†

M(k̃2)|1/2, µ2〉
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×〈1/2, λ3|R†
M(k̃3)|1/2, µ3〉〈1/2, µ1|iσjσy|1/2, µ2〉〈1/2, µ3|σj|1/2, λN〉

}
.

(60)

Utilizzando la proprietà, qui di seguito riportata,
{
〈1/2, λ1|R†

M(k̂′1)|1/2, µ̄1〉〈1/2, λ2|R†
M(k̂′2)|1/2, µ̄2〉〈1/2, λ3|R†

M(k̂′3)|1/2, µ̄3〉

×〈1/2, µ̄1|iσj′σy|1/2, µ̄2〉〈1/2, µ̄3|σj′|1/2, λ′N〉
}∗

= 〈1/2, µ̄1|RM(k̂′1)|1/2, λ1〉〈1/2, µ̄2|RM(k̂′2)|1/2, λ2〉〈1/2, µ̄3|RM(k̂′3)|1/2, λ3〉
×〈1/2, µ̄2| − iσyσj′ |1/2, µ̄1〉〈1/2, λ′N |σj′|1/2, µ̄3〉, (61)

l'equazione (60) diventa

1

6

∑

µ̄1µ̄2µ̄3

∑
µ1µ2µ3

{ ∑

λ1

〈1/2, µ̄1|RM(k̂′1)|1/2, λ1〉〈1/2, λ1|R†
M(k̂′1)|1/2, µ1〉

}

×
{ ∑

λ2

〈1/2, µ̄2|RM(k̂′2)|1/2, λ2〉〈1/2, λ2|R†
M(k̂′1)|1/2, µ2〉

}

×
{ ∑

λ3

sign(λ3)〈1/2, µ̄3|RM(k̂′3)|1/2, λ3〉〈1/2, λ3|R†
M(k̂′3)|1/2, µ3〉

}

×∑

jj′
〈1/2, µ̄2| − iσyσj′ |1/2, µ̄1〉〈1/2, λ′N |σj′ |1/2, µ̄3〉

×〈1/2, µ1|iσjσy|1/2, µ2〉 × 〈1/2, µ3|σj|1/2, λN〉
=

1

6
N−1(k̂′1)N

−1(k̃1)N
−1(k̂′2)N

−1(k̃2)N
−1(k̂′3)N

−1(k̃3)

×∑

jj′

{ ∑
µ1

∑
µ2

∑

µ̄1

∑

µ̄2

〈1/2, µ̄1|A1 + i ~B1 · ~σ|1/2, µ1〉〈1/2, µ1|iσjσy|1/2, µ2〉

×〈1/2, µ̄2|A2 + i ~B2 · ~σ|1/2, µ2〉〈1/2, µ1| − iσyσj|1/2, µ2〉
}

×∑
µ3

∑

µ̄3

〈1/2, λ′N |σj′|1/2, µ̄3〉〈1/2, µ̄3|A3 + i ~B3 · ~σ|1/2, µ3〉〈1/2, µ3|σj|1/2, λN〉.

(62)

Ricordando l'equazione (39), l'equazione (62) può essere riscritta come
1

6

∏

i

N−1(k̂′i)N
−1(k̃i)

∑

jj′
Tr

{
(A1 + i ~B1 · σ)σjσy(A2 + i ~B2 · σ∗)σyσj′

}

×〈1/2, λ′N |σj′(A3 + i ~B3 · ~σ)σj|1/2, λN〉. (63)
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Calcolo della �traccia�:
~σ∗ = −σy~σσy, con σ2 = 1, (64)

Tr
{
(A1 + i ~B1 · ~σ)σj(A2 − i ~B2 · ~σ)σj′

}

= Tr
{
A1A2σjσj′ − iA1σj( ~B2 · ~σ)σj′ + iA2( ~B1 · ~σ)σjσj′ − ( ~B1 · ~σ)σj( ~B2 · ~σ)σj′

}

= Tr
{
A1A2δjj′ − iA1

~B2,kσj

(
δkj′ + i~σ · (~ek × ~ej′)

)
+ iA2

~B1,kσk

(
δjj′ + i~σ · (~ej × ~ej′)

)

+B1,kB2,i

(
δkj + i~σ · (~ek × ~ej)

)(
δij′ + i~σ · (~ei × ~ej′)

)}

= Tr
{
A1A2δjj′ + A1σj

[
~σ ·

(
~B2 × ~ej′

)]
− A2

(
~σ · ~B1

)[
~σ · (~ej × ~ej′)

]

+B1,jB2,j′ −
[
~σ · ( ~B1 × ~ej)

]
·
[
σ · ( ~B2 × ~ej′)

]}

= Tr
{
A1A2δjj′ + B1,jB2,j′ + A1~ej ·

(
~B2 × ~ej′

)

−A2
~B1 ·

(
~ej × ~ej′

)
−

(
~B1 × ~ej

)
·
(
~B2 × ~ej′

)}
.

(65)
Siccome

~ej ·
(
~B2 × ~ej′

)
= ~B2 · (~ej′ × ~ej) = − ~B2 · (~ej × ~ej′),

~B · (~ej × ~ej′) = Bkεjj′k,

( ~B1 × ~ej) · ( ~B2 × ~ej′) = ~B1 · ~B2δjj′ −B1,j′B2,j,

(66)
l'equazione (65) diviene

Tr
{
[A1A2 − ~B1 · ~B2]δjj′ + B1,jB2,j′ + B1,j′B2,j + [A1

~B2 + A2
~B1] · (~ej′ × ~ej)

}

= 2
{
[A1A2 − ~B1 · ~B2]δjj′ + B1,jB2,j′ + B1,j′B2,j + [A1

~B2 + A2
~B1] · (~ej′ × ~ej)

}
,

(67)
sostituendo questo risultato in eq. (63) si ottiene

1

3

∏

i

N−1(k̂′i)N
−1(k̃i)

∑

jj′

{
[A1A2 − ~B1 · ~B2]δjj′ + B1,jB2,j′ + B1,j′B2,j

+[A1
~B2 + A2

~B1] · (~ej′ × ~ej)
}
〈1/2, λ′N |σj′(A3 + i ~B3 · ~σ)σj|1/2, λN〉,

(68)
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ovvero

1

3

∏

i

N−1(k̂′i)N
−1(k̃i)

∑

j

∑

j′

{[
A1A2 − ~B1 · ~B2

]
δjj′ + B1,jB2,j′

+B1,j′B2,j +
∑

k

[
A1B2,k + A2B1,k

]
εijk

}{ ∑

λ3

[
〈1/2, λ′N |σj|1/2, µ̄3〉

×〈1/2, µ̄3|m + x̂′3M̂
′
0 − iσ · (ẑ × k̂′⊥,3)|1/2, λ3〉

×〈1/2, λ3|m + x̃3M̃0 + iσ · (ẑ × k̃⊥,3)|1/2, µ3〉〈1/2, µ3|σj|1/2, λN〉sign(λ3)
]}

.

(69)

1)

λ′N = λN = +
1

2
, T++ = −T−− ⇒ T++ =

1

2

[
T++ − T−−

]

(70)
Sviluppando le somme su j e j′ nei vari termini x,y e z e ricordando
l'azione delle matrici di Pauli ricavata in equazione (50) il contributo
per T++ risulta essere dato da:

X11
++ =

1

3

∏

i

N−1(k̂′i)N
−1(k̃i)

{
−

[
A1A2 + ~B1 · ~B2 − 4B1xB2x

]
A3

+2
[
A1B2x + A2B1x

]
B3x + 2

[
B1xB2z + B1zB2x

]
B3y

+2
[
B1xB2y + B1yB2x

]
B3z

}
,

(71)

dove

• A3 =
(
m + x̂′3M̂

′
0

)(
m + x̃3M̃0

)
+ k̂′y,3k̃y,3 − k̂′x,3k̃x,3;

• Bx,3 =
(
m + x̂′3M̂

′
0

)
k̃y,3 −

(
m + x̃3M̃0

)
k̂′3y;

• By,3 = −
(
m + x̂′3M̂

′
0

)
k̃x,3 −

(
m + x̃3M̃0

)
k̂′x,3;

• B3z = −k̂′x,3k̃y,3 − k̂′y,3k̃x,3.

2)

λ′N = +
1

2
λN = −1

2
, T+− = T−+ ⇒ T+− =

1

2

[
T+− + T−+

]

(72)
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Il contributo per T+− risulta essere dato da:

X11
+− =

1

3

∏

i

N−1(k̂′i)N
−1(k̃i)

{[(
A1A2 − ~B1 · ~B2

)
+ 2 ~B1 · ~B2 − 4B1zB2z

]

×
[(

m + x̂′3M̂
′
0

)
k̃x,3 +

(
m + x̃3M̃0

)
k̂′x,3

]
+

[
A1B2z + A2B1z

]

×
[
2
(
m + x̂′3M̂

′
0

)
k̃y,3 − 2

(
m + x̃3M̃0

)
k̂′y,3

]

+
[
B1xB2z + B1zB2x

]

×
[
2(m + x̃3M̃0)(m + x̂′3M̂

′
0)− 2k̂′x,3k̃x,3 + 2k̂′y,3k̃y,3

]

+
[
B1yB2z + B1zB2y

][
− 2k̂′x,3k̃y,3 − 2k̂′y,3k̃x,3

]}
,

(73)

cioè

X11
+− =

1

3

∏

i

N−1(k̂′i)N
−1(k̃i)

{
−

[
A1A2 + ~B1 · ~B2 − 4B1zB2z

]
B3y

+2
[
A1B2z + A2B1z

]
B3x + 2

[
B1xB2z + B1zB2x

]
A3

+2
[
B1yB2z + B1zB2y

]
B3z

}
.

(74)

Somma sulle variabili di spin nel caso polarizzato

Nel calcolo di T̃λ′N λN
le matrici di rotazioni coinvolte sono

∑

λ1λ2λ3

sign(λ3)

{ ∑

µ̄1µ̄2µ̄3

D
1/2†
λ1µ̄1

(
RM(k̂′1)

)
D

1/2†
λ2µ̄2

(
RM(k̂′2)

)
D

1/2†
−λ3µ̄3

(
RM(k̂′3)

)
Φ̃S12

λ′N
(µ̄1, µ̄2, µ̄3)

}∗

× ∑
µ1µ2µ3

D
1/2†
λ1µ1

(
RM(k̃1)

)
D

1/2†
λ2µ2

(
RM(k̃2)

)
D

1/2†
λ3µ3

(
RM(k̃3)

)
Φ̃S12

λN
(µ1, µ2, µ3)

(75)

dove S12 = 0, 1. L'unica di�erenza rispetto a prima è che cambia il segno di
λ3 nella matrice di rotazione in parentesi gra�a.

Dalla de�nizione delle matrici di rotazione D
1/2†
λ1µ̄1

(
RM(k̂′1)

)
(4.56) e della

funzione Φ̃S12

λ′N
(4.57), per
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a) S12 = S ′12 = 0; l'equazione (75) diviene

1

2

∑

µ̄1

∑

µ̄2

∑
µ1

∑
µ2

[ ∑

λ1

〈1/2, µ̄1|RM(k̂′1)|1/2, λ1〉〈1/2, λ1|R†
M(k̃1)|1/2, µ1〉

]

×
[ ∑

λ2

〈1/2, µ̄2|RM(k̂′2)|1/2, λ2〉〈1/2, λ2|R†
M(k̃2)|1/2, µ2〉

×〈1/2, µ̄1| − iσy|1/2, µ̄2〉〈1/2, µ2|iσy|1/2, µ1〉
]

×∑

λ3

sign(λ3)〈1/2, λ′N |RM(k̂′3)|1/2,−λ3〉〈1/2, λ3|R†
M(k̃3)|1/2,−λN〉.(76)

Usando, ora, i risultati [(32) ÷ (37)] si ottiene

1

2

∑

λ3

sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2,−λ3〉〈1/2, λ3|R†
M(k̃3)|1/2, λt

N〉

×N−1(k̂′1)N
−1(k̃1)N

−1(k̂′2)N
−1(k̃2)

∑

µ̄1

∑

µ̄2

∑
µ1

∑
µ2

〈1/2, µ̄1|A1 + i~σ · ~B1|1/2, µ1〉

×〈1/2, µ̄1| − iσy|1/2, µ̄2〉〈1/2, µ̄2|A2 + i~σ · ~B2|1/2, µ2〉〈1/2, µ2|iσy|1/2, µ1〉.(77)

La quale, ricordando le equazioni dalla (39) alla (45), assume la forma

N−1(k̂′1)N
−1(k̃1)N

−1(k̂′2)N
−1(k̃2)

∑

λ3

sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2,−λ3〉

×〈1/2, λ3|R†
M(k̃3)|1/2, λt

N〉[A1A2 + ~B1 · ~B2].(78)

• Calcolo di �∑λ3
sign(λ3)〈1/2, λ′tN |RM(k̂′3)|1/2,−λ3〉〈1/2, λ3|R†

M(k̃3)|1/2, λt
N〉�:

1)

λ′N = λN = +
1

2
, T̃++ = T̃−− ⇒ T̃++ =

1

2

[
T̃++ + T̃−−

]

(79)

⇒ N−1(k̂′3)N
−1(k̃3)

2

∑

λ3

{
〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉sign(λ3)

+〈1/2,−1/2|m + x̂′3M̂
′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉sign(λ3)
}

=
N−1(k̂′3)N

−1(k̂3)

2

{
〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
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×〈1/2, 1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+〈1/2,−1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

×〈1/2, 1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
−〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
−〈1/2,−1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
}

=
N−1(k̂′3)N

−1(k̃3)

2

{
− (m + x̃3M̃0)〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

+〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
×〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉

+(m + x̂′3M̂
′
0)〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

+〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
×〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

−(m + x̂′3M̂
′
0)〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
−〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+(m + x̃3M̃0)〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

−〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
}

=
N−1(k̂′3)N

−1(k̃3)

2

{
(m + x̂′3M̂

′
0)

[
〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

−〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
]

+(m + x̃3M̃0)
[
− 〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

+〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
]

+〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
+〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

−〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
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−〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
}

.

(80)

A questo punto sostituendo le relazioni ottentute in equazione
(50), l'espressione (80) diviene:

N−1(k̂′3)N
−1(k̃3)

2

{
(m + x̂′3M̂

′
0)

[
− 2k̃x,3

]
+ (m + x̃3M̃0)

[
2k̂′x,3

]

+ik̂′y,3k̃x,3 − ik̂′x,3k̃y,3 − ik̂′y,3k̃x,3 + ik̂′x,3k̃y,3

}
,(81)

cioè

N−1(k̂′3)N
−1(k̃3)

{
(m + x̃3M̃0)k̂

′
x,3 − (m + x̂′3M̂

′
0)k̃x,3

}
. (82)

Quindi il risultato �nale per il contributo di �spin� T̃++ nel caso
S12 = S ′12 = 0 risulta essere:

X̃00
++ =

∏

i

N−1(k̂′i)N
−1(k̃i)

{
(m + x̃3M̃0)k̂

′
x,3 − (m + x̂′3M̂

′
0)k̃x,3

}

×[A1A2 + B̄1 · B̄2].

(83)

2)

λ′N = +
1

2
λN = −1

2
, T̃+− = −T̃−+ ⇒ T̃+− =

1

2

[
T̃+−−T̃−+

]

(84)

⇒ N−1(k̂′3)N
−1(k̃3)

2

∑

λ3

{
〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉sign(λ3)

−〈1/2,−1/2|m + x̂′3M̂
′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−λ3〉

×〈1/2, λ3|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉sign(λ3)
}
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=
N−1(k̂′3)N

−1(k̃3)

2

{
〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

×〈1/2, 1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
−〈1/2,−1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

×〈1/2, 1/2|m + x̃3M̃0 + i~σ · (ẑ × k⊥,3)|1/2, 1/2〉
−〈1/2, 1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
+〈1/2,−1/2|m + x̂′3M̂

′
0 − i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|m + x̃3M̃0 + i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
}

=
N−1(k̂′3)N

−1(k3)

2

{
− (m + x̂′3M̂

′
0)(m + x̃3M̃0)

+〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
×〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

−(m + x̂′3M̂
′
0)〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉

+(m + x̃3M̃0)〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
−〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉

×〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
−(m + x̂′3M̂

′
0)(m + x̃3M̃0)

−(m + x̂′3M̂
′
0)〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

+(m + x̃3M̃0)〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
−〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
+〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉

×〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
}

=
N−1(k̂′3)N

−1(k̃3)

2

{
(m + x̂′3M̂

′
0)

[
− 〈1/2, 1/2|i~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉

−〈1/2,−1/2|i~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
]

+(m + x̃3M̃0)
[
〈1/2,−1/2|i~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉
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+〈1/2, 1/2|i~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉
]

+〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉
−〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2,−1/2〉〈1/2, 1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
−〈1/2, 1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2,−1/2〉

+〈1/2,−1/2|~σ · (ẑ × k̂′⊥,3)|1/2, 1/2〉〈1/2,−1/2|~σ · (ẑ × k̃⊥,3)|1/2, 1/2〉
}

.

(85)

Ora utilizzando le relazioni (50) si ha

N−1(k̂′3)N
−1(k̃3)

2

{
− 2(m + x̂′3M̂

′
0)(m + x̃3M̃0) + (m + x̂′3M̂

′
0)

[
ik̃y,3 − ik̃y,3

]

+(m + x̃3M̃0)
[
ik̂′y,3 − ik̂′y,3

]
− k̂′x,3k̃x,3 − k̂′x,3k̃x,3 + k̂′y,3k̃y,3 + k̂′y,3k̃y,3

}

= N−1(k̂′3)N
−1(k̃3)

{
(m + x̂′3M̂

′
0)(m + x̃3M̃0) + k̂′y,3k̃y,3 − k̂′x,3k̃x,3

}
.

(86)

Quindi il risultato �nale per il contributo di �spin� T̃+− in questo caso
risulta essere:

X̃00
+− =

∏

i

N−1(k̂′i)N
−1(k̃i)

{
− (m + x̂′3M̂

′
0)(m + x̃3M̃0) + k̂′y,3k̃y,3 − k̂′x,3k̃x,3

}

×[A1A2 + B̄1 · B̄2].

(87)

Il caso in cui S12 = S ′12 = 1 può svolto essere in modo totalmente analogo
ai casi, precedentemente visti, basta tenere conto del fatto che ora
l'equazione di partenza è data da

1

6

∏
N−1(k̂′i)N

−1(k̃i)
∑

j,j′
Tr

{(
A1 + i~σ · ~B1

)
σjσy(A2 + i~σ · ~B2)σyσj

}

×∑
µ3

∑

µ̄3

∑

λ3

〈1/2, λ′tN |σ′j|1/2, µ̄3〉〈1/2, µ̄3|m + x̂′3M̂
′
0 − iσ · (ẑ × k̂′3,⊥)|1/2,−λ3〉

×〈1/2, λ3|m + x̃3M̃0 − iσ · (ẑ × k̃3,⊥)|1/2, µ3〉〈1/2, µ3|σj|1/2, λt
N〉. (88)
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Ripercorrendo quindi, i passi e�ettuati nel calcolo dei contributi prece-
denti, per T̃ q

++ si ottiene

X̃11
++ =

3∏

i=1

N−1(k̂′i)N
−1(k̃i)

×
[
(3A1A2 − ~B1 · ~B2)Ã3

+2(A1B2,x + A2B1,x)B̃3,x

+2(A1B2,y + A2B1,y)B̃3,y

+2(A1B2,z + A2B1,z)B̃3,z

]
, (89)

dove

Ã3 = k̂′3,x(m + x̃3M0)− k̃3,x(m + x̂′3M
′
0), (90)

B̃3,x = −k̂′3,xk̃3,y − k̂′3,yk̃3,x, (91)
B̃3,y = (m + x̂′3M̂

′
0)(m + x̃3x0)− k̂′3,yk̃3,y + k̂′3,xk̃3,x, (92)

B̃3,z = −(m + x̂′3M̂
′
0)k̃3,y − (m + x̃3M̃0)k̂

′
3,y. (93)

Mentre per il caso di T̃ q
−+ si ha

X̃11
+− =

3∏

i=1

N−1(k̂′i)N
−1(k̃i)

×
[
(−A1A2 − ~B1 · ~B2 + 4B1,yB2,y)B̃3,y

+2(B1,xB2,y + B2,xB1,y)B̃3,x

+2(A1B2,y + A2B1,y)Ã3

+2(B1,yB2,z + B1,zB2,y)B̃3,z

]
. (94)

(95)
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